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The look-elsewhere effect from a
unified Bayesian and frequentist
perspective

Adrian E. Bayera and Uroš Seljaka,b

aBerkeley Center for Cosmological Physics, Department of Physics, University of California, Berkeley,
Berkeley, CA 94720, USA
bPhysics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road,
Berkeley, CA 94720, USA

E-mail: abayer@berkeley.edu, useljak@berkeley.edu

Abstract. When searching over a large parameter space for anomalies such as events, peaks, ob-
jects, or particles, there is a large probability that spurious signals with seemingly high significance
will be found. This is known as the look-elsewhere effect and is prevalent throughout cosmology,
(astro)particle physics, and beyond. To avoid making false claims of detection, one must account for
this effect when assigning the statistical significance of an anomaly. This is typically accomplished
by considering the trials factor, which is generally computed numerically via potentially expensive
simulations. In this paper we develop a continuous generalization of the Bonferroni and Šidák cor-
rections by applying the Laplace approximation to evaluate the Bayes factor, and in turn relating
the trials factor to the prior-to-posterior volume ratio. We use this to define a test statistic whose
frequentist properties have a simple interpretation in terms of the global p-value, or statistical sig-
nificance. We apply this method to various physics-based examples and show it to work well for the
full range of p-values, i.e. in both the asymptotic and non-asymptotic regimes. We also show that
this method naturally accounts for other model complexities such as additional degrees of freedom,
generalizing Wilks’ theorem. This provides a fast way to quantify statistical significance in light of
the look-elsewhere effect, without resorting to expensive simulations.
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1 Introduction

A common problem in statistical analysis is to find evidence for a physical signal in a large, continuous
parameter space, where the true position of the signal is not known a priori. By searching over a wide
parameter space one increases the probability of finding large signals caused by random statistical
fluctuations, as opposed to a physical source. This is known as the look-elsewhere effect – or sometimes
the “problem of multiple comparisons” in discrete cases – and must be accounted for when performing a
hypothesis test [1, 2]. Ignoring this effect would lead to an overestimation of the statistical significance,
sometimes by a considerable amount, and thus incorrectly concluding the detection of a physical signal.

The look-elsewhere effect is prominent throughout (astro)particle physics and cosmology. One
of the most commonly known occurrences is in collider searches for new particles, for example it was
a key consideration in the Higgs boson discovery [3, 4]. In this example, one searches a large range
of masses for a resonance, without a priori knowledge of the true mass of the particle. Similarly, in
astrophysical searches for particles one seeks resonances in the energy flux of various astrophysical
spectra, where the true energy signature of particle is unknown. Examples include: constraining the
dark matter self-annihilation cross-section via gamma ray emission from galaxy clusters [5], searching
for WIMPs via charged cosmic rays [6], searching for non-baryonic dark matter via X-ray emission
from the Milky Way [7], and explaining the source of high energy astrophysical neutrinos [8, 9]. In
terms of cosmology, the look-elsewhere effect occurs in searches for gravitational wave signals from
black hole or neutron star mergers [10–12]. Here one searches large time series for a signal, where the
time and shape of the event are unknown. A further cosmological example is searching for signatures
of inflation in the primordial power spectrum [13–15].

The look-elsewhere effect is also prevalent in other areas of physics and beyond, for example: in
astronomy it occurs when detecting exoplanets via stellar photometry, where the period and phase
of the planets’ transits are unknown (e.g. [16]); in biology it occurs when considering large DNA
sequences to study genetic association [17, 18]; in medicine it occurs when testing the effectiveness of
drugs in clinical trials [19]; and in theology it occurs when attempting to find hidden prophecies in
religious texts [20]. Therefore, given the apparent ubiquity of the look-elsewhere effect, there is much
motivation for a fast method to account for it.
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Many simple general methods exist to mitigate for the look-elsewhere effect in the case of discrete
problems, for example if one is testing multiple drugs for their effectiveness at treating a disease [19].
The number of drugs tested, more generally known as the trials factor, quantifies the extent of the
look-elsewhere effect. The larger the trials factor, i.e. the more drugs tested, the larger the chance of
a false positive arising due to a statistical fluctuation. Methods such as the Bonferroni correction [21]
and Šidák correction [22] use the trials factor to correct the conclusions of a hypothesis test in light
of this effect. There is however no unique definition of the trials factor when searching a continuous
parameter space for a signal. Thus, a common, brute-force approach to account for the look-elsewhere
effect for continuous problems is to perform many simulations of an experiment assuming there is no
signal. One can then estimate the p-value of a chosen test statistic, usually related to the maximum
likelihood, and in turn define a relation between the significance of a signal and the test statistic.
This means that to conclude a detection at the 5-sigma level, corresponding to a p-value of order
10−7, one would need to simulate more than ∼ 107 realizations of the experimental data, which is
computationally expensive. A faster method, developed in the context of high energy physics, is to
approximate the asymptotic form of the p-value by counting upcrossings, requiring fewer simulations
[23]. In both of these cases new simulations are required each time a new model is considered, and
the simulations may not be an accurate representation of the data. In this paper we seek a general
approach that can be directly applied to experimental data, without the need for simulations.

Our approach applies Bayesian logic to tackle the look-elsewhere effect. The Bayesian evidence
is equal to the prior-weighted average of the likelihood over the parameter space, which can be
considerably lower than the maximum likelihood if the prior is broad. This integration over the
prior accounts for the look-elsewhere effect by penalizing large prior volumes. When considering
large prior volumes, the likelihood is typically multimodal, with most of the peaks corresponding
to noise fluctuations rather than physical sources. In order to estimate the location of a physical
signal, and its associated statistical significance, one typically considers a point estimator, such as
the maximum a posteriori (MAP) estimator which maximizes the posterior density. By applying the
Laplace approximation, we introduce a Bayesian generalization of the MAP estimator, referred to as
the maximum posterior mass (MPM) estimator, which corrects the MAP estimator by the prior-to-
posterior volume ratio. Then, by drawing an analogy between Bayesian and frequentist methodology,
we present a hybrid of the MAP and MPM estimators, called the maximum posterior significance
(MPS) estimator, which determines the most significant peak in light of the look-elsewhere effect.
The frequentist properties of the MPS estimator are shown to be independent of the look-elsewhere
effect, providing a universal way to quantify the p-value, or statistical significance, without the need
for expensive simulations.

The outline of this paper is as follows. In section 2 we review Bayesian posterior inference and
hypothesis testing for a multimodal posterior, by discussing MAP estimation and then introducing
MPM estimation. We then draw an analogy between Bayesian and frequentist philosophy in section
3 to motivate MPS estimation as the appropriate technique to tackle the look-elsewhere effect. The
following three sections then apply this method to various examples: section 4 considers a resonance
search, which can be thought of as a toy example of a collider or astrophysical particle search; section
5 considers a white noise time series, which can be thought of as a toy example of a gravitational
wave search; and section 6 considers a search for non-Gaussian models of cosmological inflation using
Planck data [24]. Note that section 4 is the main example, as it illustrates the key advantages of
MPS, with the other examples complementary. Finally, we summarize and conclude in section 7.

2 Bayesian posterior inference and hypothesis testing

Two of the main tasks of Bayesian statistical analysis are posterior inference and hypothesis testing.
Consider a model with parameters z = {zj}Mj=1, and data x = {xi}Nd

i=1 that depends on z. The
inference of z is given by its posterior

p(z|x) =
p(x, z)

p(x)
=
p(x|z)p(z)

p(x)
, (2.1)
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where p(x|z) is the likelihood of the data, p(z) is the prior of z, and p(x) =
∫
dz p(x|z)p(z) is

the Bayesian evidence, also known as the normalization, marginal likelihood, or partition function.
Typically, one can evaluate the joint probability p(x, z), but not the evidence, which makes the
posterior inference analytically intractable. This is usually handled using simple approximations or
Monte Carlo Markov Chain methods [25].

