
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Upper and Lower bounds for Polynomial Calculus with extension variables

Permalink
https://escholarship.org/uc/item/04x5z68t

Author
Gali, Venkata Sai Sasank Mouli

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/04x5z68t
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Upper and Lower bounds for Polynomial Calculus with extension variables

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Electrical Engineering (Communication Theory and Systems)

by

Venkata Sai Sasank Mouli Gali

Committee in charge:

Professor Russell Impagliazzo, Chair
Professor Young-Han Kim, Co-Chair
Professor Samuel Buss
Professor Alon Orlitsky

2022

Copyright

Venkata Sai Sasank Mouli Gali, 2022

All rights reserved.

The dissertation of Venkata Sai Sasank Mouli Gali is approved, and

it is acceptable in quality and form for publication on microfilm and

electronically.

University of California San Diego

2022

iii

DEDICATION

To my parents.

iv

TABLE OF CONTENTS

Dissertation Approval Page . iii

Dedication . iv

Table of Contents . v

Acknowledgements . vii

Vita . viii

Abstract of the Dissertation . ix

Chapter 1 Introduction . 1
1.1 Algebraic Proof Systems . 2
1.2 Extensions of the Polynomial Calculus 3
1.3 New lower bound techniques . 5
1.4 Contributions of this work . 5

1.4.1 Upper bounds . 5
1.4.2 Lower bounds . 7

Chapter 2 The Surprising Power of Constant Depth Algebraic Proofs 9
2.1 Organization of this chapter . 9
2.2 Preliminaries and Generalizations of Polynomial Calculus 10

2.2.1 Preliminaries . 10
2.2.2 Propositional proof systems 11
2.2.3 Generalizations of Polynomial Calculus 14

2.3 Formal statement of results . 15
2.4 Simulations over Q . 16

2.4.1 Simulating syntactic CP* 16
2.4.2 Simulating semantic CP* 17

2.5 Simulations over Fpm . 19
2.5.1 Simulating syntactic CP* 19
2.5.2 Simulating AC0[q]-Frege 20
2.5.3 Simulating TC0-Frege . 26
2.5.4 Dealing with large coefficients 28
2.5.5 Bit vector representations of CP/SOS proof lines 29
2.5.6 Operations on bit vectors 30
2.5.7 Representing a line from CP/SOS in Depth-d-PC 33
2.5.8 Simulating Cutting Planes 33
2.5.9 Simulating Dynamic SOS 34
2.5.10 Concluding the simulation 36

v

Appendices . 37
2.A Small-weight Cutting Planes Simulations 37

2.A.1 Proof of the Intersection lemma 38
2.A.2 Simulating syntactic CP∗ in Trinomial-ΠΣ-PC over Q . . . 42
2.A.3 Simulating semantic CP∗ in Trinomial-ΠΣ-PC over Q . . . 49
2.A.4 Simulating syntactic CP∗ in Depth-5-PC over Fpm 55

2.B Simulating AC0[q]-Frege in Depth-7-PC over Fpm 62
2.B.1 Case of q = p . 62
2.B.2 Case of q 6= p . 73

2.C Simulating TC0-Frege in Depth-d-PC over Fpm 75
2.D Dealing with large coefficients . 77

2.D.1 Properties of addition . 77
2.D.2 Non-negative vectors are closed under addition 87
2.D.3 Properties of multiplication 89

Chapter 3 Lower bounds for Polynomial Calculus with extension variables over finite
fields . 97
3.1 Introduction . 97

3.1.1 Related Work . 99
3.1.2 Our Result: Proof Overview 100

3.2 Preliminaries . 103
3.3 The Hard Formulas . 104
3.4 The Lower Bound . 108

3.4.1 Technical Proof Overview. 108
3.4.2 Quadratic Degree, and Removing Irrelevant Variables 110
3.4.3 Proof of Main Theorem 120

Chapter 4 Open Problems . 128

Bibliography . 129

vi

ACKNOWLEDGEMENTS

Many people helped and motivated me over the years which led to my pursuing a PhD

degree in theoretical computer science. I thank them here in chronological order.

I am and always will be indebted to my parents. They motivated me towards academics

from a young age, and always took pride in my academic achievements. Thank you for always

being there for me.

I am especially thankful to my friend Amit Munje, with whom I had invigorating dis-

cussions on math and theoretical computer science during my undergrad. I could say that he is

directly responsible for my pursuit of graduate studies in this area.

My advisors Russell Impagliazzo and Toniann Pitassi are amongst the smartest yet most

gentle people I have ever met. Their guidance was invaluable and taught me a lot about how to

think and approach research problems. Thank you for supporting me through thick and thin.

Last but not least, I have to offer much love to Jing Liang, my partner for a couple of

years during my graduate studies. The time we spent together in my apartment will be forever

etched into my memory.

Many other people supported me in so many ways. Thanks to all of them, including

but not limited to: Vaishakh Ravi, Shouvik Ganguly, Anant Dhayal, Jess Sorrell, Rex Lei, Sam

McGuire, Sam Buss, Marco Carmosino, Jiawei Gao, Anamika Agrawal and Anchal Gupta.

Chapters 1,2 contain material from “The surprising power of constant depth Algebraic

Proofs” by Russell Impagliazzo, Sasank Mouli and Toniann Pitassi, published at the Proceedings

of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science, 2020.

Chapters 1,3 contain material from “Lower bounds for Polynomial Calculus with extension

variables over finite fields” by Russell Impagliazzo, Sasank Mouli and Toniann Pitassi which

is currently published on the Electronic Colloquium on Computational Complexity and being

prepared for a formal publication.

vii

VITA

2016 B. Tech. in Electrical Engineering with a second major in Computer
Science, Indian Institute of Technology, Kanpur, India

2018 M. S. in Electrical Engineering (Communication Theory and Systems),
University of California San Diego

2022 Ph. D. in Electrical Engineering (Communication Theory and Systems),
University of California San Diego

PUBLICATIONS

Impagliazzo, Russell, Sasank Mouli, and Toniann Pitassi, “The surprising power of constant
depth Algebraic Proofs”, Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in
Computer Science, 2020.

viii

ABSTRACT OF THE DISSERTATION

Upper and Lower bounds for Polynomial Calculus with extension variables

by

Venkata Sai Sasank Mouli Gali

Doctor of Philosophy in Electrical Engineering (Communication Theory and Systems)

University of California San Diego, 2022

Professor Russell Impagliazzo, Chair
Professor Young-Han Kim, Co-Chair

A major open problem in proof complexity is to prove superpolynomial lower bounds for

AC0[p]-Frege proofs. This system is the analog of AC0[p], the class of bounded depth circuits

with prime modular counting gates. Despite strong lower bounds for this class dating back thirty

years ([Raz87, Smo87]), there are no significant lower bounds for AC0[p]-Frege. Significant

and extensive degree lower bounds have been obtained for a variety of subsystems of AC0[p]-

Frege, including Nullstellensatz ([BIK+94]), Polynomial Calculus ([CEI96]), and SOS ([GV01]).

However to date there has been no progress on AC0[p]-Frege lower bounds.

In the first part of this thesis, we study constant-depth extensions of the Polynomial

ix

Calculus [GH03]. We show that these extensions are much more powerful than was previously

known. Our main result is that small depth (≤ 43) Polynomial Calculus (over a sufficiently

large field) can polynomially effectively simulate all of the well-studied semialgebraic proof

systems: Cutting Planes, Sherali-Adams, Sum-of-Squares (SOS), and Positivstellensatz Calculus

(Dynamic SOS). Additionally, they can also quasi-polynomially effectively simulate AC0[q]-Frege

for any prime q independent of the characteristic of the underlying field. They can also effectively

simulate TC0-Frege if the depth is allowed to grow proportionally. Thus, proving strong lower

bounds for constant-depth extensions of Polynomial Calculus would not only give lower bounds

for AC0[p]-Frege, but also for systems as strong as TC0-Frege.

In the second part of this thesis, we deal with the flip side of proving new lower bounds

for these systems. In this direction, we extend the recent lower bounds of Sokolov [Sok20] for

Polynomial Calculus over {±1} variables to show for every prime p > 0, every n > 0 and κ =

O(logn) the existence of an unsatisfiable system of polynomial equations over O(n logn) variables

of degree O(logn) such that any Polynomial Calculus refutation over Fp with M extension

variables, each depending on at most κ original variables requires size exp
(
Ω(n2/(κ22κ(M +

n log(n))))
)
.

x

Chapter 1

Introduction

Propositional Proof Complexity is the study of the complexity of proving Boolean tau-

tological statements in systems of formal reasoning which deal with propositional formulae. A

more formal definition is given below.

Definition 1 (Boolean formula). A Boolean formula is a directed acyclic graph, which is a binary

tree, with each node labeled with a gate (∧ or ∨), and each leaf node labeled with a literal (x or

¬x for a variable x). The size of the formula is the number of leaves, and the depth of the formula

is the longest path from the root to a leaf.

Definition 2 (TAUT). Let TAUT be the set of all tautological Boolean formulae, i.e. those that

always evaluate to TRUE.

Definition 3 (Propositional Proof System). A Propositional Proof System is a polynomial time

verifier V such that for every formula ϕ in TAUT , there exists a proof Π such that V accepts on

Π.

The above condition is sometimes referred to as Completeness. Another condition called

Soundness is also stipulated of Propositional Proof Systems, which requires that only tautologies

have valid proofs in the system. The study of Propositional Proof Systems was first initiated by the

1

work of Cook and Reckhow [CR79], with the ultimate goal of obtaining a proof of coNP 6⊆ NP

by proving a lower bound for a tautology against increasingly strong proof systems. This is

analogous to the goal of circuit complexity, which aims to prove that NP is different from P

by proving lower bounds against increasingly strong circuit classes. This parallel with circuit

complexity also extends to known results: in both these areas lower bounds are known only for

weak, computationally restricted classes. In proof complexity, this means that each line of the

proof in question is restricted computationally, i.e. can be computed by a small size circuit of

limited complexity.

One of the weakest, and the most well studied Propositional Proof System is Resolution,

which deals with proof lines which are clauses i.e. ORs (∨) of literals. This proof system was

invented to try and capture the performance of a popular class of satisfiability solvers known as

David-Putnam-Logemann-Loveland (DPLL) algorithms [Mar62]. In Resolution, two clauses can

be combined using the Resolution rule to derive a new clause as follows. Given two clauses C∨ x

and D∨¬x, we derive C∨D. This rule can be easily shown to be complete and sound.

Resolution falls at the bottom of a hierarchy of proof systems known as the Frege systems.

In the Frege system, each line is represented by a Boolean formula, and there are natural inference

rules which allow deriving more complex lines. Similar to the situation with circuit complexity,

here lower bounds are known only for Frege systems whose lines are bounded-depth formulae.

This system is known as AC0-Frege.

1.1 Algebraic Proof Systems

Although lower bounds are known for Resolution [Hak85], [BSW99], and bounded-depth

Frege [Ajt94], [BIK+92], the crucial difference between circuit and proof complexity arrives at

the next step of obtaining lower bounds for bounded-depth with modular counting gates of a

particular prime modulus p, known as AC0[p]. Lower bounds are known for this system in circuit

2

complexity through the work of Razborov and Smolensky [Raz87, Smo87], but no known lower

bounds exist for the corresponding proof system AC0[p]-Frege. Since the latter lower bounds

were obtained through connections to algebraic objects, this suggested the study of Algebraic

Proof Systems.

Typically, algebraic proof systems work by encoding a tautological formula ϕ as a system

of unsatisfiable polynomial equations P1 = 0, . . . ,Pm = 0. Nullstellensatz was one of the first

algebraic proof systems to be introduced. The completeness of this system is guaranteed by

Hilbert’s Nullstellensatz, which provides a set of polynomials Q1 = 0, . . .Qm = 0 for the former

system, such that ∑i PiQi = 1. The latter set of polynomials serves as a certificate of unsatisfiability

for the former. The complexity of a Nullstellensatz proof of P1 = 0, . . . ,Pm = 0 is the size (i.e.

number of monomials) of the certificate of their unsatisfiability.

Nullstellensatz was generalized by [CEI96] into the Polynomial Calculus proof system,

where instead of the certificate of unsatisfiability being provided all at once, is derived dynamically

by searching the degree d pseudo ideal of P1 = 0, . . . ,Pm = 0. This is done by the following

two rules. From two polynomials P and Q, we can derive their linear combination αP+βQ,

where α,β are constants from the underlying field. Also, from a polynomial P and a variable x,

we can derive xP = 0, provided that the degree of xP is bounded by d. The goal is to derive a

contradictory line 1 = 0.

1.2 Extensions of the Polynomial Calculus

Once again, we return to our original goal of proving lower bounds for the system AC0[p]-

Frege. Given that there are lower bounds for the Polynomial Calculus [Raz98a, BGIP01, AR01,

GL10, MN15], progress towards the frontier of AC0[p]-Frege is still stalled for various reasons.

Since lower bounds for polynomial calculus itself do not imply lower bounds for AC0[p]-Frege

systems, various researchers have suggested ways to strengthen PC to create algebraic systems

3

which do p-simulate AC0[p]-Frege ([Pit96, GH03, BIK+97]). Unfortunately, it is not clear how to

extend lower bound techniques for PC to these systems. As an illustration of how small extensions

can increase the power of these proof systems, consider polynomial calculus where we allow

changes of bases. Many strong lower bounds are known for the size of PC proofs for tautologies

like the Pigeonhole Principle [Raz98b], [IPS99] and Tseitin tautologies [BGIP01]. All of the

above lower bounds use a degree-size connection, which roughly states that a linear lower bound

on the degree of any refutation translates to an exponential lower bound on its size. But this

connection is highly basis dependent. The connection only holds true over the {0,1} basis, and

even allowing a change to the {−1,1} basis immediately gives a polynomial sized proof for the

mod 2 Tseitin tautologies. Grigoriev and Hirsch [GH03] noted the above and in addition showed

that allowing for introduction of new variables which are linear transformations of the original

variables gives a short proof of the Pigeonhole principle as well. They also generalized the notion

of a linear transformation by considering transformations obtained by applying constant depth

arithmetic circuits and arithmetic formulas to the original variables. The resulting systems turn

out to be quite powerful, and it is shown in [GH03] that the latter simulates Frege systems, and

the former simulates depth d AC0[p]-Frege proofs by using arithmetic circuits of depth d′ = Θ(d).

Raz and Tzameret [RT08b] defined a proof system along similar lines where the transformations

are restricted such that each line of the proof is a multilinear formula in the original variables.

It was shown that even under these restrictions, linear transformations allow small proofs of

the functional Pigeonhole principle and Tseitin tautologies. They also showed in [RT08a] that

Polynomial Calculus with added linear transformations simulates the system R(CP∗) of Krajicek

[Kra98], which is stronger than Cutting Planes with bounded coefficients.

4

1.3 New lower bound techniques

On the flip side, the lower bound techniques used for the above lower bounds on Poly-

nomial Calculus are based on random restrictions, and it is well known that modular counting

gates are immune to such techniques. We also need lower bound techniques that are not just

random-restriction based. Sokolov [Sok20] obtained lower bounds for the system PC over F3

where extension variables of the form zi = 2xi−1 are allowed to be introduced (hence making

them take values in the set {+1,−1}), using techniques which are not random restriction based.

1.4 Contributions of this work

The contributions of this work are twofold: improved upper bounds and lower bounds for

Polynomial Calculus with extension variables.

1.4.1 Upper bounds

On the one hand, we show that these extensions to PC are even more powerful than

previously known. Over a sufficiently large field of characteristic p, the same extensions that

allow PC to simulate depth d AC0[p] proofs also allows it to simulate much stronger proof systems.

So to prove a lower bound on AC0[p] proofs via such systems would seem to require proving

lower bounds for systems as strong as TC0-Frege.

More precisely, consider the following additions to PC. In an additive extension, we

introduce a new variable y and a new defining equation y = ∑aixi + b where ai,b ∈ F. In a

multiplicative extension, we introduce a new variable y and a new defining equation y = b∏(xi)
ei .

Depth-d-PC allows the usual (syntactic) reasoning of Polynomial calculus using these extension

variables (i.e. multiplying a line by the variable y is allowed), with each line having up to d−2

layers of additive and multiplicative extensions, the layers alternating between them. (The new

5

variables in a depth d-PC proof are equivalent to depth d−2 algebraic circuits, and polynomials

in terms of these variables are depth d algebraic circuits.)

We improve the results of Raz and Tzameret [RT08a] to show that Polynomial Calculus

with linear transformations can simulate semantic Cutting Planes with small coefficients.

Theorem 1. (Informal)

Polynomial Calculus over Q where new variables defined by linear transformations are allowed

to be introduced can p-simulate semantic Cutting Planes with polynomially bounded coefficients

We also show that their simulation of syntactic Cutting Planes can be carried out over a

large enough field extension Fpm (See Section 2.5.1).

We improve the results of Grigoriev and Hirsch in the constant depth case in two ways. We

show that AC0[p]-Frege can be simulated with a fixed constant depth, but with a quasipolynomial

blowup. Significantly, this simulation also simulates modular gates of different characteristic than

that of the field we are working over.

Theorem 2. (Informal)

There is a fixed constant d such that Polynomial Calculus over a quasipolynomial sized extension

field Fpm , where new variables defined by depth d arithmetic formulas on the original variables

are allowed to be introduced, quasipolynomially simulates AC0[q]-Frege, for any prime q.

Buss et al. [BKZ15] showed that an AC0[p]-Frege proof of depth d can be collapsed to a

depth 3 AC0[p]-Frege proof with a quasipolynomial blowup. In conjunction with [GH03], this

implies the above theorem for the case of q = p. Thus, apart from being more general, our result

also provides an alternative and perhaps simpler proof of the case of q = p.

We also show that allowing for arbitrarily large but constant depth transformations enables

the simulation of TC0-Frege.

Theorem 3. (Informal)

A TC0-Frege proof of depth d can be p-simulated by a Polynomial Calculus proof which allows

6

new variables to be introduced which are defined by depth O(d) arithmetic formulas on original

variables

Finally, we remove the restriction of polynomially bounded coefficients from the result

of [RT08a] and show how to perform arithmetic with large coefficients, and as a result simulate

Cutting Planes with unbounded coefficients and Sum of Squares.

Theorem 4. (Informal)

There is a fixed constant d such that Polynomial Calculus over a large enough extension field

Fpm , where new variables defined by depth d arithmetic formulas on the original variables are

allowed to be introduced, p-simulates Cutting Planes and Positivestellensatz Calculus.

Clote and Kranakis [CK13] mention a proof, due to Krajı́ček, of Cutting Planes being

simulated by the bounded-depth threshold logic system PTK of Buss and Clote [BC96]. Since

we simulate a modified version of PTK to show Theorem 2, it already follows that our system

simulates Cutting Planes. However, the above proof by Krajicek is non-explicit and does not

provide a value of the depth at which the simulation happens. Determining this value is posed as

an open problem in [CK13]. Theorem 4 provides an upper bound of d ≤ 10 through an explicit

simulation.

This work is based on the paper ”Impagliazzo, Russell, Sasank Mouli, and Toniann Pitassi.

“The surprising power of constant depth Algebraic Proofs.” Proceedings of the 35th Annual

ACM/IEEE Symposium on Logic in Computer Science. 2020.” and is expounded on in Chapter

2.

1.4.2 Lower bounds

On the other hand, in the case of lower bounds, we generalize the methods of Sokolov

to show lower bounds for PC with up to N2−ε extension variables which can depend on up

to κ = O(logN) original variables (where N is the number of variables in the tautology) (We

7

call these κ-local extension variables). [Ale21] obtained stronger lower bounds for Polynomial

Calculus with extension variables over the reals, but since we work over finite fields our results

are incomparable. Also, their tautology is a variant of subset sum with large coefficients, which

cannot be defined well over finite fields.

Theorem 5 (high-end). There is a family of CNF tautologies ψN,κ,M on N variables with poly(N)

clauses of width O(logN) so that for any M = N polylog(N) and κ≥ 1, and prime p, there is a

function S(N) ∈ 2Ω(N/polylog(N)) so that any PC refutation of ψN,κ,M together with any M κ-local

extensions over Fp requires size S(N).

Theorem 6 (low-end). For the same family of tautologies above, for any prime p, there are

0 < α,β,γ < 1, with γ < 1−α−β so that, for M = N1+α,κ = βlogN, and S = exp(Nγ), any PC

refutation of ΦN together with any M κ-local extensions over Fp requires size S(N).

This work is based on the paper ”Impagliazzo, Russell, Sasank Mouli, and Toniann

Pitassi. Lower bounds for Polynomial Calculus with extension variables over finite fields.” and is

discussed in Chapter 3.

Chapter 1 contains material from “The surprising power of constant depth Algebraic

Proofs.” by Russell Impagliazzo, Sasank Mouli, and Toniann Pitassi.which is published at the

Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science. 2020.

and “Lower bounds for Polynomial Calculus with extension variables over finite fields.” by

Russell Impagliazzo, Sasank Mouli, and Toniann Pitassi. which is currently published on the

Electronic Colloquium on Computational Complexity.

8

Chapter 2

The Surprising Power of Constant Depth

Algebraic Proofs

2.1 Organization of this chapter

This chapter is organized as follows. In section 2.2.1, we discuss some basic definitions.

In section 2.2.3, we formalize the notion of transformations. In section 2.3, we formally state all

of our results. In section 2.4.1, we sketch the simulation of syntactic Cutting Planes with bounded

coefficients from [RT08a], since it is essential for a significant part of the subsequent discussion.

In section 2.4.2, we extend the simulation to the semantic case. In section 2.5.1, we prove an

analog of the results in section 2.4.1 over a large enough finite field extension. In sections 2.5.2,

2.5.2, 2.5.3, we use techniques from this analog to prove Theorems 2 and 3. Finally in section

2.5.4, we prove Theorem 4. Technical details of simulations from each of the above sections are

contained in the Appendix.

9

2.2 Preliminaries and Generalizations of Polynomial Calculus

2.2.1 Preliminaries

Notation

Integers are represented by letters a, b, c. For an integer a, let a+ = a if a > 0 and 0

otherwise. Define |a| to be the length in binary of a. Sets of integers are represented by letters A,

B, C. Indices to sets are represented by letters i, j, k, `.

Variables are represented by x, y, z, w where x usually represents the original variables

and the others represent the extension variables. Monomials are represented by upper case letters

X , Y , Z. Polynomials are represented by P, Q, R. Boolean formulae are represented by ϕ.

We treat all the above as one dimensional objects. Multidimensional objects, or vectors, are

represented in boldface. Constant vectors are represented by a, b, c. Vectors whose components

may be variables or polynomials are represented by y, z, w.

Calligraphic letters R , S are used for special expressions which are contextual.

Definition 4. Straight Line Program (SLP)

A SLP S over variables {x1 · · ·xn} and a field F is a sequence of computations (y1 · · ·yk)

such that each y j is equal to one of the following, where C j ⊆ {1 · · · j−1}

xi for some i ∈ {1 · · ·n}

∑`∈C j α`y` for some constants α` ∈ F

∏`∈C j y`

We view a SLP as a directed acyclic graph where internal nodes are labelled with either

Product or Plus gates and the leaf nodes are labelled with a variable xi. The size of a SLP is

10

therefore the number of nodes in the corresponding directed acyclic graph, and the depth is the

maximum number of nodes on a root to leaf path in the directed acyclic graph.

2.2.2 Propositional proof systems

Definition 5. Cook-Rechow proof system

For a language L ⊆ {0,1}∗, a Cook-Rechow proof system is a polynomial time deterministic

verifier V such that

If x ∈ L, there exists a proof π such that V (x,π) accepts.

If x 6∈ L, for all proofs π, V (x,π) rejects.

Definition 6. p-simulation

For two proof systems V1 and V2 defined over the same language L, V2 is said to p-simulate V1 if

there exists a polynomial time computable function f such that for every x ∈ L, if π1 is a proof of

x for V1, f (π1) is a proof of x for V2.

Definition 7. Effectively p-simulation

For two proof systems V1 and V2 over languages L1 and L2, V2 is said to effectively p-simulate V1

if there exist polynomial time computable functions f ,g such that for every x1 ∈ L1, g(x1) ∈ L2

and if π1 is a proof of x1 for V1, f (π1) is a proof of g(x1) for V2.

In this paper, we are only concerned with effective simulations. The Propositional proof

systems we will work with are defined below.

Definition 8. Cutting Planes

Let ∆ = {A1 · · ·Am} be a set of unsatisfiable integer linear inequalities in boolean variables

x1 · · ·xn of the form A j ≡ ∑i ai jxi ≥ bi where ai j and bi are integers. A Cutting Planes refutation

of ∆ is a sequence of lines B1 · · ·Bs such that Bs is the inequality 1≥ 0 and for every ` ∈ {1 · · ·s}

B` ∈ ∆ or is obtained through one of the following derivation rules for j,k < `

11

Addition From B j ≡ ∑i ci jxi ≥ d j and Bk ≡ ∑i cikxi ≥ dk, derive

∑
i
(ci j + cik)xi ≥ d j +dk

Multiplication by a constant From B j ≡ ∑i ci jxi ≥ d j, derive

c∑
i

ci jxi ≥ cd j

for an integer c≥ 0.

Division by a nonzero constant From B j ≡ ∑i ci jxi ≥ d j and an integer c > 0 such that c

divides ci j for all i, derive

∑
i

ci j

c
xi ≥ dd j/ce

The semantic version of the system also has the following rule

Semantic inference If B j ≡∑i ci jxi ≥ d j, Bk ≡∑i cikxi ≥ d j and B` ≡∑i ci`xi ≥ d j are inequal-

ities such that every assignment to x1 . . .xn that satisfies B j and Bk also satisfies B`, then from

lines B j and Bk, derive B`.

The size of a line is the size of its bit representation. The size of a proof is the sum of

sizes of each line. The length of a Cutting Planes proof is equal to the number of lines in the

proof. We define the coefficient size of a Cutting Planes proof to be equal to the maximum of the

absolute value of all the constants that appear in the proof. CP∗ is a subsystem of Cutting Planes

where the coefficient size is bounded by a polynomial in the number of variables. Without loss of

generality, the coefficient size can be bounded by 2poly(l) where l is the length of the proof due to

[CCT87].

The following system is known to simulate SOS and Sherali-Adams.

