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ABSTRACT 

Monitoring wastewater for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-

2)—whether performed at a building, neighborhood, or city level—has emerged as a viable way 

to track the prevalence of Coronavirus Disease-2019 (COVID-19) in a population. This study 

assesses health equity implications for wastewater sampling paradigms at a sub-city (or sub-

sewershed) scale. Many wastewater-based disease surveillance efforts established during the 

COVID-19 pandemic relied on convenient points of access to sampling locations within the 

sewer network and/or voluntary participation within a city or region. Sampling in this way may 

generate public health data that does not equitably represent diverse populations within the 

area of interest. In preparation for future pandemics, better strategies are needed to design 

wastewater sampling frameworks. We help address this knowledge gap by: (1) developing a 

geospatial analysis tool that probabilistically assigns demographic data for subgroup 

populations aggregated by race and age (which were cited as major risk factors for severe 

COVID-19 outcomes) from census blocks to sub-sewershed sampling zones; (2) evaluating the 

representativeness of subgroup populations and sub-sewershed wastewater data in Davis, 

California, within the sampling framework employed for COVID-19 disease surveillance; and (3) 

demonstrating a scenario planning strategy in which adaptive sampling prioritizes vulnerable 

populations (in this case, populations >65 years old). Extensive sub-sewershed wastewater 

monitoring data was collected in Davis from November 2021 through September 2022, with 

wastewater samples collected three times per week from 15 maintenance holes (nodes) and 

daily from the influent of the city’s centralized wastewater treatment plant (WWTP). The sub-

city scale sampling achieved near complete coverage of the population, with spatial resolution 
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that informed public health communication initiatives within the city. Wastewater data 

aggregated from the sub-city scale as a population-weighted mean correlated strongly with 

wastewater data collected from the centralized treatment plant (Spearman’s Rank correlation 

coefficient 0.909). We considered four down-scaling scenarios for a reduction in the number of 

sampling zones from baseline by 25% and 50%, chosen either randomly or by prioritizing 

maintenance of coverage of the >65-year-old population. Prioritizing representation of this 

vulnerable population in zone selection increased coverage of >65-year-olds from 51.1% to 

67.2% when removing half of the sampling zones, while simultaneously increasing coverage of 

Black or African American populations from 67.5% to 76.7%. Downscaling the number of 

sampling zones had little effect overall on the correlation between the sub-sewershed zone 

wastewater data and centralized WWTP data (Spearman’s Rank correlations ranged from 0.875 

to 0.917), but the strongest correlations were obtained when maintaining sampling zones to 

maximize coverage of the >65-year-old population. When resource constraints necessitate 

downscaling the number of sampling sites, the approach demonstrated herein can inform 

decisions in ways that help preserve spatial representation of vulnerable populations, thereby 

promoting more inclusive, region-specific, and sustainable wastewater monitoring in the 

future.  
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INTRODUCTION 

 Social determinants of health (SDOH) have been identified as the set of conditions that 

drive health disparities (Holm, Osborne Jelks, et al., 2023). SDOH include a variety of factors 

such as race, socioeconomic position, and age, all of which play a crucial role in determining 

health outcomes within a population (Heller et al., 2014). The cumulative impact of these 

factors drives structural inequities (Mandelbaum, 2020). The Coronavirus Disease-2019 (COVID-

19) pandemic highlighted how social vulnerabilities can contribute to infections and subsequent 

community spread, with increased risk of serious illness attributed to pre-existing comorbidities 

and older age, and disproportionate impacts seen in low-income populations and communities 

of color (Holm, Pocock, et al., 2023).  

According to the Centers for Disease Control and Prevention (CDC), the three major 

factors affecting COVID-19’s unequal distribution of impact are age, race, and ethnicity, with 

age cited as the main risk factor for severe COVID-19 outcomes (CDC, 2020). Data from the 

National Vital Statistics System has shown that, relative to those between ages 18-29 years old, 

risk of death from COVID-19 is 25 times higher for people between ages 50-64 years, 60 times 

higher for people between 65-74 years, 140 times higher for people between 75-84 years, and 

340 times higher for those 85 years and older (COVID-19 Death Data and Resources - National 

Vital Statistics System, 2023). Moreover, the COVID-19 pandemic underscored racial and ethnic 

health inequities. Individuals from racial and ethnic minority groups were disproportionately 

affected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission, 

leading to increased rates of hospitalization, emergency room visits, and premature death 

compared to non-Hispanic White individuals (COVID-19 Death Data and Resources - National 
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Vital Statistics System, 2023). Since March 2020, the average daily increase in COVID-19 

mortality was found to be much higher in rural U.S. counties amongst predominantly Black and 

Hispanic populations (Cheng et al., 2020). Among rural counties, those in the top quartile of 

percent Black populations had an average daily increase in COVID-19 mortality rates 70% higher 

than counties in the bottom quartile, and counties in the top quartile of percent Hispanic 

populations had an average daily increase that was 50% higher (Cheng et al., 2020).  

 Wastewater-based epidemiology (WBE), which involves analyzing community-pooled 

wastewater samples from centralized wastewater treatment plants or sewer collection systems 

for disease biomarkers, has emerged as a viable way to provide insight into population-level 

disease trends. WBE has been favored as a minimally invasive, anonymous, and cost-effective 

way to track virus spread compared to testing individuals within the population since 

approximately more than 80% of U.S. residents are on a piped sewer system (Holm, Osborne 

Jelks, et al., 2023; National Academies of Sciences, Engineering, and Medicine, 2023). Each 

wastewater sample can represent hundreds to over a million people depending on the sample 

collection location. Those infected with SARS-CoV-2, including asymptomatic, pre-symptomatic, 

and symptomatic individuals, can shed viral particles and associated ribonucleic acid (RNA) 

through fecal matter. SARS-CoV-2 RNA remains readily detectable in wastewater even though 

fecal-oral transmission has not been reported for this virus. WBE has thus filled gaps associated 

with underreporting of cases, and can serve as an early indicator of potential outbreaks 

(Kadonsky et al., 2023). Moreover, WBE has proven to be a more comprehensive approach to 

tracking viral outbreaks and community infections since it does not rely on community 

members having access to clinical testing services or seeking healthcare when they are 
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experiencing symptoms (CDC, 2023a). WBE has proven especially useful in resource-limited 

settings (e.g., where clinical testing services are constrained). 

Trends in wastewater data at a sub-city level (e.g., at the census block level, the most 

granular level at which public demographic data can be obtained) have also been used in WBE 

to inform public health responses (Bureau, n.d.-d). When the pandemic first began, many WBE 

programs were established rapidly via academic and government partnerships, and sampling 

locations were not always selected in a methodical way. While the utility of WBE is evident, 

sampling paradigms that rely on convenient points of access within the sewer network may not 

equitably serve the public or public health, as some populations may be underrepresented 

depending on where sampling occurs. In fact, there may be similar disparities in monitoring 

efforts as there are disparities in access to clinical testing and vaccinations (Medina et al., 

2022). Recent efforts in the field have acknowledged the importance of taking steps targeted at 

reducing inequities (National Academies of Sciences, Engineering, and Medicine, 2023), but 

standardized measures for assessing performance of WBE towards improving health equity are 

lacking.  

Equitable protection of public health can be guided through inclusive wastewater 

surveillance efforts (Holm, Pocock, et al., 2023). Specific considerations are needed to promote 

inclusion of underrepresented groups and equity in responses to public health threats. Previous 

studies have noted a lack of evaluations regarding the extent to which vulnerable populations 

are included in wastewater monitoring programs (Hu et al., 2023). Ultimately, the success of 

any WBE program relies on the assurance that there is equitable representation of underserved 

communities in the sampling design. Evaluating demographic representation of sub-sewershed 
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zone populations can prove especially difficult because data at a census block level does not 

align with sewer networks. In other words, flows of wastewater from populations within census 

blocks depend on city-wide sewer system connections and do not conform to the zones of 

population that are represented from wastewater samples collected from maintenance holes 

(MHs) within a city.  

