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This thesis is devoted to designing and analyzing statistical decision rules to improve

public policy. The first three chapters study the estimation and inference of welfare-maximizing

treatment rules in the context of experimental design, spillover effects, and algorithmic fairness.

The last chapter focuses on statistical inference in experiments with multiple policy effects (either

of different interventions or on different outcomes).

Specifically, Chapter 1 proposes an experimental design for estimation and inference

of welfare-maximizing policies with spillover effects. As a first contribution, we introduce a

single-wave experiment to estimate the marginal effect of a change in treatment probabilities,

taking spillover effects into account. Using the marginal effect, we propose a practical test for
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welfare-maximizing policy. As a second contribution, we design a multiple-wave experiment

to estimate treatment rules and maximize welfare. We provide asymptotic and small-sample

guarantees of the procedure and study its numerical properties in simulations calibrated to

existing experiments.

Chapter 2 studies how to allocate treatments on a network, using information from an

existing (quasi)-experiment. We introduce a method that maximizes the sample analog of social

welfare when spillovers occur. We construct semi-parametric welfare estimators and cast the

optimization problem into a mixed-integer linear program. We derive guarantees on the regret

and illustrate the method’s advantage when targeting information on social networks.

Chapter 3 studies the problem of allocating treatments when policymakers have pref-

erences for non-discriminatory actions. We adopt the non-maleficence perspective of “first do

no harm”: we select the fairest allocation within the Pareto frontier. We derive off-the-shelf

optimization procedures and regret bounds on the unfairness of the estimated policy function.

We illustrate our method using an application from education economics.

Chapter 4 focuses on inference in the presence of multiple hypothesis testing. The use

of multiple hypothesis testing adjustments varies widely in applied economic research, without

consensus on when and how it should be done. We provide a game-theoretic foundation for this

practice. We show that adjustments with many interventions must depend on the nature of scale

economies in the research production function and on economic interactions between policy

decisions. When research examines multiple outcomes, our framework motivates aggregating

outcomes into sufficient statistics for policy-making.
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Chapter 1

Policy Design in Experiments with Un-
known Interference

Introduction

One of the goals of a government or NGO is to estimate the welfare-maximizing policy.

Network interference is often a challenge: treating an individual may also generate spillovers and

affect the design of the policy. For instance, approximately 40% of experimental papers published

in the “top-five” economic journals in 2020 mention spillover effects as a possible threat when

estimating the effect of the program.1 Researchers have become increasingly interested in

experimental designs for choosing the treatment rule (policy) which maximizes welfare.2 But

when it comes to experiments on networks, standard approaches are geared toward the estimation

of treatment effects. Estimation of treatment effects, on its own, is not sufficient for welfare-

maximization.3 For example, when assigning cash transfers, these may have the largest direct

effect when given to people living in remote areas but generate the smallest spillovers. This

trade-off has significant policy implications when treating each individual is costly or infeasible.

This chapter studies experimental designs in the presence of network interference when

the goal is welfare maximization. The main difficulty in these settings is that interactions can be

1This is based on the author’s calculation. Top-five economic journals are American Economic Review, Econo-
metrica, Journal of Political Economy, Quarterly Journal of Economics, Review of Economic Studies.

2See Bubeck and Cesa-Bianchi (2012) and Kasy and Sautmann (2019) for a discussion.
3Examples of treatment effects are the direct effects of the treatment and the overall effect, i.e., the effect if we

treat all individuals, compared to treating none. For welfare maximization, none of these estimands is sufficient.
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challenging to measure, and collecting network information can be very costly as it may require

enumerating all individuals and their connections in the population.4 We, therefore, focus on a

setting with limited information on the network. This is formalized by assuming that units are

organized into a finite number of large clusters, such as schools, districts, or regions, and interact

through an unobserved network (and in unknown ways) within each cluster. In the cash-transfer

program, we may expect that treatments generate spillovers to those living in the same or nearby

villages5, but spillovers are negligible between individuals in different regions. We propose

the first experimental design to analyze and estimate welfare-maximizing treatment rules in the

presence of unobserved spillovers on networks.

We make two main contributions. As a first contribution, we introduce a design where

researchers randomize treatments and collect outcomes once (single-wave experiment) to (i) test

whether one or more treatment allocation rules, such as the one currently implemented by the

policymaker, maximize welfare; (ii) estimate how we can improve welfare with a (small) change

to allocation rules. The experiment is based on a simple idea. With a small number of clusters,

we do not have enough information to precisely estimate the welfare-maximizing treatment rule.

However, if we take two clusters and assign treatments in each cluster independently with slightly

different (locally perturbated) probabilities, we can estimate the marginal effect of a change in the

treatment assignment rule (which we will refer to as marginal policy effect, MPE). For instance,

in the cash-transfer example, the MPE defines the marginal effect of treating more people in

remote areas, taking spillover effects into account.6 Using the MPE, we introduce a practical test

for whether there exists a welfare-improving treatment allocation rule. As this chapter suggests,

researchers should report estimates of the MPE and test for welfare-maximizing policies. The

MPE indicates the direction for a welfare improvement, and the test provides evidence on

whether it is worth conducting additional experiments to estimate a welfare-improving policy.

4See Breza et al. (2020) for a discussion on the cost associated with collecting network information.
5For instance, Egger et al. (2019) document spillovers from cash transfers between nearby villages.
6This is the derivative of welfare with respect to the policy’s parameters, taking spillovers into account, different

from what is known in observational studies as marginal treatment effect (Carneiro et al., 2010), which instead
depends on the individual selection into treatment mechanism.
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Specifically, the experiment pairs clusters and randomizes treatments independently

within clusters, with local perturbations to treatment probabilities within each pair. The difference

in treatment probabilities balances the bias and variance of a difference-in-differences estimator.

We show that the estimator for each pair converges to the marginal effect and derive properties

for inference with finitely many clusters. The experiment separately estimates the direct and

spillover effects, which are of independent interest. These are the effect on the recipients and the

marginal effect of increasing the neighbors’ treatment probability.7

As a second contribution, we offer an adaptive (i.e., multiple-wave) experiment to estimate

welfare-maximizing allocation rules. The goal here is to adaptively randomize treatments to

estimate the welfare-maximizing policy while also improving participants’ welfare.8 We propose

an experiment that guarantees tight small-sample upper bounds for both the (i) out-of-sample

regret, i.e., the difference between the maximum attainable welfare and the welfare evaluated

at the estimated policy deployed on a new population, and the (ii) in-sample regret, i.e., the

regret of the experimental participants. The experiment groups clusters into pairs, using as many

pairs as the number of iterations (or more); every iteration, it randomizes treatments in a cluster

and perturbs the treatment probability within each pair; finally, it updates policies sequentially,

using the information on the marginal effects from a different pair via gradient descent. We

illustrate the existence of a bias in adaptive experiments with repeated sampling and develop a

novel algorithm with circular updates to avoid the bias.

From a theoretical perspective, a corollary of the sequential experiment’s small-sample

guarantees is that the out-of-sample regret converges at a faster-than-parametric rate in the

number of clusters and iterations, and similarly, the in-sample regret.9 We note that there are no

regret guarantees tailored to unobserved interference. Existing results for treatment choice with

7Also, between-clusters local perturbations accommodate settings where policymakers cannot allow much
variation in how treatments are assigned between different clusters because of exogenous constraints.

8Improving participants’ welfare is desirable for large-scale experiments, common on online platforms (Karrer
et al., 2021), and of increasing interest in development studies (Muralidharan and Niehaus, 2017).

9The average out-of-sample regret converges at a rate 1/T , where T is the number of iterations and proportional
to the number of clusters, and log(T )/T the in-sample regret. For the out-of-sample regret, we derive an exponential
rate exp(−c0T ), for a positive constant c0 under additional restrictions (see Sec 1.4.1).
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i.i.d. data, treating clusters as sampled observations, would instead imply a slower convergence

in the number of clusters.10 We achieve a faster rate by (a) exploiting within-cluster variation in

assignments and between clusters’ local perturbations; (b) deriving concentration within each

cluster as the cluster’s size increases; (c) assuming and leveraging decreasing marginal effects of

increasing neighbors’ treatment probability.

We illustrate the numerical properties of the method with calibrated experiments that use

data from an information diffusion experiment (Cai et al., 2015) and a cash-transfer program

(Alatas et al., 2012, 2016). We show that our test can, in expectation, lead to welfare improve-

ments up to fifty percentage points if, upon rejection of the null hypothesis that increasing

treatment probabilities does not improve welfare, policy-makers increase treatment probabilities

by five percent. When designing an adaptive experiment, the proposed method substantially

improves both out-of-sample and in-sample regret, even with few iterations.

Throughout the text, we assume that the maximum degree grows at an appropriate slower

rate than the cluster size; covariates and potential outcomes are identically distributed between

clusters; treatment effects do not carry over in time. We discuss how such assumptions can be

relaxed in the Appendix.

This chapter adds to both the literature on single-wave and multiple-wave experiments.

In the context of single-wave (or two-wave) experiments, existing network experiments include

clustered experiments (Eckles et al., 2017; Ugander et al., 2013; Karrer et al., 2021) and saturation

designs (Baird et al., 2018; Pouget-Abadie, 2018). References with observed networks include

Basse and Airoldi (2018b), Jagadeesan et al. (2020), Viviano (2020) among others.11 See also

10 For treatment choice, Kitagawa and Tetenov (2018) establish distribution-free lower bounds of order 1/
√

n. In
the literature on bandit feedback Shamir (2013) provides lower bounds of order 1/

√
n for continuous stochastic

optimization procedure with strongly-convex functions (see also Bubeck et al. (2011)); optimization connects to
bandits of Flaxman et al. (2004); Agarwal et al. (2010) which, however, provide slower rates for high-probability
bounds (see also Section 1.4.1). Wager and Xu (2021) provide rates of order 1/T for in-sample regret but leverage
an explicit model for market interactions with infinite asymptotics. Here, I do not impose assumptions on the
interference mechanism and consider finitely many clusters. Kasy and Sautmann (2019) provides bounds for either
(but not both) notions of regret in finite sample.

11For the analysis on the bias of average treatment effect estimators with interference see also Basse and Feller
(2018), Johari et al. (2020), Basse and Airoldi (2018a), and Imai et al. (2009) when matching with different-sized
clusters for overall average treatment effects.
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Bai (2019); Tabord-Meehan (2018) with i.i.d. data. These authors study experimental designs

for inference on treatment effects only, but not the problem of inference on welfare-maximizing

policies. Different from all the above references, we propose a design that allows us to identify the

marginal effect under interference (and treatment effects). We introduce the first test and design

for inference on policy optimality under unobserved interference. This difference motivates us to

introduce a novel design consisting of local perturbations between clusters. The idea of using

the information on marginal effects connects to the literature on optimal taxation (Saez, 2001;

Chetty, 2009), which considers observational studies with independent units.

With multiple-wave experiments, we introduce a framework for adaptive experimentation

with unknown interference. We connect to the literature on adaptive exploration (Bubeck and

Cesa-Bianchi, 2012; Russo et al., 2017; Kasy and Sautmann, 2019, among others), and the one

on derivative free stochastic optimization (Flaxman et al., 2004; Kleinberg, 2005; Shamir, 2013;

Agarwal et al., 2010, among others). These references do not study the problem of network

interference. Here, we leverage between-clusters perturbations and within-cluster concentration

to obtain high-probability bounds on the regret with fast rates. In related work, Wager and Xu

(2021) have studied prices estimation via local experimentation in the different contexts of a

single market with asymptotically independent agents. They assume infinitely many individuals

and an explicit model for market prices. As noted by the authors, the structural assumptions

imposed in the above reference do not allow for spillovers on a network (i.e., individuals may

depend arbitrarily on neighbors’ assignments). Our setting differs due to network spillovers and

the fact that individuals are organized into finitely many independent components (clusters),

where such spillovers are unobserved. These differences motivate (i) the proposed design

mechanism, which exploits two-level randomization at the cluster and individual level instead

of individual-level randomization, and (ii) pairing and perturbations between clusters. From a

theoretical perspective, network dependence and repeated sampling induce novel challenges for

an adaptive experiment which we address here.

We relate to the literature on inference on treatment effects under interference and
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draw from Hudgens and Halloran (2008) for definitions of potential outcomes. However, this

literature considers existing (quasi)experiments and does not study experimental design and

welfare-maximization. Aronow and Samii (2017); Manski (2013); Leung (2020); Ogburn et al.

(2017); Goldsmith-Pinkham and Imbens (2013); Li and Wager (2020) assume an observed

network, while Vazquez-Bare (2017), Hudgens and Halloran (2008), Ibragimov and Müller

(2010) consider clusters among others. Sävje et al. (2021) study inference of the direct effect

of treatment only. Our focus on policy optimality and experimental design differs from the

above references. We show that inference on policy-optimality requires information on the MPE,

which, we demonstrate, can be estimated with a clusters pair.

More broadly, we connect to the literature on statistical treatment rules, on estimation

Manski (2004); Kitagawa and Tetenov (2018); Athey and Wager (2021); Bhattacharya and Dupas

(2012); Stoye (2009); Mbakop and Tabord-Meehan (2021); Kitagawa and Wang (2021); Sasaki

and Ura (2020); Viviano (2019), among others, and inference Andrews et al. (2019); Rai (2018);

Armstrong and Shen (2015); Kasy (2016);12 see also the literature on classification (Elliott and

Lieli, 2013). This literature considers an existing experiment and does not study experimental

design. Here, instead, we leverage an adaptive procedure to maximize out-of-sample and partici-

pants’ welfare. Also, this literature has not studied policy design with unobserved interference.

We broadly relate also to the literature on centrality measures (see for a review Bloch et al., 2019),

which mainly focuses on model-based approaches with a single observed network – different

from here where we leverage clusters’ variations; the one on peer groups composition (Graham

et al., 2010), and the one on inference with externalities (e.g., Bhattacharya et al., 2013, which,

however, does not study inference on policy optimality). These references also do not study

experimental designs.

12See also Kato and Kaneko (2020); Hadad et al. (2019); Imai and Li (2019); Hirano and Porter (2020a), which
do not allow for testing for policy optimality, but construct confidence bands for the welfare.
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Setup and Method’s Overview

This section introduces conditions, estimands, and a brief overview of the method.

We consider a setting with K clusters, where K is an even number. We assume that each

cluster has N individuals, while our framework directly extends to clusters of different but

proportional sizes. Observables and unobservables are jointly independent between clusters but

not necessarily within clusters. Each cluster k is associated with a vector of outcomes, covariates,

treatment assignments, and an adjacency matrix which is different for each cluster. These are

Y (k)
i,t ∈ Y ,D(k)

i,t ∈ {0,1},X
(k)
i ∈X ⊆ Rp,A(k) ∈A , respectively. Here, (Y (k)

i,t ,D(k)
i,t ) denote the

outcome and treatment assignment of individual i at time t in cluster k, respectively, X (k)
i are

time-invariant (baseline) covariates, and A(k) is a cluster-specific adjacency matrix. Each period

t, researchers only observe a random subsample

(
Y (k)

i,t ,X (k)
i ,D(k)

i,t

)n

i=1
, n = λN, λ ∈ (0,1],

where n defines the sample size of observations from each cluster and is proportional to the

cluster size.13 There are T periods in total. While units sampled each period may or may not be

the same, with abuse of notation, we index sampled units i ∈ {1, · · · ,n}. Whenever we provide

asymptotic analyses, we let N grow, and K be fixed.

Setup: Covariates, Network and Potential Outcomes

Next, we introduce conditions on the covariates, network, and potential outcomes. These

conditions guarantee that Lemma 1.2.1 (in Section 1.2.2) holds; practitioners may skip this

subsection and directly refer to Section 1.2.2 for their implications, keeping in mind the covariates’

distribution in Equation (1.1). We now discuss the network and covariates. We assume that

individuals can form a link with a subset of individuals in each cluster. Formally, in each cluster,

13Our framework directly extends when n = g(N) for a generic monotonic function g(·), and when we sample a
different but proportional number of individuals from each cluster.
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nodes are spaced under some latent space (Lubold et al., 2020) and can interact with at most the

γ
1/2
N closest nodes under the latent space. We say 1{ik↔ jk}= 1 if individual i can interact with

j in cluster k and zero otherwise. Conditional on the indicators 1{ik↔ jk},

(X (k)
i ,U (k)

i )∼i.i.d. FU |X FX , A(k)
i, j = l

(
X (k)

i ,X (k)
j ,U (k)

i ,U (k)
j

)
1{ik↔ jk} (1.1)

for an arbitrary and unknown function l(·) and unobservables U (k)
i . Equation (1.1) states

that whether two individuals interact depends on: (i) whether they are close enough within a

certain latent space (captured by 1{ik ↔ jk}); (ii) their covariates and unobserved individual

heterogeneity (i.e., Xi,Ui) which capture homophily. Equation (1.1) also states that covariates

are i.i.d. unconditionally on A(k), but not necessarily conditionally.14 Figure 2.2 provides an

illustration. Here, we condition on the indicators 1{ik↔ jk} (which can differ across clusters)

to control the network’s maximum degree but not on the network A(k). Equivalently, we can

interpret such indicators as exogenously drawn from some arbitrary distribution.15

Assumption 1.2.1 (Network). For i ∈ {1, · · · ,N},k ∈ {1, · · · ,K}, let (i) Equation (1.1) hold

given the indicators 1{ik↔ jk}, for some unknown l(·); (ii)
∑n

j=1 1{ik↔ jk}= γ
1/2
N .

Assumption 1.2.1 states the following: before being born, each individual may interact

with γ
1/2
N many other individuals. After the birth, the individual’s gender, income, and parental

status determine her type and the distribution of her and her potential connections’ edges.16 Here

γ
1/2
N captures the degree of dependence. Whenever γ

1/2
N equals N, we impose no restriction on

the individual’s number of connections. In Theorem 1.3.1 the maximum degree can be equal to

the cluster’s size, while subsequent results require more restrictive restrictions.17

14We might also augment l(·) with additional i.i.d. exogenous ηi j without affecting our results.
15Formally, Ik ∼Pk, (X (k)

i ,U (k)
i )|Ik ∼i.i.d. FU |X FX , A(k)

i, j |Ik = l
(

X (k)
i ,X (k)

j ,U (k)
i ,U (k)

j

)
1{ik↔ jk}, where

Ik is the matrix of such indicators in cluster k and Pk is a cluster-specific distribution left unspecified.
16Networks formed from pairwise interactions have also been discussed in Jackson and Wolinsky (1996), Li and

Wager (2020), Leung (2019). Here, we impose such restrictions to obtain easy-to-interpret conditions on the degree.
Assumption 1.2.1 is sufficient but not necessary.

17 Assumption 1.2.1 would not be required if we were to observe neighbors’ assignments as in Viviano (2019).
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We now discuss potential outcomes. Under interference, outcomes depend on individuals’

covariates, unobservables and neighbors’ treatments. That is, Y (k)
i,t (d(k)

1 , · · · ,d(k)
t ) denotes the

potential outcome of individual i at time t. Here d(k)
s ∈ {0,1}N denotes the treatment assignments

at time s of all individuals in cluster k. The following condition is imposed.

Assumption 1.2.2 (Potential outcomes). Suppose that for any i, t,k,d(k)
s ∈ {0,1}N ,s≤ t

Y (k)
i,t (d(k)

1 , · · · ,d(k)
t ) = r

(
d(k)

i,t ,d
(k)

j:A(k)
i, j >0,t

,X (k)
i ,X (k)

j:A(k)
i, j >0

,Ui,U j:A(k)
i, j >0

,A(k)
i,· ,ν

(k)
i,t

)
+ τk +αt

for some unknown function r(·), stationary (but possibly serially dependent) unobservables

ν
(k)
i,· |X (k),U (k) ∼i.i.d. Pν , fixed effects τk,αt .

Assumption 1.2.2 imposes three conditions. First, treatment effects do not carry-over

in time. Second, potential outcomes are stationary up to separable fixed effects (unobservables

can depend over time).18 Third, potential outcomes can depend on neighbors’ assignments,

neighbors’ covariates, and neighbors’ identities, with arbitrary and unknown heterogeneity in

spillover effects. Note that A(k)
i,· denotes the set of connections of individual i in cluster k, with

{ j : A(k)
i, j > 0} denoting those individuals with some connection to i. Assumption 1.2.2 imposes

no condition on the dependence on neighbors’ assignments but assumes that cluster fixed effects

do not depend on treatment assignments, which is important for identification.

Remark 1 (Extensions). In Appendix A.1 and Appendix A.2 we present extensions. In Appendix

A.1.1 individuals depend on general equilibrium effects, and in Appendix A.1.3 on the past

assignments. Appendix A.2.2 presents non-separable fixed effects. Appendix A.2.4 studies

staggered adoption. Appendix A.1.2, A.1.5 present effects heterogeneous on clusters’ types.

18Such condition is often implicitly imposed in studies on experimental design (Kasy and Sautmann, 2019). For a
discussion on the no-carry-over assumption, see Athey and Imbens (2018). We relax it in Section A.1.3.
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−→ −→−→

Possible connections Types’ assignment Network formation

Figure 1.1. Example of the network formation model, with γN = 5. Individuals’ are assigned
different types which may or may not be observed by the researcher (corresponding to different
colors). Individuals interact based on their types and form links among the possible connections.
The possible connections and the realized adjacency matrix remain unobserved.

Policy and Welfare Maximization

The goal of this paper is to estimate a policy (treatment assignment rule) that maximizes

welfare. We focus on a parametric class of policies, indexed by some parameter β . Formally, a

policy

π(·;β ) : X 7→ [0,1], β ∈B,

is a map that prescribes the individual treatment probability based on covariates. Here B is

a compact parameter space, and π(x,β ) is twice differentiable in β . The experiment assigns

treatments independently based on π(·), and time/cluster-specific parameters βk,t .

Assumption 1.2.3 (Treatment assignments in the experiment). For given parameters βk,t

D(k)
i,t |X

(k),βk,t ∼i.i.d. Bern
(

π(X (k)
i ;βk,t)

)
,

which, for short of notation, we refer to as D(k)
i,t |X (k),βk,t ∼ π(X (k)

i ,βk,t).

Assumption 1.2.3 defines a treatment rule in experiments. Treatments are assigned

independently based on covariates and time and cluster-specific parameters βk,t (whose choice

is discussed in the next sections). The assignment in Assumption 1.2.3 is easy to implement:

it can be implemented in an online fashion and does not require network information, which

justifies its choice; also, it generalizes assignments in saturation designs studied for inference

10



on treatment effects (Baird et al., 2018). Our goal is to estimate the welfare-maximizing β (see

Remark 2).19 Our framework extends to continuous treatments, omitted for brevity.20

An example of assignment rule is treating individuals with equal probability (Akbarpour

et al., 2018), i.e., π(·;β ) = β ∈ [0,1]. We can also target treatments, i.e., π(x;β ) = βx, indicating

the treatment probability for X (k)
i = x (with X discrete).

Throughout our discussion, whenever we write π(·;β ), omitting the subscripts (k, t), we

refer to a generic exogenous (i.e., not data dependent) vector of parameters β . We define Eβ [·]

the expectation taken over the distribution of treatments assigned according to π(·;β ).

Lemma 1.2.1 (Outcomes). Under Assumption 1.2.1, 1.2.2, under an assignment in Assumption

1.2.3 with exogenous (i.e., not data-dependent) βk,t the following holds:

Y (k)
i,t = y

(
X (k)

i ,βk,t

)
+ ε

(k)
i,t +αt + τk, Eβk,t

[
ε
(k)
i,t |X

(k)
i

]
= 0, (1.2)

for some function y(·) unknown to the researcher. In addition, for some unknown m(·),

Eβk,t

[
Y (k)

i,t |D
(k)
i,t = d,X (k)

i = x
]
= m(d,x,βk,t)+αt + τk.

The proof is in Appendix A.3.2. Equation (1.2) states that the outcome depends on two

components. The first is the conditional expectation given the individual covariates and the

parameter βk,t , unconditional on covariates, adjacency matrix, individual, and neighbors’ assign-

ments. We can interpret the functions y(·) and m(·) as functions which depend on observables

only. The dependence with βk,t captures spillover effects since treatments’ distribution depends

on βk,t , while we average over neighbors’ treatments and covariates. The second component εi,t

are unobservables that also depend on the neighbors’ assignments and covariates. As shown

in Appendix A.3.2, under the above conditions, such unobservables only depend on γN many

others, where γ
1/2
N is the maximum degree of the network (see Assumption 1.2.1). Also, note

19 In Theorem 1.4.5 we show that the optimum obtained under Assumption 1.2.3 is asymptotically equivalent to
the one with arbitrary dependent assignments under additional conditions on spillovers and costs.

20All our results hold for D(k)
i,t |X

(k)
i ,βk,t = π(X (k)

i ,βk,t), where π(·;β ) is smooth in β .
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that Lemma 1.2.1 assumes that βk,t is exogenous. We guarantee exogeneity with a careful choice

of the experimental design discussed in subsequent sections.

Example 1.2.1. Let D(k)
i,t ∼i.i.d. Bern(β ) be exogenous, Ni = { j : Ai, j = 1},Ai, j ∈ {0,1}, and

Yi,t = αt +Di,tφ1 +

∑
j∈Ni

D(k)
j,t

|Ni|
φ2−

(∑
j∈Ni

D j,t

|Ni|

)2
φ3 +νi,t , E[νi,t ] = 0. (1.3)

Equation (1.3) states that outcomes depend on the individual treatment, and the percentage of

treated neighbors. With some algebra, taking expectations, Yi,t = αt +βφ1 +βφ2− βφ3κ −

β 2φ3(1−κ)+ εi,t where εi,t also depends on neighbors’ assignments and κ = E[1/|Ni|].

Lemma 1.2.1 provides the basis for the definition of (utilitarian) welfare.

Definition 1.2.1 (Welfare). For treatments as assigned in Assumption 1.2.3 with exogenous β

parameter, let welfare be

W (β ) =

∫
y(x,β )dFX(x). (1.4)

We define welfare as the expected outcome, had treatments been assigned with policy

π(·,β ). The expectation is taken over treatment assignments, covariates, and adjacency matrix.

We interpret y(x,β ) the outcome net of costs21, and incorporate the costs in the outcome

function.22 We define the welfare-maximizing policy and the marginal effect23 as

β
∗ ∈ arg sup

β∈B
W (β ), V (β ) =

∂W (β )

∂β
. (1.5)

The marginal effect defines the derivative of the welfare with respect to the vector of

21This is standard in the literature (Kitagawa and Tetenov, 2018). However, some applications may not have
explicit definitions of costs. For these cases, one possible choice of the cost is the opportunity cost, had the treatment
being assigned to a population with no externalities. See Section 1.4.2 for a discussion.

22Namely, we can parametrize Yi,t = Yi,t − c(Xi,t ;β ), for a cost function c(·;β ).
23Here, we are assuming differentiability. See Assumption 1.3.1 for explicit conditions.
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parameters β . A useful insight is that, under mild regularity conditions, we can write

V (β ) =

∫ [
π(x;β )

∂m(1,x,β )
∂β

+(1−π(x;β ))
∂m(0,x,β )

∂β︸ ︷︷ ︸
(S)

+
∂π(x;β )

∂β
∆(x,β )︸ ︷︷ ︸

(D)

]
dFX(x), (1.6)

where ∆(x,β ) = m(1,x,β )−m(0,x,β ). The marginal effect depends on the direct effect,

weighted by the probability of treatment (D); the marginal spillover effect, i.e., the marginal

effect of increasing neighbors’ treatment probabilities. Equation (1.6) follows in the spirit of the

direct and indirect effects decomposition in Hudgens and Halloran (2008).24

Remark 2 (Assumption 1.2.3 and unconstrained optimum). In Theorem 1.4.5, we compare

W (β ∗) to the unconstrained optimum W ∗N , where treatments can be assigned arbitrary. We show,

under additional conditions, that W (β ∗)−W ∗N → 0, as N→ ∞, whenever the treatment costs are

the opportunity costs of an intervention with no spillovers. In a cash-transfer program these are

the opportunity costs had the cash transfers be given to individuals spread out on a large area

instead of individuals in nearby villages.

Method’s Overview and Example

We now give an overview and example. Consider a policy-maker who must allocate

cash-transfers to half of the population. Let Xi ∈ {0,1}, equal to one for households farer

from the district’s center than the median household and zero otherwise, with P(Xi = 1) = 1/2.

Due to the constraint, the policy-maker assigns treatments Di,t |Xi = x∼ Bern(π(x,β )), where

π(x,β ) = xβ +(1− x)(1−β ) is the treatment probability for x ∈ {0,1}.25 Different treatment

probabilities for people in remote areas produce different welfare effects, and assigning all

treatments to individuals in remote areas is sub-optimal. This is illustrated in Figure 1.2, where

we report W (β ), calibrated to data from Alatas et al. (2012, 2016).26

24 We also note that in recent work, Hu et al. (2021) have proposed targeting as causal estimand the average
indirect effect, which is different from (S) for heterogenous assignments. Also, Graham et al. (2010) present peer
effects’ decompositions in the different contexts of peer groups’ formation.

25This follows from the budget constraint where β1P(Xi = 1)+β2P(Xi = 0) = 1/2, where β1 = β ,β2 = 1−β

are the treatment probabilities for people in remote and closer areas from the center, respectively.
26See Appendix A.4.3 for details.
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Single-wave experiment: hypothesis testing

First, we would like to test whether a certain (baseline) intervention β , such as the

one currently implemented by the government or NGO, is welfare-optimal. That is, we test

H0 : W (β ) = W (β ∗). Its rejection is informative on whether a (small) change to β improves

welfare. We use the marginal effect for:

(a) Hypothesis testing: assuming that β ∗ is an interior point, if ∂W (β )
∂β
6= 0, then H0 is false;

(b) Policy update: estimate the welfare-improving direction (increase or decrease β ).

Here, (a) tests whether the line’s slope in Figure 1.2 is zero. Similarly, a rejection of one-sided

hypotheses ∂W (β )
∂β
≤ 0 suggests to increase β (treat more people in remote areas).

We proceed to construct estimators of the marginal effect. We start from Equation (1.6).

The direct effect (D) can be identified from a single network, taking the difference between

treated and untreated outcomes. However, the spillover effect (S) cannot be identified from a

single network when unobserved. We instead exploit two clusters’ variation.

We take two clusters such as two regions. We collect baseline (t = 0) outcomes and

covariates; we then randomize treatments with slightly different probabilities between the regions.

In the first region, we treat individuals in remote areas (Xi = 1) with probability β +ηn. Here, ηn

is a small deterministic number (local perturbation). The remaining individuals are treated with

probability 1−β −ηn. In the second region, we treat individuals in remote area with probability

β −ηn, and the remaining ones with probability 1−β +ηn.

As shown in Figure 1.2, we can estimate welfare for two different but similar treatment

probabilities; the line’s slope between the points is approximately equal to the marginal effect.

For a suitable choice of ηn (see Theorem 1.3.1), a consistent marginal effect’s estimator is

V̂(k,k+1)(β ) =
1

2ηn

[
Ȳ (k)

1 − Ȳ (k)
0

]
− 1

2ηn

[
Ȳ (k+1)

1 − Ȳ (k+1)
0

]
, (1.7)

where Ȳ (h)
t is the outcomes’ sample average in cluster h at time t, Yi,0 is the baseline outcome
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with no experiment in place yet, and (k,k+1) index the two clusters. The above estimator is a

difference-in-differences; we subtract baseline outcomes due to fixed effects.

We can then leverage the marginal effect for hypothesis testing. We take K = 2G,G > 1

clusters and 1) we match clusters in G pairs; 2) within each pair g, we obtain an estimate V̂g(β )

for pair g; 3) we construct a (scale-invariant) test statistics using G pairs, which does not depend

on the estimator’s variance.27 As we discuss in Remark 5, pairing clusters guarantees finite

clusters asymptotics. Formal details of the algorithm are in Section 1.3.

Algorithm 1 illustrates the experiment in the cash-transfer example with two clusters.

With more than two clusters, we pair clusters and implement Algorithm 1 in each pair.

Algorithm 1. Local perturbation with two clusters, β is a scalar

Require: Value β , K = 2 with h ∈ {k,k+1}, constant C̄.
1: t = 0 (baseline): either nobody receives treatments or treatments are assigned with π(·;β )

(either case is allowed).
a: Experimenters collect baseline outcomes: for n units in each cluster observe Y (h)

i,0 ,X (h)
i ,h∈

{k,k+1}.
2: t = 1: experiment starts

a: Based on the target parameter β , assign treatments for Xi = 1 as

D(k)
i,1 |β ,X

(k)
i = x∼

{
Bern(π(x,β +ηn)) if h = k
Bern(π(x,β −ηn)) if h = k+1

, C̄n−1/2 < ηn < C̄n−1/4.

b: For n units in each cluster h ∈ {k,k+1} observe Y (h)
i,1 .

3: Estimate the marginal effect as in Equation (1.7).

Remark 3 (Inference on treatment effects). Our design permits us to estimate separately the

direct treatment effect and the spillover effect, which may be of independent interest. We estimate

the direct effect with a means’ difference between treated and controls, pooled across clusters. In

Theorem 1.3.3, we show that the estimated direct effect has a negligible bias of order o(n−1/2).

