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ABSTRACT OF THE DISSERTATION

Predictive Dynamic Digital Holography

by
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Doctor of Philosophy in Aerospace Engineering
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Professor James S. Gibson, Chair

Digital holography has received recent attention for many imaging and sensing applications,

including imaging through turbulent and turbid media, adaptive optics, three-dimensional

projective display technology and optical tweezing. It holds several advantages over classi-

cal methods for wavefront sensing and adaptive-optics correction, chief among these being

significantly fewer and simpler optical components. A significant obstacle for digital holog-

raphy in real-time applications, such as wavefront sensing for high-energy laser systems and

high-speed imaging for target tracking, is the fact that digital holography is computationally

intensive; it requires iterative virtual wavefront propagation and hill-climbing algorithms to

optimize sharpness criteria. This research demonstrates real-time methods for digital holog-

raphy based on approaches for optimal and adaptive identification, prediction, and control

of optical wavefronts. The methods presented integrate minimum-variance wavefront pre-

diction into dynamic digital holography schemes to accelerate the wavefront correction and

image sharpening algorithms. Further gains in computational efficiency are demonstrated

in this work with a variant of localized sharpening in conjunction with predictive dynamic

digital holography for real-time applications. This “subspace correction” method optimizes

sharpness of local regions in a detector plane by parallel independent wavefront correction

on reduced-dimension subspaces of the complex field in a spectral plane.
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CHAPTER 1

Introduction

Holography is a technology that has been recognized since 1948 [1], providing a means to cap-

ture phase information of a target object that was otherwise unavailable through a two-step

process of recording and reconstructing wavefronts. However, its application has stagnated

due to various limiting factors over the decades. Initially, these factors were composed en-

tirely around physical constraints, such as a source of coherent illumination. Eventually, once

the digitization of holography matured, it involved the low spatial resolution of electronic

sensors. Most recently, with the advent of inexpensive, high-resolution CCD and electronic

sensors, the burden of limitation has shifted to the vast swath of image processing methods

and computational costs of digital holography. This dissertation proposes contributions to

alleviate the computational burden experienced by digital holography, with the aim of mak-

ing real-time application a more practical endeavor. Two areas will be discussed in detail,

both centered on the reconstruction portion of holography. First, a system identification

and prediction filter approach is introduced during wavefront reconstruction to expedite the

process. Second, a local correction scheme that reduces the effective pixel size needed to

numerically propagate the wavefronts and holograms is discussed.

In this chapter, a literature review of digital holography is given, followed by an introduc-

tion to wavefront prediction for optical wavefronts. In Chapter 2, the simulation model and

theory for digital holography recording and reconstruction is presented. Chapter 3 discusses

the aero-optical wavefront data [2, 3] used in this dissertation, while Chapter 4 explains

the image sharpness algorithm and the model representation of the atmospheric wavefronts.

Chapter 5 details the subspace identification algorithm and prediction filters used in predic-

tive wavefront correction. Analysis of these filters is provided in Chapter 6. A simulation
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developed to integrate these various parts is culminated in results shown in Chapter 7. A

study of local sharpening, subspace correction, and their results is given in Chapter 8. The

dissertation concludes with a summary of this research in Chapter 9.

1.1 Background Review of Digital Holography

Optical holography was proposed in 1948 [1] by Denis Gabor. He demonstrated a two-step

process of recording information of the full complex field by interfering a coherent reference

wave and diffracted waves from an object onto a photographic plate. The image could

be realized by illuminating this holographic recording with the same reference wave in the

reconstruction step. In Gabor’s original work, the reference beam is superimposed in general

alignment with the diffracted waves onto the recording plate, coined “on-axis” holography.

This method injected the holograms with the presence of the DC and twin image terms

produced by the interference, leading to a corrupted reconstruction. Since a suitable source

of coherent light was not available at the time, interest in holography had to wait until the

invention of the laser in 1960.

In 1962, Leith and Upatnieks modified the Gabor hologram setup by off-setting the

reference wave during interference in “off-axis” holography [4]. This breakthrough avoided

the corrupting zero-order and twin image terms by spatially separating the holographic

terms. After this discovery, holography experienced proliferation of activity, primarily due

to the capability of measuring physical metrics by changes in the phase field. This includes

areas of study in vibrational modes [5] and refractive index measurement [6].

Goodman and Lawrence were able to digitally record holograms and electronically re-

construct images in 1967 [7]. This published work was the first time digital holography was

achieved, eliminating the need for photographic material during recording and the coher-

ent reference source for reconstructing images. Instead, electronic sensors and computers

replaced the recording and reconstruction procedures. However, digital holography’s growth

was stunted by the inconvenient and expensive digital procedures at the time. Meanwhile,

in 1974, Muller and Buffington developed an image processing technique known as image
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sharpening [8]. While not directly related to digital holography, this important image pro-

cessing development orchestrated advances in phase-retrieval [9,10] and wavefront correction

algorithms [11,12].

In 1994, Schnars and Jüptner were able to record and numerically reconstruct a Fresnel

hologram using a CCD array for the first time [13]. Naturally, this advancement expanded

holography into new areas of study, including data storage [14], numerical auto-focusing

[15, 16], and image processing [17, 18]. One particular field of study that greatly benefited

from the advent of digital holography is microscopy, allowing researchers to study cells from

various perspectives without intrusion [19]. In particular, the capability of a reconstructed

object image to be numerically focused at any distance allowed several target objects to be

focused and analyzed individually within the same captured image [15,16,19].

1.2 Introduction of Wavefront Correction and Prediction

Wavefront correction is not exclusive to digital holography. This is a central area of effort

for the field of classical adaptive optics. Digital holography holds several advantages over

classical wavefront sensing usually used in adaptive optics applications. Chief among these is

requiring fewer optical components in operation. For example, a Shack-Hartmann sensor can

be replaced by numerical wavefront estimation. Furthermore, a lens is not required to focus

the image on a focal plane array; instead, the scattered light from a digital holography setup

can be recorded directly on the detector medium. While the advent of holography through

digital means allows for a broad realm of applied image processing methods, the compu-

tational cost involved in wavefront estimation and correction prevents it from seeing more

widespread use in real-time applications, such as target tracking. Earlier work has shown

that real-time digital holography can achieve 24 frames per second, by conjoining several

high-speed parallel processors [20]. While this work demonstrates the potential of exploit-

ing parallel processing for digital holography, it does not directly address the crux of the

issue regarding the number of extremely expensive operations needed during reconstruction.

Additionally, the development of that work did not consider wavefront correction during

3
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Figure 1.1: Predictive dynamic digital holography overview. Wavefront prediction creates

a closed loop.

reconstruction, a fact that adds enormous computational complexity to the reconstruction

process. Undoubtedly, this would lower the reported frame-per-second capability of digital

holography. This dissertation builds on earlier work involving wavefront prediction for adap-

tive optics and applies it to digital holography in order to short-circuit the computationally

intensive algorithms for sharpness optimization and wavefront correction.

A linear time-invariant (LTI) state-space prediction filter, identified by subspace sys-

tem identification, for modeling, prediction, and correction of optical wavefronts has been

used previously [21–24]. However, in those applications, sample wavefront sequences used

to identify the prediction filters were measured directly by a Shack-Hartmann sensor. For

digital holography, such wavefront sensors are unnecessary. Only a sequence of CCD inten-

sity patterns are measured and a prediction filter is identified solely with that knowledge.

Figure 1.1 highlights this important aspect of the scheme by the wavefront prediction feed-

back loop. This feedback interaction between wavefront prediction and image sharpening

has no corresponding feature in the previous applications of wavefront prediction. The previ-

ously proposed methods for wavefront prediction involved a wavefront sensor that measures

the wavefront sequence, and a prediction filter (either linear time-invariant or adaptive)

uses the measured wavefronts to generate predicted wavefronts; the prediction does not af-

fect the wavefront measurement. In this dissertation, only images recorded on the detector

plane are measured directly. The wavefronts are estimated by digital holography and image

sharpening, and the prediction accelerates the sharpening and improves the estimates of the

wavefronts.
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Even though this work focuses on an LTI prediction filter for dynamic wavefront correc-

tion in a digital holography setup, it is not unreasonable to think that a fully adaptive filter

can be used in lieu of an LTI filter. While such filters are not presented in this disserta-

tion, the results in Chapter 7 demonstrate the greatly positive implications and feasibility

for implementing a fully adaptive predictive algorithm during real-time digital holography

dynamic wavefront estimation.

1.3 Introduction of Local Sharpening

Often in application, only a particular region of an extended object is required to be imaged.

A region-of-interest (ROI) can readily be sharpened by isolating the region on the image

plane, usually at the expense of degradation in areas outside the region. Since the target

area is only a subset of the full pixel array, the sharpness optimization does not necessarily

minimize the wavefront estimation error. Therefore, the corrected phase field produces less

sharpening outside the ROI and is usually a poor estimate of the true wavefront when

compared to global sharpening. This fact may limit applications interested in wavefront

sensing. Figure 1.2 demonstrates these effects of local sharpening. The top row illustrates

the full image and the ROI obtained by global sharpening. The bottom two images show

the full image and the ROI obtained by local sharpening. Clearly, the local area experiences

improvement in quality. However, the wavefront estimate used to reconstruct that ROI is

not a good estimate of the full wavefront and indeed degrades the remaining pixels of the

full image.

Earlier works have studied the effects of ROI sharpening [11, 25, 26]. The increasing

attention to localized image sharpening is due to its demonstrated potential in improving

image correction distorted by anisoplanatic wavefronts [27]. Anisoplanatism is the phenom-

ena where the propagation paths of beams are not spatially invariant, as in the case of

atmospheric turbulence with various wavefronts that are weakly correlated over a field-of-

view. By partitioning a recorded image, one could presumably sharpen and splice several

near-isoplanatic patches together to reproduce a higher quality image than one corrected

5



over the entire field-of-view. Despite calculating the sharpness cost metric over a subset of

pixels on the image plane, local sharpening must still propagate the full hologram pixel-grid

to the image plane for the sharpness algorithm to administer its optimization. Therefore,

for each iteration of the sharpness optimization, the method of localized sharpening makes

inefficient use of the measured hologram information when interest is relegated to only a

small region-of-interest.

While part of this dissertation aims to dramatically reduce the number of extremely ex-

pensive sharpness iterations required in wavefront estimation through prediction, the other

part focuses on reducing the computational cost of the remaining few iterations. This is

done by taking a subspace of the hologram that characterizes the ROI on the image plane,

effectively reducing the size of the necessary propagations and substantially improving op-

erational efficiency. This “subspace correction” method additionally permits the potential

to perform wavefront estimation, a feature that is infeasible with earlier local sharpening

methods.

Globally Sharpened Image Globally Sharpened ROI

Locally Sharpened ROILocally Sharpened ROIGlobally Sharpened Image

Figure 1.2: Top row: image sharpened globally. Bottom row: image sharpened locally.

Both rows: complete image on left, region of interest (ROI) on right.
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CHAPTER 2

Simulation Setup and Relevant Digital Holography

Theory

Unlike conventional photography, holography allows the capture of the phase of complex

wavefields. This information permits the reconstruction of different perspectives of an object.

Digital holography can be conveniently described in two distinct procedures: recording and

numerical reconstruction.1

2.1 Simulation Setup

For reference, Table 2.1 summarizes the optical parameters for this simulation. The distance,

z, and off-axis angle, θ, are chosen to avoid aliasing issues, while remaining in the near-field

regime. Executing predictive dynamic digital holography in the near-field regime is not a

requirement; in fact, some results will later be shown to demonstrate its viability in the

far-field as well.

A typical digital holography recording geometry is shown in Figure 2.1 and outlines

the associated signal-processing details. This off-axis image plane recording geometry [28] is

extremely common among wave propagation simulations. First, it is assumed that the object

is uniformly illuminated with the on-axis monochromatic light from a master-oscillator laser,

which has a wavelength of λ. The reflected light from the object is coherently imaged onto

a detector. The detector is located in an image plane, and so this work will henceforth

refer to the image plane as the detector plane. For all intents and purposes, the aero-

1Dr. Mark Spencer’s guidance and collaboration were essential to the theoretical and computational
development of the digital holography model here.
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Table 2.1: Parameters for digital holography simulation

Parameter Name [Symbol] Value [units]

Object Image Size [M] 256× 256 [pixels]

Aperture Diameter [D] 1 [cm]

Pixel Pitch [L] 10 [micron]

Grid Spacing [ L
M

] 0.039 [micron]

Wavelength [λ] 600 [nm]

Propagation Distance [z] 4.3 [cm]

Off-Axis Angle [θ] 0.3 [deg]

Simulation Run-Time 2000 [frames]

optical aberrations used in this dissertation are assumed to exist in the exit-pupil plane of

the coherent-imaging system, which has a circular aperture of diameter d. To determine the

amplitude-spread function of the coherent imaging system [29], the simulated exit-pupil plane

is zero-padded from a 256×256 pixel grid to a 512×512 pixel grid and Fourier transformed,

ultimately generating the coherent-imaging systems impulse response. The object is also

zero-padded from a 256× 256 pixel grid to a 512× 512 pixel grid and then convolved with

the amplitude-spread function to simulate the effects of the isoplanatic phase errors, ψ(ζ, η),

commonly found when imaging in the presence of aero-optical aberrations. This convolution

provides the complex field corrupted by wavefront disturbances.

The corrupted complex field is ultimately interfered with the tilted-planar monochromatic

light from a local oscillator. Next, the resulting digital hologram is Fourier transformed to

go to the spectral plane, where the appropriate complex pupil function is band-pass filtered.

