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In this dissertation, numerical optimization methods for three different classes of problems are

presented : statistical modeling of crime, compressive sensing, and ordinal embedding. A common

aspect of each of these problems is their need for computational efficiency. The input data sets can

be large or high-dimensional, so each method sparsifies or reduces the dimension of the data, while

preserving essential structure. We make use of several popular paradigms of modern optimization

such as non-local operators, randomized sampling, sparse regulation, relaxations of intractable

problems, and divide-and-conquer. The novel variations and analysis of these approaches suggest

promising directions of further study in image processing and machine learning.

First, we are given a discrete sample of event locations, and we wish to produce a probabil-

ity density that models the relative probability of events occurring in a spatial domain. Standard

density estimation techniques do not incorporate priors informed by spatial data. Such methods

can result in assigning significant positive probability to locations where events cannot realistically

occur. In particular, when modeling residential burglaries, standard density estimation can predict

residential burglaries occurring where there are no residences. Incorporating the spatial data can

inform the valid region for the density. When modeling very few events, additional priors can help

to correctly fill in the gaps. Learning and enforcing correlation between spatial data and event

data can yield better estimates from fewer events. We propose a non-local version of Maximum
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Penalized Likelihood Estimation based on the H1 Sobolev seminorm regularizer that computes

non-local weights from spatial data to obtain more spatially accurate density estimates. We evalu-

ate this method in application to a residential burglary data set from San Fernando Valley with the

non-local weights informed by housing data or a satellite image.

Second, we analyze a method for compressed sensing. The `0 minimization of compressed

sensing is often relaxed to `1, which yields easy computation using the shrinkage mapping known

as soft thresholding, and can be shown to recover the original solution under certain hypotheses.

Recent work has derived a general class of shrinkages and associated nonconvex penalties that

better approximate the original `0 penalty and empirically can recover the original solution from

fewer measurements. We specifically examine p-shrinkage and firm thresholding. We prove that

given data and a measurement matrix from a broad class of matrices, one can choose parameters for

these classes of shrinkages to guarantee exact recovery of the sparsest solution. We further prove

convergence of the algorithm iterative p-shrinkage (IPS) for solving one such relaxed problem.

Lastly, we consider the problem of embedding unweighted, directed k-nearest neighbor graphs

in low-dimensional Euclidean space. The k-nearest neighbors of each vertex provide ordinal in-

formation on the distances between points, but not the distances themselves. Relying only on such

ordinal information, along with the low-dimensionality, we recover the coordinates of the points

up to arbitrary similarity transformations (rigid transformations and scaling). Furthermore, we

also illustrate the possibility of robustly recovering the underlying density via the Total Variation

Maximum Penalized Likelihood Estimation (TV-MPLE) method. We make existing approaches

scalable by using an instance of a local-to-global algorithm based on group synchronization, re-

cently proposed in the literature in the context of sensor network localization, and structural bi-

ology, which we augment with a scale synchronization step. We show our approach compares

favorably to the recently proposed Local Ordinal Embedding (LOE) algorithm even in the case of

smaller sized problems, and also demonstrate its scalability on large graphs. The above divide-

and-conquer paradigm can be of independent interest to the machine learning community when

tackling geometric embeddings problems.
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CHAPTER 1

Introduction

This dissertation is based on the work from the following published and submitted papers : Non-

local Crime Density Estimation Incorporating Housing Information [138], Compressed Sensing

Recovery via Nonconvex Shrinkage Penalties [137], and Ordinal Embedding Of Unweighted kNN

Graphs Via Synchronization [43]. These are all collaborative works. The author of this dissertation

was the primary or equal contributor to each of these works. See the Acknowledgements for

specific lists of co-author contributions.

In real-world applications, satellite images, housing data, census data, and other types of geo-

graphical data become highly relevant for modeling the probability of a certain type of event. The

methodology presented in Chapter 2 provides a general framework paired with fast algorithms for

incorporating external information in density estimation computations.

In density estimation, one is given a discrete sample of event locations, drawn from some

unknown density u on the spatial domain, and tries to approximately recover u [118]. Relating

the events to the additional data allows one to search over a smaller space of densities, which can

yield more accurate results with fewer events. We refer to the additional data source as the function

g(x) defined over the spatial domain Ω.We may typically assume two things about the relationship

between g and u : 1) g informs the support of u via g(x) = 0⇒ u(x) = 0 and 2) u varies smoothly

with g in a non-local way (explained below). This method allows the additional information in g

to significantly improve the recovery of u.

Although there are other classes of methods in the density estimation literature which are quite

popular (such as average shifted histogram and kernel density estimation [109]), in Chapter 2 we

shall focus on Maximum Penalized Likelihood Estimation (MPLE). MPLE provides a general
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framework for finding an approximate density from sampled events. The likelihood of events

occurring at the locations {xi}ni=1 according to a proposed probability u is the product of the

probability evaluated at each of those locations:

L (u, {xi}ni=1) =
n∏
i=1

u(xi).

MPLE approximates u as the maximizer of a log-likelihood term combined with a penalty term,

typically enforcing smoothness [51],

û = arg max
u≥0,

∫
Ω udx=1

n∑
i=1

log(u(xi))− P (u).

Without some kind of penalty term, the solution is just a weighted sum of Dirac deltas located at

the training samples. Typical choices of P (u) include the TV-norm, P (u) = λ
∫

Ω
|∇u|dx, and

the H1 Sobolev seminorm P (u) = λ
2

∫
Ω
|∇u|2dx. λ is the parameter which controls the amount of

regularization. This is typically chosen via cross-validation, when it is computationally feasible.

The H1 seminorm is a common, well-understood regularizer in image processing related to

Poisson’s equation, the heat equation, and the Weiner filter, producing visually smooth surfaces.

For this reason, it is often a default choice when little is known about the data being modeled.

H1 MPLE has further justification in crime density estimation from the ”broken window” effect

[136, 116, 115]. This observation states that after a burglary has occurred at a given house, burglar-

ies are more likely to occur at the same house or nearby houses for some period of time afterwards.

Initial burglaries give criminals information about what valuables remain and the schedule of in-

habitants in the area. Additionally, a successful burglary leaves environmental clues, such as bro-

ken windows, that indicate an area is more crime-tolerant than others. This effect leads to repeat

and near-repeat burglaries. More generally, criminals tend to move in a bounded region around

a few key nodes and have limited awareness of potential for criminal activity outside of familiar

areas [15, 9, 114]. Within neighborhoods, risk factors are typically homogeneous[127, 88, 80]. All

of this explains why observed incidence rates of burglaries are locally smooth.
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However, local smoothness is not always appropriate and in practice there is much room for im-

provement. In recent years several studies on the application of MPLE to crime data [97, 120, 81]

emphasize the fact that crime density should have boundaries corresponding to the local geography.

Mohler et al. and Kostic et al. model this by choosing penalty functions that are edge-preserving,

TV and Ginzburg-Landau respectively [97, 81]. Smith et al. more closely follows the idea pre-

sented here. That work introduces a modified H1 MPLE, which based the penalty term on an

additional component of the data [120]. The method assumes that the the valid region of the prob-

ability density estimate is known a priori. In their application to residential burglary the valid

region was the approximate support of the housing density in the region. If we denote the valid

region by D, then the modified penalty term is just a standard H1 MPLE with a factor z2
ε in the

integral, where zε is a smooth Ambrosio-Tortorelli approximation of (1− δ(∂D)) :

û = arg min
u≥0,

∫
Ω u=1

1

2

∫
Ω

z2
ε |∇u|2dx− µ

n∑
i=1

log(u(xi)),

zε(x) =


1 if d(x, ∂D) > ε,

0 if x ∈ ∂D.

In spectral graph theory, data is represented as nodes of a weighted graph, where the weight on

each edge indicates the similarity between the two nodes. Such data structures have been very suc-

cessfully applied to data clustering problems and image segmentation [40, 69, 113]. The standard

theory behind this is described in [35, 96] and a tutorial on spectral clustering is given in [129].

A theory of non-local calculus was developed first by Zhou and Schölkopf in 2004 [144] and put

in a continuous setting by Gilboa and Osher in 2008 [62]. Such methods were originally used for

image denoising [19, 62], but the general framework led to methods for inpainting, reconstruction,

and deblurring [94, 61, 143, 101, 89]. Compared with local methods, non-local methods are gen-

erally better able to handle images with patterns and texture. Further, by choosing an appropriate

affinity function, the methods can be made suitable for a wide variety of different of data sets : not

just images.

Chapter 2 presents non-local H1 MPLE (NL H1 MPLE), which modifies the standard H1

3



MPLE energy to account for spatial inhomogeneities, but unlike Smith et al. [120], we do so in

a non-local way, which has the benefit of leveraging recent fast algorithms and the potential to

generalize to other applications.

The organization of the chapter is as follows: In Sec. 2.1, we introduce the NL H1 MPLE

method and review the non-local calculus and numerical methods on which it is based. In Sec. 2.2

we demonstrate the advantages of NL H1 MPLE by comparing it with standard H1 MPLE when

applied to modeling residential burglary. In Sec. 2.3 we summarize our conclusions and discuss

directions for future research.

Chapter 3 analyzes a method for compressed sensing. Compressed sensing has been success-

fully applied in a multitude of scientific fields, ranging from image processing tasks to radar to

coding theory, making the potential impact of advancements in theory and practice rather large.

Compressed sensing methods rely on the notion of sparsity, which is primarily approximated

via the `1 norm [22, 47]. The nature and limitations of this relaxation have been well-studied

[18, 20, 45, 48, 52, 53, 54, 72, 73], as well as some alternative relaxations, such as the `p quasi-

norm [32, 139, 3, 34, 45, 55, 72, 73, 85, 107, 121, 122]. The nonconvex `p quasinorm approaches

present a tradeoff: closer approximation of sparsity for harder analysis and computation. Recent

work has introduced generalized nonconvex penalties [27, 29, 31, 33, 30, 28, 4] that have thus far

demonstrated strong empirical performance [27, 132, 31, 30]. In Chapter 3, we prove conditions

that guarantee good performance of these generalized penalties.

Compressed sensing seeks to represent a signal from a small number of linear measurements.

We let the vector x ∈ Rn represent the original signal. The linear measurements are the result of

an application of the short and fat measurement matrix A ∈ Rm×n, with m � n. One is given

the measurements b := Ax and wants to recover x. Of course m � n implies that Ax = b is an

underdetermined linear system in x, so additional assumptions must be made about x. Thus one

assumes that x is sparse, meaning that it has few nonzero entries. By considering the standard
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definition of p norms for vectors,

‖w‖pp :=
∑
i

|wi|p, (1.1)

and taking the limit as p approaches 0 from above, we get the `0 penalty, ‖w‖0, which counts

the number of nonzero entries of w. One would like to find the sparsest vector w ∈ Rn whose

measurements are b, which suggests the following optimization problem:

min
w
‖w‖0 subject to Aw = b. (1.2)

Unfortunately, this problem is known to be NP-hard (Non-deterministic Polynomial-time hard)

in general [99, Sec. 9.2.2]. In other words, without making further assumptions on A and x, an

algorithm solving this problem would be computationally intractable. For this reason, one relaxes

the problem, replacing the `0 penalty with other penalties.

The `1 relaxed version of the compressed sensing problem is as follows:

min
w
‖w‖1 subject to Aw = b. (1.3)

In contrast to the combinatorial `0 problem, this problem minimizes a convex energy subject to

linear constraints, and can be recast as a linear program. Extensive theory has been developed

to study the properties of solutions to convex problems [17]. Further, a subproblem related to

the `1 relaxation of compressed sensing has a closed-form solution, given by an application of a

shrinkage operator:

Definition 1.0.1. Soft thresholding is given by the following formula:

Sλ,1(x)i = sλ,1(|xi|) sign(xi) = max{|xi| − λ, 0} sign(xi). (1.4)
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The role soft thresholding plays is as the proximal mapping of the `1 norm:

Sλ,1(x) = proxλ ‖ · ‖1(x) := arg min
w

λ‖w‖1 + 1
2
‖w − x‖2

2. (1.5)

Several algorithms for compressed sensing make use of this proximal mapping, such as iterative

soft thresholding [44], alternating direction method of multipliers (ADMM) [63, 58, 65, 16], and

the Chambolle-Pock algorithm [23]. The explicit formula for (1.5) makes the use of `1 regulariza-

tion particularly convenient.

All of this suggests why the `1 relaxation of compressed sensing is nice to solve, but does

not motivate it as the right problem to solve. In particular, one is interested in conditions under

which the solution to the `1 relaxation (1.3) of compressed sensing equals or approximately equals

the solution of the original `0 compressed sensing problem (1.2). The papers [22, 47] developed

theory for the recovery of the `0 solution by the `1 problem. In the years the followed, getting looser

conditions for exact `1 recovery received continuing interest [18, 20, 45, 48, 52, 53, 54, 55, 72, 73].

One type of condition for recovery of the `0 solution from the `1 problem relies on the restricted

isometry constants associated with the measurement matrix A. The restricted isometry constant of

order k associated with the matrix A ∈ Rm×n is the smallest δk ≥ 0 such that the following holds

for all x ∈ Rn with ‖x‖0 ≤ k [21]:

(1− δk)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δk)‖x‖2
2. (1.6)

Note that when δk > 1 the lower bound becomes trivial and the upper bound can be improved by

rescaling A. Thus any measurement matrix, with appropriate rescaling, can achieve δk = 1, so

one typically only regards δk ∈ [0, 1). One of the best current `1 recovery results states that for

sufficiently large n, a sparse vector x ∈ Rn with ‖x‖0 = k can be recovered by `1 minimization

as long as k < m/2 and the restricted isometry constant of order 2k associated with A satisfies

δ2k ≤ 1/2 [20].

A similar relaxation of the `0 problem that achieves recovery results in broader cases is `p

minimization for 0 < p < 1. In contrast to the `1 norm, the `p quasinorms for 0 < p < 1
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are not convex. Hence much of the theory of convex analysis no longer applies, making solution

uniqueness and convergence results more complicated. However, the loss of convexity comes with

the benefit that `p is better able to approximate the original `0 than `1 can. As a result, one can show

that for any given measurement matrix with restricted isometry constant δ2k < 1, there exists some

p ∈ (0, 1) that will guarantee exact recovery of signals with support smaller than k < m/2 by the

`p minimization problem [139]. It has also been demonstrated empirically that `p minimization

gives better sparse recovery results than `1 minimization [24, 26, 25], with improved robustness

[107, 3, 121].

Consider the proximal mapping of the `p quasinorm (to the pth power, for simplicity), that is,

proxλ ‖ · ‖pp(x) := arg min
w

λ‖w‖pp + 1
2
‖w − x‖2

2. (1.7)

Unfortunately, (1.7) is a discontinuous mapping [142], and there is no closed-form expression for

(1.7) for general p. (The expression given in [90] is incorrect. For the special cases of p = 1/2 or

2/3, the proximal mapping can be expressed in terms of the solution of a cubic or quartic equation,

explicitly but cumbersomely.) This prevents several efficient algorithms from being generalized

from `1 to `p minimization.

The need for an explicit proximal mapping motivates the approach of specifying a shrinkage

mapping, and minimizing an implicitly-defined penalty function whose proximal mapping is the

specified shrinkage [4, 27, 29, 31]. In Chapter 3, we extend theoretical results for recovery of

sparse signals to the case of penalty functions induced by two families of shrinkages, p-shrinkage

and firm thresholding (see Defs. 3.1.1, 3.1.2 below). While some recovery results corresponding to

a firm thresholding algorithm are presented in [49], those results are probabilistic in nature, char-

acterizing probabilities in the limiting behavior as the dimension approaches infinity, in contrast

to the deterministic results presented here. In Section 3.1 we describe these shrinkage mappings,

and how they are the proximal mappings of nonconvex penalty functions. In Section 3.2 we prove

conditions for the exact recovery of sparse signals via minimizing such nonconvex penalty func-

tions. In Section 3.3 we demonstrate the stability of signal recovery to noisy measurements and
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approximately sparse signals, and in Section 3.4 we show the algorithmic convergence of iterative

p-shrinkage (IPS).

In Chapter 4 we present a method for embedding unweighted k-nearest neighbor (kNN) graphs.

This is a special case of ordinal or non-metric embedding, where one seeks a spatial embedding of

n points {~xi}ni=1 in Rd such that

∀(i1, j1, i2, j2) ∈ C, ‖~xi1 − ~xj1‖2 < ‖~xi2 − ~xj2‖2, (1.8)

where C denotes the set of ordinal constraints. Ordinal constraints are sometimes also specified as

triplets [1]. In the case of unweighted kNN graph embedding,

C = C(G) =
{

(a, b, a, c)
∣∣ab ∈ E(G), ac 6∈ E(G)

}
,

where E(G) is the set of directed edges in the kNN graph G.

Graph-based methods are of utmost importance in several modern machine learning methods

with applications such as clustering, dimensionality reduction, and ranking. Many such methods

rely on weighted graphs, with weights often based on similarity functions, i.e., wij = S(xi, xj).

From a practical standpoint, storing unweighted kNN graphs instead would allow for a very sparse

representation of the data. If one could recover the source data {xi}ni=1 from unweighted kNN

graphs, such a computationally efficient sparser representation would incur no information loss.

Because of the extreme sparsity of the representation, this is generally a hard problem. Just re-

cently, a method for recovering data distributions from unweighted kNN graphs was introduced in

[130]. Another motivation for this problem comes from an instance of the popular sensor network

localization problem, where each sensor is able to transmit only limited connectivity informa-

tion to a central location (ID names of its k nearest neighbors), but transmits neither the distance

measurements nor a complete list of all its neighbors within a given fixed radius. While most of

kNN-related work in the literature focuses on actually efficiently finding the nearest neighbors in

the given space[140], we consider the inverse problem of recovering the embedding from the kNN

queries.
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The original work on this problem dates back to Shepard [112] and Kruskal [82, 83], and lately

has been studied intensively in the machine learning literature [1, 111, 92, 102, 123, 78, 105, 2,

100, 93, 77, 86, 134]. In Chapter 4, we compare against and extend the recent Local Ordinal Em-

bedding method [124], which enjoys several favorable comparisons with other modern methods.

Another motivation for this problem comes from an instance of the popular sensor network local-

ization problem, where each sensor is able to transmit only limited connectivity information to a

central location, in the form of ID names of its k nearest neighbor sensors, but transmits neither

the estimated distance measurements nor a complete list of all its neighbors within a given fixed

radius. Note that either of these last two scenarios renders the localization problem (of estimat-

ing the sensor coordinates) easier to solve. Similar to the sensor network application, one could

potentially apply this framework to cooperative control and sensing involving swarms of robot

micro-vehicles with limited payloads communicating via radio with limited bandwidth [91, 66].

