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Abstract

The need for extending information management systems to handle the imprecision of in
formation found in the real world has been recognized. Fuzzy set theory together with
possibility theory represent a uniform framework for extending the relational database
model with these features. However, none of the existing proposals for handling impreci
sion in the literature has dealt with queries involving a functional evaluation of a set of
items, traditionally referred to as aggregation. Two kinds of aggregate operators, namely,
scalar aggregates and aggregate functions, exist. Both are important for most real-world
applications, and are thus being supported by traditional languages like SQL or QUEL.
This paper presents a framework for handling these two types of aggregates in the context
of imprecise information. We consider three cases, specifically, aggregates within vague
queries on precise data, aggregates within precisely specified queries on possibilistic data,
and aggregates within vague queries on imprecise data. These extensions are based on
fuzzy set-theoretical concepts such as the extension principle, the sigma-count operation,
and the possibilistic expected value. The consistency and completeness of the proposed
operations is shown.

Categories and Subject Descriptors: H.2.3 [Database Management]: languages - query
languages.

Additional Key Words and Phrases: Scalar Aggregates, Aggregate Functions, Partitioning
Function, Relational Database Model, Possibilistic Relational Model, Possibility Theory
and Fuzzy Set Theory.



1 INTRODUCTION

It has been widely recognized that the vagueness, uncertainty, and incompleteness inherent

in the real world data has to be dealt with in information management systems. Research

in coping with this phenomenon has to a large extend been based on the relational data

model developed by Codd [6]. Unfortunately, all the available implementations of relational

database systems are modeling the real world in a deterrninistic manner and allow only for

exact retrievals.

There have been several attempts in the literature to use fuzzy set theory as proposed by

Zadeh [23] and related concepts for providing a suitable interpretation of different types of

impreciseness and vagueness in relational database models. The emphasis is on the explicit

representation of fuzziness in a system rather than trying to eliminate or disguise it by some

clever trick or to simply ignore it and oversimplify the modeling process unrealistically.

The two major objectives of these efforts are enhancements to the data model, i.e.

the problem of representing incomplete and uncertain data, and the development of new

retrieval techniques, i.e. the question of how to access this data. The first issue mainly

addresses the limitation of the conventioneil data model to allow attributes to take but one

constant value from a base set (domain). This restriction has been modified by different

approaches presented in the literature. Buckles and Petry [3] have suggested to replace

attribute values by sets of values. The concept of a similarity measure was introduced to

identify when tuples were similar enough to be redundant. Umano [22] and Zvieli modified

this restriction by allowingfuzzy sets and memberships values. Finally, Umano [21], Prade

and Testemale [14] and Dubois and Prade [9] have proposed models based explicitly on

possibility distributions where domain values as well as associations among entities are

represented by possibility distributions.

The second issue is that the enhanced data models require the development of new

relational query languages (RQLs) capable of coping with the different types of fuzzy rep-



resentations of data. Most of these attempts to design an enhanced RQL, here called a

FRQL, are based on a form of the generally accepted relational algebra or the relational

calculus, both developed by Codd [6]. Prade and Testemale [14] extended the classical

relational algebra to accommodate the possibilistic representation. They also showed that

dilferent .types of 'null values' used in classical relational database systems can be obtained

for free in their model. Zemankova and Kandel [26] presented a thorough discussion of

fuzzy relational database models. Rundensteiner, Bandler et al [18] advocate the use of

resemblancerelations instead of similarity relations to measure the nearness between tuples

and to determine whether tuples are redundant.

Queries solely composed of retrieval operations, such as the relational algebra opera

tions [6], are inadequate for many important applications of database management systems

[11]. Practically all real-world problems need query capabilities involving the application

of aggregate and statistical functions to database relations. The query "What is the total

number of students?" ,is an example of a query which cannot be expressed with relational

algebra. Consequently, most commercially available systems provide a set of these aggre

gate operators [20, 7]. This strongly suggests that the evaluation of aggregates has to be

dealt with also in the context of the extended relational models. However, most research

on extending the relational query languages has concentrated on the relational algebra

operations, and has neglected the issue of aggregate evaluation.

This paper investigates the incorporation of aggregate operators into Fuzzy Relational

Query languages. More precisely, the paper addresses the problem of evaluating queriesask

ing for some functional evaluation of a set of items within an extended relational database.

Examples of such queries are "What is the maximum salary of professors at UCI?" and

"What is the average salary of the employees for each sex?". The first query is an example

of a so called scalar aggregate whereas the second one is referred to as aggregate function.

Both kinds of queries can be managed by traditional querylanguages likeSQL [1] or QUEL



[7]. When the relational model is extended to model the imprecision and vagueness of infor

mation found in the real world,,then the definition of these aggregate operations must also

be extended. There are several general cases we consider. First, we handle approximate

queries on a relational database containing precise information. An~ example of this is the

query "What is the maximum salary of all oldprofessors at UCI?" with the age and salary

being precisely known and old being a fuzzy set defined on the Age attribute. In this case

it is important to keep track of the influence of the fuzziness on the possible values of the.

answer. Thus, the result of such an operation is not necessarily one single value, but a set

of results annotated by their respective possibility. We introduce the notion of an a-level

relation, a concept which is closely related to the concept of a-level sets found in fuzzy set

theory [23].

Alternatively, the information stored in the database may be of possibilistic nature, and

thus the aggregate evaluation has to deal with this imprecision in the data. An example

of this second case is the query "What is the maximum salary of professors at UCI?"

with the salary being imprecisely specified in the database, e.g. it is equally possible that

the salary of John is 3,000 or 3,500. This case can further be subdivided into several

subproblems. First, we develop a framework for the evaluation of scalar aggregates on

possibilistic data, an example of which is the just presented query. Our approach makes

use of various concepts developed within the fields of fuzzy set and possibilistic theory, such

as, the extension principle introduced by Zadeh [23], the sigma-count operation [24], and

the concept of a possibilistic expected value, which had been developed by Zemankova and

Kandel [26] to cope with.null values in relational databases. This framework constitutes

the foundation for the remainder of the research.

Next, the problem of evaluating functional aggregates on possibilistic data is addressed.

The strategy of decomposing the aggregate evaluation process for functional aggregates into

several simple steps forms the basis of our work on aggregate functions. We approach this

problem by first considering the case of partitioning on precise data while evaluating the



aggregate on imprecisely known data. This case essentially reduces to the application of the

extended scalar aggregates to precise partitions. In order to partition on possibilistic data,

however, we introduce the notion of an a-level partition. An a-level partition enhances the

notion of partitioning functions with the concept of a-level sets found in fuzzy set theory.

The two approaches are then combined to handle a database containing possibilistic

specified data and queries with approximate restrictions. Let us mention here that the

solutions we propose in this paper satisfy two principles, namely, the consistency and the

completeness requirement.

The paper is structured in the following manner. It starts with a review of the classical

relational data model and relational query languages. Then, aggregate operators as used in

conventional database models are discussed, with particular emphcisis on the distinction be

tween scalar aggregates and aggregate functions (section 3). A stepwiseevaluation process

for aggregate functions is being proposed. After having presented the basics of fuzzy set

theory in section 4, a short overview of the possibilistic extensions of the relational database

model as well as the relational language defined on the extended relational model is given

in section 5. Special emphasis is put on the possibilistic relational model since the research

discussed in the paper is based on this model. A more thorough presentation of the model

can be found in [Re87]. Finally, section 6 is devoted to our proposal for evaluating aggre

gates on the possibilistic relational data model. The different cases as previously described

are analyzed in detail. In section 6.1, we discuss our approach of evaluating aggregates

within vague queries. The evaluation of scalar aggregates for possibilistic data is presented

in section 6.2. Throughout this section we point out the relationship of our approach to

concepts such as the extension principle [23], the sigma-count operation [24], and the con

cept of a possibilistic expected value [26]. Finally, based on the results presented in section

6.2, the steps of the aggregate evaluation process for functional aggregates are extended

in a coherent manner to accommodate for possibilistic data. We approach this problem

by first considering the case of partitioning on precise data while evaluating the aggregate



function on imprecisely known data. This straightforward extension is described in section

6.3.1. In order to partition on possibilistic data, however, we introduce the notion of an

a-level partition. Section 6.3.2. then handles the case of partitioning on possibilistic data.

Finally, to base the partitioning as well as the actual aggregate evaluation on possibilistic

data falls into place. This work is based on our initial work presented in [16].

2 THE CLASSICAL RELATIONAL MODEL

In this section some basic concepts related to the classical relational database model [6, 5]

are introduced.

Attributes A,- are symbols from a finite set A. Each attribute A,- has associated with it

a domain denoted by U,', which is the set of possible values for that attribute.

Definition 1 A set of attributes {Ai,...,A„} is called a relation schema iZ(Ai,..., A„),

or short R. Let U be the union of the sets Ui, 1 i n, which are the domains of the

attributes Ai, respectively. Then a relation r on the relation schema R is defined as a finite

set of mappings {tl,t2, ...,tp} from R to U with the restriction that for each mapping t G

r, t[Ai] must be in Ui, 1 < i < n, where t[Ai] denotes the value of tuple t on attribute A,-.

These mappings are called tuples. The size of R is also called the degree of the relation r,

or short, deg(r).