12

Definition 9. Positivestellensatz Calculus/Dynamic SOS [GV01]

Let Γ = {P1 · · · Pm} and ∆ = {Q1 · · ·Qr} be two sets of polynomials over R such that the system

of equations P1 = 0 · · · Pm = 0, Q1 ≥ 0 · · · Qr ≥ 0 is unsatisfiable. A Dynamic SOS refutation of

Γ,∆ is a sequence of inequalities R1 ≥ 0 · · · Rs ≥ 0 where Rs =−1 and for every ` in {1 · · ·s},

R` ∈ Γ∪∆ or is obtained through one of the following derivation rules for j,k < `

1. From R j = 0 and Rk = 0 derive αR j +βRk = 0 for α, β ∈ R

2. From Rk = 0 derive xiRk = 0 for some i ∈ {1 · · ·n}

3. From R j ≥ 0 and Rk ≥ 0 derive αR j +βRk ≥ 0 for α≥ 0, β≥ 0 ∈ R

4. From R j ≥ 0 and Rk ≥ 0 derive R jRk ≥ 0

5. R2 ≥ 0 for some polynomial R ∈ R[x1 · · ·xn]

The size of a line is the size of its bit representation. The size of a Dynamic SOS refutation is the

sum of sizes of each line of the refutation.

Definition 10. Polynomial Calculus

Let Γ = {P1 · · · Pm} be a set of polynomials in variables {x1 · · ·xn} over a field F such that the

system of equations P1 = 0 · · · Pm = 0 has no solution. A Polynomial Calculus refutation of Γ is a

sequence of polynomials R1 · · · Rs where Rs = 1 and for every ` in {1 · · ·s}, R` ∈ Γ or is obtained

through one of the following derivation rules for j,k < `

R` = αR j +βRk for α, β ∈ F

R` = xiRk for some i ∈ {1 · · ·n}

The size of the refutation is ∑
s
`=1 |R`|, where |R`| is the number of monomials in the

polynomial R`. The degree of the refutation is max` deg(R`).

13

2.2.3 Generalizations of Polynomial Calculus

We now define a variant of Polynomial Calculus, ΣΠΣ-PC where the proof system is

additionally allowed to introduce new variables y j corresponding to affine forms in the original

variables xi. Thus, each line of the proof is represented by a ΣΠΣ algebraic circuit.

Definition 11. ΣΠΣ-PC

Let Γ = {P1 · · · Pm} be a set of polynomials in variables {x1 · · ·xn} over a field F such that the

system of equations P1 = 0 · · · Pm = 0 has no solution. A ΣΠΣ-PC refutation of Γ is a Polynomial

Calculus refutation of a set Γ′ = {P1 · · ·Pm,Q1 · · ·Qk} of polynomials over variables {x1 · · ·xn}

and {y1 · · ·yk} where Q1 · · ·Qk are polynomials of the form Q j = y j− (a j0 +∑i ai jxi) for some

constants ai j ∈ F.

The size of a ΣΠΣ-PC refutation is equal to the size of the Polynomial Calculus refutation

of Γ′.

We would now like to generalize the above proof system to an arbitrary depth d.

Definition 12. Depth-d-PC

Let d > 2 be an integer. Let Γ = {P1 · · · Pm} be a set of polynomials in variables {x1 · · ·xn} over a

field F such that the system of equations P1 = 0 · · · Pm = 0 has no solution. Let S = (y1 · · ·yk) be a

SLP over {x1 · · ·xn} and F of depth d−2 defined by y j = Q j(x1 · · ·xn,y1 · · ·y j−1). A Depth-d-PC

refutation of Γ is a Polynomial Calculus refutation of the set Γ′ = {P1 · · ·Pm,y1−Q1, · · · ,yk−Qk}

of polynomials over {x1 · · ·xn} and {y1 · · ·yk}.

The size of a Depth-d-PC refutation is the size of the Polynomial Calculus refutation of Γ′

Although we define the size of a proof in Depth-d-PC in terms of the number of monomials,

we will be using the number of lines as a measure of the size, since in our simulations no line

contains more than a polynomial number of monomials.

In this work, we will think of d as a large enough constant for all our simulations. A value

of d = 7 should work for Theorem 2 and d = 10 for Theorem 4.

14

To conclude this section, we state the following result from [RT08a], which is the starting

point of our work.

Theorem 0. [RT08a] Trinomial-ΠΣ-PC over Q can simulate syntactic Cutting Planes with the

number of lines polynomial in n and the coefficient size.

2.3 Formal statement of results

We can now restate our results in terms of the proof systems defined in the previous

section.

Theorem 1. ΣΠΣ-PC can p-simulate semantic CP* over Q.

Theorem 1 is proved in sections 2.4.1 and 2.4.2.

Theorem 2. Let n and m be positive integers such that m = O(poly(log(n))). There is a fixed

constant d such that Depth-d-PC over Fpm can quasipolynomially simulate AC0[q]-Frege over n

variables for any prime q.

We prove Theorem 2 in sections 2.5.2 and 2.5.2.

Theorem 3. A TC0-Frege proof of depth d can be p-simulated by Depth-d′-PC over Fm, where

d′ = O(d) and m is logarithmic in the size of the largest threshold gate.

The proof of Theorem 3 is shown in section 2.5.3.

Theorem 4. There is a fixed constant d such that Depth-d-PC over Fpm′ can p-simulate Cutting

Planes and Dynamic Sum of Squares, where m′ is logarithmic in the maximum number of

monomials in any line of the proof.

Theorem 4 is proved in section 2.5.4.

15

2.4 Simulations over Q

In this section we outline how we translate inequalities into polynomials over Q, and

simulate proofs involving these inequalities into polynomial calculus derivations over their

translations.

Consider a line A j ≡ ∑i ai jxi ≥ b j in a CP* proof, where |ai|, |b| are bounded logarithmi-

cally in n. We define its translation over Q as the following

Definition 13. Translation from CP* to ΣΠΣ-PC

For a line A j ≡ ∑i ai jxi ≥ b j its translation in ΣΠΣ-PC is defined to be the following pair of lines

∑i a+i j−b j

∏
b=0

(y j−b) = 0

y j = ∑
i

ai jxi−b j

In addition, for all i, the equations xi(xi−1) = 0 are included in the translation.

That is, we introduce a variable y j = ∑i ai jxi−b j and indicate the range of values it can

take which satisfy the constraint ∑i ai jxi ≥ b j. For convenience, we will denote by z ∈ A the

equation ∏a∈A(z−a) = 0.

The key idea is to note that given two equations z∈ A and z∈ B, we can derive in ΣΠΣ-PC

the equation z ∈ A∩B. We call this the Intersection lemma. A formal proof is provided in

Appendix 2.A.1.

2.4.1 Simulating syntactic CP*

We now sketch how all the derivations rules of syntactic CP* can be simulated with the

help of the Intersection lemma, concluding Theorem 0. For instance, given equations y1 ∈ A and

y2 ∈ B, we derive the range of values a variable z = y1 + y2 takes as follows. For every a1 ∈ A,

16

we derive an equation which states z ∈ a1 +B OR y1 ∈ A\{a1} where a1 +B = {a1 +b | b ∈ B}.

This equation is formally represented as

∏
c∈a1+B

(z− c) ∏
a∈A\{a1}

(y1−a) = 0

We can multiply each of these equations by appropriate variables, so that the part about z

is the same in all of them. We would now like to eliminate the part about y1 from these equations.

Noting that ∩iA\{ai}= /0, we use the Intersection lemma inductively to eliminate y1.

For simulating division by an integer c given a variable z = ∑i cixi and an equation z ∈C

such that c divides every element of C, we first derive z ∈ I, where I is all possible integer values

of the expression ∑i cixi, by using our simulation of addition. We then introduce a variable

z′ = z/c and from the former equation, we get a set of integer values for z′ and from the latter,

we get a set of rational values. Using the Intersection lemma now gives the right range for the

variable z′ = z/c.

For a formal proof, see Appendix 2.A.2.

2.4.2 Simulating semantic CP*

In this section we extend the above simulation to include semantic CP*, hence completing

the proof of Theorem 1. Let L1 ≡ ∑i aixi ≥ d1, L2 ≡ ∑i bixi ≥ d2 be two lines in a Cutting Planes

proof and let L3≡∑i cixi≥ d3 be a semantic consequence of L1 and L2. Let y =∑i aixi, z =∑i bixi

and w = ∑i cixi. Let A = {0 · · ·∑i a+i }, B = {0 · · ·∑i b+i } and C = {0 · · ·∑i c+i }. Using Lemma 3,

we can derive the equations

∏
a∈A

(y−a) = 0

∏
b∈B

(z−b) = 0

∏
c∈C

(w− c) = 0

17

This restricts the values that can be taken by the tuple (y,z,w) to the three dimensional

grid A×B×C. Let a point (i, j,k) in the grid be infeasible if the tuple (y,z,w) never evaluates to

it for any assignment to {xi}. Our first step is to derive infeasibility equations of the form

∏
a∈A
a6=i

(y−a)∏
b∈B
b6= j

(z−b)∏
c∈C
c6=k

(w− c) = 0

which for (i, j,k) ∈ A×B×C tells us that the point (i, j,k) in the grid is infeasible for the

tuple (y,z,w).

Lemma 9. For every infeasible point (i, j,k) ∈ A×B×C, ΣΠΣ-PC can derive an infeasibility

equation of the above form in O((∑i a+i)
2(∑i b+i)

2(∑i c+i)
2) lines

The proof of this lemma is left to Appendix 2.A.3.

The next step is to use the ranges of y and z specified in lines L1 and L2 to narrow down

the possible values that can be taken by w. Our goal will be to get an equation of the form

∏
c∈C′

(w− c) = 0

such that each c in C′ is feasible for w under the constraints L1 and L2 on y and z

respectively.

Let Pi be the translation of Li in Trinomial-ΠΣ-PC, for i = 1,2,3. Let Ia,b denote the set

of all infeasibility equations for points of the form (a,b,k) for some k ∈C. For an equation P

of the form ∏a∈A1(y−a)∏b∈B1(z−a)∏c∈C1(w−a) = 0, denote by Ry(P) the set A1, that is the

range of values specified by the equation for the variable y. Rz and Rw are defined analogously.

We describe how to obtain the set C′ by the algorithm w-FEASIBLE which operates on the range

sets.

Consider a pair (a,b) ∈ Ry(P1)×Rz(P2). For any equation I ∈ Ia,b , Rw(I) gives a list of

possible values the variable w can take when (y,z) = (a,b). By Lemma 9, (y,z,w) = (a,b,c) is

18

1 C′← /0

2 for (a,b) ∈ Ry(P1)×Rz(P2) do
3 S←C for I ∈ Ia,b do
4 S← S∩Rw(I)
5 end
6 C′←C′∪S
7 end
8 return C′

Algorithm 1: w-feasible(P1,P2)

infeasible if and only if there is an equation I ∈ Ia,b such that c 6∈ Rw(I). Therefore,
⋂

I∈Ia,b

Rw(I) is

precisely the feasible set of values for w, given (y,z) = (a,b). C′ is the union of such sets over all

possible pairs (a,b) ∈ Ry(P1)×Rz(P2) and hence is the set of all feasible values of w.

This algorithm over range sets can be easily translated to a proof of ∏c∈C′(w−c) = 0 from

P1 and P2 in Trinomial-ΠΣ-PC as follows. To simulate the inner for loop, we use the Intersection

lemma inductively over all equations in Ia,b to get equations Ja,b such that Rw(Ja,b) =
⋂

I∈Ia,b

Rw(I).

Note that Ry(Ja,b) = A \{a} and Rz(Ja,b) = B \{b}. Thus using the Intersection lemma again

inductively over the set {Ja,b} analogous to Lemma 6 would give an equation free of y and z,

where w ranges over
⋃

(a,b)
Rw(Ja,b). Any semantic consequence P3 must be such that Rw(P3)⊇C′

and hence is easily derived.

2.5 Simulations over Fpm

2.5.1 Simulating syntactic CP*

We now carry out the simulation in Section 2.4.1 in Depth-d-PC over a large enough

field extension Fpm of a finite field Fp. This will be of use in the next section, where we simulate

AC0[p]-Frege in Depth-d-PC over Fpm . For the following discussion, we set d = 5

To represent large integers over Fpm , we choose a primitive element α and for a boolean

xi perform the linear transformation yi = 1+(α− 1)xi. Since xi is boolean, yi is essentially

19

equivalent to the mapping xi 7→ αxi . The expression ∑i aixi is thus represented as α∑i aixi . The

goal here is to show that all the steps of the simulation in section 2.4.1 can still be performed after

this transformation.

Theorem 7. Depth-d-PC over Fpm can simulate syntactic Cutting Planes with the number of lines

polynomial in n and the coefficient size, where m is logarithmic in n and the coefficient size.

Let s1 be the coefficient size of the Cutting Planes proof. Define s = ns1. Choose m to be

the smallest integer such that 2s2 < pm−1. Let α be an arbitrary primitive element of Fpm .

Definition 14. Translation of Cutting Planes to Depth-d-PC over Fpm

Given a line ∑i aixi ≥ bi in Cutting Planes, the translation of the above line is defined as

the following lines, where yi and y are new variables.

yi = (αai−1)xi +1

y = ∏
i

yi

(y−α
bi)(y−α

bi+1) · · ·(y−α∑i a+i) = 0

An integer c such that 0≤ c≤ s is represented as αc, whereas for−s≤ c < 0 we represent

it as α−|c| ≡ α(pm−1)−|c|. Since 2s≤ 2s2 < pm−1, these representations are unique.

The technical details of the simulating the rules of CP are largely similar to that over Q

and are hence left to Appendix 2.A.4

2.5.2 Simulating AC0[q]-Frege

Case of q = p

For the purpose of this section, we set d = 7. We will use the simulation of AC0[p]-Frege

in [MP98] to show that the same can be carried out in Depth-d-PC over Fpm . We fix m to be

20

a large enough integer such that m = O(poly(log(n))), so that the field we are working over is

quasipolynomially sized. Below we describe the proof system of [MP98] and their simulation of

AC0[p]-Frege.

The Proof System of Maciel and Pitassi Maciel and Pitassi [MP98] define a proof system

with mod p, negation, AND, OR and threshold connectives, based on the system PTK by Buss

and Clote [BC96] which we describe below.

Connectives Let x1 · · ·xn be boolean variables. For 0≤ j < p, let ⊕p
j (x1 · · ·xn) denote

the connective which is 1 if and only if ∑i xi = j mod p. For any integer t, let T ht(x1 · · ·xn)

denote the connective which is 1 if and only if ∑i xi ≥ t. Let ∧(x1 · · ·xn), ∨(x1 · · ·xn) denote AND

and OR connectives of arity n and ¬ denote the NOT gate.

Formulas A formula is recursively defined as follows. Input variables x1 · · ·xn are

formulas of size 1 and depth 1. A formula ϕ is an expression of the form g(ϕ1 · · ·ϕk), where g

is any of the connectives described above and ϕ1 · · ·ϕk are formulas. The depth(ϕ) is defined

as ∑
k
i=1 depth(ϕi)+ 1. The size(ϕ) is defined as ∑

k
i=1 size(ϕi)+ k + 1 if g is not a threshold

connective, and it is defined as ∑
k
i=1 size(ϕi)+ t + k+1 if g is a threshold connective of the form

T ht(ϕ1 · · ·ϕk).

Cedents and Sequents A cedent Γ is defined as a sequence of formulas ϕ1 · · ·ϕk. We

will use capital Greek letters to denote cedents. A sequent is an expression of the form Γ→ ∆,

where Γ and ∆ are cedents. The interpretation of a sequent is that the AND of all the formulas in

Γ implies the OR of all the formulas in ∆. The size and depth of a cedent are respectively the sum

of sizes and the maximum of depths of all the formulas in it. The size of a sequent is the sum of

sizes of both cedents, and the depth is the maximum of the depths of both cedents.

21

Definition of a Proof A proof in this system is defined as a sequence of sequents

S1 · · ·Sm such that each Si is either an initial sequent, or is derived from sequents S j for j < i

through one of the rules listed below. The size and depth of a proof are respectively the sum of

sizes and the maximum of depths of all sequents in it.

The initial sequents and the derivation rules are listed below.

The proof system of Maciel and Pitassi [MP98]

initial sequents

1. ϕ→ ϕ for any formula ϕ

2. →∧() ; ∨()→

3. ⊕p
j ()→ for 1≤ j < p ;→⊕p

0()

4. T ht()→

5. → T h0(ϕ1 · · ·ϕk) for any k ≥ 0

structural rules

weakening: Γ,∆→ Γ′

Γ,ϕ,∆→ Γ′
Γ→ Γ′,∆′

Γ→ Γ′,ϕ,∆′

contract: Γ,ϕ,ϕ,∆→ Γ′

Γ,ϕ,∆→ Γ′
Γ→ Γ′,ϕ,ϕ,∆′

Γ→ Γ′,ϕ,∆′

permute: Γ,ϕ1,ϕ2,∆→ Γ′

Γ,ϕ2,ϕ1,∆→ Γ′
Γ→ Γ′,ϕ1,ϕ2,∆

′

Γ→ Γ′,ϕ2,ϕ1,∆
′

cut rule

Γ,ϕ→ ∆ Γ′→ ϕ,∆′

Γ,Γ′→ ∆,∆′

22

logical rules

¬ : Γ→ ϕ,∆

¬ϕ,Γ→ ∆

ϕ,Γ→ ∆

Γ→¬ϕ,∆

∧-left: ϕ1,∧(ϕ2 · · ·ϕk),Γ→ ∆

∧(ϕ1 · · ·ϕk),Γ→ ∆

∧-right: Γ→ ϕ1,∆ Γ→∧(ϕ2 · · ·ϕk),∆

Γ→∧(ϕ1,ϕ2 · · ·ϕk),∆

∨-left: ϕ1,Γ→ ∆ ∨(ϕ2 · · ·ϕk),Γ→ ∆

∨(ϕ1,ϕ2 · · ·ϕk),Γ→ ∆

∨-right: Γ→ ϕ1,∨(ϕ2 · · ·ϕk),∆

Γ→∨(ϕ1 · · ·ϕk),∆

⊕i-left:
ϕ1,⊕p

i−1(ϕ2 · · ·ϕk),Γ→ ∆ ⊕p
i (ϕ2 · · ·ϕk),Γ→ ϕ1,∆

⊕p
i (ϕ1,ϕ2 · · ·ϕk),Γ→ ∆

⊕i-right:
ϕ1,Γ→⊕p

i−1(ϕ2 · · ·ϕk),∆ Γ→ ϕ1,⊕p
i (ϕ2 · · ·ϕk),∆

Γ→⊕p
i (ϕ1,ϕ2 · · ·ϕk),∆

T ht-left: T ht(ϕ2 · · ·ϕk),Γ→ ∆ ϕ1,T ht−1(ϕ2 · · ·ϕk),Γ→ ∆

T ht(ϕ1,ϕ2 · · ·ϕk),Γ→ ∆

T ht-right: Γ→ ϕ1,T ht(ϕ2 · · ·ϕk),∆ Γ→ T ht−1(ϕ2 · · ·ϕk),∆

Γ→ T ht(ϕ1,ϕ2 · · ·ϕk),∆

Translating lines We will now define translations of lines in the above proof system. For a

formula ϕ, we denote its translation in Depth-d-PC by tr(ϕ). Let x1 · · ·xn be the variables of

the original proof. Below we list the translations for a formula built with each connective. The

interpretation is that for any formula ϕ, tr(ϕ) = 0 if and only if ϕ is true.

tr(xi) = 1− xi

tr(∨(ϕ1 · · ·ϕk)) = ∏i(tr(ϕi))

tr(∧(ϕ1 · · ·ϕk)) = 1−∏i tr(¬ϕi)

tr(⊕p
i (ϕ1 · · ·ϕk)) = (∑k

j=1 ϕ j− i)p−1 for 0≤ i < p

23

tr(T ht(ϕ1 · · ·ϕk)) = (y−αt) · · ·(y−αk)

where y = ∏i((α−1)tr(¬ϕi)+1)

tr(¬ϕ) = 1− tr(ϕ) if ϕ does not contain a T ht connective

tr(¬T ht(ϕ1 · · ·ϕk)) = (y−1) · · ·(y−αt−1)

where y = ∏i((α−1)tr(¬ϕi)+1), for t ≥ 1

The translation tr(S) of a sequent S of the form ϕ1 · · ·ϕk → ϕ′1 · · ·ϕ′m is given by the

equation
k

∏
i=1

tr(¬ϕi)
m

∏
j=1

tr(ϕ′j) = 0

Note that the translations of all the connectives except the threshold connective take only

boolean values over Fpm .

Simulating proofs We now describe the connection between AC0[p]-Frege and the proof system

of Maciel and Pitassi. By the following theorem of Allender [All89], any AC0[p] circuit can

converted to a depth three circuit of a special form.

Theorem 8. [All89]

Any AC0[p] circuit can be converted to a quasipolynomial sized depth three circuit with an

unweighted Threshold gate at the top, MODp gates of quasipolynomial fan-in in the middle and

∧ gates of polylogarithmic fan-in at the bottom

Depth three circuits with an unweighted Threshold, ∧ or ∨ gate at the top, MODp gates

in the middle and ∧ gates of polylogarithmic fan-in in the size of the circuit at the bottom are

referred to as flat circuits by [MP98]. For an AC0[p] circuit ϕ, its flattening f l(ϕ) is defined

as the flat circuit given by the above theorem. Proofs in AC0[p]-Frege can be thought of as a

list of sequents such that every formula that appears in each of them is an AC0[p] circuit. For a

sequent ϕ1 · · ·ϕk→ ϕ′1 · · ·ϕ′m that appears in a AC0[p]-Frege proof, we can define a flattening of

24

the sequent f l(ϕ1) · · · f l(ϕk)→ f l(ϕ′1) · · · f l(ϕ′m) in the proof system of Maciel and Pitassi. A

flat proof of such a sequent is such that every formula that appears in the proof is a flat circuit.

The simulation theorem of [MP98] states the following

Theorem 9. [MP98]

Let S be a sequent which has a depth d proof in AC0[p]-Frege. Then its flattening f l(S) has a flat

proof of size 2(logn)O(d)
in the proof system of Maciel and Pitassi.

We will show that flat proofs can be simulated in Depth-d-PC by showing the following

Theorem 10. Let S be a sequent which has a flat proof of size s in the proof system of Maciel

and Pitassi. Then there is a proof of the equation tr(S) in Depth-d-PC from the equations

xi(xi−1) = 0 with poly(s) lines.

To prove the above theorem, it is sufficient to show that for each rule that derives a sequent

S3 from sequents S1 and S2, there is a derivation of the equation tr(S3) from the equations tr(S1),

tr(S2) and xi(xi−1) = 0 in Depth-d-PC. The details of how each such rule can be simulated are

left to Appendix 2.B.1

Case of q 6= p

We now extend the simulation of the previous section to show that AC0[q]-Frege can

be simulated in Depth-d-PC over Fpm , for distinct primes p and q, hence proving Theorem 2.

Using the theorem of Maciel and Pitassi (Theorem 14 above) for AC0[q]-Frege, we obtain a flat

proof with ⊕q
i connectives. To simulate it, we can reuse the lemmas of the previous section,

except for the ⊕q
i connectives. To define their translation, choose m such that q | pm−1 and let

r = (pm−1)/q. The translation is now defined as

tr(⊕q
i (ϕ1 · · ·ϕk)) =

(
(y−α

ir)
)pm−1

25

where y = ∏i((α
r−1)tr(¬ϕi)+1) and tr(¬⊕q

i (ϕ1 · · ·ϕk)) = 1− tr(⊕q
i (ϕ1 · · ·ϕk))

Simulating the rules is similar to the previous section. The proof for one such rule is

shown in Appendix 2.B.2

2.5.3 Simulating TC0-Frege

In this section, we show that a TC0-Frege proof of depth d0 can be transformed into a

Depth-d-PC proof over Fpm , where d = O(d0), proving Theorem 3. In the previous section we

translated T ht(ϕ1 · · ·ϕk) as

tr(T ht(ϕ1 · · ·ϕk)) = (y−α
t) · · ·(y−α

k)

tr(¬T ht(ϕ1 · · ·ϕk)) = (y−1) · · ·(y−α
t−1)

where y = ∏i((α− 1)tr(¬ϕi)+ 1). Clearly this translation requires tr(ϕi) to be boolean and

can itself take non-boolean values. Since there is only one top Threshold gate in a flat circuit,

the formulae ϕi were threshold free and thus tr(ϕi) only took on boolean values. But in a

TC0-Frege proof, the formulae ϕi can themselves contain Threshold gates and thus tr(ϕi) may

be non-boolean. To fix this problem, we redefine the translation of a Threshold gate to be the

following, essentially forcing it to be boolean.

tr(T ht(ϕ1 · · ·ϕk)) =
(
(y−α

t) · · ·(y−α
k)
)pm−1

where y = ∏i((α−1)tr(¬ϕi)+1) and tr(¬T ht(ϕ1 · · ·ϕk)) = 1− tr(T ht(ϕ1 · · ·ϕk)).

It is easy to generalize Lemma 13 to derive the fact that the above translation only takes

boolean values. Now, note that any rule other than the T ht is unaffected by this new translation

since it only assumes that its arguments are boolean and hence we can use the lemmas of the

previous section directly. However, simulation of the T ht rule relies on the old translation. To

26

bridge the gap, we only need to show that the old and new translations of T ht and ¬T ht are

interchangeable within the proof system. The following lemmas are proved in Appendix 2.C

Lemma 1. Given the equation

(
(y−α

t) · · ·(y−α
k)
)pm−1

= 0

we can derive

(y−α
t) · · ·(y−α

k) = 0

and vice versa.

Lemma 2. Given the equation

1−
(
(y−α

t) · · ·(y−α
k)
)pm−1

= 0

we can derive

(y−1) · · ·(y−α
t−1) = 0

and vice versa.

Existence of Feasible Interpolation

Bonet, Pitassi and Raz [BPR00] have shown that TC0-Frege does not have feasible

interpolation unless Blum integers can be factored by polynomial sized circuits. By the above

simulation, we can state the following

Theorem 11. Depth-d-PC does not have feasible interpolation unless Blum integers can be

factored by polynomial sized circuits

27

2.5.4 Dealing with large coefficients

It is well-known that arbitrary threshold gates can be simulated by simple majority gates

of higher depth. In particular, a tight simulation was proven by Goldmann, Hastad and Razborov

[GHR92] who show that depth d + 1 TC0 circuits are equivalent to depth d threshold circuits

with arbitrary weights. However, the analogous result has not been proven in the propositional

proof setting. In order to simulate arbitrary weighted thresholds in our low depth extension of PC,

we will we use a different simulation of high weight thresholds by low weight ones.

The basic idea will be to use simple, shallow formulas that compute the iterated addition

of n binary numbers, each with m = poly(n) bits [MT98]. Let a1,a2, . . . ,an be the set of n

binary numbers, each of length m = poly(n), where ai = ai,m, . . . ,ai,1. We will break up the m

coordinates into m/ logm blocks, each of size logm; let L j(ai) denote the jth block of ai. The

high level idea is to compute the sum by first computing the sum within each block, and then to

combine using carry-save-addition.