A related problem is that of a hypothesis testing. In this case there are two different hypotheses,
H and H0, each with their own model parameters, z and z0. In Bayesian methodology, hypothesis
testing is performed using the Bayesian evidence ratio of the two hypotheses, which gives the Bayes
factor

B ≡ p(x|H)

p(x|H0)
, (2.2)

where the Bayesian evidence for hypothesis H is given by

p(x|H) =

∫
dz p(x|z, H)p(z|H). (2.3)

The Bayesian evidence and Bayes factor are also analytically intractable and harder to evaluate than
posteriors, especially for high dimensional z, although recent numerical methods such as Gaussianized
Bridge Sampling [26] have made the problem easier. For the sake of exposition we will not consider
such methods in this work, but instead use analytical approximations that give the Bayes factor an
intuitive meaning. It is worth keeping in mind however that the full Bayes factor calculation can
always be performed numerically, without any approximations.

2.1 Maximum a Posteriori (MAP) estimation

Given the analytical intractability of posterior inference and hypothesis testing, one often chooses an
estimator to extract useful information from the posterior. A common estimator is the maximum a
posteriori (MAP) point estimator, which corresponds to the global maximum of the posterior. If the
prior is flat, as it will always be in this paper, this equals the maximum likelihood estimator (MLE),
which maximizes the likelihood. Mathematically, MAP is defined via

MAP : arg max
z

p(z|x). (2.4)

For the purpose of comparing data to a null hypothesis, a useful quantity to define is

qL(z) ≡ 2 ln
p(x|z)

p(x|z0)
, (2.5)

where z0 represents the values of the parameters under the null hypothesis, and a subscript of L is
used because the argument of the logarithm is the Likelihood ratio. To assess the significance of a
result one considers the maximum value of qL, which in the case of a flat prior is equal to qL evaluated
at the MAP: q̂L = qL(zMAP). For a Gaussian likelihood, this is equal to the chi-squared (χ2), and in
the absence of the look-elsewhere effect

√
q̂L typically gives the statistical significance. However, we

will see that this test statistic greatly suffers from the look-elsewhere effect.

2.2 Maximum Posterior Mass (MPM) estimation

MAP is often a good point estimator in low dimensions if there is a single mode in the posterior.
However, if the posterior has several modes, a more reasonable point estimator associates with the
highest posterior mass. We refer to this as the maximum posterior mass (MPM) estimator.

For the purposes of this work, we will consider the example of a multimodal posterior consisting
of a sum of multivariate Gaussian distributions; this has been shown to be a good approximation in
many practical cases [27]. We thus consider a posterior of the following form,

p(z|x) =
∑

l

wlN(z;µl,Σl), (2.6)
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z|
x

)

MAP

MPM

Figure 1. Plot of a bimodal Gaussian posterior for a 1d example in which 90% of the posterior mass is
assigned to the right peak and 10% to the left. MPM yields the mode that maximizes the posterior mass and
is close to the true mean, whereas MAP maximizes the posterior density and can be distant from the mean
and represent only a small fraction of posterior mass.

where N(z;µ,Σ) is a multivariate normal distribution with mean µ and covariance matrix Σ, and the
data dependence has been dropped for neatness. Note that working with a posterior of this form is
equivalent to applying the Laplace approximation to a general multimodal posterior in the upcoming
derivations. In this model, the mass of mode l is proportional to the weight wl, which is normalized
such that

∑
l w

l = 1.
Assuming that only one component contributes at each peak, the weight of mode l is given by

evaluating the posterior at the location of the mode, z = µl,

lnwl = ln p(µl|x)− lnN(µl;µl,Σl) = ln p(µl|x) +
1

2

[
ln det Σl +M ln(2π)

]
. (2.7)

To obtain a quantity that can be readily computed, we multiply each weight by the normalization
p(x) to give the mass ml, defined by

lnml ≡ lnwl + ln p(x) = ln p(x|µl) + ln p(µl) +
1

2

[
ln det Σl +M ln(2π)

]
. (2.8)

Thus, the mass of each mode is equal to the log likelihood multiplied by the product of the prior
density and the posterior volume at the peak, where the posterior volume is defined as

Vposterior ≡ (2π)M/2
√

det Σ. (2.9)

The MPM estimator corresponds to the mode with the highest mass, hence to determine the
MPM mode one would compute the lnml by first finding the positions of all local posterior maxima µl,
and then computing Σl using the inverse of the Hessian at each peak. Qualitatively, MPM corresponds
to maximizing the posterior density multiplied by the posterior volume ∼

√
det Σ, whereas MAP only

maximizes the former. It is apparent that if there are multiple modes in the posterior, the one that
has the largest posterior mass does not necessarily have the largest posterior density, as shown in
figure 1. In some situations the MPM mode will dominate the posterior mass such that the MPM
mode alone gives a useful way to summarize the posterior.

2.3 Hypothesis testing with MPM

Consider a model with parameters z1, z2, ..., zM , with z1 corresponding to the amplitude of a feature,
and z>1 corresponding to the properties of the feature. For example, z1 might correspond to the
amplitude of a signal detected in a time series at time z2. A typical analysis would scan over the z>1,
finding the best fit value for the amplitude z1 at each point, giving rise to a multimodal posterior.

In this work we wish to determine whether or not a dataset contains a true anomaly. In the
language of hypothesis testing, we wish to compare the hypothesis that there is an anomaly H,
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corresponding to z1 > 0, to the null hypothesis that there is no anomaly H0, corresponding to z1 = 0.
We assume the common case that the parameters of H0 are a subset of the parameters of H, with
H reducing to H0 when z1 = 0. There may also be parameters other than z that are common to
both models, but these are of secondary importance when considering the look-elsewhere effect and
we drop these from the notation.

Using equation 2.8 with
∑
wl = 1 implies that the Bayesian evidence for hypothesis H is given

by

p(x|H) =

∫
dz p(x|z, H)p(z|H) =

∑

l

ml, (2.10)

where the ml correspond to the masses under hypothesis H. Hence, each mode contributes its mass
to the evidence. It follows that the mass of mode l corresponds to the Laplace approximation of the
evidence integral in equation 2.10, integrated over the region of the mode. Because the null hypothesis
does not depend on z>1, the evidence for the null hypothesis is given by the likelihood evaluated at
z1 = 0, that is p(x|H0) = p(x|z1 = 0) ≡ p0(x). Together with equation 2.10 this gives the Bayes
factor

B ≡ p(x|H)

p(x|H0)
=

1

p0(x)

∑

l

ml ≡
∑

l

bl, (2.11)

where bl is defined as the contribution of mode l to the Bayes factor. Using equation 2.8 gives

bl =
p(x|µl)
p0(x)

p(µl)(2π)M/2
√

det Σl =
p(x|µl)
p0(x)

Vposterior(µ
l)

Vprior(µl)
, (2.12)

where we have introduced the effective volume of the prior at µl as,

V −1
prior(µ

l) ≡ p(µl), (2.13)

appropriate for the case of a narrow posterior relative to the prior. In the remainder of this paper we
will drop the µl dependence of the prior volume, as appropriate for a flat prior on z.