Our key ingredient is a modified version of the As-Synchronized-As-Possible (ASAP) algorithm

introduced in [41], which makes existing embedding methods scalable via a divide-and-conquer,

non-iterative local to global approach, reduces computational complexity, allows for massive par-

allelization of large problems, and increases robustness to noise. The ASAP algorithm introduced

in [41], on which we rely in Chapter 4, renders our approach to reconstruct kNN graphs scalable to

graphs with thousands or even tens of thousands of nodes, and is an example of a local-to-global

approach that integrates local ordinal information into a global embedding calculation.

We detail in Section 4.2.1 the exact approach used to decompose the initial kNN graph into

many overlapping subgraphs, that we shall refer to as patches from now on. Each resulting patch is

then separately embedded in a coordinate system of its own using an ordinal embedding algorithm,

such as the recent Local Ordinal Embedding (LOE) algorithm [124]. In the hypothetical scenario

when LOE recovers the actual ground truth coordinates of each patch, such local coordinates agree

with the global coordinates up to scaling and some unknown rigid motion (such as rotation, reflec-

tion and translation), in other words, up to a similarity transformation. However, in most practical

instances, it is unreasonable to expect that the LOE algorithm will recover the exact coordinates

only from ordinal data. On a related note, we point out the recent work of Kleindessner and von
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Luxburg [131], who settled a long-known conjecture claiming that, given knowledge of all ordinal

constraints of the form ||xi − xj|| < ||xk − xl|| between an unknown set of points x1, . . . , xn ∈ R

(for finite n), it is possible to approximately recover the ground truth coordinates of the points up

to similarity transformations. Furthermore, the same authors show that the above statement holds

even when we only have local information such as the distance comparisons between points in

small neighborhoods of the graphs, thus giving hope for a local-to-global approach, in the spirit of

the one we propose in Chapter 4.

Our contributions are: 1. We present a local-to-global approach for the problem of embedding

clouds of points from ordinal information, which is scalable to very large graphs, and can be com-

puted efficiently and robustly in a distributed manner. Specifically, we extend the ASAP frame-

work to the setting of ordinal embeddings, by augmenting it with a scale synchronization step.

We believe that local-to-global strategies could benefit many problems in the machine learning

community. The scale of data involved in many interesting problems poses a challenge to direct,

holistic approaches. 2. We extend the ordinal embedding pipeline to perform density estimation

via Total Variation Maximum Penalized Likelihood Estimation. This demonstrates the similarity

between the point localization and density estimation problems. Sufficiently simple point distribu-

tions can be well estimated by applying a short postprocessing step to an approximate embedding.

3. We present preliminary results for a very simple, straightforward ordinal embedding method.

The chapter is organized as follows. Section 4.1 is a summary of existing methods for related

embedding problems. Section 4.2 details the pipeline of the ASAP framework, including the scale

synchronization step in Section 4.2.2. In Section 4.3 we remark on the connection to the density

estimation problem, and describe the post-processing step performed via Total-Variation Maximum

Penalized Likelihood Estimation. Section 4.4 shows the results of several experiments recovering

point embeddings from a variety of data sets, and compares to the existing LOE algorithm, as

well as presenting results for the density estimation problem. In Section 4.5 we discuss an entirely

different approach to ordinal embedding, and present some preliminary results which suggest more

modifications are needed. We conclude our primary discussion in Section 4.6 and summarize in

Appendix B some related rigidity theory.
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Finally, we would like to make the disclaimer that some symbols and notation have distinct

use in each of the following chapters. For example n denotes either the number of events, the

dimension of the sparse vector, or the number of nodes in a graph. We use standard notation in

these instances rather than use distinct but non-standard notation. We intend to make the specific

meaning of each multiply-defined symbol clear from context. Moreover, each chapter’s notation is

self-contained, e.g. in Chapter 3 k always refers to the number of non-zero elements of the vector,

while in Chapter 4 k always refers to the number of nearest neighbors in the kNN graph.
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CHAPTER 2

Non-local Crime Density Estimation Incorporating Houses

2.1 Non-Local Crime Density Estimation

We propose replacing the H1 seminorm regularizer of H1 MPLE with a linear combination of an

H1 regularizer and a non-local smoothing term
∫∫

Ω×Ω
(∇w,su(x, y))2 dxdy where ∇w,s denotes

the non-local symmetric-normalized gradient depending on an affinity function w derived from the

spatial data, g. More details are found in Sec. 2.1.2. The energy we optimize is thus

û = arg max
u≥0,

∫
Ω u=1

n∑
i=1

log (u(xi))− α
∫∫

Ω×Ω

(∇w,su(x, y))2 dxdy − β

2

∫
Ω

|∇u(x)|2dx. (2.1)

The non-local term in equation (2.1) is tolerant of sharp changes in the probability density esti-

mate, as long as they coincide with sharp non-local changes in the spatial data. The mathematical

formulation of this statement follows from the definitions presented in the following sections and

is presented in the Appendix A. Before reviewing the non-local calculus behind this energy, we

motivate why a non-local regularizer is good for crime density estimation. Many cities grow in a

dispersal colony-like fashion, i.e. colony patches start growing at dispersed location at the same

time with the same architectural or cultural model as a starting point, generating non-local simi-

larities [75]. Dissimilar colony patches grow and meet to form diffuse interface-like boundaries

[6]. Thus housing data typically contains similar features spread across the domain, along with

interfaces between different types of areas. Whereas opposite sides of these interfaces are spatially

close, they are non-locally well-separated.

The clearest advantage of non-local regularization is that it allows for sharp changes in crime
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density across interfaces of distinct housing regions. In particular, since the residential areas are

non-locally well-separated from the non-residential areas, the non-local regularized estimate cor-

rectly captures the support of the residential burglary density. This feature has been studied for its

own sake in prior work and non-local regularization addresses it in an automatic, hands-off way.

Another, more subtle advantage of non-local regularization is that it encourages distant, but

non-locally similar regions (e.g. colony patches based on the same model) to have similar crime

density values. The assumption is that the layout of a neighborhood and its crime density are both

tied to underlying socio-economic factors. When one has these relevant factors, one can perform

Risk Terrain Modeling [80], combining the factors in the way that is most consistent with the ob-

served data. Non-Local regularization implicitly measures correlation between housing features

and levels of crime, presumably explained by these unknown factors. The regularization encour-

ages those relationships to remain consistent across the entire domain and all data. In this work,

we base the non-local similarity of two locations on the similarity of surrounding housing density

patches. For simplicity, one could consider basing it on only the housing density in the immediate

vicinity. This would encourage the crime density to be a smooth function of the immediate housing

density. Likely, one would estimate residential burglaries as roughly proportional to the housing

density. This would be a simple, but reasonable null model, assuming that burglary depends heav-

ily on opportunity. One would balance the spatial smoothness and smoothness as a function of

housing density with cross-validation, allowing for varying results depend on what the data shows.

Our non-local weights are based on housing density patches, which makes them more noise-robust

and representative of more complex housing features. This approach is general, relates to previous

work in image processing, and produces favorable results.

2.1.1 Non-Local means

Non-Local means was originally developed for the application of image denoising, but can also be

interpreted as an affinity function. The formula for the non-local means affinity, wIm, is given by
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[19]

wIm(x, y) = exp

(
−(Kr ∗ |Im(x+ ·)− Im(y + ·)|2) (0)

σ2

)
. (2.2)

Here Im is the image the non-local means weights are based on, Kr is a nonnegative weight kernel

of size (2r+1)×(2r+1), and σ is a scaling parameter. This function measures similarity between

two pixels based on a weighted `2 difference between patches surrounding them in the image. In

our experiments, the image Im is either a housing image or a satellite image. In practical settings,

computing and storing all function values of w is a very computationally intensive task, so we use

the fast approximation : Nyström’s extension (see Sec. 2.12.1.4).

2.1.2 Non-Local calculus and graphs

Non-Local calculus was introduced in its discrete form by Zhou and Schölkopf [144] and put

in a continuous framework by Gilboa and Osher [62]. In these definitions, w(x, y) is a general

nonnegative symmetric affinity function which generally measures similarity between the points x

and y.

Let Ω ⊂ Rn, and u(x) be a function u : Ω → R. Then the non-local gradient of u at the point

x ∈ Ω in the direction of y ∈ Ω is given by

(∇wu) (x, y) = (u(y)− u(x))
√
w(x, y).

This suggests an analogous generalization of divergence, which in turn leads to the following

definition of the non-local Laplacian:

∆wu(x) =

∫
Ω

(u(y)− u(x))w(x, y)dy. (2.3)

Now let {pi}ni=1 be a discrete subset of Ω and let wij = w(pi, pj) if i 6= j and wii = 0. We then

let {pi}ni=1 be vertices and wij the edge weights on a weighted graph. Let di =
∑n

j=1wij be the
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weighted degree of the ith node. Then the graph Laplacian applied to the function on the graph, u,

is given by Lu where

Lij =


di if i = j

−wij otherwise
, and so (Lu)i =

n∑
j=1

(ui − uj)wij.

To keep the spectrum of the graph Laplacian in a fixed range as the the number of samples in

increased and thus to guarantee consistency, we must normalize the graph Laplacian. See Bertozzi

and Flenner 2012 [10] for a more in depth discussion of this. We use the symmetric normalization.

Lsym := D−1/2LD−1/2, Dij =


di if i = j

0 otherwise.

Because we express our energy as applied to functions over continuous domains, we also introduce

the following notation for the symmetric-normalized non-local gradient.

∇w,su(x, y) :=
∇wu(x, y)(∫

Ω
w(x, z)dz

∫
Ω
w(y, z)dz

)1/4
.

2.1.3 Numerical optimization

We must numerically find an approximate solution. The unconstrained energy has gradient flow

ut = α∆w,su+ β∆u+
1

u

n∑
i=1

δ(x− xi).

We evolve this equation, projecting onto the space of probability densities after each step. We

discretize the equation as

uk+1 − uk

δt
= −αLsymuk+1 + β∆hu

k+1 +
1

uk

n∑
i=1

δ(x− xi).
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Here ∆h denotes the discrete Laplacian from the 5-point finite difference stencil with mesh size

h = 1. Solving for uk+1 yields

uk+1 = (I + αδtLsym − βδt∆h)
−1

(
δt

uk

n∑
i=1

δ(x− xi) + uk

)
.

To approximate this, we use a split-time method

uk+1/2 =

(
I + α

δt

2
Lsym

)−1
(
δt

uk

n∑
i=1

δ(x− xi) + uk

)
,

uk+1 =

(
I − β δt

2
∆h

)−1
(

δt

uk+1/2

n∑
i=1

δ(x− xi) + uk+1/2

)
.

To apply these operators, we use a spectral method. This has two advantages over forming and

multiplying the matrices. First, we can approximate the projection onto the constraint by using the

spectral decomposition of the discrete Laplacian (shown in Table 2.1). Second, the computation

required to form and apply the entire symmetric graph Laplacian is too intensive. Fortunately, we

can apply Nyström’s extension (discussed in Sec. 2.1.4), which is a popular method for approx-

imating a portion of the eigenvectors and eigenvalues which approximate the operator well. To

project onto the eigenvectors of ∆h we apply the 2D Fast Fourier Transform.

In both the case of applying (I + α δt
2
Lsym)−1 and (I − β δt

2
∆h)

−1 we are applying operators

of the form (I + δtP )−1 where P is symmetric and positive semidefinite. In general, if P has

spectral decomposition P = ΦΛΦT then we apply (I + δtP )−1 to ~w by first projecting onto the

eigenvectors : ~a = ΦT ~w, updating the coefficients ãm = am/(1 + δtλm), and finally transforming

back to the standard basis : (I + δtP )−1 ~w = Φ~̃a. We summarize the steps of our algorithm in

Table 2.1.

2.1.4 Nyström’s extension

To apply the spectral method described in the previous section we need to approximate the eigen-

vectors and eigenvalues of the symmetric graph Laplacian. Here we present the Nyström’s exten-
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Nyström (Img)→ Φ,Λ : Lsym ≈ ΦΛΦT .
Initialize u0 ≡ 1/|Ω|, succDiff =∞, k = 0.
while succDiff > 10−7 and k < maxSteps = 800

• k = k + 1

• ~b = ΦT
[
uk−1 + δt

uk−1

∑n
i=1 δ(x− xi)

]
• ai = bi

1+α δt
2
λi

• ~uk−1/2 = Φ~a

• ~b = fft2
[
uk−1/2 + δt

uk−1/2

∑n
i=1 δ(x− xi)

]
• ai = bi

1+2βδtπ2(m2+n2)
, i ∼ (m,n)th Fourier mode,

a1 = 1 (guarantees integral 1 constraint)

• ~uk = ifft2 (~a)

• ~uk = max
(
~uk, 0

)
• succDiff = ‖uk − uk−1‖2

2/‖uk‖2
2

Table 2.1: Non-Local H1 MPLE Algorithm
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sion method and refer the reader to [56, 10, 94] for further discussion and analysis. Nyström’s

extension is a technique for performing matrix completion, well-known within the spectral graph

theory community. In this setting, Nyström’s extension is applied to the normalized affinity matrix

Wsym = D−1/2WD−1/2 where the (i, j)th entry of W is the affinity between node i and j. Note

that the matrices Wsym and Lsym have the same eigenvectors, and λ is an eigenvalue of Wsym if

and only if 1− λ is an eigenvalue of Lsym.

We let N denote the set of nodes in our complete weighted graph, then take X to be a small

random sample from N , and Y its complement. Up to a permutation of the nodes we can write the

affinity matrix as

W =

WXX WXY

WY X WY Y

 ,

where the matrix WXY = W T
Y X consists of weights between nodes in X and nodes in Y , WXX

consists of weights between pairs of nodes in X , and WY Y consists of weights between pairs of

nodes in Y . Nyström’s extension approximates the eigenvalues and eigenvectors of the affinity

matrix by manipulating the approximation:

W ≈ Ŵ =

WXX

WY X

W−1
XX

(
WXX WXY

)
.

This approximates WY Y ≈ WY XW
−1
XXWXY . The error due to this approximation is determined by

how well the rows of WXY span the rows of WY Y . If the affinity matrix W is positive semidefinite

then we can write it as a matrix transpose times itself : W = V TV . In [8] the authors show

that the Nyström extension thus approximates the unknown part of V (corresponding to WY Y ) by

orthogonally projecting it onto the range of the known part (corresponding toWXY ). In this setting

it is clear that as the size of X grows, the approximation improves. Further, a random choice of X

is likely to yield WXY full-rank if the rank of the rank of W is sufficiently large.

Next we must incorporate the normalization factors into the above approximation. The degrees
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are approximated by applying their definition to the approximation. Note that di =
∑n

j=1 wij can

also be written as d = W1n where 1n is the n length vector of ones. This yields

d̂X =WXX1|X| +WXY 1|Y |,

d̂Y =WY X1|X| +WY XW
−1
XXWXY 1|Y |.

In this way we approximate the degrees without forming any matrices of size larger than |X|×|Y |.

Define also the vectors sX = d
−1/2
X , sY = d

−1/2
Y . Normalizing our approximation of W gives

Wsym ≈ Ŵsym =

WXX �
(
sXs

T
X

)
WXY �

(
sXs

T
Y

)
WY X �

(
sY s

T
X

) (
WY XW

−1
XXWXY

)
�
(
sY s

T
Y

)
 ,

where� denotes component-wise product. For notational convenience going forward, let us define

W sym
XX = WXX �

(
sXs

T
X

)
and W sym

XY = WXY �
(
sXs

T
Y

)
.

In practice, one uses a diagonal decomposition of such a formula to avoid forming and applying

the full matrix. It follows from analysis discussed in [56] that if W sym
XX is positive definite, the

diagonal decomposition of the approximation is given by Ŵsym = V ΛSV
T , where

S =W sym
XX + (W sym

XX )−1/2W sym
XY W

sym
Y X (W sym

XX )−1/2 ,

S has diagonal decomposition S = USΛSU
T
S , and

V =

W sym
XX

W sym
Y X

 (W sym
XX )−1/2 USΛ

−1/2
S .

Note that S is size |X|× |X| and V is size |N |× |X|. Their computation never requires computing

or storing matrices larger than size |N | × |X|. Thus V is a matrix of |X| approximate eigenvectors

ofWsym with corresponding eigenvalues ΛS . For more detailed discussion on Nyström’s extension,

see [56, 10, 94].
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2.1.5 Cross-validation

Cross-validation is a methodology for choosing the smoothing parameter λ which yields probabil-

ity densities that are predictive of the missing data [108]. Because our method consists primarily

of simple coefficient updates after mapping to different eigenspaces, it is fast relative to methods

with similar goals ([120] for instance). This speed increase allows us to perform 10-fold cross-

validation, which requires many evaluations of the density estimation method. In V -fold cross

validation we randomly partition the data points into V disjoint subsets X = tVv=1Xv with com-

plements X−v = X\Xv. We let uλ,−v denote the density estimate using parameter λ trained on

the data X−v. The objective we minimize is an application of the Kullback-Leibler divergence, an

asymmetric distance measure for probabilities given by

DKL (p, q) =

∫
Ω

log

(
p(x)

q(x)

)
p(x)dx.

We select the parameter λ that minimizes the average KL divergence between the density estimates,

uλ,−v, and the discrete distributions on the withheld data points :

pv(x) =
1

|Xv|
∑
xi∈Xv

δ(x− xi).

This yields the following optimization:

λ̂ = arg min
λ

1

V

V∑
v=1

DKL(pv, uλ,−v)

= arg max
λ

1

V

V∑
v=1

∑
xi∈Xv

log(uλ,−v(xi)).

The result can also be interpreted as maximizing the average log-likelihood that the missing events

are drawn from the corresponding estimated densities. We approximate this optimization via

a grid search (note that λ = (α, β) is 2 dimensional). The search requires the computation

of all the density estimates uλ,−v. In particular, for 10-fold cross-validation, we must compute

10×|α values| × |β values| densities.
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When evaluating the energy, it is important to ensure that nonnegativity and sum-to-one con-

straints hold strictly for the input densities. If a density is slightly negative somewhere, it could

add complex terms to the objective, and if a density has sum slightly larger than 1, it could unfairly

achieve a slightly higher objective. Further, in the strictest interpretation, if a density has a value

0 at the location of a missing event, the objective will take value −∞. We relax this penalty by

replacing uλ,−v(xi) with max{uλ,−v(xi), 10−16}.