The resulting complex pupil function is then zero-padded from a 256 × 256 pixel grid to

a 512 × 512 pixel grid, inverse Fourier transformed, and magnitude squared to obtain the

reconstructed image. This last step captures the reconstructed image intensity, I(ζ, η), and

enables image sharpening, which is the subject of Chapter 4.

In Figure 2.2, a more complicated recording geometry is used for the simulation in this

dissertation. As such, the subsequent theory is given with this model in mind. The primary
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Figure 2.1: Off-axis detector plane recording geometry.

difference is that the object is placed further back to some initial plane and then propagated

some distance z to the object plane. This defocused object, rather than the original object, is

coherently imaged onto the detector plane. The purpose of imaging a defocused object is to

represent phase error commonly found in real applications, such as imaging in the presence

of aero-optical aberrations. The defocused object is imaged onto the detector plane as before

in Figure 2.1, however, during image reconstruction, the process includes back-propagation

to the initial plane in addition to the inverse Fourier transformation. The pupil plane phase

estimation is not altered by this change in the optical setup, as the defocus is attributed to

wave propagation rather than the pupil plane aberrations.

Before moving on, it is important to note that the simulation described above does not

include the effects of speckle. With that said, the goal of this dissertation is to introduce

the combination of wavefront prediction and system identification with digital holography
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Figure 2.2: The digital-holography simulation model that enables wavefront estimation and

correction using image sharpening.

and image sharpening, and to present an initial, although detailed, simulation study of the

interplay between the methods from the two different fields. The effects of speckle will be an

important topic of future investigations; however, including them here would require even

more simulation results in an already rather elaborate initial simulation study of the proposed

methods, making the overall simulation results less clear, and therefore, less impactful.

From the point of view of the methods introduced in the following chapters, speckle

amounts to noise. The minimum-variance prediction filters used in this dissertation and the

subspace system identification methods for determining the filters typically yield optimal

performance in the presence of noise, although sufficiently high levels of noise (including

speckle) can be expected to degrade performance, as is true for methods for signal and

image processing.
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2.2 Digital Holography Recording

Recording the amplitude and phase of a coherently illuminated object is achieved through in-

terferometry. The local oscillator (reference beam) complex field, r(ζ, η) and object complex

field, u(ζ, η, z) can be represented initially as,

r(ζ, η) = |r(ζ, η)| exp[jφr(ζ, η)], (2.1)

u(ζ, η, 0) = |(u(ζ, η, 0)| exp[jφu(ζ, η, 0)], (2.2)

where ζ and η are spatial coordinates, φr is the phase of the LO, and φu is the phase of

the object field. Generally, a plane wave LO beam is desired, thus, φr will be 0. However,

off-axis recording will introduce an offset angle tilting the plane waves, so the general form of

Eq. 2.1 is ultimately useful. After flood illuminating the object, the diffracted waves travel

some distance z to an object plane, where it interferes with the local oscillator (see Fig. 2.2).

Two common recording propagators are: the Fresnel diffraction method and the angular

spectrum method [30, 31]. As the name suggests, the former uses the Fresnel diffraction

integral to propagate the diffracted complex field to the object plane. Employing the paraxial

approximation, it can be written as,

u(ζ, η, z) = − jk̃

2πz
exp(jk̃z) exp[

jk̃

2z
(ζ2 + η2)]F

{
u(ζ, η, 0) exp[−jk̃

2z
(ζ20 + η20)]

}
, (2.3)

where k̃ is the angular wavenumber, k̃ = 2π
λ

, and λ is the wavelength of propagating light.

The F operator symbolizes the two-dimensional Fourier transform,

F [·] =

∫ +∞

−∞

∫ +∞

−∞
(·) exp

(
−jk̃
z

(ζζ0 + ηη0)

)
dζdη. (2.4)

Angular spectrum uses two 2D-Fourier transforms to propagate plane wave spectral compo-

nents and reconstruct the field at a plane some distance away. That is, the object complex

field is first brought into the spectral domain before propagating by the free space transfer

function, and then brought back to the spatial domain. For this reason, the angular spec-

trum method is also known as the spectral method. Using an angular spectrum propagator,
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the diffracted object field in Eq. 2.2 arrives at the object plane at a distance z by,

u(ζ, η, z) = F−1
{
F{u(ζ, η, 0)} exp

[
− jzk̃λ

√
1

λ2
− f 2

ζ − f 2
η

]}
, (2.5)

where fζ and fη are spatial frequency coordinates. For scalar wave propagation in the

paraxial regime, the two propagators are equivalent. Therefore, the choice of propagator

is often contingent on the physical properties of the optical system. For the simulation

work presented in this dissertation, the angular spectrum method is used for holographic

recording, while either the Fresnel diffraction integral or angular spectrum method are used

during reconstruction.

The recorded intensity of the incident light on the CCD (i.e., detector plane) is the local

oscillator superimposed with the coherently imaged object, written as the intensity of the

sum of Eq. 2.1 and Eq. 2.5, h(ζ, η) = |u(ζ, η, z) + r(ζ, η)|2, which expanded yields,

h(ζ, η) = |r(ζ, η)|2 + |u(ζ, η, z)|2 + u∗(ζ, η, z)r(ζ, η) + u(ζ, η, z)r∗(ζ, η). (2.6)

As a reminder, the propagated object in Eq. 2.6 is coherently imaged onto the detector

plane, represented by a convolution with a circular pupil function, A(ζ, η),

u(ζ, η, z) = |(u(ζ, η, z)| exp[jφu(ζ, η, z)] ? F{A(ζ, η))}. (2.7)

Equation 2.6 fully describes the hologram recorded on the CCD. Despite only measuring the

intensity of the superimposed beams, the fringe pattern encodes both phase and amplitude

Hologram Recorded on Detector Plane

Figure 2.3: Sample hologram recorded on detector plane.
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information that can be used to numerically reconstruct the image. An example of a recorded

hologram fringe pattern is shown in Figure 2.3. Inverse Fourier transforming the hologram

in Eq. 2.6 to the hologram’s spectral plane leads to,

H(fζ , fη) = |R(fζ , fη)|2 + |U(fζ , fη)|2 + U(fζ , fη)
∗ ? R(fζ , fη) + U(fζ , fη) ? R(fζ , fη)

∗, (2.8)

where ? denotes convolution. The four terms in Eq. 2.8 are, respectively: the autocorrelation

of the LO and object complex fields constituting a DC term, a distorted holographic twin-

image term, and the virtual image term (object complex pupil function).

When the diffracted object and reference beams propagate along the same axis, as with

in-line holography, the DC and twin-image terms are superimposed with the object complex

pupil function in the center of the detector plane, contaminating the image reconstruction.

In order to avoid this amalgamation of parts, one of two methods of holographic recording

are often utilized: phase-shift interferometry and off-axis holography. Phase-shift interfer-

ometry maintains the base in-line holographic recording setup with the addition of polarizing

plates [32]. These plates allow for the capture of four phase shift permutations of recorded

interference patterns (holograms) on the CCD. This collection of patterns are used for phase

field retrieval of the object complex pupil function and avoid processing out the DC and

out-of-focus twin-image terms. However, this procedure requires a static target to capture

the four interferometry holograms. For the work investigated in this dissertation, a dy-

namic wavefront sequence in real-time is involved. Therefore, the second method of digital

holographic recording, off-axis holography, is used instead.

In order to avoid overlapping of the various holographic constituents, the terms are

spatially separated by introducing the local oscillator to an offset angle from the hologram

axis, as in Figure 2.2. Since we have full authority of the local oscillator, the phase of the

LO in Eq. 2.1 becomes a function of the offset angle, φr(ζ, η, θ) = exp(jk̃ζ sin θ). These

separated terms are reconstructed and displayed in Fig. 2.4, to plainly distinguish between

them. Clearly, the zeroth-order term is suppressing the image content of the hologram in

the left capture. In the right capture, the virtual image term appears in the top-left and the

out-of-focus holographic twin-image term in the bottom-left. To ensure that the frequency
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Figure 2.4: Left: Unfiltered, Right: Filtered. Reconstructed image, DC term (middle), and

twin-image term.

resolution of the spectral domain of the detector plane is large enough for the spatial content

of the object signal to maintain its spatial resolution and be distinctly identifiable, the

detector plane is zero-padded. This prevents aliasing and pixel truncation issues that may

occur from a lower frequency resolution spectral domain. Unfortunately, zero-padding does

not prevent aliasing occurring from under-sampling. Under-sampling can occur from an offset

angle that is not large enough or from the object propagated at an insufficient distance from

the imaging system. Increasing the offset angle in off-axis holography can solve aliasing from

under-sampling, but requires the imaging system be placed at a further distance from the

object. Consequently, this limits the available bandwidth of a CCD during off-axis recording.

Once the hologram has been successfully recorded on the detector plane, a plethora of

options are available to realize the image. Historically, realizing an image through optical

holography required a coherent light with the same wavelength used in recording to illuminate

the fringe pattern on the photographic plate [1, 4]. With the shift to a digital paradigm,

reconstructing a hologram has taken a numerical approach.
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2.3 Numerical Reconstruction in Digital Holography

Numerical reconstruction begins with suppressing and filtering undesired terms from the

hologram spectral plane. The left capture of Fig. 2.4 illustrates the initial situation on an

` ×m grid of pixels. Degradation of image reconstruction in the left capture is largely due

to the DC term [33]; the effect can be mitigated by,

h̄(ζ, η) = h(ζ, η)− 1

(`+m)

∑
(ζ,η)

h(ζ, η), (2.9)

to produce the situation in the right capture. For the simulation developed in this work, the

hologram was subsequently tilted by the same phase as the local oscillator, φr(ζ, η). This

allows the object complex pupil function, U(fζ , fη), to be easily cropped with a spatial filter,

by centering it in the spectral plane of the hologram. A smooth spatial filtering profile,

such as Gaussian or Tukey windows [34], is used to extract the appropriate complex pupil

function while preserving its frequency content, particularly near the edges.

Once spectral domain filtering is accomplished, the image can be reconstructed by first

inverse Fourier transforming the object complex pupil function on the hologram spectral

domain, U(fζ , fη), to the detector plane and then back-propagating to the initial plane

with the Fresnel diffraction integral (or angular spectrum method). Once again, the spectral

domain is zero-padded before the transformation in order to preserve the spatial resolution of

the image on the detector plane. Using inverse Fresnel diffraction, the full back-propagation

can be written as,

u(ζ, η, 0) =
jk̃

2πz
exp(jk̃z) exp[

jk̃

2z
(ζ2 + η2)]F−1

{
F{U(fζ , fη)} exp

[
j
π

λz
(ζ2 + η2)

]}
. (2.10)

For an optical system with an ideal point-spread function, Eq. 2.10 is sufficient to recon-

struct the image as it was recorded. Introducing isoplanatic wavefront aberration, ψ(ζ, η),

as in the presence of aero-optical effects, to the diffracted object beam will cause errors in

the complex field. While amplitude and phase disturbances both affect the integrity of the

reconstructed image, the reconstruction is much more robust to amplitude errors. Therefore,

the focus of this dissertation will be on phase degradation as it is the primary source of image

15



error [31]. To represent the complex field on the object plane passing through the wavefront,

the object is convolved with the point-spread function at the detector plane. The corrupted

complex field of the imaged object then becomes,

uε(ζ, η, z) = |(u(ζ, η, z)| exp[jφu(ζ, η, z)] ? F{A(ζ, η) exp(jψ(ζ, η))}, (2.11)

where the expression in the 2-D Fourier Transform is the complex pupil function injected

with the isoplanatic wavefront aberrations, ψ(ζ, η).

Figure 2.2 demonstrates an overview of the diffracted object wavefield passing through

phase aberration in the digital holography simulation for the research presented here. After

reconstructing the corrupted image (Eq. 2.11) from the spectral plane of the hologram by

numerical propagation through Eq. 2.10, the resultant image is originally corrupted. This

initially degraded reconstruction is demonstrated in Figure 2.2. If the wavefront aberration

were known perfectly, the phase error at the pupil plane could simply be subtracted out from

the corrupted image in Eq. 2.11 to reproduce the diffracted-limited object. Unfortunately,

the wavefront fields are generally not known a priori, particularly for real-time applications.

Instead, this phase field is estimated, ψ̂(ζ, η), through wavefront sensors or numerical meth-

ods, and corrected on the spectral plane of the hologram to generate an estimate of the

image, given as,

û(ζ, η, 0) =
jk̃

2πz
exp(jk̃z) exp[

jk̃

2z
(ζ2 + η2)]

×F−1
{
F{{Uε(fζ , fη) exp[−ψ̂(fζ , fη)]}} exp

[
j
π

λz
(ζ2 + η2)

]}
. (2.12)

To take advantage of digital holography’s extremely minimalist nature with regards to nec-

essary electro-optical equipment, a numerical algorithm is used for phase retrieval rather

than expensive, bulky, and space-constraining sensors. In this dissertation, the sharpness

optimization algorithm is utilized to determine an estimation of the pupil plane phase er-

rors (i.e., wavefronts) used for correction in the corrupted image, by maximizing sharpness

criteria. Before introducing this algorithm, this dissertation will analyze the aero-optical

wavefronts present in the next chapter.
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CHAPTER 3

The Aero-Optical Wavefronts

This section details the aero-optical wavefront sequence used for predictive dynamic wave-

front correction in digital holography. Notre Dame’s Airborne Aero-Optics Laboratory

(AAOL) obtained experimental data from aero-optical wavefronts produced by turbulence

over a flat-windowed turret [2, 3, 35]. Flight tests involved two planes in constant formation

transmitting continuous-wave lasers between them. A sequence of 8000 wavefront aberra-

tions were recorded at a sampling rate of 16 kHz in these experiments. Details of the flight

tests are given in Table 3.1.

