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ABSTRACT 
We introduce WeAllWalk, a data set of inertial sensor time series 
collected from blind walkers using a long cane or a guide dog. 
Blind participants walked through fairly long and complex indoor 
routes that included obstacles to be avoided and doors to be 
opened. Inertial data was recorded by two iPhone 6s carried by 
our participants in their pockets and carefully annotated. Ground 
truth heel strike times were measured by two small inertial sensor 
units clipped to the participants’ shoes. We also show comparative 
examples of application of step counting and turn detection 
algorithms to selected data from WeAllWalk. 

CCS Concepts 
• Human-centered computing� Ubiquitous and mobile 
computing� Ubiquitous and mobile devices • Human-centered 
computing� Accessibility� Accessibility technologies 

Keywords 
Inertial sensing; Wayfinding; Step counting. 

1. INTRODUCTION 
For someone who cannot see, tasks such as finding one’s own 
location or figuring out how to reach a certain location in a 
building can be daunting, especially if this person is not familiar 
with the building layout or if he or she has poor orientation skills. 
Lacking access to visual landmarks, a blind traveler can quickly 
become disoriented; and if he or she at some point finds himself 
or herself being lost, tracing back their own steps can be equally 
challenging. For this reason, many blind individuals do not visit 
new places (office buildings, hospitals, schools) without a sighted 
guide who can show them around and lead them to the desired 
destination. Without the ability to travel independently, people in 
this community may miss opportunities for education, 
employment, leisure, socialization, and participation.  

 

Personal navigation systems are designed to provide their users 
with spatial information and directions when traveling to new 
places. While outdoor navigation is to some extent already solved 
by the use of GPS, this is not an option for indoor navigation, and 
various technologies are being explored. Of course, systems for 
indoor navigation are useful not only for blind travelers: anyone 
may need directional information at times. Indeed, there is 
increasing commercial interest in technology that may help one 
locate a shop in a mall, a room in a building, or one’s own car in a 
parking lot. Several research groups have started building 
assistive applications on top of this technology, adapting it to the 
particular needs of specific communities of users.  

This contribution focuses on systems that support indoor 
wayfinding using dead reckoning from inertial sensors. This 
approach has the advantage that it requires no external 
infrastructure (as with iBeacons or similar technologies) or use of 
a camera (as with image-based technologies). Note that, until 
wearable cameras are socially accepted and widely used, users of 
a camera-based localization system would need to take pictures of 
the environment with their cell phone, something that for a blind 
person may be difficult and possibly awkward in social settings. 
In contrast, inertial sensing can be conducted with a smartphone 
conveniently tucked in one’s pocket. 

Dead reckoning uses data from the inertial sensors (and from 
magnetic sensors, when the data they produce is reliable) to 
estimate the trajectory taken by the user. In theory, data from a tri-
axial accelerometer could be doubly integrated to obtain its 
location. In practice, this is only possible with sensors attached to 
the walker’s feet; by detecting when one’s foot is resting on the 
ground, it is possible to perform a zero velocity update, thus 
largely limiting errors due to drift. When the sensors are worn 
elsewhere on one’s body or garments, a safer strategy is to use 
them for step counting1, and to indirectly recover one’s position 
using an estimated stride length, as well as orientation information 
from the gyroscope. Various versions of this approach have been 
used to track a person walking in a place with known geometry 
(obtained, for example, from a floor plan). Even when the 
geometry of the environment is not known, it is possible to use 
dead reckoning (e.g. by means of step counting and robust turn 
detection) to help a person re-trace a path taken in a building. 

Step counting and turn detection with a smartphone placed in 
one’s clothing can be computed reliably if one walks with a 
steady gait and in mostly rectilinear paths. Blind individuals, 

                                                                    
1 Note that many blind individuals prefer receiving information 

about distances in steps, rather than in feet or in time [21]. 
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however, often exhibit body motion patterns during gait that are 
markedly different than those of sighted people [15] (e.g., due to 
“scuttling” [9]). In addition, cane users, who are trained to execute 
the 2-point touch or constant sliding technique [4], swing their 
cane-holding arm left and right, resulting in additional upper body 
rotation. As already observed by other authors [9], step counting 
may be difficult (or require specific parameter tuning) to work 
robustly with these individuals and for any smartphone placement. 
Likewise, blind individuals, especially when walking in large 
spaces, and unless they use a guide dog, do not always walk on 
straight paths with sharp and clearly detectable turns. Rather, they 
often veer involuntarily, and need to correct their path when they 
realize that they are getting close to a wall or an obstacle.  

