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Abstract
MFIX-Exa is a CFD-DEM code for the numerical solution of chemically reacting multiphase
flows (fluid and solids phases), specifically targeted for flows in complex reactor geometries.
The fluid is modeled using a low Mach number formulation with a multicomponent ideal gas
equation of state, which is imposed as a constraint of the velocity field. The fluid equations
are discretized using an embedded boundary (EB) aware Godunov scheme with an approximate
projection. The particles (that constitute the solids phase) are represented by a soft-sphere spring-
dashpot model and evolved using a forward Euler method with subcycling. The fluid and particles
models are coupled through a volume fraction field in addition to interphase mass, momentum,
and energy transfer. The mathematical model and numerical approach are benchmarked against
three different verification tests and validated with two separate tests. Also, a scaling analysis is
provided. This manuscript represents the current state-of-the-art of MFIX-Exa and describes the
major extensions to the previous work presented in Musser et al. [28], including the Godunov
time integration algorithm for the fluid phase and the inclusion of thermodynamics and chemistry
modeling to both the fluid and solids phases.

1. Introduction
Electricity production and industrial processes are responsible for approximately half of all greenhouse gas

emissions in the United States [39], most of which are due to the burning of fossil fuels. Carbon capture and storage
(CCS) technologies based on chemical looping reactor (CLR) designs offer a promising approach for decreasing CO2emissions from fossil fuel power plants. Large-scale commercial deployment of new and developing CO2 capture
technologies requires the scale up from laboratory designs to industrial systems. This large separation of scales is
known to be fraught with issues, particularly for the multiphase reactors at the core of these devices.

Modeling and simulation can help aid in the design and deployment of new CCS technologies, however, the
underlying physics of gas-solid multiphase flows is complex. As a result, a hierarchy of modeling approaches exist
for particle flow, which range in applicable scales and are inversely proportional to the level of model error and
uncertainty [20]. At one end of the spectrum, particle resolved direct numerical simulation (PR-DNS) [38] is accurate
and reliable but computationally expensive, limiting the scale to which it can be applied. Conversely, commercial-scale
systems can be modeled by multiphase particle-in-cell (PIC) methods [10] in which computational affordability is
achieved by sacrificing accuracy through lumping hundreds of thousands of particles into single Lagrangian elements.

In an effort to help bridge this gap with high performance computing (HPC), we have developed MFIX-Exa, a
modern, massively parallel CFD-DEM code. As an Exascale Computing Project (ECP) application code, MFIX-Exa
was developed to be performant on current and the next generation of U.S. Department of Energy leadership class
computing facilities. MFIX-Exa follows a traditional CFD-DEM approach [16] in which the trajectories of all particles
are explicitly resolved with a continuous collision model yet the particles are unresolved by the fluid grid, requiring
closures for interfacial transfer. We believe this provides an optimal modeling approach, balancing fidelity and cost.
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In a previous work [26], we laid the ground work for how the MFIX-Exa code was developed within the AMReX
[42, 41] framework for cold-flow physics, i.e., only considering mass and momentum transport equations. In this work
we present the conservation equations for internal energy, species mass, and chemical reactions as well as two ideal-
gas equations of state for open and closed systems. Additionally, the numerical implementation has been improved by
extending the time-integration algorithm from Method-of-Lines (MOL) to a Godunov method, providing improved
performance while preserving the second-order accuracy in time.

This paper is organized into three major sections. First in Sec. 2, we describe the mathematical model for multiphase
flow physics considered. We first introduce the conservation equations for the fluid phase in Sec. 2.1. Then in Sec. 2.2
the two possible equations of state, incompressible or ideal gas, for the fluid phase are discussed. The fluid description
is followed by the conservation equations for the particles in Sec. 2.3. The mathematical model is closed in Sec. 2.4
by defining the interphase transfer terms. The mathematical model is followed by a description of the numerical
implementation adopted to discretize the fluid phase and particle advance in Sec. 3.1 and Sec. 3.2, respectively. The
code is applied in Sec. 4 which is split into verification tests in Sec. 4.1, validation tests in Sec. 4.2, and performance
tests in Sec. 4.3. The work is concluded in Sec. 5.

2. Mathematical model
The mathematical model is based on a CFD-DEM approach that couples a continuum representation of the gas

phase with a discrete element method (DEM) for representing the dispersed phase. The continuous gas phase is modeled
using a multicomponent low Mach-number formulation in an Eulerian frame. The dispersed phase, referred to as
particles, is treated in a Lagrangian frame employing equations of classical dynamics with collision forces computed
using a soft-sphere model [20, 13]. Unlike particle-resolved direct numerical simulations [38], particles in CFD-DEM
are typically smaller than the fluid mesh, so additional models are needed to account for fluid-particle interactions,
such as an interfacial drag. In the following sections, the fluid model and equation of state are provided, followed by a
description of the particle model. Lastly, interphase and intraphase transfer quantities are discussed.
2.1. Fluid phase equations

The low Mach number (𝑀) formulation assumes that the fluid velocity is much smaller than the speed of sound.
In this regime, pressure 𝑝𝑔 can be decomposed into a thermodynamic pressure 𝑝therm that is only a function of time,
and a perturbational pressure field 𝜋𝑔 that satisfies 𝜋𝑔∕𝑝therm ∼ (𝑀2), [see 30]:

𝑝𝑔(𝒙, 𝑡) = 𝑝therm(𝑡) + 𝜋𝑔(𝒙, 𝑡). (1)
In the low Mach number approximation, 𝜋𝑔 does not affect the thermodynamics of the gas.

Conservation of mass (i.e., the continuity equation) for the fluid is
𝜕
(

𝜀𝑔𝜌𝑔
)

𝜕𝑡
+ 𝛁 ⋅

(

𝜀𝑔𝜌𝑔𝒖𝑔
)

= 𝜌𝑝→𝑔 , (2)
where 𝜌𝑔 and 𝒖𝑔 are the fluid density and velocity, respectively, and 𝜀𝑔 is the gas phase volume fraction. 𝜀𝑔 is computed
from the deposition of particle volume to the grid such that 𝜀𝑔 ≡ 1 − 𝜀𝑝, where 𝜀𝑝 is the volume fraction of the solids
phase. 𝜌𝑝→𝑔 is a source term that represents the mass transferred from the particles to the gas due to interphase chemical
reactions. In this manuscript, the subscript arrow in the interphase transfer terms represents the direction with a sign
of the transferred quantities. With this notation, a positive 𝜌𝑝→𝑔 stands for a transfer of mass from the particle phase to
the fluid phase, and vice-versa. The right-hand side is zero in the case of flows without chemical reactions or physical
processes such as evaporation.

Convective form of linear momentum equation for the fluid is:
𝜕
(

𝜀𝑔𝜌𝑔𝒖𝑔
)

𝜕𝑡
+
(

𝜀𝑔𝜌𝑔𝒖𝑔
)

⋅ 𝛁𝒖𝑔 + 𝛁𝜋𝑔 = 𝛁 ⋅ 𝝉𝑔 + 𝜀𝑔𝜌𝑔𝒈 + 𝓵
𝑝→𝑔 + 𝓵

𝑝→𝑔 , (3)
where 𝝉𝑔 is the fluid phase stress tensor, and 𝒈 is the constant acceleration of gravity. The fluid phase viscous stress
tensor is given by

𝝉𝑔 = 𝜇𝑔
(

𝛁𝒖𝑔 + 𝛁𝒖𝑇𝑔
)

− 2
3
𝜇𝑔

(

𝛁 ⋅ 𝒖𝑔
)

𝑰 ,
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where 𝜇𝑔 is the fluid phase shear viscosity, and 𝑰 is the identity tensor. The last two terms on the right hand side include
interphase momentum transfer from fluid-particle interfacial drag, 𝓵

𝑝→𝑔 , and from mass exchange with particles,
𝓵
𝑝→𝑔 .

Conservation of species in the fluid phase is given by
𝜕
(

𝜀𝑔𝜌𝑔𝑋𝑔𝑘
)

𝜕𝑡
+ 𝛁 ⋅

(

𝜀𝑔𝜌𝑔𝑋𝑔𝑘𝒖𝑔
)

= 𝛁 ⋅
(

𝜀𝑔 𝑔𝑘
)

+ 𝜌𝑝→𝑔𝑘 ≡ 𝑆𝜌
𝑘 , ∀𝑘 = 1,… , 𝑁𝑔 , (4)

where 𝑋𝑔𝑘 ∈ [0, 1], is the 𝑘-th fluid species mass fraction of 𝑁𝑔 different fluid species. The species mass fractions are
required to satisfy the identity ∑

𝑘𝑋𝑔𝑘 = 1. The quantity  𝑔𝑘 is the fluid species diffusion flux. Rather than using a
more detailed Maxwell-Stefan representation of species diffusion, we use a Fickian approximation [6] for the species
flux,

 𝑔𝑘 = 𝜌𝑔𝑔𝛁𝑋𝑔𝑘, ∀𝑘 = 1,… , 𝑁𝑔 .

For simplicity, we have assumed that the diffusion coefficient is a constant for all species, 𝑔𝑘 = 𝑔 . The second
source term, 𝜌𝑝→𝑔𝑘, represents contributions due to heterogeneous chemical reactions with the particles and satisfies
∑

𝑘 
𝜌
𝑝→𝑔𝑘 = 𝜌𝑝→𝑔 . The two source terms of (4) are combined into a single quantity 𝑆𝜌

𝑘 for convenience when the
equation of state is introduced in Section 2.2.

In low Mach number models, the conservation of energy is expressed in terms of enthalpy,
𝜕
(

𝜀𝑔𝜌𝑔ℎ𝑔
)

𝜕𝑡
+ 𝛁 ⋅

(

𝜀𝑔𝜌𝑔ℎ𝑔𝒖𝑔
)

− 𝜀𝑔
𝑑𝑝therm

𝑑𝑡
=

𝑁𝑔
∑

𝑘=1
𝛁 ⋅

(

𝜀𝑔ℎ𝑔𝑘 𝑔𝑘
)

− 𝛁 ⋅
(

𝜀𝑔𝒒𝑔
)

+ ℎ
𝑝→𝑔 + ℎ𝑝→𝑔 ≡ 𝑆ℎ, (5)

where ℎ𝑔 is the specific enthalpy of the fluid, and ℎ𝑔𝑘 is the specific enthalpy of the 𝑘-th fluid species. 𝑝therm is the
thermodynamic pressure defined in eq. (1), which is only a function of time. Conductive heat transfer is given by
Fourier’s law [6]

𝒒𝑔 = −𝜅𝑔𝛁𝑇𝑔 ,

where 𝑇𝑔 is the fluid temperature, and 𝜅𝑔 is the thermal conductivity coefficient. Given a fixed reference temperature
𝑇ref , the specific enthalpy of the fluid species is

ℎ𝑔𝑘
(

𝑇𝑔
)

= ℎref𝑔𝑘 + ∫

𝑇𝑔

𝑇ref
𝑐𝑝,𝑔𝑘

(

𝑇 ′) 𝑑𝑇 ′, ∀𝑘 = 1,… , 𝑁𝑔 ,

where 𝑐𝑝,𝑔𝑘 (which is a function of 𝑇𝑔) is the specific heat at constant pressure of species 𝑘, and ℎref𝑔𝑘 is the 𝑘-th fluid
species specific enthalpy of formation at 𝑇ref temperature. Then, for an ideal gas, the specific mixture enthalpy ℎ𝑔 of
the fluid is

ℎ𝑔
(

𝑇𝑔
)

=
𝑁𝑔
∑

𝑘=1
𝑋𝑔𝑘ℎ𝑔𝑘

(

𝑇𝑔
)

. (6)

The additional right hand side terms in eq. (5) correspond to the enthalpy flux due to the species diffusion and
interphase enthalpy sources from convective heat transfer, ℎ

𝑝→𝑔 , and due to the heterogeneous chemical reactions,
ℎ𝑝→𝑔 . Again, all terms on the right-hand side of the conservation of enthalpy equation are combined into a single
convenience quantity, 𝑆ℎ.
2.2. Fluid phase equation of state

The system of conservation equations for the fluid phase is closed by prescribing an equation of state from which
we can derive a constraint on the fluid velocity field. The constraint forces the evolution of the conservation equations
to be consistent with the equation of state and determines the perturbational pressure, 𝜋𝑔 . Details of the computation
of 𝜋𝑔 are discussed in Section 3.1. We consider two equations of state: an incompressible fluid and a multicomponent
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ideal gas. The incompressible fluid formulation is used for non-reacting, cold-flow simulations where the fluid density
is constant. In this case, the constraint is given by

𝜕𝜀𝑔
𝜕𝑡

+ 𝛁 ⋅
(

𝜀𝑔𝒖𝑔
)

= 0, (7)
which states that the flux of fluid into a region is exactly balanced by the change in fluid volume fraction.

For more general cases, where reactions, heat transfer, and species transport play an essential role, the fluid phase
is treated as a multicomponent ideal gas with the equation of state given by

𝑝therm = 𝜌𝑔𝑅𝑇𝑔

𝑁𝑔
∑

𝑘=1

𝑋𝑔𝑘

𝑊𝑔𝑘
, (8)

where 𝑅 is the universal gas constant and 𝑊𝑔𝑘 is the 𝑘-th gas species molecular weight.
When the system is open, it maintains a specified ambient pressure throughout the evolution so that the

thermodynamic pressure is constant; i.e., 𝑝therm = 𝑝amb = const. One can show that this constraint implies
𝜕𝜀𝑔
𝜕𝑡

+ 𝛁 ⋅
(

𝜀𝑔𝒖𝑔
)

= 𝑆ℎ

𝜌𝑔𝑐𝑝,𝑔𝑇𝑔
+ 1

𝜌𝑔

𝑁𝑔
∑

𝑘=1

( 𝑊𝑔

𝑊𝑔𝑘
−

ℎ𝑔𝑘
𝑐𝑝,𝑔𝑇𝑔

)

𝑆𝜌
𝑘 ≡ 𝑆, (9)

where 𝑊𝑔 and 𝑐𝑝,𝑔 are the molecular weight and the specific heat constant of the mixture of species for the fluid phase,
respectively. 𝑆 is a term that represents the right-hand side of the constraint equation and will be used later. 𝑊𝑔 and
𝑐𝑝,𝑔 are defined as

𝑊𝑔 =

( 𝑁𝑔
∑

𝑘=1

𝑋𝑔𝑘

𝑊𝑔𝑘

)−1

, and 𝑐𝑝,𝑔
(

𝑇𝑔
)

=
𝑁𝑔
∑

𝑘=1
𝑋𝑔𝑘𝑐𝑝,𝑔𝑘

(

𝑇𝑔
)

.