We estimate the spillover effect by taking the outcomes’ difference between clusters (see Section

2.3).28

27See Equation (1.10). Scale-invariance follows from Ibragimov and Müller (2010).
28Also, if the experimenter’s goal is precise inference on direct effects only, β can be chosen based on variance
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Figure 1.2. Example of experimental design. Half of the population is treated. The left panel is
a single-wave experiment with two clusters. In the first cluster, we assign the policy colored in
green and the second cluster colored in brown. The right panel is a two-wave experiment. In the
first period, we use a pair of clusters to estimate the marginal effect (black color), and we update
the policy for a different pair (gray color).

Multiple-wave experiment: estimation of β ∗

We now show how we can estimate β ∗ using T experimentation periods and K ≥ 2(T +1)

many clusters. The policy-maker assigns cash transfers and collects outcomes sequentially. Every

period t, she assigns treatments in cluster k based on parameters βk,t , with two goals. First, at

time T , she wants to obtain an estimate β̂ ∗, which well approximates β ∗. Second, she wants to

improve the experimental participants’ welfare.

We maximize welfare with the following algorithm: 1) we pair clusters and organize

pairs in a circle as in Figure 1.3; 2) every step t, we estimate the marginal effect within each

pair; 3) we then update the policy in a given clusters’ pair using the information on the marginal

effect from the subsequent pair on the circle. We refer to Step 3 as circular cross-fitting.29 Step 3

guarantees that the experiment is unconfounded. See Section 1.4 for details.30

considerations, but we can employ our method – which only requires small perturbations to β – to identify spillover
effects.

29Cross-fitting algorithms were used by Chernozhukov et al. (2018) in the different context of double-machine
learning with i.i.d. data. Our procedure differs due to the adaptive sampling and the circular structure.

30Also, note that our method also extends when treatments can only be assigned once. See Appendix A.2.4.
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The right panel in Figure 1.2 illustrates the procedure for two waves: we use one pair of

clusters to estimate the marginal effect, which we then use for the second pair (and vice-versa,

see Algorithm 3). The experiment assumes and leverages the concavity of welfare, generally

attained under decreasing marginal effects of neighbors’ treatments. Under lack of concavity, the

experiment returns a local optimum. In Section 1.4 we measure the method’s performance based

on the in-sample and out-of-sample regret and show that with high-probability

W (β ∗)−W (β̂ ) = O(1/T ), max
k

1
T

T∑
t=1

[
W (β ∗)−W (βk,t)

]
= O(log(T )/T ).

The first equation indicates the out-of-sample, and the second the in-sample regret. The regret

scales at rate O(1/K), as we choose 2T +2 = K. Under additional restrictions, we also derive

exponential rates O(exp(−c0K)) for the out-of-sample regret, for some c0 > 0.

Remark 4. An alternative approach is to estimate y(·) by assigning different policies to clusters

and extrapolating the overall effect. We do not consider this alternative for two reasons. For a

generic p-dimensional vector β , the out-of-sample regret is either sensitive to the model used for

extrapolation or suffers a curse of dimensionality (e.g., when a grid search is employed). Second,

this method does not control the in-sample regret, i.e., it must incur significant in-sample welfare

loss to estimate the response function y(·). Appendix A.1.4 presents details.

−→ −→

Figure 1.3. Circular cross-fitting method. Clusters (rectangles) are paired. Within each pair,
researchers assign different treatment probabilities to clusters with different colors. Finally, the
policy in each pair is updated using information from the consecutive pair.
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Single-wave Experiment

In this section, we turn to the design and analysis of a single-wave experiment. We

consider an experiment to test the following hypothesis.

Definition 1.3.1 (Testable implication). Let β ∗ ∈B be an interior point. W (β ) =W (β ∗) implies

H0 : V ( j)(β ) = 0, ∀ j ∈ {1, · · · , l}, l ≤ p. (1.8)

The above implication is at the core of our approach. We can test whether l arbitrary

entries of the marginal effect are equal to zero. Rejection implies a lack of global optimality. For

expositional convenience, we consider l = 1 only (test the first entry being zero). In Appendix

A.2.1 we show how our method generalizes to l > 1. We may also test V ( j)(β )≤ 0; for example,

for π(x,β ) = βx (X discrete), one-sided test is informative for whether we should increase

treatment probabilities for individuals with x = j (without assuming that β ∗ is in the interior).

Finally, it is useful to define the vector

e j =

[
0, · · · ,0,1,0, · · · ,0

]
, where e j ∈ {0,1}p, and e( j)

j = 1. (1.9)

Algorithm 2 presents the design. The algorithm pairs clusters. Within each pair, it

estimates the first entry of the marginal effect (since here we test V (1)(β ) = 0) using local

perturbations – as discussed in Section 1.2.3. It then constructs a scale-invariant test statistics.

Without loss of generality, we index clusters such that each pair contains two consecutive clusters

{k,k+1} with k being an odd number.

In the following lines, we discuss the estimation of marginal and treatment effects and

guarantees for inference on H0.
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Algorithm 2. One wave experiment for inference with l = 1

Require: Value β ∈ Rp (exogenous), K clusters, constant C̄, size α;
1: Organize clusters into G = K/2 pairs with consecutive indexes {k,k+1};
2: For each pair g = {k,k+1}, k is odd, run Algorithm 1, with at t = 1,

D(k)
i,1 |β ,X

(k)
i = x∼

{
Bern(π(x,β +ηne1)) if h = k
Bern(π(x,β −ηne1)) if h = k+1

, C̄n−1/2 < ηn < C̄n−1/4,

and estimate the marginal effect as in Equation (1.6).
3: Construct the test statistics

Tn =

√
GV̄n(β )√

(G−1)−1
∑

g(V̂g(β )−V̄n(β ))2
, V̄n(β ) =

1
G

∑
g

V̂g(β ); (1.10)

here V̂g is the marginal effect estimated in pair g.

4: Construct the test as 1
{
|Tn| > cvG−1(α)

}
with size α; cvG−1(α) is the size α t-test’s

critical quantile with G−1 degrees of freedom.

Estimation of Marginal and Treatment Effects

The experiment we just described permits us to estimate three quantities of independent

interest: the marginal effect, the direct effect, and the spillover effect. These should be reported

by researchers once the experiment is concluded. We describe the estimators below.

Equation (1.6) provides the marginal effect estimator V̂g(β ) for each pair of clusters g.

Researchers may report V̄n(β ) (Equation 1.10) in their results – the average across clusters’ pairs.

We show below that both V̄n(β ) and V̂g(β ) provide a consistent estimate of V (1)(β ).31

The experiment also allows us to estimate the direct effect of the treatment and the

(marginal) spillover effect separately, respectively defined as:32

∆(β ) =

∫ [
m(1,x,β )−m(0,x,β )

]
dFX(x), S1(d,β ) =

∫
∂m(d,x,β )

∂β (1)
dFX(x).

The direct effect is the treatment effect, keeping fixed the neighbors’ treatment probability. S1(·),
31Note that our discussion directly extends to estimating each entry of V (β ) as shown in Appendix A.2.1.
32Here, we are implicitly assuming that m(·) is uniformly bounded to invoke the dominated convergence theorem.

See the next subsection for formal assumptions.
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the spillover effect, is the marginal effect of a small change in the first entry of β , keeping fixed

individual treatment status.33 For a given pair of clusters (k,k+1), we estimate

∆̂k(β ) =
1

2n

∑
h∈{k,k+1}

n∑
i=1

[ D(h)
i,1 Y (h)

i,1

π(X (h)
i ,β +ηnvhe1)

−
(1−D(h)

i,1 )Y
(h)
i,1

1−π(X (h)
i ,β +ηnvhe1)

]
,

where vh = 1{h = k}−1{h = k+1}.

The estimator pools observations between the two clusters and takes a difference between

treated and control units within each cluster, divided by the probability of treatments. This

follows similarly to classical Horvitz-Thompson estimators (Horvitz and Thompson, 1952).

Importantly, we divide by the probability of treatments, taking into account the perturbation ηn.

We average direct effects across clusters’ pairs to obtain a single measure ∆̄n =
1
G
∑

g ∆̂g(β ).

The indirect effect is estimated as follows:

Ŝ(k,k+1)(0,β ) =
1
2n

∑
h∈{k,k+1}

vh

ηn

n∑
i=1

[ Y (h)
i,1 (1−D(h)

i,1 )

1−π(X (h)
i ,β + vhηne1)

− Ȳ (h)
0

]
.

The estimator takes a difference between the control units between the two clusters, divided by

their corresponding treatment probabilities. Researchers may report the between pairs average

S̄n(0,β ) = 1
G
∑

g Ŝg(0,β ),34 which captures spillovers on the control units.

Theoretical Analysis

Next, we study theoretical guarantees. The following regularity condition is imposed.

Assumption 1.3.1 (Regularity 1). Suppose that for all x ∈X ,d ∈ {0,1}, π(x,β ),m(d,x,β ) are

uniformly bounded and twice differentiable with bounded derivatives.35

33Similarly to the marginal effect, our setting also extends to estimating S j(·) for arbitrary entries of β as in
Appendix A.2.1.

34Here, Ŝ(1,β ) follows similarly and omitted for brevity.
35Assumption 1.3.1 imposes smoothness and boundedness restrictions. These restrictions hold for a large set of

linear and non-linear functions, assuming that X is compact. Boundedness is often imposed in the literature, see,
e.g., Kitagawa and Tetenov (2018).
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Theorem 1.3.1 (Consistency of the marginal effect). Suppose that ε
(k)
i,t is sub-gaussian. Let

Assumptions 1.2.1, 1.2.2, 1.3.1 hold. Let Var(
√

nV̂(k,k+1)(β )) = O(ρn). Then with probability at

least 1−δ , for any δ ∈ (0,1),

∣∣∣V̂(k,k+1)(β )−V (1)(β )
∣∣∣= O

(
ηn +min

{√
γN log(γN/δ )

nη2
n

,

√
ρn

nη2
n δ

})
,

where V̂(k,k+1) is estimated as in Algorithm 2.

For γN log(γN)/N1/3 = o(1),ηn = n−1/3,V̂(k,k+1)(β )→p V (β ).

The proof is in Appendix A.3.3. Theorem 1.3.1 shows that we can consistently estimate

the marginal effects with two large clusters. Consistency depends on the degree of dependence

among unobservables ε
(k)
i,t (which also depends on neighbors’ assignments). The convergence

rate depends on the minimum between the maximum degree of the network, which is proportional

to γ
1/2
N , and the covariances among unobservables, captured by ρn. If either the network has

a degree that grows at a slower rate than N (recall that n/N = O(1)) or a degree equal to N

but vanishing covariances, we can consistently estimate the marginal effects. The theorem also

illustrates the trade-off in the choice of the deviation parameter ηn: a larger deviation parameter

ηn decreases the variance, but it increases the bias. Appendix A.2.5 provides an explicit rule of

thumb for choosing ηn.

Corollary 1. Under the conditions in Theorem 1.3.1, letting γN log(γN)/n1/3 = o(1),ηn = n−1/3,

for any K, V̄n→p V (1)(β ).

The above corollary illustrates consistency once we pool information from different

clusters (with K being finite). Next, we study inference assuming the following condition.

Assumption 1.3.2 (Regularity 2). Assume that for treatments as assigned in Algorithm 2, for all

k ∈ {1, · · · ,K}, ε
(k)
i,t has bounded fourth moment and for some C̄k > 0, ρn ≥ 1,

Var
( 1√

n

[
Ȳ (k)

1 − Ȳ (k)
0

])
= C̄kρn. (1.11)
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Assumption 1.3.2 imposes standard moment bounds and a lower bound on the variance

of the estimator, attained under independence and positive dependence.

Theorem 1.3.2. Let Assumptions 1.2.1, 1.2.2, 1.3.1, 1.3.2 hold. Let n1/4ηn = o(1),γN/N1/4 =

o(1), K < ∞. Then for each pair (k,k+1), for V̂(k,k+1) estimated as in Algorithm 2,

Var
(

V̂(k,k+1)

)−1/2(
V̂(k,k+1)−V (1)(β )

)
→d N (0,1).

The proof is in Appendix A.3.3. Theorem 1.3.2 guarantees asymptotic normality. The

theorem assumes that the maximum degree γ
1/2
N grows at a slower rate than the sample size of

order N1/8 (and hence n1/8 since n is proportional to N). This condition is stronger than what is

required for consistency only.36 Given Theorem 1.3.2, we conduct inference with scale-invariant

test statistics without necessitating estimation of the (unknown) variance.

Corollary 2. Let the conditions in Theorem 1.3.2 hold. For 4≤ K < ∞, α ≤ 0.08,

lim
n→∞

P
(
|Tn| ≤ cvK/2−1(α)

∣∣∣H0

)
≥ 1−α, (1.12)

where cvK/2−1(h) is the size-h critical value of a t-test with K/2−1 degrees of freedom.

The proof is in Appendix A.3.5. The theorem guarantees asymptotically valid inference

on H0 as n→ ∞ and K is finite. With l = 1 the proof is a direct consequence of Theorem 1.3.2,

combined with properties of pivotal statistics in Ibragimov and Müller (2010).37 In Appendix

A.2.1 we provide expressions for the test statistics and derivations for l > 1.

To our knowledge, this is the first set of results for inference on welfare-maximizing

policies with unknown interference.

We conclude this section with a study on the estimated direct and spillover effect.

36We conjecture that weaker restrictions on the degree are possible, as for consistency. We leave their study to
future research.

37 See also Chernozhukov et al. (2018) for a discussion on pivotal inference in the different context of synthetic
controls.
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Theorem 1.3.3 (Asymptotically neglegible bias of the direct effect). Let Assumptions 1.2.1, 1.2.2,

1.3.1 hold, and ηn = o(n−1/4). Then for all pairs (k,k+1), E
[
∆̂(k,k+1)(β )

]
= ∆(β )+o(n−1/2).

Similarly, E
[
∆̄n(β )

]
= ∆(β )+o(n−1/2), where the second term does not depend on K.

The proof is in Appendix A.3.3. Theorem 1.3.3 shows that the bias of the estimated direct

effect is asymptotically negligible at a rate faster than the parametric rate n−1/2 when pooling

observations from different clusters. Our insight here is that, with pairing and perturbations

of opposite signs, the first-order bias cancels out. This result implies that our experimental

design induces a bias that can be ignored for estimation and inference.38 Given that the bias is

asymptotically negligible, we can use existing results for inference on direct effects with a single

network (e.g., Sävje et al. 2021). For completeness, we show consistency below.

Corollary 3. Suppose that ε
(k)
i,t is sub-gaussian. Let Assumptions 1.2.1, 1.2.2, 1.3.1 hold, and

π(x,β ) ∈ (κ,1−κ),κ ∈ (0,1) for all x ∈X . Let ηn = o(n−1/4). Then with probability at least

1−δ , for any δ ∈ (0,1), for any K

∣∣∣∆̄n−∆(β )
∣∣∣= O

(√
γN log(γN/δ )

Kn

)
+o(n−1/2),

The proof is in Appendix A.3.5. The corollary requires strict overlap (standard in the

literature on causal inference) and shows that we can attain consistency for K < ∞, n→ ∞.

The following result is on the bias of the marginal spillover effects estimators.

Theorem 1.3.4 (Marginal Spillover effects). Let Assumptions 1.2.1, 1.2.2, 1.3.1 hold. Then for

all pairs (k,k+1), E
[
Ŝ(k,k+1)(0,β )

]
= S1(0,β )+O(ηn).

The proof is in Appendix A.3.3. Theorem 1.3.4 shows that the bias converges to zero

as ηn→ 0. The rate is slower than the rate of the direct effect’s bias (since ηn > n−1/2). We

obtain a slower rate because the marginal spillover effect depends on between clusters variations.

Consistency and inference follow verbatim as discussed for the marginal effect.

38Note that ηn = o(n−1/4) is consistent with requirements in previous theorems.
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Remark 5 (Pairing clusters permits finite-clusters asymptotics). Pairing plays a fundamental role

in our design with finite K. In the absence of pairing, the bias of the marginal and treatment effects

would not converge to zero for finite K. To gain further intuition, consider a uni-dimensional

setting (X = 1 almost surely), and π(1,β ) = β . Then

E
[
V̂(k,k+1)(β )

]
=

1
2

∑
h∈{k,k+1}

vh

ηn
y(1;β + vhηn)

=
1
2

∑
h∈{k,k+1}

vh

ηn
y(1;β )

︸ ︷︷ ︸
(i)

+
∂y(1;β )

∂β︸ ︷︷ ︸
(ii)

+O(ηn), vh =


1 if h = k

−1 if h = k+1.

Component (i) induces a bias, while (ii) is the target estimand. Observe that (i) equals zero

because of the paired design: vh is one for one cluster and minus one for the other cluster.

Suppose instead that a paired design was not implemented, and instead we have vh ∈ {±1} with

equal probability.39 Then (i) would scale to zero at a slow rate 1/
√

Kη2
n after averaging across

all the clusters, requiring infinite clusters asymptotics.

Multi-wave Experiment

In this section, we design the adaptive experiment and derive its theoretical properties.

For illustrative purposes, we provide the algorithm for the one-dimensional case p = 1, in

Algorithm 3, that is when β ∈B = [B1,B2] is a scalar. In Remark 6 and formally in Appendix

A.5 we provide the complete algorithm for the p-dimensional case. Theoretical results are for

the general p-dimensional case (p is finite). A description is below the algorithmic box.

The algorithm pairs clusters, and initializes clusters at the same starting value β0, β̌ 1
1 =

39Random probabilities assignments are common when estimating treatment effects with saturation design (Baird
et al., 2018). Pairing is common in applications in the different context of estimating overall average treatment
effects with (different-sized) cluster experiments (Imai et al., 2009).
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Algorithm 3. Multiple-wave experiment with β scalar

Require: Starting value β0, K clusters, T +1 periods, constant C̄.
1: Create pairs of clusters {k,k+1},k ∈ {1,3, · · · ,K−1};
2: t = 0 (initialization):

a: Assign treatments as D(h)
i,0 |X

(h)
i = x∼ Bern(π(x,β0)) for all h ∈ {1, · · · ,K}.

b: For n units in each cluster observe Y (h)
i,0 ,h ∈ {1, · · · ,K}; initalize V̂k,t = 0, β̌ 0

k = β0.
3: while 1≤ t ≤ T do

a: Define

β̌
t
h =

 PB1,B2−ηn

[
β̌

t−1
h +αh+2,tV̂h+2,t−1

]
, h ∈ {1, · · · ,K−2},

PB1,B2−ηn

[
β̌

t−1
h +α1,tV̂1,t−1

]
, h ∈ {K−1,K};

where αk,t is the learning rate (see Remark 7), and PB1,B2−ηn is the projection operator.
b: Assign treatments as (for C̄n−1/2 < ηn < C̄n−1/4)

D(h)
i,t |X

(h)
i = x∼ Bern(π(x,βh,t)), βh,t =

{
β̌ t

h +ηn if h is odd
β̌ t

h−ηn if h is even
(1.13)

c: For n units in each cluster h ∈ {1, · · · ,K} observe Y (h)
i,t ;

d: For each pair {k,k+1}, estimate

V̂k,t = V̂k+1,t =
1

2ηn

[
Ȳ (k)

t − Ȳ (k)
0

]
− 1

2ηn

[
Ȳ (k+1)

t − Ȳ (k+1)
0

]
.

4: end while
5: Return β̂ ∗ = 1

K
∑K

k=1 β̌ T
k

· · ·= β̌ 1
K = β0. At t = 0, it randomizes treatments independently as

t = 0 : D(k)
i,t |X

(k)
i = x∼ π(x;β0), for all (i,k).

Here, β0 is chosen exogenously, e.g., it is the current policy in place. Over each iteration t, we

assign treatments based on βk,t for cluster k at time t which equals the parameter β̌ t
k obtained

from a previous iteration plus a positive (negative) perturbation ηn in the first (second) cluster in

a pair. The local perturbation follows similarly to what discussed in the previous section; also,

by construction, β̌ t
k is the same for a given pair (k,k+1), where k is odd. We choose β̌

t+1
k via

25



circular cross-fitting: we wrap clusters in a circle and update the parameter in a pair of clusters

(k,k+1) using information from the subsequent pair (see Figure 1.3). The algorithm runs over

T periods and returns β̂ ∗ = 1
K
∑K

k=1 β̌
T+1
k .

In our experiment, we update the policy in each clusters’ pair with information from a

subsequent pair. This approach guarantees that the estimated policy used to randomize treatments

in cluster k does not depend on observables and unobservables in that same cluster, assuming

that the number of clusters is twice as large as the number of iterations.

Lemma 1.4.1 (Unconfoundedness). Let T/p+1≤ K/2. Consider the experimental design in

Algorithm A.5.1 for generic p-dimensions (and Algorithm 3 for p = 1). Then for any k,

(
βk,1, · · · ,βk,T

)
⊥
{

Y (k)
i,t (d),X (k)

i ,d ∈ {0,1}N
}

i∈{1,··· ,N},t≤T
.

The proof is in Appendix A.3.2. Lemma 1.4.1 shows that the parameters used in the

experiment are independent of potential outcomes and covariates in the same cluster. Namely,

the circular cross-fitting breaks the dependence due to repeated sampling, which would otherwise

confound the experiment.40 See Remark 8 for a discussion.

Remark 6 (p-dimensional case: Algorithm A.5.1). The algorithm for the p-dimensional case

follows similarly to the uni-dimensional case with a minor change: we consider T/p many

waves/iterations, each consisting of p periods. Within each wave w, every period, we perturb

a single coordinate of β̌ w
k , compute the marginal effect for that coordinate, and repeat over all

coordinates j ∈ {1, · · · p} before making the next policy update to select β̌
w+1
k .

Remark 7 (Learning rate). We are now left to discuss how “large” should be the step size, i.e.,

if we know that the marginal effect is positive, by how much should we increase the treatment

probability? Assuming strong concavity of the objective function, the learning rate αk,t should

40This setting is different from previous literature on adaptive experimentation, which focuses on settings where
repeated sampling does not occur. See, for example, Kasy and Sautmann (2019); Wager and Xu (2021).
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be of order 1/t. A more robust choice is

αk,t =


J

T 1/2−v/2||V̂k,t ||
if ||V̂k,t ||22 >

c
Ť 1−v − εn,

0 otherwise
, (1.14)

for a positive εn, εn→ 0, and small constants 1≥ v,c > 0.41 Here, the learning rate divides the

estimated marginal effect by its norm (known as gradient norm rescaling, Hazan et al. 2015)

and guarantees control of the out-of-sample regret under strict quasi-concavity.42 This choice is

appealing since it guarantees comparable step sizes between different clusters.

Remark 8 (Chapter 1: Why circular cross-fitting? Bias with repeated sampling). Here, we

illustrate the source of bias if the circular cross fitting was not employed. Every period, the

researcher can only identify the expected outcome of Y (k)
i,t conditional on the parameter βk,t ,

namely W̃ (βk,t) = Eβk,t
[Y (k)

i,t |βk,t ]. If βk,t was chosen exogenously, based on information from a

different cluster, then Eβk,t
[Y (k)

i,t |βk,t ] = Eβk,t
[Y (k)

i,t ] =W (βk,t), where W (βk,t) defines the expected

welfare once we deploy the policy βk,t on a new population. However, this is not the case if βk,t is

estimated using information on Y (k)
i,t−1. Consider the example where the outcome depends on some

auto-correlated unobservables νi,t and treatment assignments in Figure 1.4. The dependence

structure of Figure 1.4 implies that: W (βk,t) = Eβk,t
[Y (k)

i,t ] 6= Eβk,t
[Y (k)

i,t |βk,t ] = W̃ (βk,t), if βk,t

depends on covariates and unobservables previous outcomes (and so on unobservables ν
(k)
i,t ) in

cluster k. Here W (βk,t) captures the estimand of interest. Instead, W̃ (βk,t) denotes what we can

identify. Our algorithm breaks such dependence and guarantees unconfounded experimentation

as shown in Lemma 1.4.1.

Theoretical Guarantees

Next, we derive theoretical properties. Let Ť = T/p. We assume the following.

41Formally, we let εn ∝

√
γN

η2
n n

+ηn.
42More discussion is included in Appendix A.2.3.
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Y (k)
i,t−1

βk,t

ν
(k)
i,t

Policy on a new population Experiment with repeated sampling

Y (k)
i,t

D(k)
i,t

ν
(k)
i,t−1

Y (k)
i,t−1

β ∗

ν
(k)
i,t

Y (k)
i,t

D(k)
i,t

ν
(k)
i,t−1

Figure 1.4. Why circular cross-fitting? The left-panel shows the dependence structure when a
static policy is implemented on a new population (we omit D(k)

i,t−1 for expositional convenience).
The right panel shows the dependence structure of a sequential experiment that uses the same
units for policy updates over subsequent periods in the presence of repeated sampling.

Assumption 1.4.1. Let : (A) ε
(k)
i,t be sub-gaussian; (B) K ≥ 2(T/p+1).

Condition (A) states that unobservables have sub-gaussian tails (attained, for example,

by bounded random variables); (B) assumes that we have at least twice as many clusters as the

number of waves, which guarantees that Lemma 1.4.1 (unconfoundedness) holds.

In the following results, we impose the following restriction.

Assumption 1.4.2 (Strong concavity). Assume that W (β ) is σ -strongly concave over B, for

some arbitrary σ > 0.

Strong concavity is a common feature of objective functions (Bottou et al., 2018) and

guarantees uniqueness of the optimum. We relax Assumption 1.4.2 in Appendix A.2.3.

Theorem 1.4.2. Let Assumptions 1.2.1, 1.2.2, 1.3.1, 1.4.1, 1.4.2 hold. Take a small 1/4 > ξ > 0,

αk,w = J/w for a finite J ≥ 1/σ . Let n1/4−ξ ≥ C
√

p log(n)γNT Bp log(KT ), ηn = 1/n1/4+ξ ,

for finite constants Bp,C > 0. Then with probability at least 1− 1/n, for a constant C̄′ < ∞,

independent of (p,n,N,K,T ),

||β ∗− β̂
∗||2 ≤ pC̄′

Ť
.
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The proof is in Appendix A.3.3. Theorem 1.4.2 provides a small sample upper bound on

the distance between the estimated policy and the optimal one. The bound only depends on T

(and not n) since n is assumed to be sufficiently larger than T .

Corollary 4. Let the conditions in Theorem 1.4.2 hold. Let K = 2(T/p + 1). Then with

probability at least 1−1/n, for a constant C′ < ∞ independent of (p,n,N,K,T ),

W (β ∗)−W (β̂ ∗)≤ pC′

K
.

The proof is in Appendix A.3.5. The above corollary formalizes the out-of-sample regret

bound as we choose K = 2(T/p+1).

Researchers may wonder whether the procedure is “harmless” also on the in-sample units.

We provide in-sample guarantees in the following theorem.

Theorem 1.4.3 (In-sample regret). Let the conditions in Theorem 1.4.2 hold. Then with proba-

bility at least 1−1/n, for a constant c < ∞ independent of (p,n,N,K,T ),

max
k∈{1,··· ,K}

1
Ť

Ť∑
w=1

[
W (β ∗)−W (β̌ w

k )
]
≤ c

p log(Ť )
Ť

.

The proof is in Appendix A.3.3. Theorem 1.4.3 guarantees that the cumulative welfare in

each cluster k, incurred by deploying the current policy β̌ w
k at wave w (recall that in the general

p-dimensional case we have Ť many waves), converges to the largest achievable welfare at a rate

log(T )/T , also for those units participating in the experiment.43 This result guarantees that the

proposed design is not harmful to experimental participants.

We conclude this sub-section by deriving a faster (exponential) convergence rate of the

out-of-sample regret (but not in-sample regret) with a different choice of the learning rate.

43By a first-order Taylor expansion, a corollary is that the bound also holds for β̌ w
k ±ηn up to an additional factor

which scales to zero at rate ηn (and therefore negligible under the conditions imposed on n).
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Theorem 1.4.4 (Out-of-sample regret with larger sample size). Let Assumptions 1.2.1, 1.2.2,

1.3.1, 1.4.1, 1.4.2 hold, with W (β ) being τ-smooth, and K = 2T +2. Take a small 1/4 > ξ > 0,

αk,w = 1/τ . Let n1/4−ξ ≥ C
√

p log(n)γNeT Bp log(KT ), ηn = 1/n1/4+ξ , for finite constants

Bp,C > 0. Then with probability at least 1−1/n, for constants 0 < c0,c′0 < ∞, independent of

(n,N,K,T ),

W (β ∗)−W (β̂ ∗)≤ c0 exp(−c′0K).

The proof is in Section A.3.3. The main additional restriction in Theorem 1.4.4 is that

the sample size grows exponentially in the number of iterations (instead of polynomially). The

theorem leverages properties of the gradient descent under strong concavity and smoothness

(Bubeck, 2014), combined with derivations discussed below.

To our knowledge, these are the first regret guarantees under unknown (and partial)

interference.

We now contrast with past literature. In the online optimization literature, the rate 1/T is

common for convex optimization (Bottou et al., 2018), assuming independent units (see Duchi

et al., 2018, for out-of-sample regret rates only). Differently, here, because of interference, we

leverage between-clusters perturbations. Also, we do not have direct access to the gradient,

and related optimization procedures are those of Flaxman et al. (2004); Agarwal et al. (2010),

where regret can converge at rate O(1/T ) in expectation only, while high-probability bounds are

1/
√

T .44 Here, we exploit within-cluster concentration and between clusters’ variation to control

large deviations of the estimated gradients and obtain faster rates for high-probability bounds.

In our derivations, the perturbation parameter depends on the sample size, which is different

from the references above, and the idea of circular estimation is novel due to repeated sampling.

Wager and Xu (2021) derive 1/T regret guarantees in the different settings of market pricing, as

n→ ∞, with independent units and samples for each wave. Our results are in a finite sample and

do not impose independence or modeling assumptions other than partial interference.

44See Theorem 6 in Agarwal et al. (2010) and discussion below.
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These differences require a different set of techniques for derivations. The proof of the

theorem (i) uses concentration arguments for locally dependent graphs (Janson, 2004); (ii) it uses

the within-cluster and between-clusters variation for consistent estimation of the marginal effect,

together with the matching design to guarantee that there is a vanishing bias when estimating

marginal spillover effects for K < ∞; (iii) it uses a recursive argument to bound the cumulative

error obtained through the estimation and circular cross-fitting.

Remark 9 (Non-adaptive experiment). In Appendix A.1.4 we introduce an experiment to

estimate β ∗ without adaptive randomization, in the spirit of Section 1.3. Appendix A.1.4 shows

how we can leverage perturbations and marginal effects as in Algorithm 1 to control the out-

of-sample regret without an adaptive experiment, but also formally shows the drawbacks of a

non-adaptive experiment, since it does not control the in-sample regret.

A Comparison with the Unconstrained Optimum

Next, we study the following question: how does β ∗ compare to the policy that assigns

treatments without restrictions on the policy function? We study this under more restrictive

conditions. We omit the super-script k since our argument applies to any cluster. Consider

W ∗N−W (β ∗), W ∗N = sup
PN(·)∈F

1
N

N∑
i=1

E
[
ED∼PN(A,X)[Yi,t |A,X ]

]
(1.15)

where F denotes the set of conditional distribution of the vector D ∈ {0,1}N , given the network

A and the covariates of all observations X . Equation (1.15) denotes the difference between the

expected potential outcomes, evaluated at the global optimum over all possible assignments

(conditional on A,X), and the welfare evaluated at the optimal policy β ∗.

Assumption 1.4.3 (Discrete parameter space, assignment and minimum degree). Assume that

Xi ∈X ,X = {1, · · · , |X |}, |X |< ∞. Let π(x,β ) = βx, and B = [0,1]|X |. Assume in addition

that infx,x′,u′
∫

l(x,u,x′,u′)dFU |X=x(u)≥ κ , for some κ ∈ (0,1].
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Assumption 1.4.3 states that we assign treatments based on finitely many observable

types.45 Each type x ∈X is assigned a different probability βx, which can take any value

between zero and one. Assumption 1.4.3 also states that conditional on individual’s type (Xi,Ui),

any other unobserved type U j can form a connection with individual i with some positive

probability, conditional on observables X j, provided that i and j are connected under the latent

space representation (recall Equation 1.1).46 The second restriction is on the potential outcomes.

Let

Yi,t(dt) =
[
∆(Xi)− c(Xi)

]
di,t +Si,t(dt)+νi,t , E[νi,t |X ,A] = 0

Si,t(dt) = s
( ∑

j 6=i Ai, jd j,t1{X j = 1}
max{

∑
j 6=i Ai, j1{X j = 1},1}

, · · · ,
∑

j 6=i Ai, jd j,t1{X j = |X |}
max{

∑
j 6=i Ai, j1{X j = |X |},1}

)
.

(1.16)

Here ∆(·) is the conditional direct treatment effect, and c(·) is the cost of the treatment. The

function s(·) captures the spillover effects. The spillover effects depend on the fraction of treated

neighbors. Spillovers are heterogeneous in the neighbors’ types.

Assumption 1.4.4 (Opportunity costs of an equal-impact intervention with no spillovers). As-

sume that ∆(x) = c(x) for all x ∈X .