This paper introduces a new, openly accessible and annotated data 
set of inertial sensor time series collected from blind individuals 
walking through relatively long and complex paths in realistic 
conditions, and carrying two smartphones in different locations on 
their clothing. The primary purpose for creating this data set was 
to allow other researchers to benchmark their algorithms (step 
counting, turn detectors, or other) on a common ground. This 
follows the example of other similar data sets (described in Sec. 
2.3), with the critical difference that our WeAllWalk data was 
obtained from blind walkers, using either a long cane or a guide 
dog. More important, this data set does not just contain 
measurements from people walking on a straight line, as in 
previous collections [5] [29]. Instead, our participants walked on 
multiple paths with different levels of complexity, including turns 
at 45, 90, and 180 degrees, as well as through doors that needed to 
be opened. While walking, our participants occasionally veered 
off the straight path, got caught in wall openings, and collided 
with obstacles. These events (which are faithfully recorded in the 
WeAllWalk data set) are to be expected when walking without 
sight. We carefully annotated our measurement time series, 
indicating the start and end time of each such event. In addition, 
we provide ground truth data in the form of heel strike times, 
measured by accessory inertial sensors clipped to the participants’ 
shoes. We believe that this annotated data is representative of 
typical situations encountered by blind walkers, and that it should 
be very useful for anyone who wants to test their dead reckoning 
algorithms in realistic scenarios. 

This article is organized as follows: After the related work, 
presented in the next section, we introduce the WeAllWalk data 
set in Sec. 3. We describe the sensor platform, the paths and their 
characteristics; we introduce the participants to this study and the 
procedures that were followed, and our criteria to annotate the 
data collected. In Sec. 4, we present some simple results of 
automatic step counting and turn detection on this data. Sec. 5 has 
the conclusions. The WeAllWalk inertial sensor time series data 
set is available at http://n2t.net/ark:/b7291/d1cc7g. It is released 
under the terms of the Creative Commons Attribution license 
(CC-BY-4.0). 

2.  RELATED WORK 
2.1 Indoor Navigation via Inertial Sensing 
There has been increasing interest over the past decade in personal 
navigation systems that support users in determining their location 
and in finding a path to a desired destination. While outdoor 
localization can be obtained, at least with an accuracy of a few 
meters, via GPS, this is not possible indoors, where the GPS 
signal becomes too weak for detection. Indoor navigation 
represents the “last frontier,” with whole conferences devoted to 
this subject [16][18]. A variety of techniques have been proposed 

[10] for indoor localization, including radio-frequency 
triangulation [37], image-based recognition [22], Bluetooth 
beacons [27], visual markers placed in specific locations [7], and 
dead-reckoning using inertial sensors (see survey by Yang et al.  
[35]). The use of inertial sensors for blind indoor wayfinding has 
also been considered by several authors [6][8][9][23][28][30] 
[31][35]. 

2.2 Step Counting 
Automatic step counting (e.g., for physical activity tracking) has 
received considerable attention by the research and industry world 
alike. Commercial pedometers use sensors that can be embedded 
in shoes (e.g., the Adidas Micropacers), in a smartwatch, in a 
smartphone, and attached to ankles or a belt. We refer the reader 
to [36] for a review of different sensing modalities for step 
counting and other physical activity monitoring. A variety of 
algorithms have been proposed for stride event detection from 
inertial sensor time series; an excellent review of some of the 
main algorithms is presented in [5]. Sensor placement certainly 
has a role in the characteristics of the data collected. For example, 
ankle or foot worn sensors usually provide more accurate step 
counting [13] than waist worn sensors. However, step counting 
accuracy does not seem to be greatly affected by the specific 
location of the sensor on other parts of the body [14][5] (including 
on head-mounted displays [3]). 

Whereas the vast majority of step counting algorithms have been 
developed for able-bodied ambulators, some authors have 
addressed the performances of these algorithms with sensors 

 

 

 
Figure 1. Top two rows: the floor plans of E2 and BE, 
respectively. Lower rows: the trajectories taken by our 
participants. T1–T4 were located in E2, T5-T6 in BE.  



carried by people with some level of mobility impairment. For 
example, [25] evaluated different algorithms with ten mobility-
impaired geriatric patients, while [38] designed and tested robust 
stride event detectors for users with Parkinson’s disease. In both 
cases, participants carried an accelerometer on a belt around their 
waist. While none of the blind individuals who contributed to the 
WeAllWalk data set could be considered to have mobility 
impairment, use of a long cane or of a guide dog may result in a 
gait pattern that is quite different than for sighted walkers.  