In more detail, let ao
i denote the “odd” blocks of ai – so ao

i consists of m/ logm blocks,

where for j odd, the jth block is L j(ai), and for j even, the jth block is all zeroes (and similarly,

ae
i denotes the even blocks of ai). Let So be equal to ∑i∈[n] ao

i , and similarly let Se be equal to

∑i∈[n] ae
i . We will give a SLP for computing the bits of So and Se and then our desired sum,

So +Se, is obtained using the usual carry-save addition which can be computed by a depth-2 SLP.

The main point is that we have padded ao
i and ae

i with zeroes in every other block; this enables us

to compute So (and similarly Se) blockwise (on the odd blocks for So and on the even blocks for

Se), because no carries will spill over to the next nonzero block. Then since the blocks are very

small (logm bits), the sum within each block can be carried out by brute-force.

Our construction below generalizes this to the case where the ai’s are not large coefficients,

but instead they are the product of a monomial and a large coefficient. After formally describing

this low-depth representation, it remains to show how to efficiently reason about these low-depth

representations in order to carry out the rule-by-rule simulation of general Cutting Planes and

28

SOS.

2.5.5 Bit vector representations of CP/SOS proof lines

Definition 15. Derivations in Depth-d-PC

Let m0 be an upper limit on the number of monomials in any polynomial we wish to represent. We

work over an arbitrary field larger than m2
0.

To indicate that a new extension variable yi is being introduced and set to a value ai, we

write

yi := ai

To indicate that a line P = 0 in Depth-d-PC can be derived from P1 = 0, P2 = 0, · · · ,Pk = 0, we

write

P1,P2, · · · ,Pk ` P

To indicate that a line P = 0 can be derived just from the axioms of the form x2
i = xi for all

boolean variables xi, we write

` P

Below we formally define the representation of binary numbers as bit vectors.

Definition 16. Bit vectors

We represent an integer using its bit representation by introducing a variable for each of its bits.

Let a be an integer with bits am · · ·a1. A bit vector a = [am · · ·a1] representing the integer a in our

system is a set of auxiliary variables ym · · ·y1 such that yi := ai. Define a(i) = yi = ai. Integers

which are represented as vectors are written in boldface.

Let m0 be an upper limit on the number of monomials in any polynomial we wish

29

to represent and let m1 be an upper limit on any coefficient we wish to represent. Set m =

10dlog(m0)+ log(m1)e. The bit vectors in this simulation will all be of dimension m, i.e. all

integers we represent will be of at most m bits. Any vector of dimension > m generated in any

operation is automatically truncated to dimension m by dropping the higher order bits.

The bit representation chosen is Two’s complement. That is, a positive integer is repre-

sented in binary in the usual way. Let b be a positive integer represented by b. Let b1 be the

vector obtained by flipping all the bits in b. Then we define the vector −b as b1⊕1, where ⊕

operation on vectors, defined below, simulates the usual bitwise addition operation and 1 is the

vector representation of the integer 1. 0, the all zeros vector, represents the integer 0. For any

vector a, a(m) is the sign bit of a. a is said to be negative if the sign bit is one.

In order to make correct computation using the above Two’s complement representation

of binary numbers, we need to ensure that the bit length of all numbers represented is bounded.

We therefore define the length of a vector in our simulation, and later show that such vectors are

of bounded length.

Definition 17. Length of a vector

The length of a non-negative vector a is the highest index i such that a(i) 6= 0 and zero if such

an i does not exist. The length of a negative vector b is the highest index i such that b(i) 6= 1.

Equivalently, the length of a vector a is the highest index i such that a(i) 6= a(m).

We now define the usual addition operation for binary numbers, over their vector repre-

sentations. Since we work in a low depth setting, we need to use Carry-Save addition to represent

the sum and carry bits.

2.5.6 Operations on bit vectors

Definition 18. The Bitwise Addition operation ⊕

We define below the operator on vectors corresponding to the usual carry-save addition. For

30

two bits y and z, let y⊕ z represent the XOR of the bits. Given two bit vectors y = [ym · · ·y1] and

z = [zm · · ·z1], the bitwise addition operation y⊕ z produces a vector [wm+1 · · ·w1] such that

wi := yi⊕ zi⊕ ci

for i≤ m and wm+1 = cm where

ci := ∨ j<i(y j∧ z j∧ j<k<i (yk⊕ zk))

for 1 < i≤ m and c1 = 0.

ci are referred to as the carry bits in y⊕ z

Monomial terms a1X1 in our system are represented by a “scalar multiplication” of X1

with the vector a1, which we define below.

Definition 19. Scalar multiplication

For a bit z and a vector y, let zy = yz represent the vector obtained by multiplying every bit of y

by z.

In order to represent a line a1X1 + · · ·+ anXn− a0 ≥ 0 in Cutting Planes, we define an

operation S over the vectors a1X1, · · · ,anXn such that the resultant vector is a representation of

a1X1 + · · ·+anXn−a0 and has a low depth in X1, · · · ,Xn. This uses the idea of representing high

weight thresholds using low depth majority gates described earlier.

Definition 20. The Set Addition operation S(.)

We will now define the representation of the bitwise addition of vectors a1X1, · · · ,atXt , where

a1, · · · ,at are integer constants and X1, · · · ,Xt are monomials.

Let m2 = dm/ log(m0)e. For a constant a, partition the bits of a into m2 blocks of length at

most log(m0). Let L j(a), j ∈ [m2] denote the jth block of bits, so that the bits of a can be obtained

by a concatenation of the bits Lm2(a)...L1(a). Since L j(a) is only log(m0) bits long, its magnitude

31

is at most m0. Let [L j(a)] refer to the integer represented by the vector L j(a). Define ao to be the

vector obtained by replacing all even numbered blocks of a with zeroes. ae is analogously defined

by zeroing out the odd numbered blocks. For monomials X1 · · ·Xt and t < m0, we would like to

define bit vectors S o(a1X1, · · · ,atXt) and S e(a1X1, · · · ,anXt) to be the bit representations of the

polynomials ∑
t
i=1 ao

i Xi and ∑
t
i=1 ae

i Xi. We accomplish this using constant depth SLPs as follows.

We define a constant depth SLP to compute the kth bit of the jth block of S o, represented

by L jk(S o). The important observation is that we can compute S o two blocks at a time since for

odd j, ∑i [L j(ao
i)]Xi is at most m2

0 and thus can be represented by 2log(m0) bits or exactly two

blocks. Let C` be the set of integers in [m2
0] such that the `th bit of their binary representation is

one. Then for odd j, L jk(S o) is one if and only if

∏
β∈Ck

(
∑

i
[L j(ao

i)]Xi−β

)
= 0

and for even j, L jk(S o) is one if and only if

∏
β∈Clog(m0)+k

(
∑

i
[L j−1(ao

i)]Xi−β

)
= 0

Therefore, the bit L jk(S o) can be represented as a constant depth SLP of size O(m0) by

representing the left hand side of the above equations as a SLP over a field of characteristic

larger than m2
0, similar to the simulation of CP* in the earlier sections, and then raising the result

of that SLP to the order of the multiplicative group that we are working in. The bits of S e are

represented analogously.

The operation S over vectors a1X1, · · · ,atXt now defined as

S o(a1X1, · · · ,atXt)⊕S e(a1X1, · · · ,anXt)

.

32

2.5.7 Representing a line from CP/SOS in Depth-d-PC

We now define the translation of a line a1X1 + · · ·+anXk−a0 ≥ 0 in Cutting Planes/SOS,

where X1 . . .Xk are monomials.

Definition 21. Representing an inequality

Let P = a1X1 + · · ·+akXk be a polynomial where the Xi are monomials. Then the line P≥ 0 is

represented as

S(a1X1, · · · ,akXk)(m) = 0

and P = 0 is represented as

S(a1X1, · · · ,akXk) = 0

Let R (P) denote the vector S(a1X1, · · · ,akXk).

2.5.8 Simulating Cutting Planes

Addition

Before we prove the simulation for addition, we need the following key properties of the

vector representation. They are proved in Section 2.D.

The lemma below states that our system can prove the associativity of the operation ⊕

over vectors.

Lemma 24. For any three bit vectors y, z and w

` (y⊕ z)⊕w−y⊕ (z⊕w)

We then need to be able to interchangeably use the operations S and ⊕ for vector addition

Lemma 26. ` S(y1, · · · ,yi)−S(y1, · · · ,yi−1)⊕yi

33

We then extend this to show that the vector representation of the sum of two lines is the ⊕

of the vector representations of each line.

Lemma 28. Let P and Q be two polynomials. Then R (P+Q) = R (P)⊕R (Q).

This concludes simulation of the addition rule.

Multiplication by a constant

In order to simulate multiplication by a power of two, we left-shift bits of the correspond-

ing bit vector by the required amount, and add zero bits at the end. Multiplication by any constant

can then be simulated by the above in combination with the Addition rule.

Division by a constant

To simulate the division rule in Cutting Planes we use the following lemma.

Lemma ??. Let P = a1x1 + · · ·+anxn−a0 where ai are non-negative, a1 · · ·an are even and a0

is odd. Then we can derive

R (P)(m) ` R (P−1)(m)

We can now simulate the division rule by using the above lemma and then dropping the

last bit of the vector R (P−1) (which would be zero).

2.5.9 Simulating Dynamic SOS

Rules 1, 2 and 3 of Definition 9 follow from the above simulation of Cutting Planes.

Multiplication of two lines

To simulate the multiplication rule of SOS, we need to define an operation which, given

the vectors a1 and b1, produces a vector that is equivalent to the representation of a1b1. We define

it as a shifted sum based on the grade school algorithm for binary multiplication.

34

Definition 22. Shifted sum

For a vector y, let 2ky denote the vector obtained by shifting the bits of y to the left by k positions,

and padding the least significant k positions with zeros. Given two vectors y and z = [zm−1 · · ·z0]

, the shifted sum of y and z is defined as the vector

SS(y,z) = S(z0y, · · · ,zm−12m−1y)

We then show that our system can prove that the vector obtained by using this operation

is indeed what we want.

Lemma 40. Let P and Q be two polynomials, represented by bit vectors y0 and z = [zm−1 · · ·z0],

with at most m0 monomials and coefficients bounded by m1 in absolute value. Then,

` R (PQ)−SS(y0,z)

We now need to show that the as long as P and Q have coefficients not exceeding bit

length m, we can derive from R (P)(m) = 0 and R (Q)(m) = 0 the lines R (P+Q)(m) = 0 and

R (PQ)(m) = 0. It is an easy observation that if the bit lengths of the coefficients in P and Q are

bounded, then the vectors R (P) and R (Q) are of bounded length. Thus it suffices to show the

following.

Lemma 34. For any two vectors a and b of length at most ` < m−1

a(m),b(m) ` (a⊕b)(m)

Lemma 35. Let y and z be two non-negative vectors of length ` such that 3` < m−1. Then

y(m),z(m) ` SS(y,z)(m)

This completes the simulation of the rule which takes the product of two lines in SOS.

35

Squaring rule

To simulate the rule in SOS which introduces a line P2 ≥ 0 for any polynomial P, we

need the following lemmas.

The lemma below states that if the sign bit of y is one, then the sign bit of −y is zero.

Lemma 30. For any vector y of length ` < m−1,

y(m)−1 ` (−y)(m)

The following lemma shows that for a vector representing a polynomial P, the negation of

it represents the polynomial −P .

Lemma 31. Let P be a polynomial represented by a vector y. Then ` R (−P)− (−y).

The rule which derives P2 ≥ 0 can now be easily simulated by branching on the sign bit

of the vector R (P). Assuming it to be zero, we can use Lemma 35 to derive R (P2)(m) = 0. In

the other case, we can use Lemma 30 and Lemma 31 to derive that the sign bit of R (−P) is zero.

We can now use Lemma 35 again to derive R (P2)(m) = 0.

2.5.10 Concluding the simulation

By simulating any refutation in Cutting Planes/SOS rule by rule using the above lemmas,

we end up with the representation of the line −1≥ 0 i.e.

R (−1)(m) = 0

Since −1 is represented by the all ones vector, this gives a contradiction.

36

Appendix

2.A Small-weight Cutting Planes Simulations

Notational Remark In Depth-d-PC, we sometimes use “inline” definitions to indicate the new

variables y j introduced. For instance, the equation

x1(x1 +1) = 0

represents the equations

x1y1 = 0

y1 = x1 +1

Thus when we refer to the monomial corresponding to x1(x1 +1), we are referring to x1y1.

Though ΣΠΣ-PC captures the effect of size reductions due to allowing linear transforma-

tions within the proof, it turns out that it is more powerful than required for our simulation in

Theorem 1, so we define the tightest restriction of it where we can still do the simulation.

Definition 23. A Trinomial is a polynomial with at most three monomials

Definition 24. Trinomial-ΠΣ-PC

Let Γ = {P1 · · · Pm} be a set of polynomials over a field F such that each P ∈ Γ is either an affine

37

form or a trinomial in {x1 · · ·xn}. Let the system of equations P1 = 0 · · · Pm = 0 have no solution.

Let Γ′ = {P1 · · ·Pm,Q1 · · ·Qk} be a set of polynomials over variables {x1 · · ·xn} and {y1 · · ·yk}

such that Q1 · · ·Qk are polynomials of the form Q j = y j− (a j0 +∑i ai jxi) for some constants

ai j ∈ F. A Trinomial-ΠΣ-PC refutation R1 · · ·Rs of Γ is a Polynomial Calculus refutation of Γ′,

such that each R` is either an affine form or a trinomial in {x1 · · ·xn} and {y1 · · ·yk}.

Trinomial-ΠΣ-PC essentially allows each line in the proof to be a ΣΠΣ circuit in X with

the top fan-in bounded by 3. We will measure the size of a Trinomial-ΠΣ-PC proof by the number

of lines, which is clearly polynomially equivalent to the number of monomials in X , Y . This proof

system seems quite restricted, especially since it can no longer trivially simulate Polynomial

Calculus unlike ΣΠΣ-PC. But surprisingly, the Pigeonhole Principle and Tseitin formulas, for

which we have lower bounds for Polynomial Calculus, have small proofs in Trinomial-ΠΣ-PC.

2.A.1 Proof of the Intersection lemma

Here we prove the Intersection lemma and some of its variants that will be used throughout

the rest of the paper.

Lemma 3. “Substitution Lemma”

Let R(z−a1) · · ·(z−ak) = 0 and Rp(z) = 0 be two equations in a Depth-d′-PC refutation, where

R is any polynomial and p is a univariate polynomial of degree d in z such that p(ai) 6= 0 for any

i. Then, we can derive the equation R = 0 in O(kd|R|) lines where |R| is the number of monomials

in R.

Proof. Consider the base case of k = 1. Starting with R(z−a1) = 0, we can successively derive

Rzi−Rai
1 = 0 for i ∈ {2 · · ·d} by multiplying with the appropriate polynomials in z. This takes

O(d|R|) lines in total. Then adding these equations up with the appropriate coefficients we obtain

Rp(z)−Rp(a) = 0. Since p(a) 6= 0 and Rp(z) = 0, we have R = 0. Now, multiplying every line

38

of the above derivation with (z−a2) · · ·(z−ak), we have a derivation of R(z−a2) · · ·(z−ak) = 0

from R(z−a1) · · ·(z−ak) = 0 and Rp(z) = 0. The lemma now follows by induction over k.

Lemma 4. Let Q(z−a) = 0 and Q∏
k
i=1(z−bi) = 0 be two equations in Trinomial-ΠΣ-PC, where

Q is a monomial and a 6= bi for any i. Then we can derive Q = 0 in O(k) lines.

Proof. The proof is by induction on k. The base case, when k = 0, is trivial. Assume that

the lemma is true for some k− 1 ≥ 0. Let z1 = z− a, z2 = z− b1 and Q1 = ∏
k
i=2(z− bi). The

equations are then represented as

Qz1 = 0 (2.1)

QQ1z2 = 0 (2.2)

z1 = z−a (2.3)

z2 = z−b (2.4)

Multiplying equation (2.1) by Q1, we have

QQ1z1 = 0 (2.5)

Let c = a−b. By subtracting (2.4) from (2.3) we derive

z1− z2 + c = 0 (2.6)

Now multiplying the above equation by the monomial QQ1, we derive the trinomial

QQ1z1−QQ1z2 + cQQ1 = 0

39

But since we already have QQ1z1 = 0 from (2.5) and QQ1z2 = 0 from (2.2), we obtain

cQQ1 = 0

Since c 6= 0, we derive QQ1 = 0. Therefore, we now have the equations

Q(z−a) = 0

Q
k

∏
i=2

(z−bi) = 0

The proof of the lemma thus follows from the induction hypothesis. Since it only takes a

constant number of lines to go from the case of k to the case of k−1, the total number of lines in

the derivation is O(k).

We now generalize this lemma as follows.

Lemma 5. “Intersection Lemma”

Let A and B be two sets of constants in F. Let ∏a∈A(z− a) = 0 and ∏b∈B(z− b) = 0 be two

equations in Trinomial-ΠΣ-PC. Then there is a proof of ∏c∈A∩B(z− c) = 0 in Trinomial-ΠΣ-PC

of length O(|A\B| · |B\A|)

Proof. We will prove the lemma by induction over the size of |A \B|. The base case when

|A\B|= 0 trivially follows since A = A∩B.

Now for any two sets A and B such that |A\B|> 0, let the equations be labeled as follows

∏
a∈A

(z−a) = 0 (2.7)

∏
b∈B

(z−b) = 0 (2.8)

40

Let A0 = A \B and B0 = B \A. Choose an element a1 ∈ A0. Let A1 = A \ {a1} and

A2 = A0 \ {a1}. Let Q1 be the monomial ∏a∈A1(z− a) and Q2 be the monomial ∏a∈A2(z− a).

Then equation (2.7) can be written as

Q1(z−a1) = 0 (2.9)

Multiplying (2.8) by Q2 we get

∏
b∈B∪A2

(z−b) = 0 (2.10)

Note that there are no squared terms in the monomial since A2 and B are disjoint. The

above equation can be rewritten as

∏
b∈A1∪B0

(z−b) = 0 (2.11)

since A1∪B0 = B∪A2. Note that A1 and B0 are also disjoint. Hence we can write the above

equation as

Q1 ∏
b∈B0

(z−b) = 0 (2.12)

Now since a1 6∈ B0, we can apply Lemma 4 on equations (2.9) and (2.12) to get

Q1 = 0

i.e.

∏
a∈A1

(z−a) = 0 (2.13)

in O(|B0|) = O(|B\A|) lines.

41

Now we have two sets of constants A1 and B with corresponding equations (2.13) and

(2.8) such that |A1 \B|= |A\B|−1. Thus the lemma follows by induction. The total number of

lines is O(|A\B| · |B\A|).

Remark It is easy to see that starting with Q∏a∈A(z−a) = 0 and Q∏b∈B(z−b) = 0, we can

still apply the Intersection Lemma to get Q∏c∈A∩B(z− c) = 0 for any monomial Q.

2.A.2 Simulating syntactic CP∗ in Trinomial-ΠΣ-PC over Q

We are now ready to state and prove Theorem 0, which first appeared in [RT08a].

For each possible derivation rule in a Cutting Planes proof, we will now show how to

derive in Trinomial-ΠΣ-PC the translation of the result of applying the rule on a line or a pair of

lines, given their translations.

Simulating Addition For the addition rule, given the translations of two lines ∑i ai jxi ≥ b j and

∑i aikxi ≥ bk in CP*, we will derive the translation of their sum ∑i (aik +ai j)xi ≥ b j +bk. The

following lemma suffices.

Lemma 6. Simulating addition

Let x(x−1) · · ·(x−a) = 0 and y(y−1) · · ·(y−b) = 0 be two equations in a Trinomial-ΠΣ-PC

refutation with a≥ b. Then we can derive

(x+ y)(x+ y−1) · · ·(x+ y− (a+b)) = 0

using O(ab) lines.

Proof. Let z = x+ y. We will first derive the range of values z can take when y = j, for all

j ∈ {0 · · ·b}. Let xi = x− i for i ∈ {0 · · ·a}, y j = y− j for j ∈ {0 · · ·b} and zk = z− k for

42

k ∈ {0 · · ·a+ b}. Also, for S ⊆ {0 · · ·b}, let YS = ∏ j∈{0···b}\S y j. We denote Y{ j} simply by Yj.

Note that YAYB = 0 if A∪B = {0 · · ·b}. Then we have

z j = x0 + y j

Multiplying the above equation by the monomial Yj, we have

z jY j− x0Yj− y jYj = 0

Since y jYj = ∏ j∈{0···b} y j = 0, we have

z jYj− x0Y j = 0 (2.14)

It is easy to derive for i ∈ {0 · · ·a}

z j− z j+i− i = 0

Multiplying the above equation by the monomial Yj, we have

z jY j− z j+iYj− iYj = 0 (2.15)

Subtracting this from (2.14) we get

z j+iYj− x0Yj + iYj = 0 (2.16)

By the definition of xi we have

xi = x0− i

Multiplying the above equation by the monomial Yj, we get

43

xiYj− x0Y j + iYj = 0

Subtracting the above equation from (2.16) we get

z j+1Yj− xiYj = 0

Thus, for all i ∈ {0 · · ·a} we derive

z j+iYj− xiYj = 0

From the above a+1 equations, we can inductively derive for i ∈ {0 · · ·a}

z j · · ·z j+iYj− x0 · · ·xiYj = 0

as follows. For i ∈ {1 · · ·a}, using

z j · · ·z j+i−1Yj− x0 · · ·xi−1Yj = 0

we can derive

z j · · ·z j+iY j− x0 · · ·xi−1z j+iYj = 0 (2.17)

by multiplying with z j+1. Now multiplying

z j+iYj− xiYj = 0

by the monomial x0 · · ·xi−1, we derive

x0 · · ·xi−1z j+iYj− x0 · · ·xiYj = 0 (2.18)

44

Subtracting (2.18) from (2.17) we get

z j · · ·z j+iY j− x0 · · ·xiYj = 0

using O(j) monomials. Therefore, we have

z j · · ·z j+aY j− x0 · · ·xaYj = 0 (2.19)

and since x0 · · ·xa = 0, we derive

z j · · ·z j+aYj = 0

We derive the above for every j ∈ {0 · · ·b} using a total of O(ab) lines. Multiplying the

above line by {zk : 0≤ k < j}∪{zk : j+a < k ≤ a+b}, we have for all j ∈ {0 · · ·b}

z0 · · ·za+bYj = 0

Now note that the set of monomials {Yj : j ∈ {0 · · ·b}} have no common root. Therefore

we can apply the Intersection Lemma repeatedly to derive z0 · · ·za+b = 0 as follows. Starting with

z0 · · ·za+bY{0··· j} = 0

and

z0 · · ·za+bYj+1 = 0

and applying the Intersection Lemma with A = {0 · · ·b}\{0 · · · j} and B = {0 · · ·b}\{ j+

1} we get

z0 · · ·za+bY{0··· j+1} = 0

45

using O(j) lines. Thus using O(b2) lines we get

z0 · · ·za+b = 0

and the total number of lines is O(ab+b2).

Corollary 1. Given the translations of ∑i ai jxi ≥ b j and ∑i aikxi ≥ bk, we can derive in Trinomial-

ΠΣ-PC the translation of ∑i (aik +ai j)xi ≥ b j +bk in O((∑i a+i j −b j)(∑i a+ik−bk)) lines

Proof. Use the above lemma for x = ∑i ai jxi− b j, a = ∑i a+i j − b j and y = ∑i aikxi− bk , b =

∑i a+ik−bk.

Simulating multiplication by a constant We use the following lemma to derive the translation

of c∑i ci jxi ≥ cd j in Trinomial-ΠΣ-PC from the translation of ∑i ci jxi ≥ d j

Lemma 7. Let (z−a1) · · ·(z−ak) = 0 be an equation in Trinomial-ΠΣ-PC. We can derive the

equation

(z′− ca1) · · ·(z′− cak) = 0

where z′ = cz in Trinomial-ΠΣ-PC for any c ∈Q in O(k) lines.

Proof. The proof is by induction on k. For k = 0, the derivation is trivial. Let zi = z− ai and

z′i = z′− cai for i ∈ {1 · · ·k}. Then, for any k ≥ 1, we are given the equation

z1 · · ·zk = 0

and we want to derive

z′1 · · ·z′k = 0

46

Since, z′ = cz, we get z′1 = z′− ca1 = cz1 and thus multiplying with z2 · · ·zk we get

z′1z2 · · ·zk− cz1 · · ·zk = 0

But since z1 · · ·zk = 0 as above, we get

z′1z2 · · ·zk = 0

Now by the induction hypothesis we have a derivation of z′2 · · ·z′k = 0 from z2 · · ·zk = 0.

By multiplying each step of this derivation by z′1, we have derived z′1 · · ·z′k = 0 from z′1z2 · · ·zk = 0.

Corollary 2. Given the translation of ∑i ci jxi ≥ d j, we can derive the translation of

c∑i ci jxi ≥ cd j in Trinomial-ΠΣ-PC in O(∑i c+i j −d j) lines

Proof. Use the above lemma for z = ∑i ci jxi−d j and

(a1 · · · ak) = (0 · · · ∑i c+i j −d j)

Simulating division by a constant Given the translation of a line c∑i ai jxi ≥ b j in Cutting

Planes for some c > 0, we will now derive the translation of ∑i ai jxi ≥ db j/ce by the lemma

below. We need the following corollary of Lemma 6

Corollary 3. Let z = ∑i ai jxi be an equation in Trinomial-ΠΣ-PC, where xi are boolean variables.

Then we can derive

z
(

z−1
)
· · ·
(

z−
(
∑

i
a+i j
))

= 0

in O((∑i a+i)
2) lines.

Proof. Let a = ∑
n
i=1 a+i j and let b = ∑

n/2
i=1 a+i j . Assume that we have derived the equations

z1

(
z1−1

)
· · ·
(

z1−
(n/2

∑
i=1

a+i
))

= 0

47

z2

(
z2−1

)
· · ·
(

z2−
(n

∑
i=n/2+1

a+i
))

= 0

for z1 = ∑
n/2
i=1 ai jxi and z2 = ∑

n
i=n/2+1 ai jxi. We can use Lemma 6 on the above two

equations to derive the required equation in O(b(a−b)) lines. Continuing this recursively for the

above two lines, the total number of lines L(a) to derive z
(

z−1
)
· · ·
(

z−
(

∑i a+i
))

= 0 is given

by the recurrence L(a) = L(b)+L(a−b)+O(b(a−b)), which gives L(a) = O(a2) by an easy

induction.