Figure 3.1 (left) shows a sample aero-optical wavefront frame. Data was not recorded on

the outside regions of the annular aperture, nor on the obscuration in the center. To avoid

the obscuration at the center of the wavefront’s 30× 29 pixel aperture, the simulation pupil

plane phase errors are generated by taking a section of 9 × 9 pixels and interpolating the

data into a grid of 256 × 256 pixels. Three such 9 × 9 pixel patches were superimposed at

each wavefront frame to invent the simulation pupil plane phase errors, while maintaining

Table 3.1: Notre Dame AAOL experimental data details

Turret Azimuthal Angle 119 deg

Turret Elevation Angle 57 deg

Freestream Mach 0.36

Altitude 4570 m

Target Distance 50 m

Aperture Size 10.1 cm

Sampling Rate 16 kHz
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temporal correlation of the dynamic wavefront series. The phase errors were then magnified

by 6, producing a wavefront like in Fig. 3.1 (right). The final dynamic sequence comprises

RMS wavefront errors in the range of [−7, 8] microns, where the simulation wavefront sam-

ple in Fig. 3.1 is a typical aberration field in the sequence. The magnitude of atmospheric

turbulence is greatly above that of the flight tests to put the sharpness algorithm and pre-

diction filters under rigorous testing. Finally, as explained in Chapter 4, the piston and

tip-tilt Zernike modes (i.e., the first three modes) used as part of modeling the aero-optical

wavefronts are adjusted for separately from image sharpening. Therefore, the pupil plane

phase field shown is with those modes removed.

A requirement for wavefront correction through predictive dynamic digital holography is

that the wavefront sequence be temporally correlated. This requirement arises due to the use

of a subspace system identification algorithm to identify an LTI filter (or implementing fully

adaptive filters). One might expect that wavefronts from atmospheric turbulence captured

at a 16 kHz sampling rate would exhibit such correlation. Temporal correlation for the

original aero-optical wavefront sequence and for the modified wavefront sequence are shown

in Figures 3.2 and 3.3, respectively. These figures support that temporal correlation exists

in the wavefront sequences.

Phase errors, defined on a circular pupil plane (Fig. 3.1) are zero-padded into a 512×512

pixel grid and Fourier transformed to generate the optical system’s point spread function,

or impulse response of the optical system. Ideal optical systems that are diffracted-limited

beget a point spread function that resembles the Airy disk. Imperfect systems corrupted with

wavefront errors have broader point spread functions and loss of peak intensity. Characteriz-

ing the quality of an optical system under atmospheric turbulence, relative to a theoretically

perfect scenario, can be done using the Strehl ratio metric [36]. Lord Rayleigh determined

that point sources that can be resolved within λ
4
, or a Strehl ratio of 0.82, were considered

practically diffracted-limited [37]. However, this benchmark is at best a minimum; high-

end optical systems may desire greater performance for their needs. Generally speaking,

this criterion for point-spread functions marks the point that diffraction, rather than atmo-

spheric aberration, comprises the majority of image degradation. That is to say, it does not
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grant a reprieve from achieving further atmospheric wavefront correction. Many scientific

and industrial systems require Strehl ratios up to 0.90, beyond the Rayleigh limit of resolv-

ing point sources [38]. Various methods for calculating the Strehl ratio exist, though the

industry-standard is the “Marechal approximation”,

SR ≈ 1− (2πσ)2, (3.1)

where σ is the root-mean-square of the wavefront over the aperture [39]. This approximation

is simply the first two terms of the exponential expansion, also known as the “extended

Marechal approximation” [38,40],

SR ≈ exp(−σ2). (3.2)

In Figure 3.4, the Strehl ratio using Eq. 3.2 is calculated and plotted for the modified

wavefront sequence used for the pupil plane phase errors in this dissertation. With an

average uncorrected Strehl of 0.275, the plot makes it evident that the digital holography

optical system is severely degraded and requires extensive wavefront sensing and correction

to achieve at least the Rayleigh criterion. Without predictive methods, this effort would be

computationally (and possibly physically) expensive. Before discussing predictive dynamic

digital holography for wavefront estimation, the next chapter will explain the sharpening

optimization algorithm and model representations for this aero-optical wavefront data.
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Figure 3.1: Sample aero-optical and constructed simulation wavefront. Wavefront errors

are expressed in microns (µm). Tilt and piston modes removed.
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Figure 3.2: Temporal correlations for aero-optical wavefronts over full sequence.
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CHAPTER 4

Sharpness Algorithm and Wavefront Modeling

4.1 Sharpness Metrics

The sharpness algorithm [8] performs non-linear, non-convex optimization to maximize a

criterion metric measuring the reconstructed image intensity. Several possible sharpness

metrics are listed in Ref. [8], where a typical choice seen in application [26,41] is often,

S =
∑
(ζ,η)

I(ζ, η)β. (4.1)

The choice of which to metric to use, or what value of β to assign in the case of Eq. 4.1,

depends on the nature of the illuminated object. Some metrics, such as those in Eq. 4.1

with a β ≥ 2, concentrate on making bright pixels brighter, while others, such as β < 2,

focus on making dark pixels darker [9]. Unsurprisingly, a significant consideration when

Distinct Star Map

Figure 4.1: Image of distinct stars in the presence of background noise, a situation well

suited for sharpness metrics with a high β (β ≥ 2).
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Diffracted-Limited USAF Bar Chart on Image Plane

Figure 4.2: Diffracted-limited USAF bar chart reconstructed on the detector plane - the

ideal scenario.

choosing the sharpness index is the expected amount of targeted “bright points” in the

image. Attempting to sharpen a few bright stars, for example as in Fig. 4.1, would ideally

use a high β (β ≥ 2) value for best performance and minimal computation. The work done

by Fienup and Miller [9] shows the solution space for this case is smooth for images with

fewer, distinct bright targets. In this dissertation, a U.S. Air Force bar chart (Fig. 4.2) is

the target image during wavefront estimation. It consists of several locales of bright pixels

parsed intermittently among very low-intensity dark regions. With this in mind, two metrics

are considered in this work,

S1 =
∑
(ζ,η)

I(ζ, η), (4.2)

S2 =
∑
(ζ,η)

I(ζ, η) log I(ζ, η), (4.3)

where I is the estimated image intensity after reconstruction, i.e.,

I(ζ, η) = |û(ζ, η, 0)|2. (4.4)

Since Eq. 4.4 dictates that only the intensity of the estimated image is necessary for sharpness

optimization, the phase terms in front of the integral in Eq. 2.12 can be dropped such that,

û(ζ, η, 0) = F−1
{
F−1{{Uε(fζ , fη) exp[−ψ̂(fζ , fη)]}} exp

[
j
π

λz
(ζ2 + η2)

]}
. (4.5)
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The Shannon Entropy index, S2, imposes similar sharpness optimization behavior as

indices of β < 2 in Eq. 4.1 [9]. Specifically, it behaves similarly to the case of β = 1 (Eq. 4.6).

While S2 inherently makes dark pixels darker, S1 is indiscriminate in its intensity distribution

over the grid of pixels. In other words, it is impossible to distinguish between adding intensity

to a dark or already bright pixel once the intensities are summed to determine the sharpness

cost index. In light of this, S1, in its current form, is practically meaningless for intensity

optimization. To combat this, the sharpness index S1 is maximized over a subset D of the

brightest pixels, such that,

S1 =
∑

(ζ,η)∈D

I(ζ, η), (4.6)

so that sharpness optimization focuses on increasing the intensity of the brightest target

pixels. In this dissertation, set D consists of only the 25% of pixels with greatest intensities.

This maintains the smooth solution space inherent for low β values for images with dark

regions, while targeting the desired features of the image.

Assuming the unaberrated image maintains the highest sharpness index, the optimization

necessarily minimizes the wavefront estimation error, ψ− ψ̂. Muller’s development of sharp-

ness metrics shows this is true only for isoplanatic wavefronts [8]. As a result, maximizing

the sharpness theoretically yields the optimal wavefront estimate, for the time interval over

which the wavefront is constant. This minimizing phase error estimate is subsequently used

to reconstruct the optimal image through Eq. 4.5. In the case that the incoming wavefront

is not spatially invariant, or anisoplanatic, other works have shown that local sharpening is

capable of addressing image correction [27,42]. Local sharpening involves isolating a subset

of intensities from the image plane and determining its sharpness cost index. This technique

of image sharpening targets only a subset of the full pixel array, and so the optimization rou-

tine does not necessarily minimize the wavefront estimation error. The resultant image is not

corrected with the optimal wavefront estimate in this case, making local sharpening ill-suited

for wavefront estimation. Additionally, it performs inefficient computations by using the full

hologram spectrum to sharpen a subset of image pixels. Recent work has demonstrated a

more efficient approach to local sharpening to potentially address the anisoplanatic issue,

called subspace correction [12]. This technique will be investigated further in Chapter 8.
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4.2 Modal Representation of Aero-Optical Wavefronts

Optimizing sharpness metrics produces phase estimates of the aero-optical wavefronts that

can be parameterized to a Zernike polynomial expansion [29,43–45], written as,

ψ̂(t, k)(ζ, η) =
∑
n

an(t, k)Zn(ζ, η), (4.7)

where ψ̂(t, k)(ζ, η) is the pupil plane phase estimate (i.e., wavefront estimate) at time step

t and sharpening iteration k, with spatial coordinates ζ and η. On the right side of Eq. 4.7,

Zn(ζ, η) are Zernike basis functions and an(t, k) are the Zernike coefficients at time step t

and k sharpening iterations, where n indicates the Zernike mode. The wavefront estimate

is used in Eq. 4.5 to reconstruct an image estimate, and the intensity of this image is used

to determine the sharpness cost index from either Eq. 4.6 or Eq. 4.3. It should be noted

that Zernike expansion is not a requirement for representing the pupil plane phase estimate.

Another consideration includes Gaussian basis functions. Zernikes were chosen here for their

simplicity in defining an orthonormal set of basis functions over a circular aperture. This is

the case for the pupil plane phase errors designed in this study.

Maximizing sharpness corrects phase disturbances due to defocus, astigmatism, and

higher aberration terms; however, the first three Zernike modes of piston, tip, and tilt are

simple translations of the phase and thus do not contribute to optimizing image sharpness.

Consequentially, the solution space for the sharpness cost function involves an infinite number

of solutions that satisfy the maximization. In practice, these modes are determined through

techniques involving centroid tracking used regularly in adaptive optics applications [46,47].

For the purposes of wavefront estimation and correction in this dissertation, these modes

are assumed to have been determined and corrected; therefore, they are not included in the

actual sharpness optimization. Instead, these low-order modal effects are corrected in the

pupil plane phase estimate by least-squares projection.

For each positive integer N , the least-squares projections of the true pupil plane wave-

fronts onto the subspace spanned by the first N Zernike modes can be written as,

ψ̃N(t)(ζ, η) =
N∑
n=1

ãn(t)Zn(ζ, η), t = 1, 2, ..., (4.8)
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where Zn(ζ, η) are the Zernike modes and ãn(t) are the Zernike coefficients at time-step t

determined by the least-squares fit,

ã(t) = argmin
ãn

∑
(ζ,η)

(ψ̂N(t)(ζ, η)− ψ(t)(ζ, η))2 t = 1, 2, ..., (4.9)

for each time-step in the dynamic wavefront sequence. Since a least-squares projection

represents the best estimator for the pupil plane phase estimate, the resulting fit, ψ̃N(t),

are the benchmark wavefronts and the corresponding coefficients, ã(t), are the benchmark

Zernike coefficients. These projections are used as a benchmark metric to quantify the

theoretical limit of image sharpening within the scope of the simulation presented in this

work.

Parameterizing the aero-optical wavefronts by polynomial expansion requires an analysis

of the modal powers contained within the dynamic wavefront sequence. The normalized

cumulative power contained within the first 50 modes is calculated in order to determine a

sufficient number of Zernike modes needed to capture key spatial frequency content features

of the sequence. For a time interval T = [t1, t1 + 1, t1 + 2, ..., t2] = [t1 : t2], the normalized

cumulative power in the first N Zernike modes is defined by,

CP (N, T ) =

∑
t∈T ‖ψ̃N(t)‖2F∑
t∈T ‖W (t)‖2F

, (4.10)

where ‖·‖F is the Frobenius norm of a wavefront andW (t) are the true pupil plane wavefronts.

The normalized cumulative power, CP (N, T ), includes the power in the first three Zernike

modes (i.e., the piston and tip-tilt modes). The normalized cumulative power with these

piston and tip-tilt modes removed is defined by,

CP (N, T ) =

∑
t∈T ‖ψ̃N(t)− ψ̃3(t)‖2F∑
t∈T ‖W (t)− ψ̃3(t)‖2F

. (4.11)

Figure 4.3 show the results of the normalized cumulative power from Eq. 4.10 as a function

of N for 1 ≤ N ≤ 50 for the first half of the wavefront sequence. These frames mark the

first half of the wavefront sequence that will be used in Chapter 5 for system identification.

In Figure 4.3, the piston, tip, and tilt modes constitute the first three lower-order Zernike

modes in red. These modes are not actively sharpened through the optimization algorithm
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Figure 4.3: Normalized cumulative power, relative to the total wavefront power in the first

4000 wavefront frames, of First 50 Zernike Modes. Mode 15 = 99.06%.

Table 4.1: Normalized cumulative power for N = 15

CP (15, T ) CP (15, T )

T = [1 : 4000] 0.9906 0.9470

T = [4001 : 8000] 0.9903 0.9482

T = [4001 : 6000] 0.9896 0.9465

and are corrected exactly with the first three benchmark Zernike coefficients. Illustrated in

black are those first 15 Zernike modes that are actively sharpened. The fraction of the power

contained in these first 15 modes is 99.06%. The power in the first N = 15 modes for other

segments, with and without the translational modes, of the data are shown in Table 4.1.