2.2 Numerical experiments

In this section, we demonstrate the advantage NL H1 MPLE method over standard H1 MPLE by

evaluating its performance on residential burglary data from San Fernando Valley in Los Ange-

les, California, using of corresponding housing data and a satellite image to inform the non-local

weights.

2.2.1 Residential burglary

We perform experiments on residential burglary data from San Fernando Valley in 2005-2013,

getting substantially different results than those shown in [97, 120, 81]. In Fig. 2.1 we show the

data used (locations of residential burglaries in Fig. 2.1(a), housing in Fig. 2.1(b), satellite image in

Fig. 2.1(c)),H1 MPLE (Fig. 2.1(d)), housing-based NLH1 MPLE (Fig. 2.1(c)), and satellite-based

NL H1 MPLE (Fig. 2.1(d)) density estimates on increasing subsets of data from 2005-2008. To

evaluate performance, we compute the log-likelihood of each density on the residential burglaries

from 2009-2013 (shown in Table 2.2).

As one would predict, the locations of residential burglaries in Fig. 2.1(a) are primarily re-

stricted to the support of the housing density image Fig. 2.1(b). There are some locations in the

burglary data set that correspond to locations with no residences (4,173 events out of 23,725 to-

tal), which we attribute to imprecision in the burglary data. Most such misplaced events occur on

streets, suggesting that the actual event took place at a residence facing that street. Because of this

inconsistency between the data sets, for the experiments which use the housing data, we adjust
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the residential burglary data for training and testing (for both H1 and NL H1), moving each event

to the nearest house if it is within 2 pixels, and dropping the event otherwise. This results in 603

dropped events. For the experiments which do not use housing data, we work with the raw burglary

data for training and testing.

We implement H1 MPLE by applying our algorithm, described in Table 2.1 with α = 0 and

Φ = Id. We choose the value of the regularization parameter β for each training data set by

performing 10-fold log-likelihood cross-validation, searching over β =[0,10.ˆ(-2:8)]. We

apply H1 MPLE to both the raw and corrected burglary data.

For housing-based NL H1 MPLE , we perform Nyström’s extension with non-local means

applied to g, the housing density image shown in Fig. 2.1(c). We use 400 random samples for

Nyström’s extension. We use the first 300 eigenvectors and eigenvalues in our computations.

The non-local means weights are based on differences between patches of size 11 × 11 and σ =

1 · std(g), the standard deviation of the housing image. The weight kernel Kr, r = 5, is given as

follows.

Kr(1 + r + i, 1 + r + j) =
1

r

r∑
d=max(|i|,|j|,1)

1

(2d+ 1)2
, i, j = −r, . . . , r.

To choose the regularization parameters α, β, we perform 10-fold log-likelihood cross-validation,

searching over α =[0,10.ˆ(-2:12)], β =[0,10.ˆ(-2:8)]. We apply housing NL H1

MPLE to the corrected burglary data.

For satellite-based NL H1 MPLE, we perform Nyström’s extension with non-local means ap-

plied to g, the Google Maps image shown in Fig. 2.1(c). In applying non-local means to a color

image, we interpret the image as a vector valued function with 3 components (one for each color

channel) and so in equation (2.2) the expression |Im(x+·)−Im(y+·)|2 is size (2r+1)×(2r+1)×3

. We use 800 random samples for Nyström’s extension. We use the first 600 eigenvectors and

eigenvalues in our computations. The non-local means weights are based on differences between

patches of size 11× 11 and σ = 1 · std(g), the standard deviation of the Google Maps image. The

weight kernel is as in the previous case, but repeated on each color channel. To choose the regular-
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Training Data Set (corrected) scaled Histogram H1 Housing NL H1

50 random from 2008 −3.6039× 105 -1.3386× 105 −1.3396× 105

100 random from 2008 −3.5991× 105 -1.3369× 105 −1.3369× 105

500 random from 2008 −3.5197× 105 −1.3282× 105 -1.3004× 105

1000 random from 2008 −3.4350× 105 −1.3246× 105 -1.2953× 105

2008 −3.1905× 105 −1.3189× 105 -1.2888× 105

2007-2008 −2.9846× 105 −1.3174× 105 -1.2850× 105

2006-2008 −2.8152× 105 −1.3136× 105 -1.2815× 105

2005-2008 −2.6847× 105 −1.3121× 105 -1.2774× 105

Traing Data Set (raw) scaled Histogram H1 Satellite NL H1

50 random from 2008 −3.6959× 105 −1.3733× 105 -1.3553× 105

100 random from 2008 −3.6822× 105 −1.3732× 105 -1.3553× 105

500 random from 2008 −3.6342× 105 −1.3583× 105 -1.3524× 105

1000 random from 2008 −3.5733× 105 −1.3598× 105 -1.3525× 105

2008 −3.3313× 105 −1.3535× 105 -1.3494× 105

2007-2008 −3.1326× 105 −1.3525× 105 -1.3482× 105

2006-2008 −2.9630× 105 −1.3496× 105 -1.3449× 105

2005-2008 −2.8334× 105 −1.3488× 105 -1.3431× 105

Table 2.2: Log-likelihood of densities on residential burglaries from 2009-2013 (corrected & raw)

ization parameters α, β for each training set, we perform 10-fold log-likelihood cross-validation,

searching over α =[0,10.ˆ(-2:12)], β =[0,10.ˆ(-2:8)]. We apply satellite NL H1

MPLE to the raw burglary data.

The H1 MPLE results transition from a completely smooth uniform density to a probability

density with more apparent structure as the amount of training data increases. The NL H1 MPLE

housing and satellite results exhibit a similar trend, but are able to better approximate the correct

support of the density with many fewer data points. The measurable benefit of non-local smoothing

is shown by the log-likelihood values in Table 2.2. NLH1 generally gets higher log-likelihood than

H1. This means the densities estimated by housing NL H1 on corrected 2005-2008 data are more

congruous with the corrected 2009-2013 data than the H1 densities, and the densities estimated by

satellite NL H1 on raw 2005-2008 data are more congruous with the raw 2009-2013 data than the

H1 densities.

The added complexity of our algorithm results in an increase in run time from the standard H1

MPLE, but the difference is not too substantial. We compare run times on a laptop with one Intel
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Figure 2.1:
Top row: data
(a) 2005-2013 Residential burglaries in San Fernando Valley (from LAPD)
(b) San Fernando Valley log(min(# housing units, 7) + 1) (from LA County Tax Assessor)
(c) Satellite image of San Fernando Valley (from Google Maps)
Bottom three rows : MPLE of 50, 500, and 1000 random samples from ’08 residential burglaries
(d) Column 1 : H1 MPLE
(e) Column 2 : Housing NL H1 MPLE
(f) Column 3 : Satellite NL H1 MPLE
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Core i7 processor that has two cores with processor speed 2.67GHz and 4GB of memory. The

run time for Nyström applied to the housing image is typically about 17 seconds. The run time for

Nyström applied to the satellite image is typically about 36 seconds. For cross-validation purposes,

Nyström can be run once outside of the loop and the results used for all combinations of data sets

and parameters. The run time for H1 MPLE with parameters as chosen by cross-validation on the

residential burglaries from 2005-2008 is typically about half a second. The run time for housing

NL H1 MPLE with parameters as chosen by cross-validation on the the residential burglaries from

2005-2008 is typically about 2.3 seconds. The run time for satellite NLH1 MPLE with parameters

as chosen by cross-validation on the the residential burglaries from 2005-2008 is typically about

1.5 seconds. The cross-validation run times depend on what range of parameters are being tested,

but can easily be run in parallel across several computing nodes.

2.2.2 Synthetic Density

To further verify that NLH1 MPLE is correctly performing density estimation, we test the method’s

ability to recover a given density. We start with a known density, draw events from it, and attempt

to recover it. Because the method assumes a relationship between the spatial data g and the den-

sity u, we generate a synthetic density which is closely related to the housing data, shown in the

bottom left of Fig. 2.2. This density is given by taking a random linear combination of the first 5

approximated eigenvectors of the graph Laplacian (with weights based on the housing image) and

then shifting and normalizing the result to yield a probability density. The coefficients are cho-

sen uniformly at random in [0, 1] and the non-local weights are based on the housing data as they

were in the previous section. This randomly generated density was chosen over others because it

looks like a potential probability density for residential burglary. It should be noted that this choice

of synthetic density is quite ideal for the proposed method. The hope is that very good density

recovery of ideal probability densities extends to good density recovery of less ideal probability

densities.

We sample events according to this density by generating numbers uniformly at random in

[0, 1] and inverting the cumulative distribution function associated with the density. In the top row
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of Fig. 2.2 we show the H1 MPLE result on the 400 events (β = 5 × 104), the housing NL H1

MPLE result on the 400 events (α = 100, β = 0), and the NL H1 MPLE result on 400 events

restricted to the first 5 eigenvectors. In the bottom row of Fig. 2.2 we show the synthetic density,

the H1 MPLE result on the 4,000 events (β = 105), the housing NL H1 MPLE result on the 4,000

events (α = 108, β = 0), and the NL H1 MPLE result on 4,000 events restricted to the first 5

eigenvectors. In all cases, smoothing parameters were chosen to minimize mean absolute error

of the probability density. The NL H1 results and the restricted NL H1 results do a substantially

better job at recovering the probability density than H1 MPLE. This is expected of course, from

the construction of the probability. The comparison merely suggests that if the correct density

is well-approximated by a combination of eigenvectors of the graph Laplacian, enforcing non-

local smoothness can substantially improve recovery of the density. It is, in general, difficult to

determine when a density is well-approximated by a graph Laplacian’s eigenbasis. The assumption

is that the primary and non-local data have some meaningful, consistent connection. We refer

the reader to Sec. 2.1 for heuristics on this connection and Appendix A for some more precise

formulations. It is also worth noting that if unrelated non-local data is used, cross-validation will

likely yield α = 0, reverting the model back to standard H1 MPLE.

2.3 Conclusions and Future work

In this chapter we have looked at the problem of obtaining spatially accurate probability density es-

timates. The need for new approaches is demonstrated by the inadequate performance of standard

techniques such as H1 MPLE.

Our proposed solution accomplishes this by incorporating a non-local regularity term based

on the H1 regularizer and non-local means which fuses geographical information into the density

estimate. Our experiments with the San Fernando Valley residential burglary data set demonstrate

that this method does yield a probability density estimate with the correct support which also gives

favorable log-likelihood results. Further, our results based on the Google Maps image suggest we

can apply NL H1 MPLE to a wide variety of geographic regions without obtaining specialized

26



Figure 2.2: Synthetic density recovery (see Sec. 2.2 2.2.2)
Top row : density estimates based on 400 samples from synthetic density
|error| : H1 7.12473× 10−6, NL H1 5.26617× 10−6 , NL H1 restricted 2.55042× 10−6

Bottom row : synthetic density and density estimates on 4,000 samples
|error| : H1 5.05662× 10−6, NL H1 2.52831× 10−6 , NL H1 restricted 1.36416× 10−6
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geographic data.

There are several others aspects of this and related problems to explore. In general, testing the

method on other datasets would be interesting. This may present the added challenge of dealing

with other types of geographical information since high-resolution housing density data may not

be readily available. In modeling the density of other types of events, the geographical data may

not be related to housing at all. As the problem dictates, the non-local weights can be replaced

with whatever weights seem appropriate for the data at hand. We have yet to incorporate time,

leading indicators of crime, or census data into model. Any of these could further improve results

and allow one to use density estimation in place of risk terrain modeling.

Finally, our method need not stand alone. Several sophisticated spatio-temporal models for

probabilistic events make use of density estimation, typically using the standard methods [98,

87, 133]. By replacing the standard density estimation techniques with a non-locally regularized

MPLE such as ours, the density estimates in these models could improve, thus improving the

overall result of the resulting simulation.
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CHAPTER 3

Compressed Sensing Recovery via Nonconvex Shrinkage

Penalties

3.1 Generalized shrinkage penalties

As described above, nonconvex penalty functions have been shown both theoretically and empir-

ically to give better results for compressed sensing than the `1 norm. In order to make use of

any of several efficient algorithms, we wish to consider penalty functions with explicit proximal

mappings. In this section, we consider two such families of functions.

3.1.1 p-shrinkage and firm thresholding

First we consider a shrinkage mapping, a version of which first appeared in [27], that has some

qualitative resemblance to the `p proximal mapping, while being continuous and explicit:

Definition 3.1.1. For λ > 0, the p-shrinkage mapping Sp = Sλ,p for p ∈ R is defined by Sp(x)i =

sp(|xi|) sign(xi), where the shrinkage function sp = sλ,p is defined by

sp(t) = max{t− λ2−ptp−1, 0}. (3.1)

See Figure 3.1 for example plots. When p = 1, p-shrinkage and soft thresholding coincide.

The smaller the value of p, the less p-shrinkage shrinks large inputs. In the limit as p → −∞,

p-shrinkage tends pointwise to hard thresholding:
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Figure 3.1: Plot of several shrinkage functions, all with λ = 1. The smaller the value of p, the
smaller the bias applied to large inputs. Firm thresholding removes the bias completely for large
enough inputs, without the discontinuity of hard thresholding.

Definition 3.1.2. For λ > 0, the hard thresholding mapping Hλ is defined by

Hλ(x)i =


0 if |xi| ≤ λ,

xi if |xi| > λ.

(3.2)

Hard thresholding is related to the proximal mapping of the `0 penalty function:

H√2λ ∈ proxλ ‖ · ‖0, (3.3)

the right side of (3.3) being two-valued in components satisfying x2
i = 2λ. Hard thresholding im-

poses no bias on large inputs, but its discontinuity makes it very unstable when used with ADMM

[46].

Another shrinkage mapping we consider is firm thresholding, a continuous, piecewise-linear

approximation of hard thresholding. Firm thresholding was first introduced in [59] in connection

with the WaveShrink procedure for denoising and non-parametric regression. It was not known at
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the time to be the proximal operator of a given penalty function.

Definition 3.1.3. For λ > 0 and µ > λ, the firm thresholding mapping Sfirm = Sλ,µ,firm is defined

by Sfirm(x)i = sfirm(|xi|), where sfirm = sλ,µ,firm is defined by

sfirm(t) =


0 if t ≤ λ,

µ
µ−λ(t− λ) if λ ≤ t ≤ µ,

t if t ≥ µ.

(3.4)

Note that Sλ,λ,firm = Hλ, and limµ→∞ Sλ,µ,firm(x) = Sλ,1(x) pointwise. Thus both p-shrinkage

and firm thresholding can be seen as generalizing both soft and hard thresholding.

3.1.2 Shrinkage-induced penalty functions

Our motivation for considering alternative shrinkage mappings is to have them as closed-form

proximal mappings. This requires that the shrinkages actually be the proximal mappings of penalty

functions. The following theorem guarantees this. It is proved in [31, Thm. 1], and strengthens the

earlier result of Antoniadis [4, Prop. 3.2].

Theorem 3.1.4. Suppose s : [0,∞) → R is continuous, satisfies x ≤ λ ⇒ s(x) = 0 for some

λ ≥ 0, is strictly increasing on [λ,∞), and s(x) ≤ x. Define S(x)i = s(|xi|) sign(xi), for each i.

Then S is the proximal mapping of a penalty function G(w) =
∑

i g(wi) where g is even, strictly

increasing and continuous on [0,∞), differentiable on (0,∞), and nondifferentiable at 0 iff λ > 0

(in which case ∂g(0) = [−1, 1]). If also x− s(x) is nonincreasing on [λ,∞), then g is concave on

[0,∞) and G satisfies the triangle inequality.

Both p-shrinkage and firm thresholding satisfy all hypotheses of the theorem for all parameter

values. The proof of the theorem constructs g using the Legendre-Fenchel transform [103] of

an antiderivative of s. Because of the nature of the Legendre-Fenchel transform, this often does

not produce a closed-form expression for g. We consider this as an acceptable price to pay for

having an explicit proximal mapping, which is much more useful for most of today’s state-of-the-
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Figure 3.2: Plot of penalty component function g induced by several shrinkage mappings, all with
λ = 1. The smaller the value of p, the slower the growth of the p-shrinkage penalty function,
being bounded above when p < 0. Both firm and hard thresholding have penalty functions that are
quadratic near the origin, then constant.

art algorithms for compressed sensing than having an explicit penalty function. In the case of the

penalty function Gp induced by p-shrinkage, we can compute gp(w) numerically, and example

plots are in Figure 3.2. In addition to the properties guaranteed by Thm. 3.1.4, it can be shown

that limw→∞ gp(w) − wp/p − Cp = 0 for p 6= 0 and constant Cp depending only on p. This

includes p < 0, in which case it follows that gp(w) is bounded above. For p = 0, we have

limw→∞ g0(w)− logw − C = 0 instead.

In the case of the penalty function Gfirm induced by firm thresholding, gfirm does have a closed

form:

gfirm(w) =


|w| − w2/(2µ) if |w| ≤ µ,

µ/2 if |w| ≥ µ.

(3.5)

Note that gfirm(w) is independent of λ, except that µ ≥ λ is required by the definition of gfirm.

Although the statement of Thm. 3.1.4 excludes hard thresholding (being discontinuous), the

construction in the proof does produce a penalty function Ghard. It coincides with Gfirm for µ = λ.

The part of the conclusion of the theorem that doesn’t hold is that proxλGhard(λ) is the entire

interval [0, λ], while Hλ(λ) is generally defined to take on a single value from this interval (namely

0 in our definition (3.2)).
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3.1.3 Example

To motivate the consideration of p-shrinkage and firm thresholding, we consider a generalization

of an example appearing in the first compressed sensing paper [22]. We seek to reconstruct the

256×256 Shepp-Logan phantom image from samples of its 2-D discrete Fourier transform (DFT),

taken along radial lines, thereby simulating both MRI and X-ray CT data (the latter by way of the

Fourier slice theorem). See Figure 3.3. Since the phantom has a sparse gradient, we seek to solve

the following optimization problem:

min
x
G(∇x) subject to Fx = b, (3.6)

where G is one of the penalty functions being compared, ∇ is a discrete gradient using forward

differences and periodic boundary conditions, F is the 2-D DFT, and b contains the sample data.

We solve (3.6) with ADMM, where the shrinkage mapping is p-shrinkage with p ≤ 1 or firm

thresholding. See [30] for details, being also a straightforward generalization of the algorithm of

[65].

WithG = G1 = ‖·‖1, 18 lines are required for exact reconstruction, while usingG = G−1/2, 9

lines suffice, as shown in [27], the latter being the fewest that had been demonstrated at that time.

