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Abstract 28 

Increasing evidence suggests that urbanization is associated with higher mutation rates, which can 29 

affect the health and evolution of organisms that inhabit cities. Elevated pollution levels in urban areas 30 

can induce DNA damage leading to de novo mutations. Studies on mutations induced by urban 31 

pollution are most prevalent in humans and microbes, whereas studies of non-human eukaryotes are 32 

rare, even though increased mutation rates have the potential to affect organisms and their populations 33 

in contemporary time. A wealth of data indicates that most mutations will be neutral or deleterious, and 34 

higher mutation rates associated with elevated pollution in urban populations can increase the risk of 35 

cancer in humans and potentially other species. Evolutionary theory further suggests the potential for 36 

urban-driven increased deleterious mutational loads in some organisms, which could lead to a decline 37 

in population growth of a wide diversity of organisms. While beneficial mutations are expected to be 38 

rare, higher mutation rates in urban areas could influence adaptive evolution, especially in organisms 39 

with short generation times. We explore avenues for future research to better understand the effects of 40 

urban-induced mutations on the fitness, ecology, and evolution of city-dwelling organisms.  41 

  42 
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Mutation is the fundamental evolutionary force that creates all genetic variation. Despite its 43 

importance, variation in mutation rates is often overlooked or considered of negligible significance in 44 

empirical studies of ecology and evolution, particularly in eukaryotes{Fenster, 2020 #6}. Mutation 45 

rates can be influenced by the environment{MacLean, 2013 #11;Fitzgerald, 2017 #10}, and can evolve 46 

through time{Lynch, 2016 #9;Bergeron, 2023 #91}. One place where a consideration of mutation rates 47 

may be particularly relevant is in cities, where emerging evidence suggests that mutation rates are 48 

elevated by pollution{Somers, 2004 #3699;Yauk, 1996 #3746}. Our Perspective considers how 49 

elevated mutation rates in urban environments could impact the fitness and health of individuals, which 50 

may alter the ecological and evolutionary trajectories of populations.  51 

One of the most consistent differences between urban and non-urban environments that could 52 

influence mutation rates is higher chemical pollution. Transportation, industry, wastewater 53 

management, home heating, landfills, and pesticide application are some of the activities in urban areas 54 

commonly associated with elevated air, water and soil pollution{Organization, 2016 #36;FAO, 2021 55 

#37;UNEP, 2016 #38}. Although less frequent in urban areas, nuclear plants, nuclear testing, and 56 

warfare can also result in highly mutagenic ionizing radiation (e.g., Fukushima, Three Mile Island, 57 

Hiroshima){Filburn, 2016 #13}. Studies on the mutagenic effects of radiation also provide general 58 

insight into how highly mutagenic pollutants can influence organisms in cities. While pollution is not 59 

unique to urban areas, the concentration and diversity of pollutants is often highest in cities (Fig. 1), 60 

exposing organisms to harmful stressors in unprecedented ways{Organization, 2016 #36;FAO, 2021 61 

#37;UNEP, 2016 #38}. 62 

Urban chemical pollution can cause physiological and genotoxic stress to organisms that may result 63 

in mutations. Such pollution is known to result in respiratory illnesses in humans{Seaton, 1995 #14}, 64 

reduced photosynthesis and cell damage in plants{Seyyednejad, 2011 #18}, higher mortality in fishes 65 

and amphibians{Casey, 2005 #17}, and decreased fledgling success in birds{Chatelain, 2021 #16}. 66 

Exposure to some pollutants can damage DNA and induce de novo mutations (hereafter simply called 67 
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“mutations”){Claxton, 2007 #209;White, 2004 #56;Humans, 2015 #30;Marchetti, 2020 #68} (Box 1, 68 

Table 1). While carcinogenic pollutants are known to cause somatic mutations, the fitness effects of 69 

these mutations and the prevalence of pollution-induced germline mutations are poorly understood 70 

outside of lab settings. Moreover, whether urban-induced higher mutation rates lead to an increased 71 

number of deleterious mutations, population decline, or accelerated adaptive evolution, has not been 72 

considered until now{but see \Bromham, 2015 #39}.   73 

Studies of the effects of urbanization on evolution have focused on genetic drift, gene flow, and 74 

natural selection, while the potential for elevated mutation rates in cities to influence the ecology and 75 

evolution of populations is virtually unexplored and of high priority for future research{Diamond, 2021 76 

#4452;Johnson, 2017 #3562;Szulkin, 2020 #320;Verrelli, 2022 #4482}. Our goal is to provide a 77 

forward-looking Perspective of the potential for elevated mutation rates in cities to influence the 78 

ecology and evolution of populations. We begin by reviewing urban pollutants and the damage they 79 

cause to DNA. Next, we consider how pollution affects somatic and germline mutations and the 80 

potential importance of these mutations for ecology and evolution. While urban pollution can affect all 81 

organisms living in cities, most existing examples come from research on humans. We consider the 82 

effects of pollution on human and nonhumans throughout this paper, and we use the extensive literature 83 

on humans as a model to understand the wider ecological and evolutionary impacts of evolution for all 84 

organisms. These wider implications beyond humans are particularly important because although cities 85 

reduce and homogenize species diversity, urban habitats still harbour substantial biodiversity 86 

{Aronson, 2014 #351;Knapp, 2012 #350;Rogers, 2023 #352}, and many of these species in cities are 87 

of conservation concern or play fundamental ecosystem roles{Lambert, 2020 #353}. We end by 88 

discussing gaps in current research and directions for future research. Our findings have potentially 89 

large and hitherto overlooked implications for: (1) the health of both human and wild organisms, and 90 

(2) the persistence of biodiversity in a rapidly urbanizing world.  91 

 92 
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Urban pollutants and damage to DNA 93 

Air, water, and soil in cities are consistently associated with a diverse mixture of pollutants (Table 1, 94 

Box 1). The sources of most outdoor air pollutants in cities are combustion by-products from 95 

transportation, power generation, home heating and cooking, and industry{Leung, 2015 96 