With virtually all of the spatial content captured by a polynomial expansion of 15 Zernike

modes for the frames in Figure 4.3, the remaining modes are higher-order terms that are not

used to model the pupil plane phase estimates. The first 15 Zernike modes represent the

translational modes, defocus, astigmatism, spherical aberration, and higher orders of these

degrading optical factors. Figure 4.4 provides a chart of these modes.
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Figure 4.5 shows the pupil plane phase error power of the benchmark wavefronts relative

to the true wavefront sequence for 2000 frames, with piston and tilt modes removed from the

sequence. The 2000 frames used are the subsequent frames after the first 4000 wavefronts

(i.e., first half) of the sequence, and are ultimately the operational run-time length for

the simulation results in Chapter 7. Figure 4.5 demonstrates the fidelity of the theoretical

performance limit achieved by the projected wavefronts. This benchmark wavefront sequence

contains 94.65% of the fractional power in the first 15 modes. Also shown is an average case

of a sample wavefront and fitted wavefront pair. Most of the lower-order spatial frequency

content, as well as some higher-order characteristics, is captured by the projection on a

Zernike polynomial expansion. However, the spatial frequency agreement is not so fine-

tuned as to encroach on over-sharpening, an issue that can arise from image sharpening

optimization. This, among other considerations, is studied next.

4.3 Computational Considerations

A quasi-Newton or conjugate gradient algorithm can be used to optimize the sharpness

objective over the Zernike coefficients. The most expensive computing operation for each

function evaluation in the sharpness optimization involves two 2-D Fourier transforms. For
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Figure 4.4: Representation of the first 15 Zernike modes over circular pupil.
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problems involving large pixel arrays or an exhaustive set of Zernike modes, this can quickly

become overbearing for a gradient-based solver; thus, an analytic gradient should be com-

puted to improve the computational performance of this optimization. An analytic gradient

for the algorithm is evaluated by,

∂S1

∂an
= −2

∑
(ζ,η)

Im

{
Uε(ζ, η) exp[−ψ̂(ζ, η)]Zn(ζ, η) ⊗

F−1
{

exp[−j π
λz

(ζ2 + η2)]F−1{|û(ζ, η, 0)|2û(ζ, η, 0)}
}∗}

, (4.12)

for the S1 metric, where ⊗ denotes the Kronecker product. The gradient vector is of N

length corresponding to the number of Zernike coefficients. This analytic gradient improves

reconstruction and wavefront correction performance by dramatically reducing the necessary

function evaluations per iteration. Unfortunately, each sharpness iteration still involves four

2-D Fourier transforms for Fresnel propagation and gradient vector calculation (as in the

model in Fig. 2.2). From here, the computational burden will have to be alleviated by

targeting the number of sharpness iterations required. Predictive dynamic digital holography

will explore this avenue in Chapter 5.

Theoretically, including higher Zernike modes in the wavefront parameterization will

improve the correction fit, such that n → ∞ replicates the true wavefront. Practically,

there are a couple considerations that discourage using a considerable polynomial modal

order. First, this quickly introduces increasing computational complexity on the sharpness

algorithm. As Figure 4.3 demonstrates, for the scenario studied here, this trade-off for

improved wavefront realization has greatly diminished returns beyond 10 Zernike modes.

Second, extending the Zernike coefficients such that it is able to capture precise spatial

structure can compromise the sharpening optimization by a phenomena known as over-

sharpening [25, 26]. Over-sharpening is the result of the sharpening algorithm producing

wavefront corrections that drive the final image intensities into star-like structures – that

is, when the structure of the USAF bar chart in Fig. 4.2 is destroyed and steers toward the

star chart in Fig. 4.1. Obviously, a point-source final image will result only if the wavefront

correction approaches a state where it is the conjugate of the object complex pupil function.
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Generally, the propagated object phase has very fine spatial structure. As long as the

resolution of spatial features of the Zernike estimate are not on the order of these object

phase fields, this cause of over-sharpening can be avoided. From studying the behavior of

sharpness metrics, over-sharpening behaves similarly to metrics that use a high-valued β

parameter. Indeed, this is another potential cause to over-sharpening and further reason to

ensure the integrity of the sharpness metric used in particular imaging applications.
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CHAPTER 5

Predictive Dynamic Digital Holography

5.1 Subspace Identification

Subspace system identification [48,49] has been used to identify state-space models for wave-

front sequences in the past [22–24, 50]. However, while these past works implemented sub-

space identification in the context of adaptive optics with a wavefront sensor, subspace

identification will be pioneered in this dissertation for wavefront estimation through digital

holography. The subspace identification algorithm developed in [21], based on a recursive

least-squares lattice filter, is used to identify linear time-invariant (LTI) prediction filters

for aero-optical wavefront sequences in this dissertation. This algorithm is described in this

section.

The LTI discrete-time state-space system is characterized as follows:

x(t+ 1) = Ax(t) +Ke(t)

y(t) = Cx(t) + e(t),
t = 0, 1, 2, ... (5.1)

where the A,K, and C matrices are models to be identified, x(t) and y(t) are the state and

output vectors, respectively, and e(t) is the input vector (usually temporally white noise).

Consider that the one-step prediction of the output at time t is,

ŷ(t) = Cx(t), (5.2)

then the innovations sequence, e(t) = y(t) − ŷ(t), can be used to rewrite Eq. 5.1 into its

closed-loop form,

x(t+ 1) = [A−KC]x(t) +Ky(t)

ŷ(t+ 1) = C[A−KC]x(t) + CKy(t),
(5.3)
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where the closed-loop system, A − KC, is stable. For a discreet-time state-space system,

the stability criterion is achieved when the magnitudes of all eigenvalues are less than unity.

This LTI state-space model is the prediction filter, where the output ŷ(t+ 1) is the one-step

prediction of y(t+1). To identify the A,K, and C matrices, as well as the covariance matrix

of the input, Qee, the subspace algorithm in [21] computes the Hankel matrix from the QR

factorization of the input-output sequence,

[Uf Up Yf ] = [Q1 Q2 Q3]


R11 R12 R13

0 R22 R23

0 0 R33

 , (5.4)

where Uf , Up, and Yf are stacked input and output column vectors, respectively. The

size of these input-output sequences is determined by a designed forward/backward sliding

window size, nmax. Subscripts p and f denote the past and forward finite-number of data

in the input-output sliding window. The following least-squares operation yields the Hankel

matrix,

H = (R22\R23), (5.5)

which is subsequently used in the singular value decomposition:

HRT
22 = UΣV T . (5.6)

The identified system order, i, is designed based on modal reduction of Σ. Using the first i

columns of U and V , Ui and Vi, the finite-interval observability and controllability matrices

for some positive integers p and q are computed as,

O(p) = UiΣ
1/2
i C(q) = Σ

1/2
i V T

i R
−T . (5.7)

Finally, the system matrices, A,K, and C are identified as,

A = O(p− 1)†O(p) (5.8)

K = first column block of C(q) (5.9)

C = top row block of O(p), (5.10)

where † represents the Moore-Penrose inverse.
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5.2 Predictive Dynamic Digital Holography

5.2.1 Initialization of the Sharpening Algorithm

The optimization routine for sharpness maximization is quite computationally intensive.

Even with analytic gradients reducing the number of function evaluations in the optimiza-

tion routine, reconstruction and gradient-vector calculation using Fresnel propagation in-

volves four 2-D FFTs for each sharpness maximization iteration. Reducing the number of

sharpness iterations required for near-optimal wavefront correction becomes of paramount

importance in real-time operation. The results presented in Chapter 7 show that the number

of sharpening iterations required to reach near-optimal wavefront correction can be reduced

significantly by wavefront prediction. Specifically, the initial Zernike coefficients used for

sharpness optimization at each time step (i.e., frame) are determined by prediction, based

on the time-history of previous optimal coefficients.

Chapter 7 will compare wavefront estimation results obtained with prediction-based

sharpening initialization to results obtained with two sharpening initialization methods with

no prediction. The two non-prediction methods of initialization used are defined as follows:

Sharpening Initialization M0 (No Prediction)

an(t, 0) = 0, t = 1, 2, ...

ψ̂(t, 0)(ζ, η) = 0

(5.11)

Sharpening Initialization M1 (No Prediction)

an(t, 0) = an(t− 1, kf ), t = 1, 2, ...

ψ̂(t, 0)(ζ, η) =
∑N

n an(t, 0)Zn(ζ, η)

kf = final sharpening iteration at time t− 1

(5.12)

Since the M0 initialization simply sets the initial Zernike coefficients to zero to begin

sharpening at each time step, it does not take advantage of temporal correlation in the

wavefront sequence to reduce the number of sharpening iterations. Initialization M1 attempts

to exploit temporal correlation in the simplest way by beginning sharpening at each time
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step t with the final Zernike coefficients from sharpening at time-step t − 1. For wavefront

sequences that share similar modal spatial frequency content across each time-step, Eq. 5.12

can be appropriate. However, issues arise when shifts in the estimated Zernike modes from

one time-step to another may cause the sharpness to deviate further away from the near-

optimum converged value of the current time-step, or even break down for a large enough

variation. Chapter 7 will demonstrate such occurrences arising.

One can argue reasonably that initialization M1 is a kind of prediction, but it uses no

prediction filter or other prediction algorithm, so it does not seem appropriate in the context

of this dissertation to refer to initialization M1 as using prediction. This dissertation proposes

the following class of predictive sharpening initializations:

Sharpening Initialization PkID (Prediction)

a(t, 0) = â(t), t = 1, 2, ... .

ψ̂(t, 0)(ζ, η) =
∑N

n=1 an(t, 0)Zn(ζ, η)

(5.13)

Here, the vector â(t) is a one-step prediction of the final sharpened Zernike vector a(t, kf ),

which is obtained after kf sharpening iterations at time-step t. The prediction filter in

Section 5.2.2 generates â(t) from the Zernike vectors a(τ, kf ) (τ = t−1, t−2, . . . ). Unlike the

previous two non-prediction methods, this filter exploits the temporal and spatial correlations

of the wavefront sequence.

The kID in the notation PkID refers to the number of sharpening iterations used to con-

struct a sample (i.e., training) input wavefront sequence for identification of the prediction

filter, as discussed in Section 5.2.3. Generally, kID 6= kf . In fact, kf could vary with time

without changing the predictive initialization of the LTI filter. Even though kf could vary

with time, in applications kf most likely will be set to a constant value determined by real-

time computational capacity. For this dissertation, simulation results presented subsequently

compare performance obtained with different values of constant kf . In principle, kID is not

required to be constant, as would be the situation for a fully adaptive filter. Results in

Chapter 7 will investigate various constant kID LTI filters and the strong implications for a

feasible fully adaptive filter.
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5.2.2 The Prediction Filter

The vector â(t) in Sharpness Initialization PkID is generated by a prediction filter that has

the state-space form

x(t+ 1) = Ax(t) +K[a(t, kf )− â(t)]

â(t) = Cx(t)
t = 1, 2, ... , (5.14)

or

x(t+ 1) = [A−KC]x(t) +Ka(t, kf )

â(t+ 1) = C[A−KC]x(t) + CKa(t, kf )
t = 1, 2, ... . (5.15)

The matrices A,K, and C are identified using subspace system identification, from a sample

wavefront sequence as described in the next section. The vector x(t) is the internal filter

state, which usually has no direct physical interpretation.

From Eq. 5.14, the prediction filter can be seen to have the structure of a Kalman pre-

dictor, and the subspace system identification method produces matrices A,K, and C that,

at least theoretically, minimize the prediction-error covariance averaged over time. However,

whereas classical Kalman filter design requires a priori knowledge of process dynamics and

noise covariances, none of those are required by the system identification scheme here. The

subspace system identification scheme requires only a sample data sequence to determine the

matrices for the optimal (i.e., minimum-variance) filter. In other words, the identified model

captures the statistics of the dynamic wavefront sequence and its corresponding prediction

filter delivers minimum-variance prediction error.

5.2.3 Identification of the Prediction Filter

Identification of the matrices A,K, and C in the prediction filter begins with a sample se-

quence of reconstructed images in the presence of phase aberrations (i.e., wavefronts). These

phase aberrations are assumed to have approximately the same spatial and temporal statis-

tics as the wavefront sequence that will be present subsequently when the identified prediction

filter is utilized in operation. Digital holography and image sharpening are applied to each

36



image in the sample sequence, yielding a sample sequence of wavefront estimates. This im-

age sharpening for the wavefront training sequence uses initialization M0 and kID sharpening

iterations for each sample wavefront. The kID here is the subscript in the notation PkID .

In general, kID is different from and independent of kf , the number of sharpening iterations

performed at each time step during image sharpening. Generally, kID may be time-varying in

the construction of a sample wavefront sequence for identification of the prediction filter, but

for simulations results presented in this dissertation, kID is constant during the construction

of each sample sequence.

After the sample sequence of wavefront estimates is constructed, the wavefronts are vec-

torized to form the sample vector sequence y(t). Then a subspace system identification

algorithm [21], described in Section 5.1, uses the vectorized sample sequence of wavefronts

to identify the A,K, and C matrices in the state-space model,

x(t+ 1) = Ax(t) +Ke(t)

y(t) = Cx(t) + e(t).
(5.16)

In this model, y(t) is the sequence of Zernike vectors that parameterize the sample sequence

of wavefront estimates, x(t) is an internal state vector and e(t) is a (theoretically) white se-

quence. The identified A,K, and C matrices then are used in the prediction filter in Eq. 5.14.