2.3 Similar Data Sets 
We are aware of two existing openly accessible data sets with 
inertial time series collected from walkers carrying a smartphone; 
these data sets are briefly described below. Other similar data sets 
exist, but with different sensors and body placement (e.g., foot-
mounted sensors [2]) which are not directly relevant to our 
intended use case.  

The Walk Detection and Step Counting on Unconstrained 
Smartphones dataset [5] consists of time annotated sensor traces 
(accelerometer, gyroscope, and magnetometer) obtained from 27 
participants walking a route at three different walking paces, and 
carrying one or two smartphones placed in various positions while 
walking.  
The OU-ISIR Gait Database [29] consists of walking data from 
744 participants wearing four sensors (three units with 
accelerometer and gyroscope, and one smartphone containing an 
accelerometer) located in a belt around the participants’ waist. 
Participants walked on straight paths at varying inclinations.  

WeAllWalk differs from these prior data sets in two main aspects. 
First, it contains data from blind walkers, both using a long cane 
and a guide dog. Second, the path traversed by our participants are 
much more complex and realistic than the straight routes 
considered in the previous data sets. The routes in WeAllWalk 
include turns at corridor junctions, active door openings, as well 
as sporadic stops or short re-routings due to involuntary collisions 
with objects or walls, as should be expected during regular blind 
ambulation. We carefully annotated the time series to identify 
intervals corresponding to walking in a straight line, taking a turn, 
or opening a door, as well as specific “features,” such as when the 
walker stopped for a short moment, bumped into an obstacle or a 
wall, or deviated momentarily from the path, because for example, 
he or she missed a door or got stuck in an opening in the wall.  

3. THE WEALLWALK DATA SET 
3.1 Sensor Platform  
3.1.1 Sensors 
Our participants carried two smartphones (Apple iPhone 6), 
placed in different locations on their garments. Each smartphone 
recorded data from its tri-axial accelerometers, gyroscopes, and 

magnetometers. Data was sampled at a rate of 25 Hz. In addition, 
we recorded derived data produced by the iOS’ Core Motion 
framework via proprietary sensor fusion algorithms. This derived 
data includes the estimated direction of the gravity force, the 
device’s actual acceleration (obtained by subtracting the estimated 
gravity acceleration from the data measured by the 
accelerometer), the corrected magnetic field, and the device’s 
attitude (the 3-D rotation of the device with respect to a static 
reference frame). Each data sample was time-stamped with the 
clock of the phone that originated it.  

In addition to the smartphones, our participants carried two small 
inertial sensor units clipped to their shoes (see Fig. 2). We would 
like to emphasize that we do not assume or expect that blind 
walkers would wear these shoe-mounted sensors in their daily life. 
These sensors were added for the sole purpose of enabling ground 
truth step counting (since placement at the foot level enables 
robust step detection [13]). Algorithms for step counting from 
inertial sensors in the smartphone can then be benchmarked 
against this ground truth data. We used MetaWear-CPRO2 units, 
(shown in Fig. 2) which contain a 16-bit tri-axial accelerometer 
and gyroscope IMU from Bosch (BMI160). The accelerometers 
can work at a programmable range of ±2, ±4, ±8, or ±16g, 
whereas the gyroscope can work between ranges of ±125°/s, 
±250°/s, ±500°/s, ±1000°/s, or ±2000°/s. For the experiments, we 
set the accelerometer range to ±2g, and the gyroscope range to 
±500°/s.  The inertial sensor time series measured by the shoe-
mounted sensors (sampled at 25 Hz) are recorded together with 
data from the smartphones, and later processed to detect the 
ground truth heel strike times. Foot strike events for each foot are 
detected from these sensors using data from the Y-axis gyroscope 
(as in [32]) using a modified version of the UPTIME algorithm 
[1] (see Fig. 3).  