Assumption 1.4.4 states that the cost of the treatment is the opportunity cost had the

treatment been assigned to the same individuals who are disconnected. In a cash-transfer program,

we may assign treatments to individuals in the same or nearby villages or to individuals spread

out on an entire state or continent without creating spillover effects in the latter case. The cost of

the treatment to assign treatments in the same villages is their opportunity cost, i.e., the direct

treatment effects are assumed to be the same.47

45This is often imposed, see e.g., Manski (2004), Graham et al. (2010).
46This condition is consistent with Assumption 1.2.1, since the assumption states that the expected minimum

degree is bounded from below by κγ
1/2
N , which is smaller than the maximum degree γ

1/2
N .

47Note that, under such restriction, treating each individual is not optimal only if, for some treatment configura-
tions, there are negative spillovers. For instance, giving cash transfers to richer individuals may decrease the average
satisfaction with the program.

32



Theorem 1.4.5. Let Equation (1.16) holds, with s(·) twice differentiable with bounded deriva-

tives. Suppose that Assumption 1.2.1, 1.2.2, 1.4.3, 1.4.4 hold. Then as N→ ∞,γN → ∞,

sup
PN(·)∈F

1
N

N∑
i=1

E
[
ED∼PN(A,X)[Yi,t |A,X ]

]
−W (β ∗)→ 0.

The proof is in Appendix A.3.3. Theorem 1.4.5 shows that the assignment mechanism

that maximizes welfare, when treatments can be assigned arbitrarily, converges to β ∗ with

individualized treatments. It implies that collecting network information is, on average, not

useful to improve welfare in this context. The theorem assumes that the maximum degree

converges to infinity, but it may converge at a slower rate than N, consistently with our conditions

in previous theorems. This is a novel result in the context of the literature on targeting networked

individuals, which depends on the cost assumption.48

Corollary 5. Let the conditions in Theorem 1.4.2 and Theorem 1.4.5 hold. Then for a constant

C < ∞ independent of (N,n,T,K), limN→∞,γN→∞ P
(

W ∗N−W (β̂ )≤ C
T

)
= 1.

Calibrated Experiments

In this section, we study the properties of the methodology in numerical studies. We

calibrate simulations to data from Cai et al. (2015) and Alatas et al. (2012, 2016), while making

simplifying assumptions whenever necessary. In the first calibration, the outcome is insurance

adoption, and the treatment is whether an individual received an intensive information session in

the experiment. In the second calibration, the treatment is whether a household received a cash

transfer, and the outcome is program satisfaction.49

48In a different context, Akbarpour et al. (2018) show that for a class of diffusion mechanisms, random seeding is
approximately optimal as we choose a few more seeds. Here, we do not study the problem from the perspective
of network diffusion but instead focus on an exogenous interference mechanism with heterogeneity and provide a
different set of results. Our result hinges on Assumption 1.4.4.

49The experiment of Cai et al. (2015) contains multiple arms assigned at the household and village level. Here,
we only focus on the treatment effects of intensive information sessions, pooling the remaining arms together for
simplicity. The experiment of Alatas et al. (2012) contains different arms assigned at the village level, as well as
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Throughout these simulations, we study the problem of choosing a univariate parameter

β , which denotes the unconditional treatment probability. In each cluster k, we generate data as

Yi,t = φ0 +φ1Di,t +φ2Si,t +φ3S2
i,t− cDi,t +ηi,t , Si,t =

∑
j 6=i Ai, jDi,t

max{1,
∑

j 6=i Ai, j}
, (1.17)

where c is the cost of the treatment and ηi,t ∼i.i.d. N (0,σ2). We consider two sets of parameters(
φ0,φ1,φ2,φ3,σ

2
)

calibrated to data from Cai et al. (2015) and Alatas et al. (2012, 2016) respec-

tively. We obtain information on neighbors’ treatment directly from data from Cai et al. (2015).

For the second application, we merge data from Alatas et al. (2012), and Alatas et al. (2016) and

use information from approximately one hundred observations whose neighbors’ treatments are

all observable to estimate the parameters.50 For either application, we estimate a linear model as

in Equation (1.17) also controlling for additional covariates to guarantee unconfoundedness of

the treatment.51 We consider as cost of treatment c = φ1, i.e., the opportunity cost of allocating

the treatment to a population of disconnected individuals.

We generate clusters with N = 600 units, and sample n ∈ {200,400,600}. We generate

a geometric network of the form Ai, j = 1
{
||Ui−U j||1 ≤ 2ρ/

√
N
}
,Ui ∼i.i.d. N (0, I2), where

the parameter ρ governs the density of the network. The geometric formation process and the

1/
√

N follows similarly to simulations in Leung (2020). We consider two networks, a “sparse

network” with ρ = 2, reported in the main text, and a “dense network”, with ρ = 6, studied in

the Appendix. Throughout our analysis, without loss of generality, we report welfare divided

information on cash transfers assigned at the household level. Here, we study the effect of cash transfers only and
control for village-level treatments when estimating the parameters of interest.

50This is different from Figure 1.2 where we use information from individuals whose 80% or more neighbors
are observable. We make this choice in Section 1.2 to increase precision to estimate heterogeneous effects. This
approach introduces a sampling bias in the estimation procedure, which we ignore for simplicity, given that our goal
is not the analysis of the original experiment but only calibrating numerical studies.

51For Cai et al. (2015) the covariates are gender, age, rice area, literacy level, a coefficient that captures the risk
aversion, the baseline disaster probability, education, and a dummy containing information on whether the individual
has one to five friends. For Alatas et al. (2012) we control for the education level, village-level treatments, i.e., how
individuals have been targeted in a village (i.e., via a proxy variable for income, a community-based method, or a
hybrid), the size of the village, the consumption level, the ranking of the individual poverty level, the gender, marital
status, household size, the quality of the roof and top (which are indicators of poverty).
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by its maximum W (β ∗) (i.e., W (β ∗) = 1), and we subtract the intercept φ0 since φ0 does not

depend on β .

We conclude with details on estimation. We fix the perturbation parameter ηn = 10%;52

similarly, in the adaptive experiment, we choose the learning rate 10%/
√

t with gradient norm

rescaling as Remark 7. This choice guarantees that for each iteration, we only vary treatment

probabilities by at most 10%, and the size of the variation decreases over each iteration, in

the same spirit of learning rate under strong concavity without norm rescaling.53 Since the

model does not allow for time-varying fixed effects, we estimate marginal effects without

baseline outcomes. For the multi-wave experiment, we initialize parameters at a small treatment

probability β = 0.2.54

One-wave Experiment

First, we study the properties of the one wave experiment as we vary the number of

clusters K and the sample size from each cluster n. We are interested in testing the one-sided

null of whether we should increase the number of treated individuals to increase welfare, i.e.,

H0 :
∂W (β )

∂β
≤ 0, H1 =

∂W (β )

∂β
> 0 β ∈ [0.1, · · · ,β ∗]. (1.18)

In Figure A.4.1, in the Appendix, we report the power of the test as a function of the regret for

ρ = 2. Power is increasing in the regret, the number of clusters, and sample size. However,

the marginal improvement in the power from twenty to thirty clusters is small. This result is

suggestive of the benefit of the method even with few clusters and small sample size.

Figure 1.5 illustrates the benefit of the method as, upon rejection of H0, we recommend

increasing the treatment probability by 5% as a function of the baseline treatment probability.

52Here 10% is consistent with the rule of thumb in Section A.2.5 which would prescribe values between 7% and
12% as we vary n. In Figure A.4.7 we report results as we vary ηn.

53This choice is preferable to 10%/
√

T because it allows for larger steps in the initial iterations. A valid alternative
choice is also 10%/t, corresponding to the one under strong concavity. The latter case has a practical drawback:
updates become very small after a few iterations. For a comparison, see Figure A.4.5.

54This choice guarantees that no less than 10% of individuals are treated once we impose the negative perturbation.
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For example, for β = 0.2, it indicates the relative welfare increase if we were to increase the

treatment probability to 0.25, relative to the status quo where β = 0.2. The figure shows that

the relative improvement can be as large as fifty percentage points compared to the status quo.

In addition, while the gain is increasing in the sample size, substantial gains can be obtained

even if the sample size from each cluster is as small as n = 200. This is particularly relevant for

targeting information: in such a case, differences in power across different sample sizes only

occur when the regret is small (see Figure A.4.1) or, equivalently, when we are already close to

the optimum. As a result, once we take welfare effects into account, a larger sample size may

lead to negligible improvements in welfare. As this example suggests, when the goal is welfare

maximization, power analysis may be complemented by the welfare analysis discussed here.

Results are robust as we increase the density of the network with ρ = 6 (see Appendix

A.4). In Table 1.1 we report the size of the test, which provides supportive evidence to the

theoretical findings.

Multiple-wave Experiment

Next, we study the performance of the adaptive experiment. We let T ∈ {5,10,15,20}.

In Table 1.2 we report the welfare improvement of the proposed method with respect to a grid

search method that samples observations from an equally spaced grid between [0.1,0.9] with

a size equal to the number of clusters (i.e., 2T ). We consider the best competitor between the

one that maximizes the estimated welfare obtained from a correctly specified quadratic function

and the one that chooses the treatment with the largest value within the grid. The panel at the

top of Table 1.2 reports the out-of-sample welfare improvement. The improvement is positive

and up to three percentage points for targeting information and up to sixty percentage points

for targeting cash transfers. Improvements are generally larger for larger T . In one instance

only, for T = 5 and a small sample size n = 200, we observe a negative effect for targeting

information of two percentage points. The panel at the bottom of Table 1.2 reports positive and

large improvements for the in-sample welfare across all the designs, worst-case across clusters.
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For the worst-case regret, we fix the number of clusters to K = 40 for our method and study the

properties as a function of the number of iterations.55 The improvements are twice as large for

targeting information and thirty percentage points larger for targeting cash transfers. These are

often increasing in T with a few exceptions.56

These results illustrate large benefits for both estimating policies to be implemented on

a new population and to maximize participants’ welfare. Figure 1.6 reports the out-of-sample

regret of the method (and Figure A.4.2 the in-sample regret). The regret converges to zero as

we increase the number of iterations. The larger sample size guarantees a smaller regret. In

Appendix A.4.1, A.4.2, we report results for ρ = 6, consistent with findings in the main text. In

Appendix A.4.3 we provide simulations with covariates using data from Alatas et al. (2012).

Table 1.1. Simulations: coverage. One wave experiment. 200 replications. Coverage for testing
H0 (size is 5%). First panel corresponds to ρ = 2, and second panel to ρ = 6.

Information Cash Transfer

K = 10 20 30 40 10 20 30 40

n = 200 0.905 0.950 0.905 0.900 0.920 0.940 0.915 0.895

n = 400 0.980 0.960 0.900 0.925 0.980 0.960 0.895 0.930

n = 600 0.975 0.970 0.955 0.945 0.970 0.995 0.960 0.935

n = 200 0.925 0.880 0.880 0.900 0.925 0.940 0.905 0.905

n = 400 0.980 0.940 0.920 0.920 0.980 0.960 0.900 0.925

n = 600 0.975 0.890 0.930 0.995 0.975 0.995 0.950 0.915

Calibrated Simulations to M-Turk Experiment

Finally, in this subsection we briefly describe calibrated simulations using information

from an M-Turk experiment. The experiment’s goal was to increase information about the

55Fixing K = 40 allows us to change the number of iterations up to T = 20 while keeping fixed the number of
clusters.

56The reason improvements are not always increasing in T is that uniform concentration may deteriorate for large
T and small n as we consider the worst-case welfare across clusters.
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Figure 1.5. Simulations: one-wave experiment. ρ = 2. Expected percentage increase in welfare
from increasing the probability of treatment β by 5% upon rejection of H0. Here, the x-axis
reports β ∈ [0.1, · · · ,β ∗− 0.05]. The panels at the top fix n = 400 and vary the number of
clusters. The panels at the bottom fix K = 20 and vary n.

Table 1.2. Simulations: multi-wave experiment. 200 replications. Relative improvement in
welfare with respect to best competitor for ρ = 2. The panel at the top reports the out-of-sample
regret and the one at the bottom the worst case in-sample regret across clusters.

Information Cash Transfer

T = 5 10 15 20 5 10 15 20

n = 200 -0.026 0.014 0.043 0.033 0.295 0.390 0.528 0.322

n = 400 0.0003 0.026 0.026 0.035 0.462 0.444 0.589 0.563

n = 600 0.002 0.035 0.021 0.022 0.485 0.489 0.622 0.644

n = 200 1.103 1.370 1.451 1.447 0.254 0.276 0.305 0.323

n = 400 1.400 1.616 1.667 1.626 0.282 0.329 0.367 0.379

n = 600 1.546 1.771 1.828 1.751 0.279 0.335 0.364 0.368
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Figure 1.6. Simulations: out-of-sample regret. Adaptive experiment ρ = 2. 200 replications.
The panel reports the out-of-sample regret of the method as a function of the number of iterations.

severity of COVID-19 to increase vaccination adoption. Details are contained in Appendix

A.4.4.57

Specifically, at the beginning of March 2020 (before the vaccination campaign was

extensively implemented), we ran an M-Turk experiment where each individual was assigned

either of two arms. A control arm, which consisted of a survey asking basic questions on

characteristics of the participants, and a treatment arm. The treatment arm was first assigned

simple survey questions. Then, individuals under treatment were assigned three questions about

COVID, whose correct answer was rewarded with a small economic incentive. The scope of

the treatment was to increase awareness of the severity of the disease by asking questions and

showing the correct answers to facilitate information transmission. At the end of the survey, both

control and treated units were asked when they would have done the vaccine. Our outcome of

interest is binary and equals whether individuals would have done the vaccine either as soon

as possible or during the spring. We estimate the model with 1035 participants.58 We estimate

57The experiment was certified an IRB exempt by UCSD, Human Research Protections Program.
58 We collected information from 2411 participants. We removed 158 observations that had already received the

vaccine in March 2020 and 203 observations that took less than thirty seconds and more than five minutes to take
the survey. We also removed all those observations who were not living in the US.
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Figure 1.7. Calibrated simulations with Amazon M-Turk. One wave experiment calibrated to
M-Turk experiment. Relative welfare improvement for increasing the probability of treatment by
ten percent, conditional on rejecting the null hypothesis. 200 replications. Different columns
correspond to different levels of spillover effects (captured by α). Here K = 20.

treatment effects by running a simple linear regression, where the treatment dummy interacts

with the dummy, indicating whether the individual classifies herself as liberal, conservative,

or “prefer not to say”. We find heterogeneity of treatment effects, with positive effects of the

treatment on liberals only. The model and policy function are described in Appendix A.4.4.

We simulate a one-wave experiment calibrated to the results from the M-Turk experiment

and report results in Figure 1.7. We simulate spillover effects as those are not observable in

the experiment and study the method’s properties for different levels of spillover effects. In

the figure, we report the relative welfare improvement of increasing treatment probabilities on

the group receiving positive effects of ten percent upon rejection of the null hypothesis H0 in

Equation (1.18). As the size of the spillovers increase, welfare improvements upon rejection

increase and, similarly power, with improvements up to twelve percentage points.
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Dynamic Treatment Effects: an Overview

This section briefly discusses an extension with dynamic treatments. We omit covariates

and assume that Xi = 1, and defer to Appendix A.1.3 formal details.

In the presence of carry-over effects, outcomes also depend on past treatments. For

treatments assigned with exogenous parameters (βk,1, · · · ,βk,t) as in Definition 1.2.3, we let

Y (k)
i,t = Γ(βk,t ,βk,t−1)+ ε

(k)
i,t ,Eβk,1:t

[
ε
(k)
i,t

]
= 0, for some unknown Γ(·), ε

(k)
i,t . The components

βk,t ,βk,t−1 capture present and carry-over effects that result from individual and neighbors’

treatments in the past two periods. We study the problem of estimating a path of treatment

probabilities (0,β1, · · · ,βT ) from an experiment, where, in the first period, we assume for

simplicity that none of the individuals is treated. We then implement this path on a new

population without having access to the outcomes of such a new population. We maximize

long-run welfare, defined as follows:

W ({βs}T ∗
s=1) =

T ∗∑
t=1

qt
Γ(βt ,βt−1), for a given horizon T ∗, and discounting factor q < 1.

The long-run welfare defines the cumulative (discounted) welfare effect obtained from a certain

sequence of decisions (β1,β2, · · ·). Our goal is to find the sequence that maximizes the long-run

welfare. We start from the following observation: by the first-order conditions

∂Γ(βt ,βt−1)

∂βt
+q

∂Γ(βt+1,βt)

∂βt
= 0, for all t. (1.19)

Equation (1.19) shows that the choice of the welfare-maximizing parameter βt+1 may depend

on the previous two decisions. Using ideas from reinforcement learning (Sutton and Barto,

2018), we parametrize future treatment probabilities based on past treatment probabilities as

βt+1 = hθ (βt ,βt−1),θ ∈Θ, for some given function hθ (·), and find the parameter θ ∈Θ, which

maximizes welfare. The algorithm estimates the function Γ(·) using a single wave experiment
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and then maximizes

θ̂ ∈ argmax
θ∈Θ

T ∗∑
t=1

qt
Γ̂(βt ,βt−1), βt = hθ (βt−1,βt−2) ∀t ≥ 1, β0 = β−1 = 0.

Our main insight here is on how to design the experiment to estimate Γ̂(·). If Γ̂ is estimated with

randomization based on a simple grid-search procedure, the rate of convergence of the regret

would be 1/
√

K (see Appendix A.1.3). However, in Appendix A.1.3 we show that by using local

perturbations – similarly to what was discussed in previous sections – and leveraging information

from the estimated gradient, we can achieve a convergence rate of the out-of-sample regret of

order 1/K (but not faster in n).59 The single-wave procedure comes at a cost: the rate is specific

to the one-dimensional setting and carry-overs over two consecutive periods; in p dimensions,

the rate would be of much slower order due to the curse of dimensionality. This is different from

the adaptive design discussed in previous sections, where the dimension does not affect the rate

in K, and it opens new research questions in the presence of carry-over effects.

Conclusions

This chapter makes two main contributions. First, it introduces a single-wave experi-

mental design to estimate the marginal effect of the policy and test for policy optimality. The

experiment also allows us to identify and estimate treatment effects, which can be of independent

interest. Second, it introduces an adaptive experiment to maximize welfare. We derive asymptotic

properties for inference and provide a set of guarantees on the in-sample and out-of-sample regret.

To our knowledge, this is the first paper to study inference on marginal effects and adaptive

experimentation with unobserved interference.

In a single-wave experiment, we encourage researchers to identify and report estimates

59The idea is as follows: we randomize probabilities (β1,β2) ∈ [0,1]2 from a coarse grid and use small groups
(three) clusters to estimate the partial derivatives at each point. We extrapolate the value of Γ(·) throughout the set
[0,1]2 with a first-order Taylor approximation around the closest point in the grid, using the information on the
estimated marginal effect.
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of the marginal effects. We show that we can use the information on the marginal effects

to conduct hypothesis testing on policy optimality and, ultimately, incorporate uncertainty in

decision-making. Future research may explore notions of efficiency in this setting.

Our work opens new questions also from a theoretical perspective. The main assumption

is that clusters are observable before the experiment starts. We leave it to future research to study

properties when (i) such clusters are not fully disconnected, in the same spirit of Leung (2021);

(ii) such clusters need to be estimated, similarly to graph-clustering procedures as in Ugander

et al. (2013); (iii) clusters present different distributions (see Appendix A.1.2). Similarly, it may

be interesting to study the properties of our method, as the degree of interference is proportional

to the sample size. This is theoretically possible, as illustrated in Theorem 1.3.1, and we leave its

analysis to future research. An open question is how to combine policy learning with procedures

that impute the network (e.g., Alidaee et al., 2020; Breza et al., 2020; Manresa, 2013).

Finally, an important assumption of the literature on adaptive experimentations is that

welfare is a function of observable characteristics. We leave it to future research to study whether

(and how) we may allow for unobserved utilities.

Chapter 1 is currently being prepared for submission for publication of the material.

Davide Viviano is the sole author of this material.
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Chapter 2

Policy Targeting under Network Interfer-
ence

Introduction

This chapter studies the problem of optimally allocating treatments in the presence

of spillover effects. Unlike the previous chapter, we consider a setting where researchers

collect information from an existing experiment or observational study. Researchers observe the

neighbors’ identities of the participants, but no independent clusters are necessarily available.

Using such information, we introduce a method that maximizes the average social welfare

sample analog when spillovers occur.1 Relevant applications include public policy programs,

cash transfer programs, educational programs, information campaigns, to cite some.2

Consider a setting where units are connected in a network. Individuals are assigned

treatments whose effects are assumed to propagate locally in the network (i.e., to their neighbors).

Researchers sample n units from an experiment or a quasi-experiment, collecting information on

their covariates, treatment assignments, outcomes, covariates, and assignments of their neighbors.

We do not require knowledge of the entire population network. Researchers’ goal is to estimate a

treatment allocation rule for new applications. For example, consider the problem discussed in

1While Chapter 1 mostly studies the problem of online policy design, this chapter focuses on offline policy
design.

2Some examples of relevant applications are Barrera-Osorio et al. (2011); Egger et al. (2019); Opper (2016);
Zubcsek and Sarvary (2011); Bond et al. (2012). Spillover effects have been documented in development economics
(Banerjee et al., 2013), social economics (Sobel, 2006), medicine (Christakis and Fowler, 2010) among many others.
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Cai et al. (2015) on studying the effect of information sessions on insurance take-up in villages

subject to environmental disasters. Then our method uses the experimental data collected by Cai

et al. (2015) to estimate which individuals the insurance company should target in new villages.

The first challenge for policy targeting is that the network on the target units may be

unobserved due to the cost associated with collecting it on large populations.3 For instance, in the

example from Cai et al. (2015), the insurance company has only access to the network information

of the experimental participants. It is costly or infeasible to collect network information from

all target individuals in a region or country. Considering this, we develop a method that allows

for arbitrary constraints on the policy space, with the network not necessarily observed on the

target sample. We leverage the dependence between covariates and network information on the

in-sample units to target individuals.

A second challenge is heterogeneity in treatment effects: an individual may respond

differently to her and her neighbors’ treatment depending on her type (e.g., her age or educa-

tion). We impose and leverage the exogenous and anonymous interference assumption4, often

documented in applications5, to estimate welfare without imposing conditions on the individual

heterogeneity in treatment effects.

Our method, entitled Network Empirical Welfare Maximization (NEWM), estimates the

welfare of the network as a function of the policy using arbitrary (machine-learning) estimators;

it then solves an optimization procedure over the policy space using an exact optimization

3The reader may refer to Breza et al. (2020) for a discussion on the cost associated with collecting network
information.

4In particular, we assume that potential outcomes are functions of individual and neighbors’ treatment as-
signments (but not neighbors’ identity), the number of neighbors, arbitrary individual characteristics which are
observable in the experiment but may not be observed on the target sample (e.g., covariates, centrality measures, or
summary statistics of neighbors covariates), and exogenous unobservables. See Manski (2013) for a discussion on
exogenous and anonymous interference.

5Cai et al. (2015) show that inviting individuals to information sessions generates large effects on their friends’
insurance take-up in subsequent sessions. However, an individual’s take-up decision does not depend on her friends’
take-up decision, consistently with an exogenous interference model. Examples of studies with models consistent
with the assumption of anonymous and exogenous interference include Sinclair et al. (2012); Duflo et al. (2011);
Muralidharan et al. (2017), where for the second reference, networks can be considered groups of classrooms with
units within each classroom being fully connected. Athey et al. (2018) provide a general framework for testing the
exogenous and anonymous assumption.
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algorithm. We interpret the policy targeting as a treatment choice problem (Manski, 2004;

Kitagawa and Tetenov, 2018; Athey and Wager, 2021), which we extend to the case of network

interference. We evaluate the method’s performance based on its maximum regret, i.e., on the

difference between the largest achievable welfare and the welfare from deploying the estimated

policy function. Unlike in the previous chapter, here, the regret also depends on the topology of

the network, as no independent clusters are available.

From a theoretical perspective, we make three contributions: (i) we derive the first set of

guarantees on the regret for treatment rules with spillover effects; (ii) we introduce an estimation

procedure to achieve the n−1/2-convergence rate for estimation with machine learning estimators

and networked units; (iii) we show that for a large class of policy functions, the optimization

problem can be written as a mixed-integer linear program, which can be solved using off-the-shelf

optimization routines.

First, we discuss the identification of social welfare under network interference for a

generic network formation model. Identification relies on the unconfoundedness of treatment

assignments and the conditional network exogeneity, i.e., potential outcomes independent of

the neighbors’ identity, conditional on individual observable characteristics.6 We then study

semi-parametric (machine-learning) estimators for the welfare and analyze the performance of

the estimated policy. We show that under regularity conditions, the regret of the estimated policy

scales at the minimax rate 1/
√

n, under bounded degree. In the presence of an unbounded degree,

we characterize the rate as a function of the maximum degree.

New challenges in our derivations are: (i) individuals’ dependence on neighbors’ as-

signments that we control through contraction inequalities; (ii) statistical dependence, which

invalidates standard symmetrization arguments, and which is arbitrary unconditionally on the

network. Also, with networked units, semi-parametric (machine-learning) estimators may present

6Network exogeneity is often and explicitly stated when inference is performed unconditionally on the network
structure (Leung, 2020). The reader may refer to Goldsmith-Pinkham and Imbens (2013) for a discussion. Network
exogeneity is attained if, for example, two individuals form a link based on observable individual-level characteristics
and unobservables, which are independent of potential outcomes.
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non-vanishing bias even when cross-fitting methods are employed (Chernozhukov et al., 2018;

Athey and Wager, 2021). We introduce a novel cross-fitting algorithm for networked observations

to control the bias and achieve the regret’s minimax rate.7

We guarantee that the optimization procedure achieves the in-sample optimum by casting

the problem in a mixed-integer linear program, which can be solved using off-the-shelf algorithms.

We show that we can achieve a linear representation of spillover effects in the objective function

by introducing an additional set of linear constraints and binary decision variables.

Data from Cai et al. (2015) illustrate the advantages of the method. The NEWM method

leads to (out-of-sample) improvements up to twelve percentage points compared to methods that

ignore network effect (Akbarpour et al., 2018; Kitagawa and Tetenov, 2018; Athey and Wager,

2021), despite network information not being accessible on the target villages.

This chapter builds on the growing literature on statistical treatment choice. Examples

include Kitagawa and Tetenov (2018), Kitagawa and Tetenov (2019), Athey and Wager (2021),

Mbakop and Tabord-Meehan (2021). A list of additional references on optimal treatment

allocation includes Armstrong and Shen (2015), Bhattacharya and Dupas (2012), Hirano and

Porter (2009), Stoye (2009), Stoye (2012), Tetenov (2012) among others. Further connections

are more broadly related to the literature on classification (Elliott and Lieli, 2013). Our focus is

quite different from previous references: we estimate an optimal policy when treatments generate

spillovers. This paper is the first to study the properties of targeting under network interference

in the context of the empirical welfare maximization literature.

It is important to distinguish our framework from the i.i.d. setting of multi-valued

treatments of Kitagawa and Tetenov (2018); Zhou et al. (2018). A first conceptual difference is

that here individuals depend on neighbors’ assignments, while treatments are individual-specific.

This structure permits the network on the target units not to be observable. The second difference

is that individuals exhibit dependence, and hence standard theoretical arguments based on i.i.d.

7The algorithm consists of coloring individuals, assigning the same colors to units far enough in the network,
and estimating different nuisance functions using units assigned to the same color.
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sampling fail, such as symmetrization. This motivates (a) a novel estimation algorithm8; (b)

theoretical arguments that exploit properties of the network in our derivations. The optimization

program differs due to the dependence of individuals on neighbors’ assignments.

A contribution of this chapter is to bridge the literature on causal inference and statistical

treatment choice with the literature on network interference and influence maximization. This

latter strand of literature mostly focuses on detecting the most influential “seeds” based on

particular notions of centrality (Bloch et al., 2017) but often ignores heterogeneity in treatment

effects and constraints on the policy space. Recent advances include Jackson and Storms (2018),

Akbarpour et al. (2018), Banerjee et al. (2017), Banerjee et al. (2014), Galeotti et al. (2017)

among others. Examples in computer science and marketing are Kempe et al. (2003), Eckles

et al. (2019) and references therein. A disadvantage of using centrality measures for targeting

is that an empirical comparison is possible only between two or a few decision rules through

cluster experiments (Banerjee et al., 2017; Kim et al., 2015; Chin et al., 2018). Our contribution

is complementary to this literature. The main differences are: we estimate policies from an

infinite but constrained set of candidates, hence allowing the network on the target sample not to

be observable; we leverage local interference while allowing for heterogeneity.

Spillover effects have been studied in the context of policy intervention from different

angles. Bhattacharya et al. (2019) and Wager and Xu (2021) study the effect of a global policy in-

tervention on social welfare, using partial identification and a sequential experiment respectively.

This chapter considers individualized policy interventions instead and point identification due to

the local interference assumption. In the presence of spillover effects, Li et al. (2019), Graham

et al. (2010), Bhattacharya (2009) consider the problem of optimal allocation of individuals

across independent groups. Differences are: (i) policy functions denote group assignment mech-

anisms instead of binary treatment allocations, inducing a different definition and identification

of the welfare function; (ii) the allocation does not allow for constrained environments, and
8Namely when using standard cross-fitting for policy learning (Athey and Wager, 2021), the predicted propensity

score and conditional mean of individual i is dependent on unobservables and observables of i since it depends on
observables of i’s friend, j, who is statistically dependent on i.
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(iii) the authors assume a clustered network structures with small independent clusters. Su et al.

(2019) discuss instead a closed-form expression for treatment allocations under interference in

an unconstrained environment, assuming linearity. In this chapter, instead, we do not impose

such structural assumptions. The constraints lead to a different estimation strategy and justify the

regret analysis discussed here. Laber et al. (2018) consider a Bayesian structural model whose

estimation relies on computational intensive Monte Carlo methods.

We build a connection to the econometric and statistical literature on inference on

networks, including literature on social interaction (Manski, 2013; Manresa, 2013; Auerbach,

2019), and more generally causal inference under interference (Liu et al., 2019; Li et al., 2019;

Hudgens and Halloran, 2008; Goldsmith-Pinkham and Imbens, 2013; Sobel, 2006; Sävje et al.,

2021). The exogenous and anonymous interference condition is most closely related to Leung

(2020). However, knowledge of treatment effects is not sufficient to construct optimal treatment

rules in the presence of either (or both) constraints on the policy functions or treatment effects

heterogeneity. We use the notion of non-parametric estimators from the literature on causal

inference (Aronow and Samii, 2017) for the construction of welfare. Here, we devise a novel

algorithm to achieve fast convergence rates with interference and semi-parametric estimators.

More recent papers have followed our work, studying targeting on networks in new

directions. In a more recent paper, Kitagawa and Wang (2021) discuss the problem of targeting

in a parametric setting in the presence of a SIR network. The advantage of a model-based

approach is the lack of a pilot experiment, but its validity depends on the specific application

in mind. Following our work, Ananth (2020) introduces more general treatment configurations

arbitrarily dependent on the network information of the target units. However, such assignments

are infeasible in applications when the network of the target units is costly or impossible to

collect. When feasible, these assignments may be prone to overfitting.9 Here, individuals can

be targeted based on observable covariates, which may also include individual-specific network

statistics when available from the target population.

9Overfitting can be the result of a violation of the bounded VC-dimension.
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Setup and Identification

This section discusses the main identification conditions, the causal estimands of interest,

and defines utilitarian welfare under interference.

Experiment and Sampling

The policy targeting exercise considered in this paper consists of two steps. In the first

step, researchers collect data from an experiment or quasi-experiment. In the second step, they

estimate a policy recommendation to be implemented on an independent sample j ∈I .

We start introducing the notation. Each individual is associated with an arbitrary vector

of covariates Zi ∈Z This vector is random, and it may contain individual, neighbors’ covariates

statistics, and network statistics. Therefore, the entries of Zi may exhibit dependence. We impose

restrictions in Assumption 2.3.2.

There are E (finitely) many individuals who participate in the experiment and who

constitute an independent network. These individuals are connected under an adjacency matrix

A. We define

A ∈A ⊆ {0,1}E×E , Ni =
{

k ∈ {1, · · · ,E}\ i : Ai, j = 1
}
, Z = (Zi)

E
i=1,

where A denotes the set of symmetric and unweighted adjacency matrices, Ni denotes all

neighbors of individual i, and Z the matrix of covariates of all participants.10 For example, in

Cai et al. (2015) {1, · · · ,E} denotes all individuals in those villages in the experiment. In full

generality, we let edges be drawn as Ai, j ∼Pi, j, with Pi, j being left unspecified, and arbitrary

dependent. Define |Ni| the cardinality of the set Ni.