Prediction filters of the form used here, identified by subspace system identification,

have been used previously for modeling, prediction, and correction of optical wavefronts

[22–24, 50]. A significant difference between those previous applications and the problem

here is the following: In the previous applications, the sample wavefront sequence used to

identify the prediction filter was measured directly by a Shack-Hartmann sensor; here, only

the sample detector plane intensity patterns are measured, and the sample wavefronts are

estimated by digital holography and image sharpening, as described above. The implications

and advantages to removing bulky, expensive electro-optical equipment such as a wavefront

sensor should be immediately recognized.

The notation PkID for prediction-based sharpening initialization includes kID because

the prediction filter changes with the value of kID. Two different values of kID usually

produce different estimated phase profiles from the same sample image, unless the iterative
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sharpening essentially converges for both values of kID. Hence, different values of kID can

lead to different sequences y(t) and therefore different A,K, and C matrices for the prediction

filter, even though the same sequence of sample images is used to generate the sequence of

sample wavefronts. It should be noted that, while the input a(t, kf ) and output â(t+ 1) for

the filter change with kf , the filter itself does not depend on kf .

5.2.4 Other Considerations

One practical consideration when implementing the prediction filter in digital holography

numerical reconstruction is the issue of outliers in the dynamic wavefront sequence. Some

wavefronts cause exceedingly corrupted images that the prediction filter (indeed, any sharp-

ness initialization method discussed) still produces poor quality reconstructed images. For

the prediction filters, these outliers may potentially pollute the time-history of wavefront

estimates with statistics that are not representative of the typical wavefront. In the spirit of

real-time application, the primary focus in this work is in numerical reconstruction with very

low values of sharpness iterations, kf . In that sense, these particularly degrading wavefronts

are practically unusable, albeit for high, finite-valued kf , though they may still be sufficiently

correctable. It is not difficult to remove these outlier wavefronts in an offline application,

given knowledge of the wavefront sequence. Unfortunately, in online operations, it is safe

to assume that such knowledge is not available. With that in mind, after reconstructing an

image estimate, a normalized relative error norm of the current image and a time-history of

image estimates is calculated, i.e.,

G(t) =
‖wτ (ζ, η)− û(ζ, η, 0)‖F

‖wτ (ζ, η)‖F
, (5.17)

where wτ (ζ, η) represents the time-history of reconstructed image estimates, ûτ (ζ, η, 0) for

τ = t − 1, t − 2, . . .. If this error norm yields a value below the desired error tolerance, the

image estimate is saved in the time-history by means of an exponential smoother, written

as:

wτ+1(ζ, η) = αû(ζ, η, 0) + (1− α)wτ (ζ, η), (5.18)
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where α is an arbitrary weighting index such that 0 ≤ α ≤ 1. Values of α closer to zero put

less weight on the current image estimate, while values of α closer to 1 put less weight on the

exponential time-history of image estimates. If the error norm yields a value above the desired

error tolerance, the prediction filter ignores the phase error estimate for this outlier and uses

the previous time-step phase error estimate. This real-time filter effectively behaves as a

high-pass filter would in post-processing. Using a first-order exponential smoothing model is

not the only solution to outlier filtering, and the reader is encouraged to pursue more elegant

solutions. For the purposes of demonstrating effectiveness of wavefront prediction in digital

holography in this work, the solution presented here is sufficient.

It should be noted that outlier wavefronts are a different problem from an overall change

in the wavefront statistics trend during application. While the former was addressed above,

the latter can be solved by implementing a fully adaptive filter prediction algorithm rather

than an LTI filter as discussed in this chapter. Even though this is not directly investigated

in this work, the results of small kID in the PkID filters reported in Chapter 7 heavily imply

that such algorithms can be implemented to the same effect concluded in this study.

5.2.5 The Overall Predictive Digital Holography Scheme

Algorithm 1 summarizes the overall scheme for predictive digital holography, wavefront esti-

amtion, and image sharpening. The optical beam reflected from a flood-illuminated object is

distorted by a sequence of wavefront aberrations before reaching the detector plane. Predic-

tive digital holography and image sharpening process the sequence of detector plane intensity

patterns as described in this research to reconstruct wavefront estimates and sharpened im-

ages. Sharpening Initialization PkID uses the predicted vector of modal coefficients generated

by the prediction filter in the form in Eq. 5.15 to reduce the number of sharpening iterations

required to obtain the wavefront estimates. Although the wavefront estimates are represented

in this work as linear combinations of Zernike modes, other modes could be used without

changing initialization PkID , the form of the prediction filter, or the method identifying the

prediction filter.
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An important aspect of this scheme is the wavefront prediction feedback loop shown

in Figure 1.1, and detailed by Algorithm 1. This feedback interaction between wavefront

prediction and image sharpening has no corresponding feature in previous applications of

wavefront prediction. In previously proposed methods for wavefront prediction, a wavefront

sensor measures the wavefront sequence, and a prediction filter (either linear time-invariant

or adaptive) uses the measured wavefronts to generate predicted wavefronts; the prediction

does not affect the wavefront measurement. Here, only the detector plane images are mea-

sured directly, by a CCD or similar recording sensor. The wavefronts are constructed by

digital holography and image sharpening, and the prediction accelerates the sharpening and

improves the estimates of the wavefronts.
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Algorithm 1: Pseudo-Code for Predictive Dynamic Digital Holography

1 Initialize: x0 = 0, â0 = 0;

2 for t← 1 to T do

3 Propagate object to object plane with Eq. 2.5 (or Eq. 2.3);

4 Coherently image object and determine hologram with Eq. 2.6 and Eq. 2.11;

5 Transform hologram to spectral domain;

6 Determine one-step dynamics, x(t+ 1), and one-step Zernike prediction, â(t+ 1),

through Eq. 5.15;

7 for k ← 1 to kf do

8 if (Sopt − S) < ε1 then

9 Realize wavefront estimate from estimated Zernike modes as in Eq. 4.7;

10 Correct wavefront with wavefront estimate and reconstruct on image

plane with Eq. 4.5;

11 Calculate sharpness index, S as in Eq. 4.6 or Eq. 4.3;

12 Calculate analytic gradient, as in Eq. 4.12;

13 else

14 Break;

15 end

16 end

17 if G(t) < ε2 then

18 Update outlier filter using exponential smoothing, as in Eq. 5.18;

19 end

20 end
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CHAPTER 6

Wavefront Prediction Filter Analysis

This chapter will analyze and investigate various prediction filters that are identified using

the subspace identification methods described in Chapter 5. First, an ideal prediction filter

is introduced as P∞. For practical real-time applications, finite kID are identified as P4 and

P8. Before running the simulation, an LTI prediction filter of the form Eq. 5.15 is identified

offline using a sample sequence of the first 4000 of the 8000 wavefront estimates. Even

though the filter is identified offline in this paper, it is not a requirement, and Chapter 7 will

demonstrate the viability for an LTI (or adaptive) filter being identified online. Table 6.1

below summarizes the design parameters used to identify these state-space models. These

design parameters were chosen based on an optimization routine minimizing the normalized

temporal power of the modal prediction error, ē2n(t), that is,

argmin
i,nmax

ē2n(t) =

∑
t∈T ‖en(t)‖2∑
t∈T ‖yn(t)‖2

(6.1)

subject to (A−KC) stable

where en(t) is the prediction error sequence and yn(t) the wavefront estimate sample sequence

for the nth modal coefficients. Specifically, yn(t) is the estimated Zernike coefficient vector

sample sequence parameterizing the aforementioned wavefront sequence. A constraint is

applied to ensure the closed-loop system for the identified state-space filter, Eq. 5.15, is

stable, such that the magnitude of the eigenvalues of the closed-loop filter are less than unity.

All of these filters are modeled as minimum-variance prediction filters, where, theoretically,

they should yield white prediction error sequences. Thus, the quality for how well the

identified state-space prediction filters match the statistics of the sample wavefront sequence

input data is best determined by the whiteness of the associated prediction error sequences.
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Table 6.1: Parameters for identified models

Filter Order, i Input-Output Size, nmax

P∞ 34 5

P4 56 13

P8 59 13

6.1 The Ideal Prediction Filter: P∞

For certain predictive sharpening results presented in this dissertation, the label P∞ is used.

In this case Sharpening Initialization PkID (Eq. 5.13) is used, but the sample wavefront se-

quence fed into identification of the prediction filter is not constructed by wavefront estimates

invoked by digital holography or the image sharpening algorithm. Rather, the benchmark

wavefronts from Eq. 4.8 is used as the sample sequence y(t) for identifying the prediction

filter. When this benchmark prediction filter is used in simulations of predictive digital

holography and image sharpening, the sharpening initialization is the following:

Sharpening Initialization P∞ (Benchmark Prediction)

Same as Sharpening Initialization PkID except that

the benchmark prediction filter generates â(t).

The benchmark prediction filter is useful in addressing the important question of how the

performance of predictive digital holography and image sharpening depends on the number

of sharpening iterations used to generate the sample sequence of wavefront estimates for

identification of a prediction filter. For each of the true phase aberrations, this construction

yields the Zernike coefficient vector for the closest approximation in the subspace spanned

by the first N Zernikes. In this manner, it is assumed that a priori knowledge of at least

the sample wavefront input sequence is known. The subspace identification algorithm then

has the best possible knowledge to generate a state-space model of the prediction filter for

the statistics of the aero-optical input data.

Of course, the true phase aberrations are not available in real applications, so that the

P∞ case here would not be an option, but the results for this case provide a theoretical limit
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Figure 6.1: Identified P∞ filter state-space model. Power spectral densities of selected

modes and their prediction errors.

for evaluating the performance of predictive image sharpening with realistically identified

prediction filters (i.e., with finite kID). In Figure 6.1, the power spectral densities for selected

Zernike modes are shown for an identified P∞ prediction filter using 15 Zernike modes.

Clearly, the bandwidths of the higher modes become increasingly broadband; thus, these

modes consequently less identifiable. However, there are still enough identifiable features

to capture the statistics at these higher modes, particularly at lower frequencies where the

bandwidth is not so broadband. Additionally, while not perfectly white, it is important to

observe that the prediction error sequences are nearly white across the spectrum.

It is not unreasonable to assume that when the sample wavefronts are constructed by

image sharpening for finite kID, the constructed wavefronts should approach the projections

of the true wavefronts onto the first N Zernikes as kID increases. That the performance

of corrected wavefront aberrations for finite kID asymptotically approach the performance
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behavior of the benchmark wavefronts is supported by results presented in Chapter 7. Fur-

thermore, one would expect the characteristics of the finite prediction filters identified by

wavefront estimates conceived by finite kID sharpening iterations to converge to the ideal

filter as kID →∞. Figure 6.2 shows the normalized system norm error of various identified

state-space models relative to the P∞ system. It is evident that the relative system error

norm begins to asymptotically converge, although not to zero as one might theoretically

conclude. Upon closer analysis in the following section, the identified models have partic-

ularly good agreement at the lower frequencies, even for the higher modes. Figure 6.1 also

indicates that the lower modes have some bands at the higher frequencies that contain useful

information. However, the high frequency bands for higher modes are difficult to identify.

Increasing the kID values in the estimated wavefront sample sequence quickly saturates the

amount of information that can be identified for lower frequencies and does not alleviate the

broadband issue for higher frequencies. From Figure 6.2, one might be quick to discount the

P4 prediction filter; however, it is worth pointing out that the vast majority of the power of

the wavefront sequence is contained in the lower modes, where identification does extremely
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Figure 6.2: Normalized relative system norm errors of identified state-space models for

select kID relative to P∞.
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well, even for the P4 filter. Chapter 7 will demonstrate the viability of the P4 filter. First,

a closer analysis of the finite prediction filters is provided next.

6.2 Finite kID Prediction Filters: P4 and P8

Since the true wavefronts - and hence the ã(t) sequence and P∞ filter - are not known during

operation a priori, two additional filters, P4 and P8, are identified to address the possibility

of generating an LTI prediction filter from limited estimated wavefront knowledge. These

prediction filters are identified with finite kID and thus the sequence y(t) is formed by image

sharpening with fixed sharpness iterations of kID = 4 and kID = 8, respectively, over the

sample sequence. Even in the context of severe wavefront aberration, small kID were chosen

well below the number of iterations required for optimization convergence to analyze the

capability of predictive dynamic digital holography in real-time with an LTI or adaptive

filter. As in the case with the ideal filter, the sample sequence used to identify these finite

prediction filters were the first 4000 of the 8000 modified wavefront sequence described in

Chapter 3.

In Figure 6.3, the bode plots of some of the modes for the identified PkID 15 state MIMO

systems are shown. Each listed mode represents its diagonal entry of the MIMO system,

where the majority of the frequency response power for the respective modes are contained.

The norm system errors from Figure 6.2 suggests that there is a large discrepancy of low

kID filter approximations relative to the benchmark prediction filter. However, the bode

plots demonstrate that the responses of the finite prediction filters agree very well for lower

frequencies, even for the higher order modes. Significant departures from the benchmark

prediction filter response are located primarily near the Nyquist frequency of the filters.

Figure 6.4 provides power spectral density plots of the two finite filters for some of the

modal sequences. It demonstratively indicates a drop in power for the higher frequencies

for all modes, as was the case for the benchmark prediction filter. Furthermore, the dis-

paragement in the higher modes of the finite filter approximations to PkID in Figure 6.3 is

of less consequence as the mode number increases. This is due to the fractional power of
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the wavefront estimates contained in higher order modes rapidly decreasing, as shown in

Figure 6.5 and Figure 6.6. Calculating the fractional power in the prediction error sequence

as a function of modal order seen in those figures is of a similar form to that of Eq. 4.10,

EP (n, T ) =

∑
t∈T ‖en(t)‖2∑
t∈T ‖W (t)‖2F

. (6.2)

Therefore, despite the disagreement in the high frequency and high modal order responses,

the finite prediction filters are capable of sufficiently approximating the performance of the

ideal infinity filter, as results in Chapter 7 affirm.