In [29] (see also [31]), 6 lines were shown to suffice using the G induced by a shrinkage mapping

that is a C∞ approximation of hard thresholding. This is the fewest possible, since with 5 lines,

there are fewer measurements than nonzero gradient pixels, so that the phantom will not even be

a local minimizer of the problem with G = ‖ · ‖0. However, here we report that using G = Gfirm

(with λ = 0.1 and µ = 2.5), 6 lines also suffice, and many fewer ADMM iterations are needed

(337 versus 2213).

While this example is an ideal case, using a very sparse image and noise-free measurements,

this does demonstrate that p-shrinkage and firm thresholding induce penalty functions that can be

useful for recovering sparse signals. Now we turn to a theoretical analysis of the sparse recovery

performance of minimizing these penalty functions.
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(a) Shepp-Logan phantom (b) p = 1, 18 lines (c) p = −1/2, 9 lines (d) firm, 6 lines

Figure 3.3: The Shepp-Logan phantom, and the number of radial lines of Fourier samples needed
to reconstruct the phantom perfectly using different penalty functions.

3.2 Exact recovery

In this section, we establish sufficient conditions for exact recovery of sparse signals from noise-

free measurements by solving a minimization problem with penalty function G:

min
w
G(w) subject to Aw = b. (3.7)

Our objective is to determine sufficient conditions in the case whereG is a penalty function induced

by a shrinkage mapping; however, we will establish conditions for a somewhat more general class

of penalty functions G. We shall assume that the measurement matrix A ∈ Rm×n has the Unique

Representation Property (URP) [67], i.e., any m columns of A are linearly independent. This

implies that any vector in ker(A) has at least m+ 1 nonzero entries. The URP can be regarded as a

generic property of matrices; for example, a matrix whose entries are independently and identically

distributed samples drawn from any absolutely continuous probability distribution will have URP

with probability 1.

Remark 3.2.1. The URP implies that the m rows of A are linearly independent. Thus an orthonor-

mal basis for the span of the rows can be formulated as linear combinations of the rows of A. So if

we multiply A by a product of elementary matrices, E, corresponding to the necessary elementary

row operations, the resulting product will have orthonormal rows. Since elementary matrices are

invertible, Aw = b is equivalent to EAw = Eb. Also, since each elementary matrix is invertible,
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AT being full rank for |T | = m implies EAT is full rank as well, and so A satisfying the URP

implies EA satisfies the URP. Thus we can always transform the problem so that the rows of A are

orthonormal, i.e., AAT = I , and so without loss of generality, we assume that the A given satisfies

AAT = I .

We shall also assume that G(w) =
∑

i g(wi) with

I) g(0) = 0, and g even on R; and

II) g is continuous on R, and either strictly increasing and strictly concave on R, or strictly

increasing and strictly concave on (0, γ] and constant on [γ,∞) for some γ > 0.

These conditions imply that g is nondecreasing and concave on [0,∞), is everywhere nonnegative,

and satisfies the triangle inequality.

Lemma 3.2.2. The penalty functionsGfirm andGp (for−∞ < p < 1) satisfy the above conditions.

Proof. It is clear from the expression (3.5) for gfirm that Gfirm satisfies the conditions with γ = µ.

For Gp, by Thm. 3.1.4 we get condition I, and that gp is differentiable on (0,∞) with g′p > 0.

It suffices to prove that gp is twice differentiable on (0,∞) with g′′p < 0; it will be no more difficult

to show that gp ∈ C∞(0,∞). We need some details from the construction of gp, from [31]. We

have

gp(w) = (f ∗p (w)− w2/2)/λ, (3.8)

where f ′p = sp and f ∗p is the Legendre-Fenchel transform of fp. Since sp is continuous and nonde-

creasing, fp is C1 and convex. Then by [103, Prop. 11.3], we have that

x ∈ ∂f ∗p (w)⇔ w = f ′p(x) = sp(x). (3.9)

Fix w > 0, and let x be such that w = sp(x). From (3.1), we must have x > λ, so w =

x− λ2−pxp−1. If we define F (x,w) = x− λ2−pxp−1 − w, we have that F (·, w) is C∞ on (0,∞),

and ∂kF
∂xk

(x,w) 6= 0 for x ∈ (λ,∞). Thus by the implicit function theorem, f ∗p is C∞ on (0,∞),

hence gp is as well by (3.8).
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Returning to w = x− λ2−pxp−1, by (3.8), (3.9), and the differentiability of f ∗p , we have

g′p(w) = ((f ∗p )′(w)− w)/λ = (λ/x)1−p. (3.10)

Thus g′p(w) is decreasing in x on (λ,∞), and since x is a strictly increasing function of w on

(0,∞), g′′p(w) < 0 on (0,∞).

Lemma 3.2.3. Assume A ∈ Rm×n satisfies the URP and G satisfies (I,II) above. Then the global

minimizer of (3.7) has m or fewer nonzero entries.

Proof. Consider w such that Aw = b and ‖w‖0 > m. Define the matrix M to have the columns

−wiei. The set of vectorsMv with supp(v) ⊂ supp(w) span a subspace of dimension greater than

m. Since dim(ker(A)) = n−m, we can choose a v with Mv ∈ ker(A) and ‖v‖∞ = 1.

For all t ∈ R, w + tMv is feasible. Define T = {i : vi 6= 0 and |wi| < γ} (taking γ = +∞ if

the first case of assumption II holds). First suppose T 6= ∅. Then by assumption II, the function t 7→

G(w + tMv) is strictly concave on an interval [−δ, δ], with δ > 0 chosen small enough that every

(w+tMv)i has the same sign aswi for all |t| ≤ δ. ThenG(w) > min{G(w−δMv), G(w+δMv)},

and w is not a global minimizer.

Otherwise, we have vi 6= 0 ⇒ |wi| ≥ γ. Let t0 = sup{t : ∀imin{|(w − tMv)i|, |(w +

tMv)i|} ≥ γ}. Then taking t1 = t0 + δ with δ > 0 again small enough that every (w ± t1Mv)i

has the same sign as wi, then one of |(w± t1Mv)i| is less than γ for at least one i, giving a smaller

value of g. Since all other components keep g constant, we have one ofG(w±t1Mv) being smaller

than G(w).

Lemma 3.2.4. Assume A ∈ Rm×n satisfies the URP. Then the magnitudes of nonzero entries of

vectors y satisfying Aw = b with m or fewer nonzero entries are uniformly bounded below by

some positive constant α and uniformly above by some positive constant β.

Proof. By the URP, every m columns of A can admit no more than one solution. Thus there are

no more than
(
n
m

)
vectors w satisfying Aw = b with m or fewer nonzero entries. Thus the set
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of nonzero entries of these vectors is finite and bounded below and above by α, β respectively.

Neither constant depends on G in any way.

Note that Lemma 3.2.3 and Lemma 3.2.4 imply that the global minimizer of the equality-

constrained G minimization problem has nonzero entries with magnitude bounded below by α and

above by β.

Next we introduce the G Nullspace Property, a generalization of the `1 Nullspace Property

introduced in [36] for norms and implicitly in [73] for penalty functions belonging to a particular

class. We denote {1, 2, . . . , n} = [n], and T c denotes the complement of T in [n].

Definition 3.2.5. The G Nullspace Property (or G NSP) of order k for the matrix A is satisfied

when for all h ∈ ker(A)\{0} and T ⊂ [n] with |T | ≤ k , one has G(hT ) < G(hT c).

Proposition 3.2.6. For a penalty function G satisfying the triangle inequality, the G NSP implies

exact recovery.

Proof. We simply observe that the proof of [73] works assuming only that the penalty function

satisfies the triangle inequality.

Definition 3.2.7. Let the matrix A ∈ Rm×n and the vector b ∈ Rm be given. Let x be the sparsest

solution toAw = b, k = ‖x‖0 with 2k ≤ m, and T = supp(x). We say the G Restricted Nullspace

Property (or G RNSP) of order k is satisfied if whenever w satisfies Aw = b and ‖w‖0 ≤ m, then

for h = x− w, we have either h = 0 or G(hT ) < G(hT c).

Note that theGNSP of order k forA implies theGRNSP of order k forA. However, examining

the proof of Proposition 3.2.6 from [73] and applying Lemma 3.2.3 shows that in fact G RNSP

suffices for exact recovery. We assume 2k ≤ m to guarantee that the sparsest solution of Aw = b

is unique, as URP ensures that a second solution must have more than m−k nonzero components.

Proposition 3.2.8. For penalty functionG satisfying the triangle inequality, G RNSP implies exact

recovery.
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Theorem 3.2.9 (G exact recovery). Assume A ∈ Rm×n satisfies the URP and G satisfies (I,II)

above. For given b, let x∗ be the global minimizer of (3.7) and x the sparsest feasible vector.

Let k = ‖x‖0, and define α, β to be the lower and upper bound of magnitudes of nonzero entries

of feasible vectors with m or fewer nonzero components as in Lemma 3.2.4. If 2k ≤ m and

kg(2β) < (m+ 1− k)g(α) then x∗ = x.

Proof. Let h = x∗ − x. Since x is supported on T , hT c = x∗T c , and so for all t ∈ T c, |h(t)| is

either zero or at least α. Also, since h ∈ ker(A), if h 6= 0, then ‖hT c‖0 ≥ m + 1 − k (otherwise

we would have ‖h‖0 ≤ m, violating URP), so that G(hT c) ≥ (m+ 1− k)g(α). Also,

G(hT ) ≤
∑
i∈T

g(|x∗i |+ |xi|) ≤ kg(2β) < (m+ 1− k)g(α), (3.11)

by assumption. Thus either h = 0 or G(hT ) < G(hT c), so G RNSP is satisfied.

Corollary 3.2.1 (Gfirm exact recovery). Assume A ∈ Rm×n satisfies URP and G = Gfirm, the

penalty corresponding to firm thresholding. For given b, let x∗ be the global minimizer of (3.7)

and x the sparsest feasible vector. Let k = ‖x‖0. If 2k ≤ m and

µ < min

{
α
m+ 1− k

k

(
1 +

√
1− k

m+ 1− k

)
, 2β

}
, (3.12)

then x∗ = x.

Proof. Since A satisfies URP and G satisfies (I,II), we may apply Theorem 3.2.9. The inequality

conditions from Theorem 3.2.9 are 2k ≤ m and kg(2β) < (m+ 1− k)g(α). We know α < 2β. If

we have µ ≤ α, then the inequality becomes kµ/2 < (m+ 1−k)µ/2 which follows automatically

from 2k ≤ m. And so we satisfy the hypotheses of Theorem 3.2.9, and thus have exact recovery.
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If instead we have α < µ < 2β, we can evaluate the desired inequality as follows:

kµ

2
≤ (m+ 1− k)(α− α2/2µ), (3.13)

µ2 − 2
m+ 1− k

k
αµ+

m+ 1− k
k

α2 < 0, (3.14)∣∣∣∣µ− αm+ 1− k
k

∣∣∣∣ < α
m+ 1− k

k

√
1− k

m+ 1− k
, (3.15)

α
m+ 1− k

k

(
1−

√
1− k

m+ 1− k

)
< µ < α

m+ 1− k
k

(
1 +

√
1− k

m+ 1− k

)
. (3.16)

The left bound is always looser than the assumed α < µ (for 2k < m + 1), so the condition

µ < αm+1−k
k

(
1 +

√
1− k

m+1−k

)
gives the desired inequality and guarantees exact recovery.

Corollary 3.2.2 (Gp exact recovery). Assume A ∈ Rm×n satisfies the URP and G = Gp, the

p−shrinkage penalty. For given b, let x∗ be the global minimizer of (3.7) and x the sparsest

feasible vector. Let k = ‖x‖0. If 2k ≤ m then there exist λ > 0 and 0 < p < 1 sufficiently small

that x∗ = x. For any p < 0 there also exists λ > 0 sufficiently small that x∗ = x.

Proof. Since A satisfies the URP and Gp satisfies (I,II), we may apply Theorem 3.2.9. The in-

equality conditions from Theorem 3.2.9 are 2k ≤ m and kg(2β) < (m+ 1− k)g(α).

Fix w > 0. As in the proof of Lemma 3.2.2, we have

gp(w) = (f ∗p (w)− w2/2)/λ, (3.17)

where f ′p = sp and f ∗p is the Legendre-Fenchel transform of fp and is smooth at w. Let x =

(f ∗p )′(w), noting that while w is fixed, x depends on λ and p. By (3.9), we have sp(x) = w, so that

x− w = λ2−pxp−1. (3.18)

Furthermore, by [103, Prop. 11.3], we have

x = arg min
x

(
xw − fp(x)

)
, (3.19)
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so that by definition of the Legendre-Fenchel transform,

f ∗p (w) = xw − fp(x). (3.20)

Combining (3.17), (3.18), and (3.20), we obtain

gp(w) = (xw − fp(x)− w2/2)/λ

=
(
xw − x2/2 + λ2−pxp/p− λ2(1/p− 1/2)− w2/2

)
/λ (3.21)

= λ1−pxp/p− (x− w)2/(2λ)− λ(1/p− 1/2)

=
λ

p
(x/λ)p − λ

2
(x/λ)2p−2 − λ(1/p− 1/2). (3.22)

(In (3.21), the expression for fp(x) is obtained by antidifferentiating sp with fp(0) = 0.)

Case 0 < p < 1 We want to show that for sufficiently small 0 < λ and 0 < p < 1, g(2β)/g(α) <

(m+ 1− k)/k. By hypothesis, (m+ 1− k)/k > 1. So it suffices to show for any fixed α, β with

0 < α < 2β, that g(2β)/g(α)→ 1 as (p, λ)→ (0+, 0+).

By (3.18), x > w for any λ and p, so limλ→0+(x/λ) =∞. Then for p < 1,

lim
λ→0+

gp(w)− λ

p

[
(x/λ)p − 1

]
= 0. (3.23)

Now

λ

p

[
(x/λ)p − 1

]
=
λ

p

[
exp
(
p log(x/λ)

)
− 1
]

=
λ

p

[
p log(x/λ) + o

(
p log(x/λ)

)]
, (3.24)

where the little-o is as p log(x/λ) → 0+, which we wish to establish as p, λ → 0+. Since x > w,

we have that

p log(x/λ) = p log(w/λ+ (x/λ)p−1) < p log(w/λ+ (w/λ)p−1)→ 0+, (3.25)
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provided p→ 0+ fast enough, such as if p ∼ λq for any q > 0. This yields

lim inf
(λ,p)→(0+,0+)

gp(2β)

gp(α)
= lim inf

(λ,p)→(0+,0+)

λ log(x(2β)/λ)

λ log(x(α)/λ)

≤ lim inf
(λ,p)→(0+,0+)

log(2β/λ+ (2β/λ)p−1)

log(α/λ)
= lim inf

λ→0+

log(2β)− log(λ)

log(α)− log(λ)
= 1. (3.26)

Therefore, there exist λ > 0, p > 0 sufficiently small that kg(2β) < (m+ 1− k)g(α).

Case p < 0 Since gp is strictly increasing on [0,∞), we take w → ∞ to determine an upper

bound. Note that x(w) > w implies that x(w) → ∞ as w → ∞. Then from (3.22), since now

p < 0, we obtain

lim
w→∞

gp(w) = λ(1/2− 1/p). (3.27)

Thus for p < 0 and all w, λ, we have gp(w) ≤ λ(1/2−1/p). Applying this with w = 2β and using

(3.22),

lim inf
λ→0+

gp(2β)

gp(α)
≤ lim inf

λ→0+

λ(1/2− 1/p)

λ
[

1
p
(x(α)/λ)p − 1

2
(x(α)/λ)2p−2 − (1/p− 1/2)

] . (3.28)

As before, (x/λ)→∞ as λ→ 0+. Then

lim inf
λ→0+

gp(2β)

gp(α)
≤ lim

λ→0+

λ(1/2− 1/p)

λ(1/2− 1/p)
= 1. (3.29)

Thus for every p < 0 there exists λ > 0 sufficiently small that kg(2β) < (m+ 1− k)g(α).

3.3 Stability

Next we consider the case of noisy measurements of an approximately sparse signal. Let x be

the original signal with ‖Ax − b‖2 ≤ ε whose k-sparse approximation is supported on T , i.e.

41



xT = arg minwG(x− w) subject to ‖w‖0 = k. We wish to bound G(x∗ − x) where

x∗ = arg min
w

G(w) subject to ‖Aw − b‖2 ≤ ε. (3.30)

We shall bound the recovery error by the sum of a term dependent on the noise level and a term

dependent on the sparse approximation error.

We shall first need two results: bounds on the magnitudes of nonzero entries of local minima

of (3.30) and an extension of those bounds to the error vector projected onto the null space of A.

Recall that ‖w‖−∞ := mini |wi|.

Lemma 3.3.1. Assume A ∈ Rm×n satisfies the URP and G satisfies (I,II) above. Let b ∈ Rm

be given. For S ⊂ [n] with |S| = m define αS = ‖A−1
S b‖−∞ and βS = ‖A−1

S b‖∞. If ε <

minS(αS/‖A−1
S ‖), then the magnitudes of components of feasible vectors of (3.30) are bounded

below by α := minS(αS − ‖A−1
S ‖ε) > 0 and bounded above by β := maxS(βS + ‖A−1

S ‖ε).

The assumption that αS > 0 for all S has a similar character to the URP, in that it is true with

probability 1 for random data drawn from an absolutely continuous distribution.

Proof. First, note that the error-bounded problem (3.30) is equivalent to taking the G minimizer

from a set of equality-constrained G minimizers (with different equality constraints): For all feasi-

ble w, we must haveAw = b+η for some ‖η‖2 ≤ ε. Thus by Lemma 3.2.3 the minimizer of (3.30)

has m or fewer nonzero entries. By the URP, any m columns S of A give exactly one solution to

ASw = b+ η. So we have

‖w‖−∞ = ‖A−1
S (b+ η)‖−∞ ≥ min

i
(|A−1

S b| − |A−1
S η|)i

≥ ‖A−1
S b‖−∞ − ‖A−1

S η‖∞ ≥ αS − ‖A−1
S η‖2 ≥ αS − ‖A−1

S ‖ε (3.31)

≥ α,
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and

‖w‖∞ = ‖A−1
S (b+ η)‖∞ ≤ ‖A−1

S b‖∞ + ‖A−1
S η‖∞

≤ βS + ‖A−1
S η‖2 ≤ βS + ‖A−1

S ‖ε (3.32)

≤ β.