Intuitively, one can think of each bl as the Bayes factor one would get if mode l were the only mode
in the posterior. If the maximum bl is sufficiently large, it alone can provide a useful approximation
to the Bayes factor, meaning the MPM mode dominates the Bayes factor. The first ratio on the right
hand side of equation 2.12 corresponds to the likelihood ratio of the signal hypothesis to the null
hypothesis, evaluated at the location of the peak, z = µl. This is greater than or equal to 1 since
adding parameters to the null hypothesis can only improve the fit. The second ratio gives the ratio
of the posterior volume to the prior volume at the peak, which is always less than 1. This acts as a
penalty to the likelihood ratio, often referred to as the Occam’s razor penalty [28], or model complexity
penalty, and compensates for the look-elsewhere effect in the case of a multimodal posterior. The
higher the prior-to-posterior volume ratio, the higher the chance that peaks with a high likelihood
will occur because of statistical fluctuations, thus the larger the penalty required to compensate.

Just as qL is the estimator associated with MAP, we can define qb ≡ 2 ln b as the estimator
associated with MPM, such that

qb = qL − 2 ln
Vprior

Vposterior
. (2.14)

The MPM mode corresponds to the mode with maximum qb. This illustrates how the MAP estimator
ignores the look-elsewhere penalty by effectively considering the posterior and prior to be overlapping
delta functions, which presumes a priori knowledge of the parameters and gives a prior-to-posterior
volume ratio of unity.

An interesting question to consider is whether one can relate qb to the look-elsewhere corrected
statistical significance in a frequentist sense. In the absence of the look-elsewhere effect, the signifi-
cance is given by

√
qL, but simply taking

√
qb as the look-elsewhere corrected significance would not

be correct. In the next section we turn to a frequentist description of the look-elsewhere effect to
motivate a new estimator which applies a small modification to qb and has a simple interpretation in
terms of the significance, or p-value.
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Before ending this section we discuss the choice of priors appropriate for a look-elsewhere analysis.
If one has no prior knowledge regarding the location of an anomaly, then a uniform prior for the z>1

parameters is appropriate. If the prior is wide and posterior narrow this induces a large look-elsewhere
effect. This choice of prior is not controversial. On the other hand, the choice of prior for the amplitude
parameter z1 is less clear. If one has no prior knowledge of the signal amplitude, then one should be
open to a signal of any size, however one does not want the amplitude prior to induce a look-elsewhere
penalty. In Bayesian hypothesis testing the amplitude parameter is treated analogously to the other
parameters, thus if one uses too broad an amplitude prior it will induce an unwanted look-elsewhere
penalty, whereas if one chooses too narrow an amplitude prior one risks discounting a large signal.
Based on this we rewrite b in the following form, explicitly separating the marginalization over z>1

and z1,

b = eqL/2
V>1,posterior

V>1,prior

V1,posterior

V1,prior
. (2.15)

The posterior volume terms are given by the covariance matrix, as in equation 2.9, and V>1,prior is
given by the choice of prior on z>1. It thus remains to justify a choice of V1,prior, which we will do
by turning to a frequentist description of the look-elsewhere effect in the next section.

3 From Bayesian to frequentist hypothesis testing

Standard statistics literature states that Bayesian and frequentist hypothesis testing follow different
methodologies and may give very different results. One famous illustration of this is the Jeffreys-
Lindley “paradox” [29], however, there is much debate as to whether this is indeed a paradox and
how relevant it is for scientific discourse (see [30] for a review in the context of high energy physics).
While Bayesian statistics uses the Bayes factor for hypothesis testing, frequentist statistics uses the
maximum likelihood ratio, or q̂L. One of the most important aspects of frequentist methodology is
the computation of the false positive rate using the p-value, which quantifies how often a test statistic,
for example q̂L, will take a specific value or larger under the assumptions of the null hypothesis. This
has an intuitive interpretation as it directly relates to the false positive rate of the test statistic.
On the other hand, Bayesian methodology rejects the p-value. The basis for this rejection is the
likelihood principle, which states that any inference about the parameters z from the data x can only
be made via the likelihood p(x|z). When the likelihood principle is applied to testing a hypothesis
with parameters z one must use the marginal likelihood by integrating out these parameters – as in
the Bayesian evidence of equation 2.3 – thus Bayesian methodology explicitly satisfies the likelihood
principle. It is commonly argued that p-values violate the likelihood principle, because they rely on
the frequentist properties of a distribution that go beyond the likelihood principle. However, the
Bayes factor provides a less reliable tool for model comparison, as it is often interpreted in terms of
arbitrary, model-independent scales [31], unlike the p-value which directly relates to the false positive
rate.

We seek to elucidate how the answers of the two schools of statistics relate to one and other when
it comes to the hypothesis testing. Both schools of statistics should give a similar, or at least related
answer, when the question is phrased similarly. For uncertainty quantification it is often argued that
the two schools do not answer the same question, since the Bayesian school treats data as fixed and
varies the models, while the frequentist school varies the data at a fixed model. However, when
it comes to hypothesis testing the distinction is less prominent: for example, when comparing two
discrete hypotheses without any marginalizations, the answer in both cases gives the likelihood ratio
as the optimal statistic (assuming equal prior for the two hypotheses). For continuous hypotheses it
is often argued this is not possible. Here we will show that the two answers, the p-value and the Bayes
factor, can be related with a specific choice of prior. It is important to emphasize that we are not
claiming to equate the Bayesian and frequentist methodologies, but rather motivate a connection.

In this work we define the p-value as the probability under the null hypothesis, H0, of a random
variable, Q, to be observed to have a value equal to or more extreme than the value observed, q. We
thus use the notation P (Q ≥ q) for the p-value. To compute the p-value of a test statistic, one must
consider how the test statistic is distributed under the null hypothesis. For the example of q̂L this
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distribution is not universal: scanning over continuous variables, as in the look-elsewhere effect, will
modify this distribution in a model dependent manner. Moreover, increasing the model complexity in
other ways, for example by including extra degrees of freedom, will further modify the distribution. To
account for extra degrees of freedom, Wilks’ theorem [32] provides the asymptotic distribution of q̂L
for a hypothesis test where H has ν more degrees of freedom than H0. However, Wilks’ theorem relies
on technical conditions, such as the observed value not being at the edge of the interval, and does not
consider the look-elsewhere effect. Generalization of Wilks’ theorem for the look-elsewhere effect have
been considered in [33, 34] and have been translated into a practical procedure in [23]. As a result, a
frequentist approach consists of a series of considerations to determine the change in the distribution
of q̂L due to different sources of model complexity. This is unlike the Bayesian methodology where
all forms of model complexity are accounted for in the same way, as they are encoded into the Bayes
factor. By connecting the two methodologies, we will present a test statistic whose distribution is
universal, regardless of the model complexity and look-elsewhere effect.

3.1 Maximum Posterior Significance (MPS) estimation

We start by considering the typical case of one degree of freedom, corresponding to a single signal with
amplitude z1 and features described by z>1. We denote qL maximized over the amplitude parameter
only as q̌L(z>1) ≡ maxz1 qL(z), not to be confused with q̂L ≡ maxz qL(z) which is qL maximized
over all parameters. For a t-tailed test (where t is equal 1 or 2), Wilks’ theorem gives the asymptotic
p-value of q̌L, at any position z>1, as

P (Q̌L ≥ q̌L) =
t

2
F̃1(q̌L)

q̌L→∞−−−−→ t√
2πq̌L

e−q̌L/2, (3.1)

where F̃ν is the complementary cumulative distribution function (CCDF) of a chi-squared random
variable with ν degrees of freedom. This maximization over z1 at a fixed choice of z>1 corresponds
to the p-value in the absence of the look-elsewhere effect, referred to as the local p-value. Further
maximizing over z>1 introduces the look-elsewhere effect, which can be parameterized by multiplying
by the trials factor N such that

P (Q̂L ≥ q̂L) = N
t√

2πq̂L
e−q̂L/2. (3.2)

This is referred to as the global p-value. It is this form that leads to the Bonferroni correction [21]
which divides the type I error by N to account for the look-elsewhere effect. For discrete problems the
trials factor equals the number of trials performed. However, in the continuous case it is ill-defined,
but it quantifies how the probability of finding a spurious peak increases as one looks elsewhere in
the space spanned by z>1. Accounting for the look-elsewhere effect thus requires an expression for
the trials factor.