A relational data model consists of a set of attribute names A,-, a set of corresponding

domains U,-, and a set of relation schemas R^.

The formalism of mappings is used to avoid any explicit ordering of the attribute names

in the relation schema. Rather, a tuple is a set of values, one for each attribute name in

the relation schema and the associated relations rj. If X consists of some domains U,- of

the relation schema R, then the notation t[X] denotes the restriction of the tuple t to the

attributes captured by X. For example, given the tuple abc in R(A,B,C), then t[A,B] = ab.
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A simple view of a relation is the table format, where each row represents a tuple and

each column corresponds to one attribute. All items in a column consist of values from the

same domain. Consequently each tuple within a relation has the same set of attributes.

All rows, called tuples, axe distinct; duplicates axe not allowed. Each relation consists of

a relation name, a nonempty set of attributes with corresponding domains (the relation

schema), a key [6], and a (possibly empty) set of tuples.

Definition 2 A key is a nonempty set A of attribute names of the relation schema R

which identifies the tuples uniquely, i.e., at any time, no two tuples in r can have the same

values on all attributes in A; and no attribute name can be discardedfrom the key without

destroying the uniqueness condition.

In general, there are two types of languages defined for the relational database model.

These languages are the relational algebra and the relational calculus, both proposed by

Codd [6]. languages for expressing queries in the relational model are called the data ma

nipulation languages (DMLs). Since these two languages have been shown to be equivalent

in expressive power, we will concentrate on one of them, namely, the relational algebra.

There are three relational algebra operations on relations that are of interest to us:

projection, Cartesian product, and selection. In the following a notation similar to the one

of QUEL [7] is chosen over a more formal mathematical one in order to make the queries

more understandable.

Definition 3 Let r be a (base or derived) relation on the relation schema R{A\,...,Ari).

Let X C R of size k. Then the projection of relation r on X, denoted by PROJECTx (r),

is a relation on X of degree k. The semantics of this expression are defined by

PROJECTx(r) = {t[A:] 11 Gr At[Ai] = t[X][Ai](VA.- e X)} (1)



Definition 4 Given two relations rl and r2 with deg(rl) = dl and deg(r2) = d2. Then

the Cartesian product , denoted by (rl x r2) is a relation of degree (dl + d2). The

semantics are:

(rl X r2) = {t \ (t = tl ot2) A(tl Grl) A{t2 Gr2) where o denotes concatenation} (2)

Definition 5 Let r he a (base or derived) relation on the relation schema R{Ai, ...,An).

Let At and Aj be attributes in R, for 1 < i, j < n, which are defined on compatible domains.

Let c be a value from the domain Ui. Then the selection on relation r, denoted by

SELECT(r WHERE r.Ai 0 r.Aj), is a relation of degree n defined by:

SELECT{r WHERE r.Ai 0 r.Aj) = {t \ t e r A t[Ai] 0 t[Aj]} (3)

with 0 G {=,<,>,<)>}. The expression SELECT(r WHERE r.Ai 0 c) is defined equiv-

alently.

3 AGGREGATES IN RELATIONAL QUERY lan

guages (RQLs)

In this section, it will be shown how aggregates are handled in conventional relational

query languages. Retrieval statements composed out of retrieval operations, such as the

relational algebra operations described in previous section, are inadequate for many impor

tant applications of database management systems [11]. Many real-world queries involve

the application of aggregate and statistical functions to database relations. The query

"What is the total number of students?" is an example of a query which can not be

expressed with relational algebra. Consequently, most commercially available systems pro

vide a set of these aggregate operators [20, 7]. The most common aggregate operators of

the conventional RQLs as, for example, found in Ingres [7], are count, any, sum, avg, min,

and max. An informal specification and examples of these aggregates follow:



• count: This counts the number of values that exist for a given attribute in a relation.

{e.g., Get the total number ofprofessors currently employed at UCI.)

• sum: This computes the sum of the values present for a given attribute. ( e.g., What

is the sum of all salaries UCI spends on professors?)

• min: This returns the smallest of the values present for a given attribute. ( e.g.. What

is the lowest salary for a full professor?)

• max: This returns the largest of the values present for a given attribute. ( e.g.. What

is the highest salary for an assistant professor?)

• avg: This calculates the arithmetic mean of the values present for a given attribute,

where arithmetic mean is defined to be the sum divided by the count. ( e.g.. What is

the average salary for female professors?)

any: This checks whether the relation is empty (0) or not (1). {e.g.. Is there a female

professor at UCI?)

Note, that these operators are arithmetic in nature, and hence can only be computed

on numeric arguments.

Both QUEL [7] and SQL [1], the query languages of Ingres and System R, respectively,

require that aggregate operations be able to accept arguments with duplicates. This means

that they provide two other operators, let us call them UNIQUE and DUP, which are used

in conjunction with the just described aggregate operators. These two operators determine

whether to perform the aggregation on a multiset of values (e.g. DUP-sum) or whether to

eliminate duplicates first (e.g. UN-sum). For example, to sum the salaries in a professor

relation with the DUP-sum function one would project the relation on the salary attribute,

duplicates would be retained in the result, and the projection would be sent to the sum

function. This notion of 'duplicates' not only violates the set-theoretic foundation of the



relational model, but provides various other disadvantages discussed in [11]. Hence, we

adopt the simple solution of applying an aggregate on a relation instead of an isolated

column, i.e. set.

Note, that aggregate operations may be invoked by themselves, e.g. "What is the total

number of students?" or embedded within other clauses of a query, e.g. "How many

students are there this term who take more than four courses?". This paper, however,

is concerned with the definition of aggregation in a fuzzy environment as such, and thus

neglects the nesting of these operations within a query. This decision does not represent

any limitations of our framework as shown in the next section.

Another point of interest is that there are, in general, two types of aggregate queries

supported by RQLs, namely, the scalar aggregates and the aggregate functions [20]. The

discussion of aggregate functions is postponed until section 3.2, whereas scalax aggregates

axe described in the following.

3.1 Scalar Aggregates

Scalar aggregates take a set of tuples (a relation) as an argument and produce a singlesimple

value as a result. The following describes the syntax we propose for scalar aggregates as

well as the associated semantics.

Definition 6 Let r be a (base or derived) relation on the relation schema i2(Ai,..., A.„).

The general syntax for a scalar aggregate f on the attribute Ai of relation r is f((Ai)(r)) .

The semantics of this are defined by

f{{Ai){r)) = y with y = f{t[Ai] | i € r} (4)

The result of the aggregation is a numeric constant.

By their very nature, aggregates operate on the entire relation, but a selection oper

ation can restrict them to operate locally, i.e. only on certain tuples of the relation. In
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other words, the relation r in the expression f((A,)(r)) could be a source - as well as a de

rived relation. A precise definition of the different aggregate operators which are generally-

supported in conventional database models is provided next.

Definition 7 Let the relation r defined on the relation schema R consist of n tuples, with

n > 0. Let t be a tuple variable in r and A an attribute in R.

count((r.A)(r)) = n

sum((r.A)(r)) —

mzn((r.A)(r)) =

max{[r.A){r)) =

avg{{r.A){r)) =

Evteri[^] ">0

0 n = 0

minvt6rt[A] n>0

0 n = 0

maxv(eri[A] n>0

0 n = 0

k Evter w> 0

0 n = 0

any{{r.A){r)) = sign{n) where sign{n) =
-hi n > 0

0 n = 0

For the case n = 0, most implementations define the aggregates sum, avg, min and

max to be zero instead of undefined in order to be able to continue evaluating a query.

Nonetheless, it would be more consistent with reality if they return a special null value for

those cases. This is an important issue worth further investigating, but it is beyond the

scope of this work. It is related to the problem of handling null values in the traditional

relational database model [5]. Let us mention here, that conventional systems which allow

null values remove those from the column before computing the aggregates, e.g. see Ingres

[7].
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Attribute variables appearing as an argument for a scalar aggregate are purely local

to it and thus do not interfere with any variable outside the scope of the aggregate. The

following example demonstrates the point.

Example 1 Let the relation Prof he defined on the relation schema (Prof.Sal, ProfName,

...). Then the query "Find allprofessors who have a better than average salary" can formally

be expressed as:

result = SELECT(Prof WHERE (Prof.Sal > avg((Prof.Sal) (Prof))))

This corresponds, however, to the sequence of two queries listed below:

sal-avg = avg((Prof.Sal) (Prof));

result = SELECT(Prof WHERE (Prof.Sal > sal-avg))

This demonstrates that, for example, the attribute variable Prof.Sal within the aggregate

expression is independent from the one in the remainder of the SELECT expression.

The example demonstrates that a scalar aggregate returns a single scalar value and is

independent of the rest of the query. Hence, it can appear wherever a single scalar constant

is allowed, e.g. in a select clause, as argument to another aggregate, etc. The aggregate

is simply calculated and replaced by its value. This allows us to define and handle scalar

aggregates independently of any existing query language.

3.2 Aggregate Functions

As indicated previously, scalar aggregates are aggregations over the entire set of tuples

which yield one single value as result. Aggregate functions, on the other hand, compute

aggregation over one or more subsets of a relation instead of the relation as a whole.