This constraint ensures that the evolution of the species’ masses and enthalpy are constrained so that the thermodynamic
pressure remains constant. Details of the derivation of the constraint are shown in Appendix A.

For a closed system, the constraint is more complex because the fluid occupies a fixed volume, and the
thermodynamic pressure needs to evolve in time to balance processes such as reactions. The approach here follows
the work discussed in Nonaka et al. [30]. In this case, the equation of state takes the form of a constraint on the fluid
velocity and an equation for the evolution of the thermodynamic pressure

𝜕𝜀𝑔
𝜕𝑡

+ 𝛁 ⋅
(

𝜀𝑔𝒖𝑔
)

= 𝛿𝑆 − 𝛿𝜃𝑆
𝜃
, and

𝐷𝑝therm
𝐷𝑡

= 𝑆
𝜃
. (10)

Here we have introduced the decomposition of a variable 𝜙 = 𝜙̄ + 𝛿𝜙 into its mean value 𝜙̄ and its fluctuations 𝛿𝜙,
and 𝑆 represents the right hand side of the constraint (9) discussed above. We also define 𝜃 as

𝜃 = 𝜀𝑔

(

1
𝑝therm

− 1
𝜌𝑔𝑐𝑝,𝑔𝑇𝑔

)

.

As in the open system case, this constraint analytically enforces that the evolution of the gas density and temperature
are consistent with the ideal gas equation of state (8). Details of this derivation can also be found in Appendix A.
2.3. Particle equations

The positions and velocities of the particles are computed using a DEM approach that models particle collisions via
a soft-sphere spring-dashpot model [7]. Particles are assumed to be spherical and with constant diameter;1 therefore,
the 𝑝-th particle mass is given by 𝑚𝑝 = 𝜌𝑝𝑝 where 𝜌𝑝 is the particle density, and 𝑝 = 𝜋𝑑3𝑝∕6 is particle volume. The
mass balance equation for the 𝑝-th particle satisfies2

𝑑𝑚𝑝

𝑑𝑡
= 𝐺𝑚

𝑔→𝑝, (11)
1We do not consider breakage or agglomeration models that would cause particle mass to change without chemical reactions or phase changes.
2The loss of mass could be reflected in a change in diameter rather than a change in density; however, this case introduces additional complexity

into the gas phase equation. Specifically, the low Mach number constraints discussed above would need to be modified to take this into account.
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where 𝐺𝑚
𝑔→𝑝 is the net mass transfer between the 𝑝-th particle and the fluid. 𝐺𝑚

𝑔→𝑝 is positive when the particle receives
mass from the fluid phase, and it is negative when there is a transfer of mass from the particles to the fluid phase. This
term contributes to the right-hand side of the fluid continuity equation (2), 𝜌𝑝→𝑔 , so that the net mass in the system is
not changed. The connection between these terms is discussed in Section 2.4.1.

The motion of the particle is given by

𝑑𝒙𝑝
𝑑𝑡

= 𝒖𝑝, and
𝑑
(

𝑚𝑝𝒖𝑝
)

𝑑𝑡
= 𝑚𝑝𝒈 + 𝑭𝑝𝑤 +

𝑁ngb
∑

𝑞=1
𝑭𝑝𝑞 + 𝑭𝑳

𝑔→𝑝 +𝑮𝑳
𝑔→𝑝, (12)

where 𝒙𝑝 is the particle position and 𝒖𝑝 is the particle velocity. The first three forces on the right-hand side represent
gravitational acceleration, collision forces with wall boundaries, and collision forces with the 𝑁ngb neighbor particles,
respectively. The last two terms account for interphase linear momentum exchange related to drag and buoyancy, 𝑭𝑳

𝑔→𝑝,
and linear momentum transfer from chemical reactions, 𝑮𝑳

𝑔→𝑝.
The angular momentum equation for each particle is given by

𝑑
(

𝐼𝑝𝝎𝑝
)

𝑑𝑡
= 𝑻𝑝𝑤 +

𝑁ngb
∑

𝑞=1
𝑻𝑝𝑞 , (13)

where 𝐼𝑝 = 𝑚𝑝𝑑2𝑝∕10 is the particle moment of inertia. On the right-hand side, the first term represents torque arising
from collisions with wall boundaries, and the second term accounts for the sum of the torques produced by collisions
with the 𝑁ngb neighbor particles.

The solid species mass evolution for each particle is
𝑑
(

𝑚𝑝𝑋𝑝𝑘
)

𝑑𝑡
= 𝐺𝑚

𝑔→𝑝𝑘, ∀𝑘 = 1,… , 𝑁𝑠, (14)

where 𝑋𝑝𝑘 represents the mass fraction of the 𝑘-th species in the particle. The terms on the right-hand side account
for the change in the 𝑘-th species mass fraction due to reactions within a single particle3 and heterogeneous chemical
reactions with the gas phase. 𝑁𝑠 is the number of species for the dispersed phase.

The evolution of the enthalpy for each particle is given by
𝑑
(

𝑚𝑝ℎ𝑝
)

𝑑𝑡
= 𝐹𝐻

𝑔→𝑝 + 𝐺𝐻
𝑔→𝑝, (15)

where ℎ𝑝 is the particle’s specific enthalpy, 𝐹𝐻
𝑔→𝑝 accounts for the interphase convective heat transfer, and the last term

represents enthalpy sources from interphase chemical reactions. We view each particle as a mixture of 𝑁𝑠 different
solid species so that the specific enthalpy, ℎ𝑝 for particle 𝑝 is

ℎ𝑝
(

𝑇𝑝
)

=
𝑁𝑠
∑

𝑘=1
𝑋𝑝𝑘ℎ𝑝𝑘

(

𝑇𝑝
)

, (16)

where 𝑇𝑝 is the particle temperature and ℎ𝑝𝑘(𝑇𝑝) is the specific heat of the 𝑘-th solids species, defined by the following
equation:

ℎ𝑝𝑘
(

𝑇𝑝
)

= ℎref𝑝𝑘 + ∫

𝑇𝑝

𝑇ref
𝑐𝑝,𝑝𝑘 (𝑇 ) 𝑑𝑇 , ∀𝑘 = 1,… , 𝑁𝑠. (17)

Here, 𝑐𝑝,𝑝𝑘 is the specific heat coefficient of the 𝑘-th solid species at constant pressure, 𝑇ref is the reference temperature,
and ℎref𝑝𝑘 is the specific enthalpy of formation of the 𝑘-th solid species at 𝑇ref temperature.

3We do not consider chemical reactions between two particles.
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2.4. Fluid-particle coupling
Unlike particle-resolved direct numerical simulations [38], closure models are needed to account for interphase

mass, momentum, and energy transfer. These terms are computed at the 𝑝-th particle position using continuous fluid
properties mapped to the particle location by an interpolation operator, 𝜒 . A given particle property, 𝐵𝑝, is transformed
into a continuous field, , by the unit normal transfer kernel  [3, 9]

 (𝒙, 𝑡) =
𝑁txfr
∑

𝑝=1
𝐵𝑝(𝑡) 

(

‖

‖

‖

𝒙 − 𝒙𝑝
‖

‖

‖

)

. (18)

Both 𝜒 and  are compact and monotonically decreasing so that only a small compact subset of computational cells
near the 𝑝-th particle contributes to the interpolated value, and only a few particles 𝑁txfr contribute to an Eulerian cell
value of a filtered particle property. Details of the numerical implementation are provided in [28]. Subsequent sections
present the fluid-particle transfer terms for mass, momentum, and energy, which are computed at a particle’s position
before being transferred to the fluid.
2.4.1. Species mass

For a system with  heterogeneous chemical reactions, the interphase species mass transfer rates between the fluid
and 𝑝-th particle are given by

𝐺𝑚
𝑝→𝑔𝑘 =


∑

𝑞=1

[

𝛼𝑔𝑘
]

𝑞 𝑊𝑔𝑘𝑞 , 𝐺𝑚
𝑔→𝑝𝑘 =


∑

𝑞=1

[

𝛼𝑝𝑘
]

𝑞 𝑊𝑝𝑘𝑞 ,

where 𝑞 is the reaction rate and [

𝛼𝑔𝑘
]

𝑞 and [

𝛼𝑝𝑘
]

𝑞 are the signed stoichiometric coefficients of the 𝑘-th fluid and
particle species for the 𝑞-th reaction, respectively. The sign of a stoichiometric coefficient is positive if the species is
produced and negative if the species is consumed. The total mass transfer rates due to heterogeneous chemical reactions
𝐺𝑚
𝑔→𝑝 and 𝐺𝑚

𝑝→𝑔 , respectively for the 𝑝-th particle and the fluid, are

𝐺𝑚
𝑝→𝑔 =

𝑁𝑔
∑

𝑘=1
𝐺𝑚
𝑝→𝑔𝑘, and 𝐺𝑚

𝑔→𝑝 =
𝑁𝑠
∑

𝑘=1
𝐺𝑚
𝑔→𝑝𝑘,

which satisfy 𝐺𝑚
𝑝→𝑔 + 𝐺𝑚

𝑔→𝑝 = 0. Also, 𝐺𝑚
𝑔→𝑝 and 𝐺𝑚

𝑔→𝑝𝑘 are source terms in the particle mass (11) and species
mass (14) equations. Here, the source terms connected to chemical reactions for the fluid species mass (4) and
continuity (2) equations are obtained by volume filtering 𝐺𝑚

𝑝→𝑔𝑘 and summing over all fluid species:

𝜌𝑝→𝑔𝑘 =
𝑁txfr
∑

𝑝=1
𝐺𝑚
𝑝→𝑔𝑘

(

‖

‖

‖

𝒙 − 𝒙𝑝
‖

‖

‖

)

, and 𝜌𝑝→𝑔 =
𝑁𝑔
∑

𝑘=1
𝜌𝑝→𝑔𝑘.

2.4.2. Momentum
In this work, only buoyancy and steady drag are considered in the linear momentum conservation equations (3)

and (12), due to the high-density ratio of gas and solid particles, in addition to the large Stokes numbers of our target
applications. For this reason, the force acting on each 𝑝-th particle is

𝑭𝑳
𝑔→𝑝 = −𝜒𝑝(𝛁𝑝𝑔) 𝑝 − 𝑓dp

(

𝒖𝑝 − 𝜒𝑝(𝒖𝑔)
)

, (19)
where the first component is related to the buoyancy force, and the second describes the interphase drag acting on the
particle. The linearized drag coefficient in (19), 𝑓dp, is given by

𝑓dp =
1
2
𝐶𝑑𝜒𝑝(𝜌𝑔)

‖

‖

‖

𝒖𝑝 − 𝜒𝑝(𝒖𝑔)
‖

‖

‖

𝐴proj. (20)

where 𝐴proj = 𝜋𝑑2𝑝∕4 is the projected area of the 𝑝-th particle. Three standard multi-particle drag laws have been
implemented to close 𝐶𝑑 in Eq. (19): Wen and Yu [40], Ding and Gidaspow [14, 23], and Tang et al. [5, 37]. The drag
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coefficient, and the drag force component coming from the solids phase, when transferred to the grid, respectively
become

𝛽 =
∑

𝑝
𝑓dp 

(

‖

‖

‖

𝒙 − 𝒙𝑝
‖

‖

‖

)

, and 𝛽𝒖𝑠 =
∑

𝑝
𝑓dp𝒖𝑝 

(

‖

‖

‖

𝒙 − 𝒙𝑝
‖

‖

‖

)

.

Thus, the source term for the fluid momentum equation (3) is given by
𝓵

𝑝→𝑔 = 𝛽𝒖𝑠 − 𝛽𝒖𝑔 .

Finally, we discuss the interphase momentum transfer that occurs when there is a net exchange of mass from one
phase to another. We define the fluid to solid phase, 𝐺𝑳

𝑔→𝑝, and the solid to fluid phase, 𝓵
𝑝→𝑔 , momentum transfer

quantities as

𝐺𝑳
𝑔→𝑝 = max

{

0, 𝐺𝑚
𝑔→𝑝

}

𝜒𝑝(𝒖𝑔), and 𝓵
𝑝→𝑔 =

∑

𝑝
max

{

0, 𝐺𝑚
𝑝→𝑔

}

𝒖𝑝 
(

‖

‖

‖

𝒙 − 𝒙𝑝
‖

‖

‖

)

.

For example, if there is a net mass transfer between the fluid and the 𝑝-th particle, the new mass received by the fluid
is assumed to be moving with the same velocity as the 𝑝-th particle. Conversely, mass transferred from the fluid to the
particle is assumed to be moving at the velocity of the fluid.
2.4.3. Energy

The rate of convective heat exchange between the 𝑝-th particle and the fluid is given by
𝐹𝐻
𝑔→𝑝 = 𝛾𝑝𝐴surf

(

𝜒𝑝(𝑇𝑔) − 𝑇𝑝
)

,

where 𝐴surf = 𝜋𝑑2𝑝 is the particle surface area, and 𝑇𝑔 and 𝑇𝑝 are the fluid and particle temperatures, respectively.
𝛾𝑝 = Nu𝑝𝜅𝑔∕𝑑𝑝 is the convective heat transfer coefficient, and 𝜅𝑔 is the fluid thermal conductivity. Two Nusselt number
correlations have been implemented to model heat transfer coefficient, Ranz and Marshall [32] and Gunn [19]. When
transferred to the grid, the convective heat coefficient, and the convective heat exchange component coming from the
solids phase, respectively become

Γ =
𝑁txfr
∑

𝑝=1
𝛾𝑝𝐴surf 

(

‖

‖

‖

𝒙 − 𝒙𝑝
‖

‖

‖

)

, and Γ𝑇𝑠 =
𝑁txfr
∑

𝑝=1
𝛾𝑝𝐴surf𝑇𝑝 

(

‖

‖

‖

𝒙 − 𝒙𝑝
‖

‖

‖

)

.

Then, the source term contributing to the fluid enthalpy equation (5) is given by
ℎ
𝑝→𝑔 = Γ𝑇𝑠 − Γ𝑇𝑔 .

The model for heat transfer due to heterogeneous chemical reactions follows the approach described in Musser et al.
[29]. Given the 𝑞-th reaction, the gas phase reactants are transferred to the 𝑝-th particle at the gas phase temperature
𝑇𝑔:

[

𝐺𝐻
𝑔→𝑝

]

𝑞
=

𝑁𝑔
∑

𝑘=1
ℎ𝑔𝑘

(

𝜒𝑝(𝑇𝑔)
)

min
{

0, 𝜒𝑝

( [

𝐺𝑚
𝑝→𝑔𝑘

]

𝑞

)}

.