It follows from equation 3.2 that one can define a test statistic,

qS = qL − 2 lnN + ln 2πqL − 2 ln t (3.3)

such that the global p-value tends to

P (Q̂S ≥ q̂S)→ e−q̂S/2, (3.4)

as either N →∞ or q̂S →∞, so this also applies for N = 1. See Appendix A for a derivation. Unlike
q̂L, q̂S has a distribution that is independent of N – the look-elsewhere effect has been absorbed
into the test statistic. Intuitively one can think of the 2 lnN term as a penalty to qL to correct for
the look-elsewhere effect, while the ln 2πqL term removes qL dependent bias, ensuring the p-value
depends on q̂S alone in the asymptotic limit. Thus to account for the look-elsewhere effect one need
only compute q̂S and use this equation to compute the p-value. Because the p-value is a monotonically
decreasing function of q̂S , one can think of selecting the peak with maximum qS as selecting the peak
with minimum p-value or maximum statistical significance. We refer to the mode with maximum qS
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as the MPS mode, deferring an explanation for this nomenclature until the end of the subsection. The
similarity of qS to qb from equation 2.14 suggests a connection between the frequentist and Bayesian
pictures, and we now invoke this connection to find an expression for N and in turn generalize the
Bonferroni correction to continuous parameters.

Heuristically, the Bayes factor describes the probability of the alternative hypothesis relative to
the null, determined by the likelihood (as measured by q̂L), while the p-value averages its inverse over
all values larger than q̂L and will be smaller than the likelihood. We expect that for higher q̂L the
effect is larger because we are further into the tail of the distribution. There is no unique relation
between the two, but one simple option is that the p-value scales as B−1/q̂L ≈ b̂−1/q̂L, where hats
now indicate quantities associated with the MPS mode. Because we have the freedom to choose the
prior on z1, we can define the relation between the Bayes factor and p-value as

b̂−1

q̂L
≡ P (Q̂L ≥ q̂L). (3.5)

Comparing equation 2.15 with equation 3.2 then gives

V>1,prior

V̂>1,posterior

V1,prior

V̂1,posterior

e−q̂L/2

q̂L
= N

t√
2πq̂L

e−q̂L/2. (3.6)

By requiring that this relation holds in the absence of the look-elsewhere effect, the trials factor can
be identified as

N =
V>1,prior

V̂>1,posterior

, (3.7)

and the amplitude prior volume is given by

V1,prior = t
√
q̂L
V̂1,posterior√

2π
= t
√
q̂Lσ̂1 ≈ tµ̂1. (3.8)

In the final steps we used V̂1,posterior =
√

2πσ̂1, where σ̂1 is the error on the amplitude parameter,
µ̂1, and that the signal-to-noise ratio obeys

√
q̂L ≈ µ̂1/σ̂1. Since the look-elsewhere effect leads to

large q̂L, this prior volume will be larger than the posterior volume. This choice of amplitude prior
volume ensures that there is no trials factor associated with the amplitude, as intuition would dictate.
Substituting equations 3.7 and 3.8 into equation 3.3 yields

qS = qb + 2 ln qL. (3.9)

Hence, we have effectively applied a modification to the MPM estimator to give a combination of
the MPM and MAP estimators, so that the asymptotic p-value is neatly given by e−q̂S/2. In the
context of the look-elsewhere effect, the mode with maximum qb will typically also be the mode with
maximum qL, and thus maximum qS . However, this equivalence of MAP and MPM may not always
be the case, as shown in figure 1.

A pure Bayesian might argue that equation 3.8 is not a valid prior, since it depends on the
a posteriori amplitude parameter µ̂1; however, this prior does have an intuitive justification. If a
scientist is willing to consider a signal of any amplitude, the prior cannot be zero at µ̂1, as it would
not make sense to discard the signal. On the other hand, making the prior significantly broader
than µ̂1 implies the scientist has some additional information on the nature of the amplitude. When
there is no justification for broadening the prior, the narrowest possible prior still consistent with
the measured value can be more reasonable than arbitrarily fixing the size of the prior a priori. This
choice of amplitude prior is simply designed to allow for a signal with any amplitude, without inducing
an unwanted look-elsewhere penalty.

Note that the explicit dependence on q̂L and the marginal likelihood, via b̂, in equation 3.5
is what makes the p-value inconsistent with the likelihood principle. One could instead consider
equating b̂−1 directly with the p-value, making it consistent with the likelihood principle. This would
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Figure 2. Equation 3.11 is a good approximation to F̃1(q) over the entire range of q. This suggests that MPS
is still accurate in the absence of the look-elsewhere effect for a two-tailed test, even non-asymptotically.

require an amplitude prior of V1,prior = tσ̂2
1/µ̂1, which we deem unreasonable as it is smaller than

the posterior volume V̂1,posterior. We emphasize that the equality of b̂−1/q̂L to the p-value is not
strictly required for our approach to the look-elsewhere effect, but provides intuition for the Bayesian-
frequentist connection. At its core, our method considers the test statistic q̂S , from equation 3.3, and
replaces the trials factor N with the prior-to-posterior volume of the non-amplitude parameters z>1.
Intuitively one can think of the number of trials as the number posterior volumes that fit within the
prior volume.

Because the asymptotic p-value scales linearly with the prior volume, the non-asymptotic form
of the p-value can be derived by dividing the prior volume into K � 1 regions and evaluating the
p-value for each. Assuming independence between these regions, the product of the p-values for each
region can be used to obtain p-value of the full volume. Further assuming that the asymptotic regime
still applies, this gives

P (Q̂S ≥ q̂S) = lim
K→∞

[
1−

(
1− e−q̂S/2

K

)K]
= 1− exp

(
−e−q̂S/2

)
. (3.10)

Just as equation 3.4 is a generalization of the Bonferroni correction, equation 3.10 is a generalization
of the Šidák correction [22] to continuous variables. This expression generalizes the p-value into the
non-asymptotic regime.

For N � 1 every realization will have a positive peak, hence even the one-tailed p-value will
approach 1 for sufficiently low q̂L, which equation 3.10 predicts to be for q̂S < 0. In the absence of
the look-elsewhere effect (N = 1) a one-tailed test should approach a p-value of 0.5, while equation
3.10 approaches 1 as q̂S → −∞. Thus, the non-asymptotic agreement breaks down for t = 1 and
N = 1. On the other hand, if t = 2 and N = 1, substituting qS = qL + ln 2πqL − 2 ln 2 into equation
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3.10 gives

P (Q̂L ≥ q̂L)N=1,t=2 = 1− exp

[
−
(

2

π

1

q̂L

)1/2

e−q̂L/2

]
. (3.11)

The term in the square brackets can be identified as the asymptotic expansion of F̃1(q̂L). We show
the non-asymptotic agreement of this equation with F̃1(q̂L), the true two-tailed p-value for N = 1,
in figure 2. This illustrates the ability of the generalized Šidák correction to produce correct non-
asymptotic results, even in the absence of the look-elsewhere effect. Hence, although we have applied
asymptotic approximations throughout the above calculations, we have obtained a result that is valid
even in the non-asymptotic limit. Inverting equation 3.11 gives the significance, or number of sigma,
S, as

S2 ≈ q̂S − ln 2πq̂S + 2 ln t, (3.12)

with corrections of order O(q̂−1
S ). In the limit of q̂S →∞, the significance can be interpreted as

√
q̂S ,

in an analogous way to
√
q̂L in the absence of the look-elsewhere effect. This motivates the name

maximum posterior significance (MPS) as qS depends on the posterior via the trails factor N , and is
monotonically related to the significance S.