Aggregate functions first partition the tuples of a relation on the values of some attribute

of the relation schema, and then compute the aggregation separately for each partition.
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Thus, the result of an aggregate function is a relation whose number of tuples equals the

number of initial partitions, i.e. the result tuples consist of the attribute value on which

the partition has been preformed and its associated aggregate value for each partition. An

example for the former type of aggregation is the query "What is the average salary of

professors?", whereas for the latter it is "What is the average salary of a professorfor each

sex?". Clearly, the result of the second query consists of two aggregate values based on the

bipartition through the sex attribute, i.e. an average salary of all male professors and an

average salary of all female professors. The following describes the syntax we propose for

aggregate functions as well as the.underlying semantics as proposed in [11].

Definition 8 Let rhe a (base or derived) relation on the relation schema i2(Ai,..., A„). An

aggregate function is a more generalizedform of aggregation than a scalar aggregate, and

thus the syntax presented in definition 6 is extended by a BY clause. The general syntax

for an aggregate function f on the attribute Aj of relation r is defined to be

f ((Ai)(r) BY Aj) with 1 < i,j < n. The semantics of this are given by

f{{A){r)BYAi) = {t\As] 0!, I (< € r) A(!, = f({t'{Ai] I (f e r) A = i[A,•]}))}. (5)

The result of the evaluation of an aggregate function is a set of tuples, and not a constant.

The definition in equation 5 can easily be extended to partition on several instead of one

attribute by replacing the attribute Aj by the set of attributes X with X C R. The following

is an example of the application of an aggregate function.

Example 2 Given the relation Prof in figure 1. Assume, for example, that you are inter

ested in the average salary of a Computer Science professor for each rank instead of the

overall average salary of all professors. Then you need to use an aggregate function to

express the query "What is the average salary of professors in Computer Science for each

rank?". Using the just described notation this query can be expressed as follows:
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Name Salary Position Department

Tom 3500 Assistant ComputerScience

Jack 4500 Full ComputerScience

Julie 4000 FuU ComputerScience

Mary 2500 Associate ComputerScience

Frank 3500 Associate Engineering

Figure 1: The Prof relation

average-Sal = avg((Prof.Sal) (SELECT (Prof WHERE ProfDepartment =

'ComputerScience')) BY Prof.Position)

The result of this, an entire set of tuples, one for each distinct value of the attribute identified

in the BY clause is depicted in figure 2.

Position Avg-Sal

Assistant 3500

Associate 2500

Full 4250

Figure 2: The Average-Sal relation

Aggregate functions can appear wherever other relational expressions can appear. The

evaluation of an aggregate functions, as expressed in equation 5 of definition 8, can concep

tually be performed in several stages. This composition facilitates an understanding of the

underlying semantics, and it will furthermore serve as a vehicle for the remainder of the

paper. In fact, when extending definition 8 to incorporate the impact of imprecise infor

mation, we are able to point out exactly which of the evaluation steps have to be adjusted

and which remain untouched. The following enumerates these evaluation steps:
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Definition 9 Let r be a (base or derived) relation on the relation schema i2(Ai,An).

Let Ai and Aj be attributes in R. An aggregate function, f((Ai)(r) BY Aj), can be evaluated

in the following manner:

1. First, the relational expression denoted by r is evaluated in the usual manner.

2. Then, the tuples of the relation r are partitioned by the distinct values of the attribute

listed in the BY clause, i.e. Aj.

3. The aggregate operator f is applied to each partition P generated in step 2. In other

words, a replacement of the aggregatefunction f by a set of scalar aggregates of the form

f((Ai)(P)) takes place. These scalar aggregate operations are evaluated as described in

definition 7.

4. At the end, the result of the aggregate evaluation for each partition is associated with

the attribute value from Aj based on which the partition was performed.

The partition in step 2 of definition 9 is straightforward for precise (crisp) values of Aj.

It can formally be defined as follows. The partition of the relation r on the attribute A

corresponds to a function from the values ai of the domain of A to a set of tuples taken

from r defined by

P^{ai) = {t Ii € r At[A] = ai]. (6)

This can easily be extended to a partition on a set of attributes instead of just one attribute

A, but since it does not offer any further conceptual insight, we limit our discussion to parti

tioning on one attribute only. The query evaluation process of definition 9 is demonstrated

in the following example.

Example 3 Assume the Prof relation depicted in figure 1. Then according to the evaluation

process described in definition 9, the query given in example 2 would be evaluated as follows:
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1. First all tuples not fulfilling the selection criteria are removed, i.e. the tuple with the

name attribute Frank is removed since professor Frank does not belong to the Computer

Science department but to the Engineering department.

2. Now the attribute values to partition on can be found by

PROJECT[Position](Pfof) = {Assistant, Associate,Full}.

Thus, by equation (6) there are three partitions of the relation which are:

• Pp°"p°^ (Assistant) = {{Frank,3500, Assistant, ComputerScience)},•

• PprVf*°'̂ (Associate) = {{Mary,2500, Associate, ComputerScience)},•

• Pp°gp°'̂ (Full) = {{Jack, 4:500, Full, ComputerScience),

{Julie, 4000, Full, ComputerScience)}.

3. Then, apply the scalar aggregate operator, average, to each partition as discussed in

definition 7. For example, avg((Sal)( Pp°'fp°^ (Assistant))) = 3500.

4. The result of this operation for each partition P^ (ai) is associated with the attribute

value ai on which the partition has been based. For example, the tuple (Assistant,

3500) is formed. This finally results in the relation Average-Sal depicted in figure 2.

4 BASIC CONCEPTS OF FUZZY SET AND POS

SIBILITY THEORY

This section introduces the basic concepts of fuzzy set and possibility theory as proposed
j

by Zadeh [23] and others [9] .

Definition 10 Let U be a universe of discourse. F is a fuzzy subset of U, if there is a

membership function

/iplU [0,1], (7)

which associates with each element u £ U a grade of membership pf{u) in the fuzzy set F.

Note, that fJ,F{u) is a real number taken from the interval [0,1].
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Zadeh [23] proposed the following notation for a fuzzy set F:

F = {/iF(Wl)/«l, Mf(u2)/w2, /iF('"n)/"n} (8)

where u,' € U for 1 < i < n.

Note that a classical subset A of U is a special case of a fuzzy subset with all membership

values fiA € {0,1}, i.e..

fJ,A{u) =

An example of a fuzzy set is given next.

Example 4 Thefuzzy set Old could be defined on the domain Age = {40,50,60, 70,80,90}

in the manner described in figure 3. The tuple (90,1.0) denotes that the membership of

Age=70 in the fuzzy set Old is 1.0, meaning, that anybody with the Age of 70 is considered

old.

1 if u £ A

0 if u ^ A

Age fJ'Old

40 0.1

50 0.4

60 0.7

70 1.0

80 1.0

90 1.0

Figure 3; The fuzzy set Old

(9)

A close connection between fuzzy sets and possibility theory has been established [25]. The

grade of membership //f(") of u in the fuzzy set F may be interpreted as the degree of

possibility of u given F [14]. This is stated more precisely in the following.
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Definition 11 A possibility distribution 11^1 for A defined on U is represented by a

fuzzy set F on U whose membership function pp is identical to the possibility distribution

function tta., i.e.,

Pf{u) = 'Ka(u) for all u in universe U

Thus, a possibility distribution over a set U can be used to define a corresponding fuzzy set

of U, or vice versa. That is, given a fuzzy set F over the universe U it implies the existence

of a corresponding possibility distribution with Poss(X = u) = priu). This observation

explains why these two concepts are used interchangeably throughout this paper.

Note also that possibility distributions subsume the conventional and set-value repre

sentation, since

• a single-valued data item x corresponds to a distribution which has one element x with

the possibility 1, i.e., x = {1.0/a:};

• a set-valued data item {xl, x2, sS} corresponds to a possibility distribution which has

elements with possibilities of 1.0, i.e. {xl,x2, x3} = {1.0/xl, 1.0/a;2,1.0/x3}.

The notion of a-sets [23] allows us to get from fuzzy to crisp sets. This is useful, for

example, if we want to exhibit an element u € U that typically belongs to a fuzzy set F. In

other words, to make a decision which is of binary type, we demand that the membership

value of each resulting element is greater than some threshold a G (0,1).

Definition 12 Given a fuzzy set F over U. Then the a-level set of F, denoted by Fa, is

defined by

Fa = {u eU \ pf{u) > a}- (10)

A fuzzy set F may be decomposed into its level sets through the resolution identity

F = J^aFa (11)
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where aFa is the product of a scalar a with the set Fa and is the union with a ranging

from 0 to 1.

Furthermore, the extension principle introduced by Zadeh [24] allows arithmetic oper

ations based on numeric values to be extended to apply to possibility distributions.

Definition 13 Given a binary operation o defined on the elements of a universe of dis

course U. Then, the operation o can he extended to apply to any two possibility distributions

Hi, and II^, with IIj; and Ily over U by the following:

IIx ^ lly

= {'Kx{u\)lul I1x1 € 17} o {'Ky{u2)lu2 11x2 e t/}

= {7rj.(itl) n 7rj,(ix2)/(ixl o ix2) | ixl,ix2 € U}

where D is the minimum operator.

