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Abstract 

A computational model of selective attention has been 
previously used to provide a concrete and comprehensive 
account for perceptual load findings in visual search tasks 
(Neokleous, Koushiou, Avraamides, & Schizas, 2009). 
Here, the same model was used to simulate findings from an 
experiment in which perceptual load effects were attributed 
to distractor dilution (Benoni & Tsal, 2010). By modeling at 
the neural level the continuous inhibitory interactions that 
take place among visual stimuli competing for cortical 
representation, the model reproduced successfully the 
behavioural pattern of results. The model thus offers a 
biologically-plausible way to reconcile findings that 
contradict Perceptual Load theory with those that support it. 

 

Keywords:Computational Modeling, Spiking Neural Networks, 
Perceptual Load Theory, Dilution. 

Introduction 
 
The Perceptual Load theory was proposed by Lavie and 

Tsal (1994; Lavie, 1995) to resolve the early vs. late debate 
concerning the locus of attention (e.g., Broadbent, 1958; 
Deutsch & Deutsch, 1963). It posits that selection of stimuli 
may take place early or late depending on the perceptual 
load of the task. 

In a paradigmatic study of perceptual load Lavie and Cox 
(1997) had participants carry out a high load or a low load 
visual search task. In the high load task participants 
searched for two target letters (X and N) among 5 similarly-
shaped letters arranged in a circular array. In the low load 
task, they searched for these targets among five instances of 
the letter O.  In both conditions, a distractor letter, which 
participants were asked to ignore, was presented to the left 
or to the right of the array. Depending on condition, the 
distractor letter could either be congruent with the target 
(i.e., the same letter as the target), incongruent (i.e., the 
other target), or neutral (i.e., the letter “L”).  Results 
revealed that in the low load task participants took longer to 
identify the target in the presence of an incongruent 

distractor compared to when the disctractor was congruent 
or neutral. In contrast, in the high load task, no difference 
between the three distractor conditions was found. Lavie 
and Cox (1997) argued that distractor interference was 
absent in the high load task because all attentional resources 
were consumed by the task leaving none to process the 
irrelevant distractor. In contrast, in the low load task only 
minimal resources were devoted to the task allowing spare 
resources to spill over to the processing of the distractor. 
Thus, the Perceptual Load theory posits that selection is 
early under high load conditions and late in low load 
conditions.  

Despite its appeal, the Perceptual Load theory has been 
criticized on various grounds. First, a number of studies 
have provided findings that seem at odds with the theory 
(Eltiti, Wallace, & Fox, 2005; Johnson, McGrath, and 
McNeil, 2002; Torralbo & Beck, 2008). For example, 
Johnson et al. (2002) showed that cueing the target location 
with a 100%-predictive central cue in a low load visual 
search task eliminates distractor interference despite the fact 
that it does not alter the load of the task. Neokleous et al. 
(2009) reported the same result using an 80%-predictive 
peripheral cue. Second, Torralbo and Beck (2008) argued 
that the theory is unsatisfying because it does not provide a 
clear definition for perceptual load, and because the concept 
of exhaustive capacity cannot be easily reconciled with what 
is known about brain mechanisms. 

To provide a more concrete formulation of the Perceptual 
Load Theory we have previously presented a biologically-
plausible computational model, capable of simulating both 
the basic pattern of findings from Lavie and Cox (1997)and 
findings considered contradictory to the theory(e.g., Johnson 
et al., 2002). The model offered an explicit account for the 
possible neural mechanisms that give rise to perceptual load 
findings without relying on vague terms such as high and 
low load. The model simulated the data by modeling at the 
neural level the continuous inhibitory interactions that take 
place among visual stimuli competing for cortical 
representation. The strength of these inhibitory interactions 
is determined by the saliency of stimuli whereas top-down 
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signals are allowed to bias this competition by amplifying 
neural activity that matches the current goals. 