The above expression relies on the sign of the interphase species mass transfer term to distinguish between reactants
and products. Specifically, [𝐺𝑚

𝑝→𝑔𝑘]𝑞 is negative if the 𝑘-th gas species is a reactant in the 𝑞-th reaction and positive
otherwise. On the other hand, gas phase products are transferred to the gas at the particle temperature:

[

𝐺𝐻
𝑝→𝑔

]

𝑞
=

𝑁𝑔
∑

𝑘=1
ℎ𝑔𝑘(𝑇𝑝) max

{

0,
[

𝐺𝑚
𝑝→𝑔𝑘

]

𝑞

}

.
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The total energy transfer to the gas phase is given by summing [

𝐺𝐻
𝑔→𝑝

]

𝑞 and [

𝐺𝐻
𝑝→𝑔

]

𝑞 over all the heterogeneous
chemical reactions, while the energy transfer to the particle phase is equal but opposite in sign:

𝐺𝐻
𝑝→𝑔 =

𝑄
∑

𝑞=1

(

[

𝐺𝐻
𝑝→𝑔

]

𝑞
+
[

𝐺𝐻
𝑔→𝑝

]

𝑞

)

, and 𝐺𝐻
𝑔→𝑝 = −𝐺𝐻

𝑝→𝑔 .

Finally, the source term for the fluid enthalpy equation (5) is given by the volume filtered equivalent of 𝐺𝐻
𝑝→𝑔:

ℎ𝑝→𝑔 =
𝑁txfr
∑

𝑝=1
𝐺𝐻
𝑝→𝑔 

(

‖

‖

‖

𝒙 − 𝒙𝑝
‖

‖

‖

)

.

3. Numerical method
MFIX-Exa is built on the AMReX software framework [41, 42] that provides data structures and iterators defined on

a block-structured mesh in a distributed memory environment. From a high level, MFIX-Exa uses an operator splitting
approach in which fluid and particle updates are segregated with several coupling steps between them. A breakdown of
the overall advance is presented in Algorithm 1. The fluid phase is advanced using a fractional step approach with an
approximate projection method. Standard forward Euler time-stepping is used to update the particle phase. Coupling
is achieved by a trilinear interpolator transfer kernel. The key numerical methods are given below for particles and
fluid cells in a “regular” neighborhood, i.e., away from domain boundaries. As in AMReX, irregular boundaries are
modeled in MFIX-Exa with an embedded boundary (EB) approach. The EB intersects the fluid mesh producing cut
cells and a level-set function is constructed for particle-wall interactions. Details of the EB-aware Godunov method
and EB-aware transfer kernel which must be applied in “irregular” neighborhoods can be found in Appendix B and
our previous work [26], respectively.
Algorithm 1 Overview of the time step

1: Calculate the fluid volume fraction 𝜀𝑛𝑔 , i.e., the fraction of each cell occupied by fluid rather than particles;
2: Calculate the interphase transfer terms per particle 𝐺𝑚,𝑛

𝑔→𝑝𝑘, 𝐺𝑚,𝑛
𝑔→𝑝, 𝐹

𝐻,𝑛
𝑔→𝑝, 𝐺

𝐻,𝑛
𝑔→𝑝, 𝐅𝑳,𝑛

𝑔→𝑝, 𝐆𝑳,𝑛
𝑔→𝑝;

3: Calculate the fluid interphase transfer terms 𝜌,𝑛𝑝→𝑔𝑘, 𝜌,𝑛𝑝→𝑔 , ℎ,𝑛𝑝→𝑔 , 𝓵,𝑛
𝑝→𝑔 , as well as the drag coefficient 𝛽𝑛, the

drag related transfer quantity (𝛽𝒖𝑠)𝑛, the heat transfer convection coefficient Γ𝑛, and the quantity (Γ𝑇𝑠)𝑛 related to
the convective heat transfer;

4: Update the fluid phase (see Algorithm 2 below);
5: Update the particle phase (see Algorithm 3 below).

3.1. Fluid phase update
We break the fluid phase update into two stages – first the update of density, species and enthalpy, followed by the

update of velocity. The fluid phase time integration method is outlined below in Algorithm 2. We stress that during
the fluid phase update from time 𝑡𝑛 to 𝑡𝑛+1, particle quantities are frozen at their 𝑡𝑛 state.

The construction of the advective terms for fluid species, 𝐴𝑛+1∕2
𝑋𝑘 , enthalpy, 𝐴𝑛+1∕2

ℎ , and velocity, 𝐀𝑛+1∕2
𝒖 , follows a

Godunov approach. These terms are computed as:
𝐴𝑛+1∕2
𝑋𝑘 = 𝛁 ⋅

(

𝜀̂𝑔 𝜌̂
𝑛+1∕2
𝑔 𝑋̂𝑛+1∕2

𝑔𝑘 𝒖𝑛+
1∕2,MAC

𝑔

)

, 𝐴𝑛+1∕2
ℎ = 𝛁 ⋅

(

𝜀̂𝑔 𝜌̂
𝑛+1∕2
𝑔 ℎ̂𝑛+

1∕2
𝑔 𝒖𝑛+

1∕2,MAC
𝑔

)

,

and 𝐀𝑛+1∕2
𝒖 =

(

𝜀̂𝑔𝒖̂𝑛𝑔
)

⋅ 𝛁𝒖𝑛+
1∕2,MAC

𝑔 ,

where, by the hat notation we indicate fluid variables computed at the faces of the grid cells. In the Godunov approach,
the fluid quantities are predicted from cell centroids at time 𝑡𝑛 to face centroids at 𝑡𝑛+1∕2, and fluxes are constructed using
these states and an intermediate velocity field, 𝒖𝑛+1∕2,MAC

𝑔 . This differs from the Method-of-Lines approach described
in [28], and it is described in detail in Appendix B.
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Algorithm 2 Update of the fluid phase
1: Update fluid mass density, 𝜌𝑔 , per eq. (2),

𝜌𝑛+1𝑔 = 𝜌𝑛𝑔 +
Δ𝑡
𝜀𝑛𝑔

(

−
∑

𝑘
𝐴𝑛+1∕2
𝑋𝑘 + 𝜌,𝑛𝑝→𝑔

)

.

2: Update species mass fractions, 𝑋𝑔𝑘, per Eq. (4). By including the diffusive term implicitly, solve
(

1 − 𝐿𝐷
𝑋

)

𝑋𝑛+1,∗
𝑔𝑘 =

𝜌𝑛𝑔
𝜌𝑛+1𝑔

𝑋𝑛
𝑔𝑘 +

Δ𝑡
𝜀𝑛𝑔𝜌

𝑛+1
𝑔

(

−𝐴𝑛+1∕2
𝑋𝑘 + 𝜌,𝑛𝑝→𝑔𝑘

)

, ∀𝑘 = 1,… , 𝑁𝑔 ,

where
𝐿𝐷
𝑋

[

𝑋𝑛+1,∗
𝑔𝑘

]

= Δ𝑡
𝜀𝑛𝑔𝜌

𝑛+1
𝑔

𝛁 ⋅
(

𝜀̂𝑛𝑔
𝑛+1,∗
𝑔𝑘

)

, and  𝑛+1,∗
𝑔𝑘 = 𝜌̂𝑛+1𝑔 ̂𝑔𝛁𝑋

𝑛+1,∗
𝑔𝑘 .

Finally, enforce the solution to belong to the closed interval [0, 1] by setting 𝑋𝑛+1,∗
𝑔𝑘 = max(0,min(1, 𝑋𝑛+1,∗

𝑔𝑘 )) and
update the species mass fraction through normalization:

def ine 𝑋∗
𝑔,sum ∶=

𝑁𝑔
∑

𝑗=1
𝑋𝑛+1,∗

𝑔𝑗 , then 𝑋𝑛+1
𝑔𝑘 =

𝑋𝑛+1,∗
𝑔𝑘

𝑋∗
𝑔,sum

, ∀𝑘 = 1,… , 𝑁𝑔 .

3: Update fluid specific enthalpy,ℎ𝑔 , and temperature, 𝑇𝑔 , in three stages. First we define an explicit auxiliary enthalpy
ℎ∗∗𝑔 as

ℎ∗∗𝑔 =
𝜌𝑛𝑔
𝜌𝑛+1𝑔

ℎ𝑛𝑔 +
Δ𝑡

𝜀𝑛𝑔𝜌
𝑛+1
𝑔

(𝜀𝑛𝑔𝑆
𝑛

𝜃
𝑛 − 𝐴𝑛+1∕2

ℎ + 𝛁 ⋅
(

𝜀̂𝑛𝑔
∑

𝑘
ℎ̂𝑛𝑔𝑘

𝑛+1,∗
𝑔𝑘

)

+ ℎ,𝑛𝑝→𝑔

)

,

where 𝑆
𝑛 and 𝜃

𝑛 are defined in Appendix A. Then, the diffusive term is included implicitly and 𝑇 𝑛+1,∗
𝑔 is solved

iteratively using Newton’s method. Specifically, set 𝑇 𝑛+1,0
𝑔 = 𝑇 𝑛

𝑔 , and obtain the updated temperature 𝑇 𝑛+1,𝑘+1
𝑔 by

solving
(

𝑐𝑝,𝑔(𝑇 𝑛+1,𝑘
𝑔 ) − 𝐿𝐷

ℎ

)

𝑇 𝑛+1,𝑘+1
𝑔 = 𝑐𝑝,𝑔(𝑇 𝑛+1,𝑘

𝑔 ) 𝑇 𝑛+1,𝑘
𝑔 − ℎ𝑔(𝑇 𝑛+1,𝑘

𝑔 ) + ℎ∗∗𝑔 ,

where
𝐿𝐷
ℎ

[

𝑇 𝑛+1,𝑘+1
𝑔

]

= Δ𝑡
𝜀𝑛𝑔𝜌

𝑛+1
𝑔

𝛁 ⋅
(

𝜀̂𝑛𝑔 𝜅̂𝑔𝛁𝑇
𝑛+1,𝑘+1
𝑔

)

.

Update the specific enthalpy ℎ𝑛+1,∗𝑔 = ℎ𝑔(𝑇
𝑛+1,∗
𝑔 ) per eq. (6) with the intermediate temperature. Then, include the

interphase convective heat transfer term implicitly and apply Newton’s method again to get 𝑇 𝑛+1
𝑔 . Specifically, set

𝑇 0
𝑔 = 𝑇 𝑛+1,∗

𝑔 and iteratively solve
(

𝑐𝑝,𝑔(𝑇 𝑛+1,𝑘
𝑔 ) + Δ𝑡Γ𝑛

𝜀𝑛𝑔𝜌
𝑛+1
𝑔

)

𝑇 𝑛+1,𝑘+1
𝑔 = 𝑐𝑝,𝑔(𝑇 𝑛+1,𝑘

𝑔 ) 𝑇 𝑛+1,𝑘
𝑔 − ℎ𝑔(𝑇 𝑛+1,𝑘

𝑔 ) + ℎ𝑛+1,∗𝑔 + Δ𝑡
𝜀𝑛𝑔𝜌

𝑛+1
𝑔

(

Γ𝑇𝑠
)𝑛 .

Finally, update the specific enthalpy again with the final temperature 𝑇 𝑛+1
𝑔 .
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4: Update momentum to get an approximated velocity field 𝒖∗∗𝑔 per eq. (3),
(

1 − 𝐿𝐷
𝑢

)

𝒖𝑛+1,∗𝑔 = 𝒖𝑛𝑔 + Δ𝑡 𝒈 −
Δ𝑡𝐀𝑛+1∕2

𝒖
𝜀𝑛𝑔

+ Δ𝑡

𝜀𝑛𝑔𝜌
𝑛+1∕2
𝑔

(

−𝜀𝑛𝑔𝐆
𝑛−1∕2
𝑝 + 𝓵,𝑛

𝑝→𝑔

)

,

where 𝜌𝑛+
1∕2

𝑔 = 0.5 ⋅ (𝜌𝑛𝑔 + 𝜌𝑛+1𝑔 ), and

𝐿𝐷
𝑢

[

𝒖𝑛+1,∗𝑔

]

= Δ𝑡
𝜀𝑛𝑔𝜌

𝑛+1
𝑔

𝛁 ⋅ 𝝉𝑛+1,∗𝑔 .

Finally, obtain a provisional velocity field 𝒖𝑛+1,∗𝑔 at 𝑡𝑛+1, by implicitly including the interphase momentum transfer
from fluid-particle interfacial drag:

(

1 +
Δ𝑡𝛽𝑛

𝜀𝑛𝑔𝜌
𝑛+1∕2
𝑔

)

𝒖𝑛+1,∗𝑔 = 𝒖∗∗𝑔 + Δ𝑡

𝜀𝑛𝑔𝜌
𝑛+1∕2
𝑔

(

𝛽𝒖𝑠
)𝑛 .

5: Project the provisional velocity field to enforce the divergence constraint by solving the following equation in
𝐆𝑛+1∕2

𝑝

𝛁 ⋅

(

Δ𝑡 𝜀𝑛𝑔

𝜌𝑛+
1∕2

𝑔

𝐆𝑛+1∕2
𝑝

)

= 𝛁 ⋅

(

𝜀𝑛𝑔𝒖
𝑛+1,∗
𝑔 +

𝜀𝑛𝑔 Δ𝑡

𝜌𝑛+
1∕2

𝑔

𝐆𝑛−1∕2
𝑝

)

− 𝑆𝑛+1.

Here, 𝑆𝑛+1 is the right-hand-side of the constraint defined in Eq. (9). Then, define the new-time velocity field as

𝒖𝑛+1𝑔 = 𝒖𝑛+1,∗𝑔 − Δ𝑡

𝜌𝑛+
1∕2

𝑔

𝐆𝑛+1∕2
𝑝 .

3.2. Solids phase update
Many of the details of the particle update have been previously published in [26] which are now extended to include

species and enthalpy. Therefore, only an overview of the advancement algorithm is presented here. Particle quantities
are updated only after the advance of the fluid phase is complete. For each fluid time step, Δ𝑡,the particles are advanced
multiple substeps at Δ𝑡DEM < Δ𝑡. Δ𝑡DEM is initialized as a fraction of the collisional time scale 𝜏𝑐𝑜𝑙𝑙, [e.g., see 15, 17]
and adjusted to give an integer number of particle substeps for each fluid step. Substepping uses a simple first-order
Euler method. Typically, Δ𝑡DEM is much smaller than Δ𝑡 in low Mach number flows (see [28]).