#34;Programme, 2017 #289}. These by-products include pollutants such as PAH, NOx, sulphur 97 

dioxide (SO2), CO, and various metal species (e.g., Hg, Cu, Pb, Sn). These compounds can interact 98 

with or bind to PM, which can then be deposited in soil{Baensch-Baltruschat, 2020 #33;Nirmalkar, 99 

2021 #32;Humans, 2015 #30;Humans, 2010 #35}. Soil can also become contaminated with 100 

genotoxicants from industrial by-products, manufacturing, mining, and road salting{Programme, 2017 101 

#289}. Air pollutants, soil leaching, run-off, and sewage all contribute to water pollution{Martínez-102 

Bravo, 2019 #28}, which can lead to elevated levels of pesticides{Nagy, 2014 #27;Annabi, 2019 #26}, 103 

polychlorinated biphenyls (PCBs){Agudo, 2016 #25}, pharmaceutical products{Chowdhury, 2020 104 

#22;Isidori, 2005 #24;Metzler, 1998 #21}, and microplastics{Tagorti, 2022 #20;Roursgaard, 2022 105 

#19;Programme, 2017 #289} in urban aquatic habitats.  106 

Pollution in urban settings varies in both time and space in complex ways. The levels and types of 107 

urban pollution have changed throughout the history of industrial and urban growth. For example, 108 

during the past 20 years, the level of PM2.5 (particulate matter with diameters <2.5µm) in Shanghai, 109 

China, has increased by over 200%, yet it decreased by nearly 30% in New York, USA, and remained 110 

consistently low in Melbourne, Australia (Fig. 1). These changes through time are often influenced by 111 

changes in governmental policies (e.g., US’s Clean Air Act, EU’s Ambient Air Quality Directive) and 112 

technological change (e.g., conversion from leaded to unleaded fuels). Urban pollutants also vary 113 

spatially in their concentrations and composition (Fig. 1 insets). For example, industrial steel 114 

production often leads to some of the highest concentrations of polycyclic aromatic hydrocarbons 115 

(PAHs){Yang, 2002 #290}, whereas high vehicle traffic is typically associated with higher particulate 116 
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matter (PM), ozone, carbon monoxide (CO), and nitrous oxides (NOx) (Table 1). Socioeconomic 117 

variation among neighbourhoods often covaries with pollution levels, whereby poorer neighbourhoods 118 

are frequently in the most polluted areas, causing disparity in exposure to potentially harmful 119 

genotoxicants{Hajat, 2015 #137;Kim, 2023 #138}. Non-urban areas also frequently experience 120 

pollution due to anthropogenic activities (e.g. resource extraction, agriculture, forestry, nuclear 121 

radiation), but we focus on urban areas because they are the fastest growing ecosystem on Earth, they 122 

are consistently associated with elevated pollution of diverse mixtures of chemicals, which potentially 123 

have harmful effects on organisms including damage to DNA (i.e., genotoxicants) (Box 1).  124 

The genotoxic effects of urban pollutants include chemical interactions that form DNA adducts (i.e., 125 

chemicals that bind to DNA) and reactive oxygen species that damage DNA (Box 1). When such 126 

damage is improperly repaired it can cause small-scale and large-scale mutations. Small-scale 127 

mutations include single nucleotide substitutions and small insertions/deletions (indels). Large-scale 128 

mutations involve large indels, duplications, translocations, inversions, and aneuploidy{Iafrate, 2004 129 

#139;Sebat, 2004 #140;Zhang, 2009 #141}. DNA replication errors such as unequal crossovers that can 130 

result in gene duplication and deletion are also possible. The location of DNA damage (coding vs. 131 

noncoding regions), the molecular function of damaged DNA (e.g., regulatory versus structural), and 132 

whether coding mutations are synonymous or nonsynonymous, influence the molecular, physiological, 133 

and fitness consequences of damage. The fitness effects of mutation can in turn impact the ecology and 134 

evolution of populations{Griffiths, 2000 #144;Chu, 2019 #142;Scacheri, 2015 #143}.  135 

The effects of urban-induced mutations may differ between species because of variation in ploidy, 136 

cellular complexity, mutation rate, reproductive system, population size, and generation time. For 137 

example, many animals, higher plants, and some eukaryotic microbes live primarily as diploids or 138 

polyploids, which can mask the fitness effects of recessive mutations at low frequencies{Orr, 1995 139 

#343;Otto, 2008 #345}. Similarly, many multicellular organisms have differentiated germ and somatic 140 

cells, such that pollution induced mutations in somatic cells will not generally be passed on to 141 
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subsequent generations. In contrast, organisms with no distinction between germ and soma (e.g., some 142 

plants and fungi), may accumulate inherited mutations more rapidly if mutations arise in the cells that 143 

ultimately form gametic tissue{Anderson, 2018 #339;Burian, 2021 #337}. Moreover, mutation rates 144 

vary by orders of magnitude, with bacteria and microbial eukaryotes having the lowest rates, vascular 145 

plants and animals with moderate rates, and viruses with the highest mutation rates {Lynch, 2016 146 

#342;Wang, 2023 #338}. Recombination in sexual organisms can allow efficient purging of harmful 147 

mutations compared to asexual populations{Otto, 2009 #1806;Charlesworth, 2012 #2518}. Finally, 148 

large populations with rapid generation times are expected to evolve to purge or fix environmentally 149 

induced mutations that affect fitness more rapidly than small long-lived populations{Charlesworth, 150 

2009 #2532}. In the sections that follow we expand on how such variation among species may lead to 151 

different ecological and evolutionary consequences of urban induced mutations. 152 

Somatic mutations  153 

The primary consequence of genotoxic exposure is the induction of somatic mutations that can 154 

adversely affect molecular, cellular and tissue function. Somatic mutations are not transmitted to the 155 

next generation unless they occur in germ cell progenitors (e.g., plant apical meristems){Lanfear, 2018 156 