This extension of arithmetic operations is well-defined, since by assumption the operation

(ixl o 1x2) is well-defined for ul, u2 G U and since the minimum of two real numbers taken

from [0,1] is well-defined and results in a real number again from the [0,1] interval. In the

course of this paper, we will make extensive use of this definition, especially for defining

generalized versions of the classical scalar aggregates.

5 EXTENDING THE RELATIONAL DATA MODEL

5.1 The Possibilistic Relational Data Model

Various attempts toward enhancing the relational database model by fuzzy extensions can

be found in the literature [3, 14, 26, 18]. This section reviews the basics underlying most of

these models and then describes our approach of enhancing the relational model by means

of fuzzy set theory, which results in the possibilistic relational model [19]. The remainder

of this work is based on the here discussed possibilistic relational model.
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The concept of a fuzzy relation has been defined based on the notion of a fuzzy set. A

fuzzy relation can be considered a generalization of a fuzzy set, i.e. a fuzzy subset of the

Cartesian product of some universes of discourse.

Definition 14 Let U be the Cartesian product of n universes of discourse t/i,.i.e.

U = Ui X U2 X ... X Un. Then an n-ary fuzzy relation r in U is a relation which is

characterized by a n-variate membership function ranging over U, i.e.,

li, :U -> [0,1] (12)

Since the traditional relational data model is based on the foundation of set and relation

theory, the proposal to adopt the concept of a fuzzy relation from fuzzy set theory as given

in definition 14 for the enhanced data model has been made by several researchers [24, 27].

A n-ary fuzzy relation r over the relation schema R(A.i, A2,..., A„) as defined in definition

14 corresponds to a fuzzy subset oi Ui x U2 x ... x Un where U, is the domain of A,- for all

i. A tuple tj of the fuzzy relation r can thus be expressed as

=< Uji,Uj25 •••) /^r(Wjl, Uj2, ..., Ujn) ^

Consequently, the relation r is captured by a tableau of the form in figure 4. It is important

^1 A2 ... An fJir

Ull Ui2 ... '^In PT{uil,Ul2,...,Uin)

Uji Uj2 ... Ujn

Figure 4: A fuzzy relation r.
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to note that in a relational data model that can support imprecise information, it is neces

sary to accommodate two types of impreciseness, namely, the impreciseness in data values

and impreciseness in the association among data values. The second type of impreciseness

is, in general, expressed by the degree of membership of a tuple in a relation. As an example

the membership value noood-at of the tuples in the relation Good-at(Person,Skill) depicted

in figure 5 expresses the degree to which a tuple belongs to the relation. Or, in other words,

to what degree the relation holds. Note that this type of impreciseness has been modeled

by the just described type of fuzzy relation. The first type of impreciseness refers to the

Name Skill l^'Good—ai

Majy Dancing 1.0

Fred Skiing 0.8

Figure 5: The fuzzy relation Good-at.

impreciseness of a data value, e.g. one may know that John is old but not his exact Age.

This suggests a different approach for the extension of the relational model. Recall, that in

general, the relational model consists of a set of relations comprised of tuples tj for j = 1,

..., m of the form < Uji,Uj2, —,Ujn >, where each of these data values uji is selected from

a given fixed domain, 17,•. Thus, in the traditional data model each of these data values Uji

is a single value from a domain.

It is proposed to extend the set of possible data values to take different forms besides

being constants. The data values for the possibilistic relational model [19] are extended

to be (1) a single scalar, (2) a single number, (3) a set of scalars, (4) a set of numbers,

(5) a possibilistic distribution of scalar domain values, (6) a possibilistic distribution of

number domain values, (7) a real number from [0,1], and (8) a designated null value. It has

already been pointed out that these eight possible data value types can be described by

some form of a possibility distribution. This proposal of eight different data types is close
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to the approach of Zemankova and Kandel [26]. Most other approaches in the literature

restrict their models to a subset of the above, e.g. Buckles and Petry [3] and Oezsoyoglu,

Oezsoyoglu, and Matos,[l2] allow only the data types (1) to (4), Umano [21] permits (1)

to (4) and (7) and (8), and many others use only (7) besides (1) and (2), e.g. Zvieli [27]

and Raju and Majumdar [15]. Now the following can be defined.

Definition 15 Let Ai for i from 1 to n be attributes defined on the domain sets Ui, respec

tively. Then a possibilistic relation r is defined on the relation schema R(A\, A2,

An) as a subset of the Cartesian product of a collection of possibility distributions:

rC P{Ui) XP{U2) X ... XP{Un)

where P{Ui) denote the collection of all possibility distributions on a universe of discourse

Ui.

How can the possibilistic extension of the concept of a relation be described in tableau

format? Let Ui, U2, ..., Un be again the universes of discourse upon which the possibilistic

relation r is defined. Let 11(^4,•) be a possibility distribution of the attribute A,- defined on

the universe U,- for all i. Then a tuple tj of r has the form

t,- = <ni(Ai), HjCAs), ...,nxA„) >.

The relation r can thus be represented by a tableau with n columns as shown in figure

6. Since this work is concerned with the aggregate evaluation on possibilistic data, we

are primarily interested in the imprecision in the data and not in the imprecision of the

association among entities. Consequently, we will limit our discussion to a possibilistic

relational data model which consists of relations as defined in definition 15.

Definition 16 A possibilistic relational database consists of a set of attribute names

Ai, a set of corresponding domains Ui, and a collection of possibilistic relations ri, i = 1,2,

..., m, as defined in definition 15.
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Ai A2

ni(Ai) ni(A2) ni(A„)

n2(Ai) n2(A2) n2(A„)

ni(Ai) n,(A2) n,(A„)

Figure 6; A possibilistic relation r.

Thus, the possibilistic relational model is characterized by a representation which allows for

data values which can be modeled by possibility distributions. This includes, for example,

multiple values (e.g. {23,24,25} ), possibility distributions (e.g. {0.7/130,0.8/135} ),

linguistic terms as labels for fuzzy sets (e.g. young, about —20, light) or single values (e.g.

140) as data items. Note that, for example, the fuzzy set light could be represented as

{1.0/100,0.9/110,0.7/120}. An example of a possibilistic relation is depicted in figure 7.

Name Age Weight Sex

Uwe {23,24,25} 130 male

Anita about — 20 light female

Hans young {0.6/120,1.0/130} male

Mary 20 110 female

Figure 7: The possibilistic relation person

5.2 Relational Algebra for the Possibilistic Relational Model

Several suggestions can be found in the literature on how to extend the relational algebra

operations to deal with possibilistic data [4, 14, 22, 26, 27, 18]. Important issues among



23

others axe how to compare two possibility distributions and how to measure their similarity.

We will limit our discussion here to the SELECT operation. For the other relational algebra

operations see [15]. The SELECT operation is an extension of the SELECT operation

described in definition 5. Now, instead of demanding the exact match between two values,

an approximate match can be specified. An example for such a query is "Find all professors

who are oW where the meaning of old has been defined as a fuzzy set on the domain Age

as, for instance, depicted in figure 3.

Definition 17 The syntax of the select operation is

SELECT{r WHERE r.AiisF) (13)

where F refers to a fuzzy set defined over the domain of the attribute A,-.

The query can be evaluated by measuring the agreement of each tuple in the relation r

with the fuzzy set F. This agreement, referred to as possibility measure by [If], is defined

by

Poss(t[A,-] is F) = maxmin(7r^;(u),/ijr(w)) (14)
uSAi

for all u G the domain Ui of Ai.

The result of a selection operation is a set of tuples, each associated with a measure of

how it satisfies the query. It is, in general, useful to specify a threshold of acceptance a G

[0,1] to select all tuples which match the selection criteria at least to that degree a. This

corresponds to the notion" of an a-level set as presented in definition 12.

Lemma 1 Note that if the data is crisp, e.g., tfA,] = u = {1.0/u}, then equation If

simplifies to the following possibility measure for each individual tuple t of r:

Poss(t[Ai] is F) = min(1.0, ppfu)) =
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On the other hand, if we are dealing with possibilistic data but a crisp selection (as in

definition 5), then equation I4 defaults to

Poss(t[Ai] = u) = min(i:Ai{u), 1.0) = 7r^j(u)

with some u ^ U.

A selection condition comparing two attribute values, which have been imprecisely specified,

is evaluated similarly.

Definition 18 Given the attributes A, and Aj of relation r. The syntax for the query to

find all tuples with matching attribute values for A,- and Aj is

SELECT{r WHERE r.A,- = r.Aj) (15)

The query can be evaluated by measuring the agreement of the two attribute values for each

tuple in the relation.

Poss{t[Ai]=t[Aj])= m^ min(7rAi(u),7r^,(u))). (16)
u^dom\Ai)\Jdom\Aj)

This evaluation could be extended to also incorporate the similarity between domain values

[19]. However, in order to keep the discussion simple this is neglected here. Also, additional

modifiers could be applied to extend these queries. An example is the query "Find all

professors who are very oldP where very is a modifier for the fuzzy set old [26].

6 EXTENDING FRQLs WITH AGGREGATES

In this section, it is investigated how the aggregate operators as presented in section 3 can be

redefined to cope with the possibilistic representation of data. Note that the introduction of

possibilistic information influences the evaluation of aggregates at different levels, namely,

• the data over which the aggregate is to be evaluated could be crisp or possibilistic;

• the selection of tuples considered for the aggregation could be precise or vague;
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• thie data on which the paxtition is to be based could be crisp or possibilistic.