Lemma 8. Simulating Division by a constant

Let (cz−b)(cz− (b+1)) · · ·(cz−d) = 0 be an equation in Trinomial-ΠΣ-PC where z = ∑i ai jxi

such that xi are boolean variables, b < d and c > 0. We can derive

(z−db/ce)(z− (db/ce+1)) · · ·(z−bd/cc) = 0

using O((∑i a+i)
2 +(∑i a+i)(d−b)) lines.

Proof. Using Corollary 3 we can derive the following equation in O((∑i a+i)
2) lines.

z
(

z−1
)
· · ·
(

z−
(
∑

i
a+i j
))

= 0 (2.20)

Now, using Lemma 7 on the equation (cz−b)(cz−(b+1)) · · ·(cz−d) = 0 with the multiplication

constant equal to 1/c, we can derive

z(z−b/c) · · ·(z−d/c) = 0 (2.21)

Note that the constants in parentheses in the above equation are rational, and the smallest

integer that appears is db/ce and the largest integer that appears is bd/cc. Using the Intersection

Lemma with equations (2.20) and (2.21), we see that only the integer values are retained from

(2.21) which gives us

48

(z−db/ce)(z− (db/ce+1)) · · ·(z−bd/cc)

using O((∑i a+i)(d−b)) lines.

Corollary 4. Given the translation of a line c∑i ai jxi ≥ b j for some c > 0, we can derive in

Trinomial-ΠΣ-PC the translation of ∑i ai jxi ≥ db j/ce in O(c(∑i a+i j)
2)lines

Proof. Apply the above lemma for z = ∑i ai jxi.

This completes the simulation of a syntactic CP* proof in Trinomial-ΠΣ-PC with the

simulation having size polynomial in n and the coefficient size of the original proof.

2.A.3 Simulating semantic CP∗ in Trinomial-ΠΣ-PC over Q

In this section we extend the above simulation to include semantic CP*, hence completing

the proof of Theorem 1. Let L1 ≡ ∑i aixi ≥ d1, L2 ≡ ∑i bixi ≥ d2 be two lines in a Cutting Planes

proof and let L3≡∑i cixi≥ d3 be a semantic consequence of L1 and L2. Let y =∑i aixi, z =∑i bixi

and w = ∑i cixi. Let A = {0 · · ·∑i a+i }, B = {0 · · ·∑i b+i } and C = {0 · · ·∑i c+i }. Using Lemma 3,

we can derive the equations

∏
a∈A

(y−a) = 0

∏
b∈B

(z−b) = 0

∏
c∈C

(w− c) = 0

This restricts the values that can be taken by the tuple (y,z,w) to the three dimensional

grid A×B×C. Let a point (i, j,k) in the grid be infeasible if the tuple (y,z,w) never evaluates to

49

it for any assignment to {xi}. Our first step is to derive infeasibility equations of the form

∏
a∈A
a6=i

(y−a)∏
b∈B
b6= j

(z−b)∏
c∈C
c6=k

(w− c) = 0

which for (i, j,k) ∈ A×B×C tells us that the point (i, j,k) in the grid is infeasible for the

tuple (y,z,w).

Lemma 9. For every infeasible point (i, j,k) ∈ A×B×C, an infeasibility equation of the above

form can be derived in O((∑i a+i)
2(∑i b+i)

2(∑i c+i)
2) lines

Proof. We proceed by induction on n. Let y` = ∑
`
i=1 aixi and z`, w`, A`, B`, C` be defined

analogously. For the base case of n = 1, the equations defining the grid are y1(y1− a1) = 0,

z1(z1− b1) = 0 and w1(w1− c1) = 0. The only feasible points in the grid are (0,0,0) and

(a1,b1,c1), and thus for every other tuple we will derive an infeasibility equation. We show the

derivation for one such tuple (a1,0,0). Starting with

y1 = a1x1

z1 = b1x1

derive

z1−b1 = b1(x1−1)

and multiply by y1 to derive

y1(z1−b1) = a1b1x1(x1−1) = 0

Multiplying the above equation by (w1− c1), we have our required infeasibility equation.

To continue the induction and derive all possible infeasibility equations, we observe that a

point (i, j,k) for (y`,z`,w`) is infeasible if and only if the points (i, j,k) and (i−a`, j−b`,k−c`)

50

are infeasible for (y`−1,z`−1,w`−1). Therefore, assuming the latter, we derive the former as

follows. Given

∏
a∈A`−1

a6=i

(y`−1−a) ∏
b∈B`−1

b6= j

(z`−1−b) ∏
c∈C`−1

c6=k

(w`−1− c) = 0

and

∏
a∈A`−1
a6=i−a`

(y`−1−a) ∏
b∈B`−1
b 6= j−b`

(z`−1−b) ∏
c∈C`−1
c6=k−c`

(w`−1− c) = 0

we will derive

∏
a∈A`
a6=i

(y`−a) ∏
b∈B`
b 6= j

(z`−b) ∏
c∈C`
c6=k

(w`− c) = 0

Starting with the equations

y` = y`−1 +a`x`

z` = z`−1 +b`x`

w` = w`−1 + c`x`

multiply each by (x`−1) to derive

y`(x`−1) = y`−1(x`−1)

z`(x`−1) = z`−1(x`−1)

w`(x`−1) = w`−1(x`−1)

From the above equations, it is easy to derive (see Lemma 6)

51

(x`−1) ∏
a∈A`−1

a 6=i

(y`−a) ∏
b∈B`−1

b6= j

(z`−b) ∏
c∈C`−1

c6=k

(w`− c) (2.22)

= (x`−1) ∏
a∈A`−1

a 6=i

(y`−1−a) ∏
b∈B`−1

b6= j

(z`−1−b) ∏
c∈C`−1

c6=k

(w`−1− c) (2.23)

= 0 (2.24)

Similarly, we derive from the three starting equations

y`−a` = y`−1 +a`(x`−1)

z`−b` = z`−1 +b`(x`−1)

w`− c` = w`−1 + c`(x`−1)

Multiplying by x` we have

(y`−a`)x` = y`−1x`

(z`−b`)x` = z`−1x`

(w`− c`)x` = w`−1x`

Analogous to the above we can derive

52

x` ∏
a∈A`−1
a6=i−a`

(y`− (a+a`)) ∏
b∈B`−1
b6= j−b`

(z`− (b+b`)) ∏
c∈C`−1
c6=k−c`

(w`− (c+ c`)) (2.25)

= x` ∏
a∈A`−1
a6=i−a`

(y`−1−a) ∏
b∈B`−1
b 6= j−b`

(z`−1−b) ∏
c∈C`−1
c6=k−c`

(w`−1− c) (2.26)

= 0 (2.27)

As A`−1∪{a+ a` : a ∈ A`−1} ⊆ A` (similarly for B` and C`), we have from equations

(2.22) and (2.25)

(x`−1) ∏
a∈A`
a6=i

(y`−a) ∏
b∈B`
b6= j

(z`−b) ∏
c∈C`
c6=k

(w`− c) = 0 (2.28)

x` ∏
a∈A`
a6=i

(y`−a) ∏
b∈B`
b 6= j

(z`−b) ∏
c∈C`
c6=k

(w`− c) = 0 (2.29)

Adding the above two equations, we derive the required one.

The next step is to use the ranges of y and z specified in lines L1 and L2 to narrow down

the possible values that can be taken by w. Our goal will be to get an equation of the form

∏
c∈C′

(w− c) = 0

such that each c in C′ is feasible for w under the constraints L1 and L2 on y and z

respectively.

Let Pi be the translation of Li in Trinomial-ΠΣ-PC, for i = 1,2,3. Let Ia,b denote the set

53

of all infeasibility equations for points of the form (a,b,k) for some k ∈C. For an equation P

of the form ∏a∈A1(y−a)∏b∈B1(z−a)∏c∈C1(w−a) = 0, denote by Ry(P) the set A1, that is the

range of values specified by the equation for the variable y. Rz and Rw are defined analogously.

We describe how to obtain the set C′ by the algorithm w-FEASIBLE which operates on the range

sets.

1 C′← /0

2 for (a,b) ∈ Ry(P1)×Rz(P2) do
3 S←C for I ∈ Ia,b do
4 S← S∩Rw(I)
5 end
6 C′←C′∪S
7 end
8 return C′

Algorithm 2: w-feasible(P1,P2)

Consider a pair (a,b) ∈ Ry(P1)×Rz(P2). For any equation I ∈ Ia,b , Rw(I) gives a list of

possible values the variable w can take when (y,z) = (a,b). By Lemma 9, (y,z,w) = (a,b,c) is

infeasible if and only if there is an equation I ∈ Ia,b such that c 6∈ Rw(I). Therefore,
⋂

I∈Ia,b

Rw(I) is

precisely the feasible set of values for w, given (y,z) = (a,b). C′ is the union of such sets over all

possible pairs (a,b) ∈ Ry(P1)×Rz(P2) and hence is the set of all feasible values of w.

This algorithm over range sets can be easily translated to a proof of ∏c∈C′(w−c) = 0 from

P1 and P2 in Trinomial-ΠΣ-PC as follows. To simulate the inner for loop, we use the Intersection

lemma inductively over all equations in Ia,b to get equations Ja,b such that Rw(Ja,b) =
⋂

I∈Ia,b

Rw(I).

Note that Ry(Ja,b) = A \{a} and Rz(Ja,b) = B \{b}. Thus using the Intersection lemma again

inductively over the set {Ja,b} analogous to Lemma 6 would give an equation free of y and z,

where w ranges over
⋃

(a,b)
Rw(Ja,b). Any semantic consequence P3 must be such that Rw(P3)⊇C′

and hence is easily derived.

54

2.A.4 Simulating syntactic CP∗ in Depth-5-PC over Fpm

We will now carry out the simulation in Section 2.A.2 in Depth-d-PC over a large enough

field extension Fpm of a finite field Fp. This will be of use in the next section, where we simulate

AC0[p]-Frege in Depth-d-PC over Fpm . For the following discussion, we set d = 5

To represent large integers over Fpm , we choose a primitive element α and for a boolean

xi perform the linear transformation yi = 1+(α− 1)xi. Since xi is boolean, yi is essentially

equivalent to the mapping xi 7→ αxi . The expression ∑i aixi is thus represented as α∑i aixi . We

will show that all the steps of the simulation in section 2.A.2 can still be performed after this

transformation.

Theorem 12. Depth-d-PC over Fpm can simulate syntactic Cutting Planes with the number of

lines polynomial in n and the coefficient size, where m is logarithmic in n and the coefficient size.

Let s1 be the coefficient size of the Cutting Planes proof. Define s = ns1. Choose m to be

the smallest integer such that 2s2 < pm−1. Let α be an arbitrary primitive element of Fpm .

Definition 25. Translation of Cutting Planes to Depth-d-PC over Fpm

Given a line ∑i aixi ≥ bi in Cutting Planes, the translation of the above line is defined as

the following lines, where yi and y are new variables.

yi = (αai−1)xi +1

y = ∏
i

yi

(y−α
bi)(y−α

bi+1) · · ·(y−α∑i a+i) = 0

An integer c such that 0≤ c≤ s is represented as αc, whereas for−s≤ c < 0 we represent

it as α−|c| ≡ α(pm−1)−|c|. Since 2s≤ 2s2 < pm−1, these representations are unique.

The following lemmas will be largely similar to the ones in the previous section.

55

Simulating Addition To simulate the addition rule, it suffices to show the following

Lemma 10. Let A and B be two sets of constants in any field and let C = {ab | a ∈ A,b ∈ B}.

Let ∏a∈A(x−a) = 0 and ∏b∈B(x−b) = 0 be two equations in Depth-d-PC. Let z = xy. Then the

equation

∏
c∈C

(z− c) = 0

can be derived in O(|A||B|) lines.

Proof. Let A = {ai},B = {bi}, xi = x− ai and yi = y− bi. Note that x1 · · ·x|A| = 0 = y1 · · ·y|B|.

Let X j = ∏i 6= j xi. Starting with

z = xy

we can derive

z = (x−a j)y+a jy

Now multiplying the above equation by X j, we have

zX j = x1 · · ·x|A|y+a jyX j = a jyX j

Subtracting a jbiX j on both sides we can derive for every i the equation

(z−a jbi)X j = a j(y−bi)X j

Now, similar to Lemma 6, we can derive from the |B| equations above the equation

(z−a jb1) · · ·(z−a jb|B|)X j = a jy1 · · ·y|B|X j = 0

Thus for every j we have the equation

(z−a jb1) · · ·(z−a jb|B|)X j = 0

56

Multiplying each of the above |A| equations with the missing terms, we can obtain for

every j,

∏
c∈C

(z− c)X j = 0

Using the Intersection Lemma inductively as in Lemma 6, we obtain the required equation.

Corollary 5. Given the translations of ∑i ai jxi ≥ b j and ∑i aikxi ≥ bk in Depth-d-PC over Fpm ,

we can derive the translation of ∑i (aik +ai j)xi ≥ b j +bk in O((∑i ai j−b j)(∑i aik−bk)) lines

Proof. Use the above lemma for y1 = ∏i((α
ai j − 1)xi + 1), y2 = ∏i((α

aik − 1)xi + 1), A =

{αb j ,αb j+1 · · ·α∑i a+i j}, B = {αbk ,αbk+1 · · ·α∑i a+ik}

Simulating Multiplication

Lemma 11. Let A be a set of constants in any field and let c be a positive integer. Let Ac =

{ac | a ∈ A}. Let ∏a∈A(x−a) = 0 be an equation in the Depth-d-PC. Then we can derive the

equation

∏
a∈Ac

(xc−a) = 0

in O(|A|) lines.

Proof. Let xi = x−ai and x′i = xc
i . Then the given equation becomes x1 · · ·x|A| = 0, and we want

to derive x′1 · · ·x′|A| = 0. The proof is by induction on |A|. If |A|= 0 then we have nothing to prove.

Assume that the statement is true for |A| ≤ k−1 for some k ≥ 1. Consider an expression of the

form ∏a∈A(x−a) = 0, where |A|= k. If |Ac|< k, then clearly there exists a set A1 ⊂ A such that

Ac
1 = Ac, and the required equation follows from the induction hypothesis. If |Ac|= k, from the

given equation, it is easy to derive

57

xx2 · · ·xk−a1x2 · · ·xk = 0

Multiplying the above equation with x, we have

x2x2 · · ·xk−a1xx2 · · ·xk = 0

Adding a1 times the former equation to the latter, we have

x2x2 · · ·xk−a2
1x2 · · ·xk = 0

Proceeding in a similar way, we can derive

xcx2 · · ·xk−ac
1x2 · · ·xk = 0

or equivalently

x′1x2 · · ·xk = 0

Now by the induction hypothesis, we have a proof of x′2 · · ·x′k = 0 from x2 · · ·xk = 0.

Multiplying each line of the proof by x′1 we arrive at a proof of the required equation.

Corollary 6. Given the translation of ∑i ai jxi ≥ b j in Depth-d-PC over Fpm and an integer

c < pm−1, we can derive the translation of ∑i cai jxi ≥ cb j in O((∑i ai j−b j)) lines

Proof. Use the above lemma for y = ∏i((α
ai j −1)xi +1), A = {αb j ,αb j+1 · · ·α∑i a+i j}

Note that previous two lemmas hold over any field. For the following lemma, we will use

the fact that we are working over Fpm where s2 < pm−1.

Simulating Division The proof of the following corollary is analogous to Corollary 3.

58

Corollary 7. Let x = ∏i((α
bi j −1)xi +1) be a variable where xi are boolean. We can derive

(x−1)(x−α) · · ·(x−α
∑i b+i j) = 0

in O((∑i b+i j)
2) lines

Lemma 12. Let (xc−αca1) · · ·(xc−αcak) = 0 be an equation in Depth-d-PC over Fpm , where ai

are distinct and x is of the form ∏i((α
bi j −1)xi +1) where xi are boolean. There is a proof of the

equation

(x−α
a1) · · ·(x−α

ak) = 0

in O((∑i a+i)
2) lines

Proof. Using Corollary 7, we can derive

(x−1)(x−α) · · ·(x−α
∑i b+i j) = 0 (2.30)

in O((∑i b+i j)
2) lines. Since ∑i |bi j| < s, any term (x−αb) that appears in the above

equation is such that b ∈ [0,s] or b ∈ [pm−1− s, pm−2].

The proof is by induction on k. Consider the case of k = 1, when we have the equation

xc−αca1 = 0 where a1 ≤ s without loss of generality. If c - pm− 1, then it has a unique root

αa1 . If c | pm− 1, then the roots are of the form αai+ j(pm−1)/c for j ∈ {0 · · ·c− 1}. But since

2s2 < pm−1,

c≤ s < (pm−1)/2s≤ (pm−1)/2c (2.31)

Therefore any root αb such that b 6= a1 is such that b ≥ ai +(pm− 1)/c > s. Also, we

59

have

b≤ ai +(pm−1)(c−1)/c

= pm−1− ((pm−1)/c−ai)

< pm−1− ((pm−1)/c− s)

< pm−1− s

where the last inequality is due to (2.31). Therefore the only root αb to the equation xc−αca1 = 0

such that b ∈ [0,s] or b ∈ [pm−1− s, pm−2] is αa1 . Starting with the equation xc−αca1 = 0 it is

easy to derive

(x−α
a1)Q(x) = 0 (2.32)

where Q(x) = xc−1 +αxc−2 + · · ·+αc−1, just by expanding the above equation into its

monomials. Now by our discussion above, for any term (x−αb) that appears in the equation

(2.30), Q(αb) 6= 0. Therefore, using the Substitution lemma with equations (2.30) and (2.32) we

derive x−αa1 = 0 if this term appears in (2.30), else we derive 1 = 0. Therefore, this gives a

derivation of x−αa1 = 0 from the equation xc−αca1 = 0.

For the induction step, by multiplying every step in the above derivation with

(xc−αca2) · · ·(xc−αcak), we obtain a derivation of

(x−α
a1)(xc−α

ca2) · · ·(xc−α
cak) = 0

from

(xc−α
ca1) · · ·(xc−α

cak) = 0

60

The lemma now follows by induction.

Corollary 8. Given the translation of c∑i ai jxi ≥ b j in Depth-d-PC over Fpm for an integer

c < pm−1, we can derive the translation of ∑i ai jxi ≥ db j/ce in O((c∑i a+i j)
2) lines

Proof. Let the equation

(yc−α
b j) · · ·(yc−α

c∑i a+i j) = 0 (2.33)

be obtained from the translation of c∑i ai jxi ≥ b j, where y = ∏i((α
ai j − 1)xi + 1). We

first use Corollary 7 to derive

(y−1)(y−α) · · ·(y−α
∑i a+i j) = 0

in (∑i a+i j)
2 lines. Using Lemma 11 on the above equation, we get

(yc−1)(yc−α
c) · · ·(yc−α

c∑i a+i j) = 0 (2.34)

in ∑i a+i j lines. Using the Intersection Lemma on equations (2.33) and (2.34), we get

(yc−α
cdb j/ce) · · ·(yc−α

c∑i a+i j) = 0

We now use the previous lemma to derive

(y−α
db j/ce) · · ·(y−α

∑i a+i j) = 0

which is the required equation.

This completes the proof of Theorem 12

61

2.B Simulating AC0[q]-Frege in Depth-7-PC over Fpm

2.B.1 Case of q = p

For the purpose of this section, we set d = 7. We will use the simulation of AC0[p]-Frege

in [MP98] to show that the same can be carried out in Depth-d-PC over Fpm . We fix m to be

a large enough integer such that m = O(poly(log(n))), so that the field we are working over is

quasipolynomially sized. Below we describe the proof system of [MP98] and their simulation of

AC0[p]-Frege.

The Proof System of Maciel and Pitassi

Maciel and Pitassi [MP98] define a proof system with mod p, negation, AND, OR and

threshold connectives, based on the system PTK by Buss and Clote [BC96] which we describe

below.

Connectives Let x1 · · ·xn be boolean variables. For 0 ≤ j < p, let ⊕p
j (x1 · · ·xn) denote the

connective which is 1 if and only if ∑i xi = j mod p. For any integer t, let T ht(x1 · · ·xn) denote

the connective which is 1 if and only if ∑i xi ≥ t. Let ∧(x1 · · ·xn), ∨(x1 · · ·xn) denote AND and

OR connectives of arity n and ¬ denote the NOT gate.

Formulas A formula is recursively defined as follows. Input variables x1 · · ·xn are formu-

las of size 1 and depth 1. A formula ϕ is an expression of the form g(ϕ1 · · ·ϕk), where g is

any of the connectives described above and ϕ1 · · ·ϕk are formulas. The depth(ϕ) is defined

as ∑
k
i=1 depth(ϕi)+ 1. The size(ϕ) is defined as ∑

k
i=1 size(ϕi)+ k + 1 if g is not a threshold

connective, and it is defined as ∑
k
i=1 size(ϕi)+ t + k+1 if g is a threshold connective of the form

T ht(ϕ1 · · ·ϕk).

62

Cedents and Sequents A cedent Γ is defined as a sequence of formulas ϕ1 · · ·ϕk. We will use

capital Greek letters to denote cedents. A sequent is an expression of the form Γ→ ∆, where Γ

and ∆ are cedents. The interpretation of a sequent is that the AND of all the formulas in Γ implies

the OR of all the formulas in ∆. The size and depth of a cedent are respectively the sum of sizes

and the maximum of depths of all the formulas in it. The size of a sequent is the sum of sizes of

both cedents, and the depth is the maximum of the depths of both cedents.

Definition of a Proof A proof in this system is defined as a sequence of sequents S1 · · ·Sm such

that each Si is either an initial sequent, or is derived from sequents S j for j < i through one of

the rules listed below. The size and depth of a proof are respectively the sum of sizes and the

maximum of depths of all sequents in it.

The initial sequents and the derivation rules are listed below.

63

The proof system of Maciel and Pitassi [MP98]

initial sequents

1. ϕ→ ϕ for any formula ϕ

2. →∧() ; ∨()→

3. ⊕p
j ()→ for 1≤ j < p ;→⊕p

0()

4. T ht()→

5. → T h0(ϕ1 · · ·ϕk) for any k ≥ 0

structural rules

weakening: Γ,∆→ Γ′

Γ,ϕ,∆→ Γ′
Γ→ Γ′,∆′

Γ→ Γ′,ϕ,∆′

contract: Γ,ϕ,ϕ,∆→ Γ′

Γ,ϕ,∆→ Γ′
Γ→ Γ′,ϕ,ϕ,∆′

Γ→ Γ′,ϕ,∆′

permute: Γ,ϕ1,ϕ2,∆→ Γ′

Γ,ϕ2,ϕ1,∆→ Γ′
Γ→ Γ′,ϕ1,ϕ2,∆

′

Γ→ Γ′,ϕ2,ϕ1,∆
′

cut rule

Γ,ϕ→ ∆ Γ′→ ϕ,∆′

Γ,Γ′→ ∆,∆′

64

logical rules

¬ : Γ→ ϕ,∆

¬ϕ,Γ→ ∆

ϕ,Γ→ ∆

Γ→¬ϕ,∆

∧-left: ϕ1,∧(ϕ2 · · ·ϕk),Γ→ ∆

∧(ϕ1 · · ·ϕk),Γ→ ∆

∧-right: Γ→ ϕ1,∆ Γ→∧(ϕ2 · · ·ϕk),∆

Γ→∧(ϕ1,ϕ2 · · ·ϕk),∆

∨-left: ϕ1,Γ→ ∆ ∨(ϕ2 · · ·ϕk),Γ→ ∆

∨(ϕ1,ϕ2 · · ·ϕk),Γ→ ∆

∨-right: Γ→ ϕ1,∨(ϕ2 · · ·ϕk),∆

Γ→∨(ϕ1 · · ·ϕk),∆

⊕i-left:
ϕ1,⊕p

i−1(ϕ2 · · ·ϕk),Γ→ ∆ ⊕p
i (ϕ2 · · ·ϕk),Γ→ ϕ1,∆

⊕p
i (ϕ1,ϕ2 · · ·ϕk),Γ→ ∆

⊕i-right:
ϕ1,Γ→⊕p

i−1(ϕ2 · · ·ϕk),∆ Γ→ ϕ1,⊕p
i (ϕ2 · · ·ϕk),∆

Γ→⊕p
i (ϕ1,ϕ2 · · ·ϕk),∆

T ht-left: T ht(ϕ2 · · ·ϕk),Γ→ ∆ ϕ1,T ht−1(ϕ2 · · ·ϕk),Γ→ ∆

T ht(ϕ1,ϕ2 · · ·ϕk),Γ→ ∆

T ht-right: Γ→ ϕ1,T ht(ϕ2 · · ·ϕk),∆ Γ→ T ht−1(ϕ2 · · ·ϕk),∆

Γ→ T ht(ϕ1,ϕ2 · · ·ϕk),∆

Translating lines

We will now define translations of lines in the above proof system. For a formula ϕ, we

denote its translation in Depth-d-PC by tr(ϕ). Let x1 · · ·xn be the variables of the original proof.

Below we list the translations for a formula built with each connective. The interpretation is that

for any formula ϕ, tr(ϕ) = 0 if and only if ϕ is true.

tr(xi) = 1− xi

tr(∨(ϕ1 · · ·ϕk)) = ∏i(tr(ϕi))

tr(∧(ϕ1 · · ·ϕk)) = 1−∏i tr(¬ϕi)

65

tr(⊕p
i (ϕ1 · · ·ϕk)) = (∑k

j=1 ϕ j− i)p−1 for 0≤ i < p

tr(T ht(ϕ1 · · ·ϕk)) = (y−αt) · · ·(y−αk)

where y = ∏i((α−1)tr(¬ϕi)+1)

tr(¬ϕ) = 1− tr(ϕ) if ϕ does not contain a T ht connective

tr(¬T ht(ϕ1 · · ·ϕk)) = (y−1) · · ·(y−αt−1)

where y = ∏i((α−1)tr(¬ϕi)+1), for t ≥ 1

The translation tr(S) of a sequent S of the form ϕ1 · · ·ϕk → ϕ′1 · · ·ϕ′m is given by the

equation
k

∏
i=1

tr(¬ϕi)
m

∏
j=1

tr(ϕ′j) = 0

Note that the translations of all the connectives except the threshold connective take only

boolean values over Fpm .

Simulating proofs

We now describe the connection between AC0[p]-Frege and the proof system of Maciel

and Pitassi. By the following theorem of Allender [All89], any AC0[p] circuit can converted to a

depth three circuit of a special form.