For some function fD(·) known in an experiment, and to be estimated in a quasi-

10Namely, we say that two individuals (i, j) are connected if Ai, j = 1, where Ai, j denote the edge between
individual i and individual j, with Ai, j = A j,i ∈ {0,1} and Ai,i = 0.
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experiment, a binary treatment is assigned to each experimental participant as follows:

Di = fD(Zi,εDi), εDi ∼iid D , i ∈ {1, · · · ,E}. (2.1)

We discuss explicit conditions on εDi in Section 2.2.2. Researchers sample n≤ E experimental

participants at random, and observe the vector

(
Yi,Zi,Z j∈Ni,Di,D j∈Ni,Ni

)n

i=1
, for some n≤ E

where Yi denotes the post-treatment outcome.11

Interference

In the presence of interference, the outcome of individual i depends on its treatment

assignment and all other units’ treatment assignments. For a given vector DE = (Di)
E
i=1 denoting

the vector of treatment assignments of experimental participants, we let

Yi = r̃E(i,DE ,A,Zi,εi), i ∈ {1, · · · ,E} (2.2)

for some (unobserved) random variables εi. The above equation states that experimental parti-

pants depend on the assignment of all units in the experiment. In the following condition, we

impose that the outcomes only depend on the treatment assigned to their first-degree neighbors,

and we make assumptions about interactions being anonymous.

Assumption 2.2.1 (Interference). For all (v,u) ∈ {1, · · · ,E}2, for any DE = (Dk)
E
k=1 ∈ {0,1}E ,

D̃E = (D̃k)
E
k=1 ∈ {0,1}E and A, Ã ∈A ,

r̃E(v,DE ,A,z,e) = r̃E(u, D̃E , Ã,z,e)

11Such a sample can be constructed as follows: researchers sample n random vertices; for each of these vertices,
they observe the individual outcome, covariates, treatment assignments, and neighbors’ identities; for each individual,
they then collect information on neighbors’ treatment assignments and covariates.
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for all z∈Z , e∈
{

supp(εv)∪supp(εu)
}

, if all the following three conditions hold: (i)
∑

k Av,k =∑
k Ãu,k; (ii)

∑
k Av,kDE

k =
∑

k Ãu,kD̃E
k ; (iii) DE

v = D̃E
u .

Assumption 2.2.1 postulates that outcomes only depend on (i) the number of first-degree

neighbors, (ii) the number of first-degree treated neighbors (iii) individual’s treatment status

as well as covariates of interest. Under Assumption 2.2.1 we can write for each individual

i ∈ {1, · · · ,E}

Yi = r
(

Di,
∑
k∈Ni

Dk,Zi, |Ni|,εi

)
, (2.3)

for some possibly unknown function r(·).

Under the above condition, the outcome can depend on the number of treated neighbors,

the share of treated neighbors, or whether at least one neighbor is treated. Heterogeneity is

allowed and captured by the dependence of r(·) with Zi and |Ni|. The assumption is consistent

with findings in Cai et al. (2015), where the authors document exogenous interference and

lack of endogenous spillover effects. The model is closely related to Leung (2020), and Athey

et al. (2018) provide a general framework for testing anonymous and local interference. We

complement Equation (2.3) with the following condition.

Assumption 2.2.2 (Unconfoundedness). For some arbitrary function fD(.), let the following

hold: for all i ∈ {1, · · · ,E},

(A) Di = fD(Zi,εDi) and εDi are i.i.d., and εDi ⊥
(

Z,A,(ε j)
E
j=1

)
;

(B) For each i, εi ⊥
(

A,Z
)∣∣∣Zi, |Ni|;

Condition (A) states that the treatment is randomized in the experiment based on ob-

servable Zi. Since Zi may contain network information of a given individual, the assumption

also accommodates randomization schemes where treatment assignment is based on network

information. Condition (B) imposes that the network and others’ covariates are independent

of unobservables. Network exogeneity is attained if, for example, two individuals form a link
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based on observable individual-level characteristics and unobservables, which are independent

of potential outcomes.12 We illustrate an example of a network formation model satisfying

Assumption 2.2.2.

Example 2.2.1 (Network Formation). Let Ai, j = g(Zi,Z j,αi, j),(Zi,εi)∼i.i.d. Γ for some unknown

function g(·) and αi, j denoting exogenous unobservables jointly independent of observables and

(ε j)
E
j=1 (but possibly dependent with each other). Then Condition (B) in Assumption 2.2.2 holds.

Policy Targeting: Problem Description

The planner’s goal is to design a treatment mechanism that maximizes social welfare

on units j ∈I , where I denotes the target population. For instance, in Cai et al. (2015), I

defines the units in new villages where the experiment has not been conducted. The target

population is separated from the experimental participants, and connected under a matrix G ∈

G ⊂ {0,1}|I |×|I | possibly unknown to the researcher.

With an abuse of notation, we will denote for all j ∈I , N j = {k ∈I \ j : G j,k = 1},

the set of neighbors of individual j. The matrix G and covariates (Z j) j∈I are realized before

treatments are assigned. The policy-maker has limited information on the target sample. Namely,

she has only access to the variables

X j ⊆ Z j, X j ∈X ⊆Z , j ∈I ,

denoting a subset of individuals’ characteristics, which may also include arbitrary network

information which is included in Z j. She does not necessarily observe the neighbors’ identity of

the target participants. Her goal is to design a policy as follows:

(A) Individuals may be treated differently, depending on observables characteristics;

12Network exogeneity is often stated when inference is performed unconditionally on the network structure
(Leung, 2020). The reader may refer to Goldsmith-Pinkham and Imbens (2013) for a discussion.
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(B) The assignment mechanism must be easy to implement without requiring knowledge of

the population network and covariates of all other individuals;

(C) The assignment mechanism can be subject to arbitrary constraints (e.g., ethical or economic

constraints).

We formalize the above conditions by defining an individualized treatment assignment

π : X 7→ {0,1}, π ∈Π, (2.4)

where Π denotes the set of constraints imposed on the decision function.13 The map amounts to

a partition of X , the support of X j. The policy function may depend on arbitrary observables X j,

such as measures of centrality, or covariates available to the policy-maker. This policy function

(i) can be implemented in an online fashion, individual by the individual; (ii) it is feasible since

it does not require knowledge of the population network and covariates of all units.14

The decision rule π(·), states that each unit j ∈I is treated according to D j = π(X j) for

all j ∈I . The planner’s goal is to choose the policy π that maximizes welfare. The utilitarian

welfare is defined as the expected outcome once we fix D j = π(X j) for all j ∈I . Namely,

W (π) =
1
|I |

∑
j∈I

E
[
Yj

∣∣∣{(D j) j∈I = (π(X j)) j∈I

}]
.

Importantly, the expectation is not conditional on a particular value of the treatment assignments

(π(X j)) j∈I , but instead, it is conditional on the event that the treatment assignment mechanism

is such that D j = π(X j) for each unit in the target sample.

Welfare effects depend on two main components: (i) the direct effect of the treatment

since each treatment is chosen based on π(X j), and (ii) the spillover effect since each neighbors’

exposures also depend on the policy π . For example, welfare on the experimental participants,
13An example is the capacity constraint of the form

∫
x∈X π(x)dFX (x) ≤ K for a constant K (Kitagawa and

Tetenov, 2018).
14It also avoids overfitting with a domain constant in the size of the population.
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reads as follows
1
n

n∑
i=1

E
[
r
(

π(Xi),
∑
k∈Ni

π(Xk),Zi, |Ni|,εi

)]
, (2.5)

that denotes the effect of π also mediated through neighbors’ assignments. Its definition follows

from the deterministic nature of the policy π ∈Π.

Unfortunately, we can only identify the welfare of the experimental participants. Discrep-

ancies between the expected welfare of sample units and the targeted welfare W (π) will reflect

in the quality of the estimated policy function. We introduce the following definition.

Definition 2.2.1 (Sample-Target Discrepancy). Define

KΠ(n) = sup
π∈Π

∣∣∣1
n

n∑
i=1

E
[
r
(

π(Xi),
∑
k∈Ni

π(Xk),Zi, |Ni|,εi

)]
−W (π)

∣∣∣,
for some function KΠ(.) : Z 7→ R+.

Here, KΠ(.) denotes the difference between the expected welfare of in-sample units and

the welfare of the target population. Such difference captures the bias induced by estimating the

policy function on units that are possibly drawn from a different population than target units.

While we derive our results also as a function of the discrepancy, we can guarantee that

KΠ(·) = 0 under the following conditions.

Assumption 2.2.3 (Local interference on the target population). For a given target population

I , and for each (deterministic) policy function π : X 7→ {0,1},π ∈Π let

W (π) =
1
|I |

∑
j∈I

E
[
r
(

π(X j),
∑

k∈N j

π(Xk),Z j, |N j|,ε j

)]
(2.6)

for some unobservables (ε j) j∈I .

Assumption 2.2.3 states that the local interference model in Assumption 2.2.1 also holds

on the target sample. In the following lemma, we provide conditions for the discrepancy to be

equal to zero.
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Lemma 2.2.1. Let Assumption 2.2.1, 2.2.2, 2.2.3 hold. Suppose in addition that

(Zi,Zk∈Ni, |Ni|,εi)∼P for all i ∈ {1, · · · ,E}∪I . Then KΠ(n) = 0, i.e., for all π ∈Π,

W (π) =
1
n

n∑
i=1

E
[
r
(

π(Xi),
∑
k∈Ni

π(Xk),Zi, |Ni|,εi

)]
.

Lemma 2.2.1 shows that KΠ(n) is equal to zero whenever the vector of unobservables εi,

individual covariates Zi, number of neighbors, and neighbors’ covariates are drawn jointly from

the same distribution. To gain further intuition, note that the condition in the above example is

satisfied if the conditional distribution of (Zi,εi,ZNi)
∣∣∣|Ni| = l ∼P1(l), for some distribution

P1(l) which depends on the number of connections of an individual, and the unconditional

distribution of the degree is the same across units. In Appendix B.1.2 we allow sampled and

target units to have covariates and degrees drawn from different distributions.

Remark 10 (Spillovers on non-compliance). Consider spillovers which also occur over individ-

uals’ compliance. Namely, let Di ∈ {0,1} denote the assigned treatment and Ti ∈ {0,1} denotes

the selected treatment from individual i. We model non-compliance as follows:

Yi = r
(

Ti,
∑
k∈Ni

Tk,Zi, |Ni|,εi

)
, Ti = hθ

(
Di,
∑
k∈Ni

Dk,Zi, |Ni|,νi

)
, νi ∼i.i.d. V (2.7)

where νi denote an exogenous unobservables, independent from εi, and (r(·),θ) are unknown,

with θ denoting the set of parameters indexing h. Intuitively, treatment effects and compliance

depend on neighbors’ selected and assigned treatments. In Appendix B.1.1 we discuss conditions

for identification, assuming that researchers collect information also on second-degree neighbors.

Identification

We discuss the problem of identifying the welfare of the experimental participants. We

introduce two additional conditions.
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Assumption 2.2.4. For all (i, j), P(εi ≤ t|Zi = z, |Ni| = l) = P(ε j ≤ t|Z j = z, |N j| = l) for all

z ∈Z , l ∈ Z, t ∈ supp(εi)∪ supp(ε j).

The condition states that unobservables are identically distributed.

Assumption 2.2.5 (M-Local Dependence). Assume that for any A∈A , i∈ {1, · · · ,E} and some

possibly unknown M ≥ 2,

εi ⊥ (ε j) j 6∈Ni,M−1|A,Z,

where Ni,M−1 denote the set of nodes connected to i by at most M−1 edges.15

Assumption 2.2.5 states that unobservables are conditionally independent for individuals

that are not in a neighborhood up with a radius M−1.16 Next, we discuss the causal estimands.

Definition 2.2.2 (Conditional Mean). Under Assumption 2.2.4 the conditional mean function

for each i ∈ {1, · · · ,E}, is defined as

m(d,s,z, l) = E
[
r(d,s,Zi, |Ni|,εi)

∣∣∣Zi = z, |Ni|= l
]
. (2.8)

Assumption 2.2.4 is necessary in order for the conditional mean function to be identical

across units. The second causal estimand of interest is the propensity score.

Definition 2.2.3. Under Condition (i) in Assumption 2.2.2, for each i ∈ {1, · · · ,E} we define17

e(d,s,x,z, l) = P
(

Di = d,
∑
k∈Ni

Dk = s
∣∣∣Zk∈Ni = x,Zi = z, |Ni|= l

)

= P
(

Di = d|Zi = z
) ∑

u1,··· ,ul :
∑

v uv=s

l∏
k=1

P
(

D
N

(k)
i

= uk

∣∣∣Z
N

(k)
i

= xk,.
)
.

(2.9)

for d ∈ {0,1},s ∈ Z,s≤ l.

15Formally, such set is defined as the set {k : AM−1
i,k 6= 0}.

16Local dependency graphs are often assumed in the presence of network data, see, e.g., Leung (2020).
17The second equaition decomposes the probability of the event into sums of probabilities of disjoint events, each

corresponding to a given combination of treatment assignments (u1, · · · ,ul), whose sum equals to s.
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Definition 2.2.3 defines the probability of treatment given individual and neighbors

covariates. Condition (i) in Assumption 2.2.2 guarantees that the propensity score does not

depend on the index of unit i or of its neighbors. The definition of the propensity score follows

from the literature on multi-valued treatments (Imbens, 2000), while here, the individuals’

exposures also depend on the random number of neighbors and neighbors’ covariates. Here,

the number of treated neighbors
∑

k∈Ni
π(Xk) depends on the array of covariates Xk∈Ni , via the

policy function π . If we were to construct the propensity score, which did not also depend on

such covariates, we would not identify welfare effects.

Lemma 2.2.2 (Identification). Let Assumption 2.2.1, 2.2.2, 2.2.4 hold. Let Si(π) =
∑

k∈Ni
π(Xk).

Then for any function π ∈Π

1
n

n∑
i=1

E
[
r(π(Xi),

∑
k∈Ni

π(Xk),Zi, |Ni|,εi)
]
=

1
n

n∑
i=1

E
[
m
(

π(Xi),
∑
k∈Ni

π(Xk),Zi, |Ni|
)]

=
1
n

n∑
i=1

E
[1{Si(π) =

∑
k∈Ni

Dk,π(Xi) = Di}

e
(

π(Xi),Si(π),Zk∈Ni,Zi, |Ni|
) Yi

]
.

The proof is in Appendix B.4.2. The above result guarantees the identification of the

welfare of the experimental participants. The result does not require conditions on the distribution

of covariates and on the dependence across unobservables.

Network Empirical Welfare Maximization

We now discuss the procedure and its theoretical properties. We defer a discussion on

the optimization method to Section 2.4.

Empirical Welfare

We start introducing some notation. We let Si(π) =
∑

k∈Ni
π(Xk) be the assigned treat-

ment to neighbors of i under policy π .
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A nonparametric estimator of the welfare function is denoted as

W ipw
n (π,e) =

1
n

n∑
i=1

1{Si(π) =
∑

k∈Ni
Dk,π(Xi) = Di}

e
(

π(Xi),Si(π),Zk∈Ni,Zi, |Ni|
) Yi, (2.10)

which also depends on the propensity score e. One possible disadvantage of the above estimator

is the large variance. Therefore, we also consider the following double robust estimator (AIPW)

of the welfare function of the following form:

W aipw
n (π,mc,ec) =

1
n

n∑
i=1

1{Si(π) =
∑

k∈Ni
Dk,π(Xi) = Di}

ec
(

π(Xi),Si(π),Zk∈Ni,Zi, |Ni|
) (Yi−mc

(
π(Xi),Si(π),Zi, |Ni|

))

+
1
n

n∑
i=1

mc
(

π(Xi),Si(π),Zi, |Ni|
)
,

(2.11)

for some arbitrary functions (mc,ec) which we will refer to as the pseudo-true conditional mean

and propensity score. The welfare inherits double robust properties similarly to what discussed

in Robins et al. (1994), i.e. if either mc = m or ec = e, the welfare is equal in expectation to

Equation (2.5) (see Appendix B.4.2). Throughout our discussion, the estimated conditional mean

and propensity score will be denoted as m̂ and ê, respectively. The propensity score can be easily

estimated as a function of conditional marginal probabilities (see Definition 2.2.3).

Known Propensity Score

We start discussing theoretical guarantees of the policy that maximizes W aipw
n (π,mc,ec),

for some arbitrary functions mc and ec, which, only throughout this subsection, are assumed not

to be data-dependent unless otherwise specified. Formally,

π̂
aipw
mc,ec ∈ argmax

π∈Π
W aipw

n (π,mc,ec), (2.12)

defines the “oracle” policy, which has access to the pseudo-true functions (mc,ec).
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Assumption 2.3.1. Let the following hold:

(LP) mc(d,s,z, l) is L-Lipschitz a.e. in its second argument, for some ∞ > L≥ 0;

(OV) For all d ∈ {0,1}, there exist some δ ∈ (0,1) such that ec
(

d,s,x,z, l
)
∈ (δ ,1−δ ) for all

s≤ l, for all z ∈Z , l ∈ Z,x ∈Z l×Zl .

(TC) For Γ2
1,Γ

2
2 < ∞, ∀i ∈ {1, ...,n}, E

[
supd∈{0,1},s≤|Ni|r(d,s,Zi, |Ni|,εi)

3
∣∣∣A,Z]< Γ2

1, and

E
[
supd∈{0,1}m

c(d,0,Zi, |Ni|)3
∣∣∣A,Z]< Γ2

2, almost surely for each i ∈ {1, · · · ,E}.

(VC) π belongs to a function class of point-wise measurable functions18 Π, where Π has finite

VC dimension.19

Condition (LP) is satisfied for any bounded mc(.)20, but it also accomodates for un-

bounded mc(.). Remarkably, the condition is agnostic on the true conditional mean function

m(.). Condition (OV) is the usual overlap condition, often imposed in the causal inference

literature. We discuss trimming at the end of this subsection. Condition (TC) imposes moment

conditions on the outcome. Condition (VC) imposes restrictions on the geometric complexity

of the function class of interest. It is commonly assumed in the literature on empirical welfare

maximization, and examples include Kitagawa and Tetenov (2018) and Athey and Wager (2021),

among others. For instance, if individuals are assigned based on a threshold crossing rule, the VC

dimension equals the number of variables used in the assignment. Under condition (OV) in As-

sumption 2.3.1 we define δ0 a constant such that maxd∈{0,1} ec(d,0,Zk∈Ni,Zi, |Ni|)∈ (δ0,1−δ0)

almost surely, where δ0 ≥ δ by definition.21

Covariates can be endogenous to the network and exhibit arbitrary dependence. In the

following lines, we impose conditions on the distribution (and dependence) of covariates.
18 Point-wise measurability can be replaced by measurability of each function π ∈ Π, but, in this latter case,

since the pointwise supremum may not be necessarily measurable the supremum function must be interpreted as the
lattice supremum. See Appendix B.7.

19The VC dimension denotes the cardinality of the largest set of points that the function π can shatter. The VC
dimension is commonly used to measure the complexity of a class. See for example Devroye et al. (2013).

20To see why the claim hold, let |mc(d,S,Zi)|< B a.e. Since S ∈ Z, |mc(d,S,Zi)−mc(d,S′,Zi)| ≤ 2B|S−S′|.
21To observe why, note that under (OV) δ defines the lowest propensity score over all possible configurations of

number of treated neighbors, also including the case where none of the neighbors is treated.
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Assumption 2.3.2 (Covariates’ distribution). Assume that we can write Zi = h(Qi,Li), for some

unknown function h(·), where Qi ∈Q,Li ∈L , where

(A) (Q j)
E
j=1 ⊥ (ε j)

E
j=1

∣∣∣A,(L j)
E
j=1, Q j ⊥ Qk 6∈N j,M |A,(L j)

E
j=1, (Q j,Qk∈N j)|A,(Lk)

E
k=1 ∼T (|N j|)

(B) |L |< ∞

for some possibly unknown distribution T .

Assumption 2.3.2 decomposes covariates into two main components which are possibly

unknown to the researcher. The first component Qi has arbitrary support, but it is exogenous to

the network structure and is locally dependent. The second component Li can instead exhibit

arbitrary dependence, but it has finite support. Intuitively, Assumption 2.3.2 states that either we

have finitely many “types” of individuals, or we have infinitely many, but continuities are not

predictive of the network formation. In the presence of continuous variables arbitrarily dependent

on the network, the assumption holds after binning.

Example 2.3.1 (Finitely many types). Suppose that |Z | < ∞, i.e., the support of Zi is finite

dimensional. Then Assumption 2.3.2 holds.

Let NE = maxi∈{1,··· ,E} |Ni|+1 denote the maximum degree of the network of experi-

mental participants22, and Nn = maxi∈{1,··· ,n} |Ni|+1 the maximum degree of the sampled units.

We can now state the first theorem.

Theorem 2.3.1 (Oracle Regret). Let Assumptions 2.2.1, 2.2.2, 2.2.4, 2.2.5, 2.3.1, 2.3.2 hold.

Assume that either (or both) (i) mc(.) = m(.) and/or (ii) both ec(.) = e(.). Then,

E
[

sup
π∈Π

W (π)−W (π̂aipw
mc,ec)

]
≤ E[PM,|L |(NE)]

C̄(L+1)(Γ1 +Γ2)

δδ

√
3

0

√
VC(Π)

n
+2KΠ(n),

for a finite constant C̄ < ∞ independent of (L,Γ1,Γ2,δ ,δ0,E,n) and PM,|L | being a polynomial

function with finite degree.
22In our proofs, we only use information from the maximum degree of the n sampled units and their neighbors up

to the Mth degree. Here we instead consider the maximum degree NE of all experimental participants, which is
larger than what is considered in our proofs, for expositional convenience only.
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Corollary 6 (Known propensity score). Let π̂ ipw ∈ argmaxπ∈ΠW ipw
n (π,e) for known propensity

score and let the conditions in Theorem 2.3.1 and Lemma 2.2.1 hold. Suppose that |Ni|< J < ∞

almost surely. Then

E
[

sup
π∈Π

W (π)−W (π̂ ipw)
]
≤ C̄′

√
VC(Π)/n

for a constant C̄′ < ∞ indendent of (n,E).

The proof of the theorem is in Appendix B.5. Theorem 2.3.1 provides a non-asymptotic

upper bound on the regret, and it is the first result of this type under network interference.

The theorem is double robust to the misspecification of mc and 1/ec. The corollary provides

regret guarantees when researchers maximize the welfare with a known propensity score. The

bound in the above corollary is distribution-free (i.e., it holds for all data-generating processes

satisfying the conditions in the corollary). For bounded degree, which in our application using

data from Cai et al. (2015) equals five, the regret scales at rate 1/
√

n, which has been shown

to match the maximin lower-bound in the i.i.d. with no-interference (Kitagawa and Tetenov,

2018). We observe that assuming that sampled units are representative of the target population

(Assumption 2.2.3) is not invoked in Theorem 2.3.1 since the regret is expressed as a function of

the discrepancy between the target and sample units KΠ(n). However, it is assumed in Lemma

2.2.1 and the corollary. The proof consists of (i) controlling the Rademacher complexity in

the presence of spillover effects, using extensions of contraction inequalities to accommodate

the lack of sub-exponential tail decay; (ii) dealing with dependence for symmetrization, and

bounding the groups of dependent units using the chromatic number.

The regret also depends on the network topology through a polynomial function of the

maximum degree (see Theorem B.5.1). The polynomial function depends on the degree of

dependence and on the number of endogenous types captured by |L | (see Assumption 2.3.2).

In Section 2.3.4 we illustrate how the rate can improve in terms of the maximum degree under

weaker dependence conditions.

Finally, note that a direct corollary of Theorem 2.3.1 is that the bound holds if the
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Figure 2.1. Network cross-fitting: simple illustration with M = 1 (note that in practice M ≥ 2).
For each unit, estimators are constructed using information from the other units assigned to the
same color.

propensity score is known and the conditional mean estimated on an independent sample.

Estimated Nuisances and Network Cross-fitting

Next, we discuss regret guarantees in the presence of unknown propensity score, with the

estimated policy being

π̂
aipw
m̂,ê ∈ argmax

π∈Π
W aipw

n (π, m̂, ê). (2.13)

A key challenge is represented by the dependence structure.

We propose a modification of the cross-fitting algorithm (Chernozhukov et al., 2018) to

account for the local dependence of observations and a possibly fully connected network. The

algorithm assumes that the researcher knows M and observes the network of the experimental

participants (but not necessarily of the target units). Extensions, when the dependence structure

is unknown, are discussed in Section 2.3.4. The algorithm groups individuals such that each

group contains conditionally independent observations. It then estimates the nuisance function

for a given observation using information from all other units in the same group.

Algorithm 4. Network Cross-Fitting
Require: Adjacency matrix A of sampled individuals; degree of dependence M.

1: Create K folds with K such that you assign to each fold individuals who are not neighbors
and do not share common neighbors up to the Mth degree conditional on A;

2: For each unit j in fold k, estimate the conditional mean, and the propensity score used to
predict j’s values, using all observations within the fold k only, with the exception of j.

In the following assumption, we discuss conditions on the convergence rate of the

proposed procedure.
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Assumption 2.3.3. Assume that for each d ∈ {0,1},s∈Z, An×Bn =O(n−v) for some v≥ 1/2,

where

An =

√√√√1
n

n∑
i=1

E
[

sup
d,s

(
m̂(d,s,Zi, |Ni|)−m(d,s,Zi, |Ni|)

)2]

Bn =

√√√√1
n

n∑
i=1

E
[

sup
d,s

( 1
ê(d,s,Zk∈Ni,Zi, |Ni|)

− 1
e(d,s,Zk∈Ni,Zi, |Ni|)

)2]
.

(2.14)

Assume in addition that m̂ and 1/ê are uniformly bounded by a finite constant.

Under the above conditions, we can state the following theorem. The proof is contained

in Appendix B.5.

Theorem 2.3.2. Let Assumption 2.2.1, 2.2.2, 2.2.4, 2.2.5, 2.3.1, 2.3.2, 3.4.3 hold, with mc =

m,ec = e. Let estimation being performed as in Algorithm 1. Then

E
[

sup
π∈Π

W (π)−W (π̂aipw
m̂,ê )

]
≤ C̄′E[PM,|L |(NE)]

√
VC(Π)

n
+2KΠ(n)

for a constant C̄′ < ∞ independent of (n,E), and PM,|L | being a polynomial function with finite

degree.

Theorem 2.3.2 shows that the rate of convergence of the estimator does not affect the

convergence rate of the regret under Assumption 3.4.3. Under the conditions in Lemma 2.2.1,

KΠ(n) = 0, and hence the regret converges to zero as the degree grows at an appropriate slower

rate than the sample size.

Remark 11 (Assumption 3.4.3 and increasing degree). Assumption 3.4.3 imposes conditions on

the product of the convergence rate of the estimator to the true conditional mean and propensity

score function, in the same spirit of standard conditions in the i.i.d. setting (e.g., Farrell

2015). Observe that the condition in Assumption 3.4.3 is satisfied for general machine-learning

estimators under bounded degree, since, in the presence of bounded degree, by Brooks (1941)’s
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theorem, we can construct finitely many partitions of independent observations. Assumption

3.4.3 instead imposes a faster rate of convergence than n−1/4 for both the propensity score and

the conditional mean function, as the maximum degree is increasing. For instance, letting M = 2

(i.e., individuals are dependent on friends and friends of friends), the number of partitions is

of order N 2
E . In this cases, each nuisance function is estimated on a sample with n/N 2

E many

observations, and hence Assumption 3.4.3 is satisfied, if each nuisance convergences at a rate

n1/4N 2
E . This equals the parametric rate if NE = E1/8 and n = E (all participants are sampled),

and can be slower than the parametric rate if NE < E1/8. On the other hand, if the degree grows

at a faster rate than E1/8 Assumption 3.4.3 can be relaxed to hold for an arbitrary rate n−v and

the regret also depends on such a rate. We omit this case for the sake of brevity only.

Three Additional Results

Next, we discuss three additional results: targeting with poor overlap, faster rates with

clustered networks, estimation with a partially observed network.

Trimming to Control Overlap

Strict overlap can be violated in the presence of a few nodes with an unbounded degree.

We address this challenge by proposing a trimming estimator. To guarantee overlap, we introduce

the following trimming estimator:

W tr
n (π;κn) =

1
n

n∑
i=1

{1{Si(π) =
∑

k∈Ni
Dk,π(Xi) = Di}

e
(

π(Xi),Si(π),Zk∈Ni,Zi, |Ni|
) Yi×1

{
|Ni| ≤ κn

}}
, (2.15)

for a particular choice of κn which we discuss below. The above estimator accounts for the

spillover effect of treating nodes with a large set of neighbors to their connections, but it excludes

from estimation the direct effect on the largely connected nodes.

Theorem 2.3.3. Let π̂tr
κn
∈ argmaxπ∈ΠW tr

n (π;κn) and suppose that e(d,s,x,z, l) ∈ (δn,1−δn)

for all d ∈ {0,1},x∈Z l,z∈Z ,s≤ κn, l ≤ κn, and assume that P(|Ni| ≤ κn)> c > 0, for some
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c ∈ (0,1). Suppose that conditions in Theorem 2.3.1 hold. Suppose in addition Yi ∈ [−B,B] for a

universal constant B. Let the conditions in Lemma 2.2.1 hold. Then the following holds:

E
[

sup
π∈Π

W (π)−W (π̂tr
κn
)
]
≤

C̄E[PM,|L |(NE)]B
δn

√
VC(Π)

n
+2BP(|Ni|> κn)

for a finite constant C̄ < ∞ independent of (E,n).

The proof of the theorem is in Appendix B.5. Theorem 2.3.3 shows that the rate of

convergence still depends polynomially on the maximum degree, but the overlap constant δn

is potentially much larger than the worst-case constant δ . The additional price to pay is that

the regret also depends on the probability that the degree exceeds a certain threshold. Such

probability can be small whenever the number of nodes with a large degree grows at a slower

rate than the sample size. A simple example is
√

n-many individuals (assuming n = E) having a

growing degree greater than κ , in which case P(|Ni|> κ) = O(1/
√

n).

Remark 12 (Increasing overlap by restricting the number of treatment exposures). Additional

modeling restrictions may be imposed to reduce the dimensionality of the problem and guarantee

strict overlap (also without trimming). For example, suppose that the researcher imposes the

following restriction, for some ordered τ1,τ2,τ3:

r(d,s,z, l,e) =


r̄1(d,z, l,e) if s/l ≤ τ1

r̄2(d,z, l,e) if τ1 < s/l ≤ τ2

r̄3(d,z, l,e) if τ2 < s/l ≤ τ3

(2.16)

for some possibly unknown functions r̄1, r̄2, r̄3. Then the number of possible exposures reduces

to six different exposures. In this case, the balancing score defines the probability of each of this

exposure, having a larger probability compared to the propensity score in Definition 2.2.3.
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Faster Rates with Growing Degree under Weaker Dependence

A natural question is whether we can achieve faster rates as a function of the degree. We

formalize this in the following theorem, where we show that weaker dependence conditions

guarantee a faster rate in the degree.

Theorem 2.3.4. Let Assumption 2.2.1, 2.2.2, 2.2.4, 2.2.5, 2.3.1 hold. Suppose that

Ki =
(

Yi,Di,Dk∈Ni,Zi,Zk∈Ni, |Ni|
)
∼P and that we can partition (Ki)

n
i=1 into K groups each

containing mutually independent observations. Let either mc = m or ec = e. Then

E
[

sup
π∈Π

W (π)−W (π̂aipw
mc,ec)

]
≤ C̄K

√
E[log(Nn)Nn]

n

for a finite constant C̄ independent of (n,E,K).

The proof is contained in Appendix B.5. Such a stronger result requires the additional

restriction: we can construct finitely many groups of vectors Ki with units independent within

each group (as in the case of many small clusters). The result shows that the degree affects the

function class complexity at a rate
√

E[N 1/2
n ] only, while the remaining polynomial terms in

Theorem 2.3.1 capture the dependence structure of the data. From an inspection of the proof, the

reader may observe that the result holds regardless of whether Zi is discrete or continuous.

Given a simpler dependence structure, for Theorem 2.3.4, the proof follows similarly

to the i.i.d. case of Kitagawa and Tetenov (2018) in its symmetrization argument, but with an

important modification that uses contraction arguments, extended to deal under lack of sub-

exponential tails’ decay. To gain further intuition on its main motivation, consider first as a

“loose” definition of the Rademacher complexity

Rn(Π) = Eσ

[
sup
π∈Π

∣∣∣1
n

n∑
i=1

σi fi

(∑
k∈Ni

π(Xi),π(Xi)
)∣∣∣] (2.17)

for some data-dependent functions fi(·) Lipschitz in their second argument, and (σi)
n
i=1 denoting
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i.i.d. Rademacher random variables. For example, with a bounded outcome fi may be defined as

the outcome multiplied by its corresponding inverse probability weight.

In standard i.i.d. settings Equation (2.17) bounds (up-to a constant term) the regret

for any realization of the data, with fi(·,π(Xi)) not depending on the first entry due to lack

of interference. However, under interference, the conditional Rademacher complexity as in

Equation (2.17) is not a valid upper bound of the regret due to dependence. It is, however, a valid

upper bound under lack of statistical dependence among observations, used in Theorem 2.3.4.