 This project offers a strategy for WBE sub-city (or sub-sewershed) health equity 

evaluations using Census data at a block-level with the goal of enhancing inclusivity in the 

design of sampling frameworks within the constraints of a sewer system. First, we developed a 

probabilistic assignment approach to determine the expected subgroup population that is 

represented by collecting samples at different locations in a city sewer system. We used sub-

sewershed wastewater surveillance during the COVID-19 pandemic and demographic data in 

Davis, California (population ~66,850), to demonstrate the approach (U.S. Census Bureau 

QuickFacts, n.d.). Second, we assessed how trends in wastewater data at the sub-sewershed 

level in Davis compared to trends for the city as a whole, since sampling frameworks may seek 

to achieve representativeness of overall community disease trends in addition to achieving 

representation based on demographic characteristics. Finally, we evaluated scenarios in which 

adaptive sampling strategies are implemented to prioritize representation of high-risk or 

vulnerable populations under resource-constrained conditions. The overall framework offers a 

strategy to evaluate sub-city sampling designs for wastewater surveillance to enhance health 

equity goals.  
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MATERIALS AND METHODS  

STUDY SETTING AND DESIGN 

This study includes a retrospective evaluation of SARS-CoV-2 wastewater concentration 

data collected during the COVID-19 pandemic as part of the Healthy Davis Together (HDT) 

program in Davis, a city with a population of approximately 66,850 in Yolo County, California 

(U.S. Census Bureau QuickFacts, n.d.). HDT offered wide-spread, free saliva-based 

asymptomatic and symptomatic testing, conducting over 1.6 million COVID-19 tests for the 

community and the university across 120 locations including school-based sites and mobile 

clinics (Pollock et al., 2022). From September 2020 to September 2022, wastewater surveillance 

was conducted throughout the City of Davis (COD) at the city, sub-city, and 

building/neighborhood levels. Table 1 provides definitions for key terms associated with the 

sampling framework. At the city level, samples were collected from the influent to the COD 

Wastewater Treatment Plant (COD WWTP). At the sub-sewershed level, samples were collected 

from up to sixteen nodes that each represent a sub-sewershed within the COD. At the 

building/neighborhood level, samples were collected from up to seven additional nodes for 

building complexes or neighborhoods identified as priority areas by HDT and local officials for 

potential communication and/or health interventions. The number of sampling locations and 

frequency of sampling increased through time. By April 2021, HDT sampled daily from the COD 

WWTP and three times per week from MHs in each of the sub-sewershed and 

building/neighborhood zones. Safford et al. (2022) describe HDT wastewater surveillance 

conducted from September 2020 to June 2021, for which wastewater samples were collected 

at seven building/neighborhood locations, 16 sub-sewershed nodes, and the city level. These 
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samples were analyzed using quantitative polymerase chain reaction (qPCR). Daza-Torres et al. 

(2023) report city-level (COD WWTP) wastewater surveillance data from December 1, 2021, to 

March 31, 2022, and analyzed using droplet digital PCR (ddPCR). This study describes and 

analyzes HDT wastewater surveillance conducted from November 22, 2021, to September 30, 

2022, for which wastewater samples were collected daily from the COD WWTP and three times 

per week at 15 sub-sewershed nodes. All samples in this study were analyzed using ddPCR as 

reported by Daza-Torres et al. (2023) and described below.   

Table 1. Introductory terms and definitions. 

Key Term Definition 
Sewershed The area that contributes wastewater to a common end point. In this 

study, the sewershed refers to the area whose sewers flow to the City 
of Davis Wastewater Treatment Plant (COD WWTP). 
 

Sewershed node A maintenance hole (MH) that serves as a wastewater sampling 
location. 
 

Sub-sewershed zone The area or population represented by one or more sewershed nodes. 
Also referred to as sub-city sewershed zones.  
 

Subgroup A subset of the overall city population that shares a specific 
demographic characteristic (e.g., race or age). 
 

 

SAMPLE COLLECTION 

Sample collection was previously described by Safford et al. (2022). Samples at each 

sub-sewershed node were collected using insulated Hach AS950 Portable Compact Samplers 

(Thermo Fisher Scientific, USA), and were programmed to collect 30 mL of sample every 15 

minutes. Samples from the COD WWTP were collected using Teledyne ISCO 5800 refrigerated 

autosamplers. Each sampler was programmed to collect 400 mL of wastewater every 15 

“pulses.” Each pulse was set at 10,000 gallons (Daza-Torres et al., 2023). Based on the influent 
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flow of 3.6 million gallons per day, about 24 pulses were expected per day. Each sample date 

recorded corresponds to the date that an autosampler program was completed. The COD 

WWTP provided 12 mL samples in new 15-mL polypropylene centrifuge tubes. The samples 

were stored at 4℃. Samples were transported to the analytical laboratory at UC Davis in 

coolers on ice and generally processed the same day. Samples were pasteurized for 30 minutes 

at 60℃ to mitigate biohazard risk while maintaining RNA quality. The samples were returned to 

4℃ prior to processing, and then concentrated and extracted in a biosafety level 2 (BSL2)-

certified laboratory.  

SAMPLE PROCESSING 

 The sample concentration and extraction protocols were previously described by Daza-

Torres et al. (2023). Each starting sample volume of 4.875 mL was deposited into a separate 

well of a KingFisher 24 deep-well plate (Thermo Fisher). Nuclease-free water was included as a 

sample to act as a contamination control during the concentration and extraction process 

(Borchardt et al., 2021). Five µL of a stock of inactivated encapsulated whole vaccine-strain 

Bovine Coronavirus (BCoV, Bovilis® Coronavirus vaccine) was spiked into each well. The vaccine 

stock was determined by ddPCR quantification to contain approximately 1.3×108 gc/mL. The 

initial BCoV vaccine stock arrived lyophilized and was reconstituted in 20 mL of provided 

diluent, then divided into 1.5 mL aliquots and stored at -80℃ before use. Fifty µL of Nanotrap® 

Enhancement Reagent 1 (Ceres Nanosciences product ER1 SKU #10111-30) were added 

alongside the spike. Then, 75 µL Nanotrap® Magnetic Virus Particles (Ceres Nanosciences) were 

added to each sample and a KingFisher Apex robot (Thermo Scientific) was used to concentrate 

the viruses from the samples using a protocol provided by Ceres (Ceres - Protocols, n.d.) with 
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minor modifications described herein. Beads were eluted into 400 µL of lysis buffer per sample 

from the MagMAX Microbiome Ultra Nucleic Acid Isolation Kit (Thermo Fisher). Samples were 

transferred to 96 deep-well Kingfisher plates and extracted on a Kingfisher Apex according to 

kit instructions, ending at a final volume of 100 µL sample in MagMAX Elution Solution. 

Typically, extracts were stored on ice and analyzed on the same day, but extracts were stored 

at -80℃ for up to one week if same-day analysis was not possible to preserve RNA quality. In 

this study, we did not include the recorded concentration of SARS-CoV-2 in our final dataset if 

more than 14 days passed between sample collection and processing. 

EXTRACT ANALYSIS BY DROPLET DIGITAL PCR   

 Digital droplet polymerase chain reaction (ddPCR) was used to analyze the extracts. The 

targets analyzed were the N1 and N2 targeting regions of the nucleocapsid (N) gene of SARS-

CoV-2, and Bovine Coronavirus (BCoV) and pepper mild mottle virus (PMMoV) to normalize the 

SARS-CoV-2 results. The primer and probe sequences for each target are listed in Table 2. 