The third case is only concerned with aggregate functions, whereas the others have to

consider both, scalar aggregates and aggregate functions.

An important goal of this research in either of the above cases is to base the general

izations of the aggregate evaluation on two principles [3]:

• consistency: the generalized operations should default to (be consistent with) the

crisp operations for conventional data; and

• completeness: the operations should be well-defined for the fuzzy case.

These requirements state that the generalized versions of aggregates are supposed to be

natural extensions of their crisp counterparts. The consistency requirement guarantees, at

least to some degree, that the proposed extensions are sensible, since if they would not

default to the crisp case, then they would obviously not capture the original meaning. It

is conceptually straightforward to verify whether the consistency requirement holds. This

is done by evaluating the respective extended definition for aggregate evaluation on crisp

data. The same is not true for the completeness requirement. Moreover, it appears that

only an empirical evaluation can determine whether the proposed operations are generally

acceptable.

6.1 Aggregate Evaluation of Vague Queries on Crisp Data

In the following we describe how the aggregate operators as presented in section 3 can be

extended to cope with vague queries/fuzzypredicates on crisp data. Examples of the types

of queries considered in this section are "What is the smallest salary of old professors?" or

"What is the average of the high salaries of all professors?". More general, the queries have

the form

f{{Ai){SELECT{r WHERE r.Aj is F))) (17)



26

where F refers to a fuzzy set defined over the domain of the attribute Aj. It is not necessary

that i 7^ j as the latter of the two example queries listed above indicates. Recall that F could

actually be a more complicated expression with fuzzy modifiers or a conjunction/disjunction

of several fuzzy sets. Without the loss of generality, this discussion is confined to F being

a simple fuzzy set over the domain of the attribute Aj.

According to definition 17, or more precisely lemma 1, the evaluation of is F"

results in fipiu) if ^[Aj] = u. This value indicates the degree of truth with which the

proposition holds, i.e. to what degree the tuple matches the selection criteria. This implies

that the different tuples should participate to different degrees in the evaluation of the

aggregate. The number of tuples to be considered to be in agreement with the selection

depends on the choice of the level of acceptance, denoted by a. Recall, the larger a is,

i.e. the higher the required degree of matching, the lower the number of elements able to

satisfy a will be. In the following, we propose an extended version of an a-level set, called

an a-level relation, and then give the definition of a scalar aggregate based on this new

concept.

Definition 19 Let r be a relation defined over the relation schema R(A{, Aj,...). Let F he

a fuzzy set over the domain of Aj denoted by fxp- Let a E [0,1]. Recall that an a —level

set Fa as defined in definition 12 corresponds to all values which are at least with certainty

a in F. Thus, Fa contains all x € r[Aj] with Pf{x) > a. Let the a-level relation A^jfa) be

defined as follows:

A^j{a) = {t I<€ r A{t[Aj] GFa)} = {t | t € r AiJ,F{t[Aj]) > a} (18)

Then for a given a € [0,1] all tuples which fulfill the proposition "r.Aj is F" at least to

the degree a are collected in A'j{a). Thus, evaluate the aggregate f on A^j{a) for all a and

associate a with the result. More precisely, the semantics of a query of the form as indicated



27

by equation 17 are defined to he:

f((Ai)(SELECT(T WHERE r.Aj is F))) = {ti,(y)ly \ y,(y) = sup4MAi)(A'i(a))) = y}}.

(19)

The fuzziness of F induces a fuzzy set of possible answers instead of one value. Again,

similar to definition 17, one may be only interested in levels of acceptance above a certain

threshold, and thus could discard the results for smaller a. The following example is given

to demonstrate the above definition.

Example 5 Let Prof he the relation defined in figure 1. Let Prestigious he a fuzzy set

defined on the set of different positions as represented in figure 8. Then the query "What

Position (J-Prestigious

Assistant 0.5

Associate 0.8

Full 1.0

Figure 8: The fuzzy set Prestigious

is the average salary of employees holding prestigious positions?" is formally expressed hy

avg((Salary)(SELECT(Prof WHERE Prof.Position IS Prestigious))). This query is eval

uated hy constructing a-level relations (see definition 19). Let tl he the first tuple in the

Prof relation, t2 the second, etc.

For a = 1.0, Position '̂̂ °^ (a) = {t2,t3} hy equation 18. Then applying the average

aggregate to the tuples in Position^^°^ (1.0) results in

avg((Salary) (Position^^°^ (1.0))) = avg(4500, 4000) = 4^50.

For a = 0.8, Position^^°^ (a) = {t2,t3,t4,t5}. Then avg((Salary) (Position^^°^(0.8)))

= avg(4500, 4000, 2500, 3500) = 3625.



28

Fora = 0.5, PositionF^°^ (0.5) = t5}. Then avg((Salary) (Position^^°^ (0-5)))

= avg(3500, 4500, 4OOO, 2500, 3500) = 3600.

Thus, the result of the query is the fuzzy set {1.0/4250,0.8/3625,0.5/3600}. It has to

be remarked that the expression avg((Sal)(Position^^°^ (^))) evaluates to 4350 for all a E

[1.0,0.8), to 3625for all a € [0.8,0.5), to 3600for all a < 0.5. As indicated in equation

19, we have already taken the supremum of all a's for a given result y by concentrating on

distinct a values being used as membership values in the fuzzy set F. This is an obvious

step, since otherwise we would have to calculate infinitely many redundant a-level relations.

Clearly, the threshold level a determines which values are taken into consideration for

the evaluation. The smaller a is the more elements are going to be included into the

evaluation. Including more elements into the calculation of an a-level set has the following

consequences.

Lemma 2 Let r be a relation defined on a relation schema containing the attributes A,-

and Aj. If oli < then Aj(a2) C Aj(ai/, This implies that max(({Ai)Aj{ai)) >

max{({Ai)A^j{a2))- Correspondingly, min(({Ai)A^j{ai)) < min(({Ai)Aj{a2)) and also

sum(((Ai)A^j(ai)) > sum(({Ai)A'){a2)).

There is no monotonicity for the other aggregates [13]. It may be of interest to summarize

the result of such a query in a more concise way. A simple approach may be to give an

a value which one considers as having a sufficient matching degree; then the result of

applying the aggregate to A''(a) may be returned, which is one single value. Finally note

that while the discussion, in this section has concentrated only on scalar aggregates, the

approach proposed here can be directly extended to aggregate functions. This is done by

first partitioning the relation, which produces precise partitions since the underlying data

is crisp. Then, each partition can be treated as outlined above.

The requirement for consistency as stressed at the beginning of this section is met, since

the definition of the aggregate operations as such has not been altered at all. The approach
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presented accounts for the possibilistic relational data model's ability to specify imprecise

queries and its impact on the aggregate evaluation process.

6.2 Scalar Aggregates for Possibilistic Data

This section discusses how to evaluate precisely specified queries on possibilistic data found

in the possibilistic relational data model. Thus, the queries considered correspond to the

ones described in definition 6. Obvious problems arise from the fact that possibility dis

tributions are now allowed as attribute values instead of simple constants. For example,

the number of values per attribute (column) will in general no longer equal the number of

tuples per relation.

6.2.1 Generalized Count Aggregate

The count aggregate, defined in definition 7, returns the number of values for a given

attribute. It is possible to directly adopt this definition for the possibilistic case, if one

interprets it as counting the number of tuples and not the number of existing fj,{m)/ui

pairs. This is referred to as fcountl. An alternative is the use of the sigma-count operation

[24, 10], which is defined as follows.

Definition 20 Given a fuzzy subsetF of U= {ul, u2,..., un} with F = n[u2)/u2,

fi{un)fun} with fj,{ui) being the grade of membership of ui in F. Then, the cardinality

of F, called sigma-count, is the arithmetic sum of the grades of memberships in F. Thus,

sigma-count(F) = p^ui)

It is proposed here to use the sigma-count as count aggregate. This definition of a gener

alized count aggregate is referred to as fcount2. The result of a fcount2 operation is a

real number, but it is understood that the result may be rounded, if need be. The fcount2

operation does not exhibit all features of the conventional count operation, for example.
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it does necessarily return the same value for the different attributes of a relation. If this

characteristic is required, then the designer will choose the fcountl operator as generalized

version of the count operator over the fcount2 aggregate. The fcount2 operator has been

proven useful for defining the generalized average operator (see section 6.2.5).

Example 6 The fcountl for the Weight attribute of the person relation in figure 7 is f,

since there are four tuples. Whereas, the fcount2 aggregate results in

fcount2((Weight)(person))

= (1.0) + (1.0 + 0.9 + 0.7) (0.6 + 1.0) + (1.0) = 6.2

The consistency requirement demands that the definition of the generalized count aggregate

operation, fcount2, defaults to the classical count definition for attributes with singletons.

Lemma 3 The fcount2 aggregate is consistent.