The particle velocity update includes particle-wall interactions, particle-particle collisions, and interphase transfer
terms using fluid quantities interpolated from the grid to the particle positions. Mass transfer drives the update of
particle species mass fractions due to heterogeneous chemical reactions. Once the species mass fractions have been
updated, a normalization algorithm is applied to guarantee that ∑𝑘𝑋𝑝𝑘 = 1 when exiting the particle update. Finally,
the particle specific enthalpies are updated to account for heat transfer due to convective processes and interphase
chemical reactions. Then, particle temperatures are updated by implicitly solving eq. (16) using a Newton-Raphson
algorithm, as described in Algorithm 3.
3.3. Eulerian-Lagrangian coupling

In CFD-DEM multiphase flow applications, some physical quantities are transferred from the fluid phase to the
solids phase and vice-versa. The conversion of these quantities between the (fluid) Eulerian grid and the (solid)
Lagrangian points is computed through specific transfer kernels. As discussed in Section 2.4, in MFIX-Exa, we define
an interpolation kernel, 𝜒𝑝, for transferring fluid phase quantities from a compact stencil, 𝑆𝑝, made of 23 cells in the
Eulerian grid, to the 𝑝-th particle position, see Section 3.3 for example. On the other hand, we define a deposition
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Algorithm 3 Update of the particle phase
1: Update particle mass, 𝑚𝑝, per eq. (11)

𝑚𝑛+1
𝑝 = 𝑚𝑛

𝑝 + Δ𝑡DEM 𝐺𝑚,𝑛
𝑔→𝑝.

2: Update species mass fractions, 𝑋𝑝𝑘, per eq. (14),

𝑋𝑛+1,∗
𝑝𝑘 =

𝑚𝑛
𝑝

𝑚𝑛+1
𝑝

𝑋𝑛
𝑝𝑘 +

Δ𝑡DEM
𝑚𝑛+1
𝑝

(

𝐺𝑚,𝑛
𝑔→𝑝𝑘

)

, ∀𝑘 = 1,… , 𝑁𝑠.

Then, by computing 𝑋𝑛+1,∗
𝑝𝑘 = max(0,min(1, 𝑋𝑛+1,∗

𝑝𝑘 )), enforce 𝑋𝑛+1,∗
𝑝𝑘 to belong to the closed interval [0, 1], and

update species mass fractions through normalization of 𝑋𝑛+1,∗
𝑝𝑘 :

def ine 𝑋∗
𝑝,sum ∶=

𝑁𝑠
∑

𝑗=1
𝑋𝑛+1,∗

𝑝𝑗 , then 𝑋𝑛+1
𝑝𝑘 =

𝑋𝑛+1,∗
𝑝𝑘

𝑋∗
𝑝,sum

, ∀𝑘 = 1,… , 𝑁𝑠,

3: Update particle specific enthalpy, ℎ𝑝, per eq. (15),

ℎ𝑛+1𝑝 =
𝑚𝑛
𝑝

𝑚𝑛+1
𝑝

ℎ𝑛𝑝 +
Δ𝑡DEM
𝑚𝑛+1
𝑝

(

𝐹𝐻,𝑛
𝑔→𝑝 + 𝐺𝐻,𝑛

𝑔→𝑝

)

,

then compute the particle mixture temperature 𝑇𝑝 by solving the implicit eq. (16) using Newton’s method. First
define 𝑇 𝑛+1,0

𝑝 = 𝑇 𝑛
𝑝 , then iteratively solve

𝑐𝑝,𝑝(𝑇 𝑛+1,𝑘
𝑝 )𝑇 𝑛+1,𝑘+1

𝑝 = 𝑐𝑝,𝑝(𝑇 𝑛+1,𝑘
𝑝 )𝑇 𝑛+1,𝑘

𝑝 +
(

ℎ𝑛+1𝑝 − ℎ𝑝(𝑇 𝑛+1,𝑘
𝑝 )

)

,

4: Update particle velocity 𝒖𝑝, per eq. (12),

𝒖𝑛+1𝑝 =
𝑚𝑛
𝑝

𝑚𝑛+1
𝑝

𝒖𝑛𝑝 +
Δ𝑡DEM
𝑚𝑛+1
𝑝

(

𝑚𝑛
𝑝𝒈 + 𝑭 𝑛

𝑝𝑤 +
𝑁ngb
∑

𝑞=1
𝑭 𝑛
𝑝𝑞 + 𝑭𝑳,𝑛

𝑔→𝑝 +𝑮𝑳,𝑛
𝑔→𝑝

)

,

and then particle position 𝒙𝑛+1𝑝 = 𝒙𝑛𝑝 + Δ𝑡DEM 𝒖𝑛+1𝑝 .
5: Update particle angular velocity 𝝎𝑝, per eq. (13),

𝝎𝑛+1
𝑝 =

𝐼𝑛𝑝
𝐼𝑛+1𝑝

𝝎𝑛
𝑝 +

Δ𝑡DEM
𝐼𝑛+1𝑝

(

𝑻 𝑛
𝑝𝑤 +

𝑁ngb
∑

𝑞=1
𝑻 𝑛
𝑝𝑞

)

.

kernel, , for transferring particle phase quantities from their position to the centroids of the fluid phase cells they
occupy, see [28].

Considering the 𝑝-th particle position 𝒙𝑝 = (𝑥𝑝, 𝑦𝑝, 𝑧𝑝), the upper indices (𝑖, 𝑗, 𝑘) of the 𝑆𝑝 stencil are:

𝑖 =
⌊𝑥𝑝 −𝐷𝑙𝑜𝑤,𝑥

Δ𝑥
+ 0.5

⌋

, 𝑗 =
⌊𝑦𝑝 −𝐷𝑙𝑜𝑤,𝑦

Δ𝑦
+ 0.5

⌋

, and 𝑘 =
⌊𝑧𝑝 −𝐷𝑙𝑜𝑤,𝑧

Δ𝑧
+ 0.5

⌋

, (21)

where Δ𝑥, Δ𝑦, and Δ𝑧 are the grid spacing in each of the three dimensions, and 𝐷𝑙𝑜𝑤,𝑥, 𝐷𝑙𝑜𝑤,𝑦, and 𝐷𝑙𝑜𝑤,𝑧 are the
physical locations of the lower side of the domain.

When all the cells for the interpolation or deposition are regular, i.e., they do not contain any embedded boundary
cells, we use standard trilinear kernels for transferring the different physical quantities. On the other hand, close to the
Porcu et al.: Preprint submitted to Elsevier Page 11 of 29
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⎫
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Figure 1: On the left: cell indexing (from 0 to 7) for the 23-cells compact stencil used for the interpolation kernel, 𝜒𝑝, that
maps fluid (Eulerian) quantities to solid (Lagrangian) positions. Indexes 𝑖, 𝑗, and 𝑘 are defined as in (21). On the right: a
bi-dimensional representation of a regular stencil (in blue) and an irregular stencil (in red), including cut-cells. The black
circles (a) and (b) represent particles, while dot-dashed lines represent the distances of the particles from the centroids of
the cells. The solid black line represents the embedded boundaries.

embedded boundaries, the approach is more complex when any of the cells are cut or covered, and we use nonlinear
transfer kernels. We refer to [28] for a detailed description of these different situations.

4. Results and discussion
This section presents and discusses some numerical results obtained with MFIX-Exa. The problems addressed in

the following subsections represent benchmarks that assess the performance, the correctness of our model, and the
accuracy of our implementation.

The results are reported here in different categories. First, we present three verification tests: (i) transient heat
conduction in packed beds, (ii) water droplet evaporating in a humidified air flow, and (iii) water vapor condensing on
a water droplet. Then, we discuss two validation tests: (i) a cooling fluidized bed and a (ii) CO2 capture in a fluidized
bed. Finally, we assess MFIX-Exa’s performance with a weak scaling analysis and by progressively adding physical
and numerical complexity at a single scale.
4.1. Verification
4.1.1. Thermal step: transient heat conduction in packed beds

By assuming a purely 1-D system, Schumann [36] derived an analytical solution to continuum equations for
transient heat conduction in packed beds. Standing for nearly one hundred years, this benchmark solution has been
used many times (see references in [34]). Recently, the Schumann solution was revisited and expanded by Salehi et al.
[34] who used Laplace transforms to derive a transient solution including a uniform particle volumetric heat source.

The same problem setup and flow conditions which were originally used to benchmark a CFD-DEM code [34]
are applied here. The particle size, density, and specific heat are set to 𝑑𝑝 = 2.2 cm, 𝜌𝑝 = 1000 kg∕m3, and
𝑐𝑝,𝑝 = 5 J∕(kgK). The fluid is assumed to be incompressible with the following properties: density 𝜌𝑔 = 1.16 kg∕m3,
viscosity 𝜇𝑔 = 1.8 × 10−5 Pa s, specific heat 𝑐𝑝,𝑝 = 1007 J∕(kgK) and heat conductivity 𝜅𝑔 = 0.026 W∕(mK). The
gas and particles are coupled through the Gunn [19] interfacial heat transfer correlation.

The domain is 8𝑑𝑝 in width and depth and 32𝑑𝑝 tall in the flow direction which is bounded by mass inflow and
pressure outflow boundary conditions. The lateral dimensions are periodic. A uniform Δ𝑥 = 𝑑𝑝 fluid mesh is applied
with one particle per cell. The positions of the particles are held fixed throughout the simulation, by decoupling the
DEM momentum update. The inlet gas velocity is 𝑢𝑖𝑛 = 0.1 m∕s. Due to the uniform conditions, the initial gas velocity
is 𝑢0 = 𝑢𝑖𝑛∕𝜙0 where 𝜙0 = 𝜋∕6. The initial temperature is 𝑇0 = 300 K for both the fluid and the particles. The inlet
temperature is 𝑇𝑖𝑛 = 330 K, giving rise to a thermal step which propagates throughout the domain.

Four enthalpy sources are considered: a strong source 𝑞 = +0.5 J∕(kg s), a strong sink 𝑞 = −0.5 J∕(kg s), a weak
source 𝑞 = +0.05 J∕(kg s), and a weak sink 𝑞 = −0.05 J∕(kg s). The temperature evolution is monitored just below
the center of the domain in the streamwise direction (precisely at the center of the 16th row of the fluid mesh) and
is averaged over the spanwise directions. The fluid and particle responses are compared to the exact solutions for
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(a) Strong enthalpy source: 𝑞 = +0.5 J∕(kgK)
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(b) Strong enthalpy sink: 𝑞 = −0.5 J∕(kgK)
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(c) Weak enthalpy source: 𝑞 = +0.05 J∕(kgK)
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(d) Weak enthalpy sink: 𝑞 = −0.05 J∕(kgK)

Figure 2: Analytical (exact) and numerical (CFD-DEM) profiles of the fluid phase temperature 𝑇𝑔, and the solids phase
temperature 𝑇𝑝, for four test cases of transient heat conduction in packed beds with different enthalpy sources applied to
the particles: (a) strong enthalpy source, (b) strong enthalpy sink, (c) weak enthalpy source, (d) weak enthalpy sink.

the four conditions in Fig. 2. The predicted solutions match the analytical solutions well in all four regimes. Similar
results (not shown) are also found at various elevations throughout the bed. Close examination shows that, compared
to the high level of agreement with the particle temperature, there is some disagreement in the gas-phase temperature.
The CFD-DEM results show a slight bias in all cases, predicting a smaller temperature difference, ||

|

𝑇𝑝 − 𝑇𝑔
|

|

|

, than the
analytical solutions. This bias suggests that the discrepancy arises from the interfacial transfer as the particles are the
enthalpy source (or sink). It is important to note that the exact solution is an analytical solution to continuum equations,
which is not an exact representation of the CFD-DEM model. Specifically, there is no transfer kernel. The CFD-DEM
code of Salehi et al. [34] showed a similar bias, and the authors reached the same conclusion.
4.1.2. Water droplet evaporation

In this benchmark, we follow [29] and study a water droplet evaporating in a humidified airflow. We consider the
water droplet, modeled as a particle, to be suspended in a relatively large cubic domain such that 𝜀𝑔 ≈ 1. Also, we
assume liquid water, H2O(𝑙), to evaporate from the droplet into water vapor, H2O(𝑔).In the simulation, the droplet position is fixed inside a humidified air stream. The initial droplet temperature is
equal to the airflow temperature, and different initial temperatures are chosen for each test. The rate of reaction in units
of molar mass per time (mol∕s) is

 = max
{

0, 𝐴𝑝ΓH2O
(

𝐶𝑝 − 𝐶𝑔
)

}

,
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Air Vapor Liquid

𝑎0 (mol kg−1) 3.568 4.198 × 101 7.256 × 101

𝑎1 (mol kg−1 K−1) −6.787 × 10−4 −2.036 × 10−2 −6.625 × 10−1

𝑎2 (mol kg−1 K−2) 1.554 × 10−6 6.52 × 10−5 2.562 × 10−3

𝑎3 (mol kg−1 K−3) −3.299 × 10−12 5.488 × 10−8 −4.366 × 10−6

𝑎4 (mol kg−1 K−4) −4.664 × 10−13 1.772 × 10−11 2.782 × 10−9

𝑎5 (mol kg−1 K) −1.062 × 103 −3.029 × 105 −4.189 × 104

Table 1
Species-specific coefficients we used for computing specific heat, 𝑐𝑝, and specific enthalpy, ℎ, for the fluid and solid phases
according to the “NASA Polynomials model”, see [8].

where 𝐴𝑝 is the droplet surface area, and ΓH2O is the mass transfer coefficient, and 𝐶𝑝 and 𝐶𝑔 , are the molar
concentrations of liquid water and water vapor at the droplet’s surface, respectively 𝐶𝑝 and 𝐶𝑔 , defined as

𝐶𝑝 =
𝑃sat

(

𝑇𝑝
)

𝑅𝑇𝑔
, and 𝐶𝑔 =

𝑌𝑔,H2O(g) 𝑝𝑔
𝑅𝑇𝑔

,

where 𝑝𝑔 is the gas pressure, 𝑌𝑔,H2O(g) is water vapor mole fraction, 𝑃sat(𝑇𝑝) is the saturation pressure of water vapor
calculated at the droplet’s temperature from [33], and R is the gas constant. The mass transfer coefficient is calculated
from

ΓH2O =
𝑁ShH2O,Air

𝑑𝑝
,

where 𝑁Sh is the particle Sherwood number, H2O,Air is the diffusion coefficient of water vapor in air [27], and 𝑑𝑝is the droplet diameter. Following Musser et al. [29], the Sherwood number correlation of Ranz and Marshall [32] is
applied here.