Recently, Benoni and Tsal (2010) proposed a theoretical 
account for perceptual load effects that resembles the one 
implemented in our model. In their Dilution account, 
Benoni and Tsal (2010; see also Tsal & Benoni, 2010; 
Wilson, Muroi, & MacLeod, 2011) claim that the 
distractorsin the visual search tasks employed by Lavie and 
Cox (1997) are processed regardless of load. However, 
distractor interference in the high load condition is 
eliminated due to diluting effects exerted by non-target 
letters in the search array towards the distractor.  

Benoni and Tsal (2010) provided support for the Dilution 
account by showing that distractor interference is absent in a 
low load condition with high dilution (Exp.1). In this 
condition, participants searched for a red target in an array 
with three additional green letters or a green target in an 
array with three additional red letters, while ignoring a 
larger white distractor presented adjacently to the array. In 
the high load-high dilution condition the 4 letters of the 
search array, including the target, were displayed in the 
same color, either red or green.  Finally, in a low load-low 
dilution condition the red or green target was presented 
without any accompanying letters in the search array.   

Results showed that, as predicted by the Perceptual Load 
theory, (1) overall latencies were shorter for the low load-
low dilution than the high load-high dilution, and (2) 
distractor interference was present in the low load-low 
dilution condition but not in the high load-high dilution 
condition. However, in contrast to the predictions of the 
Perceptual Load theory, no distractor interference was 
observed in the low load-high dilution condition despite the 
fact that latencies in this condition were as short as those of 
the low load-low dilution condition. Benoni and Tsal (2010) 
interpreted this finding as evidence that the perceptual load 
effects reported in the literature previously are caused by  
dilution.  

Although the Dilution account aspires to offer a more 
concrete explanation of perceptual load effects than the 
Perceptual Load theory itself, it is also somewhat vague in 
some respects. For example, Benoni and Tsal (2010) argued 
that dilution requires the mere presence of non-target letters 
“...whose features are visually similar to those of the 
distractor” (p.1293).  It is not very clear what constitutes a 
visually similar feature and how exactly a task can be 
cateogorized as high-dilution or low-dilution. Benoni and 
Tsal (2010) employed a low load task in which the target 
was presented alone in the search array thus no dilution was 
possible. However, Lavie and Cox (1997) have used a low 
load task in which the target is presented among flanking 
O’s. Are O’s expected to exert diminished dilution effects or 
none at all? 

Here, we use the same computational model we described 
in Neokleous et al. (2009) to simulate the findings from 
Benoni and Tsal (2010; Experiment 1). The model requires 
neither a definition of load nor an explicit differentiation of 
tasks in terms of dilution.  Also, in contrast to the Dilution 

account in which inhibitory signals originate only from non-
target letters in the search array and are directed only 
towards the distractor (i.e., the target is considered immune 
to inhibition), our model allows for inhibitory signals 
among all stimuli in the display. 

 
The computational model 

 
The computational model has been previously used in 

similar form to simulate findings from the attentional blink 
phenomenon (Neokleous, Avraamides, Neokleous, 
&Schizas, 2009)and the relation between attention and 
consciousness(Neokleous, Avraamides, & Schizas, 2011). It 
is comprised of integrate-and-fire (I&F) neurons combined 
with coincidence detector (CD) neurons and simulates 
attention as a continuous stream of neural activity that is 
initially based on bottom-up information and gradually 
incorporates biases from top-down processes. 

The model (Fig.1) involves two stages of processing 
implemented as spiking neural networks (SNN). The first 
stage involves the initial bottom-up competitive neural 
interactions among visual stimuli and corresponds to early 
visual areas in the occipital regions of the brain (e.g., V1, 
V2). The second stage of processing extends the neural 
pathway towards working memory and allows for relevant 
top-down information to exert an influence on neural 
activity. 

 

 
 

Figure 1.The modules of the computational model of visual 
selective attention. 
 