All of the devices carried by our participants (two iPhone 6 and 
two foot-mounted sensors) are controlled via Bluetooth by a 
single iPhone 5 (called “control phone”) carried by one of the 
experimenters. The system makes use of the Multipeer 
connectivity Framework to communicate between multiple iOS 
devices, and the MetaWear iOS Objective-C API to communicate 
with the MetaWear-CPRO sensors. The “control phone” is paired 
with each of the smartphones carried by the participant in order to 
broadcast commands to them, as well as receive status updates 
(e.g., acknowledgement that a command was received, battery life 
status from the MetaWear-CPRO sensors). The smartphones 
carried by the participant are then paired with each of the 
MetaWear-CPRO sensors, one per smartphone. This pairing is 
done remotely from the “control phone.” Once the “control 
phone” is paired with the two smartphones carried by the 
participant, and each one of these is paired with a MetaWear 
CPRO sensor, the “control phone” broadcasts a series of 
commands. Some of these commands include starting and 
stopping the inertial sensors, synchronizing the smartphones and 
the MetaWear-CPRO sensors so that all sensor readings reference 
the same starting time, saving all the sensor data from the 
smartphones and the MetaWear-CPRO sensors, restarting the 
system for the next experiment, and more. All of this is done 
remotely and without having to physically interact with the 
smartphones carried by the participants during the experiment 
(e.g., having to take the smartphones out at the end of each trial in 
order to restart the system or save the data). All the sensor data 
from the MetaWear-CPRO sensors is streamed to the smartphone 

                                                                    
2 https://store.mbientlab.com/product/metawear-cpro/ 

   
Figure 2. Examples of placement of the CPRO shoe-mounted 
sensor for ground truth step detection. The sensor is 
contained in the white small case, attached to a plastic 
padded clip. 



paired with and recorded along with all the sensor data produced 
by the iOS Core Motion framework. 

3.1.2 Calibration Pre-Trial 
Before starting to walk on the prescribed paths, each participant 
went through a “calibration” pre-trial, which consisted of walking 
along a straight corridor for twenty steps. The approximate time 
of each heel strike for each foot was recorded manually by an 
experimenter (by tapping on the screen of the control phone each 
time the participant placed a foot on the ground). This pre-trial 
phase is used to calibrate the parameters of the ground truth step 
detector from the shoe-mounted sensors described earlier (this 
calibration is performed off-line after data collection.) The 
ground-truth step detector is assumed to be well calibrated when 
the steps events it identifies correlate well with the steps that have 
been manually input by the experimenter. Note that the manual 
step input is performed only during pre-trial. 

3.2 Paths 
Our participants walked on 6 different paths in two different 
buildings in our campus (called the E2 and the BE building in this 
paper). The first paths (T1 to T4) are located in the E2 building, 
while the last two (T5 and T6) are located in the BE building. 
Floor maps of the buildings and the routes are shown in Fig. 1. 
Paths were all indoors and on level terrain (one path contained a 
stretch on an outdoor terrace). We decided against including 
staircases in the paths, due to safety concerns. Routes where 
chosen to have a variety of lengths and complexities. The shortest 
path was about 75 meters long and only included one 90 degrees 
turn; the longest path was about 300 meters long along an 8-
shaped route, included seven turns and required the participant to 
open three doors. One path included a 180 degrees turn, while 

three paths included a 45 degree turn. The path order was 
designed in such a way that the end point of a path in the sequence 
corresponded to the start point of the next path.  

For most of the time, participants walked in a corridor (with the 
width of the corridor varying from 120 cm to 210 cm), but some 
paths included traversal of an open space (an elevator hall or an 
entrance hall) as well as a passage next to a stairwell. In some 
cases, a turn was preceded or followed by a door that needed to be 
opened. In these cases, we informed the participant in advance of 
the presence of a door, and of whether the door had to be opened 
by pushing on a crowd bar, or be pulled open by a handle. In two 
places, the path went through a door that required substantial 
force for opening; in these cases, one experimenter opened the 
door for the participant.  

Floor surface varied from industrial carpet to linoleum to rugged 
concrete (in the outside terrace). In addition, two industrial flat 
mats were placed in an elevator hall, and a metal plate was placed 
across a corridor. Some of our participants got their cane tip or 
their shoe briefly stuck at the edge of these floor coverings.  Most 
environments were devoid of obstacles, although a few corridors 
contained large pillars, couches, chairs, tables, garbage bins, and 
obstacles in the form of appliances, which were kept on one side 
of the corridor. In these situations, we advised the participant to 
keep closer to the opposite side of the corridor. Some corridors 
contained openings to rooms or to other corridors, and a few 
participants occasionally moved close to these openings and got 
caught in the wall corner; this typically caused a short stop before 
the participant was able to get back to the intended route. At 
times, the participant also had to stop and move to the side to 
avoid walking into people who were standing in the corridor or 
were walking towards the participant. On the day participant P6 
visited, some corridors were encumbered by one or more ladders 
due to ongoing work. In this case, we directed the participant by 
voice to avoid the ladder.  