In summary, by considering a frequentist description of the look-elsewhere effect we introduced
q̂S as a natural test statistic to use, such that the asymptotic p-value is given by e−q̂S/2. We derived a
general expression for the p-value which also applies in the non-asymptotic regime, and when there’s
no look-elsewhere effect. Adopting the prior of equation 3.8, we showed that one can write the p-
value in terms of Bayes factor as b̂−1/q̂L. This intrinsically accounts for the look-elsewhere effect by
identifying the trials factor as the prior-to-posterior volume ratio of z>1 at the MPS mode. While
one can compute the Bayes factor using a variety of methods, we will use the Laplace approximation
to evaluate the posterior volume of each mode, as in section 2. To outline the step-by-step approach:

Maximum Posterior Significance (MPS) estimation:
1. Scan over the space of non-amplitude parameters, z>1, locating peaks in the posterior

with any amplitude, z1. Often only the highest few peaks are needed.
2. Compute qL and the posterior volume, using equation 2.9, for each peak.
3. Compute qb for each peak using equation 2.14 with the amplitude prior of equation 3.8.
4. Compute qS = qb + 2 ln qL for each peak.
5. Find the peak with maximum qS .
6. Compute the (global) p-value using equation 3.10 and significance using 3.12.

3.2 Multiple degrees of freedom

For models with multiple degrees of freedom, the frequentist approach is to apply Wilks’ theorem
[32]. This is valid in the asymptotic limit, where, for a two-tailed test, the local p-value is given by

Pν(Q̌L ≥ q̌L) = F̃ν(q̌L)
q̌L→∞−−−−→ 1

Γ(ν/2)

(
q̌L
2

)ν/2−1

e−q̌L/2, (3.13)

for a model with ν degrees of freedom. Note that the limit assumes q � ν, but for ν = 2 it is
exact for any q. Wilks’ theorem can address the model complexity problem of having multiple (ν)
continuous amplitude parameters. A specific example from particle physics is a decay process with ν
decay channels, each with amplitude Ai (0 ≤ i ≤ ν). In such a case max{Ai} qL({Ai}, ...) ∼ F̃ν . Wilks’
theorem is not sufficiently general: it fails if the parameters are at the edge of their distribution, and
it does not naturally handle the model complexity of the look-elsewhere effect, where one scans over
a wide range of values for one or more parameters. Upon introduction of the look-elsewhere effect
a frequentist would typically consider single trials distributed as ∼ F̃ν , and then use a ν-dependent
trials factor [23]. Thus in a frequentist approach extra degrees of freedom and the look-elsewhere
effect are treated separately. On the other hand, a Bayesian approach accounts for both in the same
way.
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To apply the Bayesian methodology, we first reparameterize the model so that there is only a
single amplitude parameter by introducing branching ratios αi, such that each amplitude parameter is
Ai = αiz1, where z1 is the total amplitude parameter and

∑ν
i=1 α

2
i = 1. To remove the constraint we

adopt rotation angles: for example, for ν = 2 we can work with a phase angle φ, such that α1 = cosφ
and α2 = sinφ. Thus, instead of working with A1 and A2 and considering maxA1,A2

qL(A1, A2, ...) ∼
F̃2, we consider maxz1 qL(z1, φ, ...) ∼ F̃1 with z>1 = (φ, ...). We can then directly apply the MPS
prescription for ν = 1, as in the previous subsection, by additionally marginalizing over φ to account
for the model complexity with an additional prior-to-posterior volume penalty.

To be agnostic, one would choose a prior volume for φ of Vφ,prior = π (in practice a more
complex prior may be appropriate, but it will typically be O(1)). Furthermore, the average error on

φ is typically equal to the relative error on the amplitude, thus σφ ≈ σ1/µ1 ≈ q
−1/2
L . This gives a

model complexity correction of

Vφ,prior

V̂φ,posterior

=
π√

2πσ̂φ
=
√
π

(
q̂L
2

)1/2

=
F̃2(q̂L)

F̃1(q̂L)
. (3.14)

This shows that increasing the model complexity with an extra degree of freedom is accounted for in
the Bayesian framework by marginalizing over φ. Thus, the Bayesian answer to an increase in model
complexity, whether it be due to including extra degrees of freedom, or looking elsewhere, is identical:
marginalization over the non-amplitude parameters z>1. The ν dependence of the local p-value in
equation 3.13 can be interpreted as a Bayesian model complexity penalty: a fixed p-value corresponds
to a larger q̂L as ν increases. Thus, MPS intrinsically generalizes Wilks’ theorem by relating the trials
factor to the prior-to-posterior volume.

4 Example I: resonance searches

To test the theory of section 3 we first consider a resonance search example. These appear in many
different areas of physics, including astroparticle and high energy physics. We consider a search
for a new particle whose mass and cross-section are unknown. The data x could correspond to
measurements of the invariant mass in the case of collider searches, or the energy flux in astroparticle
searches. The probability density for a single measurement, xi, is given by

p(xi|f, x∗, σ∗) = fps(x
i|x∗, σ∗) + (1− f)pb(x

i), (4.1)

where ps and pb are the normalized signal and background distributions respectively, and f is the
fraction of events belonging to the signal. We assume that the form of the signal and background
are known; we take the signal to be a normal distribution ps(x

i|x∗, σ∗) = N(xi|x∗, σ∗), and the
background to be a power law. Thus the resonance has position x∗ and width σ∗. Given data
x = {xi}Nd

i=1, the likelihood is given by the product of the individual probability densities over the
data. Using equation 4.1 this gives the likelihood as

p(x|f, x∗, σ∗) =

Nd∏

i=1

[
fps(x

i|x∗, σ∗) + (1− f)pb(x
i)
]
. (4.2)

Note that the Bayesian evidence under the null hypothesis is independent of the parameters, namely

p0(x) ≡ p(x|f = 0) =

Nd∏

i=1

pb(x
i). (4.3)

While the likelihood depends on the number of data Nd, quantities such as the p-value will have
converged provided Nd is sufficiently large to resolve the resonance. Throughout this section we
fix Nd = 10Vx∗,prior/σ∗ to ensure sufficient convergence. We note that more complex models might
consider drawing Nd from a Poisson distribution, however this is unnecessary for our proof of concept.
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Figure 3. The local chi-squared (left axis) and local p-value (right axis) for an example data realization with
true amplitude f = 5× 10−3, position x∗ = 500, and width σ∗ = 0.5. While there is a peak with q̌L ≈ 10 at
the correct position, the look-elsewhere effect leads to other, sometimes larger, peaks at random positions.

We first consider a uniform prior on x∗, with range (0, 103), i.e. a prior volume of Vx∗,prior = 103.
We do not fit for σ∗ and fix it to σ∗ = 0.5 a priori, corresponding to the narrow-width approximation.
In this case the posterior is only multimodal in the x∗ dimension, thus to find peaks we split the
parameter space along the x∗ dimension into narrow bins of size ∆x∗ and compute the maximum
likelihood of equation 4.2 within each bin. Ensuring ∆x∗ is sufficiently small, we determine the
location of all peaks in the posterior, µl, by comparing adjacent bins. The Hessian at each peak is
then computed using finite differencing, and inverted to give Σl. Note, in this example we have an
analytical form for the likelihood, enabling verification of the numerical computation with analytical
results. The value of qb at each peak is then computed using equation 2.14, in turn giving q̂S .