Whether infinite or finite, the prediction filters modeled from subspace identification are
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Figure 6.3: Bode plots of various modes for P4, P8, and P∞ prediction filters.
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qualified best by how broadband - or white - the bandwidth of the prediction error sequence

is. This error sequence is the difference of the estimated (either sharpened or benchmark)

wavefront sequence and the predicted wavefront sequence,

e(t) = y(t)− ŷ(t). (6.3)

The closer the error is to theoretical white noise, the higher fidelity in the captured statistics

of the sample wavefront sequence. Similar to the analysis of the P∞ filter, the power spectral

density plots of the finite filters show that this is largely the case, albeit imperfect. Finally,

the power spectral density plots in Figures 6.1 and 6.4 suggest that it is difficult to identify

the state-space models for the higher order modes due to the increasing bandwidth. This

is of course the case, as interpreted by the calculated normalized temporal power of the

prediction error, ē2n(t) from Eq. 6.1, in Figure 6.7. However, the prediction error of these

filters is highest in higher order modes that contain relatively low power, as demonstrated

by Figures 6.5 and 6.6.

The following chapter integrates all aspects of this dissertation up to this point, culmi-

nating in an in-depth look into the simulation results.
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Figure 6.4: Power spectral densities of selected modes and their prediction errors. Identified

P4 (top) and P8 (bottom) filter state-space models.
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prediction filters; sample estimated wavefront Zernike parameterization, yn(t) (Eq. 4.10),

and corresponding prediction error, en(t) (Eq. 6.2).

50



2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Modes, n

In
d
e
x

7e2
n for various PkID

sample sequences

 

 

7e2
n : P1

7e2
n : P4

7e2
n : P8

Figure 6.7: Normalized temporal power of modal prediction error sequence for P4, P8, and

P∞ prediction filters.

51



CHAPTER 7

Wavefront Prediction Simulation and Results

This chapter assembles digital holography, image sharpening, and predictive wavefront cor-

rection into a simulation. Algorithm 1 describes the overall scheme and the results it yields

are presented here.

7.1 Results

For all of the results presented in this section, the first 4000 frames from the sequence of

disturbance wavefronts were used to identify prediction filters. The next 2000 disturbance

frames then were used to generate the performance evaluation results shown in the subse-

quent figures. Thus, the prediction filters were identified from one set of disturbance frames

and then evaluated on a different set of frames. It is important, of course, that the wavefronts

used for identification and those used for evaluation have similar statistics.

In the simulations reported here, Zernike modes 4–15 are estimated and corrected by

digital holography and image sharpening. Modes 1–3 (piston and tip-tilt), which cannot

be estimated by image sharpening, are corrected with the first three benchmark Zernike

coefficients. The phase errors reported are the errors between the wavefront estimates and

the benchmark wavefronts defined in Eq. 4.8, i.e., the error in the phase estimates for modes

4–15, since modes 1–3 are corrected exactly.

Several subsequent figures show pupil plane phase error power. For each frame, phase

error power is the mean-square phase error over the frame. In most plots, the phase error

values shown are time averages over the 2000 evaluation frames. The phase error values are

given as % Error because the phase error power is normalized by the time-averaged power

in the benchmark modes 4–15.

52



7.1.1 Sharpening Initializations M0 and M1 vs. P∞

Figures 7.1–7.4 compare results obtained with the non-predictive sharpening initializations

M0 and M1 and results obtained with the benchmark sharpening initialization P∞ (which

uses the benchmark prediction filter). The sharpness metric S1 was used for Figs. 7.1–7.3,

while the sharpness metric S2 was used for Fig. 7.4.

In Fig. 7.1, the top plot presents the time-averaged pupil plane phase error power as

a function of the number of sharpening iterations (i.e., as a function of kf ). The bottom

plots in Fig. 7.1 show how the phase error power varies with time over the 2000 evaluation

frames. For P∞ (benchmark prediction) and 10 sharpening iterations, the time-averaged

phase error power is 14.4%. Both the non-prediction methods, M0 and M1, perform nearly

indistinguishably from each other. The primary reason for M1 not performing better than

M0, and indeed at times under-performing, is that initializing time-step t+ 1 with the final

Zernike coefficient vector at time t does not necessarily start the optimization at time-step

t+ 1 in the correct direction. This increases the number of iterations needed to correct the

wavefront error. Even after kf = 10 sharpening iterations, M0 and M1 have not reached

the level of correctness as the prediction method, P∞ at kf = 4 iterations. In fact, the

sharpness initializations M0 and M1 have yet to reach a converging state by kf = 10 iterations,

exceeding 5% error of the near-optimal wavefront power.

Observation of the time series in the left bottom plot in Fig. 7.1 shows that, with ini-

tialization M0 and kf = 4 sharpening iterations, a non-trivial number of frames have large

aberrations, with errors surpassing 100% error. Meanwhile, the same time-series under P∞

correction is robust to these damaging pupil plane phase fields. Special attention should be

brought to the early stages of the optimization, where P∞ starts wavefront correction within

only 15% power of near-optimal correction. Consequently, the prediction filter arrives at the

final-value much sooner than its counterparts, in particular, at kf = 6 sharpness iterations

when the phase error power is within 3% of its final value. This suggests that the prediction

filter is capable of reducing the number of sharpness iterations needed to reach near-optimal

wavefront correction, by exploiting temporal correlation in the wavefront sequence to inject
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Figure 7.1: Top plot: Time-series average pupil plane phase error power for M0, M1,

and P∞ methods versus number of sharpness iterations using the S1 metric. Bottom plots:

Time-series of phase error power after four sharpness iterations for (left) M0 and (right) P∞.
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a significant increase in computational efficiency.

Figure 7.2 shows a histogram of the number of sharpness iterations per frame required

to achieve within 0.01% convergence of the final-value pupil plane power using the M0, M1,

and P∞ methods. As expected, M0 and M1 have similar results, with the higher number

of iterations needed for M1 convergence suggesting that the approach tends to start the

optimization routine in adverse directions, relative to the zero-initialization of M0, more

often than not. Keeping the perspective of an application operating in real-time in mind,

non-prediction algorithms arrived at near-optimal correction by kf = 10 iterations in less

than 1% of frames for the entire sequence, compared to 60% of the wavefronts utilizing a

P∞ algorithm. The required number of iterations exceeded 30 for over 57% of the frames
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Figure 7.2: Histogram of the number of sharpness iterations required for wavefront correc-

tion convergence for the M0, M1, and P∞ methods.
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under a non-prediction approach, whereas over 90% of frames have already converged by that

point using a prediction approach. This is unsurprising considering the average wavefront

power for only P∞ seems to be converging by kf = 8 sharpness iterations in Fig. 7.1. A

particularly interesting result in Figure 7.2 is that 21% of the frames have immediately

achieved sufficient wavefront correction after the one-step predict ahead with P∞, requiring

no sharpness iterations to achieve its near-optimal value.

Figure 7.3 shows sample irradiance images of a 60 × 60 pixels ROI after k sharpness

iterations and kf = 8 using the M0 and P∞ initializations for global sharpening and P∞ under

local sharpening. The average uncorrected RMS image irradiance relative error for the 2000

frame wavefront sequence is 46.3%, thus the sample frame shown is a particularly corrupted

case-study, as indicated by k = 0 under M0. The figure demonstrates the prediction filter

produces a clearer image and, as expected, local sharpening further improves this particular

region of the full image. Recall that unlike the prediction filters, M0 does not use time-history

wavefront correction information. In the prediction cases, the k = 0 frame is already near

or better than the image quality at kf = 8 for M0. This amount of initial performance is

what allows predictive holographic reconstruction to circumvent much of the computational

burden. By k = 2 iterations, the generated images from the prediction filters are better than

those after kf = 8 iterations for M0. This snapshot of the dynamic wavefront correction

sequence is indicative of the performance gap of the different methods for fixed k iterations

on average.

In Figure 7.4, time-series average pupil plane phase error power versus sharpness itera-

tions is reported for the Shannon entropy metric S2, for sharpening initializations M0, M1,

and P∞. Procedures M0 and P∞ generate results fairly similar overall to sharpness un-

der the S1 metric, with comparable convergence behaviors; though, S2 does not perform

as well, particularly in the early stages of correction where there is noticeably worse esti-

mated wavefront sensing. It is worth pointing out the detail that the P∞ prediction filter

is largely insensitive to the change in sharpness metric in these results. For dynamic wave-

front sequences with turbulent spatial frequencies from one time-step to another, as in this

simulation, M1 does poorly. At kf = 8 iterations, the M1 sharpness initialization deviates
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Figure 7.3: Specific irradiance images of a ROI. Each column is a sample image after k

sharpness iterations and kf = 8 using (top row) global sharpening for M0, (middle row)

global sharpening for P∞, and (bottom row) local sharpening for P∞.
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from a nondecreasing shape. This occurs for several reasons: First, it should be noted that

while sharpness maximization necessarily minimizes pupil plane wavefront error, as in the

consistent M0 algorithm, M1 may nullify this property if it begins the sharpness routine in a

sufficiently incorrect direction. That is, sharpening a frame at time-step t after kf = 6 iter-

ations initializes the t+ 1 time-step far enough from its optimal value that kf = 8 iterations

are unable to mitigate the poor initialization choice in that number of fixed iterations. This

occurs for a sufficient amount of frames to skew the average from its nominal nondecreasing

shape. Normal behavior resumes for high enough kf sharpness iterations. Second, the S2

metric bears some responsibility, as it includes the intensity at every pixel of the image rather

than only 25% of the brightest pixels, as in the S1 metric. The consequence of this is that

image errors from severe wavefront aberrations will be considered at every pixel, including
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Figure 7.4: Time-series average pupil plane phase error power for M0, M1, and P∞ methods

versus number of sharpness iterations using the S2 metric.

58



dark pixels that receive dispersed light, which may lead to sharp gradient changes. This

is especially detrimental to M1 as it is the most sensitive to significant gradient changes.

Choosing a sharpness metric depends on knowing the nature of the target image, with some

metrics performing better than others for particular images, as Fig. 7.4 demonstrates.

7.1.2 Sharpening Initializations P4 and P8 vs. P∞, M0 and M1

In Fig. 7.5, the top plot shows the time-averaged pupil-plane phase error power as a function

of the number of sharpening iterations for three prediction filters: P4, P8 and P∞. As in

previous phase error power plots, each data point in Fig. 7.5 is an average of the phase error

power over the 2000 evaluation frames, with the phase correction for each frame determined

with kf sharpness iterations. The time series of frame-by-frame phase error power are shown

for P4 and P8 with four sharpening iterations (i.e., kf = 4) for each evaluation frame.

As discussed in Section 5.2.3, the prediction filters P4 and P8 are identified from the

sample sequence of 4000 wavefront estimates reconstructed from detector plane holograms

by image sharpening with kID = 4 and kID = 8, respectively. Thus, P4 and P8 are determined

by a method that can be used in real applications.

The key take-aways from these results are described as follows. First, even though the P4

prediction filter is identified with only kID = 4 sharpness iterations, it still outperforms the

non-prediction sharpness initialization M0, improving wavefront estimation for a low number

of sharpness iterations. However, P4 is over 5% of the near-optimal corrected wavefront power

by kf = 10 sharpness iterations, indicating it has not reached a converging state as quickly

as one might desire.

Additionally, the sample time-series indicates that P4 exhibits several frames that were

poorly corrected, suggesting a higher kID may be required. This leads to a second important

point: Obviously, there is no benefit to a predictive approach if the number of finite kID iter-

ations required to approximate P∞ is large enough to be computationally disadvantageous.

The prediction filter, P8, in Fig. 7.5 shows that using wavefront estimates from filters using

kID = 8 iterations for identification generates a filter that performs nearly as well as the
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Figure 7.5: Top plot: Time-series average pupil plane phase error power for M0, P4, P8,

and P∞ methods versus number of sharpness iterations using the S1 metric. Bottom plots:

Time-series of phase error power after four sharpness iterations for (left) P4 and (right) P8.
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ideal case of having complete knowledge of the wavefronts (i.e., P∞). This has important

positive implications for future work involving the integration of a fully adaptive predictive

algorithm during online digital holography wavefront sensing.

Figure 7.6 displays a histogram of the number of sharpness iterations per frame required

to achieve within 0.01% of the final-value pupil-plane power using the prediction filters P4,

P8, and P∞. Compared to the non-prediction methods from Fig. 7.2, the average number

of iterations is significantly improved even with low kID values. When examining the results

from Fig. 7.5 and Fig. 7.6, it is important to remember the wavefront aberration sequence

is an extremely scaled up degraded version of real-world aero-optical data. The significance

of this is that P8, and indeed even lower kID, may be highly accurate approximations of
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Figure 7.6: Histogram of the number of sharpness iterations required for wavefront correc-

tion convergence for the P4, P8, and P∞ methods.
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the P∞ theoretical limit. For P8, about 45% of the frames in the wavefront sequence reach

near-optimality before 10 iterations, with 12% immediately converging after the propagation

step in the prediction filter. Even though P4 is roughly 46% slower than the ideal scenario,

it is a 74% improvement over M0. Clearly then, identifying the LTI prediction filter does not

need to be run for an extended number of kID to experience computational improvement.

Regarding a fully adaptive predictive algorithm, the implication is that digital holography

can be executed by running a prediction filter that is identified in real-time with remarkably

lower kID than the time it takes for M0 to converge.