In the first stage of processing, the initial representations 
of visual stimuli are created in the model on the basis of a 
saliency map. The modulation of visual activity by saliency 
in the early stages of visual processing is supported by 
neurophysiological findings that in area V1 of the visual 
cortex a neuron’s response can be significantly suppressed 
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or enhanced by stimulation in the vicinity of its receptive 
field (Nothdurft, Gallant, & Van Essen, 1999; Wachtler, 
Sejnowski, & Albright, 2003; Shibata et al., 2008).  In our 
model, we adopted a saliency map algorithm proposed by 
Koch and Ullman (1985). This algorithm was implemented 
by Walther and Koch (2006) into a Matlab toolbox 
(Saliency Toolbox - http://www.saliencytoolbox.net), that is 
used in the model to produce saliency values for spatial 
locations in the visual field. These values are produced 
based on a simple transformation algorithm that converts 
grayscale pixel values into frequency of spikes to establish 
the initial firing rates of the neurons that encode visual 
stimuli (Fig.2). 

During the first stage of processing, neural activity can be 
modulated by spatial top-down factors. For example, when a 
cue is used to prime the location of a stimulus ahead of 
presentation, the neural activity corresponding to the 
stimulus is amplified. This implementation is based on 
findings from several studies showing that cues may 
enhance the neural activity of neurons that encode visual 
stimuli (e.g., Shibata et al., 2008; Silver, Ress, &Heeger, 
2007). 

 
 
 

 
 

Figure 2.Initial firing rate computations based on a saliency 
map algorithm. 

 
The second stage of processing simulates the modulation 

of neural activity that represents visual stimuli by activity 
that maintains information about the targets as specified by 
the set of instructions (e.g., “Find x or y in the central 
array”).  Support for such modulations stems from studies 
showing that neural activity in area V4 of the cortexis 
influenced by top-down activity (e.g., Moran & Desimone, 
1985; Reynolds & Desimone, 2003). The top-down effects 
in the second stage of processing are implemented in the 
model in a way that produces both rate amplification and 
synchronization of neural activity as suggested by 
neurophysiological evidence (e.g., Fries, Reynolds, Rorie & 
Desimone 2001; Gregoriou, Gotts, Zhou & Desimone  
2009). That is, according to the model, attending a stimulus 
enhances the firing rates of neurons that correspond to that 

stimulus and at the same time forces them to fire in a more 
synchronous rhythm. Similarly, the firing rates of neurons 
that correspond to unattended stimuli are suppressed.  

The main components in the second stage of processing 
of the model have been inspired by Crick and Koch’s (1990) 
theoretical analysis on the role of attention and neural 
synchronization for the establishment of awareness. Crick 
and Koch (1990) based on neurophysiological findings 
showing that visual stimuli can elicit synchronized activity 
in the visual cortex, suggested that a prerequisite for the 
presence of neural synchronization is to have synchronous 
impulses in selected neuronal populations. Therefore, they 
proposed that visual selective attention may function in a 
way that it causes changes to the temporal structure of the 
neural spike trains that represent the information to be 
selected, and that this temporal structure may facilitate the 
transfer of the encoded information to working memory.  

The idea presented by Crick and Koch (1990) was later 
supported by experimental evidence. In a comprehensive 
review, Womelsdorf and Fries (2007) presented evidence 
showing how attention selectively modulates the neurons 
that represent the attended stimulus feature or spatial 
location in a way that it synchronizes their responses. For 
example, Bichot, Rossi and Desimone (2005) recorded the 
neuronal spiking responses and LFPs in the visual area V4 
of macaque monkeys and demonstrated that the allocation 
of attention towards a particular feature synchronizes the 
responses of selective sensory neurons, tuned to the attended 
feature. They suggested that feature salience is not only 
demonstrated with an increasing firing rate, but also by 
selectively synchronizing specific neuronal responses based 
on the similarity between feature preferences and the 
attended stimulus feature. 