Separate duplex assays were used to quantify N1/N2 and BCoV/PMMoV. The fluorophores used 

for detection were Carboxyfluorescein (FAM) for N1 and PMMoV, 2’-chloro-7’-phenyl-1,4-

dichloro-6-carboxyfluorescein (VIC) for N2, and Hexachlorofluorescein (HEX) for BCoV. The 

sample for the PMMoV/BCoV duplex was diluted 40× before loading due to the high 

concentrations of PMMoV in wastewater. A QX ONE ddPCR System (Bio-Rad) was used to 

perform the ddPCR amplifications in 20 µL reactions. Each reaction contained 15 µL of master 

mix from the One-Step RT-ddPCR Advanced Kit for Probe (Bio-Rad) with primer concentrations 

at 900 nM of each primer and probe concentrations at 250 nM of each probe, plus a 5 µL of 

sample extract or control. The cycling conditions for RT-ddPCR are listed in Table 3. 
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Table 2. Primer and probe sequences for the specified targets. 

Target Oligonucleotide Primer Sequence (5’ à 3’) Fluorophore 
 

SARS-CoV-2 N1 
Forward GAC CCC AAA ATC AGC GAA AT  

FAM Reverse TCT GGT TAC TGC CAG TTG AAT CTG 
Probe ACC CCG CAT TAC GTT TGG TGG ACC 

 
SARS-CoV-2 N2 

Forward TTA CAA ACA TTG GCC GCA AA  
VIC Reverse GCG CGA CAT TCC GAA GAA 

Probe ACA ATT TGC CCC CAG CGC TTC AG 
 

BCoV 
Forward CTGGAAGTTGGTGGAGTT  

HEX Reverse ATTATCGGCCTAACATACATC 
Probe CCTTCATATCTATACACATCAAGTTGTT 

 
PMMoV 

Forward GAGTGGTTTGACCTTAACGTTTGA  
FAM Reverse TTGTCGGTTGCAATGCAAGT 

Probe CCTA+C+C+GAAGCA+A+A+TG 
 

Table 3. Cycling conditions for the RT-ddPCR process. 

Cycling step Temp (℃) Time # Cycles 
Plate equilibrium 25 3 min 1 

Reverse Transcription 50 60 min 1 
Enzyme activation 95 10 min 1 

Denaturation 94 30 sec 
40 

Annealing/Extension 58 1 min 
Enzyme Deactivation 98 10 min 1 
Droplet Stabilization 25 1 min 1 

 

To avoid contamination, preparation and plating of the ddPCR master mix were 

conducted manually in a separate location from sample loading, which was performed using an 

epMotionR 5075 (Eppendorf) liquid handler. Each reaction plate included duplicate positive 

controls (stock mixture of synthesized gene fragments for the target regions) and duplicate no-

template controls (nuclease-free water). Results were analyzed using the QX One Software 

Regular Edition (Bio-Rad) and thresholds were adjusted by visual inspection in samples and 

controls. The results were considered invalid if the distribution of positive or negative droplets 

appeared abnormal or if the total number of droplets generated was below 10,000 droplets in a 

well. 
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WASTEWATER DDPCR DATA PROCESSING 

To assess the sensitivity of the assay, a limit of detection (LOD) and a limit of blank (LOB) 

were determined using protocols recommended by the ddPCR manufacturer (Introduction to 

Digital PCR | Bio-Rad, n.d.). Fifteen wastewater samples that were negative for SARS-CoV-2 

were used to determine the lowest detectable SARS-CoV-2 concentrations in apparently 

negative wastewater samples. These 24-hour composite samples had been collected on 

November 11, 2021, from building clean-outs or MHs downstream of UC Davis residential 

buildings. The samples originally tested negative (zero positive droplets) or very low (no greater 

than three positive droplets for each N target). The samples were re-analyzed by ddPCR to 

acquire data for four additional replicates for each sample. Since the results from the blank 

were not normally distributed, rank order was used to select the LOB. To do so, the number of 

droplets from individual wells were recorded from lowest to highest, and the LOB was set at the 

value of the concentration measurement for the rank position corresponding to the 95th 

percentile, using the following equation:  

𝑅𝑎𝑛𝑘 = 0.5 + 0.95 ∗ (𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠)  (Equation 1) 

The rank position was rounded up to provide a more conservative LOB since the calculated 

value was a non-integer value. The theoretical LOD was determined by adding two times the 

standard deviation of all the replicate results to the LOB. The LOD and LOB values are reported 

in Table 4. The highest number of positive droplets in the merged wells of the blank samples 

were 6 (N1) and 8 (N2). The cutoff was set at 3 (N1) and 4 (N2) since wastewater samples were 

routinely analyzed in duplicate. This way, it was possible to mark samples below the droplet 

threshold. Additionally, if the samples had fewer N1 and N2 droplets than twice the number of 
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droplets in the extraction control blank that was analyzed on the same day, they were 

considered below the droplet threshold. Furthermore, runs that had an extraction control blank 

with greater than 15 positive droplets (N1 or N2) were considered contaminated, and the 

extracts were re-processed. 

If the samples satisfied the criteria above, the relative concentration of N gene was 

calculated. This was done by merging the duplicate results for each target and calculating the 

concentration of each target in the ddPCR reaction, assuming a Poisson distribution using the 

QXOne Software 1.1.1 Standard Edition. To obtain the average SARS-CoV-2 RNA concentration 

in the initial wastewater sample, the N1 and N2 results were averaged after correcting for the 

sample and reagent volumes used. The resultant value was reported as genome copies (gc) per 

mL wastewater. Concentrations of targets were not corrected for BCoV recovery efficiency. A 

threshold BCoV recovery value of 10% was used to retain the recorded SARS-CoV-2 

concentrations that had a recovery rate equal to or greater than the threshold value. High 

variability is to be expected among BCoV recovery values due to variability of sample 

characteristics. Other recovery analyses have reported average BCoV recovery values ranging 

from as low as 4.8% to 36.1%, depending on the virus concentration method employed (Juel et 

al., 2021). Targets were excluded from the average concentration if N1 or N2 merged droplet 

counts were below the minimum droplet threshold, and the concentration was reported as 0 if 

both the N1 and N2 targets were below the droplet threshold. We use N/PMMoV (the average 

SARS-CoV-2 RNA concentration (N) divided by the concentration of PMMoV) as the wastewater 

signal for subsequent analysis.  
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Table 4. Limit of blank (LOB, reported as a rank position value) and limit of detection (LOD), as reported in Daza-
Torres et al. (2023). 

 
LoB STD Theoretical LOD 

Conc (copies/mL of 
wastewater) 

N1 13.605 5.547 24.700 

N2 18.544 6.712 31.967 

Conc (copies/mL of 
wastewater) 

N1 3.401 1.387 6.175 

N2 4.636 1.678 7.992 

 

WASTEWATER DATASET 

 The dataset used in this study comprises normalized SARS-CoV-2 concentrations 

recorded between November 22, 2021, and September 30, 2022. The SARS-CoV-2 

concentrations were normalized with PMMoV concentrations. PMMoV was universally present 

and in high concentrations in wastewater samples, making it a suitable biomarker for process 

control (Li et al., 2022). For visualization purposes, a 10-day trimmed right-aligned moving 

average was applied to the data. To do so, 10% of the values on either end of the dataset were 

removed prior to calculating the mean of the current day and the previous nine days. This 

effectively smoothed out short-term variations of the normalized N gene metric. Figure 1 

depicts the wastewater data retrieved from one sub-sewershed zone (SR-A), showing the raw 

wastewater surveillance data (red) and the 10-day trimmed right-aligned moving average 

(black) of the data. In the figure, we can see that the peaks in the data coincide with the surge 

in infections when the Omicron BA.1 variant was predominant in the region between December 

2021 and March 2022, and a similar surge between April 2022 and September 2022 when the 

BA.2, BA.4, and BA.5 subvariants were prevalent (CDC, 2023b). Similar patterns can be 

observed in the data available for the other sub-sewershed zones.  
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Figure 1. Normalized virus concentration for sub-sewershed zone A (SR-A).  