This result illustrates the trade-off among different assumptions: when individuals exhibit

arbitrary network dependence as in Theorem 2.3.1, and independence only conditional on the

network, standard symmetrization arguments cannot directly be used, and the regret also depends

on higher moments of the network of all experimental participants. This, instead does not occur

if stronger independence conditions are imposed.

Regret with Partially Observed Networks

We conclude this section by characterizing the regret rate with M unknown, and informa-

tion about the neighbors (but not of the entire network of the sampled participants) is accessible.

We assume that the researcher estimates nuisance functions using the entire sample, and we

characterize the rate as a function of the convergence rate of each estimator. We first impose the

following condition.

Assumption 2.3.4. For some ξ1,ξ2 > 0,

E
[1

n

n∑
i=1

sup
d∈{0,1},s≤|Ni|

∣∣∣m̂(d,s,Zi, |Ni|)−mc(d,s,Zi, |Ni|)
∣∣∣]= O(1/nξ1).

E
[1

n

n∑
i=1

sup
d∈{0,1},s≤|Ni|

∣∣∣(Yi−mc(d,s,Zi, |Ni|)
)(

ec(d,s,Oi)− ê(d,s,Oi)
)∣∣∣]= O(1/nξ2).

(2.18)

where Oi = (Zk∈Ni,Zi, |Ni|). In addition, assume that ê(·) ∈ (δ ,1−δ ) almost surely.

Assumption 2.3.4 imposes conditions on the convergence rate of m̂ to its pseudo-true
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value mc and the convergence rate of ê to the pseudo true ec.23 Here, we do not require the

network cross-fitting algorithm for our results to hold, at the expense of a slower convergence

rate for semi-parametric estimators.

Theorem 2.3.5. Let Assumption 2.2.1, 2.2.2, 2.2.4, 2.2.5, 2.3.1, 2.3.2, 2.3.4 hold. Assume that

either mc(.) = m(.) or ec(.) = e(.). Then,

E
[

sup
π∈Π

W (π)−W (π̂aipw
m̂,ê )

]
≤O

(
1/nξ +E[PM,|L |(NE)]

√
VC(Π)

n

)
+2KΠ(n),

where ξ = min{ξ1,ξ2}, for PM,|L | being a polynomial function with finite degree.

Theorem 2.3.5 provides a uniform bound on the regret, and it is double robust to correct

specification of the conditional mean and the propensity score. The theorem’s result depends

on the convergence rate of ê and m̂ to their pseudo-true value. For parametric estimators of the

conditional mean and the propensity score and bounded degree, the regret bounds scale at rate

1/
√

n. However, for the general machine-learning estimator, the rate can be slower than the

parametric one, reflecting the “cost” of the lack of knowledge of the degree of dependence M.

Mixed Integer Linear Program Formulation

In this section, we discuss the optimization procedure. Firstly, we define the estimated

effect of assigning to unit i treatment d, after treating s of its neighbors. For the double robust

estimator, this quantity is defined as

gi(d,s) =
1{
∑

k∈Ni
Dk = s,Di = d}

ec
(

d,s,Zk∈Ni,Zi, |Ni|
) (Yi−mc

(
d,s,Zi, |Ni|

))
+mc

(
d,s,Zi, |Ni|

)
, (2.19)

where we omit the dependence of gi(·) with mc and ec for sake of brevity. Secondly, we define

Ii(π,h) = 1
{∑

k∈Ni
π(Xk) = h

}
the indicator of whether h neighbors of individual i have been

23Convergence rate for penalized regression on networks is found in He and Song (2018) among others. Estimation
via the method of moments that satisfy the high-level conditions in Hansen (1982) also guarantees parametric
convergence rates 1/

√
n of the estimators of interest.
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treated under policy π . We observe that the following holds:

|Ni|∑
h=0

{(
gi(1,h)−gi(0,h)

)
π(Xi)Ii(π,h)+ Ii(π,h)gi(0,h)

}
= gi

(
π(Xi),

∑
k∈Ni

π(Xk)
)
. (2.20)

Namely, the estimated treatment effect on unit i, obtained after implementing policy π ,

is the sum of effects obtained by treating zero to all neighbors of i. Each element in the sum is

weighted by the indicator Ii(π,h), and only one of these indicators is equal to one. We can then

define n variables pi that denote the treatment assignment of each unit after restricting the policy

function in the function class of interest. Namely, we let pi = π(Xi),π ∈ Π. For example, for

policy functions of the form π(Xi) = 1{X>i β ≥ 0},β ∈B, similarly to Kitagawa and Tetenov

(2018) we write

X>i β

|Ci|
< pi ≤

X>i β

|Ci|
+1, Ci > supβ∈B|X>i β |, pi ∈ {0,1},

where pi is equal to one if X>i β is positive and zero otherwise. The key intuition is to introduce

additional decision variables to represent Ii(π,h) through linear constraints. We define the

following variables:

ti,h,1 = 1
{∑

k∈Ni

pk ≥ h
}
, ti,h,2 = 1

{∑
k∈Ni

pk ≤ h
}
, h ∈ {0, · · · , |Ni|}.

The first variable is one if at least h neighbors are treated, and the second variable is one

if at most h neighbors are treated. The goal is to achieve a linear representation of such variables.

Observe that

ti,h,1 + ti,h,2 =


1 if and only if

∑
k∈Ni

pk 6= h

2 otherwise
⇒ ti,h,1 + ti,h,2−1 = Ii(π,h). (2.21)

Therefore, we can define ti,h,1, ti,h,2 using mixed-integer linear constraints. Namely, the variable
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ti,h,1 can equivalently be defined as24

(
∑

k Ai,k pk−h)
|Ni|+1

< ti,h,1 ≤
(
∑

k Ai,k pk−h)
|Ni|+1

+1, ti,h,1 ∈ {0,1}. (2.22)

Similar reasoning follows for ti,h,2. We now can write the objective function as

1
n

n∑
i=1

|Ni|∑
h=0

{(
gi(1,h)−gi(0,h)

)
pi(ti,h,1 + ti,h,2−1)+(ti,h,1 + ti,h,2−1)gi(0,h)

}
. (2.23)

The above objective function leads to a quadratic mixed integer program. On the other hand,

quadratic programs can be computationally expensive to solve. We write the problem as a

mixed-integer linear program introducing one additional set variables, that we call ui,h for

h ∈ {0, · · · , |Ni|}, with ui,h = pi(ti,h,1 + ti,h,2−1). We provide the complete formulation below.

max
{ui,h},{pi},{ti,1,h,ti,2,h},β∈B

1
n

n∑
i=1

|Ni|∑
h=0

{(
gi(1,h)−gi(0,h)

)
ui,h +gi(0,h)(ti,h,1 + ti,h,2−1)

}
(2.24)

under the constraints:25

(A) pi = π(Xi), π ∈Π

(B)
pi + ti,h,1 + ti,h,2

3
−1 < ui,h ≤

pi + ti,h,1 + ti,h,2
3

, ui,h ∈ {0,1} ∀h ∈ {0, · · · , |Ni|},

(C)
(
∑

k Ai,k pk−h)
|Ni|+1

< ti,h,1 ≤
(
∑

k Ai,k pk−h)
|Ni|+1

+1, ti,h,1 ∈ {0,1}, ∀h ∈ {0, · · · , |Ni|}

(D)
(h−

∑
k Ai,k pk)

|Ni|+1
< ti,h,2 ≤

(h−
∑

k Ai,k pk)

|Ni|+1
+1, ti,h,2 ∈ {0,1}, ∀h ∈ {0, · · · , |Ni|}.

(2.25)

24The equation holds for the following reason. Suppose that h <
∑

k Ai,k pk. Since (
∑

k Ai,k pk−h)
|Ni|+1 < 0, the left-hand

side of the inequality is negative and the right hand side is positive and strictly smaller than one. Since ti,h,1 is
constrained to be either zero or one, in the latter case, it equals zero. Suppose now that h≥

∑
k Ai,k pk. Then the

left-hand side is bounded from below by zero, and the right-hand side is bounded from below by one. Therefore
ti,h,1 is set to be one.

25To motivate the constraint for ui,h, notice first that we can write pi(ti,h,1 + ti,h,2−1) = pi× ti,h,1× ti,h,2 since
(ti,h,1 + ti,h,2− 1) is equal to one if both variables are ones and zero if either of the two variables are ones and
the other is zero. The case where both variables are zero never occurs by construction. Therefore we can write
pi+ti,h,1+ti,h,2

3 −1 < ui,h ≤
pi+ti,h,1+ti,h,2

3 , ui,h ∈ {0,1}.
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The first constraint can be replaced by methods discussed in previous literature such as maximum

scores (Florios and Skouras, 2008), while the additional constraints are justified by the presence

of interference.26 In the presence of capacity constraints, the problem can be formulated as above

after adding additional linear constraints on the maximum number of treated units. Whenever

units have no neighbors, the objective function is proportional to the one discussed in Kitagawa

and Tetenov (2018) under no interference.27 Therefore, the formulation provided generalizes the

MILP formulation to the case of interference.28

Theorem 2.4.1. The π∗ solves the optimization problem in Equation (2.24) under the constraints

in Equation (2.25) if and only if π∗ ∈ argmaxπ∈ΠW aipw
n (π,mc,ec).

Theorem 2.4.1 is a direct consequence of the argument in the current section, and it

permits solving the optimization problem over the function class Π using off-the-shelf methods.

Empirical Application

We now illustrate the proposed method using data originated from Cai et al. (2015).

The authors study the effect of an information session on insurance adoption in 47 villages in

China, documenting (i) positive spillover effects resulting from direct treatments to neighbors;

(ii) absence of endogenous spillovers.29 To evaluate our procedure’s performance, we “simulate”

the following environment: researchers collect information on the first 25 villages. We estimate

the policy to target the individuals in the remaining villages, which in total are 22. In the

remaining villages, we assume that the policy-maker does not have access to the network

information. Throughout our discussion, we consider the population of individuals having at

26In practice, we observe that including additional (superfluous) constraints stabilizes the optimization problem.
These are

∑
h(ti,h,1 + ti,h,2−1) = 1 for each i and

∑
i
∑

h ui,h =
∑

i pi.
27This follows from the fact that under no interference the second component in the objective function is constant

and the first component only depends on the individual treatment allocation.
28Also, observe that the formulation differs from those provided for allocation of an individual into small peer

groups (Li et al., 2019) since the latter case does not account for the individualized treatment assignments, encoded
in the constraints (A)-(D), and in the variables in the objective function ti,h.

29Endogenous spillovers define the effect of increasing insurance take-up as a function of the purchase decision
of direct neighbors.
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least one neighbor.30 Individuals are connected under a “strong” adjacency matrix, whose edges

are equal to one if both individuals of a given pair indicated the other as a connection. The

training set contains n = 1315 observations, and the maximum degree is bounded by five. The

test set has 1401 units. For simplicity, we assume full compliance with the treatment.31

The outcome of interest is insurance adoption, and it is binary. While the experiment

has more than two arms, we only focus on the effects of assigning individuals to intensive

information sessions for simplicity. The intensive information sessions were randomized at the

household level. The experiment of Cai et al. (2015) consists of two rounds: two consecutive sets

of information sessions were performed within a few days. The authors assume that spillovers

occur only to individuals participating in the second information session. To capture these

effects, we estimate the policy function using an asymmetric adjacency matrix, where individuals

participating in the first round of information sessions have no incoming edges. We evaluate the

performance of the remaining villages using the true population adjacency matrix.

Estimation of the conditional mean function is performed non-parametrically using

Random Forest (Breiman, 2001).32 We maximize welfare using the double robust estimator. We

estimate the individual probability of treatment as in Equation (2.9) using logistic regression.33

We compare the methods using the estimated doubly-robust estimator on observations from the

remaining villages.34

30This follows from the fact that the optimization problem over individuals having no connections can be treated
as a separate problem.

31In the experiment, more than 90% of farmers attended the sessions.
32The function depends on the percentage of treated neighbors, the individual treatment assignments, and their

interaction. We also condition on age, rice area, risk aversion, their interactions with the treatment assignments as
well as gender, age, literacy level, the index of risk aversion, the probability of a climate disaster, education, and the
number of friends of the participant.

33The same covariates used for the conditional mean function are also used for the propensity score.
34To guarantee overlap, we trim the propensity score whenever the joint probability of individual and neighbors’

treatment is below 5% when evaluating the methods out-of-sample. Results are robust if we choose 2% trimming.
For trimmed units, extrapolation using the conditional mean function is performed, which guarantees that we
evaluate the performance on all the 1401 units.
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Table 2.1. Application: degree distribution. Two individuals are friends if both indicate the other
as a friend.

1 2 3 4 5

53.3 % 30.3 % 12.2 % 2.99 % 0.92 %

We consider a linear policy rule of the following form:

π(Xi) = 1
{

β0 + ageβ1 + rice areaβ2 + risk adversionβ3 ≥ 0
}
. (2.26)

We study the effect with four different levels of capacity constraints, namely 20%,30%,40% of

individuals are treated.35 We compare the proposed method to four competitors: (i) the EWM

rule discussed in Kitagawa and Tetenov (2018), with estimated propensity score of individual

treatment (i.e., it ignores network effects), and a policy function class as in Equation (2.26); (ii)

the doubly robust method of Athey and Wager (2021) where, however, the conditional mean

function also controls for the network information; (iii) the method that targets at random the

same number of individuals as NEWM.36 In Table 2.1 we report the percentage of individuals

with a certain number of neighbors. The strong network presents a small degree that facilitates

computations but may under-estimate spillover effects.

We collect results in Table 2.2. In the table, we report the Feasible NEWM with policy

as in Equation (2.26) and the best competitor among a random allocation, EWM with propensity

score and EWM with also a regression adjustment. Table 2.2 also collects results for the “oracle”

NEWM method. This method consists of maximizing the double-robust welfare over each

35We also compute results for capacities 50% whose results are comparable to the results with 40% constraint.
We omit those since the optimization of feasible NEWM does not achieve a zero dual gap within the time constraint
for 50% constraint. Also, whenever the number of treated units on the target sample exceeds the capacity constraints,
we treat the same number of units as the capacity constraint, treating those with the largest estimated score X>i β̂ .

36We estimate the model using a MILP program as in Kitagawa and Tetenov (2018) for the EWM methods and
as in the main text for the NEWM method. The dual gap of each estimated method is zero, with the exception of
the oracle method. For the oracle method, since we estimate different policies for different villages, we incur a
dual gap over a few villages. However, as noted in Table 2.2, the dual gap of the oracle method does not affect its
performance relative to the other methods.
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village on the target sample, estimating a village-specific linear decision rule which also depends

on the number of neighbors of each individual. The method is named “oracle” since it has access

to the outcomes and the network information from the target villages. Welfare is measured as 12

RMB per mu per season.37

We observe that the proposed method uniformly outperforms those methods that do not

account for spillover effects. The improvement is up to twelve percentage points. This can

be economically relevant once the policy is implemented at scale. The method underperforms

relative to the oracle method since the feasible NEWM estimator does not directly use information

from the target villages other than the age, rice area, and risk aversion of each individual. In Figure

2.2, we compare the oracle method to the feasible method in terms of treatment probabilities.

Two facts are worth noticing. First, (i) the assignments under the oracle method positively

correlate with the degree of individuals. However, the method does not treat all the units with

the largest degree; instead, it balances treatments across different sub-populations to exploit

heterogeneity in treatment effects. Second, (ii) the feasible method treats more individuals with

the largest degree, although network information is not used by the policy function. The figure

shows how the NEWM method exploits information on the dependence between the degree

and observable covariates from in-sample units for best targeting individuals when network

information is not directly accessible by the policy-maker. In Table 2.3, we report the estimated

policy function’s coefficients. We observe a positive dependence of the optimal treatment rule

with the risk aversion and the rice area of the individual and a negative dependence with age.

In Appendix B.2 we include a numerical study that shows that our procedure uniformly

outperforms those methods that ignore network effects.

371 RMB is 0.15$ and one mu is 0.067 hectare
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Table 2.2. Application: out-of-sample welfare comparisons. Welfare is measured as the proba-
bility of insurance adoption times insurance premium. Feas NEWM stands for feasible NEWM.
Best competitor reports the welfare among the random assignment EWM with propensity score
and double-robust EWM. Oracle is the NEWM that estimates different policies in the target
villages, having access to outcomes and network information in those villages. Third column
reports the welfare improvement between the feasible NEWM and the best competitor. Different
rows correspond to the case where capacity constraints. 90% lower bound denotes the lower
bound constructed using cluster robust standard errors.

Feas NEWM Best Comp Welfare Imp Oracle NEWM

Welf: Capacity 0.2 2.168 2.118 2% 4.219
90% Lower bound 1.18 1.13
Welf: Capacity 0.3 2.574 2.299 12% 4.842
90% Lower bound 2.23 1.92
Welf: Capacity 0.4 2.781 2.492 12% 5.363
90% Lower bound 1.96 1.87

Feasible Oracle
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Method Feasible Oracle

Target sample: probability of treatments for different number of neighbors

Figure 2.2. Treatment probability as a function of the number of neighbors. The plot reports the
probability of being treated as a function of the number of neighbors when 20% of individuals
are treated. In red the feasible NEWM and in blue the oracle.
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Table 2.3. Application: estimated coefficients of the policy function. Feasible NEWM, with
coefficients rescaled by the size of the risk-adversion coefficient.

Intercept Age Rice Area Risk Adversion

Capacity 0.2 6.944 -1 2.204 1
Capacity 0.3 -0.919 -0.426 1.512 1
Capacity 0.4 0.594 -0.132 0.330 1

Conclusions

In this chapter, we have introduced a method for estimating treatment rules under network

interference. We consider constrained environments, and we accommodate policy functions that

do not necessarily depend on network information. The proposed methodology is valid for a

generic class of network formation models, and it relies on semi-parametric estimators. We cast

the problem into a mixed-integer linear program and derive guarantees on the regret.

Our method assumes anonymous and exogenous interactions. Future research can

address the case of endogenous interactions by explicitly modeling the endogenous component.

Similarly, an avenue for future research is to replace the exogeneity of the network formation

with assumptions on the (endogenous) network formation process.

Finally, the literature on influence maximization has often relied on structural models,

while this chapter has focused on semiparametric estimation procedures. Exploring the trade-offs

of these different approaches remains an open research question.

Chapter 2 is currently being prepared for submission for publication of the material.

Davide Viviano is the sole author of this material.
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Chapter 3

Fair Policy Targeting

Introduction

In previous chapters, we have shown how researchers can estimate treatment allocation

rules from experiments or quasi-experiments. However, one of the major concerns of targeting

interventions on individuals is discrimination: individualized treatments may induce disparities

in sensitive attributes such as age, gender, or race. Motivated by evidence of policymakers’

preferences towards non-discriminatory actions (Cowgill and Tucker, 2019), this chapter designs

fair and efficient targeting rules for applications in social welfare and health programs. We

construct treatment allocation rules using data from experiments or quasi-experiments, where,

here we assume i.i.d. sampling, and we develop policies that trade-off efficiency and fairness.

Fair targeting is a controversial task due to the lack of consensus on the formulation of

the decision problem. Conventional approaches mostly developed in computer science consist

in designing algorithmic decisions that maximize the expected utility across all individuals by

imposing fairness constraints on the decision space of the policymaker (Nabi et al., 2019).1 In

contrast, the economic literature has outlined the importance of taking into account the welfare

effects of such policies (Kleinberg et al., 2018). Fairness constraints on the policymaker’s

decision space may ultimately lead to sub-optimal welfare for both sensitive groups. This is a

significant limitation when the policymakers are concerned with the effects of their decisions

1For a review, the reader may refer to Corbett-Davies and Goel (2018).
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on each individual’s utilities: absent legal constraints, we may not want to impose unnecessary

constraints on the policy if such constraints are harmful for some or all individuals.

This chapter studies fair and Pareto optimal treatment rules. We discuss targeting in

a setting where decision-makers prefer allocations for which we cannot find any other policy

that strictly improves welfare for one of the two sensitive groups without decreasing welfare

on the opposite group. Within such a set, she then chooses the fairest allocation. The decision

problem is conceived for applications in social welfare and health programs and motivated by

the Hippocratic notion of “first do no harm” ( “primum non-nocere”) (Rotblat, 1999): instead

of imposing possibly harmful fairness constraints on the decision space, we restrict the set of

admissible solutions to the Pareto optimal set, and among such, we choose the fairest one. For

example, during a health-program campaign, the policymakers may not be willing to decrease all

individuals’ health status to gain fairness. Instead, they may be willing to trade-off health status

of different groups (e.g., young and old individuals) when considering fairness. The framework

that we propose has three desirable properties: (i) it applies to general notions of fairness which

may reflect different decision makers’ preferences; (ii) it guarantees Pareto efficiency of the

policy function, with the relative importance of each group solely chosen based on the notion of

fairness adopted by the decision-maker; (iii) it also allows for arbitrary legal or ethical constraints,

incorporating as a special case the presence of fairness constraints whenever such constraints are

binding on policymakers’ decisions due to ethical or legal considerations.2 We name our method

Fair Policy Targeting.

We contribute to the statistical treatment choice literature by introducing the notion,

estimation procedures, and studying properties of Pareto optimal and fair treatment allocation

rules. We allow for general notions of fairness, and as a contribution of independent interest, we

define envy-freeness fairness (Varian, 1976) within the context of policy targeting.

The decision problem consists of lexicographic preferences of the policymaker of the

2In the presence of binding fairness constraints, our proposed policy achieves a lower unfairness compared to the
policy that maximizes welfare under fairness constraints while being Pareto optimal. See Section 3.2.4 for details.
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following form: (i) Pareto dominant allocations are preferred over dominated ones; (ii) Pareto

optimal allocations are ranked based on fairness considerations. We identify the Pareto frontier

as the set of maximizers over any weighted average of each group’s welfares. Therefore, such

an approach embeds as a special case maximizing a weighted combination of welfares of each

sensitive group such as in Athey and Wager (2021), Kitagawa and Tetenov (2018)3, and in

Rambachan et al. (2020). The above references take a specific weighted combination of welfares

with weights as given, while in our case, weights are part of the decision problem and are directly

selected to maximize fairness. This has important practical implications: our procedure is solely

based on the notion of fairness adopted by the social planner, and it does not require specific

importance weights assigned to each sensitive group, which would be hard to justify to the

general public.

Estimating the set of Pareto optimal allocations represents a fundamental challenge since

(i) the set consists of maximizers over a continuum of weights between zero and one; (ii) each

maximizer of the welfare (or a weighted combination of welfares) is often not unique (Elliott and

Lieli, 2013). To overcome these issues, we show that the Pareto frontier can be approximated

using simple linear constraints. We use a discretization argument, and we evaluate weighted

combinations of the objective functions separately to construct a polyhedron that contains

Pareto allocations. Our approach drastically simplifies the optimization algorithm: instead of

estimating the entire set of Pareto allocations, we maximize fairness under easy-to-implement

linear constraints. We provide theoretical guarantees on our approach, and we show that the

distance between the Pareto frontier obtained via linear constraints and its population counterpart

converges uniformly to zero at a rate 1/
√

n.

We study regret guarantees, i.e., the difference between the estimated policy function’s

expected unfairness against the minimal possible unfairness achieved by Pareto optimal alloca-

tions. We characterize the rate under high-level conditions for general notions of unfairness and

3Under the utilitarian perspective considered in Kitagawa and Tetenov (2018), Athey and Wager (2021), the
welfare maximization problem is equivalent to maximizing a weighted combination of the welfare of different
groups with weights equal to corresponding probabilities. See Section 3.2 for more discussion.
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derive upper bounds that scale at rate 1/
√

n, in several examples, and a lower bound that matches

the same rate. We conclude with an application and a calibrated numerical study on targeting

student awards and discuss the advantages of the proposed method compared to alternatives that

ignore Pareto optimality.

This chapter relates to a growing literature on statistical treatment rules (Sun, 2020;

Manski, 2004; Athey and Wager, 2021; Armstrong and Shen, 2015; Bhattacharya and Dupas,

2012; Hirano and Porter, 2009; Kitagawa and Tetenov, 2018, 2019; Mbakop and Tabord-Meehan,

2021; Stoye, 2012; Tetenov, 2012; Viviano, 2019; Zhou et al., 2018). Further connections are

also related to the literature on classification (Elliott and Lieli, 2013). However, none of these

discuss the design of fair and Pareto optimal decisions.

Fairness is a rising concern in economics, see Cowgill and Tucker (2019), Kleinberg et al.

(2018), Rambachan et al. (2020). The authors provide economic insights on the characteristics of

optimal decision rules when discrimination bias occurs. Here, we answer the different questions

about the design and estimation of the optimal targeting rule within a statistical framework and

derive the method’s properties. A further difference is the decision problem with a multi-objective,

instead of a single-objective utility function, as in previous references.

Additional references include Kasy and Abebe (2020) that provide comparative statics

on the impact of fairness on the individuals’ welfare, focusing on the analysis of algorithms, and

Narita (2021) who motivates fairness based on incentive compatibility in the different contexts

of the design of experiments.

In computer science, Pareto optimality has been considered in the context of binary

predictions by Balashankar et al. (2019) and Martinez et al. (2019). The authors propose semi-

heuristic and computationally intensive procedures for estimating Pareto efficient classifiers.

Xiao et al. (2017) discuss the different problems of estimation of a Pareto allocation that trade-

offs fairness and individual utilities for recommender systems, where the relative importance

weights of the different objectives are selected a-priori. These references do not address the

treatment choice problem discussed in the current paper.
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References in computer science include Chouldechova (2017), Dwork et al. (2012), Hardt

et al. (2016) among others. Corbett-Davies and Goel (2018) contain a review. Additional work

also includes Liu et al. (2017) who discuss fair bandits, and Ustun et al. (2019) who propose

decoupled estimation of tree classifiers without allowing for exogenous (legal or economic)

constraints on the policy space. While the above references address the decision problem as

a prediction problem, several papers discuss algorithmic fairness within a causal framework

(Coston et al., 2020; Kilbertus et al., 2017; Nabi et al., 2019; Kusner et al., 2019). All such

papers estimate decision rules under fairness constraints without discussing Pareto optimality.

The different decision problem considered here is motivated by applications in social welfare and

health programs. We show that when not binding on policy-makers decisions, fairness constraints

may lead to Pareto-dominated allocations and possibly harmful policies for advantaged and

disadvantaged individuals. When fairness constraints are binding, instead, the decision problem

proposed in this paper leads to fairer allocations compared to a constrained welfare maximization

problem while not being Pareto dominated.

Decision Making and Fairness

We start by introducing some notation. For each unit, we denote with S ∈S a sensitive

or protected attribute. For expositional convenience, we let S = {0,1}, with S = 1 denoting the

disadvantaged group, and X ∈X ⊆ Rp individual characteristics. We define the post-treatment

outcome with Y ∈ Y ⊆R realized only once the sensitive attribute, covariates, and the treatment

assignment are realized. We define Y (d), d ∈ {0,1} the potential outcomes under treatment d.

The observed Y satisfies the Single Unit Treatment Value Assumption (SUTVA) (Rubin, 1990).

The vector of potential outcomes, covariates, sensitive attributes and treatment assignments,

(Yi,Di,Si,Xi) are i.i.d.. Let

e(x,s) = P(D = 1|X = x,S = s), p1 = P(S = 1) (3.1)
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be the propensity score and the probability of being assigned to the disadvantaged group. Finally,

we assume that treatments are randomized independently of potential outcomes (Imbens and

Rubin, 2015).

Assumption 3.2.1 (Treatment Unconfoundedness). For d ∈ {0,1}, Y (d)⊥ D|X ,S.

Social Welfare

Given observables, (Yi,Xi,Di,Si) we seek to design a treatment assignment rule (i.e.

policy function) π : X ×S 7→T ⊆ [0,1],π ∈Π that depends on the individual characteristics

and protected attributes, and which can be either probabilistic or deterministic.4 Here, Π

incorporates given and binding legal or economic constraints that restrict the policymaker’s

decision space. The welfare generated by a policy π on those individuals with sensitive attribute

S = s is defined as5

Ws(π) = E
[
(Y (1)−Y (0))π(X ,S)

∣∣∣S = s
]
. (3.2)

Under the utilitarian perspective (Manski, 2004), the welfare maximization problem,

i.e., the population counterpart of the empirical welfare maximization (EWM) (Kitagawa and

Tetenov, 2018), solves

max
π∈Π

{
p1W1(π)+(1− p1)W0(π)

}
where p1 is defined as in Equation (3.1). However, whenever the sensitive group is a minority

group, welfare maximization assigns a small weight to the welfare of the minority, disproportion-

ally favoring the majority group. An alternative approach is to maximize the welfare separately

for each possible sensitive group by designing different policies for different groups (Ustun et al.,

2019). This approach may violate discriminatory laws, i.e., the resulting policy function violates

the constraint in Π. A simple example is when, due to legal reasons, the policy π(x,s) must be

constant in the sensitive attribute s. Instead, we consider a framework where the policymaker

4It is deterministic if T = {0,1} and probabilistic if T = [0,1].
5Welfare is interpreted from an intention-to-treat perspective similarly to Kitagawa and Tetenov (2018), Athey

and Wager (2021).
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simultaneously maximizes each group’s welfare, imposing Pareto efficiency on the estimated

policy under arbitrary legal or economic constraints encoded in Π. Given the set of efficient

policies, the planner then selects the least unfair one. Our approach is designed for social and

welfare programs where legal constraints naturally occur and where, given such constraints, the

policymaker’s preferences align with classical notions of ”first do no harm”.

Pareto Principle for Treatment Rules

The set of Pareto optimal choices is defined as Πo, and it contains all such allocations

π ∈Π for which the welfare for one of the two groups cannot be improved without reducing the

welfare for the opposite group. We characterize Πo in the following lemma.

Lemma 3.2.1 (Pareto Frontier). The set Πo ⊆Π is such that

Πo =
{

πα : πα ∈ arg sup
π∈Π

αW1(π)+(1−α)W0(π), α ∈ (0,1)
}
. (3.3)

The lemma follows directly from Negishi (1960), whose proof is included in Appendix

C.3. It will be convenient to define

W̄α = sup
π∈Π

αW1(π)+(1−α)W0(π), (3.4)

the largest value of the objective in Equation (3.3) for a fixed α . In the following examples,

we show that Pareto allocations generalize notions of optimal treatment rules from previous

literature.

Example 3.2.1 (Welfare Maximization). The population equivalent of the EWM problem be-

longs to the Pareto frontier. Namely,

argmax
π∈Π

{
p1W1(π)+(1− p1)W0(π)

}
⊆Πo.
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An alternative approach consists in maximizing weighted combinations of the welfare with the

weights for each group as given. For instance the allocation (Rambachan et al., 2020)

π̌ω ∈ argmax
π∈Π

{
ωW1(π)+(1−ω)W0(π)

}
⊆Πo, (3.5)

for some specific weight ω belongs to the Pareto frontier.

Pareto optimal allocations are often non-unique, allowing for flexibility in the choice of

efficient policies. The policy-maker must appeal to some preferential ranking principle based on

her preferences. We discuss those in the following lines.

Decision Problem

We start by defining C (Π) the choice set of the policy maker (Mas-Colell et al., 1995),

where C is a choice function with C ({π1,π2}) = π1 if π1 is strictly preferred to π2. We let

UnFairness : Π 7→ R (3.6)

an operator which quantifies the unfairness of a policy. We leave unspecified UnFairness

and provide examples in Section 3.4.3 and Section 3.5. We now state the planner’s preferences.

Assumption 3.2.2 (Policy-maker’s Preferences). Preferences are rational6 with:

(i) C ({π1,π2}) = π1 if W1(π1)≥W1(π2) and W0(π1)≥W0(π2) and either (or both) of the two

inequalities hold strictly; (ii) for each π1,π2, where neither π1 Pareto dominates π2 nor π2

Pareto dominates π1, C ({π1,π2}) = π1 if UnFairness(π1) < UnFairness(π2); (iii) for each π1,π2

, where neither Pareto dominates the other and with equal UnFairness, C ({π1,π2}) = {π1,π2}.

Assumption 3.2.2 postulates lexicographic preferences of the following form: (i) an

allocation is strictly preferred to another if it weakly improves welfare for both groups and

6Rational preferences imply transitivity and completeness (Mas-Colell et al., 1995).

85



strictly improves welfare for at least one group; (ii) given two allocations where none of the two

Pareto dominates the other, allocations are ranked based on fairness.

Proposition 3.2.2 (Decision Problem). Under Assumption 3.2.2, π? ∈ C (Π) if and only if

π
? ∈ arg inf

π∈Π
UnFairness(π)

subject to αW1(π)+(1−α)W0(π)≥ W̄α , for some α ∈ (0,1).
(3.7)

The proof is contained in Appendix C.3. Proposition 3.2.2 formally characterizes the

policy-makers decision problem, which consists of minimizing the policy’s unfairness criterion

under the condition that the policy is Pareto optimal. The policy-maker does not maximize

a weighted combination of welfares, with some pre-specified and hard-to-justify weights. In-

stead, each group’s importance (i.e., α) is implicitly chosen within the optimization problem

to maximize fairness. This approach allows for a transparent choice of the policy based on the

policymakers’ definition of fairness.