Lemma 3.3.2. Assume G satisfies (I,II). Let x∗ be the global minimizer of (3.30), x the original

signal with ‖Ax − b‖ ≤ ε, and let T be the support of the k-sparse approximation of x. Let

αS , α, and β be as in Lemma 3.3.1. Define α′ := α − ‖xT c‖∞ − 2ε and β′ := β + ε. If A

satisfies the URP, AAT = I , minS αS > ‖xT c‖∞ (requiring that x be nearly k sparse), and

ε < minS{(αS − ‖xT c‖∞)/(2 + ‖A−1
S ‖)} , then the orthogonal projection w of h = x∗ − x onto

the nullspace of A satisfies

α′ ≤ ‖wT c‖−∞ and ‖wT c‖∞ ≤ 2β′. (3.33)

Proof. First, consider the bound ε < minS{(αS−‖xT c‖∞)/(2+‖A−1
S ‖)}. Note that this is stronger

than the bound on ε from Lemma 3.3.1, and it implies 2ε + ‖xT c‖∞ < α. We see this from the

following inequalities:

α = min
S

{
αS − ε‖A−1

S ‖
}

> min
S

{
αS − (αS − ‖xT c‖∞)‖A−1

S ‖/(2 + ‖A−1
S ‖)

}
= min

S

{
2αS

2 + ‖A−1
S ‖

+
‖A−1

S ‖‖xT c‖∞
2 + ‖A−1

S ‖

}
= min

S

{
2αS − 2‖xT c‖∞

2 + ‖A−1
S ‖

+
(2 + ‖A−1

S ‖)‖xT c‖∞
2 + ‖A−1

S ‖

}
> 2ε+ ‖xT c‖∞. (3.34)

We shall use this below to guarantee α′ > 0.
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Note that the hypotheses of Lemma 3.3.1 are satisfied, giving ‖x∗‖−∞ ≥ α and ‖x∗‖∞ ≤ β,

‖x‖∞ ≤ β. Since AAT = I , the orthogonal projection of h onto the nullspace of A is (I−ATA)h.

The desired lower bound comes from the following sequence of inequalities, using the given lower

bound on nonzero elements of x∗, the feasibility of x∗ and x, the fact ‖ATA‖ = 1, and the assumed

bound on ε:

‖[(I − ATA)h]T c‖−∞ ≥ ‖hT c‖−∞ − ‖ATAh‖∞

≥ ‖x∗T c − xT c‖−∞ − ‖ATAh‖2

≥ ‖x∗T c‖−∞ − ‖xT c‖∞ − ‖h‖2

≥ α− ‖xT c‖∞ − 2ε = α′ > 0.

The upper bound comes from a completely analogous argument:

‖(I − ATA)h‖∞ ≤ ‖h‖∞ + ‖ATAh‖∞

≤ ‖x∗ − x‖∞ + ‖ATAh‖2

≤ 2β + 2ε = 2β′.

Definition 3.3.3. The G Noisy Nullspace Property (or G NNSP) of order k for the matrix A is

satisfied when for all h ∈ Rn and S ⊂ [n] with |S| ≤ k , there are constants 0 ≤ τ < 1 and D ≥ 0

such that

G(hS) ≤ τG(hSc) +D‖Ah‖2. (3.35)

Proposition 3.3.4. Assume G satisfies the triangle inequality. For given A, b, let x∗ be the global

minimizer of (3.30) and let x be the original signal with ‖Ax − b‖2 ≤ ε whose k-sparse approx-

imation is supported on T . Then the G NNSP of order k for A implies the following stability
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bound:

G(x∗ − x) ≤ C1ε+ C2G(xT c), (3.36)

with C1 = 4D/(1− τ) and C2 = 2(1 + τ)/(1− τ), where τ and D satisfy (3.35).

Proof. Define the error vector h = x∗ − x. Since x∗ and x are both feasible and ‖A‖ = 1,

‖Ah‖2 ≤ 2ε. Then by the triangle inequality of G,

G(xT )−G(−hT ) ≤ G(xT + hT ). (3.37)

Since G decouples across components,

G(xT + hT ) +G(hT c) = G(xT + hT + hT c) = G(x∗ − xT c). (3.38)

Then

G(hT c) ≤ G(x∗ − xT c) +G(hT )−G(xT )

≤ G(x∗) +G(xT c) +G(hT )−G(xT )

≤ G(x) +G(xT c) +G(hT )−G(xT )

= 2G(xT c) +G(hT ). (3.39)

Now apply G NNSP to h on T :

G(hT ) ≤ τG(hT c) +D‖Ah‖2, (3.40)

so that

G(hT ) ≤ 2

1− τ
(
Dε+ τG(xT c)

)
. (3.41)
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Using (3.39), we obtain

G(hT c) ≤ 2G(xT c) +G(hT ) ≤ 2Dε

1− τ
+

2

1− τ
G(xT c). (3.42)

Now we add (3.41) and (3.42) to get the desired inequality:

G(h) = G(hT ) +G(hT c)

≤ 2

1− τ
(
Dε+ τG(xT c)

)
+

2D

1− τ
ε+

2

1− τ
G(xT c)

=
4D

1− τ
ε+

2(1 + τ)

1− τ
G(xT c). (3.43)

Theorem 3.3.5 (G stability). Assume A ∈ Rm×n satisfies the URP, AAT = I , G satisfies (I,II)

above, and G(v) ≤ C
√
n‖v‖2 for some constant C > 0. For given b, let x be the original signal

with ‖Ax− b‖2 ≤ ε, let T be the support of its k-sparse approximation, and suppose minS{αS} >

‖xT c‖∞. Let x∗ be the global minimizer of (3.30), where ε < minS{(αS−‖xT c‖∞)/(2+‖A−1
S ‖)}

(with αS defined as in Lemma 3.3.1 ). Define α′, β′ as in Lemma 3.3.2. Assume that 2k < n and

kg(2β′) < (n− k)g(α′). Then

G(x∗ − x) ≤ 2

(
1− kg(2β′)

(n− k)g(α′)

)−1[
2C
√
nε+

(
1 +

kg(2β′)

(n− k)g(α′)

)
G(xT c)

]
. (3.44)

Proof. We shall show that the given hypotheses allow for the same application of the G NNSP as

in Proposition 3.3.4, and in a similar way, arrive at stability. Define h = x∗ − x. Since G satisfies

the triangle inequality, we have G(hTC ) ≤ G(hT ) + 2G(xTC ), as in the proof of Proposition 3.3.4.

Next we write h as the sum of its orthogonal projections onto ker(A) and ker(A)⊥, which

we denote by w and v respectively. First, suppose that there exists some 0 ≤ τ < 1 such that
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G(wT ) ≤ τG(wT c) (which we will prove below). Then we have:

G(hT ) ≤ G(wT ) +G(vT )

≤ τG(wT c) +G(vT ) = τG(wT c + vT c − vT c) +G(vT )

≤ τG(hT c) +G(vT c) +G(vT )

= τG(hT c) +G(v)

≤ τG(hTC ) + C
√
n‖v‖2. (3.45)

Since AAT = I and v ∈ ker(A)⊥, it follows that v = ATAv. Hence ‖v‖2
2 = ‖Av‖2

2. Then from

(3.45) we obtain

G(hT ) ≤ τG(hT c) + C
√
n‖Av‖2. (3.46)

And so we have the application of the G NNSP to h on T with constants τ and D = C
√
n. From

here the stability inequality (3.44) follows as in Proposition 3.3.4.

Now we go back to prove G(wT ) ≤ τG(wT c). We shall use the lower bound ‖wT c‖−∞ ≥ α′

and the upper bound ‖wT‖∞ ≤ β′ from Lemma 3.3.2. We overestimate G(wT ) and underestimate

G(wT c) as follows:

G(wT ) ≤ kg(2β′), G(wT c) ≥ (n− k)g(α′). (3.47)

So to get G(wT ) ≤ τG(wT c), it suffices to have kg(2β′) ≤ τ(n − k)g(α′), and thus kg(2β′) <

(n− k)g(α′) guarantees some 0 ≤ τ < 1. The condition k < n− k gives (n− k)/k > 1 and thus

makes the inequality possible for α′ < 2β′.

Plugging in τ = kg(2β′)
(n−k)g(α′)

to the stability inequality we get from the previous argument gives

G(h) ≤ 2

(
1− kg(2β′)

(n− k)g(α′)

)−1[
2C
√
nε+

(
1 +

kg(2β′)

(n− k)g(α′)

)
G(xT c)

]
. (3.48)
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Corollary 3.3.1 (Gfirm stability). Assume A ∈ Rm×n satisfies the URP, AAT = I , and G = Gfirm,

the penalty corresponding to firm thresholding. For given b, let x be the original signal with

‖Ax − b‖2 ≤ ε whose k-sparse approximation is supported on T , with minS{αS} > ‖xT c‖∞,

and x∗ be the global minimizer of (3.30), where ε < minS{(αS − ‖xT c‖∞)/(2 + ‖A−1
S ‖)}

(with αS defined as in Lemma 3.3.1). Define α′, β′ as in Lemma 3.3.2. If 2k < n and µ <

min{α′ n−k
k

(
1 +

√
1− k

n−k

)
, 2β′} then x∗ is stable, satisfying the following inequality:

Gfirm(x∗ − x) ≤ 2

(
1− kgfirm(2β′)

(n− k)gfirm(α′)

)−1[
2C
√
nε+

(
1 +

kgfirm(2β′)

(n− k)gfirm(α′)

)
Gfirm(xT c)

]
.

(3.49)

The proof of Corollary 3.3.1 is an application of Theorem 3.3.5 combined with the correspond-

ing computations from the proof of Corollary 3.2.1.

Corollary 3.3.2 (Gp stability). Assume A ∈ Rm×n satisfies the URP, AAT = I , and G = Gp, the

penalty corresponding p-shrinkage. For given b, let x be the original signal with ‖Ax − b‖2 ≤ ε

whose k-sparse approximation is supported on T , with minS{αS} > ‖xT c‖∞, and x∗ be the

global minimizer of (3.30), where ε < minS{(αS −‖xT c‖∞)/(2 + ‖A−1
S ‖)} (with αS defined as in

Lemma 3.3.1 ). If 2k < n then there exist 0 < p < 1, 0 < λ sufficiently small so that x∗ is stable,

satisfying the following inequality.

Gp(x
∗ − x) ≤ 2

(
1− kgp(2β

′)

(n− k)gp(α′)

)−1[
2C
√
nε+

(
1 +

kgp(2β
′)

(n− k)gp(α′)

)
G(xT c)

]
. (3.50)

Also, for any p < 0 there exists λ > 0 sufficiently small such that x∗ is stable, and the above

inequality holds.

The proof of Corollary 3.3.2 is an application of Theorem 3.3.5 combined with the correspond-

ing computations from the proof of Corollary 3.2.2.
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3.4 Convergence of iterative p-shrinkage

Now we consider an algorithm that employs generalized shrinkage. Consider the following opti-

mization problem:

min
x
Fp(x) := λGp(x) + 1

2
‖Ax− b‖2

2, (3.51)

where ‖A‖ < 1. Applying forward-backward splitting to this problem gives iterative p-shrinkage

(IPS):

xn+1 = Sp(x
n − AT (Axn − b)). (3.52)

This generalizes the iterative soft thresholding algorithm (ISTA) [44], which is the case p = 1.

ISTA was shown in [44] to be globally convergent to a global minimizer (necessarily, since F1 is

convex). In this section, we prove global convergence of IPS for general p < 1, though only to a

stationary point of Fp. Portions of the proof appeared in [132], though statements there concerning

convergence to a local minimizer are incorrect.

Recall from Lemma 3.2.2 that gp is C∞ on (0,∞). A closer examination of the proof shows

that gp on [0,∞) is the restriction of a function that is C∞ on R, so gp is one-sided differentiable

to all orders at w = 0.

The following follows exactly as in the known case of p = 1 [44]:

Lemma 3.4.1 ([132]). Let λ > 0 and p ∈ R, and define {xn} by (3.52), with x0 arbitrary.

1. F (xn+1) ≤ F (xn) for all n, and F (xn+1) < F (xn) unless xn is a fixed point of the algo-

rithm.

2. ‖xn+1 − xn‖2 → 0.

Lemma 3.4.2. Let λ > 0 and p ∈ R. The fixed points of (3.52) are precisely the stationary points

of Fp.

Proof. The iteration (3.52) can be seen as minimizing the surrogate functional

λGp(x) + 1
2
‖Ax− b‖2

2 + 1
2
‖x− w‖2

2 − 1
2
‖Ax− Aw‖2

2, (3.53)
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with fixed w = xn, by expanding the quadratic terms and rearranging to express the minimizer

in terms of the proximal mapping of Gp. Therefore the first-order optimality condition of this

functional is satisfied at x = xn+1. Also, the first-order optimality condition of this functional at

x = xn is the same as the first-order optimality condition of Fp at x = xn. Hence xn+1 = xn if

and only if the first-order optimality condition of Fp at x = xn is satisfied.

The lemma shows why it is not possible to show that IPS converges to a local minimizer: if

the algorithm happens to be initialized with a stationary point that is not a local minimizer (i.e.,

a saddle point or local maximizer), then the initializer is a fixed point of the algorithm, so the

algorithm cannot converge to a local minimizer in such a case.

Lemma 3.4.3. Fix λ > 0, p ∈ (−∞, 1). We have g′′′p > 0 on (0,∞), g′′′p < 0 on (−∞, 0),

g′′′p (0+) > 0, and g′′′p (0−) < 0.

Proof. Since gp is even, it suffices to consider w > 0. Above we had that x = x(w) = (f ∗p )′(w)

satisfies x− λ2−pxp−1 = w. Differentiating with respect to w, we have that

x′ − λ2−p(p− 1)xp−2x′ = 1, (3.54)

so

x′ =
(
1− λ2−p(p− 1)xp−2

)−1
. (3.55)

Since p < 1, (f ∗p )′′(w) = x′(w) > 0 for all w > 0.

Differentiating (3.54), we get

x′′ − λ2−p(p− 1)
[
(p− 2)xp−3(x′)2 + xp−2x′′

]
= 0, (3.56)

or

x′′
(
1− λ2−p(p− 1)xp−2

)
= λ2−p(p− 1)(p− 2)xp−3(x′)2, (3.57)

implying that x′′ has the same sign as x. Since x(w) has the same sign as w, we have that (f ∗p )′′′(w)

has the same sign as w for w 6= 0.
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Differentiating the relation (3.8) defining gp, we obtain w+λg′p(w) = (f ∗p )′(w), 1 +λg′′p(w) =

(f ∗p )′′(w), and λg′′′p (w) = (f ∗p )′′′(w). Thus g′′′p (w) has the same sign as w for w 6= 0 as well. Also,

λg′′′p (0+) = (f ∗p )′′′(0+) = limw→0+ x′′(w). Since limw→0+ x(w) = λ, we obtain from (3.55) and

(3.57) that (f ∗p )′′′(0+) = 1−p
(2−p)2λ

−1 > 0. Thus g′′′(0+) > 0.

Lemma 3.4.4. Let p ≥ 0. Then {xn} is bounded.

Proof. Since {Fp(xn)} decreases monotonically, it suffices to show that Fp is coercive, which we

establish be showing coercivity of gp. By (3.18), if w → ∞, then x → ∞. For p > 0, that

gp(w)→∞ follows from (3.22). The p = 0 case is similar, but f0 has a different form:

g0(w) = (xw − f0(x)− w2/2)/λ

=
(
xw − x2/2 + λ2 log x− λ2(log λ− 1/2)− w2/2

)
/λ

= λ log x− (x− w)2/(2λ)− λ(log λ− 1/2)

= λ log x− λ
2
(x/λ)−2 − λ(log λ− 1/2). (3.58)

From this the coercivity of g0 follows.

Lemma 3.4.5. Let p < 0, and assume λ2 > p‖b‖2
2/(p− 2). Let x0 = 0. Then {xn} is bounded.

Proof. From Lemma 3.4.1, we know that Fp(xn) decreases (strictly except at a fixed point, in

which case we are done). Then for n ≥ 1,

Fp(x
n) < Fp(x

0) = ‖b‖2
2/2, (3.59)

so

Gp(x
n) ≤ Fp(x

n)/λ < ‖b‖2
2/(2λ). (3.60)

By (3.27), gp(w) < (1/2− 1/p)λ. Combining this bound with (3.60), we obtain for each j,

gp(x
n
j ) ≤ Gp(x

n) < ‖b‖2
2/(2λ) < (1/2− 1/p)λ. (3.61)
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Letting t be the unique positive number satisfying g(t) = ‖b‖2
2/(2λ), we obtain ‖xn‖∞ < t

independently of n.

Now we can establish convergence of our algorithm.

Theorem 3.4.6. Let λ > 0, p ∈ (−∞, 1). Let the sequence {xn} be defined by (3.52), with x0

arbitrary for p ≥ 0, and x0 = 0 for p < 0 in which case we further assume λ2 > p‖b‖2
2/(p − 2).

Then {xn} converges to a stationary point of F .

Proof. We have that Fp(xn+1) < Fp(x
n) unless xn is a fixed point, F is continuous, and the

sequence {xn} is bounded. Then by [95, Thm. 3.1], we have that either {xn} converges or its

limit points form a continuum. (A continuum is a compact, connected set; here we also exclude

the degenerate case of a singleton.) Since we already know that any limit point of {xn} will be a

stationary point of Fp, we complete the proof by showing that the stationary points of Fp cannot

form a continuum.

Let E be the set of stationary points of Fp, and suppose E is a continuum. Fix x̄ ∈ E. For any

ε > 0, it cannot be that N (x̄; ε) ∩ E = {x̄}, otherwise {x̄} would be both open and closed in E,

contrary to E being connected. Thus there is a sequence of stationary points x̄ + vn with vn 6= 0,

vn → 0.

Since {vn/‖vn‖} is a sequence of unit vectors, it cannot converge to zero. Then we can fix j

such that {vnj /‖vn‖} does not tend to zero, though of course vnj → 0. First suppose that x̄j 6= 0.

By considering a tail of vnj , we can assume that x̄j + vnj 6= 0 for all n. Then gp is differentiable at

x̄j and x̄j + vnj , and since x̄ and x̄+ vn are fixed points,

λ2−pg′p(x̄j + vnj ) +
[
AT (A(x̄+ vn)− b)

]
j

= 0, (3.62)

and

λ2−pg′p(x̄j) +
[
AT (Ax̄− b)

]
j

= 0. (3.63)

Define ϕ(x) = λg′p(xj) +
[
AT (Ax − b)

]
j
. All derivatives of ϕ exist at every x 6= 0. Letting
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(ai) denote the columns of A, if i 6= j, we have ∂ϕ/∂xi(x̄) = 〈ai, aj〉, while ∂ϕ/∂xj(x̄) =

λg′′(x̄j) + ‖aj‖2. Also, ϕ(x̄) = 0 and each ϕ(x̄+ vn) = 0. By differentiability of ϕ, we have

ϕ(x̄+ vn)− ϕ(x̄)−∇ϕ(x̄) · vn

‖vn‖
→ 0. (3.64)

Since the first two terms of (3.64) are zero,∇ϕ(x̄) · vn = o(‖vn‖) as well. By continuity of∇ϕ at

x̄, it is straightforward to show that∇ϕ(x̄+ vn) · vn = o(‖vn‖) also.