SUB-SEWERSHED ZONES 

 The wastewater treatment plant area serviced by the COD WWTP was divided into sub-

sewershed zones, which were delineated according to Figure 1 in Safford et al. (2022). While 

HDT conducted wastewater monitoring at both the sub-sewershed and building/neighborhood 

level, this study focuses on assessing trends across only the sub-sewershed zones. This is 

because most of the building/neighborhood zones are encompassed within the sub-sewershed 

zones, meaning that the building/neighborhood zones overlapped with the sub-sewershed 

zones. We aimed at selecting zones that spatially covered as much of the city as possible with 

minimal to no overlap of census block boundaries. Sub-sewershed zones were defined by a list 

of census block geographic identifiers (GEOIDs), which are numeric codes that uniquely identify 

each census block (Bureau, n.d.-c). Each zone definition comprises several GEOIDs. For the 

geospatial analysis conducted in this study, significant overlap of census blocks was observed 

for some sub-sewershed zones when defining them as they were delineated in Safford et al. 
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(2022). In these cases, the zones experiencing overlap were merged to form a larger sub-

sewershed zone to prevent double counting populations for demographic analysis. This 

merging was performed by conglomerating the zone definitions for the smaller zones, and 

keeping all unique GEOIDs in the new, larger sub-sewershed zone definition. This is the case for 

SR-B (which merges SR-B1, SR-B2, SR-B3, and SR-B4), SR-C (merges SR-C1, SR-C2, and SR-C3), 

and SR-F (merges SR-F1 and SR-F2). The maintenance holes associated with each zone were 

then assigned to the overarching sub-sewershed zone from which the wastewater samples 

were being collected. The sub-sewershed zones and maintenance hole sampling sites are 

illustrated in Figure 2 below. These zones show how wastewater contributions from different 

parts of the city are isolated at the sub-city scale. The sampling locations (brown) can be seen 

atop the census blocks (lines). We then aligned the delineated zone boundaries with the 

respective census block boundaries across the city to be able to compare the demographics of 

the people residing in each zone.  
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Figure 2. Map of the nine sub-sewershed zones for the SARS-CoV-2 wastewater-based epidemiology efforts in Davis 
(census blocks outlined). 

DEMOGRAPHIC DATA 

 Demographic data was gathered from the U.S. Census Bureau (USCB), which includes 

census-block-level population data from 2020 (Census Bureau Data, n.d.). To prepare the 

Census data for analysis, we filtered the data to include only the census blocks within the COD, 

in addition to two areas within the catchment area that are designated as spheres of influence 

and thus should be included in our analysis (Planning and Zoning | City of Davis, CA, n.d.). We 

intersected the respective sub-sewershed zone areas with the census block boundaries. The 

total population within each sub-sewershed zone is listed in Table 5.  
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Table 5. Sub-sewershed zones and their populations. 

Sub-sewershed Zone Population 

SR-A  12389 

SR-B  7936 

SR-C  15920 

SR-D  1324 

SR-E 1794 

SR-F 3920 

SR-G 5935 

SR-H 3696 

SR-I 10912 

 

Because of the high spatial granularity of census-block-level data, it is important to note 

that only certain demographic factors had sufficient data available for this analysis. 

Additionally, increased margins of error were reported in the Census data collected in 2020 due 

to the difficulty of collecting responses during the COVID-19 pandemic (Bureau, n.d.-b). 

Consequently, this study focuses on the following two demographic factors: race and age. No 

other demographic variables were available in the 2020 Census data at the block level during 

the time of our analysis. 

The tabular Census data was grouped according to the categories specified on the 

California Department of Public Health (CDPH) Health Equity Dashboard (COVID-19 Age, Race 

and Ethnicity Data, n.d.). The Census data presenting the racial composition of each census 

block was filtered to include the following seven groups: White, Black or African American, 

American Indian and Alaska Native, Asian, Native Hawaiian and Other Pacific Islander, Other, 

and Multi-Race. The Census data presenting the composition of people by age in each census 
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block was grouped into the following ten age categories: less than 5 years, 5-17 years, 18-34 

years, 35-49 years, 50-59 years, 60-64 years, 65-69 years, 70-74 years, 75-79 years, and greater 

than or equal to 80 years.  

 All analyses were performed using Python version 3.11.5 (the Python script used for 

implementation is available at https://tinyurl.com/HealthEquityWBE).  

PROBABILISTIC ASSIGNMENT TOOL 

We adapted Python code from Safford et al. (2022) to combine information on 

municipal wastewater flows (provided as a File Geodatabase by the City of Davis Public Works 

Department) with Census data. The resultant probabilistic assignment tool assigns Census data 

to sewershed sampling zones based on geospatial probability. Each sampling zone spans several 

census blocks and may have different boundaries than the census blocks (e.g., in the case of 

overlap at neighboring zone boundaries). The probabilistic assignment tool performs the 

following tasks. First, the geospatial coordinates of all the MHs in the Davis sewer system and 

information about the relative upstream or downstream position of each MH were used to 

build a “connection graph” capturing directional connections among all the MHs. Second, the 

2020 USCB population data was used to estimate the number of people living in each census 

block within the sampling zone of interest. Populations were spatially analyzed by age and race. 

We assumed that each person in each census block produces the same amount of wastewater 

every day, and that each person has an equal probability of discharging that wastewater to 

each MH within the block. We used the connection graph to probabilistically assign 

demographic data from census blocks to sewershed nodes. Thus, we extrapolated information 

https://tinyurl.com/HealthEquityWBE
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from the census block level to each sub-sewershed zone. See Figure 3 for an illustrative 

example of this approach. 

 

Figure 3. Simplified illustration of the probabilistic assignment method adopted from Safford et al. (2022), 
demonstrating how demographic data is distributed from a census block to a sub-sewershed zone. 

Figure 3 illustrates how the locations of the MHs in the COD sewershed can be used to 

probabilistically assign demographic data from census blocks to sub-sewershed monitoring 

zones, whereas Safford et al. (2022) probabilistically assigned clinical case count data to 

sampling zones. This approach allows us to assess whether sampling locations were chosen in a 

way that appropriately represents subgroups within the overall population. The probabilistic 

assignment determines the expected subgroup population members whose wastewater is 

captured by sampling at a specific location. In this example, the sampler location depicted at 

the bottom covers a sub-sewershed monitoring zone that spans two census blocks. The census 
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block on the left has a total population of 60, of which 21 individuals belong to the subgroup of 

interest. There are three MHs in this census block. The census block on the right has a total 

population of 85, of which 25 individuals belong to the subgroup of interest. There are five MHs 

in this census block. Under the assumptions noted above, we calculated a predicted number of 

subgroup members captured by each MH in the census block by dividing the subgroup 

population by the number of MHs. In the case of the census block on the left, we divided the 21 

individuals’ wastewater contributions across all three MHs, resulting in a probabilistically 

assigned value of seven individuals. For the census block on the right, we split the 25 

individuals’ wastewater contributions across all five MHs, resulting in a probabilistically 

assigned value of five individuals. The wastewater flow was tracked through the connections 

between all the MHs in the city and summed at the sampler location. In this example, we 

obtained a predicted population of 12 people who belong to the subgroup of interest. Note 

that this is a simplified representation of the methodology behind the probabilistic tool. It is 

possible to obtain decimal resultant values using this method, but tool outputs can be rounded 

to whole numbers and still provide meaningful insight. 