Example 3.2.2 (Why Pareto Efficiency? A simple example). Let X = 1 for simplicity, take

τs,φ ∈ (0,1),s ∈ {0,1} and let Y (d) = τSd + ε(d), with E[ε(d)|S] = 0. Consider a class of

probabilistic decision rules

Π =
{

π(x,s) = βs, β1,β0 ∈ (0,1), β0 p0 +β1 p1 ≤ φ

}
,

with the share of treated units being at most φ . Let UnFairness be the difference in the groups’

welfares, namely |τ1β1− τ0β0|. The smallest possible unfairness is zero, since we can choose

β1 = β0 = 0 with one of the fairest allocation selecting none of the individuals to treatment.

Consider now the Pareto frontier, defined as:

Πo =
{

π(x,s) = β
∗
s , β

∗
0 =

φ − p1β ∗1
p0

,β ∗1 ∈ [0,1]
}
⊂Π. (3.8)

86



The set of Pareto allocation rules out all those allocation for which the capacity constraint is

attained with strict inequality, also excluding β1 = β0 = 0. The proposed policy assigns all

benefits to individuals, and it trade-offs who to treat to minimize |τ1β1− τ0β0|.7

Three properties of π?

This section compares the properties of the policy in Proposition 3.2.2 with existing

alternatives. Such properties are stated as corollaries of Proposition 3.2.2.

We first contrast with π̌ω in Equation (3.5), consisting of maximizing welfare for some

pre-specified importance weights assigned to individuals of the two groups (Rambachan et al.,

2020). We show that π? leads to a weakly smaller UnFairness than π̌ω .

Corollary 7 (Maximization with importance weights). Let π? as in Equation (3.7). Then

UnFairness(π?) ≤ UnFairness(π̌ω),∀ω ∈ (0,1), where π̌ω is defined in Equation (3.5). In

addition, π̌ω does not Pareto dominate π?.

Corollary 7 shows that UnFairness of π? is Pareto optimal and uniformly smaller than

UnFairness of the policy that maximizes a weighted combination of the welfares of the two

groups. This follows from the importance weights being chosen to minimize UnFairness in our

case. Next, we compare maximization with fairness constraints. Define

Π(κ) =
{

π ∈Π : UnFairness(π)≤ κ

}
⊆Π,

the set of policies with constraints on the largest unfairness. We constrast π? to

π̃ ∈ arg max
π∈Π(κ)

p1W1(π)+(1− p1)W0(π) (3.9)

which maximizes the welfare imposing fairness constraints (Nabi et al., 2019).
7Observe that the level of unfairness with the frontier may or may not be potentially strictly larger than the

unfairness obtained in an unconstrained scenario. Namely, to achieve zero unfairness for every π ∈Πo , we need
that τ1β ∗1 = τ0β ∗0 . Substituting β ∗0 = φ/p0− p1β ∗1 /p0 this would require β ∗1 = φ

p0
(τ1/τ0 + p1/p0)

−1 which is not
necessarily feasible (i.e., the expression is larger than one).
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Corollary 8 (Maximization with fairness constraints). Let π? as in Equation (3.7) and π̃

as in Equation (3.9). Suppose that π̃ ∈ Πo (i.e., it belongs to the Pareto frontier). Then

UnFairness(π?)≤ UnFairness(π̃). Suppose instead that π̃ 6∈Πo. Then

UnFairness(π?)≤ UnFairness(πo) for all πo ∈Πo that Pareto dominate π̃ .

Corollary 8 shows that if π̃ is Pareto optimal, then its UnFairness is larger than UnFairness

of π?. When instead π̃ is not Pareto optimal, its Pareto dominant allocations have larger

UnFairness than π?. Further intuition can be gained under strong duality, which we discuss

in Appendix C.1.1. Intuitively, the constraint in Proposition 3.2.2 holding for some weighted

combinations of welfares (instead of a particular choice of the weights) is key to achieve lower

unfairness of π? relative to π̃ , when π̃ is Pareto efficient.8

Finally, we compare π? to π̃ in the presence of binding fairness constraints. This

corresponds to Π(κ) = Π, i.e. the fairness constraints are incorporated in Π.

Corollary 9 (Binding capacity constraints). Consider π? as in Equation (3.7) and π̃ as in

Equation (3.9). Suppose that fairness constraints are binding to the policy-maker, i.e. Π(κ) = Π.

Then UnFairness(π?)≤ UnFairness(π̃). In addition, π̃ does not Pareto dominate π?.

Corollary 9 shows that with binding fairness constraints, incorporated in the function

class Π, π? achieves a lower UnFairness than the allocation that maximizes the utilitarian welfare

under such constraints. Appendix C.3 contains the proofs of the above corollaries.

8Under strong duality, the dual of π̃ corresponds to minimize UnFairness for one particular weighted combination
of welfare exceeding a certain threshold. In contrast, our decision problem imposes the constraint that some weighted
combination of welfares exceeds a certain threshold. This difference reflects the difference between the lexicographic
preferences that we propose as opposed to an additive social planner’s utility. It guarantees that whenever π̃ is
Pareto optimal, its fairness is dominated by the one under π?.
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Fair Targeting: Estimation

We now construct an estimator of π?. We introduce some notation, and we define

md,s(x) = E
[
Yi(d)

∣∣∣Xi = x,Si = s
]
, Γd,s,i =

1{Si = s}
ps

[1{Di = d}
e(Xi,Si)

(
Yi−md,s(Xi)

)
+md,s(Xi)

]
(3.10)

the conditional mean of the group s under treatment d, and the doubly robust score

(Robins et al., 1994), respectively. We let Γ̂d,s,i the estimated counterpart of Γd,s,i. Define

Ŵs(π) =
1
n

n∑
i=1

(
Γ̂1,s,i− Γ̂0,s,i

)
π(Xi,s). (3.11)

the estimated welfare built upon semi-parametric literature (Newey, 1990; Robins and Rotnitzky,

1995), with m̂d,s(.), ê(.), p̂s, constructed via cross-fitting (Chernozhukov et al., 2018). Details of

the cross-fitting procedure are contained in Appendix C.1.2. We consider first general notions of

fairness, and introduce the corresponding estimator below.

Definition 3.3.1 (Empirical UnFairness). We define Vn(π, ps,e,m) an unbiased estimate of

UnFairness(π) which depends on observables and the population propensity score and con-

ditional mean. We write V̂n(π) = Vn(π, p̂s, ê, m̂), the empirical counterpart with estimated

nuisances functions.

We defer to Section 3.4.3 and Section 3.5 explicit examples of V̂n(π).

(Approximate) Pareto Optimality

Next, we characterize the Pareto frontier using linear inequalities. In a first step, we

discretize the Pareto frontier, and construct a grid of equally spaced values α j ∈ (0,1), j ∈

{1, ...,N}, with N =
√

n. We approximate the Pareto frontier using the set

Π̂o =
{

πα ∈Π : πα ∈ arg sup
π∈Π

{
αŴ0(π)+(1−α)Ŵ1(π)

}
, s.t. α ∈ {α1, ...,αN}

}
. (3.12)
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The grid’s choice is arbitrary, as long as values are equally spaced.

The set Π̂o may be hard, if not impossible, to directly estimate, since we may have

uncountably many solutions (Manski and Thompson, 1989; Elliott and Lieli, 2013). Instead of

directly estimating Π̂o, we characterize it through linear constraints. First, we find the largest

empirical welfare achieved on the discretized Pareto Frontier defined as

W̄j,n = sup
π∈Π

{
α jŴ0(π)+(1−α j)Ŵ1(π)

}
, for each j ∈ {1, ...,N}, (3.13)

which can be obtained through standard optimization routines (Kitagawa and Tetenov, 2018;

Zhou et al., 2018). We then construct an approximate Pareto frontier as follows:

Π̂o(λ ) =
{

π ∈Π : ∃ j ∈ {1, ...,N} such that α jŴ0,n(π)+(1−α j)Ŵ1,n(π)≥ W̄j,n−
λ√

n

}
,

(3.14)

where Π̂o(0) = Π̂o, and Π̂o ⊆ Π̂o(λ ) for any λ ≥ 0. Notice that − λ√
n imposes that the resulting

policy is “approximately” Pareto optimal. Here, λ guarantees that Π̂o(λ ) contains all Pareto

optimal policies with high-probability, while controlling the distance between the estimated

frontier and its population counterpart (see Section 3.4.1). The estimated policy is defined as

π̂λ ∈ arg min
π∈Π̂o(λ )

V̂n(π). (3.15)

Remark 13 (The choice of the grid and λ ). The choice of λ depends on the function class Π. In

Section 3.4 we discuss guarantees by imposing that λ/
√

n≥M
√

v/N, for some finite constant

M with λ increasing in the geometric complexity v of Π, and where we choose N =
√

n. In

contrast, the function class’s complexity does not affect the choice of the grid (i.e., N). This

is because the welfare loss due to the grid’s approximation error is uniformly bounded by a

constant independent of Π.9

9Namely, take a grid of N + 1 equally spaced α j. Then the approximation error reads as supπ∈Π |αW1(π)+
(1−α)W0(π)−maxα j∈{α1,··· ,αN}α jW1(π)− (1−α)W0(π)| ≤ 2M/N, which is uniformly bounded by M where M
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Optimization: Mixed Integer Quadratic Program

We can now provide a mixed-integer quadratic program (MIQP) formulation for op-

timization. To do so, we represent the constraints on the policy space with the variables

zs = (zs,1, · · · ,zs,n),zs,i = π(Xi,s),π ∈Π. Here zs have simple representation for general classes

of policy functions, such as either probabilistic rules which we derive in Appendix C.1.2 or

deterministic linear decision rules (Florios and Skouras, 2008).

We introduce an additional set of decision variables that guarantee the constraints in

Equation (3.14) hold. The vector u = (u1, ...,uN) ∈ {0,1}N encodes the locations on the grid

of α for which the supremum in (3.14) is reached at; here, u j = 1 whenever the constraint in

Equation (3.14) holds for α j. The chosen policy must be Pareto optimal, i.e., u j must be equal to

one for at least one j. To ensure this, we introduce a simple constraint
∑N

j=1 u j ≥ 1.

Combining such constraints, it directly follows that π̂λ satisfies Equation (3.15) if and

only if

π̂λ ∈ argmin
π

min
z0,z1,u

V̂n(π) (3.16)

subject to zs,i = π(Xi,s), 1≤ i≤ n (A)

u jα j〈Γ̂1,0− Γ̂0,0,z0〉+u j(1−α j)〈Γ̂1,1− Γ̂0,1,z1〉 ≥ u jnW̄j,n−
√

nλ (B)

〈1,u〉 ≥ 1 (C)

π ∈Π (D)

u j ∈ {0,1}, 1≤ j ≤ N. (E)

Constraints (A), (C), and (E) are mixed-integer linear constraints, while Constraint (B) is

quadratic. However, notice that we can further simplify (B) as a linear constraint at the expense

of introducing additional Nn binary variables and 2Nn additional constraints (e.g., see Wolsey

and Nemhauser 1999; Viviano 2019). Finally, (D) is either linear or quadratic for deterministic

bounds the first moment of the potential outcomes independent of Π.
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assignments and linear probability models. Hence the objective admits a MIQP representation

whenever V̂n(π) admits linear representation in π , which we discuss for several examples in the

following section.

Theoretical Guarantees

In this section, we discuss the theoretical properties of the solution in Equation (3.16).

We first introduce three conditions.

Assumption 3.4.1. Suppose that the following conditions hold: (A) Π has finite VC-dimension,

denoted as v; (B) Π is pointwise measurable.

Condition (A) restricts the function class of interest of the policy function. Simple

examples where the finite VC-dimension condition holds are linear decision rules (Manski,

1975), and decision trees (Zhou et al., 2018).10 Condition (B) ensures the measurability of the

supremum of the empirical process of interest (Rai, 2018).

Assumption 3.4.2. Let: (i) e(Xi,s), ps ∈ (δ ,1−δ ), almost surely, for δ ∈ (0,1), for all s∈{0,1};

(ii) Yi(d) ∈ [−M,M], for some M < ∞, for all d ∈ {0,1} almost surely.

Condition (i) imposes the standard overlap assumption; Condition (ii) assumes uniformly

bounded outcomes. See e.g. Mbakop and Tabord-Meehan (2021) for related conditions. The

following assumptions are imposed on the estimators.

Assumption 3.4.3 (Nuisances’ regularities). There exist some ξ1 ≥ 1/4,ξ2 ≥ 1/4, such that:

E
[(

m̂d,s(Xi)−md,s(Xi)
)2]

= O(n−2ξ1), E
[(

1
/

p̂sê(Xi,s)−1
/

pse(Xi,s)
)2]

= O(n−2ξ2).

(3.17)

for all s,d ∈ {0,1}, where Xi is out-of-sample. In addition, for a finite constant M and δ ∈ (0,1),

supd∈{0,1},s∈{0,1},x∈X |m̂d,s(x)|< M, and ê(X ,S), p̂ ∈ (δ ,1−δ ) almost surely.

10In the former case, the VC-dimension is bounded by the number of covariates, whereas in the latter case is
bounded by the exponential of the number of layers in the tree (Athey and Wager, 2021; Zhou et al., 2018).
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Assumption 3.4.3 states that the product of the mean-squared error of the estimated

propensity score and conditional mean converges at the parametric. This condition is standard

in the doubly-robust literature (Chernozhukov et al., 2018; Farrell, 2015). Assumption 3.4.3

also states that the conditional mean function and the propensity score functions are uniformly

bounded. The conditions can be stated asymptotically, in which case results should be interpreted

in the asymptotic sense only (Athey and Wager, 2021).11

Guarantees on the Pareto Frontier

It is interesting to study the behavior of the estimated frontier relative to its population

counterpart. We do so in the following theorems.

Theorem 3.4.1. Under Assumptions 3.2.1, 3.4.1-3.4.3, for any γ ∈ (0,1),λ ≥ 0, a universal

constant c0 < ∞, with probability larger than 1− γ ,

sup
α∈(0,1),π∈Π

∣∣∣αW0(π)+(1−α)W1(π)− max
α j∈{α1,··· ,αN}

{
α jŴ0(π)+(1−α j)Ŵ1(π)−

λ√
n

}∣∣∣≤
c0

√
v
n
+ c0

√
log(2/γ)

n
+

λ√
n
.

(3.18)

Theorem 3.4.1 shows that the distance between the estimated Pareto frontier and its

population counterpart converges to zero at rate 1/
√

n for a choice of λ = O(1). A natural

question is whether the estimated Pareto frontier also contains all Pareto optimal allocations for a

finite λ . We complement Theorem 3.4.1 showing that with high probability the set of estimated

allocations Π̂o(λ ) contains the Pareto frontier for a suitable (finite) choice of λ .

Theorem 3.4.2. Let Assumptions 3.2.1, 3.4.1-3.4.3 hold. Then for any γ ∈ (0,1),λ ≥ b(
√

v+√
log(2/γ)+1), for a constant b > 0, independent of the sample size, N =

√
n, it follows that

P
(

Πo ⊆ Π̂o(λ )
)
≥ 1− γ.

Theorem 3.4.2 complements Theorem 3.4.1 showing that it suffices λ =O(1) (and hence

a slackness of order O(1/
√

n)) for the set of estimated allocations to contain the Pareto frontier.

11We also observe that uniformly boundedness can be replaced by uniform consistency as in Athey and Wager
(2021), in which case, however, regret results are derived in an asymptotic sense.
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The proofs of Theorems 3.4.1, 3.4.2 are contained in Appendix C.3. Theorem 3.4.2 uses finite

sample properties of the estimated (discretized) frontier showing that it concentrates around

its population counterpart, uniformly over Π at rate
√

v/n. The choice of λ/
√

n matches the

upper-bound on the maximal deviations.

General Fairness Bounds

Given the guarantees on the frontier, we next analyze guarantees on the (un)fairness of

the policy. We start our discussion by introducing regret bounds for generic notions of unfairness

under high-level assumptions and then provide examples of upper and lower bounds.

Assumption 3.4.4 (High-level conditions on UnFairness). For some η > 0,γ > 0,

P
(

sup
π∈Π

∣∣∣V̂n(π)−UnFairness(π)
∣∣∣≤K (Π,γ)n−η

)
≥ 1− γ

for some constant K (Π,γ)< ∞. Also assume that UnFairness(π) is uniformly bounded.

Assumption 3.4.4 states that the estimated unfairness converges with probability 1− γ to

population unfairness uniformly over Π at rate n−η for some arbitrary η . The constant K (Π,γ)

depends on the function class’ complexity and the probability γ . We characterize the constant

and the rate η in examples in Section 3.4.3 and Appendix C.1.4.

Theorem 3.4.3. Let Assumptions 3.2.1, 3.4.1-3.4.4 hold. Then for some constants 0 < c0,b < ∞,

independent of n, λ ≥ b(
√

v+
√

log(2/γ)+1),N =
√

n, with probability at least 1−2γ ,

UnFairness(π̂λ )− inf
π∈Πo

UnFairness(π)≤ c0√
n
+

c0K (Π,γ)

nη
. (3.19)

The proof is contained in Appendix C.3.12 Theorem 3.4.3 characterizes the convergence
12The proof consists in (i) first using Theorem 3.4.2 to show that the set of Pareto allocations is contained with

high probability within the estimated set of allocations; (ii) second, bounding the regret with twice the difference
between the estimated and population UnFairness, taking the supremum over π ∈ Π̂o (which contains Πo with
high probability), and using the fact that the VC-dimension of Π bounds the VC-dimension of the set of Pareto
allocations.
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rate of the UnFairness of the estimated policy relative to the lowest unfairness within the class of

Pareto allocations. To our knowledge, this is the first result of this type of fair policy. The rate

depends on the convergence rate of the estimated UnFairness. In the following paragraphs, we

discuss examples and sufficient conditions for Assumption 3.4.4 to hold and formally characterize

the rate of convergence η and the constant K (·).

Regret: Examples and Rate Characterization

Here we discuss three examples, one based on policy predictions, a second based on the

welfare effect, and a third based on incentive compatibility.

Definition 3.4.1 (Prediction disparity). Prediction disparity and its empirical counterpart take

the following form

C(π) = E
[
π(X ,S)|S = 0

]
−E
[
π(X ,S)|S = 1

]
, Ĉ(π) =

∑n
i=1 π(Xi)(1−Si)

n(1− p̂1)
−
∑n

i=1 π(Xi)Si

np̂1
,

Prediction disparity captures fairness based on the probability of treatment of different

groups. The second notion of UnFairness measures welfare effects disparities between the two

groups.

Definition 3.4.2 (Welfare disparity). Define the welfare disparity and its empirical counterpart

as follows.

D(π) =W0(π)−W1(π), D̂(π) = Ŵ0(π)−Ŵ1(π).

Between-groups disparity captures the difference in welfare between the advantaged

group (S = 0) and the disadvantaged group (S = 1), relative to the baseline.13

The policymaker may also consider |D(π)| or |C(π)| as measures of UnFairness, in which

case the policymaker treats the two groups symmetrically, whose regret bounds are discussed in

13Recall the definition of welfare in Equation (3.2) where we only consider the effect under treatment the effect
under control.
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Appendix C.3.13. One last example is based on the notion of incentive compatibility, motivated

by discussion in Narita (2021).

Definition 3.4.3 (Incentive compatibility). Incentive compatibility is defined as

I (π) = I1(π)+ I0(π), Is(π) = E
[
π(X ,1− s)(Y (1)−Y (0))|S = s

]
−E
[
π(X ,s)(Y (1)−Y (0))|S = s

]
with estimator Î (π) = Î1(π)+ Î0(π), Îs(π) =

1
n
∑n

i=1(Γ̂1,s,i− Γ̂0,s,i)π(Xi,1− s)−Ŵs(π).

Here Is(π) captures fairness based on the incentive of an individual in revealing her

sensitive attribute: Is(π) is positive if the welfare of an individual generated from reporting

her sensitive attribute incorrectly is larger than the welfare obtained if she reported it correctly.

Additional notions, such as predictive parity, can also be considered and omitted for the sake of

brevity, see Appendix C.1.4 for details. Finally, observe that each of the three definitions above

considers UnFairness linear in the policy π , and hence optimization can be performed via MIQP.

Upper and Lower Bounds: Rate Characterization

In the following theorem, we discuss the rate of the regret-bound.

Theorem 3.4.4 (Regret bound). Let Assumptions 3.2.1, 3.4.1-3.4.3 hold. Let either

(i) UnFairness(π)=D(π), and V̂n(π)= D̂(π), (ii) or UnFairness(π)=C(π), and V̂n(π)= Ĉ(π),

(iii) or UnFairness(π) = I (π), and V̂n(π) = Î (π). Then for some constants 0 < b,c0 < ∞

independent of the sample size, for any γ ∈ (0,1),λ ≥ b(
√

v+
√

log(2/γ)+1),N =
√

n, with

probability at least 1−2γ ,

UnFairness(π̂λ )− inf
π∈Πo

UnFairness(π)≤ c0

√
v
n
+ c0

√
log(2/γ)

n
.

The proof is included in Appendix C.3. Theorem 3.4.4 characterizes the regret bound for

three different notions of UnFairness. The bound scales at rate 1/
√

n. The lower bound depends,

however, on the notion of unfairness. In the following lines, we derive a lower bound for any

data-dependent policy which achieves the same rate for the predictive disparity.
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Theorem 3.4.5 (Lower bound). Let Π be such that π(x,s) is constant in its last argument

s for all x ∈ X ,π ∈ Π, and with finite VC-dimension v ≥ 3. Let UnFairness(π) = C(π),

and V̂n(π) = Ĉ(π). Let U be the set of distributions of (X ,S) and P(X ,S) = {PY,D|(X ,S) :

such that |Y | < M a.s., and P(D = 1|X ,S) ∈ (δ ,1− δ )}. Then, there exists a distribution

PX ,S,Y,D = PX ,SPY,D|X ,S with PX ,S ∈ U ,PY,D|X ,S ∈P(X ,S), such that for every rule πn ∈ Πo

based upon (X1,S1,Y1,D1), · · · ,(Xn,Sn,Yn,Dn), for finite constants constant 0 < c0,C̄ < ∞ in-

dependent of n, and any γ ∈ (0,1/4), n≥max{C̄ log(1/(4γ)),v−1}, with probability at least

γ

UnFairness(πn)− inf
π∈Πo

UnFairness(π)≥

√
c0 log( 1

4γ
)

n
.

The proof is contained in Appendix C.3, and, to our knowledge, it is the first result of this

type for fair and Pareto optimal policies. The lower bound states that we can find distribution and

some positive (non-vanishing) probability γ such that any data-dependent policy πn achieves a

regret which scales to zero at a rate no faster than 1/
√

n. Observe that a direct corollary of such a

result is that the rate of the lower bound is also achieved in expectation. The condition imposes a

restriction on the set of policies Π: Π does not contain policies that use the sensitive attribute as a

covariate. This class of policies occurs if anti-discriminatory laws are enforced and incorporated

over the set Π. The lower bound applies to prediction disparity, and we leave to future research a

more comprehensive study of lower bounds under generic notions of fairness. The derivation

modifies arguments in the empirical risk minimization literature (Devroye et al., 2013) due to the

dependence of the objective function with the conditional probability of treatment.

Throughout this section, we have considered some examples distributional notions of

fairness, i.e., notions of fairness that depend on distributional statements relative to the sensitive

attribute, but not necessarily counterfactual ones. Distributional notions of fairness are often

used in the literature, see e.g. Kasy and Abebe (2020), Donini et al. (2018), Narita (2021).

Counterfactual notions depend instead on counterfactual statements relative to the sensitive

attribute (Kilbertus et al., 2017). We discuss one counterfactual notion in Section 3.5.
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Figure 3.1. Example of a Directed Acyclical Graph.

Counterfactual UnFairness

This section is of independent interest, and it discusses a novel notion of UnFairness

which connects the literature on causal fairness (Kilbertus et al., 2017) and the economic literature

on envy-freeness (Varian, 1976). The notion is based on counterfactual statements relative to

the sensitive attribute. This section defines Y (d,s),X(s) the potential outcome and covariates as

functions of the sensitive attribute s. The following causal model is considered.

Assumption 3.5.1. Let (A) Y (d,s)⊥ (D,S)|X(s), (B) X(s)⊥ S.

Assumption 3.5.1 is only required for estimation with a counterfactual notion of fairness

discussed in the following lines and not required for notions of fairness discussed in the previous

section. Condition (A) and (B) in Assumption 3.5.1 state that the sensitive attribute is independent

of potential outcomes and covariates, while it allows for the dependence of observed covariates

and outcomes with the sensitive attribute. This dependence is captured by indexing potential

outcomes and covariates by the sensitive attribute. Figure 3.1 displays a directed acyclical graph

under which Assumption 3.5.1 holds. We observe that the dependence between the sensitive

attribute and outcomes and covariates can occur through unobserved characteristics, which are

dependent on both outcomes and sensitive attributes as long as observables do not causally affect

the sensitive attribute. Assumption 3.5.1 is satisfied in the DAGs discussed in Kilbertus et al.

(2017), where sensitive attributes do not have causal parents.

Let the conditional welfare, for the policy function being assigned to the opposite attribute,

i.e., the effect of π(x,s1), on the group s2, conditional on covariates, be
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Vπ(x,s1)(x,s2) = E
[
π(x,s1)Yi(1,s2)+(1−π(x,s1))Yi(0,s2)

∣∣∣Xi(s2) = x
]
. (3.20)

Envy refers to the concept that “an allocation is equitable if and only if no agent prefers

another agent’s bundle to his own” (Varian, 1976). We say that the agent with attribute s2 envies

the agent with attribute s1, if her welfare (on the right-hand side of Equation 3.21) exceeds the

welfare she would have received had her covariate and policy been assigned the opposite attribute

(left-hand side of Equation 3.21), namely

EX(s1)

[
Vπ(X(s1),s1)

(
X(s1),s2

)]
> EX(s2)

[
Vπ(X(s2),s2)

(
X(s2),s2

)]
. (3.21)

We then measure the unfairness towards an individual with attribute s2 as

A (s1,s2;π) = EX(s1)

[
Vπ(X(s1),s1)(X(s1),s2)

]
−EX(s2)

[
Vπ(X(s2),s2)

(
X(s2),s2

)]
. (3.22)

Equation (3.22) makes a connection to previous notions of counterfactual fairness

(Kilbertus et al., 2017), while, differently from previous references, (i) we provide formal

justification to fairness using an envy-freeness argument; (ii) we construct the definition of

fairness based on distributional impact of the treatment allocation rule on the welfare. It is

complementary to Kusner et al. (2019), who compare the effect of the same policy on individuals

with the opposite sensitive attribute, lacking an envy-based justification.

We can then estimate A (·) as follows:

An(s,s′;π) =
1

np̂s

∑
i:Si=s

{
m̂1,s′(Xi)π(Xi,s)+ m̂0,s′(Xi)(1−π(Xi,s))

}
− 1

n

n∑
i=1

{
Γ̂1,s,iπ(Xi,s)− Γ̂0,s,i(1−π(Xi,s))

}
.

(3.23)

Whenever we aim not to discriminate in either direction (women with respect to men and vice-
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versa), we define unfairness by taking the sum of the effects A (s1,s2;π) and A (s2,s1;π),14 and

define counterfactual envy-freeness and its empirical counterpart as

E(π) = A (1,0;π)+A (0,1;π), Ê(π) = An(1,0;π)+An(0,1;π). (3.24)

Different from prediction notions of fairness, theoretical guarantees also require the

following condition.

Assumption 3.5.2. Assume that for some ζ > 0,

E
[(

m̂d,s1(Xi(s2))−md,s1(Xi(s2))
)2]

= O(n−2ζ ), ∀s1,s2 ∈ {0,1},d ∈ {0,1}.

Assumption 3.5.2 states that the estimator of the conditional mean function for each

sensitive attribute and treatment status s,d ∈ {0,1}, must converge to the true conditional mean

function in mean-squared error at some arbitrary rate 2ζ > 0. Here, we require convergence in l2

for a given sensitive attribute conditional on the opposite sensitive attribute, due to the particular

notion of fairness considered.15

Theorem 3.5.1 (Counterfactual envy-freeness). Let Assumptions 3.4.1-3.4.3, 3.5.1 and 3.5.2

hold. Let UnFairness(·) = E(·) and V̂n(·) = Ê(·). Then for some constants 0 < b,c0 < ∞

independent of the sample size, for any γ ∈ (0,1),λ ≥ b(
√

v+
√

log(2/γ)+1),N =
√

n, with

probability at least 1−2γ ,

UnFairness(π̂)− inf
π∈Πo

UnFairness(π)≤ c0

√
v

n2ζ
+ c0

√
log(2/γ)

n
.

A corollary of Theorem 3.5.1 is that under the parametric rate of convergence of the

conditional mean function, the regret bound scales at rate n−1/2. Interestingly, the convergence

rate is of order slower than n−1/2 for non-parametric estimators compared to the notions of
14Such an approach builds on the notion of “social envy” discussed in Feldman and Kirman (1974).
15Namely, to estimate fairness, we need to extrapolate relative to the opposite group.
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UnFairness discussed in Section 3.4. The slower convergence rate is because counterfactual

envy-freeness requires estimating the conditional mean function on the population with attribute

S = s1 while averaging over the covariates’ distribution with the opposite attribute, therefore

requiring extrapolation. This result showcases the trade-off in the choice of a counterfactual

notion of unfairness relative to predictive ones. It opens new questions on trade-offs across

different notions of UnFairness which we leave to future research.

Empirical Application and Numerical Study

We now discuss the empirical application. This section designs a policy that assigns

students to entrepreneurial programs, imposing fairness on gender. We use data that originated

from Lyons and Zhang (2017). The paper studies the effect of an entrepreneurship training and

incubation program for undergraduate students in North America on subsequent entrepreneurial

activity. We have in total 335 observations, of which 53% treated and the remaining under

control, and 26% of applicants are women.16 The population of interest is the pool of final

applicants. We construct a targeting rule that assigns the award to the finalist based on the

applicant’s observable characteristics. We maximize subsequent entrepreneurial activity, which

is captured using a dummy variable, indicating whether the participant worked in the startup once

the program ended. The study is a quasi-experiment, and, as noted in Lyons and Zhang (2018),

the focus on the pool of final applicants mitigates the selection on unobservables. Similarly to

Lyons and Zhang (2018) we control for residual confounding of the treatment assignment among

final applicants through individual level observable characteristics and an observable quality

score of the final applicant. Estimation of the nuisance functions is through penalized regression

and discussed in Appendix C.2.1.

We consider three notions of UnFairness: (i) counterfactual envy; (ii) (ii) predictive

disparity, which minimizes the probability of treatment between the two groups as in Definition

3.4.1; (iii) predictive disparity with absolute value (i.e. it denotes the absolute difference between
16Data is available at https://www.openicpsr.org/openicpsr/project/113492/version/V1/view.
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the probability of treatment between the two groups). While (ii) and (iii) do not impose conditions

on the distribution of the sensitive attribute, counterfactual envy ((i)) assumes unconfoundedness

also of the sensitive attribute. Such a condition is equivalent to assuming that the decision to

change gender is exogenous.

We consider linear decision rules, given their large use in economics (Manski, 1975)17

Π =
{

π(x, fem) = 1
{

β0 +β1fem+ x>φ ≥ 0
}
, (β0,β1,φ) ∈B

}
. (3.25)

We allow covariates x to be either (1) the years to graduation, years of entrepreneurship,

the region of the start-up, the major, the school rank, or (2) the score assigned to the candidate

by the interviewer and the school rank. We refer to these two cases respectively as Case 1 and

Case 2. We consider in-sample capacity constraints imposed on the function class with at most

150 individuals selected for the treatment.18

We compare the proposed methodology to the method that maximizes the empirical

welfare with the double robust score (Athey and Wager, 2021). We consider three nested function

classes for the welfare maximization method. The first does not impose any restriction except

for the functional form in Equation (3.25). The second, imposes that β1 = 0. The third class

imposes that β1 = 0 and that the average effect of the policy on females is at least as large as the

one on males. The function classes are

Π1 =Π, Π2 =
{

π(x) = 1
{

β0 + x>φ ≥ 0
}}

,

Π3 =
{

π(x) = 1
{

β0 + x>φ ≥ 0
}
,En

[
(Yi(1)−Yi(0))π(Xi)

∣∣∣S = 1
]
≥ En

[
(Yi(1)−Yi(0))π(Xi)

∣∣∣S = 0
]}

,

where En[·] denote the empirical expectation, estimated using the doubly-robust method.

17This is estimated solving Equation (3.16) with a small slackness parameter of order 10−6. The reader may refer
to Appendix C.1.3 for details.

18The validity of the in-sample capacity constraints follows from a uniform concentration argument of the
capacity constraint around its expectation. Formally, we can bound E

[
supπ∈Π

∣∣∣ 1
n
∑n

i=1 π(Xi)−E[π(Xi)]
∣∣∣] using

the Dudley’s entropy integral bound (Wainwright, 2019), that guarantees that the estimated policy controls with
high probability the percentage of treated individuals by 150/335 up to a small tolerance of order

√
v/n. We can

then show using the bounded difference inequality that supπ∈Π

∣∣∣ 1
n
∑n

i=1 π(Xi)−E[π(Xi)]
∣∣∣ concentrates at rate 1/

√
n

around its expectation with high probability.
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Table 3.1. Application: results from fair targeting. The first two columns report the welfare
improvement plus the baseline value. The last column reports the importance weights assigned
by the method to the welfare of female students. FTP Envy refers to the Fair Targeting rule that
minimizes envy-freeness unfairness; FTP Predictive Disp (Definition 3.4.1) refers to the Pareto
allocation that minimizes the difference in probability of treatment (Abs indicate in absolute
value); Welfare Max. 1 denotes the method that maximizes the empirical welfare considering
Π1, and similarly Welfare Max. 2, 3 for the function classes, respectively Π2,Π3.