Proof: Given a relation r (possibilistic or conventional) defined on the relation schema

R(..,A,...). Let A be defined on the domain U = {ui,..., and let the relation r take crisp

values on the attribute A. The relation r consists of tuples t, with 1 < i < m. In the crisp

case, each tuple <,• of r takes crisp valuesfor the attribute A, i.e. (ti[A] G U)(yi). Thus, <,• has

but one value Uij with possibility1.0 for the attribute A , i.e. t,[A] = iiA{uij)luij = 1.0/u,j,

which is another notation for u,j. Thus, altogether,

fcount2{{k){x)) = YJiLi Ej=i 9-A{uij) = EZi 1-0 =

Recall that m stands for the number of tuples in the relation r, and thus fcount2 defaults

to count.

q.e.d.
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6.2.2 Generalized Sum Aggregate

The sum aggregate is, like some of the other aggregates, an arithmetic operation, and thus is

only defined for numeric domains. Necessary characteristics of the extended sum aggregate

definition are the commutativity and associativity, since the relational data model does not

place any order on the tuples of a relation but considers them as a 'set of tuples' [6].

The sum aggregate, here termed fsum, is defined based on the definition 21, which in

turn is an application of definition 13.

Definition 21 Let + be the binary plus operation. Let Ila, and IIj, be two possibility distri

butions defined on the universe of discourse U. Then, the sum of possibility distributions is

defined as

Ej; + IIj/ = {7ra;(ul)/ul Iul G £/} + {7rj,(u2)/u2 \u2 eU}

= {7ra;(ul) n 7rj,(u2)/(ul +u2) \ ul,u2 G U}

This extension of the binary plus operation to the addition of possibility distributions is

well-defined, since by assumption the operation (ul -f u2) is well-defined for ul, u2 G U

and since the minimum of two real numbers taken from [0,1] is well-defined and results in

a real number again from the [0,1] interval.

Definition 22 Given a possibilistic relation r defined on the relation schema R(..,A,...).

Let A be an attribute defined on the domain U = and let r consist of tuples ti

with 1 < i < m, and UfA] has the form {(j,i{ui)/ui, p,i{uj)/uj, ^,•(«„)/«„}. The

fsum aggregate of the attribute A of a relation r is defined based on the extended addition

operation described in definition 21. It is:

fsum((A)(r))
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= {"/?/ I ((A^lKl)/«fcl e ^{^l2{Uk2)|Uk2 e t2[A]) .... A{pLm{Ukm)IUkm € tm[A])

A(2/ = T,kiLkiUki) A(u = minjlj(VA:1,..., : 1 < fcl,..., fcm, < n)

A{{ti er)A (t,[A] = { Hi{ui)/Ui, ....,fjli{Un)/Un}) (Vi))}

It is relatively easy to see that the fsum operation is commutative as wellas associative,

since both the summation and the minimum operation axe. The result of the fsum aggre

gate is in general a possibility distribution. The fsum aggregation of the Weight attribute

of the person relation of figure 7 is calculated in the following example.

Example 7 The fsum aggregatipn of the Weight of the relation person of figure 7 is

fsum((Weight) (person))

= {1.0/130} + {1.0/100,0.9/110,0.7/120} -f {0.6/120,1.0/130} + {1.0/110}

= {1.0/(100 + 130), 0.9/(110 + 130), 0.7/(120 -t-130)} + {0.6/230,1.0/240}

= {1.0/230,0.9/240,0.7/250} {0.6/230,1.0/240}

= {0.6/460,0.6/470,0.6/480,1.0/470,0.9/480,0.7/490}

= {0.6/460,1.0/470,0.9/480,0.7/490}

This result states that the sum of all values is 470 with the possibility of 1.0, and that some

of the values close to 470 are also possible results.

Again, it can be shown that the fsum aggregate defaults to the conventional sum aggregate

in the case of crisp data values.

Lemma 4 The fsum operation is consistent.

Proof: Given a relation r (possibilistic or conventional) defined on the relation schema

R(..,A,...). Let A, defined on the domain U = {ui, ...,u„}, be a crisp attribute. Let r

consist of tuples t,- with 1 < i < m. In the crisp case, each tuple <,• of r takes crisp values

for the attribute A, i.e. (ti[A] G U) (Vi). In other words, all tt[A] have the form p,i{uj)/uj

with pi{uj) = 1.0. So, ti[A\ = Uj for some j. Thus, altogether,
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fsum((A)(r))

= {ujy I {{Hl{ukl)lukl = tl[A]) A{fj,2iuk2)luk2 = t2[A]) .... A = tm[A])

Aiy = T,kT=ki "fc«) A(u = fii{uki))

A//i(«fcl) = 1.0 A//2(«fc2) = 1-0 Atim{ukm) = 1-0)

(/or 5ome fcl,..., fcm 6 {1,..., n}.)}

= {u/y I {{uki = ii[A] AUk2 = ^2!^] A Ukm = tm[A]

A{y = 1.0))

(/or some kl,fern G{1,n}.)}

= i-o/E:iiiiW

= ESiti[n]

= sum((A)(r))

q.e.d.

The consistency results frona the notion of the extension principle, which has the goal

of consistently extending conventional arithnaetic operations to apply to possibility distri

butions.

6.2.3 Generalized Max Aggregate

The max aggregate is only defined for numeric domains. The extension of the max aggregate

to deal with posdbility distributions, here called fmax, is again based on definition 13.

Consequently, commutativity and associativity of the operation are given.

Definition 23 Given a possibilistic relation r defined on the relation schema R(..,A,...)

with A defined on the domain U = {iti, ...,u„}. Let r consist of tuples ti with 1 < i <

m. ti[A] has the form {fj,i{ui)/ui, iJ,i{uj)fuj, //i(u„)/un} for all i. Let max be the

maximum operation. The fmax aggregate of the attribute A of the relation r is defined based

on the extension principle as described in definition 13:
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fmax((a)(r))

= I e ti[A]) A{fl2iuk2)/Uk2 e i2[^]) .•..A{fim{Ukm)IUkm Gtm[A])

A{y = m&x^^i^^Uki) A{u = ...,km :1 < kl, ...,km,< n)

A{{ti er)A (i,[A] = { fii{ui)(ui,....,Hi{un)lun}) (ii))}

This generalization of the maximum aggregate is well-defined, since by assumption the

max operation is well-defined for elements G U and since the miniminn of two real numbers

taken from [Ojl] is well-defined and results in a real number again from the interval [0,1].

The result of the fmax aggregate is in general a possibility distribution. An example of

the fmax operation is given beneath.

Example 8 The fmax of the Weight attribute of relation person offigure 7 is:

fmax((Weight) (person))

= fmax{{1.0/m} + {1.0/100,0.9/110,0.7/120} {0.6/120,1.0/130} -f {1.0/110})

= fmax{{1.0/max{100,130), 0.9/max(110,130),

0.7/maa:(120,130)}, {0.6/maa:(120,110), 1.0/max(130,110)} )

= /max({1.0/130,0.9/130,0.7/130}, {0.6/120,1.0/130})

= {0.6/130,0.6/130,0.6/130,1.0/130,0.9/130,0.7/130} = {1.0/130} = 130

This turns out to he a very realistic result, since 130 is indeed the maximum value.

Note, again, that the fmax aggregate defaults to the conventional max aggregate in the

case of crisp data values.

Lemma 5 The fmax operation is consistent.

Proof: This can be shown in a manner equivalent to the one used in the proof of lemma

4 in the previous section by simply replacing sum by max.

q.e.d.
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6.2.4 Generalized Min Aggregate

The min aggregate is extended for the possibilistic data models in the same manner as the

max aggregate, except for replacing the symbol max in definition 23 by min. For a more

thorough discussion of the default, etc., consult the previous section.

Example 9 The fmin of the Weight attribute of relation person of figure 7 is:

fmin{(Weight){person)) = {1.0/100,0.9/110}

The result of 100 or 110for the minirnum is very intuitive, since both are among the lowest

values of the Weight attribute appearing in the person relation.

6.2.5 Generalized Avg Aggregate

We present a framework for two possible routes one could take in generalizing the definition

of the average aggregate. It is ultimately up to the designer to choose the appropriate one

for the application at hand. One could either define the generalized average aggregate in

terms of the quotient of the generalized sum and count aggregates, or alternatively, one

could search for an independent definition. The first approach which results in the average

operator favgl is presented beneath, whereas the presentation of the second one is deferred

until later in this section.

Definition 24 Let fcountl and fsum be the generalized aggregates as described in sections

6.2.1 and 6.2.2. Then, the favgl aggregate can be defined as

favgl((A)(r)) =

Since the fsum operation results in a possibility distribution and the fcount operation in

a real number, the average aggregation is essentially a quotient of a possibility distribution

and a real number. Hence, the result is well-defined; in fact, it produces a possibility distri

bution when calculating the division operation in accordance with the strategy presented
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in definition 13. As an example consider the average of all values of the Weight attribute

of relation person depicted in figure 7.

Example 10 Thefsum of the Weight attribute was fsum((Weight) (person))

=•{0.6/460,1.0/470,0.9/480,0.7/490}. Also, fcountl((Weight)(person)) =4- Thus,

favgl ((Weight)(person))

f sum{{Weight){person))
fcount\{{Weight){person))

_ {0.6/460,1.0/470,0.9/480,0.7/490)
~ 4

= {0.6/115,1.0/117.5,0.9/120,0.7/122.5}

Again, an average of around 120 is very realistic.

As a matter of course, this generalized operation will default to its conventional counterpaxt

in the crisp case.

Lemma 6 The favgl operation is consistent.