The output of the probabilistic tool for a single run can be generated in the format of a 

summary table, shown in Table 6. The table displays the number of community members from 

the subgroup of interest who are represented by the sample taken at a node under the given 

sampling zone boundaries. Additional columns denote sampling nodes by their MH 

identification (ID) number, and additional rows of the output table represent data from 

additional census blocks within the city. The values within each column under a MH ID number 

are the probabilistically assigned subgroup populations represented by the wastewater sample. 
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We ran the probabilistic distribution tool for each of the seven racial groups and each of the ten 

age categories. Then, the output table was filtered for the census blocks within each sub-

sewershed zone to be able to calculate summary statistics by sub-sewershed zone rather than 

discrete census blocks.  

Table 6. Example outputs from the probabilistic assignment tool for each sewershed node (truncated for 
visualization purposes). 

Census block Total 
subgroup 

population 

Sewershed node 
M16-
011 

N13-
045 

N11-
062 

N11-
072 

N12-
066 

O13-
002 

O20-
001 

… 

061130104012002 13 0 0 0 0 0 0 13.0 … 
061130107041016 8 0 4.0 0 0 0 4.0 0 … 

… … … … … … … … … … 
 

We then compared the results of the probabilistic assignment tool to “manually 

derived” subgroup populations for each sub-sewershed zone. We obtained the manually 

derived population values by visually assigning the Census-reported subgroup population value 

to a given census block under the delineated zone boundaries. We calculated the absolute 

percent difference (APD) between the probabilistically assigned subgroup population value and 

the manually derived subgroup population value using the following equation: 

𝐴𝑃𝐷 = <!!"!"
!"

< ∗ 100%,   (Equation 2) 

where  𝑃# is the probabilistically assigned population value of a subgroup within a sub-

sewershed zone, and 𝑃$ is the manually derived population value of a subgroup within a sub-

sewershed zone.  

SUB-SEWERSHED ZONE AND COD WWTP ALIGNMENT 

 The following strategy was applied to aggregate sub-city level wastewater data to the 

city level. First, a set of population-weighted moving average values (PWMA) was calculated for 
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all fifteen sub-sewershed zones. This was done by multiplying the 10-day trimmed moving 

average N/PMMoV values by the sub-sewershed zone population and dividing those values by 

the total city population. These PWMA values were then plotted, as can be seen in Figure 4. A 

city-aggregated N/PMMoV metric was determined by summing the PWMA values for the sub-

sewershed zones and creating a set of combined PWMA values. These values were then plotted 

against the unweighted COD WWTP moving average values (See Figure 5). Note that, in this 

summation, SR-C3 was not included since it is encompassed within the SR-C2 sub-sewershed 

zone. To assess the strength of the correlation between the combined sub-sewershed values 

and the city-level wastewater data, we calculated and reported the Spearman’s Rank 

correlation coefficient. This metric was chosen because it measures strength and direction of 

any monotonic relationship rather than solely a linear one (Spearman Rank - an Overview | 

ScienceDirect Topics, n.d.).   

To quantify the error associated with the cumulative population-weighted moving 

average values, we calculated the mean absolute error (MAE) for each sub-sewershed zone’s 

set of population-weighted moving averages, using the following equation: 

𝑀𝐴𝐸 = %
&
∗ ∑ |𝑅' − 𝑃𝑊𝑀𝐴'|&

'(% ,    (Equation 3) 

where 𝑅'  is the raw wastewater data value for a given sub-sewershed zone, 𝑃𝑊𝑀𝐴'  is the 

associated population-weighted moving average value for the zone, and 𝑛 is the total number 

of data points. Since these resultant error values are then added together to generate the 

cumulative population-weighted moving average values, error propagation must be considered 

(Propagation of Error, 2013). The additive formula for error propagation was used to combine 

these uncertainties: 
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𝐸𝑟𝑟𝑜𝑟 = 	E(𝑀𝐴𝐸%)) + (𝑀𝐴𝐸))) + (𝑀𝐴𝐸*)) +⋯+ (𝑀𝐴𝐸&)),  (Equation 4) 

where 𝑀𝐴𝐸'  is a given mean absolute error value in the set of error values for a sub-sewershed 

zone.  

RESULTS AND DISCUSSION 

PROBABILISTIC ASSIGNMENT BY RACE AND AGE  

One aspect of considering health equity in the design of sub-city sampling strategies for 

wastewater monitoring includes evaluating the percent of diverse subgroup populations 

represented by a set of sub-sewershed zones selected. Yet demographic data needed to 

perform this assessment are available for census blocks, which do not directly align with sub-

sewershed zones. We compare two approaches—one manual and one probabilistic—to 

determine subgroup populations in sub-sewershed zones using census block data. The APD 

values serve as a metric for detecting differences between the subgroup population values 

generated using manual derivation and probabilistic assignment within each sub-sewershed. An 

APD close to 0% indicates that there is minimal difference between values obtained manually 

or probabilistically when devising a monitoring strategy, while a value closer to 100% indicates 

a larger difference between the two methods. The APD values can be assessed spatially in 

terms of geography (sub-sewershed zones) and demographics (race and age).  

We display the absolute percent difference for the two approaches for each sub-

sewershed zone in the City of Davis as choropleth maps for each subgroup category of race 

(Figure 6) and age (Figure 7). Dark red zones signify high percent difference between the two 

approaches, while lighter yellow zones indicate low percent differences. The APDs obtained 
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from the probabilistic tool output are also listed in Table 6 and Table 7. High APDs suggest that 

there are large boundary effects for the subgroup population of interest. In these cases, 

population distributions overlapping multiple census blocks should be considered when 

evaluating the overall coverage of subgroup populations in a city’s sampling strategy.  

APDs values across all sub-sewershed zones in Davis for race categories (Table 9) ranged 

from approximately 0% to 43%. Choropleth maps of APD by race category in each sub-

sewershed zone (Figure 6) display relatively low percentage differences in SR-A, SR-D, and SR-I. 

SR-B and SR-E showed consistently higher APD values. We used 30% as a threshold to flag 

notable differences between probabilistically assigned subgroup populations and manually 

derived population values in each sub-sewershed zone. Overall, greater percent differences 

were observed more often for minority subgroup populations compared to White populations. 

This highlights how boundary effects can be significant for subgroups present in low absolute 

numbers. For the White population, only SR-E had a value above the 30% threshold (34.9%). For 

the Black or African American population, APDs above 30% were seen in SR-B (36.4%) and SR-E 

(33.8%). For the American Indian and Alaska Native population, APDs surpassed the threshold 

in SR-E (35.7%), SR-F (40.8%), and SR-H (42.9%). For the Asian population, APDs were above the 

threshold in SR-B (34.6%). For the Native Hawaiian and Other Pacific Islander populations, APDs 

above 30% were observed in SR-E (42.9%) and SR-G (33.3%). For populations of individuals 

belonging to another race category, values above the APD threshold were seen in SR-B (38.7%), 

and for multiracial populations, these values were seen in SR-E (30.3%).  

APDs across all sub-sewershed zones in Davis for age categories (Table 10) ranged from 

approximately 0% to 60%. Choropleth maps of APD values by age category in each sub-
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sewershed zone (Figure 7) display the relatively low percent difference values in SR-A, SR-D, SR-

H, and SR-I. Consistently higher APD values were observed in SR-B, SR-C, and SR-E. However, we 

do see lower APD values in some of these zones for age categories with older populations, 

which is significant since these are populations who are more susceptible to severe health 

outcomes (COVID-19 Death Data and Resources - National Vital Statistics System, 2023). For the 

population under age 5 and those ages 5-17, only SR-E had an APD above the 30% threshold 

(34.0% and 36.3%, respectively). For the population ages 18-34, APDs above 30% were seen in 

SR-B (36.3%). For those in the 35-49, 50-59, 60-64, 70-74, 75-79, and 80 and above age 

categories, such values were seen only in SR-E (32.6%, 32.8%, 42.9%, 47.1%, 60.0%, and 43.9%, 

respectively). For those ages 65-69, APDs above 30% were seen in SR-C (31.1%) and SR-E 

(45.0%). 