#263}, and so they typically affect only the exposed individual’s health and fitness. The causal role of 157 

chemically induced mutations in cancer development is well known in certain cases (e.g., lung cancer 158 

due to tobacco smoke){Hecht, 1999 #291} (Table 2). These examples show that exposure to 159 

genotoxicants can cause mutations in tumour suppressor oncogenes that function as cancer drivers that 160 

cause cellular proliferation and tumour development, or affect genes involved in DNA repair leading to 161 

genetic instability{Foo, 2014 #292}. Moreover, exposure to mutagens during key life stages (e.g., 162 

embryogenesis, organogenesis) may increase the probability of clonal expansion of mutation-bearing 163 

cells{Godschalk, 2020 #43;Whitham, 1981 #294;White, 2004 #56}. Data supporting the association 164 

between environmentally induced mutations and non-cancerous diseases are almost entirely lacking, 165 
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despite knowledge of mutations across the genome caused by genotoxicant exposure, and a growing 166 

understanding of the role of somatic cell mutagenicity in disease more generally (e.g., ageing, 167 

neurological and cardiac diseases){Schumacher, 2021 #41;Li, 2013 #293}. Thus, there is currently no 168 

knowledge on the rates and functional consequences of pollution induced somatic mutations for 169 

individuals, populations, and species beyond the established association with cancer. 170 

The study of mutagenesis in wild organisms is challenging because mutations are rare events at a 171 

genomic scale. This difficulty is compounded in the case of somatic mutations because the occurrence 172 

of mutations varies among tissues within a single individual. However, a variety of studies provide 173 

empirical evidence supporting an association between specific urban pollutants and elevated somatic 174 

cell mutation rates. The invention of the Salmonella mutation assay (i.e., the “Ames assay”) has been 175 

the single most transformative tool in the study of environmental mutagenesis{Claxton, 2010 176 

#153;Claxton, 2004 #208}. Briefly, the assay assesses how frequently Salmonella strains lacking the 177 

ability to metabolize histidine – due to engineered base pair substitutions or frameshift mutations – 178 

exhibit revertant mutations to restore histidine metabolism when challenged by a potential toxin17,64. 179 

This simple bacterial assay has revealed that the air, soil and water in urban environments is replete 180 

with mutagens{Claxton, 2010 #153}. Beyond Salmonella, observational and experimental cytogenetic 181 

studies show that numerous chemical pollutants cause chromosomal abnormalities (e.g., chromosomal 182 

structural aberrations, aneuploidy) in diverse organisms{Claxton, 2007 #209;White, 2004 #56;Chen, 183 

2004 #57}. Additional lines of evidence are based on the types and distribution of mutations (i.e., 184 

mutation spectrum) observed in human cancers used to infer mutagenic exposures{e.g., \Olivier, 2004 185 

#45}, and the COSMIC database{Alexandrov, 2020 #46}. Overall, laboratory models (e.g., 186 

Salmonella, mice, plants) exposed to environmental media or extracts demonstrate the widespread 187 

mutagenicity of many chemical pollutants in urban areas{Olivier, 2004 #45}. 188 

The most extensive evidence of pollution-induced somatic cell mutagenicity is from studies on 189 

combustion-related by-products found in urban air pollution, contaminated soils, and sediments. The 190 
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weight of evidence for the mutagenicity of outdoor air pollution is high, with many specific agents 191 

declared ‘carcinogenic to humans’ by the International Agency for Research on Cancer 192 

(IARC){Humans, 2015 #30}. IARC monographs thoroughly describe how these urban pollutants cause 193 

mutagenicity in laboratory organisms as diverse as bacteria, plants and rodents{Ferreira, 2007 194 

#48;Humans, 2015 #30}. For example, the mutation spectrum observed in lung tumours of non-195 

smokers associated with air pollution is broadly consistent with exposure to bulky DNA adduct-196 

forming chemicals (e.g., benzo[a]pyrene){DeMarini, 2001 #50;Yu, 2015 #51}. Additional evidence for 197 

the mutagenicity of air pollution comes from humans exposed to high levels of combustion by-products 198 

in residential and occupational settings, whereby individuals exhibit cytogenetic damage to various cell 199 

types{Acito, 2022 #54;León-Mejía, 2019 #55}, and the urine from such individuals is mutagenic to 200 

bacterial cells{e.g., \Hansen, 2004 #52;Wong, 2021 #53}. Moreover, soil and sediments that contain 201 

combustion-related contaminants are mutagenic to organisms that frequently come into contact with 202 

these substrates (e.g., bacteria and plants){White, 2004 #56;Chen, 2004 #57}. Undoubtedly, inhabitants 203 

of any urban ecosystem are exposed to mutagenic particulate pollutants associated with combustion 204 

emissions.  205 

There are many other examples of mutagenic contaminants found in urban settings, from metals, to 206 

pesticides, organochlorines, and benzene (Table 1). These genotoxicants have the potential to impact 207 

somatic cell mutation burden contributing to the decreased health of individuals and populations 208 

{Humans, 2015 #30;Organization, 2020 #288}. The vast majority of mutagenicity testing is conducted 209 

in the laboratory on individual chemicals at high doses{Marchetti, 2020 #68}, leading to a major gap in 210 

understanding how lifelong, low-dose exposures of mixtures of mutagens affect mutation rates and 211 

disease outcomes. Moreover, the complex interactions between socio-demographic factors and 212 

mutagenic environmental mixtures inherent to cities have yet to be explored. 213 

The study of environmentally induced somatic cell mutations has been considerably hampered by 214 

the lack of tools available outside of the laboratory. Although single-cell deep-sequencing{Eberwine, 215 
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2014 #317} and error-corrected sequencing{Kennedy, 2014 #315;Cho, 2023 #316} methodologies 216 

exist, these have mostly been applied in clinical settings and have yet to be extended to studies on 217 

environmental exposures in natural populations. The high levels of pollution in urban areas offer an 218 

opportunity to address these obstacles using field experiments, in addition to laboratory experiments, 219 

that apply genomic technologies to directly quantify mutation frequency and spectrum in a diverse 220 

array of organisms (see Future Directions). 221 

 222 

Germline mutations 223 

Unlike somatic mutations, germline mutations are inherited between generations. For this reason, it is 224 

primarily germline mutations that can influence the evolution of populations, with the exception of 225 

somatic mutations that are then incorporated into reproductive tissue, which is most common in fungi 226 

and plants{Lanfear, 2018 #263}. Although germline mutations are rare at the individual level, even the 227 

smallest increase in mutation rate can have significant consequences for populations{Shendure, 2015 228 