To incorporate these ideas in our model, templates that 
contain features of visual search targets are created and 
maintained in the endogenous goals module of the model 
and are used to evaluate the resemblance between any 
incoming visual input and a target. The evaluation of each 
stimulus takes place by computing the correlation between 
spike trains representing the stimulus and the spike trains 
maintaining target identity in the endogenous goals module. 
This is performed in the Correlation Control Module (CCM) 
of the model (Fig.1).However, before the neural activity of 
each incoming stimulus is processed in the CCM, it passes 
through a temporal filter that reorganizes the timing of 
spikes without altering the average firing rate. This 
mechanism is implemented in the model according to a pre-
defined probability that reflects the degree of resemblance 
between the features of the incoming stimulus and those of a 
target. Thus, only the spike train patterns of a stimulus that 
shares features with the target will significantly change and 
become closer to the distinct spike train pattern of the target. 
The temporal filter mechanism used in the model is in line 
with Crick and Koch’s (1990) suggestion about the impact 
of selective attention on neural synchronization.  

During the progression of neural activity through the two 
stages of processing, the encoded stimuli compete for access 
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to working memory (WM) through forward and lateral 
inhibitory interactions (from the pools of inhibitory 
interneurons), resulting into modulation of the strength of 
their neural response(Fig.3). This implementation is based 
on neurophysiological findings showing that competition for 
neural representation in visual areas V1 and V2 is initiated 
when two or more stimuli fall within the receptive fields of 
the same or nearby cells (Reynolds & Chelazzi, 2004; 
Reynolds &Desimone, 1999). 

 

 
 
Figure 3.Top-down and bottom-up interactions during the 
progression of neural activity in the two stages of 
processing. 

 
These interactions during the progression of neural 

activity produce enhancement and synchronization of neural 
activity that eventually lead to the selection of a particular 
stimulus for further processing. 

Computational Simulations 
 

The computational model described in the previous 
section was used to simulate the pattern of findings reported 
by Benoni and Tsal (2010). Three aspects of the model are 
important for simulating the data: (1)spatial top-down 
signals enhance the neural activity of the neurons whose 
receptive fields fall within the area of the search array, 
(2)the saliency analysis produced different values for stimuli 
in each condition of the experiment (Fig.4)and led as a 
result to different initial firing rates, and (3) stimuli whose 
neural representation matches that of a target template held 
in the endogenous goals module are biased regardless of 
whether  they appear, at a given trial, in the search array or 
as a distractor.  

 
Figure 4.The three conditions and the output of the saliency 
map algorithm. 

 
These aspects of the model allow the target to “win” the 

race to working memory but with different speed depending 
on the combination of load/dilution (low load-low dilution, 
low load-high dilution, high load-high dilution) and 
distractor compatibility (congruent vs. incongruent).  

Fifty simulation trials were run for each of the 
combinations of load and compatibility. Median latencies 
from the model are shown in Fig.5. As seen in the figure, 
the model successfully produced the pattern of latencies 
reported by Benoni and Tsal (2010). Specifically, a 
compatibility effect (i.e., slower latency for incongruent vs. 
congruent distracters) was produced in the low load-low 
dilution condition only. Latencies were overall shorter in the 
low load-high dilution condition than in the high load-high 
dilution condition, but no difference between congruent and 
incongruent distractors was present in either condition. It 
should be noted that although the model successfully 
produced the patterns reported by Benoni and Tsal (2010), it 
was in all conditions slower that human participants by 150-
200ms. However, it should also be pointed out that the 
simulations were run with exactly the same parameter 
settings that were previously used to simulate the findings 
of Lavie and Cox (1997; see Neokleous et al., 2009). That 
is, no effort was made to fit the behavioral data by tweaking 
the parameters of the model. 

In the next section we discuss how exactly the model 
simulates the behavioral data. 

 
How the model simulates the experimental data 

 
High Load-High Dilution Condition 
 
In this condition the saliency analysis produced similar 
values for the target and the non-target letters in the search 
array. Saliency was somewhat higher for the distractor due 
to its larger size. As the task instructs participants to focus 
on the search array, the effects of spatial top-down signals 
were modeled by raising the firing rate for the four letters of 
the array. The higher neural activations for theseletters 
resulted in greater inhibition from the letters of the search 
array (both target and non-target letters)towards the 
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distractor. As a result, the neural activity of the distractor 
was significantly reduced from the very early stages of 
processing, thus reaching the second stage of processing 
with low activation. Due to its low activation, the distractor, 
regardless of begin congruent or incongruent with the target, 
could not influence much the response latency.  