More populous zones like SR-A demonstrated consistently lower APDs, while zones like 

SR-E, which has a relatively smaller population, had the highest APDs across all sub-sewershed 

zones when analyzed by race and age. The only zones where no difference was observed 

between the probabilistic assignment and manual derivation methods (APD=0%) were SR-D and 

SR-H, two zones with relatively lower populations compared to the other seven zones studied 

in this analysis. In subsequent analysis to provide examples of adaptive sampling frameworks, 

we selected to use the probabilistic assignment tool to assess the representation of subgroup 

populations across Davis under different planning scenarios. 

SUB-SEWERSHED ZONE AND COD WWTP ALIGNMENT 

In the selection of sewershed nodes for wastewater-based disease surveillance, a 

decision-maker may also want to consider how disease dynamics in sub-sewershed zones 
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compare to overall city disease trends. Sampling frameworks could then be adapted, for 

example, to capture sub-sewershed zones with highly differing disease dynamics than the city 

overall. Alternatively, sampling frameworks that adequately capture overall trends for the city 

may be prioritized. Here, we evaluate whether wastewater surveillance data collected at the 

sub-sewershed level in Davis correlated in aggregate with the COD WWTP wastewater 

surveillance data. We then assess how the correlations would be impacted when downscaling 

to fewer nodes in an example scenario planning exercise for adaptive sampling. Analysis of this 

type can also be useful to identify anomalies at the sub-city scale relative to the city-level data, 

revealing potentially important health vulnerabilities in different city regions.  

Individual sub-sewershed zones exhibited variability in the magnitude and timing of 

wastewater signals (Figure 4). As expected, the propagated error for the aggregated sub-

sewershed zone data (6.48 ∗ 10"*) was much higher than that of the COD WWTP moving 

averages (3.60 ∗ 10"+) due to the greater number of operations performed to generate the 

data. Nevertheless, the cumulative population-weighted mean average of the sub-sewershed 

zones exhibited similar magnitudes and patterns compared to the COD WWTP moving average 

wastewater data (Figure 5). The Spearman’s Rank correlation coefficient over the study period 

was 0.909, with a statistically significant positive correlation (p-value of 5.88 ∗ 10"),). The 

strongest correlations were observed between February 2022 and May 2022. Decoupling over 

the study period may be attributed in part to the fact that during the summer and early winter 

months, the population in Davis fluctuates due to the movement of students in and out of the 

city. A Spearman’s Rank correlation coefficient was also calculated between each sub-

sewershed zone and the COD WWTP (listed in Table 7). Correlation coefficients ranged from 
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approximately 0.732 to 0.935, and all p-values were less than 0.05. This suggests that many 

combinations of sub-sewershed zones may offer reasonable representation of wastewater 

disease dynamics at the city-level, though site-specific fluctuations from sub-sewershed zone 

data can still be used to target public health responses. Moreover, wastewater data at the sub-

sewershed level can be used to alert health professionals to potential surges in certain regions 

within a city. For instance, wastewater data from four sub-sewershed zones (SR-A, SR-B3, SR-

C1, and SR-C2) tended to rise earliest amongst all the zones, pointing to potential regions for 

early health interventions. In fact, HDT actively utilized wastewater data from sub-sewershed 

zones at the time of the data collection as a component to a multi-faceted strategy for precision 

public health (H. Safford et al., 2022). 

 
Figure 4. Disaggregated population-weighted 10-day right-aligned trimmed moving average values. Each line 
represents a sub-sewershed zone monitoring location. 
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Table 7. Correlation of wastewater data for each sub-sewershed zone (population-weighted moving average) with 
the overall COD WWTP data (moving average). 

Zone Name Correlation 
Coefficient P-Value 

SR-A 0.770 4.19e-15 

SR-B1 0.935 8.81e-33 

SR-B2 0.836 1.24e-19 

SR-B3 0.927 4.69e-31 

SR-B4 0.922 3.26e-30 

SR-C1 0.793 1.69e-16 

SR-C2 0.890 3.22e-25 

SR-D 0.734 3.15e-13 

SR-E 0.877 1.13e-23 

SR-F1 0.877 1.24e-23 

SR-F2 0.870 6.78e-23 

SR-G 0.738 2.20e-13 

SR-H 0.733 3.88e-13 

SR-I 0.866 1.92e-22 
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Figure 5. Aggregated wastewater data from the City of Davis sub-sewershed zones using a right-aligned 
population-weighted moving average (red, dashed line) and wastewater data from the City of Davis WWTP using a 
right-aligned moving average (black, solid line). 

SCENARIO PLANNING FOR ADAPTIVE SAMPLING 

Here we offer an example of how subgroup population assignment and wastewater data 

aggregation approaches can be used in scenario planning to design sub-sewershed sampling 

strategies for a city operating under resource constraints (e.g., logistical or economic). We 

considered four examples of resource-constrained conditions that necessitate scale-back of the 

number of sampling sites compared to baseline. Baseline was defined as the sampling 

framework established for this study, which covers a population of 63,826 (95.5% of the 

Census-reported total population in 2020). Scenarios 1 and 2 evaluate impacts for a minor 

(~25%) reduction in the number of sampling nodes, while Scenarios 3 and 4 evaluate a 

reduction of sampling nodes by approximately 50%. In each scenario we evaluated the impact 

of sampling node selections on (1) the representation of the >65-year-old population (who 

comprise about 14.5% of the COD population), (2) the representation of the Black or African 
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American populations (who comprise about 2.31% of the COD population), and (3) correlations 

between aggregated sub-sewershed zone wastewater data with city-level data. 

Tradeoffs may be observed when covering different demographics, and downscaling 

sampling may impact the representativeness of the data to the city overall. In this example, we 

stratified the sub-sewershed populations by age, focusing on the high-risk population of 

individuals ages 65 and older. We observed how modifying the sampling regime by dropping 

either approximately 25% or 50% of sampling sites affects population representation for 

subgroups disproportionately impacted by COVID-19 (elderly populations and Black or African 

American populations). In Scenarios 1 and 3, the sampling sites removed were chosen at 

random. In Scenarios 2 and 4, the sampling sites removed were selected such that the coverage 

of the >65-year-old population was prioritized. In other words, the nodes that were removed 

corresponded to sub-sewershed zones with the smallest subgroup populations in the city. In 

Table 8, we report four values for each scenario: the percentage of the total city population 

covered by the scenario (i.e., not including the populations in the zones whose nodes were 

removed), the percentage of the >65-year-old subgroup population covered by the sampling 

regime, the percentage of Black or African American subgroup population covered under that 

same regime, and a Spearman’s Rank correlation coefficient that reports the strength of 

correlation between the cumulative PWMA values and COD WWTP values without the inclusion 

of the removed zones.  

For the baseline scenario, all the sub-sewershed nodes monitored in this study were 

included. The probabilistically assigned subgroup population values were used to determine the 

total subgroup populations represented within the proposed sampling regime. The baseline 
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scenario of sub-sewershed sites was designed to capture wastewater from as much of the 

sewershed as possible while providing resolution within the city boundaries to inform public 

health interventions. This objective was achieved, as demonstrated by 95.5% coverage of the 

population overall, 86.9% coverage of the >65-year-old population, and 82.9% coverage of the 

Black or African American populations within the city.   