#67}.  229 

Laboratory and field studies suggest that exposure to many common urban pollutants can induce 230 

germline mutations. For example, over 80 chemical agents have been identified as germline mutagens 231 

in lab mice{Marchetti, 2020 #68}. In humans, the best evidence of the impact of pollutants on germ 232 

cell mutagenesis comes from studies demonstrating an increased incidence of chromosomal 233 

abnormalities in human sperm{Marchetti, 2020 #68}. Such abnormalities may explain the significant 234 

correlation between paternal blood dioxin levels due to occupational exposure and increased mutation 235 

rates in their offspring{Ton, 2018 #77}. When considering exposure to radiation as an example of 236 

extreme exposure to a mutagen, children of parents exposed to ionizing radiation following the 237 

Chernobyl nuclear plant accident exhibited increased rates of tandem repeat mutations{Dubrova, 1996 238 

#73}. Similar inherited mutations have been observed in plants{Kovalchuk, 1998 #74} and barn 239 
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swallows{Ellegren, 1997 #75}. However, increases in inherited single nucleotide variants have yet to 240 

be conclusively demonstrated for humans exposed to radiation{Yeager, 2021 #4388}. When we look to 241 

non-polluted areas, a recent study reported a reduced mutation rate in an Amish population, which has 242 

been interpreted as traditional rural lifestyles leading to low mutations rates because of reduced 243 

exposure to chemical mutagens{Kessler, 2020 #80}. Only a few studies have examined non-human 244 

populations outside of laboratory conditions, and they show that birds and rodents exhibit increased 245 

heritable mutation rates in repetitive DNA regions when exposed to ambient industrial air 246 

pollution{King, 2014 #70;Yauk, 1996 #3746;Somers, 2004 #3699;Somers, 2002 #3700}.  247 

In addition to pollution, urban and rural human populations diverge in their demographic patterns in 248 

ways that are expected to influence germline mutation rates. In recent decades, there has been a trend 249 

for delayed childbearing in many countries. In both developed and developing nations, this delay is 250 

more pronounced in urban settings than in rural settings{Ely, 2018 #83;Lerch, 2019 #295}. Over the 251 

course of the last decade, studies of human parents and offspring have consistently demonstrated an 252 

age-related increase in mutation rates, especially in fathers{Goldmann, 2016 #82}. It is estimated that 253 

fathers transmit ~1.2 additional mutations for each year of age, versus ~0.4 new mutations per year of 254 

age in the mother. The higher paternal contribution is ascribed to the continuous production of sperm as 255 

men age, while no new oocytes are generated once a female is born. The consistency of this divergence 256 

between developed and developing nations requires further investigation, as a major source of 257 

increased mutation rates could also result from differences in socio-cultural practices, economic 258 

disparities, and racial demographics between urban and rural areas in cities throughout the world. There 259 

is also evidence that non-human organisms exhibit demographic shifts in urban habitats{Merckx, 2018 260 

#354}, but whether this is associated with changes in mutation rates requires investigation. 261 

Despite the circumstantial evidence mentioned above for an effect of urban pollution and 262 

demographics on increased germline mutation rates in cities, a direct link between urban pollution and 263 

mutations has yet to be directly demonstrated using modern genome sequencing techniques. Thus, we 264 
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lack information on how and when urban pollution increases rates of germline mutation, the targets of 265 

mutation, and especially their phenotypic and fitness effects.  266 

 267 

Ecological and evolutionary consequences 268 

Alterations to the rate and spectrum of both somatic and germline mutations due to urban pollution 269 

could have important ecological and evolutionary repercussions. Theoretical and empirical studies 270 

show that the majority of new functionally significant mutations are deleterious and removed by 271 

purifying selection{Eyre-Walker, 2007 #84}. If deleterious mutations are elevated in urban settings, 272 

either due to a higher rate or as a larger fraction of deleterious mutations, we expect an increased 273 

mutation load (i.e., reduced fitness due to the burden of deleterious mutations relative to an unmutated 274 

individual) that will decrease population mean fitness{Schultz, 1997 #298;Sprouffske, 2018 #86}. 275 

Whether urban species in fact suffer a demographic decline depends on several factors including the 276 

strength of selection, Ne, and generation time (Fig. 2). Keightley{, 2012 #87} estimated that the decline 277 

in human fitness due to mutation could reach 0.01% per generation, and the decline would change 278 

linearly with changes in mutation rate. This estimate does not include the countering force of purifying 279 

selection. It is therefore likely that organisms with long generation times will experience little effect on 280 

population mean fitness in the short term. Conversely, organisms with short generation times (e.g., 281 

microbes), may experience changes in fitness over contemporary time-scales.  282 

Although evolutionary responses depend on inherited germline mutations, somatic mutations also 283 

have important consequences for the health and fitness of individuals that contribute to long-term 284 

population viability. In multicellular organisms, somatic mutations can create a mosaic of cells with 285 

slightly different genotypes{Pineda‐Krch, 2004 #323}. These mutations can lead to developmental 286 

instability, which is particularly detrimental in organisms with strict body plans like animals (Table 287 

2){Doonan, 2010 #322}. The genomic diversity within an individual can also produce competition 288 
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among cell lineages that can be harmful, as in the case with cancers. There is also clear evidence for 289 

intra-organismal selection for healthy cell lineages that can reduce the overall impact of deleterious 290 

mutation, including in marine tunicates, and long lived perennial plants{Doonan, 2010 #322;Pineda‐291 