Theorem 13. [All89]

Any AC0[p] circuit can be converted to a quasipolynomial sized depth three circuit with an

unweighted Threshold gate at the top, MODp gates of quasipolynomial fan-in in the middle and

∧ gates of polylogarithmic fan-in at the bottom

Depth three circuits with an unweighted Threshold, ∧ or ∨ gate at the top, MODp gates

in the middle and ∧ gates of polylogarithmic fan-in in the size of the circuit at the bottom are

referred to as flat circuits by [MP98]. For an AC0[p] circuit ϕ, its flattening f l(ϕ) is defined

66

as the flat circuit given by the above theorem. Proofs in AC0[p]-Frege can be thought of as a

list of sequents such that every formula that appears in each of them is an AC0[p] circuit. For a

sequent ϕ1 · · ·ϕk→ ϕ′1 · · ·ϕ′m that appears in a AC0[p]-Frege proof, we can define a flattening of

the sequent f l(ϕ1) · · · f l(ϕk)→ f l(ϕ′1) · · · f l(ϕ′m) in the proof system of Maciel and Pitassi. A

flat proof of such a sequent is such that every formula that appears in the proof is a flat circuit.

The simulation theorem of [MP98] states the following

Theorem 14. [MP98]

Let S be a sequent which has a depth d proof in AC0[p]-Frege. Then its flattening f l(S) has a flat

proof of size 2(logn)O(d)
in the proof system of Maciel and Pitassi.

We will show that flat proofs can be simulated in Depth-d-PC by showing the following

Theorem 15. Let S be a sequent which has a flat proof of size s in the proof system of Maciel

and Pitassi. Then there is a proof of the equation tr(S) in Depth-d-PC from the equations

xi(xi−1) = 0 with poly(s) lines.

To prove the above theorem, it is sufficient to show that for each rule that derives a sequent

S3 from sequents S1 and S2, there is a derivation of the equation tr(S3) from the equations tr(S1),

tr(S2) and xi(xi−1) = 0 in Depth-d-PC. Below we show how each such rule can be simulated.

Simulating Initial sequents

Here we will show how to derive translations of the initial sequents from xi(1− xi) = 0.

Lemma 13. Let ϕ be any formula of depth three which only contains the ⊕p
i , ¬, ∧ and ∨

connectives. Then the equation tr(ϕ)(1− tr(ϕ)) = 0 can be derived from xi(xi− 1) = 0 in

Depth-d-PC

Proof. Easily follows from repeated application of Lemmas 6, 10 and 11 at each level.

Lemma 14. The translation of the initial sequent ϕ→ ϕ can be derived from xi(xi−1) = 0 in

Depth-d-PC for any flat circuit ϕ

67

Proof. If ϕ is a flat circuit without Threshold gates, this follows by Lemma 13 since the translation

of the sequent ϕ→ ϕ is simply tr(ϕ)(1− tr(ϕ)) = 0. If ϕ contains a top Threshold gate, the

translation of the given sequent states that a variable y such that y = ∏
k
i=1((α−1)tr(¬ϕi)+1)

satisfies (y−1) · · ·(y−αk) = 0, where ϕi are formulas without Threshold gates. Thus we can

derive tr(¬ϕi)(1− tr(¬ϕi)) = 0 as in Lemma 13 and then use Lemma 7 to derive (y−1) · · ·(y−

αk) = 0.

The initial sequents 2,3 and 4 are dummies and do not require translating. The initial

sequent 5 can be derived using Lemma 7 since in a flat proof each of the inputs to the Threshold

connective do not contain Threshold connectives.

Simulating structural rules

The simulation of the weakening rule just involves multiplying the given equation by the

translation of the new formula ϕ that appears. The permutation rule is trivial since the translation

of a sequent is invariant under application of the permutation rule. To simulate the contraction

rule, we need to show that for every formula ϕ, we can derive from (tr(ϕ))2 = 0 the equation

tr(ϕ) = 0. When ϕ is a formula which does not involve a Threshold connective, this is can be

done by using Lemma 13. When ϕ is a flat circuit with a Threshold gate at the top, the following

lemma suffices.

Lemma 15. Let (y−αa1)2 · · ·(y−αam)2 = 0 be an equation in Depth-d-PC where ai are distinct

integers less than pm−1 and y = ∏
k
i=1((α−1)tr(¬ϕi)+1) such that ϕi are flat formulas with no

Threshold gates. The equation (y−αa1) · · ·(y−αam) = 0 can be derived in O(max(m,k2)) lines.

Proof. The proof is by induction on m. The case of m = 0 is trivial. Using Lemma 7 we can

derive the range of values of the variable y, i.e. an equation of the form

(y−1) · · ·(y−α
k) = 0 (2.35)

68

Let Q = (y−αa1)(y−αa2)2 · · ·(y−αam)2 and Q1 = (y−αa2)2 · · ·(y−αam)2. Then the

given equation can be written as

Q(y−α
a1) = 0 (2.36)

Multiplying equation (2.35) with Q if it does not contain the term (y−αa1), else multiply-

ing it with Q1, we arrive at

Q ∏
1≤i≤k , i6=a1

(y−α
i)

Using Lemma 4 with equations (2.35) and (2.36), we get Q = 0. The lemma now

follows by induction since assuming there is a derivation of (y−αa2) · · ·(y−αam) = 0 from

(y−αa2)2 · · ·(y−αam)2, this derivation can be multiplied by (y−αa1) = 0 to get the required

equation from Q = 0.

Simulating the cut rule

Let Q = tr(¬Γ)tr(∆) and Q′ = tr(¬Γ′)tr(∆′). Let y = tr(ϕ) if ϕ does not contain Threshold

gates, else let y = ∏
k
i=1((α−1)tr(¬ϕi)+1) where ϕ = T ht(ϕ1 · · ·ϕk). Then the cut rule can be

translated to the following statement

Lemma 16. Given the equations Q(y−a1) · · ·(y−ak) = 0 and Q′(y−b1) · · ·(y−bm) = 0 where

a1 · · ·ak and b1 · · ·bm are disjoint sets of constants from the field, derive QQ′ = 0

Proof. Multiply the first equation by Q′ and the second equation by Q, and use the contraction

rule to make sure the resulting equations are square free. Then required equation now follows

easily from the Intersection Lemma.

Simulating ∧,∨, ⊕p
i and ¬ rules

The rules for ¬, ∧-left and ∨-right are trivially simulated since the translation remains invariant.

69

For the ∧-right and ∨-left, the simulation reduces to the following lemma, where Q= tr(¬Γ)tr(∆).

Lemma 17. Given the equations Qy1 = 0 and Qy = 0 where y1 and y take boolean values, derive

the equation Qyy1 = 0

Proof. Follows from Lemma 7

For the ∧-right rule, the above lemma can be instantiated with y1 = tr(ϕ1) and y =

tr(∧(ϕ2 · · ·ϕk)). Since ∧(ϕ1 · · ·ϕk) is being derived, each of the formulas ϕi must be free of

Threshold gates. Thus the fact that y and y1 are boolean is easily derived from Lemma 13. A

similar simulation works for the ∨-left rule.

The simulation for ⊕p
i gates is analogous to the above. Let Q = tr(¬Γ)tr(∆), and

xi = tr(ϕi). The⊕p
1 -left rule then translates to the following lemma. The simulations for the other

⊕p
i rules are similar.

Lemma 18. Given the equations

x1(1− zp−1
2) = 0

and

(1− x1)(1− (1− z2)
p−1) = 0

derive (1− (1− z1)
p−1) = 0, where z1 = x1+ · · ·xn , z2 = x2+ · · ·xn and xi are boolean variables.

Proof. Starting with the equation

z1 = x1 + z2

Multiply by (1− x1) on both sides and subtract (1− x1) to get

(z1−1)(1− x1) = x1(1− x1)+(z2−1)(1− x1) = (z2−1)(1− x1)

Now, we can raise both sides of the equation to the exponent p−1, and use the fact that

(1− x1)
p−1 = (1− x1) (which is easily derived using Lemma 11) to get

70

(z1−1)p−1(1− x1) = (z2−1)p−1(1− x1)

But since from the second equation of our hypothesis, (z2−1)p−1(1− x1) = (1− x1) and

thus

(1− (z1−1)p−1)(1− x1) (2.37)

Now consider the equation

z1−1 = x−1+ z2

obtained by subtracting one from z1 = x1 + z2

Multiplying by x on both sides, we get

(z1−1)x1 = x(x−1)+ z2x = z2x

Again, raising to the exponent p−1 and noting that xp−1
1 = x1 and zp−1

2 x1 = x1 we have

(z1−1)p−1x1 = zp−1
2 x1 = x1

and thus

(1− (z1−1)p−1)x1 = 0

Adding equation (2.37) to the above we get the required equation

Simulating T ht rules

Let Q = tr(¬Γ)tr(∆), and xi = tr(¬ϕi). The T ht-left rule translates to the following lemma.

71

The case of T ht-right is similar.

Lemma 19. Given the equations

(z2−1) · · ·(z2−α
t+1) = 0

and

x1(z2−1) · · ·(z2−α
t) = 0

derive

(z1−1) · · ·(z1−α
t+1) = 0

where z1 = ∏
k
i=1((α−1)xi +1), z2 = ∏

k
i=2((α−1)xi +1) and xi are boolean variables.

Proof. It is easy to derive the equation

z1 = (αx1 +1− x1)z2

Multiplying the above equation with (1− x1) we get

z1(1− x1) = (1− x1)
2z2 = (1− x1)z2

since x1 is boolean. Subtracting αi(1− x1) on both sides we get

(z1−α
i)(1− x1) = (z2−α

i)(1− x1)

for every i in {0 · · · t +1}. From these t +1 equations it is easy to derive (see Lemma 6)

(z1−1) · · ·(z1−α
t+1)(1− x1) = (z2−1) · · ·(z2−α

t+1)(1− x1) = 0 (2.38)

Multiplying the equation z1 = (αx1 +1− x1)z2 with x1 we get

72

z1x1 = αx2
1z2 = αx1z2

Again, subtracting αi+1x1 we get

(z1−α
i+1)x1 = (z2−α

i)x1

for every i in {0 · · · t}. Once again, we combine them to derive

(z1−α) · · ·(z1−α
t+1)x1 = (z2−1) · · ·(z2−α

t)x1 = 0

Multiplying the above equation with z1−1 and adding it to equation (2.38), we get the

required equation.

This completes the simulation of flat proofs in Depth-d-PC.

2.B.2 Case of q 6= p

We now extend the simulation of the previous section to show that AC0[q]-Frege can

be simulated in Depth-d-PC over Fpm , for distinct primes p and q, hence proving Theorem 2.

Using the theorem of Maciel and Pitassi (Theorem 14 above) for AC0[q]-Frege, we obtain a flat

proof with ⊕q
i connectives. To simulate it, we can reuse the lemmas of the previous section,

except for the ⊕q
i connectives. To define their translation, choose m such that q | pm−1 and let

r = (pm−1)/q. The translation is now defined as

tr(⊕q
i (ϕ1 · · ·ϕk)) =

(
(y−α

ir)
)pm−1

where y = ∏i((α
r−1)tr(¬ϕi)+1) and tr(¬⊕q

i (ϕ1 · · ·ϕk)) = 1− tr(⊕q
i (ϕ1 · · ·ϕk))

The proof of the main lemma below simulating one of the rules is quite similar to the one

73

in the previous section.

Lemma 20. Given the equations

x1(1− (y2−1)pm−1) = 0

and

(1− x1)(1− (y2−α
r)pm−1) = 0

derive

(1− (y1−α
r)pm−1) = 0

where y1 = ∏
k
i=1((α

r−1)xi+1), y2 = ∏
k
i=2((α

r−1)xi+1) and xi are boolean variables

Proof. It is easy to derive

y1 = (αrx1 +1− x1)y2

Multiplying the above equation with x1 we have

y1x1 = α
ry2x2

1 = α
ry2x1

since x1 is boolean. By subtracting αrx1 we can now derive

(y1−α
r)x1 = α

rx1(y2−1)

Raising the above equation to the power pm−1, we get

(y1−α
r)pm−1x1 = x1(y2−1)pm−1

since x1 is boolean. Subtracting the above equation from x1, we get

74

(1− (y1−α
r)pm−1)x1 = (1− (y2−1)pm−1)x1 = 0 (2.39)

By multiplying with 1− x1 we can derive from y1 = (αrx1 +1− x1)y2 the equation

y1(x1−1) = y2(x1−1)

Carrying out a derivation similar to the above, we get

(1− (y1−α
r)pm−1)(x1−1) = (1− (y2−α

r)pm−1)(x1−1) = 0 (2.40)

Adding equations (2.39) and (2.40) we get the required equation.

2.C Simulating TC0-Frege in Depth-d-PC over Fpm

In this section, we show that a TC0-Frege proof of depth d0 can be transformed into a

Depth-d-PC proof over Fpm , where d = O(d0), proving Theorem 3. In the previous section we

translated T ht(ϕ1 · · ·ϕk) as

tr(T ht(ϕ1 · · ·ϕk)) = (y−α
t) · · ·(y−α

k)

tr(¬T ht(ϕ1 · · ·ϕk)) = (y−1) · · ·(y−α
t−1)

where y = ∏i((α− 1)tr(¬ϕi)+ 1). Clearly this translation requires tr(ϕi) to be boolean and

can itself take non-boolean values. Since there is only one top Threshold gate in a flat circuit,

the formulae ϕi were threshold free and thus tr(ϕi) only took on boolean values. But in a

TC0-Frege proof, the formulae ϕi can themselves contain Threshold gates and thus tr(ϕi) may

be non-boolean. To fix this problem, we redefine the translation of a Threshold gate to be the

following, essentially forcing it to be boolean.

75

tr(T ht(ϕ1 · · ·ϕk)) =
(
(y−α

t) · · ·(y−α
k)
)pm−1

where y = ∏i((α−1)tr(¬ϕi)+1) and tr(¬T ht(ϕ1 · · ·ϕk)) = 1− tr(T ht(ϕ1 · · ·ϕk)).

It is easy to generalize Lemma 13 to derive the fact that the above translation only takes

boolean values. Now, note that any rule other than the T ht is unaffected by this new translation

since it only assumes that its arguments are boolean and hence we can use the lemmas of the

previous section directly. However, simulation of the T ht rule relies on the old translation. To

bridge the gap, we only need to show that the old and new translations of T ht and ¬T ht are

interchangeable within the proof system.

Lemma 21. Given the equation

(
(y−α

t) · · ·(y−α
k)
)pm−1

= 0

we can derive

(y−α
t) · · ·(y−α

k) = 0

and vice versa.

Proof. In the forward direction, the required equation is easily derived by repeated application of

the contraction rule. The other direction is trivial.

Lemma 22. Given the equation

1−
(
(y−α

t) · · ·(y−α
k)
)pm−1

= 0

we can derive

(y−1) · · ·(y−α
t−1) = 0

and vice versa.

76

Proof. In the forward direction, since y is a Threshold gate with k arguments, we can derive

(y−1) · · ·(y−α
k) = 0

and thus

((y−1) · · ·(y−α
k))pm−1 = 0

But since we have
(
(y−αt) · · ·(y−αk)

)pm−1
= 1 from the given equation, we get

(
(y−1) · · ·(y−α

t−1)
)pm−1

= 0

Using the contraction rule repeatedly gives the required equation.

In the reverse direction, Let y1 =
(
(y−αt) · · ·(y−αk)

)pm−1. Then as mentioned earlier,

we can derive using Lemma 13

y1(1− y1) = 0

Using the contraction rule on the above equation, we get

(y−α
t) · · ·(y−α

k)(1− y1) = 0 (2.41)

Multiplying the given equation (y−1) · · ·(y−αt−1) = 0 by (1− y1) and using the Inter-

section Lemma with equation (2.41), we get 1− y1 = 0, which is the required equation.

2.D Dealing with large coefficients

2.D.1 Properties of addition

In this section we derive some basic properties of addition.

The following lemma shows that our system can prove the associativity of ⊕.

77

Lemma 23. For bits y, z, w, let H(y,z) := y∧ z and let H(y,z,w) := (y∧ z)∨ (z∧w)∨ (w∧ y)

which is one if and only if y+ z+w≥ 2. H(.) denotes the carry bit generated by adding together

up to three bits. The following are easily proved since they involve only a constant number of

variables.

` H(y,z,w)−H(y,z⊕w)⊕H(z,w) (2.42)

z1 +w1− (z2 +w2) ` H(y,z1,w1)−H(y,z2,w2) (2.43)

` H(H(y,z⊕w),H(z,w)) (2.44)

If ci are carry bits in y⊕ z, then

` ci+1−H(yi,zi,ci) (2.45)

For bits a,b,c,d,e,

` H(a,b,c)+H(a⊕b⊕ c,d,e)−H(a,b,d)−H(a⊕b⊕d,c,e) (2.46)

Lemma 24. For any three bit vectors y, z and w

` (y⊕ z)⊕w−y⊕ (z⊕w)

Proof. Let yle f t := (y⊕z)⊕w and yright := y⊕(z⊕w). Let dy,z
i be the carry bit to the ith position

in y⊕ z. Let dw
i be the carry bit to the ith position in (y⊕ z)⊕w. Similarly define dz,w

i and dy
i .

We will derive inductively for every i

78

` dy,z
i +dw

i − (dz,w
i +dy

i) (2.47)

` yle f t(i)−yright(i)

This is easily derived for i = 1. Suppose for some i≥ 1 the above lines have been derived.

By (2.45) of Lemma 23, we derive

` dy,z
i+1−H(y(i),z(i),dy,z

i)

` dw
i+1−H(y(i)⊕ z(i)⊕dy,z

i ,w(i),dw
i)

since y⊕ z(i) = y(i)⊕ z(i)⊕dy,z
i . Adding these lines we get

` dy,z
i+1 +dw

i+1−
(
H(y(i),z(i),dy,z

i)+H(y(i)⊕ z(i)⊕dy,z
i ,w(i),dw

i)
)

Using (2.46) of Lemma 23, we make the derivation

` H(y(i),z(i),dy,z
i)+H(y(i)⊕ z(i)⊕dy,z

i ,w(i),dw
i)

−
(
H(y(i),z(i),w(i))+H(y(i)⊕ z(i)⊕w(i),dy,z

i ,dw
i)
)

Adding this to the line above, we get

` dy,z
i+1 +dw

i+1−
(
H(y(i),z(i),w(i))+H(y(i)⊕ z(i)⊕w(i),dy,z

i ,dw
i)
)

In a similar fashion, we make the derivation

` dz,w
i+1 +dy

i+1−
(
H(y(i),z(i),w(i))+H(y(i)⊕ z(i)⊕w(i),dz,w

i ,dy
i)
)

79

Now, using our induction hypothesis (2.47) and (2.43) of Lemma 23, we derive

` H(y(i)⊕ z(i)⊕w(i),dy,z
i ,dw

i)−H(y(i)⊕ z(i)⊕w(i),dz,w
i ,dy

i)

The derivation

` dy,z
i+1 +dw

i+1− (dz,w
i+1 +dy

i+1)

is now easily obtained from the three previous lines.

To derive yle f t(i+1) = yright(i+1), we first make the following derivation

dy,z
i+1 +dw

i+1− (dz,w
i+1 +dy

i+1) ` dy,z
i+1⊕dw

i+1− (dz,w
i+1⊕dy

i+1)

since this involves only a constant number of boolean variables. Now, by definition,

yle f t(i+1) = y(i+1)⊕ z(i+1)⊕w(i+1)⊕dy,z
i+1⊕dw

i+1 and by the above two lines this is equal

to y(i+1)⊕ z(i+1)⊕w(i+1)⊕dz,w
i+1⊕dy

i+1, which is equal to yright(i+1).

The following lemmas show that the addition operations S and⊕ can be used interchange-

ably.

Lemma 25. For i≤ n,

` S o(y1 · · ·yi−1)⊕yo
i −S o(y1 · · ·yi)

` S e(y1 · · ·yi−1)⊕ye
i −S e(y1 · · ·yi)

Proof. We are going to prove the statement block wise. For odd j, let w j = ∑
i−1
k=1 [L j(yo

k)]. Note

that the pair of blocks (j, j+1) in S o(y1 · · ·yi) only depend on the corresponding pair of blocks

in S o(y1 · · ·yi−1) and L j(yo
i). Therefore, restricted to the blocks (j, j+1), the statement of the

lemma just depends on w j and L j(yo
i). Since w j only takes on n2 values and L j(yo

i) only takes on

n values, there is a polynomial sized proof by completeness.

80

Lemma 26. ` S(y1 · · ·yi)−S(y1 · · ·yi−1)⊕yi

Proof. Since S(y1 · · ·yi−1) = S e(y1 · · ·yi−1)⊕S o(y1 · · ·yi−1) and yi = ye
i ⊕yo

i by definition, we

have

` S(y1 · · ·yi−1)⊕yi−S e(y1 · · ·yi−1)⊕S o(y1 · · ·yi−1)⊕ye
i ⊕yo

i

From Lemma 24, we have

` S o(y1 · · ·yi−1)⊕ye
i ⊕yo

i − (ye
i ⊕S o(y1 · · ·yi−1)⊕yo

i)

Combining the above two derivations, we have

` S(y1 · · ·yi−1)⊕yi−S e(y1 · · ·yi−1)⊕ye
i ⊕S o(y1 · · ·yi−1)⊕yo

i

Now, using the previous lemma, we are done.

The following corollary easily follows from repeated application of the above lemma.

Corollary 9. For j < i, ` S(y1 · · ·yi)−S(y1 · · ·y j)⊕S(y j+1 · · ·yi).

Lemma 27. For every t

` S(y1X1 · · ·ytXt)⊕S(z1X1 · · ·ztXt)−S((y1⊕ z1)X1 · · ·(yt⊕ zt)Xt)

Proof. Assume by induction that we have made the above derivation until t = i−1. Then we

have

81

`1 S(y1X1 · · ·yiXi)⊕S(z1X1 · · ·ziXi)−S(y1X1 · · ·yi−1Xi−1)⊕yiXi⊕S(z1X1 · · ·zi−1Xi−1)⊕ ziXi

`2 S(y1X1 · · ·yiXi)⊕S(z1X1 · · ·ziXi)−S(y1X1 · · ·yi−1Xi−1)⊕S(z1X1 · · ·zi−1Xi−1)⊕yiXi⊕ ziXi

`3 S(y1X1 · · ·yiXi)⊕S(z1X1 · · ·ziXi)−S((y1⊕ z1)X1 · · ·(yi−1⊕ zi−1)Xi−1)⊕ (yi⊕ zi)Xi

`4 S(y1X1 · · ·yiXi)⊕S(z1X1 · · ·ziXi)−S((y1⊕ z1)X1 · · ·(yt⊕ zt)Xt)

where `1 and `4 follow by Lemma 26, `2 follows by Lemma 24 and `3 follows by the

induction hypothesis.

Finally, we show how to derive the representation of the sum of two polynomials.

Lemma 28. Let P and Q be two polynomials. Then R (P+Q) = R (P)⊕R (Q).

Proof. Let X1 · · ·Xt be monomials that occur in both P and Q, such that P = a1X1+ · · ·+atXt +P1

and Q = b1X1 + · · ·+btXt +Q1. Then from the definition of R and Corollary 9 we have

` R (P)−S(a1X1 · · ·atXt)⊕R (P1)

` R (Q)−S(b1X1 · · ·btXt)⊕R (Q1)

Using the above, we now have

` R (P)⊕R (Q)−S(a1X1 · · ·atXt)⊕R (P1)⊕S(b1X1 · · ·btXt)⊕R (Q1)

`1 R (P)⊕R (Q)−S(a1X1 · · ·atXt)⊕S(b1X1 · · ·btXt)⊕R (P1)⊕R (Q1)

`2 R (P)⊕R (Q)−S((a1⊕b1)X1 · · ·(at⊕bt)Xt)⊕R (P1)⊕R (Q1)

`3 R (P)⊕R (Q)−R (P+Q)

82

where `1 is by Lemma 24 and `2 is by the previous lemma. `3 is by Corollary 9 and the

definition of R .

Lemma 29. For two vectors y and z, −(y⊕ z) = (−y)⊕ (−z).

Proof. Let w = y⊕ z and let y1, z1 be vectors obtained by flipping the bits of y, z respectively.

Let w1 = y1⊕ z1. It is easy to derive for every i,

` y(i)⊕ z(i)−y1(i)⊕ z1(i) (2.48)

For j < m, let b j =
(
∧i< j (y(i)⊕ z(i))

)
∧¬(y(j)⊕ z(j)) and bm = ∧i≤m(y(i)⊕ z(i)) be

a boolean variable indicating the least index i0 such that y(i0)⊕ z(i0) = 0. Let ci be the carry

bits in y⊕ z. We translate boolean formulas into polynomials using the operator tr() defined in

Section 2.B.1. We first derive for every j and i≤ j,

` tr(b j→ (ci = 0))

This is done by noting that c1 = 0 and by (2.45) of Lemma 23, ci = H(y(i− 1),z(i−

1),ci−1) for i > 1. Assuming by induction that we have derived for some j > i≥ 1

` tr(b j→ (ci = 0))

it is easy to derive

` tr(b j→ y(i)⊕ z(i))

Now using the above two derivations with the identity (2.42) of Lemma 23 and the

observation ` y(i)⊕ z(i)→¬H(y(i),z(i)), we have

83

` tr(ci+1−H(ci,y(i)⊕ z(i))⊕H(y(i),z(i)))

` tr(b j→ (ci+1 = 0))

Since w(i) = y(i)⊕ z(i)⊕ ci, for every j and i≤ j, we have the derivation

` tr(b j→ (w(i) = w1(i)))

We now want to inductively derive for every j and i > j

` tr(b j→ (w(i) = w1(i)⊕1)) (2.49)

Let c′i indicate the carry bits in y1⊕ z1. Due to the derivation (2.48), we only need to

derive for every i > j

` tr(b j→ ci⊕ c′i)

If y(i−1)⊕ z(i−1) = 0 (this includes the base case of i = j+1), it is easy to derive the

following identity independent of the values of ci−1 and c′i−1.

` tr((y(i−1)⊕ z(i−1) = 0)→ ci⊕ c′i)

Assuming now that we have derived ` ci⊕ c′i for some i > j, for the case where y(i−

1)⊕ z(i−1) = 1, it is easy to derive

` tr((ci⊕ c′i)∧ (y(i)⊕ z(i) = 0)→ ci+1⊕ c′i+1)

Now consider the vector w1⊕1. By the definition of b j we have the derivation for all

84

i < j

` tr(b j→ (w(i) = 1))

and

` tr(b j→ (w(j) = 0))

Thus it is easy to derive for i≤ j

` tr(b j→ (w⊕1(i) = w(i)⊕1))

and for i > j

` tr(b j→ (w⊕1(i) = w(i)))

Combining the above two derivations with (2.49), we have for all i and j

` tr(b j→ (w⊕1(i) = w(i)⊕1))

Since b j are mutually exclusive, we can eliminate them using techniques similar to Lemma

5 and obtain

` w⊕1(i)−w(i)⊕1

Hence w1⊕ 1 the vector obtained by flipping all the bits of w. Therefore, using the

definition of −w and Lemma 24

` (−w)− y1⊕ z1⊕1⊕1

` (−w)− (−y)⊕ (−z)

85

Lemma 30. For any vector y of length ` < m−1,

y(m)−1 ` (−y)(m)

Proof. Since y is of length `, we have for ` < j ≤ m

y(m)−1 ` y(j)−1

Let y1 be the vector obtained by flipping the bits of y. Then we have the derivation for

` < j ≤ m

y(m)−1 ` y1(j)

Now, using the identity (2.45) of Lemma 23, we have for `+1 < j ≤ m

y(m)−1 ` (y1⊕1)(j)

Since −y = y1⊕1, the lemma follows.