3.3 Participants and Procedure 
Eight blind volunteers and five sighted volunteers participated in 
the study. The blind participants were recruited through the 
network of acquaintances of the second author, while the sighted 
participants were graduate students or faculty members in our 
school. Note that the focus of this data set is on blind walkers; we 
added data from sighted participants only as a “control,” for 
comparison in identical settings.  

3.3.1 Blind Participants 
Participant P1 is a 66-year-old woman who has been blind since 
she was very young. She has a guide dog, a Labrador Retriever, 
who is functioning, but close to retirement. P1 feels that her dog is 
becoming distracted and is not as good as he used to be at staying 
away from obstacles, and for this reason she recently took some 
classes to refresh her long cane skills. She walked paths T1 to T4 
with the dog first, then again with the cane. She then walked paths 
T5 and T6, with the dog first, and then again with the cane. She 
felt that using the dog allowed her to walk on a straight line, while 
she tended to veer while walking with the cane; this was 
confirmed by our observations. Her dog, which she held on a 
harness with her left hand tended to keep very close to the right 
side of the wall. When walking with the cane, P1 sometimes got 
stuck in a wall opening and had to walk away from it to resume 
her path. She slides her pencil-tipped cane left and right, 
synchronized with her gait. 

Table 1. BLIND PARTICIPANTS LIST 
ID Mobility 

tool 
Phone 1 placement Phone 2 placement 

P1 Cane 
Dog 

Left breast pocket Jacket right side pocket 

P2 Cane Jacket left side pocket Tucked under shirt on 
right shoulder 

P3 Cane Pants left front pocket Pants right back pocket 

P4 Dog Jacket left side pocket Pants right back pocket 

P5 Cane Pants left front pocket Pants right back pocket 

P6 Cane Holster clipped to front 
right belt 

Pants left front pocket 

P7 Cane Jacket right side pocket Pants left front pocket 

P8 Cane 
Dog 

Pants right front pocket Pants left front pocket 

 

 
Figure 3. Time series of measurements from the Y axis gyro 
in the CPRO sensor clipped to one of our participants’ right 
shoe during the calibration pre-trial. The green vertical lines 
represent heel strike times. 



Participant P2 (aged 46) lost her sight over the past five years due 
to diabetic retinopathy (the diabetes also caused some neuropathy 
at her feet). She uses a long cane for mobility, although she is 
looking forward to receiving a guide dog in the near future. She is 
still perfecting her mobility skills, and feels that she is not moving 
as gracefully as other people in her condition. Her cane has a ball 
tip; she slides it left and right, synchronized with her gait. She 
often hit a sidewall with her cane, and sometimes bumped into 
obstacles along the way (e.g., a garbage bin or a chair). 

At 26 years of age, P3 was the youngest participant in our study 
and she has been blind since birth. An expert cane user, she had a 
guide dog in the past. She, however, admits that her orientation 
skills are poor, so she was glad to hear that this study required no 
route memorization. P3 was able to walk on straight paths without 
much veering; however, she did get caught in a wall opening a 
few times. She uses a cane with a ball tip, sliding it on the floor in 
a swinging motion that, however, is generally not synchronized 
with her gait. 

Participant P4 is a 65-year-old woman who lost her sight soon 
after birth. She didn’t bring her cane, and thus was tested only 
with her dog, an energetic German Shepherd, who walked very 
fast as she held the harness with her left hand. The dog followed 
P4’s commands faithfully, although at one point, while in the 
stairwell that joins two corridors, he almost started leading P4 
downstairs instead of walking straight past the staircase. P4 
explained that the dog might have been wanting to walk to P4’s 
husband, who was waiting downstairs in the parking lot. 

Participant P5, aged 59, is a man who lost his sight at 18 months 
of age. He never had a guide dog, and is not interested in one. He 
is an expert traveler, with excellent orientation skills. He often 
travels independently by public transit. He had a peculiar way of 
using his pencil-tipped cane. Instead of swinging his cane left and 
right, he holds it at an angle in front of him, and taps it on the 
ground at regular intervals. He explained that, by listening to the 
sound and its echo, he could tell the presence of nearby surfaces. 
He walked, for the most part, with very little veering. 