The domain is a cube with 1 cm long edges and is meshed with 5×5×5 cubic cells. The inlet gas velocity is 3.0m∕s,
and atmospheric pressure enforced at the outlet. The remaining faces are periodic. The initial pressure is also set to
be equal to the atmospheric pressure. The density and droplet diameter are 958.6 kg∕m3 and 1 × 10−3m, respectively.
The specific heat and heat of formation for the three species are defined according to [8] and are computed as follows

𝑐𝑝 (𝑇 ) = 𝑎0 ⋅ 𝑅 + 𝑎1 ⋅ 𝑅 ⋅ 𝑇 + 𝑎2 ⋅ 𝑅 ⋅ 𝑇 2 + 𝑎3 ⋅ 𝑅 ⋅ 𝑇 3 + 𝑎4 ⋅ 𝑅 ⋅ 𝑇 4,

ℎ (𝑇 ) = 𝑎0 ⋅ 𝑅 ⋅ 𝑇 +
𝑎1 ⋅ 𝑅 ⋅ 𝑇 2

2
+

𝑎2 ⋅ 𝑅 ⋅ 𝑇 3

3
+

𝑎3 ⋅ 𝑅 ⋅ 𝑇 4

4
+

𝑎4 ⋅ 𝑅 ⋅ 𝑇 5

5
+ 𝑎5 ⋅ 𝑅,

where the species-specific coefficients 𝑎𝑖, with 𝑖 = 0,… , 5, are listed in Section 4.1.2.
For each test, we ran 15 s of physical time, which is sufficient to reach a steady-state [29]. In Fig. 3a we plot

the droplet temperature and enthalpy sources (convection and heat of vaporization) over time. We observe that the
enthalpy sources converge to the same value after a few seconds, and the droplet temperature decreases until it reaches
a steady state when the rate of enthalpy loss due to the reaction equals the rate of enthalpy gain due to convective heat
transfer. Because the steady droplet temperature is a function of the air temperature and relative humidity [29], we
ran eleven combinations of the gas stream temperature and relative humidity for testing the model. The steady-state
droplet temperature is analyzed in Fig. 3b via parity plots comparing the calculated result against the theoretical wet-
bulb temperature [35]. The largest difference, less than 1K representing a relative error of just 0.25%, is observed for
the 0% humidity case. Consistent with [29], the error decreases with increasing relative humidity.
4.1.3. Water vapor condensation

Now, we consider the reverse case in which water vapor condenses out of the free stream onto the droplet. Again,
the droplet is modeled by a single particle suspended in a relatively large cubic domain of humidified air such that
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0 2 4 6 8 10 12 14
Time (s)

290

292

294

296

298

300

302

304

Dr
op

le
t t

em
pe

ra
tu

re
 (K

)

Tp (MFIX-Exa)

0.000

0.005

0.010

0.015

0.020

0.025

En
er

gy
 so

ur
ce

s (
W

)

Convection
Heat of vaporization

(a) Convection and heat of vaporization drive the droplet tempera-
ture over time.

280 285 290 295 300 305
Steady-state solids phase temperature (K)

280

285

290

295

300

305

W
et

-b
ul

b 
te

m
pe

ra
tu

re
 (K

)

Relative Humidity
0 %
10 %
20 %
30 %
40 %
50 %

60 %
70 %
80 %
90 %
100 %

(b) Wet-bulb and droplet steady-state temperatures
increase with relative humidity.

270 275 280 285 290 295 300 305
Steady-state solids phase temperature (K)

270

275

280

285

290

295

300

305

W
et

-b
ul

b 
te

m
pe

ra
tu

re
 (K

)
Bulk Gas Temperature
278.15 K
283.15 K
288.15 K
293.15 K

298.15 K
303.15 K
308.15 K
313.15 K

(c) Wet-bulb and droplet steady-state temperatures in-
crease with bulk-gas temperature.

Figure 3: Results of the droplet evaporation test. In order: (a) plot of the droplet temperature over time; (b) plot of the
wet-bulb temperature given a steady-state solids phase temperature for different values of relative humidity; (c) plot of
the wet-bulb temperature given a steady-state solids phase temperature for different values of bulk gas temperature.

𝜀𝑔 ≈ 1. Furthermore, we assume that water vapor in the fluid condenses onto the droplet. By precluding evaporation
and any other chemical reactions, mass transfer between the fluid and droplet are equal and opposite.

𝐺𝑚
𝑔→𝑝,H2O(𝑙)

> 0
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

production of
liquid water

, 𝐺𝑚
𝑝→𝑔,H2O(𝑔)

< 0
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

consumption of
water vapor

, 𝐺𝑚
𝑔→𝑝,H2O(𝑙)

= −𝐺𝑚
𝑝→𝑔,H2O(𝑔)

, (22)

The rate of reaction in units of molar mass per time (mol∕s) is

 = max
{

0, 𝐴𝑝ΓH2O𝐶𝑔𝑚,H2O

}

.

where 𝐶𝑔𝑚,H2O is the water vapor concentration difference, defined as

𝐶𝑔𝑚,H2O(𝑔) =
𝜌𝑔

(

𝑋𝑔,H2O(𝑔) −𝑋𝑚,H2O(𝑔)

)

𝑊𝑔,H2O(𝑔)
,
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initial values Run03 Run31 Run35 Run70 Run73 Run74

𝑑𝑝 (m) 0.0029 0.0013 0.0018 0.0025 0.0032 0.0040

𝑇𝑝 (K) 289.15 289.95 289.65 291.95 292.35 290.35

𝑇𝑔 (K) 353.5 312.5 312.5 312.5 309.6 309.6

𝒖𝑔 (m∕s) 1.91 3.49 3.49 3.51 4.97 4.97

𝑋H2O(𝑔) 0.3555 0.0382 0.0382 0.0382 0.0317 0.0317

𝑋air 0.6445 0.9618 0.9618 0.9618 0.9683 0.9683

Table 2
Initial and boundary conditions for the vapor condensation simulations taken from [22]. In all the tests, the gas pressure is
assumed to be equal to the atmospheric pressure 1.013 25 × 105 Pa.
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Figure 4: Experimental (exp) and numerical (CFD-DEM) results of the vapor condensation test. In order: (a) plot of the
droplet temperature over time for Run03; (b) plot of the droplet temperature over time for Run31, Run35, Run70, Run73,
and Run74.

where 𝑋𝑚,H2O(𝑔) is the mass fraction of saturated water vapor at the particles surface

𝑋𝑚,H2O(𝑔) =
𝑊H2O(𝑔)𝑁H2O(𝑔)

𝑊H2O(𝑔)𝑁H2O(𝑔) +𝑊air(1 −𝑁H2O(𝑔))
,

and 𝑁H2O(𝑔) = 𝑃sat(𝑇𝑝)∕𝑝𝑔 is the mole fraction of saturated water vapor at particle surface. Here, 𝑝𝑔 is the gas pressure,
and 𝑃sat(𝑇𝑝) is the saturation pressure of water vapor calculated at the droplet temperature from [33].

Six different conditions are considered, labeled as “Run03”, “Run31”, “Run35”, “Run70”, “Run73”, and “Run74”.
In each case, the initial conditions are described in Section 4.1.3 and are analogous to the experiments discussed
in [22]. Fig. 4a shows the experimental and numerical values for the droplet temperature over time for Run03, together
with the heat sources that drive the droplet temperature, i.e., convective heat transfer and heat of condensation. The
heat of condensation is the source with the more significant role in the droplet temperature rise. The remaining cases
are compared to the corresponding experimental data in Fig. 4b. In some cases we observe non-negligible differences
in the computed temperature values with respect to the data, particularly in Run74. Generally, the predictions improve
as the condensation source driving the temperature rise increases. As discussed bu [29], these discrepancies may be
due an overestimation of the mass transfer rates, inaccurate gas temperature values in the experiment, and the fact that
the air/steam mixture is assumed to be saturated.
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4.2. Validation
4.2.1. Cooling fluidized bed

The bench-scale fluidized bed of Patil et al. [31] is a test with a simple rectangular geometry having width, depth
and height equal to 80, 15, and 250mm, respectively. The particles are 1.0mm glass beads of density 𝜌𝑝 = 2500 kg∕m3.
The specific heat is taken to be 𝑐𝑝,𝑝 = 840 JK∕kg. Two bed masses were investigated, 𝑀 = 75 g and 125 g, which
correspond to approximately 𝑁𝑝 = 57300 and 95500 particles, assumed here to be perfectly monodispersed.

The domain is discretized by a uniform 2.0 mm fluid mesh. Along the depth of the bed, one-quarter of the first and
last cells are cut by the front and back walls (using embedded boundaries). The experimental device included a central,
round jet of diameter 𝐷𝑗 = 13 mm. The central jet was not operated during the relevant experiments; however, this
defect in the uniform inlet could affect the flow and should be modeled. An inactive jet region is modeled as an 8 × 4
parts of fluid cells centered in the inflow plane with zero velocity. This approach gives an effective area approximately
4% smaller than the actual circular jet present in the experimental device. The percentage of the remaining inlet area
with respect to the total cross-sectional area, 𝑎𝑖𝑛 = 1 − 𝐴𝑗∕𝐿𝑥𝐿𝑧, is approximately 90%.

The fluidizing gas is nitrogen modeled as an ideal gas with the following properties: molecular weight 𝑊𝑔 =
28.014 g∕mol, density 𝜌𝑔 = 1.5 kg∕m3, viscosity 𝜇𝑔 = 1.75 × 10−5 Pa s, specific heat 𝑐𝑝,𝑝 = 1041 J∕(kgK) and
thermal conductivity 𝜅𝑔 = 0.0254 W∕(mK). The bed is operated at three “background” velocities, 𝑈𝑏𝑔 = 1.2 m∕s,
1.54 m∕s, and 1.71 m∕s where 𝑈𝑏𝑔 refers to a superficial velocity in the absence of the jet, i.e., the inlet velocity is
prescribed by 𝑢𝑖𝑛 = 𝑈𝑏𝑔∕𝑎𝑖𝑛 = 1.343 m∕s, 1.724 m∕s, and 1.914 m∕s. (Note that the larger bed mass did not operate
at the highest flow condition.) The inlet gas temperature is 𝑇𝑔,𝑖𝑛 = 293.15 K. The initial gas temperature in the bed,
𝑇𝑔,0, and the (constant) embedded boundary temperature, 𝑇𝑤, are also set to 293.15 K.
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(a) “Patil light”: bed mass is equal to 75 g.
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(b) “Patil heavy”: bed mass is equal to 125 g.
Figure 5: Experimental (exp) and numerical (CFD-DEM) results of cooling fluidized beds with the same settings as in
Patil et al. [31]. two different bed masses and three different “background” velocities are considered: (a) the bed has mass
75 g and it is operated at 1.2 m∕s, 1.54 m∕s, and 1.71 m∕s background velocities; (b) the bed has mass 125 g and it is
operated at 1.2 m∕s, and 1.54 m∕s background velocities.

In the experiments, the particles are heated in an oven, discharged into the bed, and immediately fluidized by the
colder nitrogen gas. Numerically, this is modeled simply with a 23 particle packing per fluid cell with initial bed heights
of ℎ0 = 54 mm (𝑀 = 75 g) and ℎ0 = 88 mm (𝑀 = 125 g). The particles are initialized at 𝑇𝑝,0 = 363.15 K. The
fluid and the particles are coupled with the Gidaspow [23] correlation for momentum and the Gunn [19] correlation
for energy. The particles cool as the bed is fluidized, as measured by infrared (IR) imaging. The bed-averaged mean
particle temperature is the most important quantity of interest and perhaps the most reliable measurement. The MFIX-
Exa simulations are compared to the data in Fig. 5. Generally, we see very good agreement between simulation and
experiment at all flow rates and at both bed loadings.
4.2.2. CO2 capturing fluidized bed

The validation dataset of Li et al. [24] (also see the thesis of Janssen [21]) is quite similar to the cooling fluidized
bed of Patil et al. [31]. In fact, the same bench-scale system is used, a simple rectangular bed 80 mm wide, 15 mm

Porcu et al.: Preprint submitted to Elsevier Page 17 of 29



20% CO2 40% CO2 60% CO2 80% CO2 100% CO2

𝑌CO2
0.20 0.40 0.60 0.80 1.00

𝑞𝑒 (g/g) 0.10 0.13 0.15 0.16 0.17

Table 3
Equilibrium adsorption, 𝑞𝑒, of CO2 onto 𝑑𝑝 = 1.9 mm zeolite 13X particles as a function of CO2 mole fraction, 𝑌CO2

, in a
N2-CO2 mixture at atmospheric pressure [21].

deep, and 250 mm long. The unused jet is not mentioned in the reference work [24] and, therefore, not modeled in
this test. The most important change is the material: rather than glass beads, the bed is now filled with zeolite particles
that are highly porous and can adsorb gaseous CO2. The zeolite particles are modeled with the following properties:
diameter 𝑑𝑝 = 1.9 mm, density 𝜌𝑝 = 1100 kg∕m3, and specific heat 𝑐𝑝,𝑝 = 760 JK∕kg. The bed mass is 𝑀 = 40 g,
approximately𝑁𝑝 = 10125 particles. Because the particle diameter has effectively doubled, the fluid mesh is coarsened
by a factor of two relative to the cooling fluidized bed of Patil et al. [31].

The fluidizing gas is a mixture of nitrogen and carbon dioxide. The species dependent properties are 𝑊𝑔,N2
=

28.013 g∕mol, 𝑊𝑔,CO2
= 44.01 g∕mol, 𝑐𝑝,N2

= 1041 J∕(kgK), and 𝑐𝑝,CO2
= 851 J∕(kgK). The mixture is modeled as

an ideal gas with density 𝜌𝑔 = 1.13 kg∕m3, viscosity 𝜇𝑔 = 1.782×10−5 Pa s, heat conductivity 𝜅𝑔 = 0.0259W∕(mK)
and species diffusivity 𝑔 = 16 × 10−6 m2∕s. The single, trivial chemical reaction is:

CO2(𝑔) → CO2(𝑠) .

The reverse reaction, i.e., desorption where CO2 is released from the zeolite pores back into the gas, is not considered.
The “solid” CO2(𝑠), i.e., the carbon dioxide trapped in the pores, is given the same properties as the zeolite so that the
particle properties are independent of the amount of adsorbed CO2. In this case, the heat of formation of CO2(𝑠) is
actually the heat of adsorption, Δ𝐻ads = 30 kJ∕mol. Although there is significant room for improvement, we chose to
apply the 𝑛th-order reaction model developed and originally applied by [24]:

𝑑𝑞
𝑑𝑡

= 𝑘
(

𝑞𝑒 − 𝑞
)𝑛 , and 𝑘 = 𝑘0𝑒

−𝐸𝑎∕𝑅𝑇 , (23)

where 𝑞 is the amount of CO2 adsorbed onto the particle (in g∕g), 𝑞𝑒 is the equilibrium adsorption, i.e., the maximum
amount of CO2 that a particle can adsorb at a given pressure and temperature. The order of the reaction, 𝑛 = 2.47,
was determined from a best-fit of thermogravimetric analysis (TGA) data. The pre-exponent of the Arrhenius equation,
𝑘0 = 1.5×10−5 s−1, was also data-fitted. An activation energy of 𝐸𝑎 = −29.38 kJ∕mol is taken from the open literature
[12] and 𝑅 = 8.3145 J∕(molK) is the universal gas constant. The equilibrium adsorption is also determined from
TGA data by Janssen [21] and provided in Section 4.2.2. These constant values were used directly in the CFD-DEM
simulations of Li et al. [24] which coincides with an assumption that “there is no CO2 supply limitation due to fast
mixing in the relatively small bed and constant CO2 partial pressure on the particles’ surface.” While this may be a
valid assumption, it presents a difficulty when fluidizing the bed with pure N2 (discussed below), i.e., once 𝑞𝑒 is set,
the reaction proceeds whether or not there is any CO2 in the bed or not. Therefore, we use a very simple fit of the data
of Section 4.2.2 for the equilibrium adsorption in the reaction model: 𝑞𝑒 = 0.17 𝑌 0.3

CO2
. It should be strongly stressed that

this fit is not general and does not have appropriate limiting behavior with increasing CO2 partial pressure. However,
it is accurate within the small window of applicability of this experiment and does have the correct limiting behavior
we are interested in, namely

lim
𝑌CO2→ 0

𝑞𝑒 = 0.