Krch, 2004 #323}. These different phenomena hint at complex interactions between development, life 292 

history, and genetic systems when determining the relative impact of elevated somatic mutation rates in 293 

urban settings. Given the evidence that urban habitats experience elevated concentrations of numerous 294 

mutagens (Table 1), the impact of somatic mutation may become very important to predicting the 295 

sustainability of some urban populations (see Applied Impacts).  296 

Theory generally predicts an advantage for reduced mutation rates because most non-neutral 297 

mutations will be deleterious{Jiang, 2010 #88;Sniegowski, 2000 #325}. Therefore, we might expect 298 

that urban populations will be under selection to reduce mutation rates in the presence of mutagens. 299 

The ability and time it takes for selection to reduce mutation rates will depend on numerous factors 300 

such as the mating system, Ne, and target size (i.e., amount of nucleotide sequence that can reduce 301 

mutation rate) for mutation modifiers{Wei, 2022 #89}. The drift-barrier hypothesis{Lynch, 2010 #90} 302 

predicts that directional selection will reduce mutation rates until a point at which the strength of 303 

genetic drift (1/Ne) overcomes the selective advantage (s) of smaller improvements in mutation rate 304 

(when Nes < 1). This hypothesis is supported by recent comparative genomic analyses that show that 305 

species with higher long-term Ne, and shorter generation times, tend to have lower mutation rates per 306 

generation{Bergeron, 2023 #91}. There is an equilibrium point beyond which if mutation rates are 307 

sufficiently high, selection to reduce the mutation rate should overcome drift. Nevertheless, if urban 308 

environments reduce an organism’s Ne, resulting in a loss of genetic diversity{Johnson, 2017 #3562}, 309 

we may expect a higher equilibrium mutation rate.  310 

Despite the genetic load created by deleterious mutations, mutation also provides the raw variation 311 

necessary for adaptation. These contrasting effects of mutations lead to the possibility that mutation-312 

fuelled adaptation can result in a so-called “evolutionary rescue”{Carlson, 2014 #92;Sprouffske, 2018 313 
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#86} (i.e., an increase in population growth rate of small populations due to adaptation) of populations 314 

subject to environmental challenges in urban environments (Fig. 2). For example, pathogens whose 315 

fitness in a new host is so low as to preclude persistence may benefit from higher mutation rates, where 316 

the higher the mutation rate the larger the probability of evolutionary rescue{Metzgar, 2000 #324}. 317 

However, this situation is highly context dependent, because once a population approaches its fitness 318 

optimum, the benefit of new mutations disappears, and any new mutations are likely to be deleterious. 319 

It is reasonable to speculate that urban environments will pose such strong selective pressures that 320 

some populations will benefit from elevated mutational input during initial establishment (Fig. 2). The 321 

extent to which mutation will provide variation to tackle new selective challenges will depend on how 322 

elevated the mutation rate is in urban areas, how close a population is to a fitness optimum (i.e., 323 

selection strength), Ne, and generation time (Fig. 2). If elevated mutation rates have beneficial 324 

implications for species colonizing urban environments, it may also mean that cities could facilitate 325 

rapid adaptation to pesticides, herbicides, and antibiotics, or provide the raw variation needed for 326 

pathogens to switch hosts.  327 

It is plausible that elevated patterns of mutation in cities could facilitate speciation, especially if 328 

mutations induced by urban pollution causes large-scale chromosomal abnormalities that affect mating 329 

incompatibilities. Elevated mutation rates within cities could not only lead to population divergence 330 

among urban and non-urban populations due to local adaptation, but also as a result of accelerated 331 

genetic drift due to population fragmentation{Thompson, 2018 #4191}. Under these conditions higher 332 

mutation rate in urban settings would increase the possibility of generating mutations that are 333 

compatible with population-specific local alleles at other loci, but incompatible with alleles in 334 

populations adapted to non-urban environments. Alleles that are only compatible with the genetic 335 

background they arose in are called “Bateson-Dobzhansky-Muller incompatibilities”, and are thought 336 

to form the genetic basis of speciation{Orr, 2001 #326}. Such incompatibilities may be particularly 337 

likely to occur if urban pollutants increase the frequency of large structural mutations, including 338 
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inversions, translocations, polyploidy, or elevated activity of transposable elements, since these types 339 

of large-scale structural mutations are frequently associated with genes that influence  reproductive 340 

isolation{Van Drunen,  #285}. Even in the absence of reproductive isolation, reduced vigour of urban 341 

and non-urban hybrids could potentially alter the fitness of nearby populations. In general, we may 342 

expect that elevated mutation in urban areas to lead to increased divergence, and potentially speciation, 343 

via both adaptive and non-adaptive processes{Thompson, 2018 #4191}. We believe cities offer unique 344 

opportunities to study the process of speciation across a myriad of taxa in real-time. 345 

 346 

Applied impacts 347 

Given that urbanization can increase mutation rates, we expect numerous applied consequences 348 

associated with the health and conservation of organisms inhabiting cities. The anticipated health 349 

effects of humans and nonhuman species include cancers and other diseases linked to somatic and 350 

germline mutations. The conservation consequences relate to how elevated mutation rates are expected 351 

to influence the fitness and long-term population growth of urban-dwelling species (Fig. 2). 352 

Urban pollution causes numerous types of cancer in humans and other organisms. Contemporary 353 

urban pollution elevates lung{Guo, 2019 #106;Yu, 2015 #51}, breast{Dey, 2010 #101} and other 354 

forms of cancer{Ayuso-Álvarez, 2020 #96} by 10% to 1000% above baseline incidence rates (Table 355 

2). The magnitude of these effects varies among cities and over time because of variation in the types 356 

and concentrations of specific pollutants (Fig. 1). Admittedly, most research on the health effects of 357 

urban pollution has been done on humans. How urban pollution affects somatic mutations and cancers 358 

in nonhumans is poorly understood outside of lab settings and represents an important gap in 359 

knowledge{Giraudeau, 2018 #327;Sepp, 2019 #328;Baines, 2021 #355} (see Future Directions). 360 

Although heritable germline mutations have the potential to magnify cancer risk in offspring due to 361 

pollution exposure in parents, there is currently no evidence outside of the lab of environmentally-362 
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induced heritable mutations causing cancer, even for ionizing radiation{Marchetti, 2020 #68;Yeager, 363 