Proof: It has previously been shown, that for crisp data fsum and fcountl default to

sum and count, respectively. Thus, for crisp data,

J fl* (.( )) fcountl[[A){r)) count{{A){r))'

This is the classical definition of the average aggregate as given in definition 7.

q.e.d.

An alternative to the approach just described is to make use of the possibilistic expected

value, PEV a concept introduced by Zemankova and Kandel [26]. Zemankova and Kandel

propose to use the PEV value as a default value in place of a null value in a query evaluation.
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Definition 25 Let A be an attribute of a numeric domain of relation R. Let 7r(u,) be the

possibility distribution for value ui, and n the number of Tr{ui)lui pairs for the attribute A.

Let * stand for multiplication. The PEV for attribute A is defined by

_ ELi
PEV(A) =

n

This idea will be adopted here. We propose to define the average aggregate favg2 in

terms of the PEV operation. In fact, the definition of the favg2 aggregate corresponds to

the concept of a PEV except for the replacement of the denominator n by fcount2.

Definition 26 Given a possibilistic relation r defined on the relation schema R(..,A,...).

Let A be defined on the domain U = {ui,...,u„}. Let r consist of tuples ti with 1 < i < m.

Let ti[A] = {)u,(ui)/ui,iii{un)/un} for all i. Now, the favg2 operator is defined to be

favgS((A)(r)) =

Note, that the favg2 operator results in a real number, whereas favgl results in a possi

bility distribution. This is an important distinction between these alternatives, based on

which a designer may make a choice. It is understood that favg2 may be rounded, if need

be. The consistency of the favg2 aggregate can again be shown.

Lemma 7 The favg2 aggregate is consistent.

Proof: Given a relation r defined on the relation schema R(..,A,...). Let the attribute A,

which is defined on the domain U = {ui, be a crisp attribute. Let r consist of tuples

ti with 1 < i < m. Since A is crisp, we have ti[A] = pn{ui^)lui. = 1.0/u,v = Ui^ for all i

€ {1, ...,m} and for some Ui^ € U. Then,

favg2{{A){r))

fcount2(fA){r))
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fcount2([A)(r))

fcount2{{A){r))

^ Er-1
coun<((A)(r))

5um((A)(r))
count{{A)(r))

= avg{{A){r))

q.e.d.

The favg2 operator is demonstrated again onthe Weight attribute ofthe relation person

of figure 7.

Example 11 The favg2 aggregate on attribute Weight result is calculated in thefollowing.

Recall that fcount2((Weight)(person)) = 6.2.

favg2((Weight) (person))

= favg2{{l.0/100,0.9/110,0.7/120}, {1.0/130},

{0.6/120,1.0/130},{1.0/110}/

= (1.0 * 100 + 0.9 * 110 + 0.7 * 120 + 1.0 * 130+ 0.6 * 120

+1.0*130 + 1.0*110)/6.2

= (100 + 99 + 84+ 130 + 72 + 130 + 110)/6.2

= 725/6.2 = 116.9

The favg2 results in a satisfactory value, and since a real number is compacter than a

possibilistic distribution, the designer may prefer the favg2 over the favgl operator.

Finally, the conventional any operator can be directly adopted from definition 7 since it

tests whether there is a tuple in the relation or not, and thus does not concern the actual

content of the relation.
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6.3 Aggregate Functions for Possibilistic Data

As was outlined in section 3.2, aggregate functions are in large based on the evaluation of

scalar aggregates. This also holds true for aggregate functions in the possibilistic relational

data base. If the attribute values on which the partition is based are precise values, then

the extensions to be made for the possibilistic relational database are straightforward as

shown in the next section. The case where attribute values on which the partition is based

are possibilistic is presented in section 6.3.2.

6.3.1 Partitioning on Precise Data

If the attribute values on which the partition is based consist exclusively of crisp values,

then it is in fact possible to directly translate the procedure described in definition 9

by translating the individual operations, such as Cartesian product, selection by WHERE

clause, etc., to their corresponding fuzzy counterparts of the respective FRQL. Thus, it may

effect step 1 of the evaluation process described in definition 9. This is so since the partition

of tuples by the BY clause produces an exact partition. The only other change concerns

the scalar aggregates applied in step 3 of the procedure which now are replaced by the

generalized scalar aggregates as defined in section 6.2. The following example demonstrates

the procedure of evaluating an aggregate function over possibilistic data by partitioning it

on precise data.

Example 12 Let person be the relation given in figure 7. The values for the Weight at

tribute are possibilistic, but the values for the Sex attribute are all precisely known. The

query "What is the average Weight of the persons by each sex9" is formally expressed by

favg2((Weight) (person) BY SEX) if we choose thefavg2 as the generalized average aggregate

operator. This can be evaluated as follows:

1. Step one of the evaluation process as given in definition 9 is not needed, since the

person relation is a base relation.
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2. First, find the attribute values to partition on by

PROJECT[Sex](p^fson) = {male, female}.

Thus, by equation (6) there are the following two partitions:

• P^lfg^n(male) = {([/"iwe,130,ma/e), (^ans,{0.6/120,1.0/130},ma/e)};

• P^v^son (female) = {{Anita,..., {1.0/100,0.9/110,0.7/120}, female),

{Mary,..., 110, female)}.

3. Next, apply the scalar aggregate operator average to each partition. Since we have

chosen favg2 as the average operator for the aggregate function, we stick with this

choice for the application of the scalar aggregate.

• favg2((Weight)(P^^f„g^(male))) = favg2( 130,{0.6/120,1.0/130}) = (130 + 72 +

130)/2.6 = 127.7.

• favg2((Weight)(P^lf,,, (female))) =favg2( 110, {1.0/100,0.9/110,0.7/120}/ = (100+

99 + 84 + 110)/3.6 = 109.1.

4. Associate the result gained for each partition with the value on which that respective

partition was based. This now may be represented by a relation with two attributes,

namely, the partition attribute Sex and the result attribute Avg-Weight. The result

relation, called avg-weight-by-sex, is depicted in figure 9.

Sex Avg-Weight

male 127.7

female 109.1

Figure 9: The avg-weight-by-sex relation
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The average operator, favg2, which was applied in the previous example results in a real

number. The application of an aggregate function on a possibilistic relation does not have

to be a real number. For instance, if we were to chose favgl over favg2, then the values

of the Avg-Weight attribute of the relation avg-weight-by-sex relation in figure 9 would be

possibilistic.

6.3.2 Partitioning on Possibilistic Data

Now, let us consider the case when the partitioning process is based on an attribute con

taining possibilistic data. For simplicity reasons, we assume that the attribute over which

the aggregate is to be evaluated is of crisp nature. Under these circumstances, one cannot

find a real partition any more. The best one can hope for is to determine to what degree a

tuple participates in a given partition. Furthermore, it is possible that tuples participate in

and thus contribute to more than one partition. Note the similarity between this situation

and the case discussed in section 6.1. The following definition, a variation of definition

19, describes how the aggregate function f{{Ai){r)BYAj) is evaluated allowing possibilis

tic values for Aj while A{ consists of only crisp values. The problem of partitioning on

possibilistic data leads to the introduction of a new concept, the a-level partition, which is

defined in equation 21.

Definition 27 Let r be a relation defined over the relation schema R(Ai,Aj,...). Let the

attribute Ai be crisp, and the attribute Aj be possibilistic. Let D be the active domain ofAj,

i.e. D = {a \ (t E r) AfJ,i[Aj]{a) > 0} denotes the set of values on which the partition is to be

based. The partition function P as defined in equation 6 has to be modified to accommodate

for membership values. Thus, the partition function is now defined for all a E D by

{o) = {t \{t ^ r) A{a e D) A{pt[A-]{a) > Q)} (20)
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Let a E [0,1]. For each partition Pr^ (a) define the a-level partition L '̂{a,a) to be a

function of two variables, a and a. The a-level partition Lf' (a,a) is defined by:

Lr'{a,a) = {t\{te Pf '̂{a)) A{fit[Aj]{a) > a)} (21)

Then the query f{(Ai){r)BYAj) is evaluated by computing for each partition Pr' (a) the

supremum of the aggregate evaluation all associated a-level partitions L '̂{a,a) for all a.

More precisely,

f{{Af){r)BYAi)

= {aoF \{aE D) ^F = {p}{y)ly \ Pf{y) = supa{f{{Ai){Lf^{a,a))) = ?/}}. (22)

An example is shown next to illustrate the previous definition.

Name Salaxy Position

Tom 3500 {1.0/Assistant, O.S/Associate}

Jack 4500 {1.0/Full}

Julie 4000 {1.0/Full, 0.^jAssociate}

Mary 2500 {1.0jAssociate, 0.7jAssistant}

Frank 3500 {1.0/Associate}

Figure 10: The Prof relation

Example 13 Given the relation Prof depicted in figure 10. Note that the information

provided in the relation about the positions of the professors is uncertain, i.e. possibilistic.

Thus the query "What is the maximum salary of professors per position" which is formally

expressed by fmax((Salary)(Prof) BY Position) has to be evaluated according to definition

27.
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1. Again, step 1 of the evaluation process as described in definition 9 is not needed for

this example.

2. First, find the attribute values to partition on; they correspond to the active domain D

which is:

D = {Full, Associate, Assistant}.