Lemma 31. Let P be a polynomial represented by a vector y. Then ` R (−P)− (−y).

Proof. Let P= a1X1+ · · ·+atXt . We derive the above by induction on t. Let Pi = a1X1+ · · ·+atXi

for i < t. Then since by Lemma 26, ` R (P)− (R (Pt−1)⊕atXt), we have by Lemma 29

` (−R (P))− (−R (Pt−1))⊕ (−atXt)

The lemma now follows from the induction hypothesis and Lemma 26.

86

2.D.2 Non-negative vectors are closed under addition

In this section we show that non-negative vectors of bounded length are closed under

the addition ⊕. This will be used to show that the vector representations of all the lines of the

simulation are bounded in length. Note that some of these claims need not be provable in our

proof system.

We first show that given two vectors y and z of length `, y⊕ z is of length at most `+1.

Lemma 32. Given two vectors y and z of length at most `, w = y⊕ z is of length at most `+1

Proof. Let di be the carry to the ith position in y⊕z. We branch on the value of d`+1. If d`+1 = 0,

then all the bits at positions greater than ` in w are equal to s1⊕ s2 and thus the length of w is at

most `. If d`+1 = 1, then if s1∨ s2 = 0, w(`+1) = 1 and w(j) = 0 for j > `+1. Thus the length

of w is at most `+1. If s1∨ s2 = 1, then it is easy to see that d j = 1 and thus w(j) = s1⊕ s2⊕1

for j ≥ `+1 and thus the length of w is at most `.

Lemma 33. Let y1 · · ·yk be vectors of length ` such that dlogke+ ` < m−1. Then S(y1 · · ·yk) is

of length at most dlogke+ `.

Proof. Assume that the statement is true for up to k/2 vectors. Then by Corollary 9,

` S(y1 · · ·yk)−S(y1 · · ·yk/2)⊕S(yk/2+1 · · ·yk)

Now by the induction hypothesis, S(y1 · · ·yk/2) and S(yk/2+1 · · ·yk) are of length at most

dlogke−1+ `. Using the previous lemma, we are done.

Using the observation that for a constant a1 with bit complexity `, a1X1 is a vector of

length `, we have the following corollary.

Corollary 10. Let P = a1X1 + · · ·+atXt be a polynomial with coefficients of bit length at most `.

Then R (P) is a vector of length at most `+ dlog te

87

Lemma 34. For any two vectors a and b of length at most ` < m−1

a(m),b(m) ` (a⊕b)(m)

Proof. Since a and b are of length at most ` we have for m≥ j > `

a(m) ` a(j)

b(m) ` b(j)

Thus there is no carry beyond position `+1 < m in a⊕b due to our assumptions and thus using

identity (2.45) of Lemma 23, it is easy to derive

a(m),b(m) ` (a⊕b)(m)

Since by Lemma 33, the vectors R (P1) and R (P2) are of length at most `= dlogm0e+

dlogm1e < m− 1 and by Lemma 28, ` R (P1 +P2)−R (P1)⊕R (P2), we have the following

corollary.

Corollary 11. For any two polynomials P1 and P2 with at most m0 monomials and coefficients of

magnitude at most m1,

R (P1)(m),R (P2)(m) ` R (P1 +P2)(m)

The following corollary now follows easily from Lemma 26 and the previous lemma.

Corollary 12. Let y1 · · ·yk be non-negative vectors of length ` such that dlogke+` < m−1. Then

y1(m), · · · ,yk(m) ` S(y1 · · ·yk)(m)

88

Lemma 35. Let y and z be two non-negative vectors of length ` such that 3` < m−1. Then

y(m),z(m) ` SS(y,z)(m)

Proof. Since z is non-negative of length `, for `+1≤ i≤ m

z(m) ` z(i)

Therefore,

SS(y,z) = S(z(0)y · · ·z(m−1)2m−1y) = S(z(0)y · · ·z(`)2`y)

Since each of the vectors z(0)y, · · · z(`)2`y is of length at most 2` and there are ` of them,

by the previous corollary, we are done.

2.D.3 Properties of multiplication

Here we show that multiplication is distributive and can be treated as repeated addition.

Lemma 36. Distributivity of R

Let P,P1,P2,Q be polynomials such that P = P1 +P2. Then

R (PQ) = R (P1Q)⊕R (P2Q)

Proof. Easily follows from Corollary 9

The following lemmas show that multiplication is repeated addition.

Lemma 37. Let y, z be two bits and let w be a vector. Then,

89

` yw⊕ zw− (y⊕ z)w⊕H(y,z)2w

Proof. Let w1 = (y⊕z)w and w2 =H(y,z)2w. Let ei be the carry bit to the ith position in w1⊕w2

and let ci be the carry bit to the ith position in yw⊕ zw. We will derive by induction that for every

i,

` (yw⊕ zw)(i)− (w1⊕w2)(i)

` ei+1−H(ci,yw(i)⊕ zw(i))

This is easy to derive for the case of i = 1 since w2(1) = 0 and thus the first bit on both

sides is equal to (y⊕ z)w(1). Also by (2.45) of Lemma 23, e2 = 0 is derived since w2(1) = 0 and

therefore there is no carry to the second position. Since c1 = 0, H(c1,yw(1)⊕ zw(1)) = e2 = 0.

Now assume that we have derived it up to i−1 for some i > 1. Then we have

` ei−H(ci−1,yw(i−1)⊕ zw(i−1))

and from the definition of w2 it is easy to derive

` w2(i)−H(yw(i−1),zw(i−1))

Therefore by using Identities (2.42) and (2.45)

` e1⊕w2(i)−H(ci−1,yw(i−1),zw(i−1)) (2.50)

` e1⊕w2(i)− ci

And by Identity (2.44)

90

` H(e1,w2(i)) (2.51)

From the above derivations, we now have

` ei⊕w1(i)⊕w2(i)− yw(i)⊕ zw(i)⊕ ci

which derives that the ith bits on both sides are equal.

Also, we have by (2.45) of Lemma 23

` ei+1−H(ei,w1(i),w2(i))

By identity (2.42) we have

` ei+1−H(ei,w2(i))⊕H(w1(i),ei⊕w2(i))

and by (2.50) and (2.51)

` ei+1−H(yw(i)⊕ zw(i),ci)

which continues the induction.

Lemma 38. Let y = [yk−1 · · ·y0] and z = [zk−1 · · ·z0] be two bit vectors of dimension k, let

w = y⊕ z and let d1 be a constant and X1 be a monomial. Then,

` SS(d1X1,w)−SS(d1X1,y)⊕SS(d1X1,z)

Proof. For the base case where y and z are of dimension one, the above derivation follows easily

from the previous lemma. Assume that the statement is derived when y and z are vectors of

91

dimension k−1 . Let yk−1, zk−1, wk−1 denote the corresponding vectors truncated to dimension

k−1 by dropping the element(s) with the highest index. Let ei be the carry to the ith position in

y⊕ z, i.e. w(i) = yi−1⊕ zi−1⊕ ei.

By the definition of SS(.) and Lemma 26, we derive

` SS(d1X1,y)⊕SS(d1X1,z)

−SS(d1X1,yk−1)⊕ yk−12k−1d1X1⊕SS(d1X1,zk−1)⊕ zk−12k−1d1X1

By using associativity (Lemma 24), we have

` SS(d1X1,y)⊕SS(d1X1,z)

−SS(d1X1,yk−1)⊕SS(d1X1,zk−1)⊕ yk−12k−1d1X1⊕ zk−12k−1d1X1

Now using the previous lemma and the induction hypothesis we derive

` SS(d1X1,y)⊕SS(d1X1,z)

−SS(d1X1,yk−1⊕ zk−1)⊕ (yk−1⊕ zk−1)2k−1d1X1⊕H(yk−1,zk−1)2kd1X1

By the definition of wk−1, it is easy to derive

92

` yk−1⊕ zk−1−wk−1⊕ ek2k−11

Now by Lemma 26 and the definition of SS(.) we have

` SS(d1X1,y)⊕SS(d1X1,z)

−SS(d1X1,wk−1)⊕ ek2k−1d1X1⊕ (yk−1⊕ zk−1)2k−1d1X1⊕H(yk−1,zk−1)2kd1X1

By the previous lemma, we can derive

` ek2k−1d1X1⊕ (yk−1⊕ zk−1)2k−1d1X1−

(yk−1⊕ zk−1⊕ ek)2k−1d1X1⊕H(yk−1⊕ zk−1,ek)2kd1X1

Combining this with the above derivation, we have

` SS(d1X1,y)⊕SS(d1X1,z)

−SS(d1X1,wk−1)⊕ (yk−1⊕ zk−1⊕ ek)2k−1d1X1

⊕H(yk−1⊕ zk−1,ek)2kd1X1⊕H(yk−1,zk−1)2kd1X1

Now from identities (2.42) and (2.44) of Lemma 23

93

` SS(d1X1,y)⊕SS(d1X1,z)

−SS(d1X1,wk−1)⊕ (yk−1⊕ zk−1⊕ ek)2k−1d1X1⊕H(yk−1,zk−1,ek)2kd1X1

Noting that (yk−1 ⊕ zk−1 ⊕ ek) and H(yk−1,zk−1,ek) are equal to w(k) and w(k + 1)

respectively, and using the definition of SS(.) and Lemma 26 we have

` SS(d1X1,y)⊕SS(d1X1,z)−SS(d1X1,w)

Lemma 39. Let Q = a′1X1 + · · ·+ a′kXk be represented by a bit vector z = [zm−1 · · ·z0] and let

a0X0 be a monomial such that the bit length of a0a′i is at most m−1. Then

` R (a0X0Q)−SS(a0X0,z)

Proof. Let Q j = a′1X1 + · · ·+ a′jX j for j < k and let z j = [z j
m−1 · · ·z

j
0] be the equal to R (Q j).

Assume that we have proved the above statement for Q j, j < k. Then by Lemma 26, ` z−zk−1⊕

a′kXk. Therefore by Lemma 38 we have

` SS(a0X0,z)−SS(a0X0,zk−1)⊕SS(a0X0,a′kXk)

Since the bit length of a0a′i is at most m−1, SS(a0X0,a′kXk) = R (a0a′kX0Xk) by definition

and by induction,

` SS(a0X0,zk−1)−R (a0X0Qk−1)

94

Therefore we have

` SS(a0X0,z)−R (a0X0Qk−1)⊕R (a0a′kX0Xk)

which is equal to R (a0X0Qk) by the Distributivity of R .

Lemma 40. Let P and Q be two polynomials, represented by bit vectors y0 and z = [zm−1 · · ·z0],

with at most m0 monomials and coefficients bounded by m1 in absolute value. Then,

` R (PQ)−SS(y0,z)

Proof. Let P = a1M1+ · · ·+akMk, Q = a′1M1+ · · ·+a′kMk and let Pj be the sum of the first j < k

terms of P . Let yi denote the bit vector 2iR (P). Then SS(y,z) = S(z0y0 · · ·zm−1ym−1).

It is easy to derive for vectors a and b and any i

` 2i(a⊕b)−2ia⊕2ib

Now by a simple induction using Lemma 26 we derive

` 2iS(a1M1 · · ·akMk)−S(2ia1M1 · · ·2iakMk)

` yi−S(2ia1M1 · · ·2iakMk)

Let y j
i = S(2ia1M1 · · ·2ia jM j) for j < k. By Lemma 26, yi = yk−1

i ⊕2iakMk. Therefore

we have

` S(z0y0 · · ·zm−1ym−1)−S(z0yk−1
0 ⊕ z0akMk · · ·zm−1yk−1

m−1⊕ zm−12m−1akMk)

95

By repeated applications of Lemma 26 we can derive

` S(z0y0 · · ·zm−1ym−1)−S(z0yk−1
0 · · ·zm−1yk−1

m−1)⊕S(z0akMk · · ·zm−12m−1akMk)

By the definition of SS(.) we have SS(akMk,z) = S(z0akMk · · ·zm−12m−1akMk) and by

Lemma 39 we have

` SS(akMk,z)−R (akMkQ)

and by induction on k we have

` SS(yk−1
0 ,z)−R (Pk−1Q)

Thus we derive

` S(z0y0 · · ·zm−1ym−1)−R (Pk−1Q)⊕R (akMkQ)

The lemma now follows from Distributivity of R .

Chapter 2 contains material from “The surprising power of constant depth Algebraic

Proofs.” by Russell Impagliazzo, Sasank Mouli, and Toniann Pitassi.which is published at the

Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science. 2020.

96

Chapter 3

Lower bounds for Polynomial Calculus with

extension variables over finite fields

3.1 Introduction

Propositional proof complexity, started by the seminal work of Cook-Reckhow [CR79] is

a field of study analogous to Boolean circuit complexity, and asks the following question: given a

formal proof system dealing with propositional formulae, what Boolean tautologies are hard to

prove in this system? The ultimate goal of this program is to come up with tautologies that are

hard for any proof system that has a polynomial time verifier, hence showing that coNP 6⊆ NP.

So far progress has been made only for proof systems which are restricted in their capacity to

reason, such as Resolution [Hak85],[BSW99] and Bounded-depth Frege [Ajt94], [?],[?].

The next frontier is to obtain lower bounds for the system AC0[p]-Frege. Since for

the analogous circuit model, Razborov [?] and Smolensky [?] obtained lower bounds through

connections to algebraic objects, this suggests the study of Algebraic Proof Systems. Beame et.al.

[?] introduced and showed lower bounds for the algebraic proof system Nullstellensatz where

lines are low degree polynomials over a field. Clegg et. al [CEI96] introduced the algebraic

97

system Polynomial Calculus(PC), which is a dynamic generalization of Nullstellensatz. Lower

bounds for Polynomial Calculus were obtained in many works (e.g., [Raz98a, BGIP01, AR01,

GL10, MN15]).

After what seemed to be reasonable progress with Algebraic Proof Systems, progress

towards the frontier of AC0[p]-Frege is still stalled for various reasons. For one, the proof

systems described above are not strong enough to simulate AC0[p]-Frege. Also, the lower bound

techniques used for the above lower bounds are based on random restrictions, and it is well

known that modular counting gates are immune to such techniques. Therefore, we need to aim

towards lower bounds for systems strong enough to simulate AC0[p]-Frege. We also need lower

bound techniques that are not just random-restriction based. On both fronts, there has been

recent progress. Grigoriev and Hirsch [GH03] introduced the proof system constant-depth PC

and showed that it simulates AC0[p]-Frege at a proportional depth. Raz and Tzameret [?] showed

that constant-depth PC at depth 3 over the field of Rational numbers surprisingly simulates

the semi-algebraic proof system Cutting Planes with bounded coefficients. [IMP20] obtained

many more surprising results, and showed that Depth-43-PC (over a large enough extension of a

finite field Fp) simulates AC0[q]-Frege for a different prime q, Cutting Planes with unbounded

coefficients, and also the Sum-of-Squares proof system. They also showed that Depth-d-PC

simulates TC0-Frege at a proportional depth. It therefore makes sense to aim for lower bounds

for the stronger system Depth-d-PC, for increasingly large constants d. In this direction, Sokolov

[Sok20] obtained lower bounds for the system PC over F3 where extension variables of the form

zi = 2xi−1 are allowed to be introduced (hence making them take values in the set {+1,−1}).

In this work, we generalize the methods of Sokolov to show lower bounds for PC with

up to N2−ε extension variables which can depend on up to κ = O(logN) original variables

(where N is the number of variables in the tautology). [Ale21] obtained stronger lower bounds

for Polynomial Calculus with extension variables over the reals, but since we work over finite

fields our results are incomparable. Also, their tautology is a variant of subset sum with large

98

coefficients, which cannot be defined well over finite fields.

Theorem 16 (high-end). There is a family of CNF tautologies ψN,κ,M on N variables with poly(N)

clauses of width O(logN) so that for any M = N polylog(N) and κ≥ 1, and prime p, there is a

function S(N) ∈ 2Ω(N/polylog(N)) so that any PC refutation of ψN,κ,M together with any M κ-local

extensions over Fp requires size S(N).

Theorem 17 (low-end). For the same family of tautologies above, for any prime p, there are

0 < α,β,γ < 1, with γ < 1−α−β so that, for M = N1+α,κ = βlogN, and S = exp(Nγ), any PC

refutation of ψN,κ,M together with any M κ-local extensions over Fp requires size S(N).

3.1.1 Related Work

Our primary goal in this work is to prove lower bounds for low-depth IPS refutations

for unsatisfiable CNF formulas, over finite fields, since this is the setting where algebraic lower

bounds are closely connected to proving lower bounds for AC0[p]-Frege systems, a major and

longstanding open problem in proof complexity.

The work that inspired us and that is most related to our result is the recent paper by

Sokolov [Sok20], proving exponential lower bounds on the size of PC refutations of CNF

formulas over F3, where the variables take on values in {1,−1}. We generalize Sokolov’s result

to hold over any finite field, even with the addition of superlinear many extension variables, each

depending arbitrarily on a small number of original variables. Thus our result can be alternatively

viewed as making progress towards proving exponential lower bounds for depth-3 IPS, for a

family of CNF formulas.

We note that for more general unsatisfiable polynomial equations that are not translations

of CNF formulas, several recent papers prove much stronger results over the rationals (but are

incomparable to our main result). First, [?] proved lower bounds for subsystems of IPS by

restricted classes of circuits, including low-depth formulas, multilinear formulas and read-once

99

oblivious branching programs. Secondly, Alekseev [Ale21] proved exponential lower bound on

the bit complexity of constant-depth IPS proofs over the rationals, and a recent paper by Andrews

and Forbes [?] proves quasipolynomial lower bounds on the circuit size of constant-depth IPS

proofs for a different family of formulas, over the rationals. However, for a variety of reasons, all

of these lower bounds do not imply nontrivial lower bounds in the propositional setting and thus

they are incomparable to our main result. First, these results do not hold in the setting of finite

fields. Secondly, the particular choice of hard polynomials are inherently nonboolean: [?, Ale21]

use the subset sum principle which when translated to a propositional statement is no longer hard,

and the hard polynomials in [?] have logarithmic depth.

3.1.2 Our Result: Proof Overview

The standard way of proving size lower bounds for PC for an unsatisfiable formula F

for Boolean-valued variables dates back to the celebrated superpolynomial lower bounds for

Resolution [Hak85, BSW99], where the basic tool is to reduce size lower bounds to degree

lower bounds (or in the case of Resolution, size to clause-width) by way of either a general

size-depth tradeoff, or by a more general random restriction argument. At a high level, both

methods iteratively select a variable that occurs in a lot of high-degree terms, set this variable

to zero (to kill off all high-degree terms containing it), while also ensuring (possibly by setting

additional variables) that F remains hard to refute after applying the partial restriction. After

applying this size-to-degree reduction, the main technical part is to prove degee lower bounds for

the restricted version of F .

Unfortunately over the {−1,1} basis, the size to degree reduction breaks down. In fact,

no generic reduction to degree can exist since random XOR instances over this basis require linear

degree but have polynomial size PC refutations over GF2. Moreover, we lacked any method for

proving PC lower bounds for unsatisfiable CNFs over the basis {−1,1}. and more generally over

an arbitrary linear transformation of the variables. In [IMP20], we highlighted this as an open

100

problem, noting that it is a necessary step toward proving superpolynomial AC0[2]-Frege lower

bounds, a major open problem in proof complexity.

Recently, Sokolov [Sok20] made significant progress by proving exponential lower bounds

for PC (as well as for SOS) for random CNF formulas over the domain {−1,1}, by developing

new formula-specific techniques to reduce size to degree over this domain. As this is the starting

point for our work, we begin by describing the main method in [Sok20] for reducing size to

degree for certain families of formulas over {−1,1}.

Let Π be an alleged PC refutation of F of small size which includes the axioms w2 = 1

for all variables w. The first step in Sokolov’s argument is to show how to remove all high degree

terms containing a particular variable w, provided that w is irrelevant – meaning that it does not

occur in any of the initial polynomials other than the equation w2 = 1. Intuitively, we want to

show that if our unsatisfiable system of polynomial equations doesn’t contain w, then we should

be able to eliminate w altogether from the refutation. To show this, Sokolov writes each line q

in the refutation as q0 +q1w, and proves by induction that if we replace each line q by the pair

of lines q0,q1, then it is still a valid refutation of F (and no longer contains w). While the split

operation removes w from the proof, it doesn’t kill off high degree terms. The crucial insight

is that although this doesn’t directly kill off high degree terms, a slightly different measure of

degree (called quadratic degree) can be used instead, since removing w via the split operation

removes all high quadratic degree terms that w contributed to, and secondly low quadratic degree

implies low ordinary degree. The second and easier step in Sokolov’s argument uses specific

expansion properties of F to shows that for any variable w, there exists a small restriction ρ (to

some of the other variables) such that w becomes irrelevant under ρ.

Our main theorem significantly generalizes Sokolov’s lower bound by proving exponential

lower bounds for an unsatisfiable CNF formulas F , even when we allow the axioms P to contain

superlinear many extension axioms, provided that each has small support. Note that the variables

of F are Boolean, but the extension variables are not restricted to being Boolean. In particular,

101

they may be nonsingular, meaning that setting the variable to zero falsifies one of the initial

polynomials. Intuitively, a nonsingular variable w cannot be set to 0, so we will handle them in a

similar manner to Sokolov, by first isolating w, and then generalizing the split operation in order

to kill off all large quadratic degree terms that contain w. However, dealing with a general set of

extension axioms presents new technical challenges that we address next.

Our first idea is to design the unsatisfiable formula F carefully so that we can force

variables to be irrelevant in a more modular way. Specifically, let F ′(x1, . . . ,xn) be an expanding

unsatisfiable k-CNF formula with m = O(n) clauses, such that any subset of m′ = δm clauses is

unsatisfiable and requires proofs of large PC degree. We define an unsatisfiable formula F (based

on F ′) that intuitively states that there is a subset S of m′ = δm clauses of F ′ (as chosen by new

selector variables y) that is satisfiable. We will prove lower bounds on the set of constraints F ∪E,

where E is an arbitrary set of extension axioms satisfying the conditions mentioned earlier. In

order to make a variable of F ′ irrelevant, we will simply make sure that our eventual assignment

to the selector variables (y) avoids constraints of F ′ that contain this variable.

A second challenge that we face (that doesn’t come up in Sokolov’s proof) is that extension

variables start off as either singular or nonsingular (recall that singular variables can take on the

value zero without falsifying any of the initial or extension axioms, while nonsingular variables

cannot), but can change status after applying a restriction. For example, suppose E includes

the extension axiom z = x1x2 + x1. Then z is singular (since we can set x1 = x2 = 0), but if we

set x1 = 1, then z becomes nonsingular. In order to deal with this dynamically changing status

of variables, our notion of quadratic degree must pay attention to which category each of the

extension variables is in at any particular time, and make sure that we do not lose progress that

was made earlier due to variables changing from singular to nonsingular. Fortunately we observe

that variables can only change unidirectionally, from singular to nonsingular, and this is crucial

for arguing that we can iteratively kill off large quadratic degree terms with respect to both types

of variables in a particular order so that we continually make progress.

102

Finally, we also have to generalize Sokolov’s split operation, which was previously defined

only for {−1,1} variables. We give a generalization of how to do the split for arbitrary valued

variables.

3.2 Preliminaries

Definition 26 (Polynomial Calculus). Let Γ = {P1 · · · Pm} be a set of polynomials in variables

{x1 · · ·xn} over a field F such that the system of equations P1 = 0 · · · Pm = 0 has no solution. A

Polynomial Calculus refutation of Γ is a sequence of polynomials R1 · · · Rs where Rs = 1 and for

every ` in {1 · · ·s}, R` ∈ Γ or is obtained through one of the following derivation rules for j,k < `

R` = αR j +βRk for α, β ∈ F

R` = xiRk for some i ∈ {1 · · ·n}

The size of the refutation is ∑
s
`=1 |R`|, where |R`| is the number of monomials in the

polynomial R`. The degree of the refutation is max` deg(R`).

Definition 27 (PC with extension variables). Let Γ = {P1 · · · Pm} be a set of polynomials in

variables {x1 · · ·xn} over a field F such that the system of equations P1 = 0 · · · Pm = 0 has

no solution. Let z1 · · ·zk be new variables defined over {x1 · · ·xn} by z j = Q j(x1 · · ·xn). A PC

refutation of Γ with extension variables z1 · · ·zk is a Polynomial Calculus refutation of the set

Γ′ = {P1 · · ·Pm,z1−Q1, · · · ,zk−Qk} of polynomials over {x1 · · ·xn} and {z1 · · ·zk}.

The size of such a refutation is the size of the Polynomial Calculus refutation of Γ′

Definition 28 (Refutation of a k-CNF in Polynomial Calculus). Since we are working with

Polynomial Calculus, a tautology in clausal form has to be translated into a set of polynomials

over a field. We work over Fp for prime p > 2 and use the standard PCR translation of CNFs into

polynomials: for each variable x occuring in the CNF, we have two associated variables x and

x̄ (representing x and its negation respectively). Each clause C is converted into an associated

103

monomial in the natural way. For example, if C = (x1 ∨¬x2 ∨ x3), then the corresponding

polynomial is x̄1x2x̄3 = 0. In addition, for every variable w,w, we include the boolean axioms

w2−w = 0, w2−w = 0, as well as the axiom ww = 0. .

3.3 The Hard Formulas

We distinguish between the case p = 2 and the case p > 2, and concentrate on the latter.

This is because the case p = 2 does not require any new technical ideas, and we can pick from a

large number of known hard tautologies for this case, such as random CNF’s. Over F2, every

extension variable is zero-one valued, and so standard size-degree tradeoffs pertain even with

respect to extension variables. Also, k-local extension variables can change the degree by at most

a factor of k. Since to use the size-degree tradeoffs, the degree must be at least the square root

of the number of variables, this immediately gives a lower bound tolerating close to a quadratic

number of local extension variables for any tautology requiring linear degree, giving us our

claimed results.

Note, however, that over any field with p > 2, the Tseitin tautologies require linear degree

but have polynomial sized proofs with a linear number of extension variables, so high degree

is not sufficient when p > 2. So in this case, we need a new type of hard tautology. Below, we

describe these tautologies.