2021 #4388;Mulvihill, 2012 #299}. However, observational studies of birds{Yauk, 1996 #3746}, and 364 

laboratory studies of rodents{Somers, 2004 #3699;Somers, 2002 #3700}, confirm that air pollution 365 

from steel mills can induce heritable germline mutations in repetitive DNA regions, which suggests 366 

that urban induced cancers could be inherited. Understanding how, when, and where urban pollution 367 

leads to inherited mutations that influence cancer risk is an important goal for future research (see 368 

Future Directions).  369 

Multiple socio-ecological factors associated with urban lifestyles could interact with pollution to 370 

elevate mutation rates. The previously-mentioned shift to older parental age among people in urban 371 

compared to rural communities is the best known cause of higher germline mutations in urban 372 

populations{Goldmann, 2016 #82}. Urban mutagenic pollution likely interacts with and amplifies this 373 

demographic effect on mutation rates. Human urban populations also exhibit increased rates of obesity 374 

and associated cancers due to a large proportion of processed foods in urban diets and relatively 375 

sedentary lifestyles{Wang, 2022 #349}. Herbivorous, omnivorous and predatory wildlife species also 376 

exhibit altered diets in cities that incorporate more anthropogenic food sources such as sugar, corn and 377 

wheat. Such diet shifts have been linked to higher body mass and hyperglycemia in some 378 

species{Gámez, 2022 #356;Lyons, 2017 #357;Schulte-Hostedde, 2018 #358}. Food additives and 379 

contaminants in processed foods may influence germline mutation rates{Kliemann, 2022 #107}, as 380 

could shifts in urban gut microbiomes{Winglee, 2017 #115}. Exposure to environmental pollutants and 381 

lack of access to high-quality diets may be biased towards certain urban demographics. Thus, analyzing 382 

urban mutagenesis and other evolutionary processes is an important step to address concerns about 383 

environmental justice{Schell, 2020 #110;Des Roches, 2020 #336;Verrelli, 2022 #4482}.  384 

Elevated mutation rates in cities have the potential to influence the dynamics of urban populations 385 

(Fig. 2). Given that most mutations are deleterious, it is likely that urban induced mutations will 386 

frequently have negative effects on individual fitness and the growth rate of populations{Schultz, 1997 387 
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#298;Sprouffske, 2018 #86}. Whether such negative demographic effects will be sufficiently large to 388 

outweigh the influence of other factors affecting populations requires careful quantification and 389 

modelling. We expect that urban pollution induced mutational load will be one of many factors 390 

threatening the persistence of populations, and may become a conservation concern for rare or 391 

declining native species in cities. By contrast, we predict that populations of pests and other organisms 392 

that maintain large populations are less likely to be negatively affected by elevated mutation rates. 393 

It is unlikely that urban-induced mutations will positively influence conservation through 394 

evolutionary rescue for most species. Only organisms with rapid generation times and high Ne are 395 

expected to experience positive long-term fitness effects of elevated mutation rates in cities, and even 396 

then, only when selection pressures are strong (Fig. 2). Such scenarios are most likely to apply to 397 

viruses, bacteria and some eukaryotic microbes (e.g., yeast, algae), raising the possibility that elevated 398 

mutation rates in cities could promote the spread of pathogenic organisms{Metzgar, 2000 #324}. Field 399 

and lab experiments that examine how urban induced changes in mutations rates affect known and 400 

emerging diseases and pests could have important implications for public health.  401 

 402 

Future Directions 403 

Our Perspective illustrates that water, soil and air pollution in urban areas increases mutation rates, but 404 

the magnitude and mutational spectrum of this increase, as well as its ecological and evolutionary 405 

consequences, remain unresolved. These gaps represent important problems requiring attention, which 406 

we outline as research questions below.  407 

What is the magnitude of increase in somatic and germline mutation rates and what are the types 408 

of mutations caused by urban pollution? 409 

While it is important to refine how somatic mutations rates are influenced by urban pollution, the 410 

greatest need remains establishing whether, and under what circumstances, urban pollution causes 411 
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germline mutations in wild populations{Marchetti, 2020 #68}. Conventional genomic technologies are 412 

poorly suited for quickly surveying the mutagenic properties of changing environments like urban 413 

areas. New error-corrected sequencing approaches enable the study of rare mutations within a 414 

heterogenous population of cells{Valentine III, 2020 #333;Marchetti, 2023 #81}. These methods can 415 

facilitate more rapid and definitive tests of how urban pollution affect mutation rates because they all 416 

but eliminate the need for extensive validation via additional molecular analyses conventionally needed 417 

to confirm the accuracy of mutation calls. 418 

What are the fitness effects of urban induced mutations and how do these influence the ecology 419 

and evolution of populations? 420 

Answering this question will require a combination of laboratory and field experiments, coupled with 421 

genome sequencing. Laboratory experiments could establish how mutations caused by specific urban 422 

pollutants influence individual fitness, population growth, and (mal)adaptation. Field experiments 423 

could follow the fitness of individuals that exhibit the presence/absence of mutations. Such experiments 424 

could be expanded upon by experimentally recreating mutations via transgenic or CRISPR 425 

manipulations. Finally, identification of somatic and germline mutations from human and wild urban 426 

populations of diverse organisms (Fig. 3) could be used to infer fitness and health effects based on how 427 

the types and locations of mutations are expected to disrupt homeostasis using deep learning models of 428 

DNA sequence evolution across thousands of species{Frazer, 2021 #359}.  429 

How do urban induced mutations vary among species? 430 

There is a need to expand the investigation of mutations caused by pollution to a wider diversity of 431 

organisms beyond humans given the indiscriminate threats that urban pollutants are expected to have 432 

on all species. We propose a global research programme that uses a range of organisms to be used as 433 

biosentinels (i.e., organisms to assay mutations induced by pollution), where the species chosen would 434 

vary in their relevance to humans, prevalence in urban areas, generation time, and genomic resources 435 