This results in three partitions according to equation (6). Each tuple in a partition

has associated a membership value indicating to what degree it participates in that

partition:

• (Full) =

{(JacA:, 4500, {1.0/F«//}) with 1.0;

{Julie,A000,{1.0/Full,0.5/Associate}) with 1.0.}

• (Associate) =

{{Tom,3500,{1.0/Assistant,0.8/Associate}) = with 0.8;

[Julie, 4000, {l.OjFull, O.hjAssociate}) with 0.5;

[Mary,2500,{1.0/Associate,0.7/Assistant}) with 1.0;

[Frank, 3500, {1.0/Associate}) with 1.0}

• (Assistant) =

{(Tom, 3500, {1.0/A5si5iant,0.8/i455oaate}) with 1.0;

[Mary, 2500, {1.0/Associate, 0.7jAssistant}) with 0.7}

3. Now, by equation 21] we can determine for all partitions (a) the different a-

level partitions Lp°fj*°"'[a,a) for each distinct a. Then, apply the scalar aggregate

operator, maximum, to all a-level partitions Lp°l*)*°"'[cc,a) associated with a given

partition Pp°/fp°^(a):

• fmax((salary)(P^°/Jf°^(Full)) :
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- for a = 1.0: fmax((Salary)(L^°^fp°''(1.0, Full)) = max(4500, 4000) = 4500.

• fmax((salary) (Associate)) :

- for a = 1.0; fmax((Salary)(L^°/fp°'̂ (1.0, Associate)) = max(2500, 3500) =

3500.

- for a = 0.8: fmax((Salary)(L^°l*j*°^(0.8, Associate)) = max(2500, 3500) =

3500.

- for a = 0.5: fmax((Salary) (0.5, Associate)) = max(2500, 3500, 4000)

= 4000.

• fmax((salary) (Pp°/fp°'̂ (Assistant)) :

- for a = 1.0: fmax((Salary)(Lp°^fp°^ (1.0, Assistant)) = max(3500) = 3500.

- for a = 0.7: fmax((Salary)(L^°/ff°^(0.7, Assistant)) = max(2500, 3500) =

3500.

4- Now associate the result of the scalar aggregate evaluation for each a-level partition

with the respective level value a. Finally, combine all these a/Lp°lY°'̂ {a, a) pairs

for all a-level partitions of a given partition Pp°l*)*°'̂ (a) to form a possibility distribu

tion. Associate this possibility distribution with the value the partition was based on.

This results in a relation defined on a relation schema R consisting of two attributes,

R(Position,Max-Salary) which is depicted in figure 11.

Finally, if both attributes-, i.e. the attribute to partition on and the attribute on which to

evaluate the aggregate function are possibilistic, then according to definition 27 the result

of the third step of the aggregate evaluation process would be of the following form: e.g.,

0.7/(1.0/2500,0.8/3500, 0.5/4000}. This can be evaluated by taking the minimum of the

membership values, which in this example results in {0.7/2500,0.7/3500,0.5/4000}.
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Position Max-Salary

Full {1.0/4500}

Associate {1.0/3500,0.5/4000}

Assistant {1.0/3500}

Figure 11: The max-sal-per-position relation

6.4 Vague Queries on Possibilistlc Data

We conclude with a discussion on-how to combine the aggregate evaluation approach deal

ing with vague queries (section 6.1) with the one proposed for handling possibilistic data

(section 6.2 and section 6.3). At this point, we are favorable to simplifying the evaluation

strategy as indicated at the end of section 6.1. More specifically, the user chooses an a value

s/he considers to be an acceptable threshold value for an approximate selection. When the

user specifies a query involving a vague selection clause, such as "Find all old people", the

result will be the list of tuples which fulfill that selection criteria at least with the degree

a. Hence, the result of a vague selection would be an a-level relation described in equation

18.

Introducing possibilistic data concerns us in as much as the data underlying the selection

clause is possibilistic. Then the evaluation of a vague selection clause, such as "Age is o/d",

has to be altered. Definition 19 is modified by evaluating the vague selection in accordance

with equation 14 instead of lemma 1. This again produces a possibility measure for each

tuple describing the degree of matching between the tuple and the selection clause. All

tuples with a possibility measure over the threshold a are collected in the respective a-level

relation, i.e., they are going to be further considered in the query evaluation process. In

terms of the aggregate evaluation process outlined in definition 9, this means that the vague

query part is dealt with in step 1 of the process. A non-base relation ( an a-level relation
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) is generated based on which the aggregate evaluation process can continue with steps 2,

3, and 4 as discussed in section 6.2 and 6.3.

7 CONCLUSIONS

The paper presents the possibilistic relationaldata model [19], which is a generalized version

of the relational database model capable of capturing precise, as well as imprecise, data.

By extending the query languages for the conventional relational database model, we are

able to handle vague queries. In short, the appropriate blending of fuzzy set and possibility

theory with the relational database model has led to a true enhancementof the capabilities

of existing database systems.

However, in order to make use of the possibilistic relational database model in real world

applications, we find it essential to also develop suitable aggregate evaluation techniques.

This is so since aggregates allow the formulation of queries that otherwise could not be

specified. Hence, they are being supported by any of the existing relational database

system, such as. System R [1] or Ingres [7].

The extensions of existing aggregate operators of conventional RQLs to their fuzzy

counterparts have to fulfill two conditions. First, they have to be consistent, meaning they

have to default to the crisp definitions when used on crisp data. Secondly, they have to be

complete, i.e. return sensible and reasonable results.

In examining the approach of evaluating aggregates in the relational database system,

we havefound the distinction between scalar aggregates and aggregate functions a very im

portant one. Both types of operators are essential, and thus wehave developed a framework

to cope with both of them.

First, we extended the definition of conventional aggregate operators to cope with vague

queries. The major problem here is that the result of a vague query is commonly not a

simple set of tuples, but a collection of pairs consisting of tuples and their associated
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possibility measures indicating to what degree the respective tuple participates in that

result. It turns out that we have to include this possibility measure into the evaluation

of the aggregate operators in as much as it determines to what degree the tuple ought to

contribute to the result of the evaluation. We have accomplished this by introducing the

concept of an a-level relation.

Then, section 6.2 presents our approach of extending scalar aggregates to apply to pos-

sibilistic data found in the possibilistic relational data model. The evaluation of scalar

aggregates for possibilistic data makes use of various concepts developed within the frame

work of fuzzy set and possibilistic theory, such as, the extension principle introduced by

Zadeh [23], the sigma-count operation [24], and the concept of a possibilistic expected value,

developed by Zemankova and Kandel [26] to cope with null values in relational databases.

We were able to prove the consistency of the extensions of the aggregate operators. Further

more, in order to demonstrate the intuitiveness of the proposed operators, we have shown

the results of each of the operations on the same example relation. This work represents a

sound framework for the remainder of our research, since scalar aggregates play an essential

role in the evaluation of aggregate functions. This is true for the conventional as well as

the possibilistic relational data model.

Finally, we show that the handling of aggregate functions in the possibilistic relational

data model can be handled in a natural and intuitive manner. The case of partitioning on

precise data defaults to a clean merge of the evaluation process of conventional aggregate

functions (for which we have suggested four simple steps) with the approach of evaluating

scalar aggregates on possibilistic data. When partitioning on possibilistic data, however,

some adjustments have to be made. The reason for this is that we are no longer dealing

with true partitions, since tuples can participate in more than one of these 'partitions'. We

solve this problem by introducing the notion of an a-level partition. An a-level partition

combines the concept of partitioning functions with the notion of a-level sets found in fuzzy
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set theory. Finally, to base the paxtitioning as well as the actual aggregate evaluation on

possibilistic data falls in place.

The integration of aggregates into FRQLs results in an increase in the expressive power

of these relational languages. Since these operations are tightly coupled with the database

systems, optimization techniques can be applied and thus one may be able to achieve this

type of functional knowledge with satisfactory performance.

Possible extensions to this research are manifold. Future research should include the

following issues.

• The development of new aggregates which may be suitable for the possibilistic rela

tional model, even though they do not have a crisp counterpart. Some initial proposals

have been made by Rundensteiner and Bic in [16];

• An investigation of the definition of aggregate operations for fuzzy data models which

are not based on the notion of possibility distributions. For example, an extension of

the aggregate concept to continuous domains, such as

—interval representations, e.g., Weight[John] = [55.5,95.1]

—functional descriptions, e.g., Weight[John] = light,

where light is a continuous function on the real numbers between 100 and 200 [25]. It

would be interesting to develop a common representation of the data to be found in a

respective model, much like the possibilistic representation offers a common technique

to represent all types of information to be captured in the possibilistic relational data

model. The existence of diverse representations within the same model, such as,

intervals, functions, etc., is bound to complicate the aggregate evaluation process

considerably.
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• The possibilistic relational database model deals with an approximate query, such as,

"Find all old people", by retrievipg a set of tuples and their associated degrees of

truth in the proposition. The question how to address a modification operation, such

as "Update the salaries of all old people" is still an open problem, since one could

hardly update a value to only some degree.

• An implementation of the here proposed concepts of aggregates as add-ons to one

of existing extended relational models would be desirable, since it would allow for

empirical evaluations of the proposed aggregate evaluation methods.
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