Figure 3 shows the local chi-squared and local p-value as a function of x∗ for an example data
realization. We use true parameters f = 5 × 10−3 and x∗ = 500. Recall from equation 3.1 that the
local chi-squared and p-value correspond to the values obtained by maximizing over f at fixed x∗,
i.e. they correspond to the values obtained without having corrected for the look-elsewhere effect. The
local chi-squared q̌L can also be thought of as the projection of qL onto the x∗ axis. It can be seen that
although there is a peak with qL ≈ 10 at the correct position, there are also multiple spurious peaks
throughout the parameter space, with q̂L ≈ 14 in this example. This illustrates the look-elsewhere
effect: peaks with a local p-value of ∼ 10−4 are produced by noise, meaning a signal with such a local
p-value should not be considered as significant as its local p-value naively suggests.

We now consider 105 different data realizations without a signal (f = 0) to study the distributions
of q̂L and q̂S under the null hypothesis. The plots in figure 4 show the global p-value in terms of q̂L
and q̂S for a variety of scenarios. One can think of the vertical axes as corresponding to the false
positive rate (FPR) of a hypothesis test using threshold q.

We first compare three different prior volumes on x∗, Vx∗,prior = 103, 102, 101, to show the
effectiveness of our method for large and small N . The top left plot of figure 4 shows that the p-value
of q̂L has a considerable prior volume dependence. This is the look-elsewhere effect: a larger prior
volume leads to a larger trials factor and thus an increased probability of finding a higher maximum
likelihood. On the other hand we see that q̂S shows no prior dependence and is in good agreement
with equation 3.10, even in the non-asymptotic regime.

We also investigate the variation of the p-value with the value of the width of the signal σ∗. This
is shown in the top right plot of figure 4 where we consider σ∗ = 0.1, 0.5, 1.0. Smaller σ∗ leads to
a smaller posterior volume and thus a larger trials factor. Much like the discussion above for prior
volume variation, q̂L has a large σ∗ dependence, unlike q̂S .

Next, we investigate the variation of the p-value with the dimensionality of the look-elsewhere
effect. To do this we extended the model to consider a signal at vector position x∗. Each data point
now corresponds to a vector xi, and we extend the signal and background in a symmetric fashion
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Figure 4. CCDFs of q̂L (dotted) and q̂S (dashed), computed using 105 simulations with no signal (f = 0).
(Top Left) compares three prior volumes: 103 (red), 102 (blue), and 101 (magenta). (Top Right) compares
different values of signal width σ∗: 0.1 (red), 0.5 (blue) and 1.0 (magenta). (Bottom Left) compares the
dimensionality of x∗: 0d (red), 1d (blue), 2d (magenta), and 3d (green). (Bottom Right) compares the un-
binned f -parameterization (red) against a binned Poisson parameterization (blue). In all cases the p-value of
q̂L has large variation, whereas q̂S does not. Furthermore, q̂S closely follows the predictions of equation 3.10
(black).

across each dimension, keeping the total prior volume fixed. Within the context of collider searches,
the components of x∗ might correspond to a collection of invariant mass and jet properties. For
astroparticle searches, the multiple dimensions might correspond to different directions in the sky.
The bottom left plot of figure 4 shows the variation of the test statistics for dimensionality of 1, 2,
and 3, for a constant prior volume of 100. It can be seen that, while the p-value of q̂L is dependent
on the dimensionality, the p-value of q̂S is not. This justifies the naturally arising (2π)M/2 prefactor
in the posterior volume in equation 2.9. We also plot the 0d case, corresponding to only fitting for
A with fixed x∗. Even though there is no look-elsewhere effect in this case, asymptotic agreement
with equation 3.10 is still achieved. This shows our approach is still reliable in the N → 1 limit,
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√
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all data realizations.

justifying its applicability for arbitrary N . As discussed in section 3.1, non-asymptotic agreement is
not expected for a one-tailed test in the absence of the look-elsewhere effect, as the p-value tends to
0.5 as q̂L → 0; on the other hand, a two-tailed test would give non-asymptotic agreement as shown
in figure 2.

The above discussion concerns an un-binned model, parameterized by the signal fraction f . Often
in particle physics, one performs a binned analysis with the number of events in each bin modelled
as a Poisson distribution [35]. We find similar results when using this Poisson parameterization, as
pictured in the bottom right of figure 4. The Poisson line agrees with the black line slightly better
than the f line does, likely because the Laplace approximation is more accurate in the Poisson case.

When it comes to hypothesis testing, the relation between the true positive rate (TPR) and the
false positive rate (FPR) determines the predictive power of a test statistic. In order to compare the
relative power of the test statistics we consider an ROC plot for a variety of true f values, shown in
figure 5. We also quote the (local) signal-to-noise ratio (SNR), which we define as the average

√
q̂L

across 104 realizations for the given f . It can be seen that q̂S and q̂L have approximately equivalent
ROC lines, suggesting MAP and MPS have equal predictive power. This is expected as the relation
between the test statistics is approximately monotonic, as seen in equation 3.3. Also, it can be seen
that the predictive power increases with true f – as expected a larger true signal is more likely to be
correctly detected.

5 Example II: white noise

While we could continue the discussion in the context of resonance searches, we now consider a
white noise time series example to illustrate the application of MPS to different models. This can be
thought of as a toy model of a gravitational wave search. In this section we show how MPS handles
additional model complexity as theorized in section 3.2. We consider a time series y(x) comprising

– 14 –



0 5 10 15 20 25

q̂

10−3

10−2

10−1

100

P
(Q̂
≥
q̂)

Degrees of Freedom Dependence

q̂L [A]

q̂S [A]

q̂L [A, φ]

q̂S [A, φ]

q̂L [A, x∗]

q̂S [A, x∗]

q̂L [A, φ, x∗]

q̂S [A, φ, x∗]

F̃1(q̂)/2

F̃2(q̂)/4

1− exp (−e−q̂/2)

Figure 6. CCDFs of q̂L and q̂S averaged over 105 simulations with no signal (A = 0). The parameters in the
square brackets are those being maximized, with other parameters being held fixed (as discussed in the text).
The p-value of q̂L varies depending on the model complexity, whereas q̂S consistently follows the prediction
of equation 3.10 (solid black).

of measurements at Nd times, x = {xi}Nd
i=1, with spacing xi+1 − xi = 1. In the absence of a signal,

each data point yi ≡ y(xi) is assumed to be a standard normal random variable, i.e. we assume white
noise. We consider a model with 2 degrees of freedom (dofs), with signal given by

ps(x|A1, A2, x∗,∆, σ∗) = A1N(x|x∗, σ∗) +A2N(x|x∗ + ∆, σ∗) (5.1)

where A1,2 > 0 are the amplitudes of each dof, x∗ and x∗ + ∆ are the positions of the dofs, and σ∗ is
the common width.

As motivated in section 3.2, we reparameterize so that there’s a single amplitude parameter,
z1 = A, and other parameters describing the properties of the single degree of freedom, z>1. We thus
transform variables using A1 = A cosφ and A2 = A sinφ, with A > 0 and 0 ≤ φ ≤ π/2 for a one-tailed
test. By substituting the transformations into equation 5.1, the signal in the new parameterization is
given by

ps(x|A, φ, x∗,∆, σ∗) = A [cosφN(x|x∗, σ∗) + sinφN(x|x∗ + ∆, σ∗)] . (5.2)

The corresponding chi-squared difference between the data and the null hypothesis, equal to two times
the log-likelihood-ratio, is given by

qL(x|A, φ, x∗,∆, σ∗) =

Nd∑

i=1

[
yi − ps(xi|A, φ, x∗,∆, σ∗)

]2 − [yi]2. (5.3)

We consider a uniform prior on x∗ with range (0, 100), i.e. a prior volume of Vx∗,prior = 100, and
Nd = 100. We do not fit for σ∗ or ∆ and fix them to σ∗ = 0.5 and ∆ = 10. The application of MPS
is identical to the previous section, so we will not repeat the methodology here.
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Considering 105 data realizations with no signal, figure 6 shows how q̂L and q̂S are distributed
for different levels of model complexity. First we maximize over A, while holding all other parameters
fixed. In this case q̂L ∼ F̃1(q̂L)/2 (red dotted line) as expected for a one-tailed test with one degree
of freedom. Additionally maximizing over φ allows for 2 dofs, and gives q̂L ∼ F̃2(q̂L)/4 (blue dotted
line). This is expected because there are 4 permutations of each dof having positive or negative
amplitude, and A1,2 > 0 considers 1 of these 4. For both of these cases, q̂S follows the same asymptotic
distribution as predicted by equation 3.10. This verifies that the Bayesian picture of marginalizing over
φ successfully reduces a model with 2 dofs to the same scale as 1 dof, in other words Wilks’ Theorem
has been replaced by marginalizing over φ. There is some discrepancy in the non-asymptotic regime
for the maximization over A only (red dashed line), as discussed in section 3.1 for a one-tailed test.