The bed wall temperature is set to a constant 𝑇𝑤 = 300 K. The initial fluid and particle temperature is set to
𝑇𝑔,0 = 𝑇𝑝,0 = 296.4 K [24]. The inlet velocity is 𝑢𝑔,𝑖𝑛 = 1.2 m∕s uniform over inflow plane. The particles are
initialized in a uniform eight particles per cell lattice spanning the width and depth of the bed and an initial static bed
height of ℎ0 = 92 mm. This packed, uniform configuration is in stark contrast to the experiment which was fluidized
by pure N2 and then switched to a N2-CO2 mixture. To achieve this fluidized initial state, the bed is fluidized from the
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true initial state for a period of 𝑡0 = 5 s. Then, a rapid transient from 𝑡 = 𝑡0 to 𝑡 = 𝑡0 + 0.1 occurs in which a linear
ramp up in 𝑌CO2

and down in 𝑌N2
occurs. To avoid changing the initial (i.e., at time 𝑡0) bed temperature, the inlet gas

temperature is 𝑇𝑔,𝑖𝑛 = 𝑇𝑔,0 during the startup period. A similar 0.1 s sharp linear ramp in temperature is also triggered
at 𝑡 = 𝑡0 in which 𝑇𝑔,𝑖𝑛 shifts from the initial particle temperature to the desired inlet temperature. We note that there
is some uncertainty in the value of 𝑇𝑔,𝑖𝑛(𝑡 > 𝑡0) which has a non-negligible influence on the quantity of interest. In
their own CFD-DEM simulations, Li et al. [24] use a value of 𝑇𝑔,𝑖𝑛 = 289.15 K, however the experimental description
gives the range of this value as 16 °C to 19 °C. We capture the variation due to this uncertain parameter by running a
pair of simulations for each condition, one using 𝑇𝑔,𝑖𝑛 = 289.15 K and the other with 𝑇𝑔,𝑖𝑛 = 292.15 K.
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(a) CO2 molar fraction equal to 20%.
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(b) CO2 molar fraction equal to 40%.
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(c) CO2 molar fraction equal to 60%.
Figure 6: Experimental (exp) and numerical (CFD-DEM) results of the CO2-capturing fluidized bed tests. The computed
results are compared against the Li et al. [24] dataset for three different values of CO2 mole fractions: (a) 20%, (b) 40%,
and (c) 60%.

As with the cooling bed, the bed averaged particle temperature is the primary quantity of interest in the adsorbing
bed. The particle temperature is again measured experimentally with IR imaging. There is significantly more noise in
the time series data and each condition was repeated three times [24, 21], further increasing the spread of the data. In
an effort to capture the spread of the experimental data, a pair of curves were digitized for each figure representing
an envelope capturing the upper and lower bounds, irrespective of the three ensembles. The simulation results are
also plotted as a pair of curves, owing to the upper and lower inlet gas temperatures prescribed. Therefore while the
experimental and computational results appear similar qualitatively, it is important to note that the former represents an
envelope of aleatory uncertainty while the latter gives the system response to a single (although important) epistemic
input uncertainty. The MFIX-Exa simulations are compared to the experimental data in Fig. 6. As might well be
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expected due to the increased physical complexity of the problem, the agreement is noticeably worse then the non-
reacting case. However, the predictions are still quite good. The model is able to capture the steep rise in temperature
as the particles heat up by capturing CO2 from the fluidizing gas. The maximum temperature is also predicted well, as
is the time that it is reached, corresponding to the saturation of the zeolite particles with adsorbed CO2. Where we see
the most disagreement is in the cooling phase of the simulation. Because the cooling in the adsorbing bed appears to be
predicted slightly worse than the cooling-only bed (non-reacting), this points to an approximation of the kinetic model
of adsorption. Specifically, the equilibrium adsorption is, in general, a decreasing function of temperature. Indeed,
a standard method to regenerate saturated CO2 adsorbers is temperature swing cycle whereby the zeolite particles
are introduced to a high temperature environment to release the CO2 before repeating the process. By neglecting this
secondary reaction mechanism, the model is unable to capture the reduced capacity at the elevated temperature which
is recovered during the cooling phase.
4.3. Performance

In our previous work [28], a weak scaling analysis was performed using an idealized, geometry-free, infinitely
extensible problem setup. The system was periodic in two directions with mass inflow and pressure outflow boundary
conditions in the third dimension. The “base” problem was decomposed into 2 × 2 × 2 grids. Each grid contained
643 fluid cells having an edge 0.5 mm long. Each cell contained eight particles of diameter 𝑑𝑝 = 2 × 10−4m and
density 𝜌𝑝 = 4250.0 kgm−3. The problem was weakly scaled by a factor of 2 first applied along the flow dimension,
then along each of the periodic dimensions, and finally repeated until the desired scale was reached. The same problem
is considered here, first by adding new physics, one at a time, to the original incompressible fluid system and then
repeating the scaling analysis.

Problem
type Physics

0 base problem

1 add solving for fluid density

2 set ideal gas constraint

3 add solving for enthalpy

4 add solving for species

5 add “null” reactions

6 set “not-null” reactions
0 1 2 3 4 5 6

Problem type

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ti
m

e 
pe

r s
in

gl
e 

st
ep

 (s
)

fluid
particle
coupling

0.0

0.5

1.0

1.5

2.0

No
rm

al
ize

d 
tim

e 
pe

r s
in

gl
e 

st
ep

fluid normalized
particle normalized
coupling normalized

Figure 7: Timings for fluid update, particles update, and interphase coupling for different problem types with increasing
computational costs.

To progressively include the different parts of the physical model, we consider the moderate-sized four-cubed
system, i.e., four grids in each dimension. The problem is evolved for ten fluid steps, and the particle spring constant
is set such that there are twenty DEM subcycles per fluid step. All simulations are carried out on the OLCF Summit
supercomputer. Each case is repeated three times, and the lowest total time per step is recorded. First, the original
case is re-run to provide a new baseline (“problem type 0”). The fluid is incompressible and uniform in density, with
𝜌𝑔 = 0.256 695 kgm−3. Then, keeping the same problem definition, density advection is enabled (“problem type 1”).
In this case, density remains uniform and constant; however, the simulation incurs the same computational expense
as if the incompressible fluid had a varying density field. Next, the incompressible constraint is dropped for the open
system ideal gas equation of state (“problem type 2”). For simplicity, the ideal gas is given the molecular weight of pure
nitrogen. The cold-flow simulation becomes hot in the third step: fluid and particles are set to a temperature of 1100 K,
and enthalpy becomes an advected scalar (“problem type 3”). Next, both phases are decomposed into constituent
species (“problem type 4”). Seven fluid species, H2, O2, N2, H2O, CO, CO2 and CH4, and three solid species, Fe2O3,
FeO, and inert, are considered, each with a pair of seven-coefficient NASA polynomials [8] for specific heat capacity
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evaluation. Finally, four heterogeneous chemical reactions are considered
Fe2O3 + H2 → 2FeO + H2O
Fe2O3 + CO → 2FeO + CO2

4Fe2O3 + CH4 → 8FeO + CO2 + 2H2O
4FeO + O2 → 2Fe2O3

representing a reduction of hematite by hydrogen, carbon monoxide, and methane, and the oxidation of wustite in a
lumped model of an ilmenite oxygen carrier. As an intermediate step, the reactions are included, but each is given
a zero rate (“problem type 5”). Finally, the kinetic rates of [1] are included (“problem type 6”) for the reduction and
oxidation reactions. Although encapsulated in a trivial problem setup, this final configuration includes most the physics
needed to represent a CO2 capturing CLR.

The six levels of additional physics above the incompressible baseline are listed in Fig. 7, along with the
corresponding timing results, which show the average cost per fluid step for the fluid advance, the particle subcycling,
and the interphase coupling. All three components increase the computational cost as increasingly complex physical
models are added to the system. In particular, there is a visible increase in the fluid phase update cost when species
mass fractions and reactions with algebraic rates are added to the system. The additional computational cost is due to
the significant increase in the number of operations for the multi-component fluid. Additionally, there is a considerable
jump in the coupling cost when heterogeneous reactions are included, even with null rates. Although the 2x jump for
interphase coupling cost is significant, it remains a small contribution to the total time. We believe the approximately
34% increase in overall time to solution moving from an incompressible system to a hot, reacting system is remarkable.
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Figure 8: Weak scaling analysis for the fluid update, particle update, interphase coupling, and the total updating step

Using the complete physics system, i.e., “problem type 6,” we carried out a weak scaling study from 8 to 1024
grids. Each grid is mapped to one compute rank. On Summit, each rank is a CPU-GPU pair running on an Intel
Power9 and Nvidia P100 GPU architecture. The study was also carried out on the Crusher Test and Development
System. Though smaller in scale, Crusher contains the same next-generation architecture that will soon be available
on Frontier, slated to be the US DOE’s first exascale capable machine. Each rank is mapped to a CPU-GCD pair on
Crusher using AMD EPYC 7A53 CPUs and AMD MI250X, where each MI250x contains two Graphics Compute Dies
(GCDs). The average time per step observed on both machines is provided in Fig. 8. The results show that MFIX-Exa
maintains good performance and scalability on current and emerging leadership-class facilities.

5. Conclusions
This work describes the latest advances in MFIX-Exa for numerical simulation of chemically reacting multiphase

flows. MFIX-Exa’s new features include thermodynamics and chemistry modeling through the addition of conservation
equations for chemical species and energy and the inclusion of chemical reactions. Another improvement we recently
made in MFIX-Exa is the development of an EB-aware Godunov approach for the time integration of the fluid phase.
The Godunov algorithm preserves the second-order accuracy in time while reducing the computational cost. Also,
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we have added the possibility of using the ideal gas equation of state for the fluid phase in either open or closed
domains. The model results were benchmarked against well-known problems such as wet-bulb tests and packed and
fluidized beds. In particular, we ran three verification and two validation tests. The numerical simulations agreed with
the experimental data and analytical solutions, consistently obtaining satisfactory results. Finally the performance of
the new code was benchmarked by progressively adding physical models finding an acceptable increase in time to
solution between cold and fully reacting flows. A weak scaling analysis showed that that code performs well on the
current leadership-class computer (Summit) and will continue to perform well on the next generation of leadership
class computers (Frontier). As we transition to a clean energy economy, mitigating the impact of fossil fuels on climate
is critical and technologies based on chemical looping reactors (CLRs) offer a promising strategies to reduce CO2emissions. We have developed MFIX-Exa to support to the research and development of such technologies by enabling
simulations of industrial-scale CLRs on exascale supercomputers.
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Appendices
Appendix A Ideal gas constraint

We want to constrain the evolution of the thermodynamic equations so that the solution is consistent with the
multicomponent ideal gas equation of state,

𝑝therm = 𝜌𝑔𝑅𝑇𝑔

𝑁𝑔
∑

𝑘=1

𝑋𝑔𝑘

𝑊𝑔𝑘
. (24)

Low Mach number asymptotics [25] show that 𝑝therm is only a function of time; it is constant in space. Rather than
trying to numerically enforce the constraint directly, we will derive a constraint on the velocity field that forces the
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evolution of the thermodynamic variables to satisfy Eq. (8). To derive this constraint we first take the Lagrangian
derivative of the ideal gas equation of state (8) to obtain

𝐷𝑝therm
𝐷𝑡

=
𝑝therm
𝜌𝑔

𝐷𝜌𝑔
𝐷𝑡

+
𝑝therm
𝑇𝑔

𝐷𝑇𝑔
𝐷𝑡

+ 𝑝therm𝑊𝑔

𝑁𝑔
∑

𝑘=1

1
𝑊𝑔𝑘

𝐷𝑋𝑔𝑘

𝐷𝑡
. (25)

Differentiating the definition of the mixture enthalpy Eq. (6) gives

𝑐𝑝,𝑔
𝐷𝑇𝑔
𝐷𝑡

=
𝐷ℎ𝑔
𝐷𝑡

−
𝑁𝑔
∑

𝑘=1
ℎ𝑔𝑘

𝐷𝑋𝑔𝑘

𝐷𝑡
.

Substituting this result into Eq. (25), multiplying by 𝜀𝑔 , and dividing by 𝑝therm, we obtain

𝜀𝑔
𝑝therm

𝐷𝑝therm
𝐷𝑡

=
𝜀𝑔
𝜌𝑔

𝐷𝜌𝑔
𝐷𝑡

+
𝜀𝑔

𝑐𝑝,𝑔𝑇𝑔

⎛

⎜

⎜

⎝

𝐷ℎ𝑔
𝐷𝑡

−
𝑁𝑔
∑

𝑘=1
ℎ𝑔𝑘

𝐷𝑋𝑔𝑘

𝐷𝑡

⎞

⎟

⎟

⎠

+ 𝜀𝑔𝑊𝑔

𝑁𝑔
∑

𝑘=1

1
𝑊𝑔𝑘

𝐷𝑋𝑔𝑘

𝐷𝑡
. (26)

From the conservation equations (2), (4), (5) we can show that
𝜀𝑔
𝜌𝑔

𝐷𝜌𝑔
𝐷𝑡

=
𝜌𝑝→𝑔

𝜌𝑔
−
(𝜕𝜀𝑔

𝜕𝑡
+ 𝛁 ⋅

(

𝜀𝑔𝒖𝑔
)

)

,

𝜀𝑔
𝐷𝑋𝑔𝑘

𝐷𝑡
= 1

𝜌𝑔

[

𝑆𝜌
𝑘 −𝑋𝑔𝑘

(

𝜕
(

𝜀𝑔𝜌𝑔
)

𝜕𝑡
+ 𝛁 ⋅

(

𝜀𝑔𝜌𝑔𝒖𝑔
)

)]

=
𝑆𝜌
𝑘

𝜌𝑔
−

𝑋𝑔𝑘𝑆𝜌

𝜌𝑔
,

𝜀𝑔
𝐷ℎ𝑔
𝐷𝑡

= 1
𝜌𝑔

[

𝜀𝑔
𝐷𝑝therm

𝐷𝑡
+ 𝑆ℎ − ℎ𝑔

(

𝜕
(

𝜀𝑔𝜌𝑔
)

𝜕𝑡
+ 𝛁 ⋅

(

𝜀𝑔𝜌𝑔𝒖𝑔
)

)]

=
𝜀𝑔
𝜌𝑔

𝐷𝑝therm
𝐷𝑡

+ 𝑆ℎ

𝜌𝑔
−

ℎ𝑔𝑆𝜌

𝜌𝑔
.