Now we consider second derivatives. ∂2ϕ/∂xi∂xk(x̄) = 0, unless i = k = j, while ∂2ϕ/∂x2
j(x̄) =

λg′′′p (x̄j). Now by the differentiability of∇ϕ,

‖∇ϕ(x̄+ vn)−∇ϕ(x̄)−∇2ϕ(x̄) vn‖ = o(‖vn‖), (3.65)

so

∇ϕ(x̄+ vn) · vn −∇ϕ(x̄) · vn − vn · ∇2ϕ(x̄) vn = o(‖vn‖2). (3.66)

But from the above we have that the first two terms are o(‖vn‖2), so vn · ∇2ϕ(x̄) vn = o(‖vn‖2)

as well. But this is λg′′′p (x̄j)(v
n
j )2; since (vnj )2/‖vn‖2 does not tend to zero by choice of j, it must

be that g′′′p (x̄j) = 0, a contradiction.

Thus we must have x̄j = 0. By choice of j, infinitely many vnj 6= 0, so by passing to a

subsequence we may assume that either all vnj > 0 or vnj < 0. By the one-sided differentiability

of gp, we can then repeat the above argument using a smooth extension of gp to R. Since neither

g′′′p (0+) nor g′′′p (0−) are zero, we will obtain the same contradiction. Therefore E cannot be a

continuum, and the sequence {xn} defined by (3.52) is convergent to a stationary point of Fp.

3.5 Conclusion

We have shown that for given signals with reasonable sparsity assumptions and a broad class of

measurement matrices, the families of penalties corresponding to p-shrinkage and firm threshold-

ing, like the `p quasinorms, provide a candidate penalty that is able to exactly recover the given
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data with the given measurement matrix. Further we have shown that these penalties behave well

with respect to the addition of noise in the measurements, or only approximately sparse signals (as

is often the case in practical settings). Finally, we have shown that iterative p-shrinkage converges

to stationary points of the unconstrained energy. These results, together with empirical results

(see [31], and Figure 3.3), further support the idea that generalized shrinkage penalties can be an

advantageous alternative to standard `1 compressed sensing, or `p compressed sensing.

Further work could benefit from exploring in what generality these type of results hold. The

theory of generalized shrinkage allows for an endless possibility of other shrinkages and penalties

to study. Additionally, the methods of proof may apply to compressed sensing relaxations that

arise in other ways. Generally speaking, determining conditions under which convex optimization

results can be extended to handle nonconvex functionals may continue to be a fruitful area of

research. Lastly, we make no claims that the approximations made in these proofs give the tightest

results possible, so further refinement of these results may be possible and interesting.
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CHAPTER 4

Point Localization and Density Estimation from Ordinal kNN

graphs using Synchronization

4.1 Related Work

4.1.1 Multidimensional Scaling

Broadly speaking, multidimensional scaling (MDS) refers to a number of related problems and

methods. In Classical Multidimensional Scaling (CMDS) [126], one is given all Euclidean Squared-

Distance measurements ∆ij = ‖~xi − ~xj‖2
2 on a set of points X = {~xi}ni=1 and wishes to approx-

imate the points, assuming that they approximately lie in a low-dimensional space d � n. Note

that the solution for the coordinates is unique only up to rigid transformations, and that solutions

do not exist for all possible inputs ∆.

One can generalize CMDS to incorporate additional nonnegative weightsWij on each distance,

useful when some distances are missing, or most distances are noisy, but some are known. The

optimization involves minimizing an energy known in the literature as stress [84]. One approach

to minimize stress is to iteratively minimize a majorizing function of two variables. A further gen-

eralization of MDS is non-metric MDS, or Ordinal Embedding, in which the input D is assumed

to be an increasing function applied to distance measurements [112]. This may be the case if D

represents dissimilarity between points, as opposed to measured distances. The problem can again

be expressed with stress functionals and is usually solved with isotonic regression [83].
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4.1.2 Semidefinite Programming methods

Semidefinite Programming methods (SDP) have been applied frequently to MDS and related prob-

lems. Classical MDS can be stated as an SDP, with a closed form solution. Any formulation of

the problem that optimizes over the Gram matrix requires the semidefinite constraint K ∈ Sn+.

Indeed, for metric MDS, if one penalizes the squared error on the squared distance measurements,

the problem can be written as

min
X∈Rd×n

∑
ij

Wij(∆ij −∆ij(X))2

= min
K∈Sn+,X∈Rd×n

∑
ij

Wij(∆ij − (Kii − 2Kij +Kjj))
2

s.t. K = XTX.

Constraints of the form K = XTX are usually not allowed however, and are typically relaxed to

[125, 110]

 I X

XT K

 � 0.

via Schur’s Lemma. Furthermore, one encourages K to be approximately low-rank by introducing

a nuclear norm or trace penalty ‖K‖∗ = ‖σ(K)‖1 = tr(K), as a convex relaxation of a rank

constraint. Intuitively, since the `1 norm promotes sparsity, the nuclear norm should promote

few nonzero singular values. Elsewhere [135], it is argued that one should maximize tr(K), in

the spirit of the popular Maximum Variance Unfolding approach [135]. Neither minimizing nor

maximizing the trace actually imposes an exact rank constraint, which is non-convex and NP-hard.

One approach that could achieve exact rank constraints would be to use the Majorized Penalty

Approach of Gao and Sun [60] with an alternating minimization method.

A group of methods have studied the graph realization problem, where one is asked to recover
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the configuration of a cloud of points given a sparse and noisy set of pairwise distances between the

points [14, 12, 13, 11, 145]. One of the proposed approaches involves minimizing the following

energy

min
p1,...,pn∈R2

∑
(i,j)∈E

(
‖pi − pj‖2 − d2

ij

)2
. (4.1)

which unfortunately is nonconvex, but admits a convex relaxation into a SDP program. We refer

the reader to Section 2 of [41] for several variations of this approach, some of which have been

shown to be more robust to noise in the measured distances.

4.1.3 Local Ordinal Embedding

Terada and von Luxburg [124] have recently proposed an algorithm for ordinal embedding and

kNN embedding specifically, called Local Ordinal Embedding (LOE), which minimizes a soft

objective function that penalizes violated ordinal constraints.

min
X∈Rd×n

∑
i<j,k<l,(i,j,k,l)∈C

max [0, Dij(X) + δ −Dkl(X)]2. (4.2)

The energy takes into account not only the number of constraints violated, but the distance by

which the constraints are violated, penalizing large violations more heavily.

An advantage of this energy in contrast to ones that normalize by the variance of X (to guar-

antee nondegeneracy) is its relatively simple dependence on X , making the above energy easier

to minimize. Instead, the scale parameter δ guarantees nondegeneracy, and fixes the scale of the

embedding (which is indeterminable from ordinal data alone).

The authors introduce algorithms to minimizing the above energy, based on majorization mini-

mization and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) approximation of Newton’s method,

and prove that ordinal embedding is possible when only local information is given (e.g. a k nearest

neighbor graph). The algorithm recovers not only the ordinal constraints, but the density struc-

ture of the data as well. The algorithm applies to ordinal constraints associated with kNN graphs

as well more general sets of ordinal constraints. We will use this crucial property when solving
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subproblems in the method presented here, as the corresponding subgraphs are generally not kNN

graphs.

4.2 ASAP & Scale Synchronization for Ordinal Embeddings

In this section we detail the steps of the ASAP algorithm, central to the divide-and-conquer algo-

rithm we propose for the ordinal embedding problem. Note that the difference between the original

ASAP algorithm introduced in [41] and our approach lies in the decomposition method from Sec-

tion 4.2.1 and the scale synchronization step from Section 4.2.2. The ASAP approach starts by

decomposing the given graph G into overlapping subgraphs (referred to as patches), which are

then embedded via the method of choice (in our case LOE). To every local patch embedding, there

corresponds a scaling and an element of the Euclidean group Euc(d) of d-dimensional rigid trans-

formations, and our goal is to estimate the scalings and group elements that will properly align

all the patches in a globally consistent framework. The local optimal alignments between pairs

of overlapping patches yield noisy measurements for the ratios of the above unknown group ele-

ments. Finding group elements from noisy measurements of their ratios is also known as the group

synchronization problem. for which Singer [119] introduced spectral and semidefinite program-

ming (SDP) relaxations over the group SO(2) of planar rotations, which is a building block for the

ASAP algorithm [41].

Table 1 gives an overview of the steps of our approach. The inputs are an ordinal graph (we

consider kNN graphs) G = (V,E), where edge ij ∈ E and non-edge il 6∈ E indicates that

dij ≤ dil, the max patch size parameter MPS, the target dimension d, and a base-case ordinal

embedding method OrdEmbed : G 7→ X ∈ Rd×n for embedding each patch, such as LOE.

4.2.1 Break up the kNN graph into patches and embed

The first step we use in breaking the kNN graph into patches is to apply normalized spectral

clustering [129] to a symmetrized version of the graph. Normalized spectral clustering partitions

the nodes of a graph into N � n clusters by performing k-means on the embedding given by
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Algorithm 1 Modified ASAP algorithm that incorporates the scale synchronization step.
INPUT G = (V,E), |V | = n, |E| = m, MPS, d, OrdEmbed(·)
Choose Patches 1. Break G into N overlapping globally rigid patches P1, . . . , PN following the steps

in Sec. 4.2.1.
Embed Patches 2. Embed each patch Pi separately based on the ordinal constraints of the correspond-

ing subgraph of G using OrdEmbed(·).
Step 1 1. If a pair of patches (Pi, Pj) have enough nodes in common, let Λij be the median

of the ratios of distances realized in the embedding of Pi and their corresponding
distances in Pj as in (4.3); otherwise set Λij = 0.

Scale 2. Compute the eigenvector vΛ
1 corresponding to the largest eigenvalue of the sparse

matrix Λ.
3. Scale each patch Pi by vΛ

1 (i), for i = 1, . . . , n

Step 2 1. Align all pairs of patches (Pi, Pj) that have enough nodes in common.
Rotate & Re-
flect

2. Estimate their relative rotation and possibly reflection Hij ∈ O(d) ⊂ Rd×d.

3. Build a sparse dN × dN symmetric matrix H = (Hij) where entry ij is itself a
matrix in O(d).
4. DefineH = D−1H , where D is a diagonal matrix with
D1+d(i−1),1+d(i−1) = . . . = Ddi,di = deg(i), i = 1, . . . , N , where deg(i) is the node
degree of patch Pi.
5. Compute the top d eigenvectors vHi ofH satisfyingHvHi = λHi v

H
i , i = 1, . . . , d.

6. Estimate the global reflection and rotation of patch Pi by the orthogonal matrix ĥi
that is closest to H̃i in Frobenius norm, where H̃i is the submatrix corresponding to
the ith patch in the dN × d matrix formed by the top d eigenvectors [vH1 . . . vHd ].
7. Update the embedding of patch Pi by applying the above orthogonal transformation
ĥi

Step 3 Translate Solve m × n overdetermined system of linear equations (4.5) for optimal translation
in each dimension.

OUTPUT Estimated coordinates x̂1, . . . , x̂n
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the top N eigenvectors of the random-walk normalized graph Laplacian. It is shown [129] that

normalized spectral clustering minimizes a relaxation of the normalized graph cut problem. Next,

we enlarge the clusters by adding the graph-neighbors of each node, so that the resulting patches

have significant overlap, a prerequisite for the ASAP synchronization algorithm. The higher the

overlap between the patches, the more robust the pairwise group ratio estimates would be, thus

leading overall to a more accurate final global solution. Finally, we use an iterative procedure to

remove nodes from the graph relying on tools from rigidity theory. 1 If a patch is not globally rigid,

we drop a constant fraction of the added nodes. At each round we choose to drop a quarter of the

nodes with the lowest degree while retaining all nodes that were in the original cluster generated by

k-means in the corresponding patch. This uses the heuristic that low-degree nodes tend to render a

graph not globally rigid. After dropping nodes, we check the remaining patch for globally rigidity

again. We stop the pruning process when the patch contains fewer than 4/3 the number of nodes

in the original cluster, or the patch is globally rigid.

We refer the readers to Appendix B for for a brief description of global rigidity, and relevant

results in the literature, and use the remainder of this section as a brief discussion of the main

definitions. In the graph realization problem (GRP), one is given a graph G = (V,E) together

with a non-negative distance measurement dij associated with each edge, and is asked to compute

a realization of G in Rd. In other words, for any pair of adjacent nodes i and j, the distance

dij = dji is available, and the goal is to find a d-dimensional embedding p1, p2, . . . , pn ∈ Rd such

that ‖pi − pj‖ = dij, for all (i, j) ∈ E. The main difference between the GRP and the problem

we aim to address in this chapter is the input information available to the user. Unlike the GRP

problem where distances are available to the user, here we only have information of the adjacency

matrix of the graph and have the knowledge that it represents a kNN graph. Both problems aim to

recover an embedding of the initial configuration of points.

A graph is globally rigid in Rd if there is a unique (up to the trivial Euclidean isometries)

embedding of the graph Rd such that all distance constraints are preserved. It is well known that

a necessary condition for global rigidity is 3-connectivity of the graph. Since the problem at hand

1A graph is globally rigid if all realizations of it are congruent up to a rigid transformation.
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that we are trying to solve is harder (as we do not have distance information available) we require

that the patches we generate are globally rigid graphs. Even in the favorable scenario when we do

have available distance measurements (which we do not in the present problem, but only ordinal

information), any algorithm seeking an embedding of the graph would fail if the graph were to

have multiple non-congruent realizations.

4.2.2 Scale Synchronization

Before applying the original ASAP algorithm to the embedded patches, we introduce an addi-

tional step that further improves our approach and is independent of the dimension d. In the graph

realization problem which motivated ASAP, one is given a graph G = (V,E) and non-negative

distance measurement dij associated with each edge ij ∈ E(G), and is asked to compute a real-

ization of G in Rd. The distances are readily available to the user and thus the local embedding

of each patch is on the same scale as the ground truth. However, in the kNN embedding prob-

lem, distances are unknown and the scale of one patch relative to another must be approximated.

Any ordinal embedding approach has no way of relating the scaling of the local patch to the global

scale. To this end, we augment the ASAP algorithm with a step where we synchronize local scaling

information to recover an estimate for the global scaling of each patch, thus overall synchronizing

over the group of similarity transformations.

We accomplish this as follows. Given a set of patches, {Pi}Ni=1, we create a patch graph in

which two patches are connected if and only if they have at least d+ 1 nodes in common. We then

construct a matrix Λ ∈ RN×N as

Λij =


median

{
D
Pi
a,b

D
Pj
a,b

}
a6=b∈Pi∩Pj

if Pi ∼ Pj , i ≤ j,

1/Λji if Pi ∼ Pj , i > j,

0 otherwise,

(4.3)

where DPi
a,b is the distance between nodes a and b as realized in the embedded patch Pi. The matrix

Λ approximates the relative scales between patches. If all distances in all patches were recovered
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correctly up to scale, and all patches had sufficient overlap with each other, then each row of Λ

would be a scalar multiple of the others and each column of Λ would be scalar multiple of the

others, thus rendering Λ a rank-1 matrix. For the noisy case, in order to get a consistent estimate

of global scaling, we compute the best rank-1 approximation of Λ, given by its leading eigenvector

v
(Λ)
1 . We use this approximation of global scaling to rescale the embedded patches before running

ASAP. Note that the connectivity of the patch graph and the non-negativity of Λ guarantee, via the

Perron-Frobenius Theorem, that all entries of v(Λ)
1 are positive. We refer the reader to Figure 4.2,

which illustrates on an actual example the importance of this scaling synchronization step.

4.2.3 Optimal Rotation, Reflection and Translation

After applying the optimal scaling to each patch embedding, we use the original ASAP algorithm to

integrate all patches in a global framework, as illustrated in the pipeline in Figure 4.1. We estimate,

for each patch Pi, an element of the Euclidean group Euc(d) = O(d) ×Rd which, when applied

to that patch embedding Pi, aligns all patches as best as possible in a single coordinate system.

In doing so, we start by estimating, for each pair of overlapping patches Pi and Pj , their optimal

relative rotation and reflection, i.e., an element Hij of the orthogonal group O(d) that best aligns

Pj with Pi. Whenever the patch embeddings perfectly match the ground truth, Hij = OiO
−1
j . We

refer the reader to [41] for several methods on aligning pairs of patches and computing their relative

reflections and rotations Hi,j . Finding group elements {Oi}Ni=1 from noisy measurements Hij of

their ratios is also known as the group synchronization problem. Since this problem is NP-hard,

we rely on the spectral relaxation [119] of

min
O1,...,ON∈O(d)

∑
Pi∼Pj

‖OiO
−1
j −Hij‖2

F . (4.4)

for synchronization over O(2), and estimate a consistent global rotation of each patch from the

top d eigenvectors of the graph Connection Laplacian, as in Step 2.4 in Table 1. We estimate

the optimal translation of each patch by solving, in a least squares sense, d overdetermined linear
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Figure 4.1: ASAP and scale synchronization pipeline.

systems

xi − xj = x
(k)
i − x

(k)
j , (i, j) ∈ Ek, k = 1, . . . , N, (4.5)

where xi, respectively x(k)
i , denote the unknown location of node i we are solving for, respectively,

the known location of node i in the embedding of patch Pk. We refer the reader to [41] for a

description of computing the optimal translations.

4.2.4 Extension to higher dimensions

Although we present experiments here on 2D and 3D data, the ASAP approach extends naturally

to higher dimensions. In the 3D case, ASAP has been recently used as a scalable robust approach

to the molecule problem in structural biology [42]. For the d-dimensional general case, one can

extend ASAP by first using the same approach for scaling synchronization from Section 4.2.2,

then synchronizing over O(d), and finally estimating the optimal translations over Rd by solving

d overdetermined systems of linear equations via least-squares. The LOE approach that can be
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used to obtain the local patch embeddings required by ASAP, has a natural extension to the d-

dimensional case, thus rendering the entire pipeline amenable to dealing with higher-dimensional

data.

4.2.5 Complexity Analysis

Here we briefly summarize the time complexity of each of the steps of the proposed algorithm.

Several of these estimates come directly from the analogous step presented in the original ASAP

work [41].