7.1.3 Local Sharpening vs. Global Sharpening

Figure 7.7 evaluates the effectiveness of the methods in this paper for sharpening the 60×60

pixel ROI shown in Figs. 1.2 and 7.3. Since sharpening a relatively small ROI usually does not

minimize the wavefront error, performance evaluation for ROI sharpening is based on ROI

image error. This image error is defined as the error between a final sharpened ROI image

and the ROI image obtained by correcting the wavefront disturbance with the benchmark

wavefronts. For each of the 2000 evaluation frames, the ROI image error is the pixel-by-pixel

difference between the ROI irradiance of the sharpened image and the ROI irradiance with

the benchmark wavefront correction. The measure of ROI image error plotted in Fig. 7.7 is

the RMS value of the ROI image error computed over the 60× 60 set of ROI pixels and the

2000 evaluation frames, normalized by the RMS value of the irradiance for the ROI pixels

in the 2000 frames with the benchmark wavefront correction.

Several insights can be taken from these results. First, as expected, local sharpening with

the prediction filter P8 improves image quality over global sharpening for the ROI. As in the

phase plots in Fig. 7.5, the image irradiance for P8 using global sharpening enters a converging

state by kf = 8 sharpness iterations. Local sharpening meanwhile begins its optimization

near the image reconstructed by the minimizing global wavefront correction and quickly

converges to the minimizing wavefront correction associated with the ROI in as quickly as

kf = 4 iterations. Second, an interesting result occurs for local sharpening with M0 and M1
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Figure 7.7: Time-series average irradiance RMS error for M0, M1, and P8 methods versus

number of sharpness iterations using global and local sharpening over an ROI.

in that they appear to be generating images of the ROI with worse quality than a global

sharpening approach. This seemingly contradictory data is revealed to be because of 15% of

the wavefront frames with severe aberration having irradiance RMS errors exceeding 100%,

even after some fixed kf iterative corrections. The term ”outliers” is purposefully refrained

from being used as virtually all of these frames are eventually corrected appropriately by the

global variants of the non-prediction schemes, let alone any of the prediction variants. As

such, this issue is evidently confined to ROI sharpening for non-prediction methods.

Optimizing an ROI has unique artifacts that are not a concern for a global image ap-

proach, including stray light from outside the region, loss of light due to dispersion, and the

appearance of localized tilt for the subset of wavefront pixels pertaining to the ROI. These
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artifacts are greatly amplified by the increased severity of the wavefront disturbance sequence

used in the simulation. The worst of these frames constitute the culprits that skew the time-

series average value. Since the artifacts are inherent to the phase errors in a global sharpening

approach, minimizing the wavefront error will correct them at no additional cost—hence the

smooth, continuously decreasing behavior of the global M0 and M1 curves in spite of these

worst frames. What is especially interesting is that unlike the non-prediction counterparts,

the local sharpening prediction algorithm seems robust to these damaging frames, as both

the time-series and their corresponding averages displayed in Fig. 7.7 show those frames are

corrected without issue, to the point where it leads to the best image quality results. Similar

robust behavior was hinted at in the time-series in Fig. 7.1.

Despite the artifacts present in the ROI with severely aberrated frames, the prediction

filter mitigates much of the artifact existence that the non-prediction methods fail to correct.

It does so by initializing the Zernike coefficient vector based on the temporal and spatial

correlation of the wavefront from the past history, which involves more typical wavefront

disturbances. When these frames are removed universally from all time-series, the local

sharpening for M0 and M1 meet expected behavior for ROI sharpening, reconstructing im-

ages with better clarity than corresponding global variants. Albeit, those results are still

outperformed by even the global sharpening version of P8.

7.1.4 Strehl Ratios of P8 vs. P∞ and M0

The Strehl ratios for the corrected wavefront sequence under the M0, P8, and P∞ filter

approaches are given in Figures 7.8, 7.9, and 7.10. From Figure 3.4, the 2000 frame wave-

front sequence is initially far below the Rayleigh limit of 0.82, hovering around 0.275. After

sharpness optimization with kf = 10 iterations, the M0 method is still considerably below

the Rayleigh limit and would be considered unacceptable even for most amateur optics ap-

plications. On the other hand, both prediction filters have virtually reached the Rayleigh

limit, with several individual frames corrected well beyond the diffraction criterion. Just

over 60% and 70% of corrected wavefronts for the P8 and P∞ filters, respectively, are above
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Figure 7.8: Strehl ratio for corrected wavefront sequence using M0 filter after kf = 10

sharpness iterations.

this criterion. Recall that the Rayleigh criterion does not symbolize the pinnacle of wave-

front correction; it merely indicates the point at which diffraction overtakes atmospheric

turbulence as the primary source of phase error. This is why a great deal of frames under

the predictive filters are corrected well beyond the Rayleigh criterion.
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Figure 7.9: Strehl ratio for corrected wavefront sequence using P8 filter after kf = 10

sharpness iterations.
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Figure 7.10: Strehl ratio for corrected wavefront sequence using P∞ filter after kf = 10

sharpness iterations.
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7.2 Predictive Dynamic Digital Holography in the Far-Field

When the propagation distance onto the object plane is far enough such that the incoming

complex field is planar (or closely planar), then the propagation is in the far-field regime. In

this case, the Fresnel diffraction integral simplifies to Fraunhofer diffraction, written as,

u(ζ, η, z) =
exp(jk̃z)

jλz
exp

(
j
k̃

2z
(ζ2 + η2)

)
F{u(ζ, η, 0)}. (7.1)

Quickly, one notices that Eq. 7.1 is simply proportional to the 2-D Fourier transform. Fig-

ure 7.11 shows results of wavefront correction in the far-field regime under Fraunhofer diffrac-

tion. The plot represents time-series average pupil plane phase error power for M0, P8, and

P∞. Similar behavior for the various filters exist as they did for wavefront estimation in the

near-field regime. This demonstrates predictive wavefront estimation for digital holography

is not restricted to a particular diffraction region.
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Figure 7.11: Fraunhofer regime wavefront correction. Time-series average pupil plane phase

error power for M0, P8, and P∞ methods versus number of sharpness iterations using the S2

metric.
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CHAPTER 8

Local Sharpening and Subspace Correction

Often in application, only a particular region of an extended object is required to be imaged.

An ROI can readily be sharpened by isolating the region of the reconstructed image, usually

at the expense of degradation in areas outside the region (Fig.1.2). The resulting wavefront

estimate is therefore not one that minimizes the pupil plane aberration over the entire image,

but rather for that particular area, a fact that may limit applications interested in wavefront

sensing. Earlier works have studied the effects of ROI sharpening [11, 25, 26]. Particularly,

localized sharpening has demonstrated potential image improvement in anisoplanatic im-

ages over the ROI [27], increasing interest in localized image sharpening. By partitioning

an extended object over its image, one could presumably sharpen and splice several near-

isoplanatic patches together to reproduce a higher quality image than one corrected over the

entire field-of-view. However, for each iteration of the sharpness optimization, the method of

localized sharpening still involves correcting the wavefront through full-size pixel grid prop-

agation of the spectral plane of the hologram during image reconstruction. A more efficient

technique of localized sharpening aimed at real-time application is introduced by way of

subspace correction.

8.1 Single Patch Sharpening

Subspace wavefront correction tackles the linear combination of pixels on the spectral plane

of the hologram that span the subspace which characterize an ROI on the image. Figure 8.1

demonstrates this concept over one 60 × 60 pixel grid ROI. Recall that the wavefront is

applied at the circular pupil plane of the interferometry simulation. The spectral plane of
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the hologram retains this physical feature, as seen by the original 256×256 pixel array. Since

light from every pixel on the pupil plane contributes to the image, a specific ROI is isolated

from the resulting image and propagated back to the spectral plane to obtain the subset of

pixels on the spectral plane that span the ROI. Notice that the circular pupil structure of the

spectral plane for the “localized” wavefront is maintained. This wavefront is not localized in

the spatial sense; rather, there exists a wavefront 60 × 60 pixel array subset constituting a

linear combination of pixels on the pupil plane representing the ROI. Initially, it is necessary

to perform propagation of the full spectral plane to generate the isolated area and back-

propagate to the subspace wavefront. However, once this reduced-size subspace wavefront
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Figure 8.1: Scheme for initial subspace wavefront generation pertaining to one ROI of the

image.
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is captured, it is all the information needed for subsequent sharpness optimization over that

ROI. In other words, each iteration during optimization for the example in Fig. 8.1 will only

need to propagate the 60× 60 grid rather than the 256× 256 grid, drastically reducing the

computation cost needed for the sharpening algorithm.

An issue unique to local sharpening not experienced by its global counterpart is the fact

that artifacts attenuate the quality of the ROI, including stray light from outside the region,

dispersed light from within the region, and the presence of localized phase tilt in the re-

gion. Since the initial subspace wavefront is captured only at the start of optimization, some

information is unavoidably lost when sharpening over the initial subspace wavefront. Com-

pared to local sharpening, which has access to the global wavefront to potentially mitigate

these artifacts after each iteration, subspace correction is restricted to only the information

initially captured by the subspace wavefront. Simulation results have shown that this loss

effect causes subspace sharpened local regions to perform within 1% RMS image error as

those with global sharpening, but more noticeably behind those with local sharpening. The

trade-off is, of course, a significant improvement in algorithm run-time. One solution to

this loss of quality during subspace correction is through mosaicking several block partitions

of the global image, each independently sharpened in parallel through subspace correction.

This preserves the advantage of computation efficiency and enables the capability of wave-

front estimation, a feature lost with conventional local sharpening. With knowledge of the

wavefront estimate, local sharpening artifacts can be circumvented. The results presented

in this chapter incorporated such a mosaicking procedure, discussed in the next section.

8.2 Block Sharpening

It is possible to reconstruct the wavefront estimate for the entire image through a partition

and splicing technique. The idea is for several block partitions of the image to be sharpened

by parallel and independent subspace wavefront corrections. While the corrected wavefront

for each individual block does not correspond to the near-optimal wavefront estimate for the

global image, splicing these blocks together reconstructs a full field-of-view sharpened image.
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With knowledge of the final and initial complex fields of the image, the wavefront estimate

can be back-solved from Eq. 2.12, and projected onto the Zernikes by Eq. 4.7. Algorithm 2

provides a summary of this parallel subspace wavefront correction procedure using predictive

methods. Special attention should be brought to lines 8 and 9 of Algorithm 2, where a block

ROI is initially partitioned from the reconstructed full-sized image and back-propagated

using inverse Fresnel (or another appropriate propagator) propagation,

Uε(fζ , fη, z) = F
{
F{{û(ζ, η, 0)}} exp

[
− j π

λz
(ζ2 + η2)

]}
. (8.1)

This reduced-size pixel block is then fed into the image sharpening algorithm, where the

iterative procedure involving reconstruction in line 12 of Algorithm 2 is done much more

efficiently than previously with the full-sized image (i.e., Algorithm 1 and local sharpening).

Once the sharpening optimization concludes, the reconstructed image estimate for each l

block is mosaicked together back onto the full field-of-view image plane. Wavefront estimates

pertaining to each l block represent the near-optimal wavefront for each l subspace. The l

blocks are corrected through independent and parallel processors so that the run-time for

wavefront estimation remains on the order of one reduced-size ` block. In order to obtain

the wavefront estimate for the full image, the estimated object complex pupil function,

Û(fζ , fη, z), is obtained by back-propagating using Eq. 8.1. Knowing both the final, corrected

and initial, corrupted complex fields on the pupil plane, the pupil plane phase estimate is

back-solved by,

ψ̂(t, k)(ζ, η) = −1

j
ln

(
Û(fζ , fη, z)

Uε(fζ , fη, z)

)
. (8.2)

Finally, this wavefront estimate is parameterized onto Zernike basis functions, represented by

Eq. 4.7, by projecting the wavefront onto a Zernike polynomial of order N . The achievement

of this subspace algorithm is the capability of wavefront estimation while retaining an efficient

method for local sharpening. Since each reduced-size pixel block is independently sharpened

from one another through subspace correction, wavefront estimation and image sharpening

over the entire image can be done much faster than either conventional global or local

sharpening. The next section reflects on results using Algorithm 2.
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Algorithm 2: Pseudo-Code for Predictive Subspace Wavefront Correction

1 Initialize: x
(1)
0 = x

(2)
0 = · · · = x

(l)
0 = 0, â

(1)
0 = â

(2)
0 = · · · = â

(l)
0 = 0;

2 for t← 1 to T do

3 Propagate object to object plane with Eq. 2.5 (or Eq. 2.3);

4 Coherently image object and determine hologram with Eq. 2.6 and Eq. 2.11;

5 Transform hologram to spectral domain;

6 for processor l in parallel do

7 Determine x(l)(t+ 1) and â(l)(t+ 1), by Eq. 5.15;

8 Reconstruct global image with Eq. 4.5;

9 Back-propagate ROI partition l to capture subspace wavefront with Eq. 8.1;

10 for k ← 1 to kf do

11 if (Sopt − S) < ε1 then

12 Realize subspace wavefront as in Eq. 4.7;

13 Correct subspace wavefront and reconstruct image with Eq. 4.5;

14 Calculate sharpness index, S as in Eq. 4.6 or Eq. 4.3;

15 Calculate analytic gradient, as in Eq. 4.12;

16 else

17 Break;

18 end

19 end

20 if G(t) < ε2 then

21 Update outlier filter using exponential smoothing, as in Eq. 5.18;

22 end

23 Splice block partition l image for global field-of-view image;

24 end

25 Back-propagate ROI to pupil plane and back-solve phase estimate with Eq. 8.2;

26 Realize global field-of-view corrected wavefront estimate as in Eq. 4.7;

27 end
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8.3 Results

The results presented here are produced from the methods described in Section 8.2, where the

same dynamic sequence of 8000 aero-optical wavefronts used for the simulations in Chapter 7

are used here. For the simulation in this section, the 256 × 256 pixel USAF bar chart is

partitioned into four 128 × 128 pixel blocks. At each wavefront frame in the wavefront

sequence, the subspace wavefront for each block is projected onto an initial set of 15 Zernike

coefficients as in the form seen in Eq. 5.11. This method of sharpness algorithm initialization,

M0, is typical of a polynomial-expanded wavefront representation. The piston, tip, and tilt

Zernike modes were not sharpened through optimization, but instead determined through

least-squares projection for each time-step t in the dynamic wavefront sequence (Eq. 4.8).