Substituting these results into Eq. (26) we get
( 𝜀𝑔
𝑝therm

−
𝜀𝑔

𝑐𝑝,𝑔𝜌𝑔𝑇𝑔

)

𝐷𝑝therm
𝐷𝑡

+
(𝜕𝜀𝑔

𝜕𝑡
+ 𝛁 ⋅ (𝜀𝑔𝒖𝑔)

)

= 𝑆ℎ

𝜌𝑔𝑐𝑝,𝑔𝑇𝑔
+

𝑁𝑔
∑

𝑘=1

( 𝑊𝑔

𝑊𝑔𝑘
−

ℎ𝑔𝑘
𝑐𝑝,𝑔𝑇𝑔

) 𝑆𝜌
𝑘

𝜌𝑔
≡ 𝑆,

where we have used the identities

𝑊𝑔

𝑁𝑔
∑

𝑘=1

𝑋𝑔𝑘

𝑊𝑔𝑘
𝑆𝜌 = 𝑆𝜌, and

𝑁𝑔
∑

𝑘=1
ℎ𝑔𝑘𝑋𝑔𝑘𝑆

𝜌 = ℎ𝑔𝑆
𝜌,

to simplify the right hand side.
For an open system case, 𝑝therm = 𝑝amb, where 𝑝amb is a constant ambient pressure. Then, the constraint becomes:

𝜕𝜀𝑔
𝜕𝑡

+ 𝛁 ⋅ (𝜀𝑔𝒖𝑔) = 𝑆,

In this case the net flow into and out of the domain balances expansion and contraction of the fluid so that the pressure
remains constant.

For a closed system, the fluid is confined, so there is no net flow through the domain boundary. Thermodynamic
processes must be balanced by a change in the (spatially constant) thermodynamic pressure. To determine the
thermodynamic pressure evolution we need to look at the constraint more carefully. The constraint has the form

𝜃
𝐷𝑝therm

𝐷𝑡
+
(𝜕𝜀𝑔

𝜕𝑡
+ 𝛁 ⋅

(

𝜀𝑔𝒖𝑔
)

)

= 𝑆, where 𝜃 = 𝜀𝑔

(

1
𝑝therm

− 1
𝑐𝑝,𝑔𝜌𝑔𝑇𝑔

)

.
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where we have replaced the Lagrangian derivative to reflect that 𝑝therm is only a function of time. We also observe that

∫Ω

(𝜕𝜀𝑔
𝜕𝑡

+ 𝛁 ⋅ (𝜀𝑔𝒖𝑔)
)

𝑑𝑉 = ∫𝜕Ω
𝜀𝑔𝒖𝑔 ⋅ 𝒏 𝑑𝐴 = 0.

Here, the integral of the first term is zero reflecting the assumption that the particles volumes and hence the net fluid
volume remain constant.

When there are thermodynamic processes, 𝑆 will not necessarily integrate to zero so its effect cannot be captured
by

𝜕𝜀𝑔
𝜕𝑡

+ 𝛁 ⋅
(

𝜀𝑔𝒖𝑔
)

= 𝑆. (27)
In fact, when 𝑆 does not integrate to zero, there is no 𝒖𝑔 that satisfies Eq. (27). On the other hand, 𝑝therm is only a
function of 𝑡. This induces a decomposition of the dynamics. We break 𝑆 and 𝜃 into their mean values (averages over
the domain) and fluctuations (local values minus the mean) to obtain

(

𝜃 + 𝛿𝜃
) 𝐷𝑝therm

𝐷𝑡
+

𝜕𝜀𝑔
𝜕𝑡

+ 𝛁 ⋅
(

𝜀𝑔𝒖𝑔
)

= 𝑆 + 𝛿𝑆.

The mean component of the dynamics then defines the evolution of 𝑝therm which, in the low Mach number formulation,
is only a function of time and can be reduced to

𝜃
𝑑𝑝therm

𝑑𝑡
= 𝑆, (28)

and the velocity constraint, as anticipated in Eq. (10), becomes
𝜕𝜀𝑔
𝜕𝑡

+ 𝛁 ⋅
(

𝜀𝑔𝒖𝑔
)

= 𝛿𝑆 − 𝛿𝜃𝑆
𝜃
.

Since the right hand side of this equation integrates to zero, the constraint can be enforced.

Appendix B Godunov Methodology with Embedded Boundaries
B.1 Embedded Boundary Method for Complex Geometry

An embedded boundary formulation is used to represent the non-rectangular bounding geometry in the domain. The
irregular boundary is defined by intersecting an analytically-specified boundary with a uniform Cartesian grid, with
irregularly shaped cells, or “cut-cells”, appearing only adjacent to the boundary. The EB information is precomputed
and stored in a distributed database at the beginning of the calculation.

Following standard notation, we define each grid cell (𝑖, 𝑗, 𝑘) to be either covered, cut, or regular. We define
the geometric volume fraction, Λ, (not to be confused with the phasic volume fraction, 𝜀𝑔) of each cell to be the
fraction of that rectangular cell volume that is inside the fluid/particle region: covered cells have Λ = 0, regular
cells have Λ = 1, and for cut cells 0 < Λ < 1. Area fractions, 𝑎, are stored on each cell face, again with values
in [0, 1] representing the fraction of the face not covered. Finally, the location of the cell centroid (which for regular
cells is identical to the cell center), and the locations of the face centroids are stored; these are scaled by the cell
widths so have values in [−0.5, 0.5] for each coordinate direction. Additionally, there is connectivity information
between neighboring cells. For additional details on the embedded boundary implementation, we refer to the AMReX
documentation https://amrex-codes.github.io/amrex/docs_html/.

The construction of the advective terms in the fluid phase update,
𝐴𝑛+1∕2
𝜌 = 𝛁 ⋅

(

𝜀̂𝑔 𝜌̂
𝑛+1∕2
𝑔 𝒖𝑛+

1∕2,MAC
𝑔

)

,

𝐴𝑛+1∕2
𝑋𝑘 = 𝛁 ⋅

(

𝜀̂𝑔 𝜌̂
𝑛+1∕2
𝑔 𝑋̂𝑛+1∕2

𝑔𝑘 𝒖𝑛+
1∕2,MAC

𝑔

)

,

𝐴𝑛+1∕2
ℎ = 𝛁 ⋅

(

𝜀̂𝑔 𝜌̂
𝑛+1∕2
𝑔 ℎ̂𝑛+

1∕2
𝑔 𝒖𝑛+

1∕2,MAC
𝑔

)

, and
𝐀𝑛+1∕2
𝒖 = 𝛁 ⋅

(

𝜀̂𝑔 𝜌̂
𝑛+1∕2
𝑔 𝒖𝑛+

1∕2,MAC
𝑔 ⊗ 𝒖𝑛+

1∕2
𝑔

)

,
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follows a Godunov approach wherein quantities are predicted from cell centroids at time 𝑡𝑛 to face centroids at 𝑡𝑛+1∕2 and
fluxes are constructed using these states and an intermediate velocity field, 𝒖𝑛+1∕2,MAC

𝑔 . This differs from the Method-
of-Lines approach described in [28] and is described in detail below. We note that while the MOL approach required
a CFL of less than 0.5, the Godunov approach allows a CFL up to 1.0.

The Godunov methodology for incompressible Navier-Stokes flow in the absence of cut cells is well-established;
see, e.g. [2]. Here we focus on the differences that result from the presence of the embedded boundaries and the fact
that particles displace the fluid resulting in non-constant fluid volume fraction.
B.2 Creating 𝒖𝑛+

1∕2,MAC
𝑔We start by extrapolating the normal velocities from cell centroids to the centroids of cell faces using a second-

order Taylor series expansion in space and time. For each face with a non-zero area fraction, we extrapolate the normal
velocity component from the centroids of the cells on either side to the face centroid, creating left (L) and right (R)
states. Using an 𝑥-face as an example, for face (𝑖 + 1∕2, 𝑗, 𝑘) we define

𝑢̃𝐿,𝑛+
1∕2

𝑖+1∕2,𝑗,𝑘
= 𝑢̂𝐿

𝑖+1∕2,𝑗,𝑘
+ 𝑑𝑡

2
(−(𝑣𝑢𝑦)𝑖,𝑗,𝑘 − (𝑤𝑢𝑧)𝑖,𝑗,𝑘 + 𝑓 𝑛

𝑥,𝑖,𝑗,𝑘), (29)
extrapolated from (𝑖, 𝑗, 𝑘), where

𝑢̂𝐿
𝑖+1∕2,𝑗,𝑘

= 𝑢𝑛𝑖,𝑗,𝑘 +
(

𝛿𝑥 −
𝑑𝑡
2
𝑢𝑛𝑖,𝑗,𝑘

)

𝑢𝑥𝑖,𝑗,𝑘 + 𝛿𝑦 𝑢
𝑦
𝑖,𝑗,𝑘 + 𝛿𝑧 𝑢

𝑧
𝑖,𝑗,𝑘, (30)

and
𝑢̃𝑅,𝑛+

1∕2
𝑖+1∕2,𝑗,𝑘

= 𝑢̂𝑅
𝑖+1∕2,𝑗,𝑘

+ 𝑑𝑡
2
(−(𝑣𝑢𝑦)𝑖+1,𝑗,𝑘 − (𝑤𝑢𝑧)𝑖+1,𝑗,𝑘 + 𝑓 𝑛

𝑥,𝑖+1,𝑗,𝑘), (31)
extrapolated from (𝑖 + 1, 𝑗, 𝑘), where

𝑢̂𝑅
𝑖+1∕2,𝑗,𝑘

= 𝑢𝑛𝑖+1,𝑗,𝑘 +
(

𝛿𝑥 −
𝑑𝑡
2
𝑢𝑛𝑖,𝑗,𝑘

)

𝑢𝑥𝑖+1,𝑗,𝑘 + 𝛿𝑦 𝑢
𝑦
𝑖+1,𝑗,𝑘 + 𝛿𝑧 𝑢

𝑧
𝑖+1,𝑗,𝑘. (32)

Here the slopes (𝑢𝑥, 𝑢𝑦, 𝑢𝑧) are calculated using a least-squares fit to available data and 𝛿𝑥, 𝛿𝑦 and 𝛿𝑧 are the components
of the distance vector from the cell centroid to the face centroid of the 𝑥-face at (𝑖− 1∕2, 𝑗, 𝑘). These slopes are limited
with a Barth-Jespersen type of limiter [4] that enforces no new maxima or minima when the state is predicted to the
face centroids. If sufficient data is available for cells with unit volume fraction, this computation instead uses a standard
second- or fourth-order slope calculation with limiting as described in [11]. 𝑓 is the sum of external forces, discussed
later.

The transverse derivative terms (𝑣𝑢𝑦 and 𝑤𝑢𝑧 in this case) are evaluated by first extrapolating all velocity
components to the face centroids of the transverse faces from the cell centers on either side, then choosing between
these states using the upwinding procedure defined below. In particular, in the 𝑦 direction we define 𝑼̂𝐹

𝑖,𝑗+1∕2,𝑘
and

𝑼̂𝑇
𝑖,𝑗+1∕2,𝑘

analogously to how we defined 𝑢̂𝑅
𝑖+1∕2,𝑗,𝑘

and 𝑢̂𝐿
𝑖+1∕2,𝑗,𝑘

, but here on the y-faces and including all three velocity
components. Values are similarly traced from (𝑖, 𝑗, 𝑘) and (𝑖, 𝑗, 𝑘 + 1) to the (𝑖, 𝑗, 𝑘 + 1∕2) faces to define 𝑼̂𝐷

𝑖,𝑗,𝑘+1∕2
and

𝑼̂𝑈
𝑖,𝑗,𝑘+1∕2

, respectively.
In this upwinding procedure we first define a normal advective velocity on the face (suppressing the (𝑖, 𝑗 + 1∕2, 𝑘)

spatial indices on front and back states here and in the next equation):

𝑣𝑎𝑑𝑣
𝑖,𝑗+1∕2,𝑘

=

⎧

⎪

⎨

⎪

⎩

𝑣𝐹 , if 𝑣𝐹 > 0, 𝑣𝐹 + 𝑣𝐵 > 0,
0, if 𝑣𝐹 ≤ 0, 𝑣𝐵 ≥ 0 or 𝑣𝐹 + 𝑣𝐵 = 0,
𝑣𝐵 , if 𝑣𝐵 < 0, 𝑣𝐹 + 𝑣𝐵 < 0.

We now upwind 𝑼 based on 𝑣𝑎𝑑𝑣
𝑖,𝑗+1∕2,𝑘

:

𝑼𝑖,𝑗+1∕2,𝑘 =

⎧

⎪

⎨

⎪

⎩

𝑼𝐹 , if 𝑣𝑎𝑑𝑣
𝑖,𝑗+1∕2,𝑘

> 0,
1∕2(𝑼𝐹 + 𝑼𝐵), if 𝑣𝑎𝑑𝑣

𝑖,𝑗+1∕2,𝑘
= 0,

𝑼𝐵 , if 𝑣𝑎𝑑𝑣
𝑖,𝑗+1∕2,𝑘

< 0.
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After constructing 𝑼𝑖,𝑗−1∕2,𝑘,𝑼𝑖,𝑗,𝑘+1∕2 and 𝑼𝑖,𝑗,𝑘−1∕2 in a similar manner, we use these upwind values to form the
transverse derivatives in Eqs. (29) and (31):

(𝑣𝑢𝑦)𝑖,𝑗,𝑘 = 1
2𝑑𝑦

(̂̂𝑣
𝑎𝑑𝑣
𝑖,𝑗+1∕2,𝑘 +

̂̂𝑣
𝑎𝑑𝑣
𝑖,𝑗−1∕2,𝑘)(

̂̂𝑢𝑖,𝑗+1∕2,𝑘 −
̂̂𝑢𝑖,𝑗−1∕2,𝑘), (33)

(𝑤𝑢𝑧)𝑖,𝑗,𝑘 = 1
2𝑑𝑧

( ̂̂𝑤
𝑎𝑑𝑣
𝑖,𝑗,𝑘+1∕2 +

̂̂𝑤
𝑎𝑑𝑣
𝑖,𝑗,𝑘−1∕2)(

̂̂𝑢𝑖,𝑗,𝑘+1∕2 −
̂̂𝑢𝑖,𝑗,𝑘−1∕2). (34)

Here ̂̂𝑣𝑎𝑑𝑣𝑖,𝑗+1∕2,𝑘 is the value of 𝑣𝑎𝑑𝑣 bilinearly interpolated to the center of the face at (𝑖, 𝑗 + 1∕2, 𝑘) from the four nearest
y-face centroids; ̂̂𝑢𝑖,𝑗,𝑘+1∕2 is the value of 𝑢̂ bilinearly interpolated from the same four nearest y-face centroids.