Choosing patches (detailed in Section 4.2.1) consists of spectral clustering, enlarging clusters,

and pruning. Spectral clustering in general has complexityO(n3) where n is the number of nodes,

though faster variants exist : [141] achieves O(N3) + O(Nntk-means), where N is the number of

clusters (patches in this case), tk-means is the number of iterations of k-means used. Expanding

the patches in the kNN graph takes O(kn) time. Iteratively pruning patch Pi takes O(|Pi|) time.

Pruning all patches collectively takes certainly no more thanO(Nn) time. Thus the patch selection

process takesO((n2 + k+N)n) if standard spectral clustering methods are used, or potentially as

little as O((k + Ntk-means)n) + O(N3) if more efficient approximate spectral clustering methods

are used.

Embedding the patches depends upon the size and number of patches, and the complexity of

the embedding algorithm used. In the case of a constant number of iterations of LOE, embed-

ding a patch Pi takes O(k|Pi|2). If one assumes the patches evenly distribute the nodes, this is

O(k(n/N)2) per patch andO(kn2/N) in total. A very crude upper bound for the general behavior

would be O(kn2N).

Computing all patch intersections takes O(N2 max |Pi|) (where max |Pi| is the maximum

patch size achieved). This could be crudely bounded by O(nN2).

Computing the scale matrix Λ is similar to the above with an additional median computation,

so we get a crude upper bound of O(nN2 log(n)).

Computing the leading eigenvector of Λ take O(Mtpower) where M patches have substantial
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intersection (M < N choose 2), and tpower is the number of iterations of the power method.

The remaining steps follow quite similarly to the standard ASAP case presented in [41]. Using

those results, we find that the overall time complexity of the ASAP LOE method (assuming effi-

cient spectral clustering) isO(n2poly(k,N, tk-means, tpower) +m
√
κ) where κ is a condition number

related to the linear system solved in the translation step. The highest order complexity step (with

respect to n) is embedding each patch via LOE.

4.3 Density Estimation

In this section, we remark on the explicit connection between the graph embedding problem con-

sidered in this chapter and the density estimation problem. In particular, one may approach the

problem of recovering the unknown coordinates underlying the kNN graph by first aiming to esti-

mate the density function that generates the coordinates. Suppose for example that one is able to

estimate the pointwise density u : Ω ⊆ Rd → [0, 1], up to some constant multiple, evaluated at

each vertex of the graph, xi. Next, as outlined in [130], one can assign weights to the originally

unweighted kNN graph, defined by w(xi, xj) = (u−1/d(xi) + u−1/d(xj))/2. Furthermore, it can

be shown that the shortest path distance in the resulting weighted kNN graphs converges to the

Euclidean distance of the original points as the number of points increases. In other words, apply-

ing multidimensional scaling to the shortest path distances on the weighted kNN graph will yield

increasingly accurate embeddings of the original points {xi}ni=1 as n→ +∞.

In contrast to finding an approximate embedding from a density estimate, under certain con-

ditions, the reverse process is also straightforward. With sufficiently many points and sufficiently

strong priors on the distribution, the methodology of Maximum Penalized Likelihood Estimation

(MPLE) applies [51]. One first assumes that the locations correspond to points drawn indepen-

dently identically distributed according to some unknown underlying spatial distribution. MPLE

approximates the most likely spatial distribution given the points observed and some assumed

prior distribution on the space of distributions. The data fidelity term comes in the form of a
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log-likelihood term, a function of the distribution estimate and the point locations, and is given by

L(u, {xi}ni=1) =
n∑
i=1

log(u(xi)),

and the penalty term, P (u) enforces the prior distribution on the space of distributions. Typical

choices for P (u) include the H1-seminorm regularizer, P (u) = λ
2

∫
Ω
|∇u|2dx, enforcing smooth-

ness, and Total Variation (TV) norm regularization, P (u) = λ
∫

Ω
|∇u|dx, which enforces smooth-

ness, but also allows for edges. Therefore, general MPLE seeks to optimize the following energy

over all probability distributions on the spatial domain Ω ⊆ Rd

û = arg max
u≥0,

∫
Ω udx=1

L(u, {xi}ni=1)− P (u).

The form and scale of P encodes different types and amounts of regularity in the resulting density

estimate u. In practical settings, cross-validation should be performed to determine the appropriate

amount of regularity to impose on a given data set.

For the purpose of using kNN graphs to recover densities, we will include a post-processing

step for a subset of the embedding experiments, to which we apply a standard implementation

of TV MPLE [97] to the embedded points. TV is a good choice of penalty because we will be

applying it to points that are drawn from a piecewise constant density. The good density estimates

based on good embeddings shown in Section 4.4 illustrate that there is in fact a strong connection

between the embedding and density estimation problems.

The actual implementation of the TV MPLE relies on the Split Bregman (equivalently Alternat-

ing Direction Method of Multipliers) minimization technique in which one introduces a splitting

and equality constraints that are enforced by performing saddle-point optimization of the aug-

mented Lagrangian. This results in an iterative update procedure given by Algorithm 2. The first

minimization step is actually replaced by minimizing over u, and d individually, making use of the

shrinkage proximal operator associated with the `1 norm.
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Algorithm 2 TV MPLE
INPUT : {xi}, ρ, γ
y = 0, z = 0
For numberIterations {

(
û, d̂
)

=

arg min
u≥0,d

{
‖d‖1 −

n∑
i=1

log(u(xi))

+
ρ

2
‖∇u− d+ y‖2

2 +
γ

2
(‖u‖1 − 1 + z)2

}
y =y + ∇̃û− d̂
z =z + ‖û‖1 − 1

}

4.4 Experiments

Our experiments compare embeddings of points drawn from three different 2D synthetic densities:

piecewise constant half-planes (PC), piecewise constant squares (PCS), and Gaussian (Gauss),

and a 3D synthetic density : piecewise constant half-cubes (halfcube), each with n = {500, 1000, 5000}

points, as well as points drawn uniformly from a 3D donut shape (Donut) with n = 500, and the

actual 2D coordinates of n = 1101 cities in the US (US cities). For a given set of data points,

we use its kNN adjacency matrix as input to each ordinal embedding method. Separate from

these datasets with a clear correct geometric embeddings, we find embeddings of points in a co-

authorship network of network scientists (NetSci2010) with n = 552 (see Section 4.4.6). We test

Laplacian Eigenmaps [7], the LOE BFGS and LOE MM methods [124], and ASAP with LOE

BFGS used for the patch embeddings. As LOE was already compared with several methods in

[124], attaining better performance than LOE may suggest better performance than a number of

relevant methods including Kamada and Kawai [79], and Fruchterman and Reingold [57]. We re-

mark that our approach deals with a different input than that of the t-SNE method in [128], which

is generally used for embeddings of high dimensional data where some of the constraints are delib-

erately violated, which is not necessarily the case in our setting. We evaluate the methods based on
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(wall-clock) runtime and two different error metrics, Procrustes alignment error[117], and A-error

(EA) defined as the percentage of edge disagreements between the kNN adjacency matrix of the

proposed embedding X̃ and the ground truth matrix

error(X̃,X) : EA
def
=

1

n2

n∑
i,j=1

∣∣∣(AkX̃)ij − (AkX)ij∣∣∣ , (4.6)

where AkX ∈ {0, 1}n×n denotes the adjacency matrix of the corresponding kNN graph. We set

varying limits on the number of LOE iterations {5, 10, 50, 100, 300, 500}, and we use varying

maximum patch sizes (MPS) for ASAP . The LOE and ASAP methods give, for each distribution

and values n and k, an error-runtime Pareto curve (with low values in both coordinates being

best). In Table 4.1, we establish some shorthand notation for the methods and parameters used

in this section. For fair comparisons, we pass the same randomly sampled data to each of the

methods. Ideally, one would run these experiments many times over and average the results (to get

an estimate of average performance), but this is effect already partially accomplished by running

the LOE and ASAP methods with multiple parameters to get a more holistic measurement of

performance. It is worth mentioning that while LOE BFGS and LOE MM are iterative methods

which should converge to the best estimate of the solution as the number of iterations increases,

ASAP is not iterative and the results of ASAP LOE with a given MPS, do not inform the results

of ASAP LOE with another MPS. This aspect, combined with the randomized k-means spectral

clustering used to choose patches means that we do not generally expect the recovery errors of

ASAP LOE to be monotonically decreasing with MPS or time (as higher MPS generally leads to

longer computational time). A principled way of choosing the best MPS for a given application of

ASAP LOE could be of further interest.

4.4.1 The need for scale synchronization

First, to illustrate the importance of the scale synchronization introduced in Section 4.2.2, we

compare in Figure 4.2 ASAP synchronized embeddings with and without this step. Clearly, this

step significantly improves the recovered solutions.
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Recovery Method
LE Laplacian Eigenmaps embedding
LOE MM Local Ordinal Embedding using majorization minimization
LOE BFGS Local Ordinal Embedding using BFGS
ASAP LOE ASAP & LOE BFGS patch embeddings
Parameters
sparse k k = d2 log(n)e
dense k k = d

√
n log(n)e

MPS maximum patch size (for ASAP)
Iter. number of iterations (of LOE)
Data sets
PC 2D piecewise constant half-planes
PCS 2D piecewise constant squares
Gauss 2D Gaussian
halfcube 3D piecewise constant half-cubes
Donut 3D Donut
US cities 2D coordinates of US cities
NetSci2010 co-authorship network of scientists

Table 4.1: Notation for plotting experimental results.

4.4.2 Simulations with n = 500, 1000, 5000 with sparse and dense k

We show EA versus runtime for recovering n = {500, 1000, 5000} points sampled from the

PC (Figure 4.3), PCS (Figure 4.4), and Gaussian (Figure 4.5), with each figure showing results

in the sparse and dense k regime (see Table 4.1). We also show EA versus runtime for n =

{500, 1000, 5000} points drawn from the halfcube (Figure 4.6) distribution for k = 50, 150, 250, 450.

Even for lower values of n, we find that ASAP LOE is often either faster than or better-performing

than LOE BFGS, or both. This seems to be especially true in the sparse k domain. This is partly

due to the massively parallel embedding step in ASAP, which can take advantage of multiple cores

as the problem scales. One would expect that as n continues to grow, if more processors are made

available and memory increases sufficiently, the advantage of embedding parallelization would

continue to increase.

To further illustrate how the methods perform, we plot the embeddings of n = 1000 point

sampled from the 2D densities in Figure 4.7. In each case, the ASAP LOE with MPS=400 takes

less time to run and yields smaller EA errors than the LOE BFGS with 100 maximum iterations.

We only run LOE MM for n = 500 because of difficulties we had when trying to get the provided
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Figure 4.2: Left: Ground truth, n = 1000, k = 14. Middle: ASAP LOE with scale synchroniza-
tion: EA = 0.007. Right: ASAP LOE without scale synchronization: EA = 0.038.

R implementation to run on our Linux-based remote computing resource. We ran into no problems

with the LOE BFGS implementation. The computers used have 12 CPU cores which are Intel(R)

Xeon(R) X5650 @ 2.67GHz, and have 48GB ram. The R implementation of LOE does not (as far

as its authors are aware) take advantage of multiple cores, and runs a single process on a single

core. In contrast, our ASAP Matlab implementation uses the Multicore package to divide up the

local embedding problems among the available cores.

To demonstrate that this approach is not limited to the 2D case, nor does it only perform well

on synthetic data, we plot in Figure 4.9 the embeddings Procrustes aligned with points sampled

from a 3D donut shape, and actual coordinates of n = 1101 US cities. In both cases, ASAP LOE

with MPS=300 runs faster and yields smaller EA than LOE BFGS with 500 maximum iterations,

the latter of which produces twisted or folded results.

4.4.3 Large n : 50,000

In Table 4.2 we show EA vs runtime for ASAP LOE on a data set of n = 50, 000 points and k = 22.

While this size is completely prohibitive for LOE BFGS, ASAP LOE produces good results in less

than 4 hours. The worst possible result would be all edges of original graph misplaced, meaning

EA = 2 · 50k · 22/(50k)2 = 8.8 × 10−4. EA = 2 × 10−4 means we get approximately 3/4 of the
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MPS 100 300 500
PCS EA 5.1× 10−4 5.6× 10−4 1.9× 10−4

PC EA 5.8× 10−4 4.7× 10−4 3.0× 10−4

Table 4.2: Recovery results for n = 50, 000 for ASAP LOE.

edges correct.

4.4.4 Increasing k

We show in Figure 4.10, scaled (n/k) × NumberNonzero(A − A0) (this is a rescaling of EA pro-

portional to number of misplaced edges, more comparable for different values of k) and procrustes

error versus increasing values of k for n = {5000} points drawn from the piecewise constant

half-planes distribution using the method ASAP LOE with MPS=300. We see that for large n, ad-

jacency matrix error and Procrustes error remain relatively small and stable over a range of small

increasing k. Additionally, we show in Figure 4.15 some of the embeddings corresponding to these

results. Like the Procrustes error plot, these embeddings suggest that for a range of k small relative

to n and not too large relative to MPS, ASAP LOE BFGS returns sensible, although not perfect

results. As k gets too large however the results are quite poor. We suspect this is a result of k

being too large relative to MPS, leading to patches which are overly dense. When an ordinal graph

contains nearly all possible edges, it essentially provides no information. When such data is of

specific interest, one could either increase the mps as computational resources and time allow, or

potentially use an alternate method for breaking the graph into overlapping patches which are not

too dense.

4.4.5 Density Estimation Experiments

In Figure 4.11 we show the results of applying TV MPLE to some of the embeddings shown in

Figure 4.7. The regularization parameter used is .0001 . This is not obtained by cross-validation,

but it simply seems to perform well on the originally sampled points. The densities of the approx-

imate embeddings are as expected, with ASAP LOE BFGS recovering the density best, with LOE
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BFGS behind, and LE doing the worst. This altogether suggests that better embedding results do

lead to better density estimation, if that is the end goal.

4.4.6 Network of network scientists embedding

To further illustrate potential of ordinal embedding to broad categories of data, we present here an

experiment embedding data that does not have an apparent ground-truth geometry. We use data

from a co-authorship network of network scientists [50] from 2010, which was studied in [104]

to evaluate methods of computing core-periphery structure. The network contains nonegatively

weighted undirected edges where the weights are based on the number of papers they have co-

authored. The network has 552 nodes and 1318 edges, with the number of edges attached to each

node ranging from 1 to 38. The mean number of edges attached to each node is 4.7754 and the

median is 4.

To embed the data, we treat the co-authorship links as nearest neighbor relationships. In other

words, if X and Y have authored papers together, but X has not authored any papers with Z, we

impose that the distance between X and Y should be smaller than the distance between X and

Z. We used LOE BFGS and ASAP LOE BFGS to perform these embeddings in 2D and 3D. In

this case, the LOE results were ultimately best with the 2D LOE BFGS 500 iteration embedding

misplacing 754 of the 1318 nearest neighbor edges and the 3D LOE BFGS 500 Iteration embedding

misplacing 272 of the nearest neighbor edges, while the 2D ASAP LOE BFGS mps 500 misplaced

910 edges, and the 3D ASAP LOE BFGS mps 500 misplaced 467 edges. That being said, several

of the runtimes for the ASAP LOE results beat the LOE results. We speculate that the reasons LOE

outperforms ASAP LOE in accuracy in this case are twofold : 1) the number of nodes, n = 552, is

too small to make the LOE method applied to the full data sufficiently intensive, and 2) the wide

distribution of degrees of the nodes in the network perhaps does not go well with our approach of

breaking up the network via spectral clustering. Perhaps other methods for braking up the network

should be considered when the degree distribution is highly varied.

Independent of the comparison of the two methods, we look at the best 2D and 3D embeddings
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from LOE (shown in Figure 4.13), to see if the embeddings preserve any interesting structure in

the network. Since the network was previously studied for core-periphery detection, we color the

nodes based on the corescore computed by the method proposed in [104] (mapping low values to

blue and high values to red), and label the names of the authors with the top 10 corescores. These

red, core authors appear primarily central to the embeddings, suggesting that these embeddings

preserve important structural properties in the original network.

Figure 4.13: LOE BFGS 2d and 3d embeddings of data from NetSci2010 data set, n = 552, where
co-authorship imposes that authors should be close

4.5 A Linear Program Alternative to SDP embedding

In this section we present the algorithm and a few results for a Linear Program Embedding ap-

proach using metric MDS (LPEm) for ordinal embedding. Though the results are ultimately not

competitive with Local Ordinal Embedding, the approach is different enough so that the ideas may

be of independent interest. In contrast to the SDP methods which cast embedding problems in

terms of the Gram matrix K our LPEm approach for kNN embedding optimizes over the variables

D (the distance matrix), R (the radius at each node), and the slack variables. The radius at each

node i, denoted by Ri is defined to be the distance between node i and its k-th closest neighbor.

Thus Ri is the radius of the neighborhood at node i. In kNN embedding, the objective and con-

straints can be written as linear constraints in D,R and the slack variables, altogether leading to

a linear program which is computationally cheaper to solve than an SDP. Although SDP-based
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methods can encompass a larger class of problems, they currently do not approach the scalability

or numerical maturity of LP and SOCP solvers.

After the LP returns a candidate distance matrix D and radii R, we pass D into a standard

mdscale, here using metric multidimensional scaling (see Algorithm 3), where by T we mean the

Algorithm 3 LP approach

(D∗, R∗) =arg min
α,β,R,D

∑
ij∈E(G)

αij +
∑

ij /∈E(G)

βij

subject to α, β ∈ Rn×n
+ , R ∈ Rn

+, D ∈ Rn×n
+,sym

Dij ≤ Ri + αij, if ij ∈ E(G)

Dij > Ri − βij, if ij /∈ E(G)
n∑
i=1

Ri = V

Dij +Dik ≤ Dkl, (i, j, k) ∈ T
X =mds (D∗, d)

set of triangle inequalities we considered (ordered set (i, j, k)). If (i, j, k) ∈ T , the same holds

true for the two other permutations. The full set of triangle inequalities are necessary, though not

sufficient, for the matrix D to correspond to an Euclidean distance matrix. If one omits slack

variables, there are n(n− 1)/2 distance values to solve for along with n radii, and thus n(n+ 1)/2

unknowns in total. Considering the ordinal constraints, for the upper bounds on the entries Dij ,

there are n ways to choose i, and for each i there are k ways to choose j, thus nk/2 constraints

(accounting for symmetric distances). For the lower bounds on the entries Dij there are n ways to

choose i and for each i there are n−k−1 ways to choose j, giving n(n−k−1)/2 constraints. So

there are n(n− 1)/2 ordinal constraints on relating the n(n− 1)/2 distances and n radii. In other

words, the intuition behind the added triangle inequalities is that they help to better constrain the

system. There are on the order of n3 triangle inequalities (choose any three points), so for large n,

there are many more constraints than unknowns.