We start with any unsatisfiable CNF formula such that

a) Any small set of variables appear in a small fraction of the axioms

b) Any large enough subset of axioms is unsatisfiable, and requires linear PC degree to refute.

For concreteness, we fix the following unsatisfiable CNF obtained by generating sufficiently

many random parities.

104

First we’ll show that a random regular bipartite graph has good boundary expansion.

This has been used implicitly in other works ([CS88], [BKPS02]), but we could not find a clean

statement to cite, so for completeness we state and prove it here. Let G = (L,R,E) be a bipartite

graph, and let A⊆ R. The boundary for A, ∂(A), is the set of vertices x in L so that |N(x)∩A|= 1,

i.e., vertices with a unique neighbor in A. A bipartite graph is (d,k) regular if every vertex in

L has degree d and every vertex in R has degree k. In this case, for n = |L|,m = |R|, we have

dn = km.

Theorem 18. Let d,k,n,m be positive integers with dn = km, k≥ 12 . Then with high probability

for a random (d,k) regular bipartite graph with |L|= n, |R|= m, for all A⊂ R , |A|< n/(e6k2),

we have ∂(A)≥ k|A|/2 .

Proof. Let N(A) be all the neighbors of A. Since the total degrees of vertices in A is k|A|, and each

element of N(A)−∂(A) is contingent on two such edges, k|A| ≥ 2(|N(A)|− |∂(A)|)+ |∂(A), or

∂(A)≥ 2|N(A)|− k|A|. We will show that with high probability for all such A, |N(A)|> 3k|A|/4,

and hence ∂(A)≥ k|A|/2.

If not, there are sets A⊂ R and B⊂ L so that N(A)⊆ B and |B|= 3k|A|/4. We will bound

the probability that this is true for fixed sets A,B and then take a union bound. We can view

picking a random (d,k) bipartite graph as picking a random matching between d half-edges

adjacent to each x ∈ L and k such half-edges adjacent to each y ∈ R; if a half edge for x is matched

to a half-edge for y, it forms an edge between x and y.

We can form this matching by going through the half edges for nodes in R and for each

randomly selecting an unmatched half-edge for some node in L. We start with the edges for A

in an arbitrary order. If we condition on all previous neighbors for A being in B, the number of

half-edges left still available for B is less than d|B|, whereas the number for B stays at exactly

d(n−|B|). Thus, the conditional probability that the next edge formed is also in B is at most

|B|/n, and we do this for each of k|A| edges, meaning the probability that all neighbors are in B is

at most (|B|/n)k|A|.

105

Now, for a fixed |A| and setting |B|= 3k|A|/4, we take the union bound over all subsets A

and B. This gives a total probability of failure for some set A of size a as :

(
m
a

)(
n

3ka/4

)
(3ka/4n)ka

≤ (em/a)a(4en/3ka)3ka/4(3ka/4n)ka

≤ (em/a)a(e3ka/n)ka/4 = (ekn/da)a(e3ka/n)ka/4 = (e3k/4+1ak/4−1kk/4+1/dnk/4−1)a

Since we are assuming a < n/(e6k2), the base in the above expression is at most

e3k/4+1(n/e6k2)k/4−1kk/4+1/dnk/4−1

= e7−3k/4k3−k/4/d

which for k ≥ 12 is bounded below e−2, meaning the probability of such a bad set existing is

exponentially small in a, and the probability of such a bad set existing for any a is less than 1/2.

Definition 29. For a Boolean vector X = {x1, . . . ,xn}, we define Ln,m,k1,k(X) to be a distribution

over k-CNF formulas over n variables X = {x1, . . . ,xn} obtained by selecting m parities, where

each parity is represented by a node on the right of a bipartite graph G(L,R) with left degree

bounded by k1 and right degree bounded by k chosen uniformly at random from all such graphs.

Lemma 41. Let Fn,k be a tautology given by AX = b over variables X = {x1, . . . ,xn} where A is

the adjacency matrix of a graph drawn at random from Ln,m,k1,k where m = 10n, for large enough

constants k1,k > 0, and b is chosen randomly. Then the following hold with high probability for

a small enough ε > 0:

a) Any subset of a (1− ε)-fraction of the equations in Fn,k is unsatisfiable

106

b) Any subset of a (1− ε)-fraction of the equations in Fn,k requires PC degree c2(n) to refute,

for some c2 > 0.

Proof. a) The probability that a set of (1− ε)10n random parities (i.e. for a random choice of b)

is satisfiable is at most 2−9n for a small enough ε. The probability that any such subset of Fn,k is

satisfiable is therefore at most 2(−n(9−10H(ε))), which is exponentially small for a small enough ε,

where H() is the binary entropy function.

b) This follows directly from [AR01], Theorem 3.8 and Theorem 4.4, since by Theorem

18 the graph with adjacency matrix A has good expansion with high probability.

We now want to compose Fn,k with a function we call SELECT, which encodes a complete

bipartite graph such that nodes on the left represent equations of Fn,k of which a large enough

subset is selected by the nodes on the right. In order to eliminate an equation from being

selected on the right, we add it to a running list of bad equations, and reduce the proof by the

set of assertions stating that no node on the right can be assigned this equation. Conversely, by

substituting a complete assignment for the variables of SELECT, we would like to be able to

select sufficiently many equations from any large enough subset on the left.

We now define our tautology below.

Definition 30. Let Fn,k(X) = {Ei | i ∈ [m]} and ε be as in Lemma 41, m = 10n, m′ = (1− ε/2)m

and Let Y = {yi j, i ∈ [m′], j ∈ [logm]} and let Yi be defined appropriately. For bits b1 · · ·blogm let

Yi 6= b1 · · ·blogm represent the formula ∏ j(yi j−b j⊕1). Then FSEL
n,k is the following set of clauses

in O(n) variables X ∪Y .

Yi 6= b1 · · ·blogm∨Eb1···blogm

Yi 6= b1 · · ·blogm∨Yi′ 6= b1 · · ·blogm

107

for i 6= i′

In the above definition, we refer to the variables Yi = yi1 · · ·yi logm as the ith pigeon. Thus

the axioms can be interpreted as the following two statements:

1. If the ith pigeon maps to the string b1 · · ·blogm for any i, the equation Eb1···blogm is true.

2. For any b1 · · ·blogm and indices i, i′, either the ith pigeon does not map to it or the i′th pigeon

does not map to it.

Since we are working with Polynomial Calculus, the above CNF formula has to be

translated into a set of polynomials, as described in Definition 28.

Definition 31. A locality κ extension variable is a new variable z together with a single polynomial

defining constraint z = q(wi1 , ..wik) for some polynomial q and κ original variables wi1, . . . ,wik ∈

X ∪Y .

Definition 32. Let ψN,κ,M(W) denote the unsatisfiable formula FSEL
n,k with M extension axioms Z

of locality κ, and where W = X ∪Y ∪Z, and |W |= N.

3.4 The Lower Bound

3.4.1 Technical Proof Overview.

We start with a PC refutation Π of ψN,κ,M(W) over Fp. Conventionally, proof size lower

bounds are reduced to degree lower bounds, a single step of which involves finding a variable that

occurs in a large fraction of high degree terms of the proof and setting it to zero. In our setting,

if the latter turns out to be an extension variable, z with extension axiom z = f (X ,Y) it may be

nonsingular meaning that setting z = 0 will falsify the extension axiom for z. In this case, we

cannot simply eliminate the high degree terms containing z by setting z = 0. Sokolov [Sok20]

introduced Quadratic degree as a measure to be used instead of degree in such cases and showed

108

that a refutation of low quadratic degree can be turned into one of low degree. Quadratic degree

essentially measures the maximal degree of the square of each polynomial P occurring in the

proof. Sokolov also introduced an operation Split that acts on a proof line by line in order to

reduce quadratic degree in the special case of nonsingular variables that always take on values in

±1.

In our case, we have to deal with the case of both singular as well as nonsingular variables,

and where the nonsingular variables can depend arbitrarily on a logarithmic number of original

variables. To accomplish this, we give a procedure that reduces reduce both ordinary degree (for

singular variables occurring in the proof) as well as quadratic degree (for nonsingular variables).

The first phase of our procedure deals with eliminating the set S of all high singular

degree terms – that is, terms that contain many singular variables. This is handled in a standard

way, by finding a singular variable w occurring in many terms of S, and applying the restriction

σ which sets w = 0. Then in order to ensure that the properties of the tautology remain intact

after applying σ, we maintain a list B of “bad” axioms and modify the formula and proof (using

X-cleanup, Y-cleanup and Lemma 50) so that the selector variables cannot map to any axiom

in B. In this case, we add to B any axiom that is affected by σ and modify the proof so that the

Y -variables avoid mapping to any axiom in B.

The second more difficult phase of our procedure deals with removing all terms of large

quadratic degree from the proof. Assume that w is some nonsingular variable occuring in many

terms of high quadratic degree. Since all variables in X ∪Y are singular, w must be an extension

variable z with corresponding extension axiom z = f (X ,Y). First, we apply a partial assignment

σ to all but one X-variable of f (X ,Y) so that f (X ,Y)|σ reduces to a linear function of a single

X-variable, x (extension variables that only depend on the selector variables Y are inconsequential

since we substitute a complete assignment to the variables Y at the end of our procedure). After

applying σ (which sets a small number of both X and Y variables), we apply cleanup procedures

to get rid of all axioms that were affected by σ, and also those that contain x. As in the first

109

phase, this involves updating our list B of bad axioms, and as well as modifying the proof, using

X-cleanup, Y-cleanup procedures together with Lemma 50.

Now that the axioms are free of both x and z, our main technical contribution (Lemma 49)

significantly generalizes Sokolov’s Split operation in order to eliminate z from the proof (thus

making z irrelevant). This in turn yields a near-constant factor reduction in the number of large

quadratic degree terms. By iterating this process, we obtain a refutation of a reduced version of

ψN,κ,M(X) of low quadratic degree. Crucially, our procedure for reducing quadratic degree does

not increase the singular degree, and thus at the end of the second phase, we have extracted a

proof (of a reduced but still hard formula) that has low singular degree as well as low quadratic

degree. Then by Lemma 43, this in turn implies a proof of small overall degree.

Finally, we argue that we can substitute an assignment for the selector variables Y (since

each step adds only a small number of axioms to the bad set B, and therefore the total size of B is

at most a constant fraction of the original axioms) in order to obtain a low degree refutation of a

large subset of Fn,k, which gives us a contradiction.

3.4.2 Quadratic Degree, and Removing Irrelevant Variables

Recall that p is the characteristic of the underlying field.

Definition 33 (Singular degree). For an extension variable z, we say that it is singular if it can

take the value zero. Else we say that it is non-singular (any non-extension variable w is singular

by default since w2 = w holds). By Lemma 42 below, a nonsingular variable implies zp−1 = 1.

For a term t, let the singular degree sing(t) denote the number of singular variables in t.

Lemma 42. For z non-singular, we can derive zp−1 = 1 from the extension axiom for z.

Proof. Let q be any multi-linear polynomial in the original variables and let z = q be the defining

equation for z. Look at qp−1(X ,Y) . Since q is never 0 mod p for Boolean inputs, this is always

equal to 1 for Boolean inputs. But since every function from Boolean inputs to the field has a

110

unique representation as a multi-linear function, when we make qp−1 multi-linear, it must be the

identically 1 polynomial. Then zp−1 = qp−1 is derivable from the defining axiom, which means

zp−1−1 is derivable.

Definition 34. For a term t and a variable w (or its negated version w̄), deg(t,w) is equal to the

degree of w in t. Note that since we are over a finite field of characteristic p, deg(t,w)≤ p. If w

is nonsingular, then wp−1 = 1 mod p, so deg(t,w)≤ p−1. For a term t the overall degree of t,

deg(t), equals ∑w∈W deg(t,w).

The next definition is a generalization/modification of Sokolov’s definition of quadratic

degree for the more general scenario where the proof contains both singular and nonsingular

variables.

Definition 35 (Quadratic degree). For a pair of terms t1, t2, and a variable w (or its negated

version w̄), we define the weight of w with respect to t1 and t2, Qdeg(t1, t2,w) as follows. If

w ∈ X ∪Y , then Qdeg(t1, t2,w) = 1 if w occurs in at least one of t1 or t2 and zero otherwise; if w

is an extension variable, then Qdeg(t1, t2,w) = 1 if and only if deg(t1,w) 6= deg(t2,w) and zero

otherwise. The overall weight of the pair t1, t2, Qdeg(t1, t2), is equal to ∑w∈W Qdeg(t1, t2,w). The

weight of a polynomial P is equal to the maximum weight over all pairs (t1, t2) such that t1, t2 ∈ P.

The quadratic degree of P is defined as the maximum weight of P. For a proof Π, the quadratic

degree is the maximum quadratic degree over all polynomials P ∈Π.

Definition 36 (Q). For a polynomial P, Q (P) = {(t1, t2)|t1, t2 ∈ P}. For a pair of polynomials P1

and P2, Q (P1,P2) = {(t1, t2)|t1 ∈ P1, t2 ∈ P2 or vice versa}. Q (Π) = ∪P∈ΠQ (P).

Definition 37 (Hd). For a proof Π, let Hd(Π) denote the set of pairs (t1, t2) of high quadratic

degree. That is, Hd(Π) is the set of pairs of terms (t1, t2) such that t1, t2 both occur in P for some

polynomial P ∈Π, and Qdeg(t1, t2)≥ d.

Observation 1. Substitution does not raise the quadratic degree, i.e. if P is a polynomial, x is a

variable occuring in it and a ∈ Fp then the quadratic degree of P|x=a is at most that of P.

111

Proof. This follows from the fact that for any two terms t1, t2 ∈ P, Qdeg(t1, t2,w) remains un-

changed if w is different from x, and decreases if w = x.

The following is a generalized version of the argument from [Sok20] that shows how to

convert a proof with low quadratic degree to one with low degree.

Lemma 43. If a set of unsatisfiable polynomials F of degree d0 has a PC refutation of quadratic

degree and singular degree at most d, then it has a PC refutation of degree O(p2 max(d,d0)).

Proof. We first observe that for any two terms t1, t2, deg(t1t p−2
2)≤ p · (Qdeg(t1, t2)+ sing(t1)+

sing(t2)). This is due to the following. Note that any singular variable that appears in either t1

or t2 appears in t1t p−2
2 with degree at most p. Thus, the degree of singular variables in t1t p−2

2 is

at most p times sing(t1)+ sing(t2). For a nonsingular extension variable z that occurs in t1 and

t2 such that deg(t1,z) = deg(t2,z), deg(t1t p−2
2 ,z) = Qdeg(t1, t2,z) = 0. Any other nonsingular

variable that occurs in at least one of t1 and t2 has deg(t1t p−2
2 ,x)≤ p−1 and Qdeg(t1, t2,x) = 1.

Therefore the degree of nonsingular variables in t1t p−2
2 is at most p−1 times Qdeg(t1, t2).

From the above observation, it suffices to prove the following: Let F be a set of unsat-

isfiable polynomials of degree d0 with a PC refutation, Π, over Fp. Further suppose that for

every polynomial P ∈Π, and for every pair of terms t1, t2 ∈ P, deg(t1t p−2
2)< d. Then F has a PC

refutation of degree max(3pd,d0). Since by our assumption the degree of singular variables is

at most d, below we construct a refutation by multiplying each line of the original refutation by

non-singular variables to lower their degree to at most 2pd, which suffices to prove the statement.

For a term t in the proof, let A(t) denote the subterm consisting of only non-singular

variables. Then clearly we have A(t)p−1 = 1. Note that we also have deg(A(t1)p−2t2)≤ pd for

any two terms t1, t2 by our assumption. For every line Pj in the refutation, we pick a term t j ∈ Pj

and define P′j = A(t j)
p−2Pj. Note that degP′j ≤ pd. We now show that each P′j can be derived in

degree max(2pd,d0). If Pj is one of the axioms, we multiply by A(t j)
p−2 to get P′j, and this takes

degree max(pd,d0). If Pj = xiPj1 for j1 < j, we choose t j such that t j = xit j1 . Then we have P′j is

112

equal to xiP′j1 if xi is singular, and equal to P′j1 otherwise. Finally, let Pj = Pj1 +Pj2 for j1, j2 < j.

We pick an arbitrary term t j ∈ Pj. Then we have P′j = A(t j)
p−2A(t j1)P

′
j1 +A(t j)

p−2A(t j2)P
′
j2 .

We now show that deg(A(t j)
p−2A(t j1)) ≤ pd and deg(A(t j)

p−2A(t j2)) ≤ pd to conclude the

proof. Since every term in Pj appears in one of Pj1 ,Pj2 , let t j ∈ Pj1 without loss of generality.

Then we have that t j, t j1 both appear in Pj1 and thus is deg(A(t j)
p−2A(t j1)) ≤ pd. If t j2 ∈ Pj

i.e. it is not canceled in the sum Pj1 +Pj2 , then we have t j, t j2 both appear in Pj and hence

deg(A(t j)
p−2A(t j2))≤ pd. If t j2 6∈ Pj, this implies that it was canceled in the sum Pj1 +Pj2 and

therefore t j2 ∈ Pj1 and deg(A(t j)
p−2A(t j2))≤ d.

Lemma 44. Let Π be a proof and let z be an extension variable such that the corresponding

extension axiom implies the line zk−1 = 0 for some positive integer k < p. Let Π′ be the proof

obtained by reducing each line of Π by zk−1 = 0. Then we have |Hd(Π
′)| ≤ |Hd(Π)| for any

d ≥ 0.

Proof. Since the extension axiom for z implies zk−1, z is nonsingular. Consider a polynomial

P ∈Π and a pair of terms (t1, t2) that occur in P. If Qdeg(t1, t2,z) = 0, then the weight will still

be 0 after reducing by zk = 1, and thus |Hd(Π
′)| ≤ |Hd(Π)|.

Lemma 45. Let a,b ∈ F∗p such that ` is the least positive integer less than p with a` = b`. Let

P be a polynomial in Fp[W] and let z be an extension variable that occurs in P such that the

corresponding extension axiom implies the line (z− a)(z− b) = 0. Then, for any two distinct

non-negative integers `1, `0 < ` there exists a unique polynomial R = R1z`1 +R0z`0 such that

R = P mod (z−a)(z−b).

Proof. Since R = P mod (z−a)(z−b), we have R(a) = P(a) and R(b) = P(b), and therefore it

is sufficient to show that there is a unique solution to this pair of equations. Suppose that `0 < `1.

We have

∣∣∣∣∣∣∣
a`1 a`0

b`1 b`0

∣∣∣∣∣∣∣= a`0b`0(a`1−`0−b`1−`0). Since `1− `0 < `, this matrix is non-singular over

113

Fp and therefore the system of equations

R1a`1 +R0a`0 = P(a)

R1b`1 +R0b`0 = P(b)

has a unique solution.

Definition 38 (Splitz,`1,`0). For a polynomial P and a variable z such that the identity (z−

a)(z− b) = 0 holds, and integers `1, `0 such that `0 < `1 and a`1−`0 6= b`1−`0 , let R = R1z`1 +

R0z`0 be the unique polynomial given by the previous lemma such that R = P mod (z−a)(z−

b). Splitz,`1,`0(P) is defined as the pair of polynomials {R1,R0}. For a proof Π, we define

Splitz,`1,`0(Π) to be the set of lines Splitz,`1,`0(P) for all P ∈Π.

Lemma 46. Let P be a polynomial of the form P̀ −1z`−1 + · · ·+ P0. Then for `0 < `1 < `,

Splitz,`1,`0(P) = {R1,R0} where

R1 = P̀ 1 + ∑
i<`,i6=`0

c1iPi

R0 = P̀ 0 + ∑
i<`,i6=`1

c0iPi

for some constants c1i,c0i ∈ Fp.

Proof. This is easily verified from the definition of Splitz,`1,`0 .

Lemma 47. Let z be a variable that occurs in a refutation Π but does not occur in any axioms

except for (z− a)(z− b) = 0. Then, for any `1 and `0 such that `0 < `1 and a`1−`0 6= b`1−`0 ,

Splitz,`1,`0(Π) is a valid refutation and can be derived without increasing the size of Hd(Π) or

the singular degree of Π.

Proof. Let Pj = Pj(k−1)zk−1 + · · ·+Pj2z2 +Pj1z+Pj0 be the jth line in the refutation Π, where

k is the least integer such that the identity zk− 1 = 0 holds (this is without loss of generality

114

by Lemma 44). We view Pj as a univariate polynomial in z over the appropriate ring. Let

R j(z) = R j1z`1 +R j0z`0 be a polynomial such that Pj(z) = R j(z) mod (z−a)(z−b). Then we

have Pj(a) = R j(a) and Pj(b) = R j(b), thus by Lemma 45 R j(z) is uniquely given by

R j1

R j0

=

a`1 a`0

b`1 b`0

−1Pj(a)

Pj(b)

We now proceed to show by induction that the set of lines {R j1,R j0} is a valid derivation.

For the base case, note that all of the axioms are either free of z or eliminated as a result of reducing

by (z−a)(z−b), and hence their Split versions are derivable, Now for a line Pj = αPj1 +βPj2

for some j1 and j2 less than j and α,β ∈ Fp, then we have that R j1 = αR j11+βR j21 and therefore

by induction we have a proof of R j1 (similarly for R j0). If Pj = wPj′ for some j′ < j and some

variable w distinct from z, we have that R j1 = wR j′1 (similarly for R j0). Lastly, if Pj = zPj′ , we

have

R j′1

R j′0

=

a`1 a`0

b`1 b`0

−1Pj′(a)

Pj′(b)

from which we need to derive

R j1

R j0

=

a`1 a`0

b`1 b`0

−1Pj(a)

Pj(b)

=

a`1 a`0

b`1 b`0

−1aPj′(a)

bPj′(b)

=

a`1 a`0

b`1 b`0

−1a 0

0 b

a`1 a`0

b`1 b`0

R j′1

R j′0

 .

115

Lemma 48. Let Π be a proof and let z be an extension variable that does not occur in any of

the axioms except the identity (z−a)(z−b) = 0 for some a,b ∈ F∗p and occurs1 in at least an

ε fraction of pairs (t1, t2) in Hd(Π) for an arbitrary integer d ≥ 0. Then there exist integers

`1, `0 < p such that the size of Hd(Splitz,`1,`0(Π)) is at most (1− ε/p2) times the size of Hd(Π).

Proof. The arguments below hold for Hd(Π) for any d, so for simplicity we show the proof for

H0(Π) =Q (Π). For a line P∈Π, let Qz(P) and Q¬z(Π) be subsets of Q (P) with Qdeg(t1, t2,z) =

1 and Qdeg(t1, t2,z) = 0 for all (t1, t2) ∈ Qz(P) and (t1, t2) ∈ Q¬z(P) respectively. By Lemma 44,

we assume without loss of generality that Π is reduced by z`−1 = 0 where ` > 0 is the least such

integer. Let P = P̀ −1z`−1 + · · ·+P2z2 +P1z+P0 and Qi j(P) = Q (Pizi,Pjz j) for i, j < `. Then

we have

Qz(P) = ti< jQi j(P)

Q¬z(P) = ∪iQ (Pi)

where t denotes disjoint union. This is because by the definition of Qi j(P), for any pair

(t1, t2) ∈ Qi j(P) we have that zi ∈ t1 and z j ∈ t2 or vice versa. Therefore, for two pairs (i1, j1) and

(i2, j2) such that i1 6= j1 and i2 6= j2 and {i1, j1} 6= {i2, j2}, we have that Qi1 j1(P)∩Qi2 j2(P) = /0.

Note that this property also extends to ∪PQi j(P). Since Q (Π) = ∪P∈ΠQ (P), we have

Qz(Π) = ∪Pti< j Qi j(P) = ti< j∪P Qi j(P) (3.1)

Q¬z(Π) = ∪P∪i Q (Pi)

and therefore
1We say that a variable z occurs in a pair (t1, t2) if Qdeg(t1, t2,z) 6= 0.

116

Q (Π) =
(
ti< j∪PQi j(P)

)
t
(
∪P∪iQ (Pi)

)

|Q (Π)|= ∑
i< j
|∪P Qi j(P)|+ |∪P∪iQ (Pi)| (3.2)

Let us now evaluate a similar expression for Q (Splitz,`1,`0(Π)). Let Q 0
i j(P) = Q (Pi,Pj) .

Note that |∪P Q 0
i j(P)| ≤ |∪P Qi j(P)|. Then since by Lemma 46 Splitz,`1,`0(P) consists of lines of

the form

R1(P) = P̀ 1 + ∑
i<`,i6=`0

c1iPi

R0(P) = P̀ 0 + ∑
i<`,i6=`1

c0iPi

for some constants c1i,c0i ∈ Fp, we have

Q (Splitz,`1,`0(Π)) = ∪PQ (Splitz,`1,`0(P))

= ∪P(Q (R1(P))∪Q (R0(P)))

⊆ ∪P
(
∪`0 6=i< j 6=`1 Q 0

i j(P)
)
∪
(
∪i Q (Pi)

)
=
(
∪`0 6=i< j 6=`1 ∪PQ 0

i j(P)
)
∪
(
∪P∪iQ (Pi)

)
Therefore, we have that

|Q (Splitz,`1,`0(Π))| ≤ ∑
`0 6=i< j 6=`1

|∪P Q 0
i j(P)|+ |∪P∪iQ (Pi)| (3.3)

≤ ∑
`0 6=i< j 6=`1

|∪P Qi j(P)|+ |∪P∪iQ (Pi)| (3.4)

≤ |Q (Π)|− |∪P Q`0`1(P)| (3.5)

117

where the last bound follows from equation 3.2. Now, by our assumption, since Qz(Π) is

at least an ε fraction of Q (Π) we have from equation 3.1 by an averaging argument that for some

`0 < `1 < `, ∪PQ`0`1(P) is at least a ε/p2 fraction of Q (Π). For such `0, `1 from equation 3.5 we

have |Q (Splitz,`1,`0(Π))| ≤ (1− ε/p2)|Q (Π)|.

Below we prove a slightly more complex version of the previous lemma.

Lemma 49. Let Π be a proof, x ∈ X and let z = αx+β be a variable such that x,z do not occur

in any other axioms except x2 = x, with z occurring in at least an ε fraction of the pairs in Hd(Π),

for some α,β ∈ F∗p and any integer d ≥ 0. Then there exist a refutation Π′ such that the size of

Hd(Π
′) is at most (1− ε/3p2) times the size of Hd(Π).

Proof. The proof is by a simple case analysis followed by appealing to the previous lemma.