An important note here is that if any of the four faces that contribute to the transverse derivatives for a particular
cell have zero area, all of the transverse and forcing terms are identically set to 0. For example, when constructing
𝑢̃𝐿,𝑛+

1∕2
𝑖+1∕2,𝑗,𝑘

, if any of the areas 𝑎𝑖,𝑗+1∕2,𝑘, 𝑎𝑖,𝑗−1∕2,𝑘, 𝑎𝑖,𝑗,𝑘−1∕2 or 𝑎𝑖,𝑗,𝑘+1∕2 are zero, then we simply define

𝑢̃𝐿,𝑛+
1∕2

𝑖+1∕2,𝑗,𝑘
= 𝑢̂𝐿

𝑖+1∕2,𝑗,𝑘
. (35)

The normal velocity at each face is then determined by an upwinding procedure based on the states predicted from
the cell centers on either side. The procedure is similar to that described above, i.e., (suppressing the (𝑖 + 1∕2, 𝑗, 𝑘)
indices). We note that the upwinding procedure on faces with area fractions less than 1 is identical to that on faces with
area fractions equal to 1. We do not compute values on covered faces (i.e., faces with zero area fraction).

𝑢̃𝑛+
1∕2

𝑖+1∕2,𝑗,𝑘
=

⎧

⎪

⎨

⎪

⎩

𝑢̃𝐿,𝑛+1∕2, if 𝑢̃𝐿,𝑛+1∕2 > 0 and 𝑢̃𝐿,𝑛+1∕2 + 𝑢̃𝑅,𝑛+1∕2 > 0,
0, if 𝑢̃𝐿,𝑛+1∕2 ≤ 0, 𝑢̃𝑅,𝑛+1∕2 ≥ 0 or 𝑢̃𝐿,𝑛+1∕2 + 𝑢̃𝑅,𝑛+1∕2 = 0 ,
𝑢̃𝑅,𝑛+1∕2, if 𝑢̃𝑅,𝑛+1∕2 < 0 and 𝑢̃𝐿,𝑛+1∕2 + 𝑢̃𝑅,𝑛+1∕2 < 0.

(36)

We follow a similar procedure to construct 𝑣̃𝑛+1∕2
𝑖,𝑗+1∕2,𝑘

and 𝑤̃𝑛+1∕2
𝑖,𝑗,𝑘+1∕2

. We refer to this unique value of normal velocity
on each face as 𝑼MAC,∗.
B.3 MAC Projection

To enforce the divergence constraint, we apply a discrete projection by solving the following elliptic equation

𝐷MAC
⎛

⎜

⎜

⎝

𝜀𝑛𝑔

𝜌𝑛+
1∕2

𝑔

𝑮MAC𝜙MAC
⎞

⎟

⎟

⎠

= 𝐷MAC
⎛

⎜

⎜

⎝

2𝜀𝑛+
1∕2

𝑔

𝑑𝑡
𝑼MAC,∗

⎞

⎟

⎟

⎠

, (37)

for 𝜙MAC. Here, 𝐷MAC represents the divergence at cell centroids of area-weighted velocities defined at face centroids
and 𝑮MAC represents the gradient at face centroids of data at cell centers. The density 𝜌𝑛+

1∕2
𝑔 and volume fraction 𝜀𝑛+

1∕2
𝑔

are interpolated separately from cell centroids to face centroids. The solution, 𝜙MAC, which is defined at cell centers,
is then used to compute

𝑼MAC = 𝑼MAC,∗ − 𝑑𝑡

2𝜌𝑛+
1∕2

𝑔

𝑮MAC𝜙MAC. (38)

This projection is done using AMReX EB-aware MacProjector class, whose method MacProjector::project,
given a vector field 𝑉 and a specified 𝑅𝐻𝑆, returns a vector field that satisfies ∇ ⋅ 𝑉 = 𝑅𝐻𝑆.
B.3.1 Velocity forces

The force used for extrapolation is defined by,

𝑓 𝑛
𝑥,𝑖,𝑗,𝑘 = 1

𝜌𝑛+
1∕2

𝑔

(

−(𝐺𝑥𝑝𝑔)
𝑛−1∕2
𝑖,𝑗,𝑘 + 𝜇Δℎ𝑢𝑛𝑖,𝑗,𝑘 + 𝑔𝑥 +

𝜀𝑛𝑔
𝛽𝑛

𝑢𝑛𝑖,𝑗,𝑘

)

. (39)

Here, Δℎ is a standard seven-point cell-centered approximation to the Laplacian and 𝐺 = (𝐺𝑥, 𝐺𝑦, 𝐺𝑧) is a
discretization of the gradient operator which defines a cell-centered gradient from a node-based pressure field.
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B.4 Creating 𝑠𝑛+1∕2

Let the scalar 𝑠 represent any advected quantities as well as all three velocity components. We now extrapolate 𝑠
from cell centroids to face centroids as described in Sec. B.2. For example, on face (𝑖 + 1∕2, 𝑗, 𝑘) we define

𝑠̃𝐿,𝑛+
1∕2

𝑖+1∕2,𝑗,𝑘
= 𝑠̂𝐿

𝑖+1∕2,𝑗,𝑘
+ 𝑑𝑡

2
(−(𝑣𝑠𝑦)𝑖,𝑗,𝑘 − (𝑤𝑠𝑧)𝑖,𝑗,𝑘 + 𝑓 𝑛

𝑥,𝑖,𝑗,𝑘), (40)
extrapolated from (𝑖, 𝑗, 𝑘), where

𝑠̂𝐿
𝑖+1∕2,𝑗,𝑘

= 𝑠𝑛𝑖,𝑗,𝑘 +
(

𝛿𝑥 −
𝑑𝑡
2
𝑢𝑛𝑖,𝑗,𝑘

)

𝑠𝑥𝑖,𝑗,𝑘 + 𝛿𝑦 𝑠
𝑦
𝑖,𝑗,𝑘 + 𝛿𝑧 𝑠

𝑧
𝑖,𝑗,𝑘, (41)

and
𝑠̃𝑅,𝑛+

1∕2
𝑖+1∕2,𝑗,𝑘

= 𝑠̂𝑅
𝑖+1∕2,𝑗,𝑘

+ 𝑑𝑡
2
(−(𝑣𝑠𝑦)𝑖+1,𝑗,𝑘 − (𝑤𝑠𝑧)𝑖+1,𝑗,𝑘 + 𝑓 𝑛

𝑥,𝑖+1,𝑗,𝑘), (42)
extrapolated from (𝑖 + 1, 𝑗, 𝑘), where

𝑢̂𝑅
𝑖+1∕2,𝑗,𝑘

= 𝑢𝑛𝑖+1,𝑗,𝑘 +
(

𝛿𝑥 −
𝑑𝑡
2
𝑢𝑛𝑖,𝑗,𝑘

)

𝑠𝑥𝑖+1,𝑗,𝑘 + 𝛿𝑦 𝑠
𝑦
𝑖+1,𝑗,𝑘 + 𝛿𝑧 𝑠

𝑧
𝑖+1,𝑗,𝑘. (43)

Here again the slopes (𝑠𝑥, 𝑠𝑦, 𝑠𝑧) are calculated using a least-squares fit to available data and 𝛿𝑥, 𝛿𝑦 and 𝛿𝑧 are the
components of the distance vector from the cell centroid to the face centroid of the 𝑥-face at (𝑖−1∕2, 𝑗, 𝑘). The transverse
terms are computed in the same fashion described previously. Now, however, we use the component of 𝑼𝑀𝐴𝐶 normal
to the face in question in upwinding process.

We note again that if any of the four faces that contribute to the transverse derivatives for a particular cell have zero
area, all of the transverse and forcing terms are identically set to 0. For example, when constructing 𝑠̃𝐿,𝑛+

1∕2
𝑖+1∕2,𝑗,𝑘

, if any of
the areas 𝑎𝑖,𝑗+1∕2,𝑘, 𝑎𝑖,𝑗−1∕2,𝑘, 𝑎𝑖,𝑗,𝑘−1∕2 or 𝑎𝑖,𝑗,𝑘+1∕2 are zero, then we simply define

𝑠̃𝐿,𝑛+
1∕2

𝑖+1∕2,𝑗,𝑘
= 𝑠̂𝐿

𝑖+1∕2,𝑗,𝑘
. (44)

We upwind 𝑠̃𝐿,𝑛+
1∕2

𝑖+1∕2,𝑗,𝑘
and 𝑠̃𝐿,𝑛+

1∕2
𝑖+1∕2,𝑗,𝑘

using the normal component of 𝑼MAC to define 𝑠𝑛+
1∕2

𝑖+1∕2,𝑗,𝑘
. Again, suppressing the

subscripts, we define

𝑠𝑛+1∕2 =

⎧

⎪

⎨

⎪

⎩

𝑠̃𝐿,𝑛+1∕2, if 𝑢MAC > 0,
1
2 (𝑠̃

𝐿,𝑛+1∕2 + 𝑠̃𝑅,𝑛+1∕2), if 𝑢MAC = 0,
𝑠̃𝑅,𝑛+1∕2, if 𝑢MAC < 0.

(45)

B.4.1 Computing the fluxes
We define the density update as
𝐴𝑛+1∕2
𝜌 =

(

(𝑎𝑖+1∕2,𝑗,𝑘 𝑢MAC
𝑖+1∕2,𝑗,𝑘

𝜀̂𝑔,𝑖+1∕2,𝑗,𝑘𝑠
𝑛+1∕2
𝑖+1∕2,𝑗,𝑘

− 𝑎𝑖−1∕2,𝑗,𝑘 𝑢MAC
𝑖−1∕2,𝑗,𝑘

𝜀̂𝑔,𝑖−1∕2,𝑗,𝑘𝑠
𝑛+1∕2
𝑖−1∕2,𝑗,𝑘

)Δ𝑦Δ𝑧

+ (𝑎𝑖,𝑗+1∕2,𝑘 𝑣MAC
𝑖,𝑗+1∕2,𝑘

𝜀̂𝑔,𝑖,𝑗+1∕2,𝑘𝑠
𝑛+1∕2
𝑖,𝑗+1∕2,𝑘

− 𝑎𝑖,𝑗−1∕2,𝑘 𝑣MAC
𝑖,𝑗−1∕2,𝑘

𝜀̂𝑔,𝑖,𝑗−1∕2,𝑘𝑠
𝑛+1∕2
𝑖,𝑗−1∕2,𝑘

)Δ𝑥Δ𝑧

+ (𝑎𝑖,𝑗,𝑘+1∕2 𝑤
MAC
𝑖,𝑗,𝑘+1∕2

𝜀̂𝑔,𝑖,𝑗,𝑘+1∕2𝑠
𝑛+1∕2
𝑖,𝑗,𝑘+1∕2

− 𝑎𝑖,𝑗,𝑘−1∕2 𝑤
MAC
𝑖,𝑗,𝑘−1∕2

𝜀̂𝑔,𝑖,𝑗,𝑘−1∕2𝑠
𝑛+1∕2
𝑖,𝑗,𝑘−1∕2

)Δ𝑥Δ𝑦

)

∕ (Λ𝑖,𝑗,𝑘Δ𝑥Δ𝑦Δ𝑧),

(46)

with analogous constructions for the other scalar updates, 𝐴𝑛+1∕2
𝑋𝑘 and 𝐴𝑛+1∕2

ℎ . Similarly, we define the velocity update as

𝐀𝑛+1∕2
𝒖 =

(

(𝑎𝑖+1∕2,𝑗,𝑘 𝑢MAC
𝑖+1∕2,𝑗,𝑘

𝜀̂𝑔,𝑖+1∕2,𝑗,𝑘𝒖
𝑛+1∕2
𝑔,𝑖+1∕2,𝑗,𝑘

− 𝑎𝑖−1∕2,𝑗,𝑘 𝑢MAC
𝑖−1∕2,𝑗,𝑘

𝜀̂𝑔,𝑖−1∕2,𝑗,𝑘𝒖
𝑛+1∕2
𝑔,𝑖−1∕2,𝑗,𝑘

)Δ𝑦Δ𝑧

+ (𝑎𝑖,𝑗+1∕2,𝑘 𝑣MAC
𝑖,𝑗+1∕2,𝑘

𝜀̂𝑔,𝑖,𝑗+1∕2,𝑘𝒖
𝑛+1∕2
𝑔,𝑖,𝑗+1∕2,𝑘

− 𝑎𝑖,𝑗−1∕2,𝑘 𝑣MAC
𝑖,𝑗−1∕2,𝑘

𝜀̂𝑔,𝑖,𝑗−1∕2,𝑘𝒖
𝑛+1∕2
𝑔,𝑖,𝑗−1∕2,𝑘

)Δ𝑥Δ𝑧

+ (𝑎𝑖,𝑗,𝑘+1∕2 𝑤
MAC
𝑖,𝑗,𝑘+1∕2

𝜀̂𝑔,𝑖,𝑗,𝑘+1∕2𝒖
𝑛+1∕2
𝑔,𝑖,𝑗,𝑘+1∕2

− 𝑎𝑖,𝑗,𝑘−1∕2 𝑤
MAC
𝑖,𝑗,𝑘−1∕2

𝜀̂𝑔,𝑖,𝑗,𝑘−1∕2𝒖
𝑛+1∕2
𝑔,𝑖,𝑗,𝑘−1∕2

)Δ𝑥Δ𝑦

)

∕ (Λ𝑖,𝑗,𝑘Δ𝑥Δ𝑦Δ𝑧).

(47)
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In all cases 𝜀̂𝑔 is the value of 𝜀𝑔 interpolated from cell centroids to face centroids. Δ𝑥, Δ𝑦 and Δ𝑧 are the cell sizes in
the three directions.

As noted in [26], a “redistribution” operation is required to address the classic “small cell problem.” Specifically,
without redistribution the advective CFL constraint would be dictated by the volume of the smallest cells which would
otherwise have a minimal contribution to the global solution. In our previous work, we used a “flux redistribution.”
Here, we now use the recently developed weighted state redistribution which is described in detail in [18].
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