Besides inhibition exerted towards the distractor, the non-
target letters of the search array produced strong inhibitory 
signals towards each other and towards the target. As a 
result, the neural activity of the target was reduced and the 
time needed to pass the set response threshold was 
increased. This accounts for the long response latencies 
observed in this condition.  

 

 
 

Figure 5. Experimental data for the conditions reported by 
Benoni and Tsal (2010) compared to the simulation results 
from the computational model. 

 
Low Load -Low Dilution Condition 
 
Due to the absence of non-target letters in the search array 
of the low load-low dilution condition, the target and the 
distractor had about the same saliency. In fact, due to its 
larger size, the distractor initially had a somewhat higher 
saliency value than the target. The neural activity of the 
target was, however, amplified as it fell within the area that 
participants are instructed to attend.  Although inhibitory 
interactions take place between the target and an 
incongruent distractor, both enter the second stage of 
processing with enough activation to produce a match with 
the goal templates held in the endogenous goals module. 
While a congruent distractor assists the target’s processing, 
an incongruent distractor inhibits it. This results into (1) 
overall shorter latencies than in the high load condition, and 
(2) longer latencies for trials with incongruent than 
congruent distractors. 
 
Low Load-High Dilution Condition 
 

The low load-high dilution is the critical condition for 
differentiating the Dilution account from the Perceptual 
Load theory. The saliency analysis resulted in a higher value 
for the target letter than for the non-target letters of the 
search array because it was presented in a different color. In 
addition, the neural activity for all letters in the search array 

was amplified to model top-down spatial effects. As a result, 
the target accumulated substantial activation which allowed 
it to exert strong inhibition towards the other elements of the 
display, including the distractor.  As in the high load 
condition, the distractor reached the second stage of 
processing with low neural activation and was thus unable 
to exert strong influence on the processing of the target.  
The main difference between this condition and the high 
load condition, is that here, because of the initial 
amplification of the target’s neural activity, the neural 
activations of the non-target letters in the search array were 
suppressed which allowed the target to be processed easier 
and faster. 

Discussion 
 
The computational model of selective attention that was 

described in the present paper was previously implemented 
to account for the basic pattern of findings from the 
Perceptual Load paradigm (Lavie & Cox, 1997). The model 
was capable of simulating not only the basic pattern of load 
findings, but also findings that were considered 
contradictory to the theory (Johnson et al., 1992). Here, the 
same model, with no tuning whatsoever, was able to 
reproduce the pattern of findings from a study manipulating 
dilution (Benoni &Tsal, 2010). 

Although the Dilution account of Benoni and Tsal (2010) 
resembles the functioning of the model we had presented 
earlier (Neokleous et al., 2009), its premises are not entirely 
in line with the way our model reproduces the behavioral 
data. According to the Dilution account, the representation 
of the distractor in high dilution conditions and in the 
typical high load conditions is degraded by inhibitory 
signals exerted from the non-target search array letters 
towards the distractor. Although we agree that such 
inhibitions take place, our model posits that in some cases, 
such as the in low load-high dilution of Benoni and Tsal 
(2010), the major source of inhibition on the distractor 
originates from the target. In contrast to the Dilution 
account, our model allows for inhibitory signals among all 
elements of the display. The amount of inhibition that any 
stimulus exerts on others depends on the strength of its 
neural activity, which according to the model, is based on its 
initial saliency and the biasing from top-down factors.  

The computational model presented here is an attempt to 
provide a comprehensive and concrete account for 
Perceptual Load findings based on what is currently known 
about the neural mechanisms of selective attention. The way 
the model is implemented allows for modeling a wide range 
of empirical data related to perceptual load effects. Future 
empirical research will allow us to test predictions from the 
model and evaluate its validity. 
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