Welfare Female Welfare Male Importance Weight

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

Fair Envy 0.376 0.372 0.272 0.195 0.384 0.487

FTP Pred 0.432 0.374 0.224 0.180 0.847 0.924

FTP Pred Abs 0.433 0.351 0.208 0.235 0.924 0.487

Welfare Max. 1 0.376 0.351 0.272 0.235 0.266 0.266

Welfare Max. 2 0.288 0.307 0.285 0.238 0.266 0.266

Welfare Max. 3 0.331 0.307 0.265 0.238 0.266 0.266

In Figure 3.2 we plot the Pareto frontier over each function class.19 The figure shows that

restricting the function class of interest leads to Pareto-dominated allocations. This outlines the

limitations of maximizing welfare under fairness constraints: such constraints can result in harm

for both types of individuals. Instead, the proposed method enforces Pareto optimality in the least

constrained environment (red line) and then selects the policy based on fairness considerations.

In Table B.2.1 we collect results20 of the welfare of female and male students, as well

as the relative importance weight assigned to each group for methods that maximize different

UnFairness measures. In the table, we observe that minimizing Envy and Predictive Disparity

leads to (weakly) larger welfare effects on the minority group. Envy leads to comparable results

to welfare maximization for Case 1 due to the discreteness of the frontier.21 We observe an
19The value functions over the Pareto frontier can be exactly recovered as follows: we solve 2 optimization

problems for each α j, j ∈ {1, ...,N}. For each of these problems, we impose constraints on the welfare of one of
the two groups being larger than the other and vice-versa; we then select the subset of solutions that are not Pareto
dominated by the other, and we plot the corresponding welfares in the figure.

20In computations, the competitors (Welfare Maximization) achieves the global optimum (dual gap equal to zero).
For the proposed method, we impose a maximum time limit on the MIQP.

21Observe that even if the weight α is larger for FTP Envy and FTP Parity Abs in Case 1 and 2 respectively, this
does not lead to a different result than Welfare Max. 1 due to the discreteness of the Pareto frontier.
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Figure 3.2. (Discretized) Pareto frontier under deterministic linear policy rule (estimated through
MIQP). Dots denote Pareto optimal allocations. Red dots (circle) correspond to Π1, blue dots
(triangle) to Π2 and black dots (square) to Π3.

increase in the welfare of female students when minimizing the absolute difference between

probabilities of treatments for Case 1 and comparable results to the welfare maximization method

for Case 2. The table shows that the proposed method finds importance weights assigned to each

group solely based on the notion of fairness provided, without requiring any prior specification of

relative weights assigned to each group. The method that maximizes the empirical welfare instead

assigns to the sensitive group the importance weight equal to its corresponding probability, small

for minorities. In two settings only, the results coincide with the proposed method due to the

discreteness of the frontier.

Figure 3.3 reports the unfairness level for different sets of covariates, with unfairness

measured as the difference in the probability of treatments between the two groups. Overall,

Figure 3.3 shows that the level of the unfairness of the proposed method is uniformly smaller

than the unfairness achieved by maximizing welfare, consistently with results in Section 3.2.

Finally, it is interesting to compare also with probabilistic decision rules, which are

allowed in our framework. Figure 3.3 also collects result also for a probabilistic policy function

(in green) which is a super-set of Π in Equation (3.25) and assigns different probabilities of
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Figure 3.3. Application: UnFairness comparisons. Unfairness level of the Fair Policy Targeting
method with a deterministic allocation rule (in red), with a probabilistic decision rule (in green),
and of the welfare maximization method (in blue). Pred disp refers to Definition 3.4.1 and Pred
disp abs to Definition 3.4.1 in absolute value. Smaller values indicate smaller UnFairness.

treatments to groups below and above the hyperplane in Equation (3.25) (see Appendix C.1.3).22

Results are mostly comparable across probabilistic or deterministic decisions. However, we

find that a probabilistic decision enlarges the set of Pareto efficient allocations relative to the

maximum score function, which we discuss in Appendix C.2.1.

A Calibrated Experiment

Next, we conducted a calibrated experiment to test the method’s performance. We

estimate the model using a penalized regression using data from Lyons and Zhang (2017) as we

do in the empirical application, and we run the simulations calibrated to the estimated model.

Covariates and sensitive attributes are drawn with replacement from the empirical distribution,

and the policy is estimated using all covariates also used for estimation. Appendix C.2.2 contains

details. We consider 500 replications with n= 400, while in Appendix C.2.2, we show that results

are robust for n = 600. For computational reasons, we consider linear probabilistic treatment

assignments X>β constrained between zero and one, with β computed using a linear program

22Formally, the function class is
{

πβ (X ,S) = p11{X>i β +Sβ0 > 0}+ p01{X>β +Sβ0 ≤ 0}, p1, p0 ∈ [0,1],β ∈

B
}

.
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Figure 3.4. Numerical study calibrated to Lyons and Zhang (2017). Results averaged over
500 replications using a linear probabilistic decision rule constrained between zero and one.
n = 400. The left panel collects results for κ = 1 (stricted fairness constaints) and the right panel
for κ = 10 (slacker fairness constraints). Colored in red is the proposed method, and in blue,
the method that maximizes the empirical welfare imposing fairness constraints. In each panel,
the first two columns report the welfare of each group, and the third column the difference in
probability of being treated between females and males students.

with linear constraints.23 We contrast our procedure (estimated without fairness constraints) to

the procedure that considers the same function class, but it maximizes the empirical welfare under

the additional constraint that UnFairnessn(π) ≤ κ/n, where UnFairnessn(π) is the empirical

counterpart of the notion of predictive parity as in Definition 3.4.1.24 We let κ ∈ {1,10}. We

impose the same capacity constraint as in the application, with the maximum number of treated

students equal to one hundred and fifty. We collect results in Figure 3.4, where we report the

population welfare and unfairness of each method (based on the simulation design), averaged

across the simulations. The figure corroborates our theoretical findings. First, Fair Policy

Targeting is not Pareto dominated by the existing competitor: it leads to strictly larger welfare

on female students, but to smaller welfare on the male students. Second, our proposed procedure

also leads to smaller unfairness. This property follows from the fact that our procedure either (or

23Such assignments are chosen for computation reasons since they do not involve integer variables. See Appendix
C.1.3 for a detailed description.

24We observe that also other measures may be considered. We consider predictive parity for computational
convenience and the sake of brevity.
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both) is strictly Pareto dominant or leads to smaller UnFairness while not being Pareto dominated.

The key intuition is the following: even when fairness constraints are imposed, the competitor

imposes a small importance weight on the minority group. This results in UnFairness that, while

satisfying the constraint, can still be large. Fair Policy Targeting instead chooses the importance

weight assigned to each group to minimize UnFairness, and, as a result, either (or both) leads to

lower unfairness without being Pareto dominated as in this case, or it is strictly Pareto dominant.

Conclusion

In this chapter, we have introduced a novel method for estimating fair and optimal treat-

ment allocation rules. We proposed a multi-objective decision problem, where the policymaker

aims to select the least unfair policy in the set of Pareto optimal allocations. We discuss a set of

theoretical guarantees on the estimated policy and provide an application. From a theoretical

perspective, we open new questions on the trade-offs between predictive and causal notions of

fairness and its corresponding regret bound. Counterfactual notions require extrapolation, hence

possibly leading to a slower convergence rate. We leave to future research a comprehensive study

of properties of different notions of fairness in terms of their implied regret. From a practical

perspective, an interesting new direction is estimation with non-utilitarian within-group welfare

measures.

Chapter 3 has been prepared for submission for publication. Viviano, Davide; Bradic,

Jelena. Chapter 3 is co-authored with Jelena Bradic. Davide Viviano is the principal investigator.
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Chapter 4

(When) Should you adjust inference for
multiple hypothesis testing?

Introduction

This chapter departs from the problem of choosing whom to treat discussed in previous

chapters and focuses on the problem of statistical inference in the presence of multiple policy

effects.

Empirical papers in economics usually test more than one hypothesis. Historically

researchers have treated these tests as independent when conducting inference. But recently,

some have begun to approach “multiple hypothesis testing” (MHT) scenarios differently, using

procedures that adjust one test for the presence of others in order to control an aggregate error

rate (e.g., the family-wise error rate (FWER) or the false discovery rate (FDR)) or testing for

effects on indices that aggregate multiple outcomes. Considering experimental papers published

in “top 5” journals, for example, the share that adjusted inference in one of these ways increased

from 0% to 39% over the past decade (left-hand panel of Figure 4.1), so that there is now wide

variation in whether they do so, as well as how they do so (right-hand panel). This raises several

simple but important questions: when (if at all), how, and why should researchers be required to

adjust for multiplicity? While there is a general sense that simply ignoring MHT issues could

create problematic incentives, there is little consensus on how exactly they should be addressed.

This leaves referees and editors to rely on intuition or taste when evaluating submitted papers.
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In this chapter, we seek to understand whether and why MHT procedures might arise

as desirable solutions within the process of scientific communication, and if they do, what

observable features of the economic environment determine the right procedures to use. To

this end, we study a model of the academic publication process in which a benevolent social

planner chooses professional norms with respect to MHT adjustments, taking into account

the researchers’ incentives. The framework embeds three core ideas. First, policy decisions

are influenced by the summary recommendations (in particular, hypothesis tests) contained

in research papers. Second, while this makes research results a public good, the costs of

producing them are born privately by the researcher. She decides whether or not to incur these

costs, conducting a pre-specified experiment with multiple hypotheses based on its chances of

subsequent publication.1 Hypothesis testing protocols must therefore balance the twin goals of

(i) motivating the production of research and (ii) producing good policy guidance from it. Finally,

we examine how to balance these objectives conservatively, selecting protocols that maximize

worst-case social welfare, which we refer to as maximin protocols.

In the case of a single hypothesis, these assumptions can be used to rationalize standard

testing procedures, as shown in an insightful paper by Tetenov (2016).2 To study the multiple

hypothesis case, however, we require notions of optimality that are more nuanced than those in

the single-hypothesis case. We show that with multiple hypotheses, no maximin rule dominates

all others (in contrast to the single-hypothesis case). Motivated by this non-existence result, we

develop an appropriate notion of local power with the property that any maximin rule that is

locally most powerful is also admissible, allowing us to select among admissible maximin rules.

A defining feature of our approach is to identify hypothesis tests with corresponding

policy decisions. This is what ultimately allows us to select between alternative testing procedures

based on their welfare consequences. The test/decision correspondence is particularly clear in

1As this suggests, our focus is on experimental research. We discuss relationships to non-experimental work in
Section 4.4.

2While we focus on the research publication process, our framework can also be used to study MHT in other
contexts such as regulatory approval as analyzed in Tetenov (2016).
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Figure 4.1. Multiple testing adjustments in “top-5” experimental publications. The left-hand
panel reports the share of experimental papers that report at least one multiple hypothesis
testing adjustment, including both indexing and control of compound error rates, by year of
publication. The right-hand panel reports the frequency of each adjustment type, pooling across
years. Adjustment types are not mutually exclusive. Authors’ calculations based on a review
of papers published in the American Economic Review, Econometrica, the Journal of Political
Economy, the Quarterly Journal of Economics, and the Review of Economic Studies. We exclude
articles from the American Economic Review Papers and Proceedings.

situations where researchers study multiple interventions or effects on multiple sub-populations.3

We therefore begin in Section 4.2 by studying these cases. We first establish that (under certain

conditions) separate hypothesis tests based on threshold-crossing protocols—in particular, the

t-tests that are ubiquitous in applied work—are optimal. We then draw two broad conclusions

about the role of multiplicity.

First, it is often optimal to adjust testing thresholds (i.e., critical values) for the number

of hypotheses being tested. A loose intuition for this result is as follows. The worst states of the

world are those in which the status quo of no intervention is best, as, in these states, a research

study has only downside. Here it is desirable to keep publication probabilities low enough

that the researcher chooses not to experiment. If the hypothesis testing rule were invariant to

the number of hypotheses being tested, then for sufficiently many hypotheses, this condition

3This is common in practice. For example, 27 of 124 field experiments published in “top-5” journals between
2007 and 2017 feature factorial designs with more than one treatment (Muralidharan et al., 2020). Moreover, the
average number of subgroups analyzed in the 34 field experiments published in top economics journals between
2005 and 2009 is 6.4 (Fink et al., 2014).
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would be violated: the chance of getting a study published due solely to false positives would be

high enough that the researcher would choose to conduct one. Some adjustment for hypothesis

count is thus optimal. We believe that this logic aligns fairly closely with the lay intuition

that researchers should not be allowed to test many hypotheses and then “get credit” for false

discoveries.

Second (and as this suggests), the research cost function determines whether and how

much adjustment is required. We can, in fact, pick a research cost function such that no further

adjustment is required, as the costs of doing research scale with the number of hypotheses

tested in just such a way as to “build in” the needed correction. More generally, optimal testing

rules compensate for residual imbalances in researcher incentives with respect to the number of

hypotheses, taking the researcher’s costs into account. As a result, the framework can explain

when common criteria emerge as appropriate solutions and when they do not, as a function of

the economic environment. When research costs are fixed, for example, it is optimal to control

the average size of tests (e.g., via a Bonferroni correction), while when costs scale in exact

proportion to the number of tests no MHT adjustment is required.

In our base model, the interaction between hypotheses is driven by interdependence in

the costs of conducting research on them. We also consider a series of extensions in which

there is successively more scope for additional interactions of other kinds. Specifically, we

introduce interactions in the publication process in the form of a threshold rule where papers

are published if they find enough results, and then in the economic effects of the treatments

being evaluated—allowing, for example, for complementary interventions.4 These extensions

yield some interesting results, including (in one case) FWER control at the level of groups of

hypotheses sufficient for publication (as opposed to the individual hypotheses).

In Section 4.3 we turn to the case of multiple outcomes. Here a prerequisite step is to

specify whether and how these outcomes inform multiple decisions. One interpretation is that

4In these more general settings, maximin optimality can be very conservative; we, therefore, focus on a weaker
notion of maximin optimality, corresponding to weak size control in the literature.
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the research informs an audience of multiple policy-makers with heterogeneous preferences over

outcomes, in the spirit of Andrews and Shapiro (2021). One education minister may care more

about literacy gains, for example, while another cares more about numeracy. If it is unknown

which policy-maker will act on the results of the paper and (as before) we maximize worst-case

welfare, then optimal hypothesis testing rules again adjust for the number of outcomes. But in

this case, maximin rules can be very conservative: we show that in our leading case, separate

t-testing is maximin only if it has zero power, for example, and that maximin tests with non-zero

power include testing based on the minimum of a group of t-statistics.

A reasonable alternative interpretation of the multiple outcomes case is that several

outcomes usually matter even for a single decision. An education minister might reasonably

wish to examine effects on both literacy and numeracy, for example, when deciding whether to

scale up an intervention. Under this interpretation, optimal recommendations are based on a test

for effects on a weighted average of the outcomes—that is, on indexing. The optimal indexing

procedure depends, in turn, on the meaning of the outcomes. If (as in the literacy/numeracy case)

they capture distinct arguments in the welfare function, then optimal weights should represent

the economic preferences of the decision-maker. If alternatively, they are best understood

as alternative measures of or proxies for the same underlying concept, then optimal weights

minimize the statistical variance of the resulting index (in the spirit of the approach proposed by

Anderson (2008)). A natural example of the latter case would be observing the effects on two

different noisy tests of literacy.

Our paper draws inspiration from other work using economic models to inform the choice

of statistical procedures. The audience for research results plays a central (albeit passive) role, as

in recent work on scientific communication (e.g., Frankel and Kasy, 2018; Andrews and Shapiro,

2021). More generally, the preferences and incentives of researchers drive the analysis (e.g.,

Chassang et al., 2012; Tetenov, 2016; Spiess, 2018; Henry and Ottaviani, 2019; Yoder, 2019;

Banerjee et al., 2020; McCloskey and Michaillat, 2020; Williams, 2021). Our contribution is to

adapt and apply this perspective to the analysis of multiple hypothesis testing specifically.
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In doing so, we aim to provide some practical guidance to applied researchers navigating

the extensive statistical literature on MHT. This literature focuses on the design of algorithmic

procedures for controlling particular notions of compound error.5 We refer to Efron (2008a)

and Romano et al. (2010) for overviews. We draw in particular on List et al. (2019)’s helpful

distinction between different types of multiplicity and show how these distinctions lead to

meaningful differences in optimal testing procedures.6 Overall, while the literature provides

many different MHT procedures, few statistical optimality results exist (e.g., Lehmann et al.,

2005; Romano et al., 2011). We, therefore, discuss in Section 4.4 what takeaways for practice

one might reasonably draw from our theoretical results—recognizing that this inevitably requires

judgment, taking into account important considerations which are (necessarily) outside of our

model. Practitioners may wish to skip directly to this section, which is intended to be relatively

self-contained.

Our paper also relates to an extensive literature at the intersection between decision theory

and hypothesis testing, dating back to Wald (1950) and Robbins (1951) and, more recently,

Manski (2004) and Tetenov (2012) in the context of statistical treatment choice.7 Previous work

has motivated notions of compound error control in single-agent non-strategic environments;

see, for example, Storey (2003) and Efron (2008b) for a Bayesian interpretation of the FDR and

Lehmann and Romano (2005b) for a discussion of the FWER. We complement this literature

by developing a model of the publication process that explicitly incorporates the incentives and

constraints of the researchers. Relative to the decision-theoretic approach, this has two main

advantages. First, it lets us characterize when MHT adjustments are appropriate—and also

5See, e.g., Holm (1979); Westfall and Young (1993); Benjamini and Hochberg (1995); Benjamini and Liu
(1999); Storey (2002); Storey et al. (2004); Lehmann and Romano (2005a); Lee and Shaikh (2014); Romano and
Wolf (2016); List et al. (2019); ? among many others.

6There are other useful taxonomies in the literature. For example, Rubin (2021) distinguishes between settings
where the joint intersection null is rejected if one hypothesis is rejected (disjunction testing), settings where all
individual nulls need to be rejected to reject the joint union null (conjunction testing), and individual testing. We
will briefly mention the connection of our results to disjunction testing in Section 4.3.4.

7The literature on statistical treatment choice mostly focuses on non-strategic planners’ problems. See also
Hirano and Porter (2009); Kitagawa and Tetenov (2018); Hirano and Porter (2020b); Athey and Wager (2021) for
recent contributions.
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when they are not—as a function of measurable features of the research and publication process.

Second, it allows us to justify and discriminate between different notions of compound error

(e.g., FWER and FDR) in the same framework based on these same economic fundamentals.

Multiple Interventions and Multiple Subgroups

Our goal is to understand what professional norms with respect to MHT adjustments lead

to desirable welfare outcomes. To this end, we consider a model of the academic publication

process and ask what statistical procedures a benevolent social planner would choose, taking

into account a representative experimental researcher’s incentives. The planner’s problem is

most analogous to that of the editorial board of an academic journal choosing editorial standards

regarding the use of hypothesis testing procedures. We abstract from other factors that would

be important for a positive description of the academic publication process, including the

incentives of journal editors (e.g. maximizing the journal’s impact factor) and competition

between journals.8

In our model, multiple testing issues arise whenever research informs multiple policy

decisions. We therefore start by discussing settings with multiple interventions or different

sub-populations, as here there is a clear one-to-one mapping between multiple hypothesis tests

and multiple policy decisions. The case of multiple outcomes is more subtle. In particular, there

may not be a one-to-one mapping between hypothesis tests and policy decisions since multiple

tests may only inform one decision. We will turn to this case in Section 4.3.

Setup and Model

The social planner prescribes and commits to a hypothesis testing protocol, restricting

how the researcher can report discoveries and make recommendations. Given this protocol, the

researcher decides whether to run an experiment with T ≥ 1 different non-exclusive treatments.

8We can also incorporate some of these (e.g. the role of space constraints in journals in Section 4.2.6 and
Appendix D.1.3).
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Treatments may represent either different interventions or different sub-populations to whom

a given intervention might be applied. What is important is that there are J = T distinct and

non-exclusive policy decisions to be made. Throughout this section, to simplify the exposition,

we will not explicitly distinguish between T and J and write J everywhere.

If the researcher experiments, she draws a vector of statistics X ∼ Fθ , and incurs a cost

C(J) > 0, which may depend on the number of treatments. Here, X ∈X ⊆ RJ and θ ∈ Θ

is the parameter of interest. The costs C(J) are sunk after the experiment is conducted and

do not depend on θ . We assume that every experiment is written up and submitted to the

journal. Research designs (defined by J and Fθ ) arise exogenously. Our main results continue

to hold when we relax this assumption, with the most-powerful characterization requiring a

standard symmetry assumption; see Appendix D.1.2. This captures situations where, for example,

researchers collaborate with implementation partners such as NGOs who present them with

the opportunity to work on an evaluation whose parameters are largely fixed by the partner’s

capacity or the size of the population it serves. Research designs are endogenous in the broad

sense that the social planner’s choice of a hypothesis testing protocol determines which designs

are implemented and published.

The researcher reports results in the form of a vector of discoveries or recommendations

r(X ;J) = (r1(X ;J), . . . ,rJ(X ;J))> , (4.1)

where r j : X 7→ {0,1} and r j(X ;J) = 1 if and only if treatment j is recommended. We will refer

to r as recommendation function or hypothesis testing protocol. In Equation (4.1) we assume

that researchers report all the J tests that they conduct, abstracting from p-hacking and selective

reporting.9 This captures settings with pre-analysis plans, which are becoming more common in

experimental research in economics (see, e.g., Miguel, 2021, Figure 2).

9To accommodate p-hacking and selective reporting, one could model researcher behavior as, for example, in
McCloskey and Michaillat (2020). They propose critical values for single hypothesis tests that control size when
researchers conduct studies until they find significant results or research becomes too costly.
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The social planner chooses the types of statistical test(s) that the researcher may employ

by selecting r ∈ R, where R is a pre-specified and exogenous class of functions. Unless

otherwise specified, we do not impose any restrictions on R other than pointwise measurability.

Our focus will be on studying how optimal recommendation function(s) vary as a function of

variation in the number J of treatments being tested.

Welfare depends on the researcher’s recommendations. Specifically, we assume that the

recommended (combination) of treatments is implemented in a target population by a policy-

maker who is otherwise a passive player.10 We assume that the target population is independent

of the experimental sample but subject to the same data-generating process.11 The policy-maker

implements the researcher’s recommendations irrespective of whether the paper gets published;

we think of this as capturing the idea that the paper will eventually be published somewhere, and

that policy-makers do not discriminate between papers based on the academic prestige of the

outlet. If, on the other hand, the researcher does not experiment, the status quo is implemented.

To help simplify our specification of welfare, we introduce the selector function δ that

indicates which of the 2J−1 possible combinations of treatments is recommended,

δ (r(X ;J)) ∈ {0,1}2J−1, where
2J−1∑
k=1

δk(r(X ;J)) ∈ {0,1}. (4.2)

If no treatment is implemented (i.e.
∑

k δk(r(X ;J)) = 0) then the status quo is maintained. For

k = 1, . . . ,2J−1, let uk(θ) denote the social welfare generated by the combination of treatments

δk(r(X ;J))). We write the welfare effect of implementing the treatments recommended by the

researcher concisely as u(θ)>δ (r(X ;J))), where u(θ) =
(
u1(θ), . . . ,u2J−1(θ)

)>.

To derive our main results, we assume that welfare is additive.

Assumption 4.2.1 (Additive welfare). Suppose that, for k = 1, . . . ,J, uk(θ) = θk, and uJ+1(θ) =

10To simplify notation we assume that the recommendation is always implemented, but our framework directly
extends if (more realistically) the recommendation increases the probability of implementation.

11These are standard assumptions (e.g., Manski, 2004; Kitagawa and Tetenov, 2018; Athey and Wager, 2021).

116



θ1 +θ2, uJ+2(θ) = θ1 +θ3, . . . , u2J−1(θ) =
∑J

j=1 θ j.12

Under Assumption 4.2.1, the welfare gains from implementing a combination of treat-

ments is equal the sum of the welfare gains from implementing them individually. This is the

case, for example, when the treatments are very different so that interaction effects are unlikely,

or when each treatment corresponds to treating a different sub-population and there are no

cross-group spillovers. In Section 4.2.6 and Appendix D.1.3, we extend our analysis to general

welfare functions that allow for interaction effects.

We will often return to the following running example (or variants of it) in which the

researcher studies J = 2 treatments using a linear regression model.

Example 4.2.1 (Running example). Consider the problem of studying the effect of J = 2 non-

exclusive experimental treatments D1 and D2 on an outcome of interest Y based on a sample

with N observations. Suppose that

Yi = θ1Di,1 +θ2Di,2 + εi, i = 1, . . . ,N, εi
iid∼N (0,σ2), (4.3)

where σ2 is known.13 For simplicity, the baseline average outcome is normalized to zero, and θ1

and θ2 are the average treatment effects of D1 and D2 net of the costs of implementation. Under

these assumptions, θ̂ ∼N (θ ,Σ), where θ̂ =
(
θ̂1, θ̂2

)>
is the OLS estimator of θ = (θ1,θ2)

>,

and the covariance matrix Σ is known. This fits into our framework by setting X = θ̂ in which

case Fθ is the CDF of a N (θ ,Σ) distribution. Note that Fθ depends on the sample sizes in the

experimental design, which we treat as exogenous.

The recommendation r(X ;2) can take four values: r(X ;2) = (0,0) (recommend base-

line), r(X ;2) = (1,0) (recommend D1), r(X ;2) = (0,1) (recommend D2), and r(X ;2) = (1,1)

(recommend D1 and D2). The selector δ is defined as δ ((0,0)) = (0,0,0), δ ((1,0)) = (1,0,0),
12Absent additional restrictions, assuming that the welfare effect of only implementing treatment j is θ j is without

loss of generality since we can always redefine the parameter of interest such that this assumption holds.
13This model is similar to the one studied in Section 5.5 of Elliott et al. (2015). The exact normality assumption

is imposed for simplicity. Similar results follow from standard asymptotic approximations provided that N is large
enough.
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δ ((0,1)) = (0,1,0), and δ ((1,1)) = (0,0,1). A typical choice of the recommendation function

(which will be shown to be optimal under some conditions) is

r(X ;2) =

(
1

{
θ̂1√
Σ1,1
≥ t

}
,1

{
θ̂2√
Σ2,2
≥ t

})>
, (4.4)

where the threshold t is chosen (optimally) by the social planner. That is, the recommendations

are based on standard (one-sided) t-tests.

We introduce two asymmetries in our model that are essential for justifying hypothesis

testing, i.e., a protocol r that imposes a size control criterion. First, following Tetenov (2016)

and Di Tillio et al. (2017), we impose asymmetry in the incentives. While the social planner

maximizes welfare, the researcher’s utility does not depend on welfare but instead depends on the

expected publication prospects of a research project. If instead the incentives of the researcher

and the social planner were aligned then hypothesis testing of any kind would be unnecessary.14

The key assumption is that some (not necessarily all) researchers have missaligned preferences;

we show in Appendix D.2.8 that all our results go through unchanged if some do not. Second,

we assume that there is asymmetric information: the parameter θ is known to the researcher but

unknown to the social planner, who chooses professional norms and commits to them ex ante. In

Appendix D.1.1, we show that our main results continue to hold under imperfect information

when the researcher has a prior about the parameter θ .

The (expected) researcher’s utility of conducting the experiment depends on the costs

of doing so and on the probability that this results in a publication, which in turn is a function

of the number of the discoveries. We assume that the publication probability is exogenous. In

doing so are abstracting from several features that would be important for a positive description

of the academic publication process, including editor and referee behavior and incentives. The

14Namely, the optimal planner strategy would be not to impose any restriction on r. In this case the researcher
would always report as true discoveries the ones corresponding to positive parameter’s values.
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researcher experiments if the expected utility, βr(θ), is positive, where

βr(θ) =

∫
ρ

 J∑
j=1

r j(x;J)

dFθ (x)−C(J). (4.5)

Here ρ : R+ 7→R+ is an exogenous and weakly increasing function, which captures the idea that

the publication prospects of a paper depend on its expected influence on policy. This assumption

is consistent with the notion that referees and researchers more generally treat rejections of the

null as mattering.15 That said, our framework can readily accommodate settings where the status

quo view is that a policy is effective, and it is desirable to motivate researchers to find and report

“null results” (i.e., evidence that it is not). We can capture such cases by flipping the interpretation

of the treatment to be “no policy” instead of “the policy” and interpreting the treatment effect as

being net of the cost of implementing the policy.

We first assume that βr(θ) is linear in the number of discoveries (ρ(x) = x), and then

examine a threshold-crossing publication rule (ρ(x) = γ ·1{x≥ κ}) in Section 4.2.6.

Assumption 4.2.2 (Linear publication rule). The researcher’s utility conditional on experiment-

ing is, up-to-rescaling by J,

βr(θ) =

∫ J∑
j=1

r j(x;J)dFθ (x)−C(J), C(J)≤ J. (4.6)

In Assumption 4.2.2, we interpret
∫ ∑J

j=1 r j(x;J)dFθ (x) as the publication probability,

multiplied by a factor J. Thus, this assumption describes a setting where the publication

probability is linear in the number of discoveries. The condition that C(J) ≤ J implies that

there is at least one case (when all discoveries are reported with probability one) under which

it is profitable for the researcher to experiment. Without such an upper bound, the researcher

would never experiment. Assumption 4.2.2 allows the publication prospects to depend on factors

15For example, Andrews and Kasy (2019) estimate that rejections at the 5% level increase the chances of
publication by over 30%.
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beyond the number of discoveries, such as novelty, quality, and unobserved journal preferences,

as long as these factors are independent of X .16

The following tie-breaking assumption simplifies our analysis by avoiding multiple

equilibria.17

Assumption 4.2.3 (Tie-breaking rule). Whenever the researcher is indifferent between experi-

menting or not, she makes the choice that yields the highest social welfare.

The social planner commits to a hypothesis testing protocol r, taking into account the

best response of the researcher. Welfare depends on the protocol r and the parameter θ :

vr(θ) =



∫
u(θ)>δ (r(x;J))dFθ (x) if βr(θ)> 0,

max
{∫

u(θ)>δ (r(x;J))dFθ (x),0
}

if βr(θ) = 0,

0 if βr(θ)< 0.

(4.7)

The second case (βr(θ) = 0) follows from Assumption 4.2.3.

Note that the structure of the model we study naturally justifies one-sided hypothesis

testing, as researchers test whether or not a proposed treatment improves upon the status quo.

In Appendix D.2.1 we outline ways to change the structure of the model in order to justify

two-sided hypothesis testing.

We now study the optimal choice of hypothesis testing protocols. We first review the

single hypothesis case (J = 1) previously analyzed by Tetenov (2016) and then consider the case

with multiple hypotheses.

Review with a Single Hypothesis

Tetenov (2016) considers a game between an informed agent and a regulator, which

is relevant, for instance, in the context of drug approvals. We explain his results using the
16This aspect of Assumption 4.2.2 is similar to the stylized model of the publication process with a single

hypothesis in Brodeur et al. (2016).
17A similar assumption is imposed in Kamenica and Gentzkow (2011).
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terminology of our framework. Without loss of generality, suppose that u(θ) ∈ [−1,1]. Define

the null space of parameter values as the set of parameters such that implementing the (single)

treatment being studied would reduce welfare, Θ0 := {θ : u(θ)< 0}. Similarly, define the

alternative space of parameter values as the set of parameters such that the treatment increases

welfare Θ1 := {θ : u(θ)≥ 0} . Social welfare is vr(θ) = u(θ) if
∫

r(x)dFθ (x) ≥C, where we

write r(x) := r(x;1) and C := C(1) for simplicity, and zero otherwise. That is, welfare is

non-zero if the expected utility from experimenting,
∫

r(x)dFθ (x), is larger than the cost of

experimentation.

To justify single hypothesis testing, Tetenov (2016) focuses on maximin optimal recom-

mendation functions, i.e., recommendation functions that maximize worst-case welfare,

r∗ ∈ argmax
r∈R

min
θ∈Θ

vr(θ).

The focus on maximin recommendation functions is important for justifying standard hypothesis

testing. Intuitively, the worst-case nature of the maximin criterion induces the social planner to

treat size control and power asymmetrically. Standard hypothesis testing will not generally be

optimal under alternative optimality criteria.

Proposition 1 in Tetenov (2016) demonstrates that a recommendation function is maximin

optimal if and only if ∫
r∗(x)dFθ (x)≤C for all θ ∈Θ0. (4.8)

This result shows that maximin optimal recommendation functions are such that the researcher

does not find it worthwhile experimenting whenever the treatment is welfare-reducing (θ ∈Θ0).