Participant P6 is a 68-year-old man. He lost his sight due to a 
traumatic brain injury as a teenager. P6 used a telescopic cane 
with a round metallic glide tip, which he maneuvers in a swinging 
motion synchronized with his gait. He slid the cane on the floor 
except for the outside terrace with rugged concrete surface, where 
he instead tapped it (2-point touch). P6 explained to us that he 
normally uses a different, heavier cane when walking outdoors. 
He was able to walk in straight lines and avoided almost all 
obstacles, without hitting any wall or being caught in wall 
openings. 

Participant P7 is a man, aged 46, who has been blind since birth. 
He has excellent orientation skills and regularly travels even long 
distances using public transportation. He uses a single piece long 
cane with round metallic glide tip, which he slides on the floor in 
a swinging movement synchronized with his gait. In our trials, he 
walked with little veering. In a couple of occasions, he bumped 
his shoulder into large obstacles along the path. 
Participant P8 is a 69-year-old woman who lost her sight 
progressively during her young age. Similar to P1, she walked all 
paths twice, one time with her guide dog and the other time using 
a long cane (pencil tip). She is a proficient traveler, yet she often 
times veered off the straight direction when walking in a corridor 
and had to correct her path. 
 

 
(a) A sighted participant 

 

 
(b) Participant P3 using a long cane 

 

 
(c) Participant P6 using a guide dog 

Figure 4. Time series of measurements from accelerometer, 
gyro, and azimuth. The magenta and green vertical lines mark 
the left and right foot strikes. 



3.3.2 Smartphone Placements  
Each participant was asked to choose a comfortable location for 
the two smartphones used in order to take inertial measurements 
during the trials. Preferences varied: sometimes a smartphone was 
placed in the front or back pants pocket, while in other cases it 
was placed in a holster clipped to the participant’s belt, in a jacket 
pocket at waist or breast height, or tucked under the participant’s 
shirt at shoulder level. Tab. 1 shows the different placements for 
our blind participants. Informal surveys (e.g. [19]) have shown 
that the majority of people keep their phone in their pocket, and 
for this reason we didn’t consider placement of the smartphones in 
the participants’ handbag or backpack. In addition, step counting 
with smartphone in a handbag was shown to be inaccurate [5] due 
to extra swinging of the bag. We also didn’t consider the case of a 
smartphone held in one’s hand while walking, as this may be 
inconvenient for blind people who already have one hand 
occupied holding a cane or a guide dog. 

3.3.3 Procedure 
After signing the IRB-approved consent form, each participant 
was shown the CPRO sensors in their clip cases, and asked to clip 
each sensor case to the back, if possible, or to the side of their 
shoe (see Fig. 2). (Note that participants were advised in advance 
of their visit to wear comfortable shoes, and to wear clothing with 
pockets.) Then, the participant was asked to position the two 
smartphones, as discussed in Sec. 3.3.2. Participants were advised 
not to pay attention to any speech produced by the smartphones 
(which were programmed to utter short synthetic speech 
verification sentences upon successful pairing with the control 
phone). Participants were also advised to begin walking when 
prompted by an experimenter, and to walk straight until asked by 
the experimenter to turn left or right (or, in the case of path T5, to 
turn around), to push or pull open a door, or to stop at the end of 
the path. These were the only verbal directions provided to the 
participants, except for occasional safety warnings (e.g., as 
mentioned earlier, participants were advised to walk closer to one 
side of a corridor if there were obstacles on the other side). 

 
No training on the use of the system was necessary, since the task 
was for the participants to simply walk naturally. Each participant 
first went through the pre-trial described in Sec. 3.1.2 for ground 
truth calibration. Then, he or she was accompanied to the start 
position of the first path, and asked to start walking in the 
designated direction. Before the start of each path, participants 
were oriented to face the correct direction; this was particularly 
important for paths T2, T5 and T6, which started with diagonal 
traversal of an entrance or elevator hall. All trials with blind 
participants were supervised by two experimenters. One of the 
experimenters managed the start and end of data collection from 
all sensor platforms via the control phone, and recorded videos of 
all sessions by means of a GoPro HERO Session camera attached 
to a head strap. The other experimenter walked at a close distance 
behind or sometimes in front of the participant, and was in charge 
of ensuring the participant’s safety. 