We now introduce the look-elsewhere effect by allowing x∗ to vary. First we maximize over A and
x∗ for fixed φ = 0, as shown by the magenta lines. This is equivalent to a model with 1 dof because
φ = 0 corresponds to A2 = 0. We see that the distribution of q̂L (magenta dotted line) is shifted
to the right compared to the red and blue dotted lines due to the look-elsewhere effect. However,
the distribution of q̂S (magenta dashed line) continues to follow the line predicted by equation 3.10.
Finally, when maximizing over A, φ and x∗, i.e. a model with 2 dofs in the presence of the look-
elsewhere effect, q̂L (green dotted line) is further right-shifted, whereas q̂S (green dashed line) again
agrees with equation 3.10. The slight discrepancy in the A, φ, x∗ maximization case is due to using too
large a prior volume: there is a slight preference to having two well fitted peaks compared to one very
well fitted peak, thus the distribution of φ is clustered towards φ = π/4. Using a more appropriate
prior for φ would improve agreement.

In summary, while the distribution of q̂L is highly dependent on the model complexity, via the
extra degrees of freedom and look-elsewhere effect, q̂S has a universal distribution.

6 Example III: non-Gaussian models of cosmological inflation

There is much interest in detecting non-Gaussian models of inflation via the cosmological power
spectrum [36–41]. A specific type of such a feature model adds the following oscillatory perturbation
to the ΛCDM power spectrum,

P (k) = P0(k)[1 +A sin(2ωk + φ)], (6.1)

where P0(k) is the featureless (ΛCDM) power spectrum and A, ω, and φ are the amplitude, frequency,
and phase of the oscillatory perturbation. Such models are searched for using Planck 2013 data in [14]
using the frequentist look-elsewhere analysis technique of [13]. In this section we seek to reproduce
the conclusions of these papers using MPS.

Equation 6.1 can be written in the form P (k) = P0(k) + ∆P (k) with

∆P (k;A,ω, φ) = AP0(k)[cosφ sin(2ωk) + sinφ cos(2ωk)]

≡ A cosφPs(k;ω) +A sinφPc(k;ω),
(6.2)

where in the last line we explicitly separate terms with A and φ, as only ω couples to k. Assuming a
linear relation, one can write C` = C`,0 + ∆C`, with

∆C`(A,ω, φ) = A cosφC`,s(ω) +A sinφC`,c(ω), (6.3)

where C`,s and C`,c are the angular power spectra corresponding to Ps and Pc respectively. The
Planck Likelihood [24] is given by

− 2 logL(Ĉ`|A,ω, φ) = [Ĉ`1 − C`1(A,ω, φ)]∆`1`2 [Ĉ`2 − C`2(A,ω, φ)], (6.4)

where Ĉ` are the PCL estimates, and ∆`1`2 = 〈∆Ĉ`1∆Ĉ`2〉 is the PCL covariance matrix. In order to
compute the likelihood for the null hypothesis, CosmoMC [42] was used to find the best fit values for
the cosmological and nuisance parameters. When computing the likelihood for the signal hypothesis,
the cosmological parameters were held fixed at these values; while they should really be re-fitted for
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the signal hypothesis, this is found to have little effect in [14]. The C` are evaluated using CAMB
[43] with a sufficiently high accuracy setting to ensure resolution of the rapid oscillations. To speed
up the evaluation of the likelihood over parameter space, C`,s(ω) and C`,c(ω) were computed over a
discrete range of ω between 0 and 4000 with step-size ∆ω = 5, with intermediate values computed via
spline interpolation. A flat prior was chosen for ω and φ. The rest of the analysis is analogous to the
previous examples: we find all the local maxima of the posterior, compute the Hessian using finite
differencing, compute the covariance matrix, and use this to find q̂S . Unlike the previous examples,
we note that ω and φ are correlated, as illustrated in the middle plot of figure 7, so it is important
to use the determinant of the full covariance matrix and not just its diagonal components. It is also
interesting to note that higher peaks have smaller errors.

The results obtained using the CAMspec component of the 2013 Planck likelihood1 are pictured
in figure 7. The maximum occurs at ω ≈ 3660 with q̂L = 15.4, giving a naive significance of

√
q̂L ≈ 4

sigma. However, we find that q̂S = 3.0, giving a global p-value of 1 − exp(1 − e−3/2) = 0.20 using
equation 3.10, and significance of S = 1.3 sigma. Thus the signal is in fact far less significant in light
of the look-elsewhere effect. The prescription of [14] gives a p-value of 0.13, which is in reasonable
agreement. Note that our likelihood profile does not match [14] exactly due to our approximate
approach, hence the p-value quoted here is the value one would obtain by applying the prescription
of [14] to our likelihood profile. We applied the same analysis to the 2015 plik lite likelihood [44]
and found a p-value of approximately 1, suggesting no evidence for such models of non-Gaussianity.

1One should sum the different components of the likelihood, but this is unnecessary for our proof of concept.
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7 Conclusions

This work has employed Bayesian and frequentist thinking to provide a general method to account
for the look-elsewhere effect. We started by considering the Bayesian approach, and explained how
maximizing the posterior mass, as in MPM, is a more appropriate choice than maximizing the pos-
terior density, as in MAP. Bayesian methodology naturally considers model complexity and the look-
elsewhere effect by marginalization, which penalizes the likelihood by the prior-to-posterior volume
ratio. Under the Laplace approximation, the posterior volume is proportional to the determinant of
error covariance matrix. We then considered the frequentist approach by writing the global p-value as
the local p-value multiplied by the trials factor. By drawing an analogy between the two approaches
we identified the trials factor as the prior-to-posterior volume ratio of the parameters being scanned
over, in turn generalizing the Bonferroni correction to continuous problems. We introduced qS and
in turn MPS, a hybrid of MPM and MAP, which considers the mode with maximum qS . Finally,
we generalized the Šidák correction to continuous problems, providing a universal way to assign the
global p-value in both the asymptotic and non-asymptotic regimes.

We illustrated the effectiveness of MPS by considering several examples from (astro)particle
physics and cosmology, showing it to have equal predictive power to MAP while naturally accounting
for the look-elsewhere effect. MPS effectively shifts the hypothesis testing threshold of the maximum
likelihood ratio to a generic scale: while the peak maximum likelihood ratio, or equivalently the best
fit chi-squared χ2 = q̂L, depends on the model complexity and extent of the look-elsewhere effect,
q̂S does not. In other words, instead of considering fixed q̂L thresholds, one should consider fixed q̂S
thresholds.