In Scenario 1, we examined the city-level effect of artificially pausing sampling at 25% of 

the sampling sites, chosen at random (SR-A, SR-D, SR-F1, and SR-F2 were removed). In this 

scenario, the number of sampling nodes was reduced from 15 to 11. When doing so, we 

observed that the wastewater contributions of approximately 57.5% of the >65-year-old 

population would be captured by the sampling regime (total subgroup population in the 

included zones divided by the total subgroup population in Davis). The wastewater 

contributions of about 70.3% of the Black or African American population would be captured. 

The aggregated wastewater signal was minimally affected by removing the excluded zones’ 

sampling nodes. The Spearman’s Rank correlation coefficient of the cumulative PWMA values 

(excluding SR-A, SR-D, SR-F1, and SR-F2) to the COD WWTP moving average values remained 

high (0.907 with a p-value of 1.19 ∗ 10")-).  

In Scenario 2, we examined the city-level effect of pausing sampling at 25% of the 

sampling sites, chosen to maximize coverage of >65-year-old populations (SR-D, SR-E, SR-F1, 

and SR-F2 were removed). Like Scenario 1, the number of sampling nodes was reduced from 15 

sites to 11. As expected, coverage of the >65-year-old population improved relative to Scenario 

1, such that 80.5% of the >65-year-old population would be captured in this sampling regime. 

Unexpectedly, the coverage of Black or African American populations also improved in this 
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scenario, for which about 89.7% of the population would be captured. The aggregated 

wastewater signal, excluding SR-D, SR-E, SR-F1, and SR-F2, compared to the COD WWTP moving 

averages resulted in a Spearman’s Rank correlation coefficient of 0.900 with a p-value of 1.19 ∗

10")., reflecting a minimal change from the baseline case. 

In Scenario 3, we examined the effect of pausing sampling at approximately 50% of the 

sampling sites, chosen at random (SR-B1, SR-B2, SR-B3, SR-B4, SR-H, and SR-I were removed). In 

this scenario, the number of sampling nodes was reduced from 15 to 9. When doing so, we 

observed that the wastewater contributions of approximately 51.1% of the >65-year-old 

population would be captured by the sampling regime. The wastewater contributions of about 

67.5% of the Black or African American population would be captured. The Spearman’s Rank 

correlation coefficient of the cumulative PWMA values (excluding SR-B1, SR-B2, SR-B3, SR-B4, 

SR-H, and SR-I) to the COD WWTP moving average, while lower compared to the baseline, 

remained strong (0.875 with a p-value of 1.87 ∗ 10")*). 

In Scenario 4, we examined the effect of pausing sampling at about 50% of the sampling 

sites, chosen to maximize coverage of >65-year-old populations (SR-D, SR-E, SR-F1, SR-F2, SR-G, 

and SR-H were dropped). Like Scenario 3, the number of sampling nodes was reduced from 15 

sites to 9. Coverage of both >65-year-olds and Black or African American individuals improved 

relative to Scenario 3. In the sampling regime for Scenario 4, wastewater contributions of about 

67.2% of the >65-year-old population and 76.7% of the Black or African American population 

would be captured. The aggregated wastewater signal also correlated more strongly with the 

city overall. Excluding SR-D, SR-E, SR-F1, SR-F2, SR-G, and SR-H in the cumulative PWMAs and 

comparing them to the COD WWTP moving averages resulted in a Spearman’s Rank correlation 
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coefficient of 0.917 with a p-value of 2.83 ∗ 10")/. This suggests that the removed zones 

deviate from the city-level results, demonstrating the utility of wastewater monitoring at the 

sub-sewershed scale to illuminate site-specific variations in wastewater virus concentration.  

Table 8. Scenario planning example to adapt sampling strategies under resource constraints and differing priorities. 

Scenario Description  % of Total City 
Population 

Represented 

% of >65-
Year-Old 
Subgroup 

Population 
Covered 

% of Black or 
African 

American 
Subgroup 

Population 
Covered 

Wastewater 
Signal 

Correlation 

Baseline Includes all sewershed nodes 
monitored in this study 

95.5% 86.9% 82.9% 0.909 

1  Baseline minus 25% of sites 
(randomly selected) 

69.1% 57.5% 70.3% 0.907 

2 Baseline minus 25% of sites 
(prioritized to maximize 

coverage of >65-year-old 
population) 

84.9% 80.5% 89.7% 0.900 

3 Baseline minus 50% of sites 
(randomly selected) 

61.8% 51.1% 67.5% 0.875 

4 Baseline minus 50% of sites 
(prioritized to maximize 

coverage of >65-year-old 
population) 

70.5% 67.2% 76.7% 0.917 

 
The scenario planning example outlined above revealed that removing sampling sites 

had little effect on the wastewater signal correlation across all the scenarios examined. As 

expected, demographic comparison revealed that greater >65-year-old coverage is achieved 

when scale-back of sampling is methodical rather than random. Prioritizing coverage of 

subgroup populations of interest consistently yields higher levels of coverage, as seen in 

Scenarios 2 and 4. However, the example demonstrates that randomly selecting sample sites to 

drop may be appropriate situationally, especially if the scale-back efforts are not drastic (e.g., 

dropping less than 25% of sites). We note that prioritizing certain subgroups will result in varied 

representation of other subgroups, as seen in this example. We observe how the Black or 
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African American subgroup population (2.31% of the total COD population) representation 

decreased as a result of the scale-back, to be expected. It is ultimately up to decision-makers to 

determine whether the resultant percentages are sufficiently representative of the city 

population, else run the risk of overlooking a portion of the population. However, when making 

decisions related to improved health interventions within a city, it is simultaneously important 

to avoid targeting specific populations and creating additional stigmas associated with disease 

transmission (Holm, Osborne Jelks, et al., 2023). There may be cases in which regional 

specificities contribute more heavily to decision-making. In such cases, there is a need to 

balance the perspectives of officials at the city and county level, as well as medical staff from 

public and private organizations. Stakeholders may factor in the demographic representation 

fluctuations seen in specific sub-sewershed zones into decision-making instead of immediately 

opting for the highest subgroup population percentage seen at the city level within a specific 

modified sampling regime. The example provided in this study showcases the utility of sub-

sewershed demographics analysis to gain more detailed insight into how representation varies 

depending on the scenario. While the city-level wastewater data may not suggest any data 

gaps, looking specifically at the sub-sewershed demographics reveals that there is some 

difference between choosing one scenario versus the other. Therefore, this example 

demonstrates how investigating sub-sewershed trends can foster more informed decision-

making in city-wide monitoring efforts, whether that involve selecting sampling locations in a 

way that is representative of the population, inspecting how the selected zone populations’ 

wastewater data aggregates to city-level data, or gaining a better understanding of population 

trends within a specific subset (e.g., higher age brackets and/or non-White populations). Sub-
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sewershed analyses demonstrate the possible ways that sampling site selection can be adaptive 

to the unique location where monitoring efforts are being undertaken, while avoiding diverting 

monitoring away from high-risk populations. 

LIMITATIONS 

We acknowledge several limitations to this study and approach. First, the approach 

relies on the availability of and integrity of the underlying Census data. As mentioned 

previously, few demographic factors had sufficient data available for this analysis, and 

increased margins of error were reported for the 2020 Census data (Bureau, n.d.-b). The Census 

Bureau has also incorporated statistical noise into its datasets in its efforts to implement 

differential privacy (Disclosure Avoidance and the 2020 Census: How the TopDown Algorithm 

Works, n.d.). Therefore, the population values used in this study may not be representative. 

However, noise infusion is beneficial for addressing privacy concerns, as it maintains the 

essence of the data while ensuring that the data cannot be traced to an individual. When 

working with Census data, especially at its highest granularity, privacy protection is crucial so 

that public trust is not undermined through the mishandling of private information, and health 

disparities are not subsequently reinforced.  