These modes were not included during the back-solve for the wavefront estimate in order

to avoid phase wrapping issues. Incidentally, since they simply represent translation of the

image, they do not influence the sharpening metric, and can be reintroduced at anytime

during post-processing.

In an effort to push digital holography for real-time applications, a sharpness initialization

using prediction, as in Eq. 5.13, is also considered here. For the results in this section, an

LTI prediction filter with kID = 8 (i.e., P8) is identified from a sample subspace wavefront

sequence for each block partition. These LTI filters run independent and parallel from each

other, determining the one-step prediction of the final sharpened Zernike coefficient vector for

their corresponding block partitions. The first 4000 wavefront frames are reserved to generate

the sample input sequence for identifying the P8 prediction filter, while the subsequent 2000

frames constitute the time-series run-time data for the results in this simulation.

Three different approaches to image sharpening are studied: global correction, conven-

tional local sharpening, and subspace correction. For each approach, the results are measured

against the metric of wavefront estimates and reconstructed images generated by projecting

the Zernike coefficient vectors directly onto the true wavefront sequence. Figure 8.2 illus-

trates the subspace block partitions used for wavefront estimation and the two ROI areas

highlighted are analyzed by the aforementioned sharpening techniques under investigation.
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Figure 8.2: ROI area A1 (left) and A2 (right); dashed red and subspace block partitions;

dashed blue

Figure 8.3 presents a pupil plane phase error power time-series average versus sharpness

iterations for the metric defined in Eq. 4.6. Each data point is an average of the time-series

of phase error power after kf sharpness iterations for a 2000 wavefront sequence. Particular

examples of these time-series are shown in Fig. 8.3. The subspace wavefront estimates

were determined by block partition splicing, back-solving, and projection onto 15 Zernike

coefficients, while the global wavefront estimates were determined simply by the resulting

Zernike coefficient vector after kf sharpening iterations.

Mosaicking subspace blocks enables estimation of the wavefront otherwise inaccessible

through local sharpening. For this reason, plots of wavefront estimation using conventional

local sharpening are not shown. The resulting plots demonstrate that, for the case of M0,

subspace correction has a noticeable improvement in wavefront estimation over global cor-

rection. One explanation for this is that the subspace wavefront represents a set of pixels

spanning the wavefront that uniquely characterizes each partition block. Thus, sharpening

over each partition produces the wavefront that uniquely minimizes the phase error for the

corresponding ROI.

For conventional local sharpening, the resulting wavefront similarly minimizes the phase

error for the particular local region. Unfortunately, this wavefront correction is done on a

global scale with light from linearly dependent pixels that affect the full image, typically
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Figure 8.3: Top plot: Time-series average pupil plane phase error power for M0, and

P8 methods versus number of sharpness iterations using the S1 metric. Bottom plots:

Time-series of phase error power after four sharpness iterations for: (left) M0 global cor-

rection and (right) P8 subspace correction.
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leading to degradation of the global image outside the local region. This is why local sharp-

ening is ill-suited for wavefront estimation and correcting, as in Figure 8.3. Mosaicking the

partition areas together through subspace correction creates an aggregate image where the

wavefront estimate is consequently not penalized for any part of the image; the subspace

wavefront the ROI is corrected over is unique to only that ROI and independent of the rest

of the full pupil plane complex field.

Finally, in Figure 8.3, the prediction filter, P8, using a subspace correction approach is

capable of outperforming the non-prediction methods. The prediction method approach is

intended to reduce the number of sharpness iterations and improve convergence rate. It

is paramount to remember, however, that the primary goal of subspace correction is to

speed up the digital holography sharpness algorithm by efficient wave propagation of the

remaining iterations without sacrificing the quality of the wavefront estimation. Figure 8.3

indicates that such a sacrifice does not occur. It maintains a very comparable behavior to

the global correction approach done with P8, with the only recognizable difference being

at kf = 2 sharpness iterations. This close behavior is most likely due to the fact that,

through prediction, a significant percentage of frames in the wavefront sequence has already

essentially converged by kf = 4 iterations, leaving little room for improvement with regards

to wavefront estimation through subspace correction. The M0 method requires a greater

number of iterations for convergence, leading to more distinctive differences for that case.

Figure 8.4 shows a histogram of the number of sharpness iterations per frame required

to achieve within 0.01% convergence of the final-value pupil plane power using the M0 and

P∞ methods for the global sharpening and subspace correction techniques. As expected

from Fig. 8.3, the global and subspace variants of M0 have similar performance metrics.

Both variants of the P8 filter performed comparably as well, with 45% of frames converging

prior to 10 sharpening iterations. The ramification of Fig. 8.4 is that the subspace approach

speeds up sharpening of each iteration without losing performance in the way of wavefront

estimation. Combined with the prediction filter retaining its ability to converge in half

the time of non-prediction methods, the implication lends itself to viable real-time digital

holography operations.
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Figure 8.4: Histogram of the number of sharpness iterations required for wavefront correc-

tion convergence for the M0 and P8 methods using global and subspace techniques.

Figure 8.5 describes the time-series average irradiance RMS error versus sharpness itera-

tions over ROI area A1 in Fig. 8.2, after global, local, and subspace correction. One possible

point of concern was the potential loss of information due to artifacts that may cause a

degradation in image quality after subspace correction. A method described by Section 8.2

is used to bypass this issue. After reconstructing the full image from the projected Zernike

coefficient vector determined by back-solving Eq. 2.12, an ROI can be readily windowed as in

global correction. Ideally, one would inscribe the ROI entirely as part of a partitioned block

for subspace correction. For the simulation presented here, the ROI in Fig. 8.1 is partly

contained by two of the four 128× 128 pixel blocks.

First, it can be observed that the subspace method for both non-prediction, M0, and

prediction, P8, filters performs better than global correction. This is owed to the block pro-

cedure that provides knowledge of the full wavefront estimate that would otherwise cause
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Figure 8.5: Time-series average irradiance RMS error for M0 and P8 methods versus number

of sharpness iterations over A1 using global and local sharpening and subspace correction.

some loss in quality due to localized artifacts. In the case of M0 with local sharpening, these

artifacts are prevalent in enough outlier frames that the time-average appears worse than

global correction. About 7% of the 2000 frame sequence experiences such ample deteriora-

tion. Removing these frames would restore the expected behavior of the M0 local method

relative to the global method. The prediction filter for local sharpening does not experience

as many of these outlier wavefronts in the dynamic sequence because the prediction filter

is capable of beginning the sharpening at near-optimal convergence, frame-by-frame. Fi-

nally, because the simulation performed here did not include a partitioned block exclusively

for the ROI, it is not expected that the irradiance of the image be corrected better than

that with local sharpening, which calculates the metric cost function directly over only the

ROI. Indeed, this outcome is reflected in Figure 8.5 by the P8 curves for local and subspace
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Figure 8.6: Time-series average irradiance RMS error for M0 and P8 methods versus number

of sharpness iterations over A2 using global and local sharpening and subspace correction.

correction.

Figure 8.6 shows the time-series average irradiance RMS error versus sharpness iterations

over ROI area A2 in Fig. 8.2, after global, local, and subspace correction. While the global

and subspace approaches for M0 and P8 sharpening algorithms perform as expected, the

local sharpening variants diverge immediately with poor results. Inspecting the two ROI,

A1 and A2, the former consists of the bright pixels of interest naturally padded by darker

pixels around its perimeter. Artifacts present in the local sharpening method are mitigated

due to this natural padding, providing the performance demonstrated in Fig. 8.3. For A2,

significant portions of the image are located around the border of the ROI. The light from

these frames is likely to exhibit the dispersed and stray light artifacts due to the ineffective

window size for this region, despite both A1 and A2 being equal sizes [27]. Hence, both
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prediction and non-prediction filters for local sharpening are contingent on the particular

ROI areas and may be highly susceptible to artifacts tied to this method. Conversely, the

subspace method is insensitive to the choice of ROI, as the analysis of the two ROI areas

seem to suggest.
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CHAPTER 9

Conclusion

Digital holography has demonstrated its capability to be a lightweight and cost-effective

solution for wavefront estimation and correction in the presence of atmospheric turbulence.

However, the Fourier and Fresnel propagations required during sharpness optimization pre-

vent it from experiencing widespread real-time implementation. The goal of this research

was to solve this computational complexity by employing methods based on approaches for

optimal and adaptive identification, prediction, and control of optical wavefronts. The end

result is a novel method for a combined identified LTI prediction filter and sharpness algo-

rithmic approach to dynamic wavefront correction that both significantly improves initial

pupil plane phase error estimates and convergence rates, dubbed predictive dynamic digital

holography. Results presented in this dissertation provide substantial evidence of the fea-

sibility for implementing an online adaptive prediction filter to aid in the push for digital

holography in real-time operations.

The techniques presented in this dissertation also aim to exploit the processing power of

contemporary computers and systems to efficiently perform sharpness optimization for digital

holography wavefront estimation and image reconstruction. In particular, subspace correc-

tion is a new sharpness optimization method that boasts a significant increase in speed for

computation run-time compared to its global and local correction counterparts. The results

presented in this work show image sharpening with subspace correction outperforming global

sharpening and rivaling conventional local correction for an ROI. Furthermore, subspace

correction is capable of wavefront estimation, a feature not found through local sharpening.

This enables both full image reconstruction and wavefront correction abilities. Results have

shown that these reconstructed wavefronts are as good, if not better, than those determined
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by global sharpening. Combined with predictive dynamic digital holography, subspace cor-

rection provides an avenue for real-time applications to address the algorithmic complexity

that prevents it from practical operations.

In Chapters 2 and 4, the theory and application of digital holography recording, recon-

struction, and sharpening algorithms are described. Various propagators and techniques for

image reconstruction are investigated to examine the robustness and versatility of wavefront

prediction in the scope of digital holography. The primary diffraction propagators used are

Fresnel and the angular spectrum method. Meticulous attention is focused on avoiding issues

of both aliasing during holographic recording and reconstruction, and the concept of over-

sharpening during image sharpening optimization. The sequence of atmospheric wavefronts,

obtained by the University of Notre Dame’s Airborne Aero-Optics Laboratory, is analyzed

and modified in Chapter 3 and modeled using Zernike modes, detailed in Chapter 4. The

Strehl ratios of the modified wavefront sequence used for the simulation are shown to be

highly disruptive with an average of 0.27.

Chapter 5 reviews subspace identification based on a recursive least-squares lattice filter.

The heart of predictive dynamic digital holography is introduced in this chapter: an identified

state-space LTI filter is integrated with the sharpness optimization algorithm to improve the

performance of numerical reconstruction for digital holography. These prediction filters,

PkID , are built alongside the non-prediction filters, M0 and M1, to ascertain the performance

and wavefront correction differences. Past research work studied wavefront prediction in

the context of adaptive optics with the aid of a Shack-Hartmann sensor. However, the

research presented here is unique because wavefront prediction is done in the context of

digital holography, specifically without any wavefront sensor to supplement the process.

Chapter 6 analyzes the wavefront prediction filter in more detail. A benchmark prediction

filter, P∞, is formulated from the true wavefronts projected directly onto a Zernike polyno-

mial expansion, behaving as the theoretical limit of prediction that can be achieved. This

benchmark is compared directly to feasible, finite prediction filters P4 and P8. This chapter

shows the finite prediction filters have close approximations to the behavior of the bench-

mark prediction filter, P∞. The power spectra presented capture similar statistics of the
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power for the various Zernike modes for both the ideal and finite prediction filters. Finally,

the prediction error sequence is shown to have relatively low power in the less-identifiable

higher modes, verifying the prediction filter for operation.

Results for non-prediction and prediction wavefront correction methods are presented in

Chapter 7. Wavefront estimation, image irradiance, and Strehl ratios are among the metrics

investigated. The results show that the finite prediction filters, even P4, are significant

improvements to the non-prediction filters by all metrics studied. The finite filter P8 is

demonstrated to be a particularly close approximation in all regards to the benchmark

prediction filter. One implication for the achievements of the finite LTI filters is the validation

for a time-varying kID or adaptive filter. Overall, the results dictate the ability of wavefront

prediction to solve the computational burden that is native to numerical image reconstruction

in digital holography, with better wavefront estimation than conventional methods.

A different approach to local sharpening, labeled subspace correction, is introduced in

Chapter 8. Local sharpening has been studied in past works and holds a special role in the

area of correcting for anisoplanatism in wavefronts. However, it is limited to only image

irradiance correction and not wavefront estimation. Additionally, despite operating over a

particular area of an image, local sharpening still propagates over the full pixel grid and

corrects over the full wavefront. Both inefficiencies with local sharpening are addressed by

subspace correction. The results in this chapter demonstrate equivalent image correction to

local sharpening in a significantly improved numerical procedure. Not only does subspace

correction, unlike local sharpening, enable the ability to wavefront estimate and correct, it

does so better than global correction methods.

Predictive wavefront techniques developed in this dissertation are coupled with subspace

correction to ultimately provide the most efficient version of predictive dynamic digital holog-

raphy and its numerical reconstruction algorithm. This algorithm is intended to provide the

foundation to solving the complexity issue for digital holography in real-time applications.
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