To avoid the added complexity from imposing all triangle inequalities, one could consider

models that impose only a fraction of such constraints via either imposing them locally, for k-hop

neighboring triples of points, or globally, such as picking edges via an Erdős-Rényi model, or
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mixing the two approaches.

We remark that dropping triangle inequalities altogether could certainly speed up the embed-

ding process. The resulting non-metric D may correspond to an increasing function of distance

(e.g., distance squared), which suggests that non-metric MDS would be appropriate.

In general, even if the recovered distance metric corresponds to a metric distance, this is not a

guarantee that the distance is realizable in a low-dimensional space. That requires a rank constraint

on D, which is non-convex and is computationally intractable for an LP or SDP. The ultimate em-

bedding into a low-dimensional space thus potentially gives up some structure in both the LP and

SDP formulation, and it can be argued that this effect is lessened via the local to global approach.

In Figure 4.14 we show an example with points drawn from the densities discussed in the

previous section along with points embedded using the LPEm approach. In these experiments we

use a very dense value of k, k = n/2 = 50, which is where the approach seemed to work the best.

The recovery of the piecewise constant half-planes is the best, but the preliminary results led us to

decide not to experiment with this method further for the time being. The method was implemented

using the CVX library, a package for specifying and solving convex programs ([71, 70]). Overall,

we find the LP formulation appealing due to its simplicity. It would be interesting if a similarly

simple approach could obtain competitive results on the problem of ordinal embedding, especially

since until the work of von Luxburg and Alamgir [130], it was unknown to the community whether

the problem was practically solvable at all.
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Figure 4.14: Linear Program Embeddings for the PC (left), PCS (middle), and Gauss (right) data
sets with n = 100, Row 1 : k = 22 Row 2: k = 50 Row 3: ground truth. Line segments highlight
the displacement of each point.
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Figure 4.3: EA vs. time, n = {500, 1000, 5000}, Left : k sparse, Right : k dense, piecewise
constant half-planes, ◦ ASAP LOE, × LOE BFGS, � LE , ? LOE MM
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Figure 4.4: EA vs. time, n = {500, 1000, 5000}, Left : k sparse, Right : k dense, piecewise
constant half-planes, ◦ ASAP LOE, × LOE BFGS, � LE , ? LOE MM
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Figure 4.5: EA vs. time, n = {500, 1000, 5000}, Left : k sparse, Right : k dense, Gaussian density
◦ ASAP LOE, × LOE BFGS, � LE , ? LOE MM
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Figure 4.6: EA vs. time, n = {500, 1000, 5000}, k = 50, 150, 250, 450, 3D half-cube density ◦
ASAP LOE, × LOE BFGS, � LE , ? LOE MM
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Figure 4.7: Embeddings for the PC (left), PCS (middle), and Gauss (right) data sets with n = 1000,
and k dense. Row 1 : LE. Row 2: LOE BFGS Iter.=100. Row 3: ASAP LOE with MPS = 400
(with each ASAP result obtained is less time than the corresponding LOE result). Row 4: ground
truth.
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Figure 4.8: Embeddings for halfcube data sets with n = 1000, and k = 50 (left), 150 (middle),
450 (right) Row 2: LOE BFGS Iter.=100. Row 3: ASAP LOE with MPS = 300 (with each ASAP
result obtained is less time than the corresponding LOE result). Row 4: ground truth.
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Figure 4.9: Embeddings of Donut (3D) and US Cities (2D) data sets. Row 1: LOE BFGS Iter.=500.
Row 2: ASAP LOE MPS=300 (with each ASAP result obtained in less time than the corresponding
LOE result). Row 3: Ground truth.
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Figure 4.10: ASAP LOE MPS=300, n = 5000, k increasing by 20, Left: number of differences in
adjacency matrix divided by number of edges, nk, Right: Procrustes error.

Figure 4.11: TV MPLE applied to example embeddings of PC n = 1000, k dense, and top left
: LE, top right : LOE BFGS maxIt=100, bottom left : ASAP LOE BFGS max patch size 400,
bottom right : estimated density from ground truth points, see column 1 of Figure 4.7
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Figure 4.12: TV MPLE applied to example embeddings of PCS n = 1000, k dense, and top left
: LE, top right : LOE BFGS maxIt=100, bottom left : ASAP LOE BFGS max patch size 400,
bottom right : estimated density from ground truth points, see column 2 of Figure 4.7
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4.6 Summary and discussion

We have demonstrated that the computational efficiency of LOE for the kNN embedding problem

can be significantly improved, while maintaining and often improving spatial and ordinal accuracy

in a distributed setting. Our application of the divide-and-conquer ASAP method renders the prob-

lem of kNN embedding significantly more tractable, distributing the embedding steps, and using

fast spectral methods to combine them. We expect that such improvements will make it possible

to use kNN embeddings in a broader range of settings, and that the ASAP framework will be of

independent interest to the machine learning community for tackling large geometric embedding

problems.
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Figure 4.15: ASAP LOE BFGS MPS=300, n = 5000, k increasing by 20, Top left : originally
sampled points, Remaining plots : recovered embeddings

87



APPENDIX A

To examine the effect of the non-local regularization term, we compute an alternate formulation

of the NL H1 MPLE problem and derive an inequality that solutions must satisfy. Recall from

equation (2.1) that NL H1 MPLE applied to the event samples X = {xi}ni=1 with parameters

α, β ≥ 0 is given by the following optimization.

uα,β,X := arg max
u≥0,

∫
Ω u=1

n∑
i=1

log (u(xi))− α
∫∫

Ω×Ω

(∇w,su(x, y))2 dxdy − β

2

∫
Ω

|∇u(x)|2dx.

For every such X,α, β one can show there exists nonnegative constants C1, C2 such that uα,β,X is

also the solution to a more constrained optimization.

uα,β,X = arg max
n∑
i=1

log (u(xi)) subject to{
u ≥ 0,

∫
Ω

u = 1,

∫∫
Ω×Ω

(∇w,su(x, y))2 dxdy ≤ C1,
1

2

∫
Ω

|∇u(x)|2dx ≤ C2

}
. (4.7)

It can further be shown that for X and β ≥ 0 fixed, C1 is a non-increasing function of α ≥ 0 and

for X and α ≥ 0 fixed, C2 is a non-increasing function of β ≥ 0.

Any solution of equation (4.7) satisfies
∫∫

Ω×Ω
(∇w,su(x, y))2dxdy ≤ C1, and likewise in the

discrete setting we have the following.

∑
i,j∈Ω

(ui − uj)2 wij√
didj

≤ C1.

Thus for some nonnegative discrete function f : Ω× Ω→ R≥0 with
∑

i,j∈Ω fij ≤ C1 we have the

following.

∀i, j ∈ Ω, (ui − uj)2 ≤ fij

√
didj

wij
. (4.8)

Recalling that in our application, we set the weights wij to be non-local means applied to a housing
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image, g : Ω → R, we can interpret what this means. Up to some factors constrained by the pa-

rameter C1, the squared difference between the density at pixels i and j is bounded by
√
didj/wij.

Thus the bound is made restrictive when : di and dj are small, which means the patches of g around

pixels i and j are very different from the rest of the image; and when wij is large, which means the

neighborhoods of g around pixels i and j are similar to each other.

It is also worth noting that by constraint, the left-hand side of (4.8) is always smaller than or

equal to 1. Thus for the inequality to be nontrivial, we must have fij < wij/
√
didj for some pair

i, j ∈ Ω. Thus C1 must be sufficiently small (or α sufficiently large) in order to guarantee that the

non-local smoothing will have any effect on u.
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APPENDIX B

One of the main questions in the field of rigidity theory asks whether one can uniquely determine

(up to rigid transformations, such as translations, rotations, reflections) the coordinates of a set of

points p1, . . . , pn given a partial set of distances dij = ||pi − pj|| between n points in Rd. To make

this dissertation self-contained, this short appendix if a very brief summary of the main definitions

and results related to local and global rigidity from the literature (e.g., [39, 68, 74, 106, and refer-

ences therein]). Readers who are unfamiliar with rigidity theory may use this short Appendix as a

glossary. As previously discussed in Section 4.2.1, one of the steps of the divide-and-conquer ap-

proach proposed for the kNN-recovery problem relies to testing whether the underlying resulting

patches are globally rigid. As observed in our numerical simulations detailed in Figures 4.3,4.4,

4.5, 4.6, 4.7 the final reconstruction is more accurate when we rely on global rigidity as a postpro-

cessing step for the partitions obtained via spectral clustering. The intuition behind our approach

is as follows. In the case when distance information is available, testing for global rigidity is a cru-

cial step in making sure that each of the local patches has a unique embedding in its own reference

frame, approximatively consistent with the ground truth, up to a rigid transformation. Since in

the kNN-recovery problem, we do not have distance information but only ordinal data, thus we are

faced with solving even a harder problem, we expect that the global rigidity check will improve the

accuracy of the local patch embeddings. One specific example where our current rigidity heuris-

tics improved results was in performing ASAP LOE BFGS with max patch size 300, on n = 5000

points drawn from the constant half-plane distribution, letting k = 18. In that example, perform-

ing the rigidity check and pruning gave a runtime of 107.056 s, an ordinal error of 0.00107096,

and 0.0585465 Procrustes error, while skipping the rigidity check and pruning gave a runtime of

192.606 s, an ordinal error of 0.00154208 A error, and 0.175992 Procrustes error.

A bar and joint framework in Rd is defined as an undirected graphG = (V,E) (|V | = n, |E| =

m) together with a configuration p which assigns a point pi in Rd to each vertex i of the graph.

The edges of the graph correspond to distance constraints, that is, (i, j) ∈ E if there is a bar

of length dij between points pi and pj . We say that a framework G(p) is locally rigid if there
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exists a neighborhood U of G(p) such that G(p) is the only framework in U with the same set of

edge lengths, up to rigid transformations. In other words, there is no continuous deformation that

preserves the given edge lengths. A configuration is generic if the coordinates do not satisfy any

non-zero polynomial equation with integer coefficients (or equivalently algebraic coefficients).

Local rigidity in Rd has been shown to be a generic property, in the sense that either all generic

frameworks of the graph G are locally rigid, or none of them are. A consequence of the seminal

results of Gluck [64] and Asimow and Roth [5] asserts that the dimension of the null space of

the rigidity matrix is the same at every generic point, and hence local rigidity in Rd is a generic

property, meaning that either all generic frameworks of the graph G are locally rigid, or none of

them are. With probability one, the rank of the rigidity matrix that corresponds to the unknown

true displacement vectors equals the rank of the randomized rigidity matrix. A similar randomized

algorithm for generic local rigidity was described in [68, Algorithm 3.2]. Generic local rigidity in

Rd can be considered a combinatorial property of the graph G itself, independent of the particular

realization. Using this observation, generic local rigidity can therefore be tested efficiently in any

dimension using a randomized algorithm [74]: one can just randomize the displacement vectors

p1, . . . , pn while ignoring the prescribed distance constraints that they have to satisfy, construct the

so called rigidity matrix corresponding to the framework of the original graph with the randomized

points and check its rank. We use this to make sure the obtained patches are local rigid.

Since local generic rigidity does not imply unique realization of the framework, it is possible

that there exist multiple non-congruent realizations that satisfy the prescribed distances (which we

do not even have available in the kNN recovery problem) One may consider for example, the 2D-

rigid graph with n = 4 vertices and m = 5 edges consisting of two triangles that can be folded

with respect to their joint edge. We call a framework G(p) globally rigid in Rd if all frameworks

G(q) in Rd which are G(p)-equivalent (have all bars the same length as G(p)) are congruent to

G(p) (i.e., related by a rigid transformation). Hendrickson proved two key necessary conditions

for global rigidity of a framework at a generic configuration:

Theorem 4.6.1 (Hendrickson [74]). If a framework G(p), other than a simplex, is globally rigid

for a generic configuration p in Rd then: 1) The graph G is vertex (d + 1)-connected; 2) The
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framework G(p) is edge-2-rigid (or, redundantly rigid), in the sense that removing any one edge

leaves a graph which is infinitesimally rigid.

We say that a graph G is generically globally rigid in Rd if G(p) is globally rigid at all generic

configurations p [37, 38]. Though it has been conjectured for many years that global rigidity is a

generic property, this fact was shown to be true only very recently. The seminal work of [38, 68]

proves that global rigidity is a generic property of the graph in each dimension. The conditions

of Hendrickson as stated in Theorem 4.6.1 are necessary for generic global rigidity. They are also

sufficient on the line, and in the plane [76]. However, by a result of Connelly [37], K5,5 in 3-space

is generically edge-2-rigid and 5-connected but is not generically globally rigid.

One of the tools used in testing for global rigidity of frameworks relies on the notions on stress

matrices, more popular perhaps in the engineering community. A stress is defined an assignment

of scalars wij to the edges of the given graph G such that for every node i ∈ V it holds that

∑
j: (i,j)∈E

ωij(pi − pj) = 0. (4.9)

Alternatively, it can be show that a stress is a vector w in the left null space of the rigidity matrix:

RG(p)Tw = 0. A stress vector can be rearranged into an n× n symmetric matrix Ω, known as the

stress matrix, such that for i 6= j, the (i, j) entry of Ω is Ωij = −ωij , and the diagonal entries for

(i, i) are Ωii =
∑

j: j 6=i ωij . Since all row and column sums are zero, it follows that the all-ones

vector (1 1 · · · 1)T is in the null space of Ω as well as each of the coordinate vectors of the

configuration p. Therefore, it follows that for generic configurations the rank of the stress matrix

is at most n − (d + 1). The following pairs of theorems give sufficient and necessary conditions

for generic global rigidity:

Theorem 4.6.2 (Connelly [38]). If p is a generic configuration in Rd, such that there is a stress,

where the rank of the associated stress matrix Ω is n− (d+ 1), then G(p) is globally rigid in Rd.

Theorem 4.6.3 (Gortler, Healy, and Thurston [68]). Suppose that p is a generic configuration in

Rd, such that G(p) is globally rigid in Rd. Then either G(p) is a simplex or there is a stress where

the rank of the associated stress matrix Ω is n− (d+ 1).
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Based on the latter theorem, the authors of [68] also provided a randomized polynomial algo-

rithm for checking generic global rigidity of a graph [68, Algorithm 3.3], which we use to test for

global rigidity of the patches in the kNN-recovery problem. If a given patch is generically locally

rigid then their algorithm picks a random stress vector of the left null space of the rigidity matrix

associated to this patch, and converts it into a stress matrix. If the rank of the stress matrix is

exactly n− (d+ 1), then we conclude that the patch is globally rigid, and if the rank is lower, then

the respective patch is not globally rigid.
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[81] Kostić, T., and Bertozzi, A. L. Statistical density estimation using threshold dynamics for
geometric motion. Journal of Scientific Computing 54, 2-3 (2013), 513–530.

[82] Kruskal, J. B. Multidimensional scaling by optimizing goodness of fit to a nonmetric hy-
pothesis. Psychometrika 29, 1 (1964), 1–27.

[83] Kruskal, J. B. Nonmetric multidimensional scaling: a numerical method. Psychometrika
29, 2 (1964), 115–129.

[84] Kruskal, J. B., and Wish, M. Multidimensional scaling, vol. 11. Sage, 1978.

[85] Lai, M.-J., and Liu, L. Y. The null space property for sparse recovery from multiple mea-
surement vectors. Appl. Comput. Harmon. Anal. 30, 3 (May 2011), 402–406.

[86] Lan, Y., Guo, J., Cheng, X., and Liu, T.-Y. Statistical consistency of ranking methods in a
rank-differentiable probability space. In NIPS (2012), pp. 1241–1249.

[87] Lewis, E., Mohler, G. O., Brantingham, P. J., and Bertozzi, A. L. Self-exciting point process
models of civilian deaths in Iraq. Security Journal 25, 3 (2011), 244–264.

[88] Liu, H., and Brown, D. E. Criminal incident prediction using a point-pattern-based density
model. International journal of forecasting 19, 4 (2003), 603–622.

[89] Lou, Y., Zhang, X., Osher, S. J., and Bertozzi, A. L. Image recovery via nonlocal operators.
Journal of Scientific Computing 42, 2 (2010), 185–197.

99



[90] Majumdar, A., and Ward, R. K. An algorithm for sparse MRI reconstruction by Schatten
p-norm minimization. Magn. Reson. Imaging 29, 3 (April 2011), 408–417.

[91] Martinez, D. S. H., Gonzalez, M., Huang, X., Irvine, B., Hsieh, C. H., Huang, Y. R., Short,
M. B., and Bertozzi, A. L. An economical testbed for cooperative control and sensing
strategies of robotic micro-vehicles. In Informatics in Control, Automation and Robotics.
Springer, 2013, pp. 65–75.

[92] McFee, B., and Lanckriet, G. Partial order embedding with multiple kernels. In Pro-
ceedings of the 26th Annual International Conference on Machine Learning (2009), ACM,
pp. 721–728.

[93] McFee, B., and Lanckriet, G. R. Metric learning to rank. In Proceedings of the 27th
International Conference on Machine Learning (ICML-10) (2010), pp. 775–782.

[94] Merkurjev, E., Kostic, T., and Bertozzi, A. L. An MBO scheme on graphs for classification
and image processing. SIAM Journal on Imaging Sciences 6, 4 (2013), 1903–1930.

[95] Meyer, R. Sufficient conditions for the convergence of monotonic mathematical program-
ming algorithms. J. Comput. Syst. Sci. 12, 1 (Feb. 1976), 108–121.

[96] Mohar, B. The Laplacian spectrum of graphs. Graph theory, combinatorics, and applica-
tions 2 (1991), 871–898.

[97] Mohler, G. O., Bertozzi, A. L., Goldstein, T. A., and Osher, S. J. Fast TV regularization
for 2d maximum penalized likelihood estimation. Journal of Computational and Graphical
Statistics 20, 2 (2011), 479–491.

[98] Mohler, G. O., Short, M. B., Brantingham, P. J., Schoenberg, F. P., and Tita, G. E. Self-
exciting point process modeling of crime. Journal of the American Statistical Association
106, 493 (2011).

[99] Muthukrishnan, S. Data streams: Algorithms and applications. Now Publishers Inc.,
Hanover, MA, 2005.

[100] Ouyang, H., and Gray, A. Learning dissimilarities by ranking: from SDP to QP. In Proceed-
ings of the 25th international conference on Machine learning (2008), ACM, pp. 728–735.
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