Second, it is important to note that the approach may need to be tailored when 

extended to other settings, as differences will arise from regional specificities. This study 

specifically examines the monitoring protocol as it was conducted in Davis, a suburban town 

with institutional support for its rigorous wastewater testing program during the pandemic. 

Though the tool presented in this study should be applicable to other settings, differences 
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including, but not limited to, sewer system layout, resource constraints, and population density, 

may require additional analysis.  

Third, this study does not account for the mobility of populations, as wastewater 

surveillance efforts are place-based. Reported metrics may not be taking into account 

individuals’ place of residency or work (Kadonsky et al., 2023). Additionally, Davis comprises a 

large student population, so some sub-sewershed zones are likely to include more students 

who typically move frequently. Therefore, Census-related fluctuations and variability within the 

data may be higher in these areas compared to regions that are primarily inhabited by long-

term residents. Extending the approach outlined in this study to evaluate data in other regions 

and cities would offer opportunities for cross-comparisons.  

Fourth and finally, this study analyzes race and age separately, as though their 

distribution of impact is mutually exclusive. In reality, there are populations (e.g., Black or 

African American population above the age of 65) that are especially vulnerable to COVID-19. 

Evaluating health equity on the basis of single characteristics is inherently limiting, as it may be 

devoid of other important context and thereby risks homogenizing marginalized groups.  

POSSIBLE EXTENSIONS 

Several reasonable extensions of this project arise as we continue to understand 

community transmission of SARS-CoV-2 and other pathogenic viruses and explore ways that we 

can inform equitable public health decision-making. While this study focuses on community 

transmission at the city-level, population representation should also be assessed at county and 

regional levels (Medina et al., 2022). Race and age were the two demographic characteristics 

analyzed in this study, though there are many other attributes that can provide insight into the 
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health equity implications of a wastewater surveillance program, such as socioeconomic status, 

healthcare coverage, immigrant status, native language, and educational attainment. Future 

analyses could consider these factors at appropriate scales for available data—the American 

Community Survey, for instance, offers a breadth of demographic data at broader scales (e.g., 

census block group or tract) (Bureau, n.d.-a). Moreover, since health disparities are driven by a 

combination of all these factors, future analyses can take intersectionality into consideration by 

analyzing the cumulative impact of several characteristics on health outcomes (e.g., using 

quantitative analytical methods that adjust for covariates) and developing social vulnerability 

indices that can inform sampling location selection processes (Guan et al., 2021). For a well-

balanced distribution of sampling nodes, optimization models can be developed to consider the 

users’ parameters of interest. Researchers are developing objective functions that account for 

myriad factors, including the population served, the population density, spatial coverage, social 

vulnerability, and dissimilarity of wastewater signals, in the design of sampling schemes at 

broader geographic scales (Nuño, 2024). These approaches can be applicable at varying scales 

of deployment for wastewater-based disease surveillance (e.g., building, neighborhood, city, 

county, or regional). 

CONCLUSION 

A successful wastewater-based disease surveillance program should aim for equitable 

representation of vulnerable groups within the sampling design, while preserving anonymity of 

the sampled populations. When sampling frameworks are designed appropriately and 

equitably, wastewater data can inform health interventions that address disparities faced by 

underserved communities. The probabilistic assignment approach demonstrated in this study 
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offers a way to determine the distribution of impact of a planned (or existing) change in 

sampling regimes at a sub-sewershed level, thus facilitating equitable sampling design amidst 

shifting priorities and variable conditions. The approach is scalable and can be adapted to 

incorporate factors beyond those reported in this study.  

This study also demonstrates the utility of using probabilistic distribution in resource-

constrained settings for scenario planning. If only a certain number of autosamplers can be 

deployed in an area, the procedure outlined in this study could be used to determine favorable 

locations to place samplers to optimize a chosen measure (e.g., capture a larger proportion of 

the population over the age of 65, who are more vulnerable to serious illness from COVID-19). 

Then, sampling locations can be chosen strategically to ensure that majority of the population is 

being covered through sample collection at those sites. Ultimately, using this tool can help 

stakeholders adapt their sampling strategies to the local social landscape, thereby incorporating 

equity-based criteria into public health policies and striving towards an equitable sampling 

regime. 
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Figure 6. Choropleth maps of absolute percent differences (APDs) between probabilistic and manual 
assignment of census block data for race into sub-sewershed zones. Results are shown for each racial 
subgroup population captured through HDT wastewater sampling, by sub-sewershed zone. 
Stratifications included (a) White population, (b) Black or African American population, (c) American 
Indian and Alaska Native population, (d) Asian population, (e) Native Hawaiian and Other Pacific 
Islander population, (f) Other race population, and (g) Multiracial population. 

Multiracial Population 

SR-A 

SR-B 

SR-C 

SR-D 

SR-E 
 SR-F 

SR-G 

SR-H 

SR-I 

41 



 42 

 

Table 9. Absolute percent differences (APDs) between probabilistic and manual assignment of census block data for 
race into sub-sewershed zones. 

Zone 
Name White 

Black or 
African 

American 

American 
Indian and 

Alaska 
Native 

Asian 

Native 
Hawaiian 
and Other 

Pacific 
Islander 

Other Multiracial 

SR-A 3.8 6.4 3.6 5.7 5.0 10.1 6.2 

SR-B 25.8 36.4 28.6 34.6 16.7 38.7 24.6 

SR-C 27.4 20.3 12.8 15.4 26.9 18.9 25.1 

SR-D 3.5 0.0 0.0 2.2 0.0 0.9 3.0 

SR-E 34.9 33.8 35.7 27.0 42.9 22.6 30.3 

SR-F 21.5 23.7 40.8 20.4 12.5 11.8 16.1 

SR-G 15.5 20.0 11.1 25.3 33.3 19.4 15.8 

SR-H 6.4 14.9 42.9 3.8 0.0 6.6 10.0 

SR-I 2.8 5.6 17.1 3.6 4.0 4.7 5.3 
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Figure 7. Choropleth maps of absolute percent differences (APDs) between probabilistic and manual 
assignment of census block data for age into sub-sewershed zones. Results are shown for each age 
category subgroup population captured through HDT wastewater sampling, by sub-sewershed zone. 
Stratifications included populations (a) under age 5, (b) ages 5 to 17, (c) ages 18 to 34, (d) ages 35 to 
49, (e) ages 50 to 59, (f) ages 60 to 64, (g) ages 65 to 69, (h) ages 70 to 74, (i) ages 75 to 79, and (j) 
ages 80 and above. 
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Table 10. Absolute percent differences (APDs) between probabilistic and manual assignment of census block data 
for age into sub-sewershed zones. 

Zone 
Name 

Under 
5 

5 to 
17 

18 to 
34 

35 to 
49 

50 to 
59 

60 to 
64 

65 to 
69 

70 to 
74 

75 to 
79 

80 and 
Over 

SR-A 5.1 4.3 6.5 4.0 4.8 3.7 8.4 3.9 3.4 1.8 

SR-B 23.9 26.7 36.3 23.4 22.2 25.3 19.8 20.9 20.8 19.7 

SR-C 24.7 25.3 21.5 29.7 26.9 26.6 31.1 24.5 25.7 25.6 

SR-D 2.3 2.8 3.7 3.0 0.0 0.0 3.8 0.0 0.0 3.4 

SR-E 34.0 36.3 27.0 32.6 32.8 42.9 45.0 47.1 60.0 43.9 

SR-F 19.2 14.8 18.1 13.6 8.6 9.5 23.2 13.5 12.3 4.3 

SR-G 15.8 16.2 20.2 18.0 20.4 14.8 12.9 11.7 9.7 13.8 

SR-H 5.3 9.1 5.4 4.7 7.4 7.7 4.5 8.2 3.9 4.8 

SR-I 5.3 5.4 2.7 3.4 3.3 4.1 3.4 3.0 1.9 23.2 
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