(Fig. 3). Such a biosentinel programme is an important strategy that can detect mutagenic effects even 436 
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when specific mutagens are difficult to identify{Salk, 2020 #329;Du Four, 2005 #103}. Bacteria, 437 

plants, and human cell lines have all been proposed as urban biosentinels{Ceretti, 2015 #98}. 438 

Salmonella has been the vanguard biosentinel because it responds readily to both known and unknown 439 

mutagens{Claxton, 2004 #208}, and we see it as an ideal bacterial model moving forward (Fig. 3). 440 

Existing plant (Arabidopsis) and animal (Drosophila, C. elegans) model organisms offer a rich 441 

genomic tool kit, although given their marginal importance to humans and/or prevalence in urban areas, 442 

non-model organisms that have been the focus of studies in urban areas should also be included (e.g., 443 

white clover, dogs, various birds). Rodents, particularly house mouse (Mus musculus) and Norway rat 444 

(Rattus norvegicus), are important pests in urban areas that are commonly used in laboratories, offering 445 

a biosentinel model that more closely resembles human physiology{Claxton, 2007 #209}. The 446 

deployment of such biosentinels could provide a rapid and accurate view of how urban induced 447 

mutations affect the biology of urban-dwelling species, including humans. 448 

 449 

Conclusions 450 

Our Perspective highlights the potential broad ranging mutagenic effects of urban pollution on virtually 451 

all life that inhabits cities. These mutagenic effects are expected to influence the fitness, ecology, and 452 

evolution of wild populations, but these effects are largely unstudied outside of laboratory settings, and 453 

even there, only a small subset of species have been studied. Given the many mutagens that are 454 

prevalent in urban areas, and their potentially large impacts on human and wildlife fitness, we argue 455 

that the study of urban mutagenesis is in urgent need of attention and should be prioritized in future 456 

applied research in ecology and evolution.  457 
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BOX 1 
 
Genotoxicity of urban pollutants and induction of mutations 
 
Chemical pollutants are the primary cause of DNA damage induced by urban pollution. 
Ionizing radiation is less common, but a more extreme mechanism of DNA damage in and 
around cities. When an organism is exposed to a chemical pollutant, it can cause DNA damage 
and mutation through several steps:  

1. The pollutant can enter the cell via diffusion{Figueroa, 2013 #267} or receptor 
mediated endocytosis{Su, 2020 #268}. 

2. Once inside the cell:  
a. Pollutants (e.g., polycyclic aromatic hydrocarbons) can form bonds with 

nitrogenous DNA bases resulting in DNA adducts{Yauk, 2016 #330} 
b. Presence and interaction of pollutants with cellular processes or proteins causes 

increases in reactive oxygen species (ROS) that can oxidize DNA and 
proteins{Cho, 2022 #269;Lakey, 2016 #270}. 

3. Chemically induced DNA lesions may be subject to error-prone DNA repair processes 
that cause mutations, or if the amount of damage exceeds the cell’s capacity for DNA 
repair, it can result in mutations or chromosome damage{Sasaki, 2020 #331}. 

4. Air pollutants can also cause oxidative stress via chronic inflammation and subsequent 
formation of ROS{Humans, 2015 #30}.  

 
Ionizing radiation and radiomimetic compounds can alter DNA sequence through a different 
mechanism: 

1. Radiation directly deposits energy in DNA causing strand breaks, or it creates free 
radicals that damage DNA and proteins{Fucic, 2008 #64;Chauhan, 2021 #332}.  

2. Free radical DNA damage includes apurinic/apyrimidinic sites and deamination of 
DNA bases (among others), both of which have unique mutagenic 
mechanisms{Ignatov, 2017 #307} 

3. Lack of repair or error-prone repair of this damage can cause chromosomal aberrations 
and mutations. 

 837 
 838 
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Table 1 | Common urban chemical mutagens and carcinogens. For each pollutant we indicate the chemical species, most common 
anthropogenic source, medium in which the pollutant is typically encountered (i.e., air, water, soil), and references.  
 

Pollutant Chemical species Sources Medium References  

Particulate 
matter (PM)  

PM2.5 
PM10: inorganic ionic 
compounds, metal oxides, 
organic and elemental carbon 
 

Combustion by-products from traffic and 
industrial emissions, residential heating, and 
reactions between pollutants  

Air {Humans, 2015 
#30;Organizatio
n, 2016 #36} 

Volatile 
organic 
compounds 
(VOCs) 

Aldehydes, ketones, aromatics, 
and alkanes  

Household products, building materials and 
combustion sources  

Air  {David, 2021 
#308;Humans, 
2015 #30} 

Polycyclic 
aromatic 
hydrocarbons 
(PAHs) 

Examples include: 
Benzo[a]pyrene, 
Benzo[a]anthracene, chrysene, 
Benzo[b]fluoranthene, 
Benzo[k]fluoranthene 

 

Combustion by-products from industrial, 
residential and transport emissions  

Air/water/soil {Jameson, 2021 
#301;Ravindra, 
2008 
#277;Abdel-
Shafy, 2016 
#274;Humans, 
2010 #35}  
 

Sulphur 
oxides (SOx) 

Sulphur dioxide (SO2), sulphur 
trioxide (SO3) 

Fossil fuel combustion, other industrial 
processes 

Air {Humans, 2015 
#30;Organizatio
n, 2016 #36} 

Carbon 
monoxide 
(CO) 

-- Fossil fuel combustion, transport emissions Air  {Levy, 2015 
#309;Organizati
on, 2016 #36} 

Nitrogen 
Oxides (NOx) 

Nitrous oxide (NO), 
Nitrogen dioxide (NO2) 

Transport and industrial emissions  Air  {Brook, 2007 
#310;Organizati
on, 2016 
#36;Zhang, 
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2021 #311} 
 

Pesticides Organophosphates, pyrethroids, 
carbamates, polychlorinated 
biphenyls (PCBs), 
polybrominated biphenyls, 
persistent organic pollutants  

Pesticide use in urban areas  Water/soil {Meftaul, 2020 
#275} 
 

Heavy metals  mercury, arsenic, cadmium, 
chromium, and lead 

Industrial processes, mining Water/soil {Brook, 2007 
#310;FAO, 2021 
#37} 
 

High salt  Salt (NaCl) Road salting Soil/water {Li, 2014 #276} 
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Table 2 | Cancers associated with urban induced mutations. Examples of the most common cancers 
associated with urban induced mutations, including changes in rates of cancer in urban and non-urban 
populations. For each example we indicate the region of study, pollutant studied and description of 
findings. 