Unlike current methods that rely on performing numerous simulations, MPS accounts for the
look-elsewhere effect by using information from the data alone, as one need only compute the likelihood
and the posterior volume to evaluate qS . This provides a more efficient way to quantify statistical
significance as it does not require expensive simulations. In a typical situation one would focus on
the most promising anomalies only, with q̂S providing a scale that gives good guidance on what false
positive rate one should expect. Subsequently, one would obtain additional information to verify the
veracity of an anomaly when possible.

For our proof of concept it was sufficient to only consider simple physical examples in this paper,
but there are many applications where our methods can be employed. Examples include searches for
new particles in astroparticle and particle data, searches for gravitational wave signals in LIGO data,
searches for exoplanets in transit and radial velocity data, as well as many more. In some of these
cases the look-elsewhere penalty can be considerably large, reaching beyond 6 sigma. The problem is
very general, as almost every search for unknown objects, events, new physics, or other phenomena
whose existence is unknown, has to deal with the look-elsewhere effect.

The goal of a data analyst searching for anomalies is to report the most promising anomalies
in terms of having a small p-value, or a high Bayes factor. By clarifying the origins of the look-
elsewhere effect and model complexity penalty for continuous parameters we hope to open the way to
refinements in anomaly searches that can improve the overall success rate of a detection. This should
be a common goal of any experimental analysis regardless of which school of statistics one belongs to.
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Appendices

A Derivation of the CCDF of q̂S

The asymptotic (large qL) CCDF of the global maximum of qL is for a one-tail test is given in equation
3.2 as

PQL
(QL ≥ qL) = N

1

2
F̃1(qL) (A.1)

= N
1√

2πqL
e−qL/2 +Nq

−1/2
L e−qL/2O

(
q−1
L

)
, (A.2)

where here we include the leading order correction, and drop hats and take t = 1 for convenience.
Consider the transformation of variables to qS , defined by

qS ≡ g(qL) ≡ qL − 2 lnN + ln 2πqL. (A.3)

It can be shown that the inverse of g is given by

qL = g−1(qS) = W0

(
N2eqS

2π

)
(A.4)

= qS + ln
N2

2π
− ln

(
qS + ln

N2

2π

)
+O

(
L2

L1

)
, (A.5)

where W0(z) is the principal branch of the Lambert W function. The asymptotic expansion has been

performed in the final line, with the shorthand Li ≡ lni N
2eqS
2π . Assuming N is constant to study the

limiting behaviour, the CCDF of qS is thus

PQa (Qa ≥ qS) = PQL

[
QL ≥ g−1(qS)

]
(A.6)

= e−qS/2e−O(L2/L1)


1−

ln
(
qS + ln N2

2π

)
+O

(
L2

L1

)

qS + ln N2

2π



−1/2

+O
(

e−qS/2

qS + ln N2

2π

)
(A.7)

→ e−qS/2, (A.8)

where the limit corresponds to either N → ∞ or qS → ∞. This means the result still applies
asymptotically in the absence of the look-elsewhere effect (N = 1).

References

[1] R. G. Miller, Simultaneous Statistical Inference. Springer New York, 1981, 10.1007/978-1-4613-8122-8.

[2] J. P. Shaffer, Multiple hypothesis testing, Annual Review of Psychology 46 (1995) 561
[https://doi.org/10.1146/annurev.ps.46.020195.003021].

[3] ATLAS collaboration, G. Aad et al., Observation of a new particle in the search for the Standard
Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B716 (2012) 1 [1207.7214].

[4] CMS collaboration, S. Chatrchyan et al., Observation of a New Boson at a Mass of 125 GeV with the
CMS Experiment at the LHC, Phys. Lett. B716 (2012) 30 [1207.7235].

[5] B. Anderson, S. Zimmer, J. Conrad, M. Gustafsson, M. Sánchez-Conde and R. Caputo, Search for
gamma-ray lines towards galaxy clusters with the fermi-lat, Journal of Cosmology and Astroparticle
Physics 2016 (2016) 026–026.

[6] A. Reinert and M. W. Winkler, A precision search for WIMPs with charged cosmic rays, Journal of
Cosmology and Astroparticle Physics 2018 (2018) 055.

– 19 –

https://doi.org/10.1007/978-1-4613-8122-8
https://doi.org/10.1146/annurev.ps.46.020195.003021
https://arxiv.org/abs/https://doi.org/10.1146/annurev.ps.46.020195.003021
https://doi.org/10.1016/j.physletb.2012.08.020
https://arxiv.org/abs/1207.7214
https://doi.org/10.1016/j.physletb.2012.08.021
https://arxiv.org/abs/1207.7235
https://doi.org/10.1088/1475-7516/2016/02/026
https://doi.org/10.1088/1475-7516/2016/02/026
https://doi.org/10.1088/1475-7516/2018/01/055
https://doi.org/10.1088/1475-7516/2018/01/055


[7] N. Sekiya, N. Y. Yamasaki and K. Mitsuda, A search for a keV signature of radiatively decaying dark
matter with Suzaku XIS observations of the X-ray diffuse background, Publications of the Astronomical
Society of Japan 68 (2015)
[https://academic.oup.com/pasj/article-pdf/68/SP1/S31/7971976/psv081.pdf].

[8] M. Aartsen, M. Ackermann, J. Adams, J. Aguilar, M. Ahlers, M. Ahrens et al., Observation of
high-energy astrophysical neutrinos in three years of icecube data, Physical Review Letters 113 (2014) .

[9] K. Emig, C. Lunardini and R. Windhorst, Do high energy astrophysical neutrinos trace star formation?,
Journal of Cosmology and Astroparticle Physics 2015 (2015) 029–029.

[10] K. Cannon, C. Hanna and J. Peoples, Likelihood-ratio ranking statistic for compact binary coalescence
candidates with rate estimation, 2015.

[11] B. Abbott, R. Abbott, T. Abbott, M. Abernathy, F. Acernese, K. Ackley et al., Gw150914: First results
from the search for binary black hole coalescence with advanced ligo, Physical Review D 93 (2016) .

[12] C. Messick, K. Blackburn, P. Brady, P. Brockill, K. Cannon, R. Cariou et al., Analysis framework for
the prompt discovery of compact binary mergers in gravitational-wave data, Physical Review D 95
(2017) .

[13] J. R. Fergusson, H. F. Gruetjen, E. P. S. Shellard and M. Liguori, Combining power spectrum and
bispectrum measurements to detect oscillatory features, Phys. Rev. D91 (2015) 023502 [1410.5114].

[14] J. R. Fergusson, H. F. Gruetjen, E. P. S. Shellard and B. Wallisch, Polyspectra searches for sharp
oscillatory features in cosmic microwave sky data, Phys. Rev. D91 (2015) 123506 [1412.6152].

[15] P. Hunt and S. Sarkar, Search for features in the spectrum of primordial perturbations using planck and
other datasets, Journal of Cosmology and Astroparticle Physics 2015 (2015) 052–052.

[16] J. Robnik and U. Seljak, Kepler data analysis: non-gaussian noise and fourier gaussian process
analysis of star variability, 2019.

[17] P. I. W. de Bakker, R. Yelensky, I. Pe’er, S. B. Gabriel, M. J. Daly and D. Altshuler, Efficiency and
power in genetic association studies, Nature Genetics 37 (2005) 1217.

[18] J. D. Storey and R. Tibshirani, Statistical significance for genomewide studies, Proceedings of the
National Academy of Sciences of the United States of America 100 (2003) 9440.

[19] M. Proschan and M. Waclawiw, Practical guidelines for multiplicity adjustment in clinical trials,
Controlled clinical trials 21 (2001) 527.

[20] B. McKay, D. Bar-Natan, M. Bar-Hillel and G. Kalai, Solving the bible code puzzle, Statist. Sci. 14
(1999) 150.

[21] C. E. Bonferroni, Teoria statistica delle classi e calcolo delle probabilità, Pubblicazioni del R Istituto
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