Once again we only show the case of H0(Π) = Q (Π). Let Qz(P) be the subset of Q (P) with

Qdeg(t1, t2,z) = 1 for all (t1, t2) ∈ Qz(P). Firstly, note that substituting x = α−1(z−β) in the

identity x2 = x we get (z−a)(z−b) = 0 for some a,b ∈ Fp. If either a or b is zero, then we can

set z = 0 by setting x appropriately to eliminate all terms in Q (Π) containing z. Therefore we

assume that a,b ∈ F∗p, i.e. z is not singular. By Lemma 44, we assume without loss of generality

that Π is reduced by z`−1 = 0 where ` > 0 is the least such integer. Then each line P of Π is of

the form

P = (P′`−1z`−1 + · · ·+P′2z2 +P′1z+P′0)+ x(P′′`−1z`−1 + · · ·+P′′2 z2 +P′′1 z+P′′0)

+ x̄(P′′′`−1z`−1 + · · ·+P′′′2 z2 +P′′′1 z+P′′′0)

We define the following subsets of Q (Π): (note that since x ∈ X , Qdeg(x,x,x) = 1)

Qzx = ∪Pti< j Q (P′i z
i,xP′′j z j)∪Q (xP′′i zi,P′jz

j)∪Q (xP′′i zi,xP′′j z j)

118

Qzx̄ = ∪Pti< j Q (P′i z
i, x̄P′′′j z j)∪Q (x̄P′′′i zi,P′jz

j)∪Q (x̄P′′′i zi, x̄P′′′j z j)

Qzxx̄ = ∪Pti< j Q (xP′′i zi, x̄P′′′j z j)∪Q (x̄P′′′i zi,xP′′j z j)

Qz = ∪Pti< j Q (P′i z
i,P′jz

j)

and observe that

Qz(Π) = QzxtQzx̄tQzxx̄tQz (3.6)

Now, if |Qzx tQzxx̄(Π)| ≥ ε|Q (Π)|/3, then we set x = 0 to obtain a refutation Π1, for

which it is easy to see that

Qz(Π1) = Qzx̄tQz

Q¬z(Π1)⊆ Q¬z(Π)

and therefore |Q (Π1)| ≤ (1− ε/3)|Q (Π)|. Otherwise, if |Qzx̄tQzxx̄(Π)| ≥ ε|Q (Π)|/3

then we similarly set x = 1 and obtain a refutation Π1 with |Q (Π1)| ≤ (1− ε/3)|Q (Π)|.

If both of the above don’t hold, then we have |QzxtQzx̄tQzxx̄(Π)| ≤ 2ε|Q (Π)|/3 and

from equation 3.6 and our assumption we have |Qz| ≥ ε|Q (Π)|/3. Let `0 < `1 be indices (that

exist by an averaging argument) such that ∪PQ (P′`0
z`0 ,P′`1

z`1) is of size at least ε|Q (Π)|/3p2.

We now substitute x = α−1(z−β) in Π and apply Splitz,`0,`1 . It is easy to see that this replaces

each line P of Π with two lines of the form

R1(P) = P′`1
+ ∑

i<`,i6=`0

c′1iP
′
i +∑

i<`

c′′1iP
′′
i

R0(P) = P′`0
+ ∑

i<`,i6=`1

c′0iP
′
i +∑

i<`

c′′1iP
′′
i

for some constants c′1i,c
′
0i,c
′′
1i,c
′′
0i ∈ Fp. By an analysis similar to the previous lemma we

119

can show that

|Q (Splitz,`0,`1(Π))| ≤ |Q (Π)|− |∪P Q (P′`0
z`0,P′`1

z`1)|

≤ (1− ε/3p2)|Q (Π)|.

Lemma 50. Let Π be a refutation and let Yi 6= b1 . . .blogm ∨ Eb1...blogm be one of its axioms.

Then there exists another valid refutation Π′ with the latter axiom replaced by the axiom Yi 6=

b1 . . .blogm ≡∏ j(yi j−b j⊕1) = 0, such that the quadratic degree and singular degree of Π′ are

at most those of Π.

Proof. Note that the axiom Yi 6= b1 . . .blogm∨Eb1...blogm can be derived from the axiom ∏ j(yi j−

b j⊕1) = 0. We construct Π′ as follows. We first derive the former axiom from the latter in Π′.

Besides this derivation, Π′ involves the same steps as Π. Note that since this derivation only

involves PCR monomials, this does not raise the quadratic degree of Π′. Also, its singular degree

is not more than that of Π.

3.4.3 Proof of Main Theorem

Theorem 19. Any PC refutation of ψN,κ,M(W) is of size at least 2
Ω

(
n2

κ22κ(M+n log(n))

)
.

Proof. Let Π be a refutation of ψN,κ,c(W) of size at most 2γn2/(κ22κ(M+n log(n))) for a small enough

constant γ. Given an alleged PC refutation Π, Algorithm 1 (defined below) will apply a sequence

of restrictions and cleanup steps in order to produce a refutation Π′′ of a restricted version of

ψN,κ,c(W) with the property that both the singular as well as the quadratic degree of Π′′ are at

most d. The algorithm contains two while loops, the first of which iteratively removes all terms

of high singular degree, and the second iteratively removes all pairs of terms of high quadratic

120

Input: A refutation Π of ψN,κ,M
Output: A refutation Π′ with quadratic and singular degree less than d

1 d← νn/κ, where ν is a sufficiently small constant.
2 M′←M+n log(n).
3 S← the set of all terms in the proof of singular degree greater than d
4 B← /0.
5 while S is non empty do
6 Pick a variable w that, by an averaging argument, occurs in at least d/M′ fraction

of terms in S
7 if w ∈ X ∪Y then
8 Substitute w = 0
9 Call X-cleanup(w = 0) or Y-cleanup(w = 0) depending on whether w ∈ X or

w ∈ Y
10 end
11 if w is an extension variable, defined by w = f (X ,Y) then
12 Let σ = σX ∪σY be an assignment to the variables of f such that f (σ) = 0
13 Substitute σ

14 Call X-cleanup(σX) and Y-cleanup(σY)
15 end
16 end
17 H← the set of all pairs of terms in the proof of quadratic degree greater than d
18 while H is non empty do
19 Pick a variable w that, by an averaging argument, occurs in at least d/M′ fraction

of terms in H
20 if w ∈ X ∪Y then
21 Substitute w = 0
22 Call X-cleanup(w = 0) or Y-cleanup(w = 0) depending on whether w ∈ X or

w ∈ Y
23 end
24 if w is an extension variable, defined by w = f (X ,Y) then
25 Let σ = σX ∪σY be an assignment to the variables of f such that

f (σ) = αx+β for some x ∈ X (exists since we substitute a complete
assignment for Y eventually and hence extension variables that depend only
on Y are inconsequential)

26 Substitute σ

27 Call X-cleanup(σX ∪{x = 0}) and Y-cleanup(σY)
28 Split on w using Lemma 49
29 end
30 end

Algorithm 3: Eliminating high quadratic and singular degree terms from the proof

121

degree. From Π′′, we will apply a further restriction to all of the remaining unset Y variables, to

extract a refutation of a subset of m′ equations from Fn,k of low degree, contradicting the degree

lower bound given in Lemma 41. Recall that Fn,k is defined over variables X and we pick a subset

of these equations by matching pigeons Yi to equations in Fn,k through a complete bipartite graph.

We initialize a bad list B of bit strings b1 . . .blogm to empty (where each such bit string indexes an

equation Eb1...blogm of Fn,k). This bad list will contain all of the equations that were affected by

either of the above while loops.

We will first analyze the first while loop (lines 5-15). Initially S is initialized to the set of

all terms in the proof of singular degree greater than d. Let M′ = M+n log(n). This loop kills off

terms in S until S is empty, by iteratively picking a variable w that, by an averaging argument,

occurs in at least a d/M′ fraction of terms in S. There are two cases depending on whether

w ∈ X ∪Y (the first case) or whether w ∈ Z. In the first case, we apply the restriction w = 0

and call X-cleanup(w = 0) or Y-cleanup(w = 0) depending on whether w ∈ X or w ∈ Y . This

eliminates the contribution to high singular degree from terms containing w, and hence obtains a

(1−d/M′)-factor reduction in the size of S. In the second case, w is an extension variable, defined

by w = f (X ,Y) for some polynomial f that depends on at most κ variables from X ∪Y . Since w

is singular, there exists an assignment σ = σX ∪σY such that f (σ) = 0. We apply the restriction σ

to the proof, thus eliminating all terms containing w, which causes a (1−d/M′)-factor reduction

in the number of high singular degree terms. Next, we run subroutines X-cleanup(σX) and

Y-cleanup(σY) (described below) to get rid of all axioms that were affected by the restriction

σ. without affecting the other axioms. By repeating the above for − log |S|/ log(1− d/M′)

≈M′ log |S|/d ≤O(γ)n/κ2κ iterations (where |S|= 2γn2/κ22κM′), we eliminate all terms in S from

the proof and thus obtain a refutation of singular degree less than d. The processes X-cleanup(σX)

and Y-cleanup(σY) increase the size of the bad list B by only O(|σ|) = O(κ) per call, since each

X-variable occurs in at most k1 = O(1) clauses, and each clause has size k = O(1)). Therefore

the total size of B at the end of the first while loop is at most O(γ)n/2κ.

122

Let Π′ be the (modified) proof after exiting the first while loop. Before entering the

second while loop (lines 18-29), we initialize H to be equal to Hd(Π
′), the set of all pairs of terms

of Π′ of quadratic degree greater than d. Note that H may be different than the original set of

bad pairs, since during the execution of the first while loop, some extension variables that were

originally singular may become nonsingular. In this second loop, we will kill off all pairs from

H by iteratively picking a variable w that contributes to the weight of at least a d/M′ fraction of

pairs in H.

There are two cases depending on whether w∈X∪Y or w∈ Z. In the first case (w∈X∪Y),

we apply the restriction w = 0 and call X-cleanup(w = 0) or Y-cleanup(w = 0) depending on

whether w ∈ X or w ∈ Y respectively. This eliminates the contribution to high quadratic degree

from terms containing w, and hence obtains a (1−d/M′)-factor reduction in the size of H. In the

second case, w is an extension variable defined by extension axiom w = f (X ,Y) where f depends

on at most κ variables from X ∪Y . We can assume that z depends on at least one X-variable

since at the end of the procedure we will set all Y -variables to constants, and therefore extension

variables that only depend on Y variables will be inconsequential. Thus, there there exists an

assignment σ = σX ∪σY such that f (σ) = αx+β for some α,β ∈ Fp and x ∈ X . We apply σ to

the proof, and then call the subroutines X-cleanup(σX ∪{x = 0}) and Y-cleanup(σY) to get rid

of all axioms that were affected by σ and also those that contain x. Now that the axioms are free

of x and w, we Split on w using Lemma 49, which causes a (1−d/3p2M′)-factor reduction in the

number of high quadratic degree terms. By repeating the above for − log |H|/ log(1−d/3p2M′)

≈ p2M′ log |H|/d ≤ O(γ)n/κ2κ iterations (where |H|= 22γn2/κ22κM′), we eliminate all terms in

H from the proof and thus obtain a refutation of quadratic degree less than d. Since one call to

X-cleanup(σX) and Y-cleanup(σY) increases the size of the bad list B by only O(|σ|) = O(κ) per

call, the total size of B upon termination of Algorithm 1 is at most O(γ)n/2κ.

Let Π′′ denote the modified proof upon termination of Algorithm 1. We claim that the

singular degree as well as the quadratic degree of Π′′ is at most d. This is because the first

123

while loop gets rid of all terms of high singular degree, and neither the first or second subroutine

creates new variables of high singular degree since substitution can only turn singular variables to

nonsingular and not the other way around. Similarly, the second while loop gets rid of all pairs

of terms of high quadratic degree, and this second while loop does not create new terms of high

quadratic degree, since by Observation 1 substitution does not increase the quadratic degree.

Note that out of the m′ = (1− ε/2)m pigeons, there are at least a m′−O(γ)n/2κ pigeons

still alive (i.e. not removed by the operations Y-cleanup), since we run for O(γ)n/κ2κ many

iterations, and in each iteration at most κ pigeons are affected by any extension variable. Since

|B| ≤ O(γ)n/2κ, the number of untouched equations available for the pigeons to map to is

m−O(γ)n/2κ. We now substitute for the remaining pigeons Yi so that we select a subset of

at least (1− ε)m unsatisfiable equations ϕ not in B from Fn,k and obtain a refutation of them

of quadratic degree at most d and singular degree at most d (assuming γ is small enough). By

Lemma 43, this implies a refutation of ϕ of degree at most O(p2d). Now, for all surviving

extension variables we substitute them with their definitions in terms of the variables X . Note that

since the extension variables are degree κ polynomials this raises the degree to at most O(p2κd).

Since d = νn/κ, for sufficiently small ν, we end up with a refutation of ϕ of degree less than c2n,

contradicting Lemma 41.

For the cleanup operations to work properly, recall that |B| = O(γ)n/2κ always holds

conditioned on each cleanup operation increasing B only by O(κ) (for a small enough constant γ).

124

Input: A partial assignment σ to the variables X

1 for Every x ∈ X that occurs in σ do

2 for Every equation Eb1...blogm from Fn,k that x occurs in do

3 Add Eb1...blogm to the list B

4 for Every i ∈ [m′] do

5 Use Lemma 50 to replace the axiom Yi 6= b1 . . .blogm∨Eb1...blogm by

Yi 6= b1 . . .blogm ≡∏ j(yi j−b j⊕1) = 0

6 end

7 end

8 end

Algorithm 4: X-cleanup

X-cleanup(σ) Correctness. Suppose x ∈ X is a variable that occurs in σ. We first add all the

equations in Fn,k that x occurs in to the list B. By Lemma 41 this is k1 many equations. We now

proceed to eliminate all axioms that contain x. For every such equation Eb1...blogm from Fn,k, which

appears in the axiom Yi 6= b1 . . .blogm∨Eb1...blogm for every i, we use Lemma 50 to replace the

latter by Yi 6= b1 . . .blogm ≡∏ j(yi j− b j⊕ 1) = 0 for every i. That is, we assert that no pigeon

maps to the equation Eb1...blogm and hence it stands eliminated. By Lemma 50 this does not raise

the quadratic/singular degree of the proof. We do this for all such x. Note that we have maintained

the property that one call to this process adds O(|σ|) entries to the bad list B.

Y-cleanup(σ) Correctness. Let i be an index such that yi j ∈ Yi is a variable that appears in

σ for some j. For each such index i, our plan is to map the ith pigeon comprising of variables

yi1 · · ·yi logm to some equation Eb1···blogm that is not on the bad list B, and then satisfy the latter.

Firstly, note that only κ variables from Yi can appear in σ (since extension variables that Y-cleanup

is called on depend on only κ variables and hence the size of σ is bounded by κ). Therefore,

there are at least m/2κ values that the binary string yi1 · · ·yi logm can be set to, given that some

125

Input: A partial assignment σ to the variables Y
1 for Each i such that yi j ∈ Yi is a variable that appears in σ for some j do
2 Pick an assignment b1 . . .blogm to yi1 · · ·yi logm such that the variables that appear

in σ are set consistently, and b1 . . .blogm does not appear in the bad list B (this is
possible since the size of B is small enough; see paragraph below)

3 Apply b1 . . .blogm to yi1 · · ·yi logm; this turns the axiom
Yi 6= b1 · · ·blogm∨Eb1···blogm into Eb1···blogm = 0

4 Let σX be a partial assignment to the X-variables such that σX satisfies Eb1···blogm

5 Substitute σX and add any equation that contains a variable from σX to the bad
list B

6 Add b1 . . .blogm to the bad list B
7 end

Algorithm 5: Y-cleanup

of these variables are already set by σ. Since the size of the set B is always O(γ)n/2κ, there

exists an assignment b1 . . .blogm to yi1 · · ·yi logm such that the variables that appear in σ are set

consistently, and b1 . . .blogm does not appear in the bad list B. We apply the assignment b1 . . .blogm

to yi1 · · ·yi logm. Note that this turns the axiom Yi 6= b1 · · ·blogm∨Eb1···blogm into Eb1···blogm = 0 (i.e.

selects the equation Eb1···blogm). We now get rid of it as follows. Since b1 · · ·blogm is not on the bad

list B, the equation Eb1···blogm is untouched, i.e. none of its variables have been set before. Let σX

be a partial assignment to the X-variables such that σX satisfies Eb1···blogm . We substitute σX and

add any equation that contains a variable from σX to the bad list B. Finally, we add b1 . . .blogm to

the bad list B. Note that we have maintained the property that one call to this process adds only a

O(|σ|) number of entries to the bad list B since the equations Fn,k contain only k variables per

equation.

Acknowledgments

The authors would like to thank Paul Beame and Dmitry Sokolov for helpful discussions.

Chapter 3 contains material from “Lower bounds for Polynomial Calculus with extension

126

variables over finite fields.” by Russell Impagliazzo, Sasank Mouli, and Toniann Pitassi, which

is currently published on the Electronic Colloquium on Computational Complexity and being

prepared for a formal publication.

127

Chapter 4

Open Problems

The obvious open problem is to prove a lower bound for AC0[p]-Frege systems, whether

using algebraic proofs or not. As stepping stones towards this goal, we think it would be

interesting to answer the following:

1. Prove lower bounds for the system Trinomial-ΠΣ-PC.

2. Our simulations from Chapter 2 require a sufficiently large extension field. Can we either

p-simulate polynomial calculus over a large extension field with polynomial calculus over

the base field, or prove that no simulation exists?

3. How far can our lower bounds from the previous chapter be extended?

128

Bibliography

[Ajt94] Miklós Ajtai. The complexity of the pigeonhole principle. Combinatorica, 14(4):417–
433, 1994.

[Ale21] Yaroslav Alekseev. A lower bound for polynomial calculus with extension rule. In
Valentine Kabanets, editor, 36th Computational Complexity Conference, CCC 2021,
July 20-23, 2021, Toronto, Ontario, Canada (Virtual Conference), volume 200 of
LIPIcs, pages 21:1–21:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[All89] Eric Allender. A note on the power of threshold circuits. In Foundations of Computer
Science, 1989., 30th Annual Symposium on, pages 580–584. IEEE, 1989.

[AR01] Michael Alekhnovich and Alexander A. Razborov. Lower bounds for polynomial
calculus: Non-binomial case. In 42nd Annual Symposium on Foundations of Computer
Science, FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA, pages 190–199.
IEEE Computer Society, 2001.

[BC96] Samuel R Buss and Peter Clote. Cutting planes, connectivity, and threshold logic.
Archive for Mathematical Logic, 35(1):33–62, 1996.

[BGIP01] Sam Buss, Dima Grigoriev, Russell Impagliazzo, and Toniann Pitassi. Linear gaps
between degrees for the polynomial calculus modulo distinct primes. Journal of
Computer and System Sciences, 62(2):267–289, 2001.

[BIK+92] Paul Beame, Russell Impagliazzo, Jan Krajı́ček, Toniann Pitassi, Pavel Pudlák, and
Alan Woods. Exponential lower bounds for the pigeonhole principle. In Proceedings
of the Twenty-Fourth Annual ACM Symposium on Theory of Computing, pages 200–
220, 1992.

[BIK+94] Paul Beame, Russell Impagliazzo, Jan Krajı́cek, Toniann Pitassi, and Pavel Pudlák.
Lower bounds on hilbert’s nullstellensatz and propositional proofs. In Proceedings
35th Annual Symposium on Foundations of Computer Science, pages 794–806. IEEE,
1994.

[BIK+97] Samuel R. Buss, Russell Impagliazzo, Jan Krajı́cek, Pavel Pudlák, Alexander A.
Razborov, and Jirı́ Sgall. Proof complexity in algebraic systems and bounded depth

129

frege systems with modular counting. Computational Complexity, 6(3):256–298,
1997.

[BKPS02] Paul Beame, Richard Karp, Toniann Pitassi, and Michael Saks. The efficiency of
resolution and davis–putnam procedures. SIAM Journal on Computing, 31(4):1048–
1075, 2002.

[BKZ15] Samuel Buss, Leszek Kołodziejczyk, and Konrad Zdanowski. Collapsing modular
counting in bounded arithmetic and constant depth propositional proofs. Transactions
of the American Mathematical Society, 367(11):7517–7563, 2015.

[BPR00] Maria Luisa Bonet, Toniann Pitassi, and Ran Raz. On interpolation and automatization
for frege systems. SIAM Journal on Computing, 29(6):1939–1967, 2000.

[BSW99] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow – resolution made simple.
In Proceedings of the thirty-first annual ACM symposium on Theory of computing,
pages 517–526, 1999.

[CCT87] William Cook, Collette R Coullard, and Gy Turán. On the complexity of cutting-plane
proofs. Discrete Applied Mathematics, 18(1):25–38, 1987.

[CEI96] Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. Using the groebner basis
algorithm to find proofs of unsatisfiability. In Proceedings of the twenty-eighth annual
ACM symposium on Theory of computing, pages 174–183, 1996.

[CK13] Peter Clote and Evangelos Kranakis. Boolean functions and computation models.
Springer Science & Business Media, 2013.

[CR79] Stephen A Cook and Robert A Reckhow. The relative efficiency of propositional
proof systems. The journal of symbolic logic, 44(1):36–50, 1979.

[CS88] Vašek Chvátal and Endre Szemerédi. Many hard examples for resolution. Journal of
the ACM (JACM), 35(4):759–768, 1988.

[GH03] Dima Grigoriev and Edward A Hirsch. Algebraic proof systems over formulas.
Theoretical Computer Science, 303(1):83–102, 2003.

[GHR92] Mikael Goldmann, Johan Håstad, and Alexander A. Razborov. Majority gates VS.
general weighted threshold gates. Computational Complexity, 2:277–300, 1992.

[GL10] Nicola Galesi and Massimo Lauria. Optimality of size-degree tradeoffs for polynomial
calculus. ACM Trans. Comput. Log., 12(1):4:1–4:22, 2010.

[GV01] Dima Grigoriev and Nicolai Vorobjov. Complexity of null-and positivstellensatz
proofs. Annals of Pure and Applied Logic, 113(1-3):153–160, 2001.

[Hak85] Armin Haken. The intractability of resolution. Theoretical computer science, 39:297–
308, 1985.

130

[IMP20] Russell Impagliazzo, Sasank Mouli, and Toniann Pitassi. The surprising power of
constant depth algebraic proofs. In Proceedings of the 35th Annual ACM/IEEE
Symposium on Logic in Computer Science, pages 591–603, 2020.

[IPS99] Russell Impagliazzo, Pavel Pudlák, and Jiri Sgall. Lower bounds for the polynomial
calculus and the gröbner basis algorithm. Computational Complexity, 8(2):127–144,
1999.

[Kra98] Jan Krajı́ček. Discretely ordered modules as a first-order extension of the cutting
planes proof system. The Journal of Symbolic Logic, 63(4):1582–1596, 1998.

[Mar62] Davis Martin. A machine program for theorem-proving. Communications of the
ACM, 5(7):397, 1962.

[MN15] Mladen Miksa and Jakob Nordström. A generalized method for proving polyno-
mial calculus degree lower bounds. In David Zuckerman, editor, 30th Conference
on Computational Complexity, CCC 2015, June 17-19, 2015, Portland, Oregon,
USA, volume 33 of LIPIcs, pages 467–487. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2015.

[MP98] Alexis Maciel and Toniann Pitassi. Towards lower bounds for bounded-depth frege
proofs with modular connectives. Proof complexity and feasible arithmetics, 39:195–
227, 1998.

[MT98] Alexis Maciel and Denis Thérien. Threshold circuits of small majority-depth. Inf.
Comput., 146(1):55–83, 1998.

[Pit96] Toniann Pitassi. Algebraic propositional proof systems. In Descriptive Complexity
and Finite Models, Proceedings of a DIMACS Workshop 1996, Princeton, New Jersey,
USA, January 14-17, 1996, pages 215–244, 1996.

[Raz87] Alexander A Razborov. Lower bounds on the size of bounded depth circuits over a
complete basis with logical addition. Mathematical Notes, 41(4):333–338, 1987.

[Raz98a] Alexander A Razborov. Lower bounds for the polynomial calculus. computational
complexity, 7(4):291–324, 1998.

[Raz98b] Alexander A Razborov. Lower bounds for the polynomial calculus. computational
complexity, 7(4):291–324, 1998.

[RT08a] Ran Raz and Iddo Tzameret. Resolution over linear equations and multilinear proofs.
Ann. Pure Appl. Logic, 155(3):194–224, 2008.

[RT08b] Ran Raz and Iddo Tzameret. The strength of multilinear proofs. computational
complexity, 17(3):407–457, 2008.

131

[Smo87] Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean
circuit complexity. In Proceedings of the nineteenth annual ACM symposium on
Theory of computing, pages 77–82. ACM, 1987.

[Sok20] Dmitry Sokolov. (semi) algebraic proofs over {±1} variables. In Proceedings of the
52nd Annual ACM SIGACT Symposium on Theory of Computing, pages 78–90, 2020.

132

	Dissertation Approval Page
	Dedication
	Table of Contents
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Algebraic Proof Systems
	Extensions of the Polynomial Calculus
	New lower bound techniques
	Contributions of this work
	Upper bounds
	Lower bounds

	The Surprising Power of Constant Depth Algebraic Proofs
	Organization of this chapter
	Preliminaries and Generalizations of Polynomial Calculus
	Preliminaries
	Propositional proof systems
	Generalizations of Polynomial Calculus

	Formal statement of results
	Simulations over Q
	Simulating syntactic CP*
	Simulating semantic CP*

	Simulations over Fpm
	Simulating syntactic CP*
	Simulating AC0[q]-Frege
	Simulating TC0-Frege
	Dealing with large coefficients
	Bit vector representations of CP/SOS proof lines
	Operations on bit vectors
	Representing a line from CP/SOS in Depth-d-PC
	Simulating Cutting Planes
	Simulating Dynamic SOS
	Concluding the simulation

	Appendices
	Small-weight Cutting Planes Simulations
	Proof of the Intersection lemma
	Simulating syntactic CP* in Trinomial–PC over Q
	Simulating semantic CP* in Trinomial–PC over Q
	Simulating syntactic CP* in Depth-5-PC over Fpm

	Simulating AC0[q]-Frege in Depth-7-PC over Fpm
	Case of q = p
	Case of q =p

	Simulating TC0-Frege in Depth-d-PC over Fpm
	Dealing with large coefficients
	Properties of addition
	Non-negative vectors are closed under addition
	Properties of multiplication

	Lower bounds for Polynomial Calculus with extension variables over finite fields
	Introduction
	Related Work
	Our Result: Proof Overview

	Preliminaries
	The Hard Formulas
	The Lower Bound
	Technical Proof Overview.
	Quadratic Degree, and Removing Irrelevant Variables
	Proof of Main Theorem

	Open Problems
	Bibliography