Fig. 4 shows an example of time series collected during a straight 
path in route T3 for three individuals: a sighted participant, a blind 
participant using the long cane, and a blind participant using a 
guide dog. For the accelerometer and the gyroscope sensors, the 
first and second subfigures plot a linear combination of the time 
series from the three axes, corresponding to the principal 
component. The azimuth data (angle around the vertical) was 
obtained from the iOS CoreMotion Framework, and is defined 
with respect to an arbitrary horizontal axis. (Note that the 
magnetometer is not used for this purpose, as we found that it 
decreases the quality of the azimuth in indoor environments.) The 
plots also display the heel strikes times (shown by vertical lines) 
for each foot. Observation of the azimuth time series provides 
some insight into the gait characteristics of each individual. In 
particular, the sighted walker maintained a steady heading 
direction (with oscillation due to natural body swinging). The 
azimuth time series of the blind walker with a cane shows a more 
variable pattern, with variation in heading direction as large as 20 
degrees. The blind participant using a guide dog maintained a 
more stable heading direction, but with a wider swinging action. 

3.4 Data Annotation 
After completion of all trials for a participant, the data from all 
sensors was offloaded to a desktop computer for post-processing. 
In particular, all data streams were synchronized as discussed in 
Sec. 3.1.1. The video streams collected from the GoPro camera 
were also synchronized to the same time base used for the sensors. 
The heel strikes times for each foot (computed by the CPRO 
sensors, Sec. 3.1.1) was recorded.  
The time lapse during traversal of a route was divided (by visual 
inspection of the video) into contiguous intervals, where each 
interval corresponds to either a straight segment in the path, or to 
a “turn” event. For example, traversal of route T1 (shown in 
Fig.1) was divided into seven contiguous time intervals, 
corresponding to four straight patches interleaved with three 90 
degrees turns. The cardinal direction of each straight path, or of 
the paths joined by a turn, was recorded in the annotation file, 
together with the start and end time of each interval, and with the 
number of steps taken during the interval. In addition to the 
segmentation into straight paths and turns, we created annotations 
of particular events such as opening a door, bumping into an 
obstacle, being caught in a door opening, or stopping momentarily 
(see Fig. 5). These events are normally associated with anomalous 
characteristics in otherwise regular inertial data time series (see 
Figs. 6–8). Also note from these figures that when participants are 
engaged in tasks such as opening a door, the shoe-mounted 

  

   
Figure 5. Four of our blind participants dealing with specific 
situations. Top two images: being caught in wall opening. 
Bottom left: pushing open a door. Bottom right: avoiding an 
obstacle (a ladder) in the way. 



sensors sometimes detected “phantom steps” when in fact the 
participants were simply balancing themselves on their feet. We 
did not manually remove these phantom steps, as they occurred 
only sporadically in our study. All of the data was annotated by 
one experimenter and independently checked and verified by 
another experimenter. The annotation file, which is stored using 
the Extensible Markup Language (XML) format, also includes 
other relevant information such as the type of mobility tool used, 
as well as some general gait pattern observations. 

4. DERIVED DATA EXAMPLES 
In this section we show some simple examples of the different 
types of analysis that can be carried out on the inertial data in 
WeAllWalk. These examples are not meant to test specific 
hypotheses, but simply to highlight the richness of the data in our 
data set, and to suggest directions for future research. 

4.1 Step Counting 
After experimenting with several of the algorithms mentioned in 
Sec. 2.2, we found that the best step detection results for our data 
were produced by the AMPD technique of Scholkmann et al [34]. 
This algorithm processes the magnitude of the acceleration, and 
finds the peaks associated with heel strikes by detecting local 
maxima. We used a Savitzky-Golay filter [33] to smooth the 
accelerometer magnitude before computing local maxima. We 
then compared the step detections (computed on the data from the 
iPhones) with the ground truth data from the foot-mounted 
sensors. Rather than simply counting the total number of steps in a 
certain path, we used a more conservative metric, defined as 
following. Given the interval T between two consecutive ground 
truth heel strike times, and the number n of steps detected within 
this interval, we declare an undercount event if n = 0 (no steps 
detected within interval T) and number n - 1 of overcount events if 
n > 1 (more than one step detected within T). We then report 
errors in terms of rates of undercount and overcount events. Fig. 9 
shows step counting errors computed over the whole set of 
trajectories for sighted participants, blind participants using a 
cane, and blind participants using a guide dog. Note that the same 

algorithm (with the same parameters) was used for all 
participants. This data seems to suggest that larger errors are 
obtained with this algorithm for blind walkers; a thorough 
statistical analysis to evaluate this hypothesis is planned as future 
work.  