 

Health effect  Region of 
study 

Pollutant  Description of 
findings 

Reference  

Childhood cancers 
(leukaemia, 
neuroblastoma, renal and 
bone tumours) 

Spain Air pollution Risk of cancer 
increased with 
decreased distance 
from industrial or 
urban area studied  

{García-
Pérez, 2019 
#119;García-
Pérez, 2015 
#117;García-
Pérez, 2016 
#118} 

Lung cancer China  Particulate matter 
(PM10: SO2) 

Lung cancer incidence 
and mortality 
increased with 
increased PM10; SO2 
also positively 
correlated with cancer  

{Chen, 2016 
#120} 

 USA  Particulate matter 
(PM10: SO2, ozone) 

Lung cancer was most 
strongly correlated 
with PM10 exposure, 
followed by SO2 and 
ozone in males; in 
females lung cancer 
correlated with SO2, 
followed by PM10 

{Beeson, 
1998 #121} 

 Canada Air pollution 
(PM2.5) 

PM2.5 associated with 
increased risk of lung 
cancer  

{Bai, 2017 
#124;Gogna, 
2019 #123} 

 Sweden  Air pollution (NO2) NO2 exposure 
correlated to increased 
lung cancer 

{Nyberg, 
2000 #125} 
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Stomach cancer China Soil pollution 
(heavy metals; Cd, 
Cr, Pb, Hg, As) 

Heavy metals in soils 
correlated with higher 
stomach cancer 
incidence  

{Fei, 2018 
#122} 

Breast cancer USA  Air pollution (NOx) Increased risk of 
breast cancer 
following NOx 
exposure in women 
living near major 
roads  

{Cheng, 2020 
#126} 

Digestive system 
cancers 

China Water pollution Large-scale study 
identifying covariation 
between decreasing 
water quality and 
increased incidence of 
digestive cancers 
 

{Ebenstein, 
2012 #282} 
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Fig. 1 | Global concentrations and composition of mutagenic and carcinogenic pollutants. 
Concentrations of particulate matter that is 2.5 microns diameter or smaller (PM2.5) across terrestrial 
Earth in 2019-2020, with inset panels illustrating how concentrations are frequently highest in and 
around cities{Wei, 2022 #305}. PM2.5 concentrations have been changing through time (top right 
inset), increasing in some cities (e.g. Shanghai, China) and decreasing in others (e.g., New York, USA) 
{CIESIN, 2021 #304}. Pie charts show how composition of major carcinogenic pollutants (i.e., carbon 
monoxide [CO], volatile organic compounds [VOC], sulphur dioxide [SO2], nitrous oxides [NOx], and 
ozone [O3] in urban areas vary among countries{Wolf, 2022 #302;Wolf, 2022 #303}. High 
concentrations of PM2.5 outside of urban areas are caused by a combination of anthropogenic sources 
such as long-distance dispersal of industrial pollution, burning of crops in agricultural regions, forest 
fires, and naturally occurring fine dust picked up by strong winds from bare soil, especially in arid 
regions (e.g., Saharan and Sub-Saharan Africa). 
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Fig. 2 | The potential for elevated mutation rates in cities to affect evolution of a population 
relative to a fitness optimum. When a population starts at a fitness optimum (dotted horizontal 
black line) in an urban environment (blue lines), any increase in mutation rate will lead to a net 
increase in deleterious mutations within a population, moving the population further from a 
fitness optimum. If urban pollution elevates mutation rates in urban areas (i.e., high ∆µ - solid 
blue line), then we expect a population will move further from a fitness optimum through time. If 
∆µ is low but still >0, then this effect will be relatively small. By contrast, when a population is 
initially maladapted to an urban environment (red lines), such that it starts far away from a fitness 
optimum, then higher mutation rates in urban areas (solid red line) can lead to rapid adaptation 
such that the population quickly evolves towards the fitness optimum. The rate of this evolution 
will be slower when ∆µ is lower (red dashed line). Such adaptive evolution could lead to 
evolutionary rescue, but such dynamics are only likely over contemporary time when Ne is high 
and generation times are fast (e.g., viruses, bacteria, eukaryotic microbes). At equilibrium, 
populations experiencing higher ∆µ are expected to have lower fitness than those with lower ∆µ 
because most new mutations will be deleterious when a population is close to its fitness optimum. 
A population may remain maladapted (scenario not shown) when Ne is low and there is long 
generation time, which could lead to extinction if population growth rates are negative. 
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Fig. 3 | Potential biosentinel species for studying urban-associated mutations. Proposed 
biosentinels include: A) Salmonella enterica, B) Caenorhabditis elegans, C) Drosophila melanogaster, 
D) Arabidopsis thaliana, E) Trifolium repens, F) Flavoparmelia caperata (a lichen), G) Fundulus 
heteroclitus, H) Passer domesticus, I) Columba livia, J) Mus musculus, K) Rattus norvegicus, L) Canis 
lupus familiaris. An image of humans (Homo sapiens) is not shown but included on the schematics 
below. The species below represent a range of traditional laboratory model organisms used for studying 
genetic and evolutionary processes, as well as emerging models for studying ecological responses to 
pollution (e.g. lichen) or evolution in urban areas. Some species offer a combination of fast generation 
time and excellent genomic resources for mutagenic studies (bottom right panel), whereas others are 
more directly relevant to humans (i.e. with respect to health and well-being) and urbanization (i.e. there 
relative abundance in urban vs. nonurban habitats) given their commensal status with humans (bottom 
right panel). 
 

 
 
 
 
 
 