4.2 Turn Detection 
An indoor route can often be expressed in terms of a sequence of 
turns, along with the number of steps taken in the path between 
two consecutive turns. For example, one may specify a route as: 
“Walk straight through this corridor for about 50 steps, then make 
a left at the junction, walk for 20 more steps and take a right at the 
first corridor.” Note that for most buildings, corridors intersect at 
angles of 90 or, in some cases, 45 degrees. Robust detection of 
turns from inertial data from a smartphone, combined with step 

 
Figure 8. Sensor data from a participant being caught in a door 
opening (yellow area) then hitting her arm against the wall 
(magenta area). 

 
Figure 6. Sensor data from a participant pulling a door open 
then making a left turn. 
 

 
Figure 7. Sensor data from a participant making a right turn 
then pushing a door open. 



counts between turns, may help blind travelers keep track of their 
progress in an indoor route. If a walker at some point feels lost, he 
or she may be able to return to the starting point (e.g., an entrance 
door) by simply following the sequence of recorded turns in 
reverse order.  

Turn detection can be achieved by analyzing azimuth data, which 
represents the walker’s heading direction. However, care must be 
taken in the case of wide swinging or veering during walking, 
which may trigger false turn detection. In addition, drift in the 
measured azimuth may accumulate during a long path, which may 
complicate the job of algorithms that detect turns by simply 
thresholding the heading direction. 

An algorithm for robust turn detection based on a hidden Markov 
model (HMM) was introduced by Flores et al [11]. This algorithm 
was shown to be resilient to drift. It can be designed to detect 
turns of 45 or of 90 degrees; in the case of 45 degrees turn 
detection, consecutive detected turns within a short time interval 
are “clustered” together to form a 90 degree turn. 

We show results of turn detection based on azimuth data using 
this algorithm in Figs. 10 and 11 for two different routes (T4 and 
T5) and for two different individuals: a sighted participant, and a 
blind participant using a long cane. The system was set to detect 
turns of 90 degrees in the first case, and turns of multiples of 45 
degrees in the second case (note that T5 begins with a 45 degree 
turns). As noted earlier, the heading direction for the blind 
participants tend to be less steady than for sighted walkers, which 
may complicate the job of the turn detector and, as in the case of 
these examples, result in occasional false positives.  

5. CONCLUSIONS 
We have introduced a new data set with inertial sensor time series 
collected from blind walkers. Our participants walked through 
fairly long and complex routes; on their way, they sometimes had 

to open doors and avoid obstacles. The data has been subdivided 
into straight paths and turns, and carefully annotated, with special 
events (such as bumping into an obstacle) individually identified 
and marked. Simple examples of applications such as step 
counting and turn detection have been presented, which highlight 
some of the peculiar characteristics of blind ambulation as 
measured by these sensors. 

While we believe that this data can be useful to several 
researchers who are interested in personal mobility, we are also 
aware of some of its shortcomings.  For example, although our 
participants were asked to walk naturally, they didn’t have to find 
their way independently (as they were instructed when to turn). 
Participants may also have felt self-aware, as they were being 
followed and observed, and thus may not have been fully natural 
(for example, they may have put extra effort to avoid obstacles). 
All of our routes were indoors, and thus our data is not 
representative of outdoor ambulation. As one of our participants 
explained, some blind travelers pay attention to different things 
when walking indoors and outdoors. For example, when walking 
indoors, they may be careful of avoiding obstacles such as a door 
left ajar; while in the outdoors, typical concerns include the 
condition of the pavement, and the possibility of a hole or a curb.  
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Figure 10. Azimuth time series for a sighted (top) and a 
blind participant (bottom) walking on Path T4. Pink stems: 
turn angles (left or right) that are multiple of 90 degrees. 
Red line: estimated heading direction. 

 
Figure 11. Azimuth time series for a sighted (top) and a 
blind participant (bottom) walking on Path T5. Red stems: 
turn angles (left or right) that are multiple of 45 degrees. 
Pink line: estimated heading direction. 

 

 

 
Figure 9. Step over count rate (positive bars) and undercount 
rate (negative bars) for sighted participants, blind participants 
using a long cane, and blind participants using a guide dog. 
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