For this to hold, the probability of publication in this state (given by the left-hand side of (4.8))

must be sufficiently low. The model thus rationalizes error control, i.e. control of the probability

of falsely rejecting the null that the status quo of no treatment is best.

To select among the many alternative maximin recommendation functions, Tetenov
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(2016) provides admissibility results under an additional monotone likelihood ratio property. He

shows that admissible recommendation functions satisfy the following condition

∫
r∗(x)dF0(x) =C, (4.9)

with the recommendation function taking the form of a threshold crossing protocols, r(X) =

1{X ≥ t∗}. This result provides a formal justification for standard (one-sided) tests with conven-

tional critical values.

Maximin Protocols and Size Control

In this section, we discuss the problem in the general case with J > 1 treatments. We

have seen in Section 4.2.2 that the social planner maximizing worst-case welfare is important for

justifying single-hypothesis testing. Since analyzing multiple testing requires a framework for

justifying hypothesis testing in the first place, we will focus on maximin optimal recommendation

functions; that is, recommendation functions that maximize worst-case welfare18,

r∗ ∈ argmax
r∈R

min
θ∈Θ

vr(θ).

We denote the set of maximin recommendation functions by M .

Define the null space, the set of parameters such that welfare is weakly negative regardless

of the choice of r, as follows.

Definition 4.2.1 (Null space). The null space is Θ0 :=
{

θ : u j(θ)< 0 for all j
}
.

The following proposition provides a characterization of maximin hypothesis testing

protocols r∗, generalizing Proposition 1 in Tetenov (2016) to the case of J > 1 hypotheses. It

18Maximin hypothesis testing protocols are attractive in settings where there are concerns about researchers
experimenting with treatments that may hurt (groups of) individuals. To this end, we will show below that maximin
protocols discourage experimentation when treatments have negative welfare impacts. Moreover, focusing on
maximin rules allows us to obtain concrete recommendations that do not depend on the planner’s prior about θ ,
which would be difficult to conceptualize in practice.
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shows that our definition of the null space is directly connected to maximin optimality.

Proposition 4.2.1 (Maximin protocols). Let Assumption 4.2.3 hold and suppose that Θ0 6= /0. A

recommendation function r∗ is maximin-optimal, i.e.,

r∗ ∈ argmax
r∈R

min
θ∈Θ

vr(θ), (4.10)

if and only if

βr∗(θ)≤ 0 ∀θ ∈Θ0 and vr∗(θ̃)≥ 0 ∀θ̃ ∈Θ\Θ0. (4.11)

Proof. See Appendix D.3.2.

Proposition 4.2.1 shows that maximin optimality is equivalent to two conditions. First, as

in the case with J = 1 hypotheses, maximin recommendation functions depend on the researcher’s

utility βr(θ), and deter experimentation over Θ0, where all treatments reduce welfare. Second,

the welfare for θ ∈ Θ\Θ0 must be non-negative. This second condition requires that if some

treatments reduce the welfare, there must be other treatments that compensate them. The

first condition captures a notion of size control. We show below that the second condition is

non-binding for one-sided t-tests in the leading case where X is normally distributed. Note

that Proposition 4.2.1 applies very generally, without relying on any particular functional form

assumption on the researcher’s utility.

We illustrate the definition of the null space and the characterization of maximin protocols

in our running example.

Example 4.2.2 (Running example continued). In our running example, the null space is Θ0 =

{θ ∈Θ : θ1 < 0 and θ2 < 0} . Figure 4.2 provides a graphical illustration. By Proposition 4.2.1,

a recommendation function r∗ = (r∗1,r
∗
2)
> is maximin only if (but not necessarily if)

P(r∗1(X ;2) = 1|θ1,θ2)+P(r∗2(X ;2) = 1|θ1,θ2)≤C(2), θ1 < 0,θ2 < 0. (4.12)
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Θ0

θ1

θ2

Θ1

Figure 4.2. Graphical illustration with two hypotheses. Illustration of the null space Θ0 =
{θ ∈Θ : θ1 < 0 and θ2 < 0} and the alternative space Θ1 = {θ ∈Θ : θ1 ≥ 0 and θ2 ≥ 0}. See
Remark 14 for a discussion of the two orthants where the coefficients have different signs.

Equation (4.12) shows that maxmin recommendation functions impose restrictions on size

control (i.e., the probability of reporting a false discovery).

Remark 14 (Null space). The definition of the null space Θ0 corresponds to the global null

hypothesis in the literature. It is a subset of the strong null space Θ̃0 = {θ : θ j < 0 for some j}.

We note that Θ̃0 plays an important role in the second condition of Proposition 4.2.1 (vr(θ̃)≥

0 ∀θ̃ ∈Θ\Θ0). Since vr(θ̃)≥ 0 for all θ̃ ∈ {θ : θ j ≥ 0 for all j} by definition, this condition is

equivalent to assuming that welfare is positive for θ̃ ∈ Θ̃0 \Θ0.

Admissibility and Power

The set of maximin recommendation functions contains infinitely many elements, some

of which may be very conservative. An example is the function that forces the researcher not

to report any discoveries (r j(X ;J) = 0 for all j). This motivates the use of additional criteria

for choosing among them. In other words, among recommendation functions that minimize the

social planner’s downside, how might she select those with large upside?

We proceed as follows. First, we show that no maximin recommendation function
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dominates all other recommendation functions when J > 1. This is in sharp contrast to the

single-hypothesis case in Section 4.2.2, where dominant recommendation functions exist in some

cases.19 Second, motivated by this result, we introduce a notion of local power and show that

locally most powerful recommendation functions are admissible. Finally, we provide explicit

characterizations of locally most powerful recommendation functions.

We start by defining a suitable notion of weak dominance.

Definition 4.2.2 (Weak dominance20). The recommendation function r weakly dominates r′ if

vr(θ) ≥ vr′(θ) for all θ ∈ Θ. A dominant recommendation function r over a set R̃ ⊆R is a

recommendation function that weakly dominates all other recommendation functions r′ ∈ R̃.

Recall that maximin recommendation functions discourage experimentation, leading to

zero welfare for θ ∈Θ0. Therefore, dominance among such rules is determined by their relative

performance in Θ\Θ0 and, thus, captures a notion of power in our setting.

To derive the remainder of our results, we focus on the leading case where X is normally

distributed.

Assumption 4.2.4 (Normality). The statistic X is normally distributed, X ∼N (θ ,Σ), where Σ

is positive definite.

The following proposition shows that there exist data-generating processes such that no

maximin recommendation function weakly dominates all other recommendation functions. This

result holds in particular when X is normally distributed.

Proposition 4.2.2 (No recommendation function dominates the others). Let J > 1. Let Assump-

tions 4.2.1, 4.2.2, and 4.2.3 hold. Then there exists a parameter space Θ ⊆ [−1,1]J and a

distribution {Fθ ,θ ∈Θ} such that no maximin recommendation function r (weakly) dominates

19For example, under normality a uniformly most powerful test exist by classical results when interpreting power
in terms of welfare effects (e.g., Van der Vaart, 2000, Chapter 15).

20This definition is expressed in terms of weak inequality in order to accommodate sets of different functions r
having the same probabilities of discoveries.
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all other maximin recommendation functions r′ ∈M for any cost 0 <C(J)< J. Moreover, there

exists such a distribution Fθ that satisfies Assumption 4.2.4.

Proof. The proof of Proposition 4.2.2 is based on the following observation. For any maximin

recommendation function we can find a θ with one (or more) positive component such that

the recommendation function is dominated by another function with the property that the

positive component has the largest probability of discovery, and the remaining entries have

zero probability of discovery. The assumption that θ j ∈ [−1,1] is not restrictive, and the result

continues to hold when θ j ∈ [−M,M] for a finite constant M > 0. See Appendix D.3.2 for

details.21

In the terminology of classical hypothesis testing, Proposition 4.2.2 states that there are

settings in which no uniformly most powerful test exists (where in our setting power is measured

in terms of implied welfare). It implies that we cannot find recommendation functions that are

dominant for all alternatives.

Motivated by this result, we focus instead on ranking maximin recommendation functions

within a particular set of local (to the null space Θ0) alternatives.

Definition 4.2.3 (ε-alternatives). For ε > 0, define the local alternative space as

Θ1(ε) :=
{

θ : u j(θ)≥ ε for some j,u j(θ)≥ 0 for all j
}
.

The set of ε-alternatives Θ1(ε) is the set of parameters for which, for some policy

decision, welfare is strictly positive by at least ε . Note that Θ1(ε)∩Θ0 = /0 for all ε ≥ 0.

Based on Definition 4.2.3, we introduce the following notion of local power.

21Proposition 4.2.2 assumes that C(J) < J. If C(J) = J the researcher will always be indifferent between
experimenting or not, and we can assign probability one to each discovery without violating the constraint.
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Definition 4.2.4 (Locally more powerful). A recommendation function r is locally more powerful

(or ε-more powerful) than r′ if22

lim inf
ε↓0

{
1
ε

inf
θ∈Θ1(ε)

vr(θ)−
1
ε

inf
θ ′∈Θ1(ε)

vr′(θ
′)

}
≥ 0. (4.13)

Definition 4.2.4 introduces a partial ordering of recommendation functions based on their

worst-case performance under ε-alternatives. It considers parameter values in an alternative

space that contains the origin as ε → 0. The difference of the utilities is rescaled by the location

parameter ε to avoid trivial solutions.23

We say that a maximin recommendation function r is locally most powerful (or ε -most

powerful) if it is (weakly) locally more powerful than any other maximin recommendation

function r′. The following proposition confirms that any maximin and locally most powerful

recommendation function is also admissible (i.e., not strictly dominated by any other recom-

mendation function). Denote by E the set of protocols that are locally most powerful and

maximin.

Proposition 4.2.3 (Admissibility). Suppose that [−1,1] ∈ {u j(θ) : θ ∈Θ} for all j. Then any

maximin and locally most powerful recommendation function r is admissible with respect to any

r′ 6∈ E .

Proof. See Appendix D.3.2.

The notion of admissibility in Proposition 4.2.3 treats as inadmissible any recommenda-

tion function that is dominated by another recommendation function, including recommendation

functions that are not maximin. However, note that by Proposition 4.10 maximin recommendation

22In Appendix D.3.2, we show that the expression below is uniformly bounded for all (r,r′).
23Rescaling by the location parameter is common in local asymptotic analyses and is standard practice when

making optimality statements (e.g., Athey and Wager, 2021).
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functions cannot be dominated over Θ0 by recommendation functions that are not maximin.24

Proposition 4.2.3 motivates our focus on maximin and locally most powerful recommendation

functions in the following sections.

In Appendix D.2.3, we discuss two alternative notions of power: (i) a version of local

power where we let all parameters be small and positive and (ii) a criterion inspired by the

literature on weighted average power (WAP). We show that both of these arguably natural

alternatives are not very useful in our context.

Remark 15 (Trivial maximin decision rules are not admissible). Maximin recommendation

functions that are not locally most powerful are not guaranteed to be admissible. For example,

the recommendation function r(X ;J) = (0, . . . ,0)> is maximin but not admissible if a non-trivial

maximin recommendation function exists (see, for example, Proposition 4.2.5).

Most Powerful Maximin Protocols

This section provides explicit characterizations and examples of locally most powerful

and maximin recommendation functions with an additive welfare (Assumption 4.2.1) and a

linear publication rule (Assumption 4.2.2). In Section 4.2.6 we discuss extensions to alternative

publication rules and general welfare functions.

The following lemma provides a characterization of the locally most powerful recom-

mendation functions.

Lemma 4.2.4 (Separate size control is locally most powerful). Let J > 1. Let Assumptions 4.2.1,

4.2.2, 4.2.3, and 4.2.4 hold, and let Θ = [−1,1]J . Then r∗ ∈R is maximin optimal and locally

most powerful if and only if r∗ satisfies Equation (4.11) and

P(r∗j (X ;J) = 1|θ = 0) =
C(J)

J
∀ j ∈ {1, . . . ,J}, (4.14)

24Since E might contain multiple protocols for which (4.13) holds with weak inequality, admissibility is stated
with respect to those protocols that are not maximin and locally most powerful.

128



assuming that such r∗ exists.

Proof. See Appendix D.3.1. We note that the proof does not rely on normality of X (Assumption

4.2.4). We only require that X is continuously distributed with CDF Fθ , which admits a PDF

fθ (x) that is continuous in θ for all x ∈X .

Lemma 4.2.4 states that r∗ is locally most powerful if and only if the rejection probability

of each test at θ = 0 (i.e. the boundary of the null space) is equal to C(J)/J. Condition (4.14)

implies that the researcher is indifferent between experimenting and not experimenting and

requires that the tests are similar at the boundary of the null space.

Lemma 4.2.4 has three important implications. First, it shows that a recommendation

function is locally most powerful and maximin if and only if it imposes size control that

is separate. That is, given restrictions on the marginal probabilities of rejecting individual

hypotheses, no further restrictions are placed on the joint probabilities. Second, locally most

powerful maximin recommendation functions impose symmetry across the different hypotheses.

Symmetry is a desirable property absent additional restrictions on the relative importance of

the different hypotheses.25 Finally, Lemma 4.2.4 shows that whether and to what extent the

level of these separate tests should depend on the number of hypotheses being tested—in other

words, whether an adjustment for the presence of multiple hypothesis is required—depends on

the structure of the research production function C(J).

To illustrate the practical implications more concretely, it is useful to decompose (without

loss of generality) the total research costs C(J) into fixed and variable components c f and cv(J):

C(J) = c f + cv(J). (4.15)

Using this notation, the optimal level of size control in Lemma 4.2.4 is C(J)/J = (c f + cv(J))/J.

Consider first a case in which the research production function exhibits no economies

25Symmetry is a consequence of our construction of the local alternative space Θ1(ε). In Appendix D.2.3, we
consider an alternative definition of the local alternative space that does not imply symmetry.
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of scale with respect to the number of hypotheses being tested. Specifically, suppose there are

no fixed costs and that variable costs scale linearly in J, i.e. c f = 0 and cv(J) = αJ. Then r∗ is

locally most powerful if

P(r∗j (X ;J) = 1|θ = 0) = α ∀ j ∈ {1, . . . ,J}. (4.16)

In other words, standard inference without adjustment for MHT is optimal in this case. While it

is true that the researcher obtains a higher expected reward from taking on projects that test more

hypotheses, the appropriate correction for this is already “built in” to the costs of conducting

research, so that no further correction is required.

Now consider the case in which the research production function exhibits strong

economies of scale. Specifically, suppose there are only fixed costs and that the marginal cost

of testing an additional hypothesis is zero, i.e. cv(J) = 0 and c f = α . Then r∗ is locally most

powerful if

P(r∗j (X ;J) = 1|θ = 0) =
α

J
, ∀ j ∈ {1, . . . ,J}. (4.17)

In this case the optimal inferential procedure is to control average size, as for example via a

Bonferroni correction. This correction is necessary to appropriately align the incentives of the

researcher with those of the social planner, as without it she would have a disproportionate

incentive to conduct projects with a large number of hypotheses.

An important question is what types of recommendation functions r∗ are maximin

and locally most powerful. The next proposition shows that under normality the widely-used

threshold-crossing recommendation functions corresponding to standard one-sided tests are

maximin optimal and locally most powerful.

Proposition 4.2.5 (Optimality of separate t-tests). Assume that the conditions in Lemma 4.2.4
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hold and C(J)> 0. Then the recommendation function

r∗j (X ;J) = 1
{

X j/
√

Σ j, j ≥Φ
−1 (1−C(J)/J)

}
, ∀ j ∈ {1, . . . ,J}, (4.18)

is maximin optimal and locally most powerful.

Proof. See Appendix D.3.2.

Proposition 4.2.5 shows that standard one-sided t-tests with critical value

Φ−1 (1−C(J)/J) are optimal in our setting. The critical value depends on the number of

hypotheses J and the structure of the cost function C(J).

Remark 16 (Average size control is optimal). Lemma 4.2.4 shows that most powerful maximin

rules control average size,
∑J

j=1 P(r∗j (X ;J) = 1|θ = 0) = C(J). Many of the popular MHT

corrections reviewed in the introduction do not directly target average size control and, thus,

will generally not be optimal in our model. This explains why classical Bonferroni corrections

are optimal in our model when C(J) is constant, while common refinements of Bonferroni such

as Holm (1979)’s method are not. By construction, Bonferroni satisfies average size control,

whereas common refinements do not. The optimality of Bonferroni (and average size control) is

driven by our choice of the publication rule. Bonferroni corrections may not be optimal with

other publication rules. See Section 4.2.6 and Appendix D.1.3.

Additional Forms of Interactions Between Treatments

So far, we have analyzed settings where treatments interact only via the research cost

function. Here we briefly describe extensions to two settings with successively more scope

for interaction between hypotheses in each configuration. In the first we continue to assume

no economic interactions between interventions but allow for interactions in the publication

process through a threshold publication rule. In the second we allow for arbitrary economic

interactions between interventions—for example, complementary interventions—as well as a
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threshold publication rule. We summarize our results here and refer to Appendix D.1.3 for a

detailed discussion.

Linear Welfare and Threshold-Crossing Publication Rule

We introduce interactions in the publication rule by replacing the linear publication rule

in Assumption 4.2.2 with a threshold rule in which papers that find sufficiently many results can

be published:

βr(θ) = γ

∫
1


J∑

j=1

r j(x;J)≥ κ

dFθ (x)−C(J) (4.19)

Here the probability of publication is equal to γ if the number of discoveries exceeds κ , so

that the paper has “done enough” to be considered for publication, and zero otherwise. Under the

threshold-crossing publication rule (4.19), only papers with sufficient influence (i.e. more than κ

discoveries) are published—for example, because there are capacity constraints at journals. With

a threshold crossing publication rule the incremental value to the researcher of rejecting any given

hypothesis may depend on the number of other hypotheses also rejected. The threshold crossing

publication rule leads to more complicated optimal hypothesis testing protocols that depend

on the joint distribution of X . Therefore, we restrict attention to independent recommendation

functions for which r j(X ;J)⊥ r j′(X ;J) with j 6= j′.

For this class of recommendation functions, we show that one-sided t-tests, r∗j (X ;J) =

1
{

X/
√

Σ j, j ≥Φ−1(1− p∗)
}

, are still optimal when X ∼N (θ ,Σ), where p∗ depends on J,

C(J), and γ . When C(J)/γ = α , which is equivalent to assuming a constant publication probabil-

ity and constant costs in the number of discoveries, we can show that p∗ � 1/J as J→ ∞. Thus,

asymptotically, fixed-cost research production functions again rationalize Bonferroni corrections.

General Welfare and Threshold-Crossing Publication Rule

To introduce the possibility of economic interactions between the treatments being stud-

ied, in addition to interactions in the cost function C(J) and the publication rule, we assume

that uk(θ) = θk for k = 1, . . . ,2J − 1. Importantly, unlike Assumption 4.2.1, this allows for
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interactions in the welfare impact of multiple treatments. With J = 2, for example, comple-

mentarities can be modeled as u1(θ) = θ1, u2(θ) = θ2, and u3(θ) = θ3 = θ1 +θ2 +ζ for some

ζ > 0. As a result, we have X ∈X ⊆R2J−1 since we are interested in all possible combinations

of treatments.

To describe the theoretical results, let

δ̃ j(r(X ;J)) = δ j(r(X ;J))1


J∑

j=1

r j(X ;J)≥ κ

 (4.20)

indicate the policy decisions taken only in the case that the experiment results in a paper that is

publishable given the threshold publication rule.

We show that separate size control over each group of discoveries is locally most powerful,

P
(

δ̃ j(r∗(X ;J)) = 1|θ = 0
)
=

C(J)
γ|K |

∀ j ∈K , (4.21)

where K denotes the set of indexes k ∈ {1, . . . ,2J−1} that corresponds to groups of κ or more

hypotheses, and thus groups that are sufficient for publication. Equation (4.21) can be interpreted

as a Bonferroni correction at the level of groups of tests. Any MHT procedure that satisfies

Equation (4.21) controls the weak FWER at level C(J)/γ at θ = 0, namely

P
(

δ̃ j(r∗(X ;J)) = 1 for at least one j|θ = 0
)
=C(J)/γ.

In other words, Equation (4.21) rationalizes (weak) FWER control between groups of hypotheses

sufficient for publication. When a recommending a single treatment is sufficient for publication

(κ = 1) this implies control of the probability of a single false rejection, i.e. of the standard

notion of weak FWER control. More generally, however, FWER is applied not to each separate

discovery r j(X ;J) but instead to each group.

Finally, we provide an example of a maximin and locally most powerful recommendation
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function. Given the structure of the publication process, it suffices to focus only on groups of

treatments with more than κ elements. Formally, consider a vector X̃ ∈ R|K |, where X̃ is a

sub-vector of X ∈R2J−1, with each entry corresponding to a statistic X j, which itself corresponds

to a certain group of treatments with more than κ elements. Assume that X̃ ∼N (θ , I), then

δ̃ j(r(X ;J))= 1
{

X j > max j′ 6= j X̃ j′ and X j > t
}

1{ j ∈K } is maximin and locally most powerful

if t is chosen such that P
(

max j X̃ j > t|θ = 0
)
=C(J)/γ. The independence between the entries

of X̃ is important here; without it the existence of an optimal recommendation function is not

guaranteed. This example illustrates the complexity of optimal recommendation functions when

there are potential interactions between interventions.

Multiple Outcomes

In the framework above we interpret a hypothesis test as a recommendation about a policy

decision. Papers that examine multiple interventions or impacts within multiple sub-groups

could clearly inform multiple policy decisions—which of the interventions to implement, or

which of the sub-groups to treat. In some cases this gives rise as we have seen to a rationale for

MHT adjustments.

With multiple outcomes, there may not be such a one-to-one mapping between hypothesis

tests and policy decisions. This is because a paper that examines multiple outcomes may or may

not inform multiple policy decisions. For example, a paper that measures the impact of a single

reform on multiple measures of well-being might be used to guide the single decision whether or

not to scale up that reform. In this case our framework interprets the paper as making a single

recommendation. This raises the question whether that recommendation should be based on the

aggregated results of tests of the individual outcomes, potentially adjusted for multiplicity, or on

some other method of aggregating tests or outcomes.

An alternative interpretation of a paper that examines multiple outcomes is that it informs

multiple decisions because its audience includes multiple, heterogeneous policy-makers, some
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of whom care more about some outcomes than others. In this case we can interpret the paper as

making multiple recommendations, and examine whether applying MHT adjustments to those

recommendations is desirable.

Throughout this section we examine the case of a single treatment (T = 1) in order to

focus attention on issues that are specific to multiple outcomes; the results can be extended to

multiple treatments at the expense of additional notation.

Setup and Model

Consider an audience of J ≥ 1 different policy-makers. Each policy-maker decides

whether to implement a single treatment (T = 1) based on its effects on G different outcomes

Y = (Y1, . . . ,YG)
>. Since each policy-maker only makes one policy decision, we will use policy-

maker and policy decision interchangeably. Below we will distinguish between settings with

multiple policy-makers (J > 1) and a single policy-maker (J = 1).

The G≥ J outcomes are associated with statistics X =(X1, . . . ,XG)
>∼Fθ which measure

the effect of the treatment on those outcomes. For example, suppose that the researcher evaluates

the effect of a treatment D on G outcomes, Y1, . . . ,YG, using regression models Yi,g = θgDi + εi,g

for all g = 1, . . . ,G. In this case, θg is the treatment effect on the gth outcome, the vector of

statistics is X = θ̂ , where θ̂ = (θ̂1, . . . , θ̂G)
> is the OLS estimator of θ = (θ1, . . . ,θG)

>, and Fθ

is the CDF of a N (θ ,Σ) distribution.

We assume that policy-maker j’s welfare is a weighted average of the effects on the

different outcomes.

Assumption 4.3.1 (Policy-maker utility). Policy-maker j’s welfare is u j(θ) = θ>w∗j , for all

j ∈ {1, . . . ,J}, where
∑

g w∗g, j = 1. The weights {w∗j} are common knowledge.

In Assumption 4.3.1, we impose that the weights {w∗j} are common knowledge,26 but

also that they may vary across policy-makers. For example, the education ministry in one country

26In Appendix D.2.4 we consider the consequences of uncertainty about the policy-relevant weights and show
that—if the social planner applies worst-case logic as above—this leads to extremely conservative testing procedures.
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may be more concerned about literacy, while the education ministry in another is more concerned

about numeracy.

The researcher makes J recommendations, one for each policy-maker, such that the

recommendation function takes the following form

r(X ;G,J) = (r1(X ;G,J), . . . ,rJ(X ;G,J))> ∈ {0,1}J,

where r j(X ;G,J) is the recommendation to policy-maker j. Note that the hypothesis testing

protocol r may depend on both the number of outcomes G and the number of policy-makers J.

Note that this assumption (along with Assumption 4.3.1) may in some cases imply an additional

aggregation step, where researchers first aggregate X1, . . . ,XG into J indices and then perform

tests based on these indices. We discuss this in more detail in Section 4.3.4.

The structure of the researcher utility βr(θ) is the same as in Section 4.2:

βr(θ) =

∫
ρ

 J∑
j=1

r j(x;G,J)

dFθ (x)−C(G), (4.22)

where ρ :R+ 7→R+ is a weakly increasing function and C(G) denotes the cost of experimentation.

In Equation (4.22), the publication prospects depend on the number of policy recommendations,

J, whereas the costs of the experiments are determined by the number of outcomes, G. This

relaxes the assumption implicit in Equation (4.5) in Section 4.2 that these two quantities must be

equal. We will consider different possible functions ρ(·) below.

Each policy-maker j is a passive player who implements the policy recommended by the

researcher. Thus, policy-maker j’s utility conditional on experimentation is P(r j(X) = 1|θ)u j(θ).

The social planner is aware of the different policy-makers who may read and implement the

paper’s recommendations, but does not know for certain which will do so. He thus faces two

sources of uncertainty, with respect to both the welfare effects of the treatment and the audience
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for evidence on those effects.27

The social planner chooses a testing protocol to maximize worst-case welfare over both

θ and j (the identity of the implementing policy-maker). Therefore, welfare can be written in

compact form as

vr(θ) =


min j∈{1,...,J}P(r j(X ;G,J) = 1|θ)u j(θ) if βr(θ)> 0

max
{

min j∈{1,...,J}P(r j(X ;G,J) = 1|θ)u j(θ),0
}

if βr(θ) = 0

0 if βr(θ)< 0.

(4.23)

General Characterization of Maximin Protocols

Here we provide a characterization of maximin hypothesis testing protocols that is valid

irrespective of the number of outcomes, G, and the number of policy-makers, J.

We begin by characterizing the null space. The null space takes the following form:

Θ0 :=
{

θ : u j(θ)< 0, for some j ∈ {1, . . . ,J}
}

(4.24)

Intuitively, worst-case welfare is negative if any of the u j(θ) is negative. To make explicit the

connection to the null space with a single outcome in Section 4.2.2, note that

{
θ : u j(θ)< 0, for some j ∈ {1, . . . , j}

}
= ∪J

j=1
{

θ : u j(θ)< 0
}
, (4.25)

where each component in the right-hand side denotes the null space with a single outcome and a

single hypothesis. This shows that the null space with multiple outcomes can be very large when

there are many outcomes, which we will show leads to conservative testing protocols.

The following proposition provides a general characterization of maximin recommenda-

27An alternative interpretation is that every policy-maker decides to implement the treatment in independent
populations based on the recommendations in the paper. In this case, these formalisms represent a social planner
who desires non-harmful decisions in each population.
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tion functions.

Proposition 4.3.1 (Maximin optimality). Let Assumption 4.2.3 hold and suppose that Θ0 6= /0. A

recommendation function r∗ is maximin-optimal with multiple outcomes, i.e.,

r∗ ∈ argmax
r∈R

min
θ∈Θ

vr(θ)

if and only if

βr∗(θ)≤ 0 ∀θ ∈Θ0, (4.26)

where Θ0 is defined in Equation (4.24) and vr(θ) in Equation (4.23).

Proof. Note that result applies generally, and the proof does not rely on Assumptions 4.2.4 and

4.3.1. See Appendix D.3.2 for details.

It is interesting to compare the result in Proposition 4.3.1 to that with multiple treatments

in Proposition 4.2.1 because, in both settings, the researcher reports a vector of discoveries. The

key difference is that the null space with multiple outcomes, Θ0, contains not only parameter

values for which all components are negative but also those for which some components are

negative.28 As a result we will see that this setup rationalizes stricter notions of size control than

above, which can be conservative, as illustrated in Section 4.3.3.

Multiple Policy-Makers

Here we consider a setting with multiple policy-makers. Specifically, we assume that

there are as many policy makers as outcomes, J = G. To simplify the exposition, we will not

explicitly distinguish between G and J in this section and write J everywhere.

Proposition 4.3.1 can lead to conservative hypothesis testing protocols. To see why,

28Using standard hypothesis testing terminology, the null space corresponds to strong error control; see the
discussion in Remark 14 and Lehmann and Romano (2005b).
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consider a linear publication rule as in Assumption 4.2.2,

βr(θ) =

∫ J∑
j=1

r j(x;J)dFθ (x)−C(J), (4.27)

where r j(x;J) := r j(x;J,J) and C(J) = αJ for some α ∈ (0,1). Suppose that each policy-

maker cares about a different outcome, i.e., w∗j, j = 1 for j ∈ 1, . . . ,J and w∗j,k = 0 for k 6= j.

Proposition 4.3.1 implies that if we restrict the class of feasible recommendation functions to

the (common) threshold crossing protocols, power needs to be zero for the rule to be maximin-

optimal. Specifically, suppose that X ∼N (θ , I), where θ1, . . . ,θJ ∈ [−M,M], for some arbitrary

large M. Consider the following threshold crossing protocol

r(X ;J) = (1{X1 ≥ t} , . . . ,1{XJ ≥ t})> .

Then for a large enough M and α ≤ 1−1/J, the threshold crossing rule is maximin optimal only

in the trivial case where t→ ∞, which implies that the tests never reject and have zero power.29

(Finite) threshold crossing hypothesis testing protocols are not maximin optimal because

they fail to discourage experimentation when worst-case welfare is negative. For example,

suppose that the treatment has a large positive effect on all but the Jth outcome and a negative

effect on the Jth outcome. In this case, the worst-off policy-maker is policy-maker J who cares

only about the treatment effect on outcome J, which is negative. However, despite the worst-case

welfare being negative, the researcher has an incentive to experiment because she will reject

J−1 hypotheses with high probability.

This discussion suggests using “worst-case” protocols to ensure that the researcher

experiments only if all effects are positive. Indeed, when the threshold t is chosen such that

29To see this, take θ j→ ∞ for all j < J and θJ < 0. Then
∑J

j=1 P(r j(X ;J) = 1|θ j) = P(r j(X ;J) = 1|θJ)+ J−1
such that we need to impose that P(r j(X ;J) = 1|θJ)≤ αJ− J+1, where αJ− J+1≤ 0 for α ≤ 1−1/J.

139



P(X j ≥ t|θ j = 0) =C(J)/J for j = 1, . . . ,J, the following protocol is maximin optimal:30

r j(X ;J) = 1
{

min
j∈{1,...,J}

X j ≥ t
}
, ∀ j ∈ {1, . . . ,J} (4.28)

Due to the use of the minimum across all statistics and the choice of the threshold, the recom-

mendation function (4.28) can be very conservative when there are many outcomes.

An important aspect of Proposition 4.3.1 is that it allows us to directly map the features

of the publication process and researcher utility to different types of compound error rate control.

Consider next the case of a threshold crossing publication rule, where papers are published if

they “have done enough”, i.e., if they report more than κ discoveries,

βr(θ) = γ

∫
1


J∑

j=1

r j(x;J)≥ κ

dFθ (x)−C(J). (4.29)

Here the probability of publication is equal to γ if the number of discoveries exceeds κ . We

assume that γ ∈ (C(J),1) such that there is a least one case where experimentation is profitable;

otherwise the researcher would never experiment.

Proposition 4.3.1 implies that r∗ is maximin if and only if

P

 J∑
j=1

r j(X ;J)≥ κ|θ

= P(at least κ discoveries | θ)≤ C(G)

γ
∀θ ∈Θ0

This criterion is quite restrictive; it is stronger than and implies strong control of the κ-FWER at

level C(G)/γ . To illustrate, let κ = 1. Then we impose restrictions not only on the probability of

at least one false discovery, but also on the probability of any discovery (true or false), whenever

the treatment has a negative welfare effect on at least one outcome (i.e. θ ∈Θ0).

Finally, it is also possible to “invert” our research question and examine what researcher

30To see why this decision rule is maximin, note that
∑

j P(r j(X ;J) = 1|θ j) = J
∏J

j=1 P(X j ≥ t|θ j). For some
j′ ∈ {1, . . . ,J}, let θ j → ∞ for all j 6= j′, and θ j′ ≤ 0. It follows that the expression is bounded from above by
JP(X j′ ≥ t|θ j′ = 0) =C(J).
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incentives and features of the publication process rationalize other popular criteria such as control

of the FDR. Interestingly, it turns out that rationalizing FDR control in our model requires us to

assume that the researcher is malevolent. Suppose that, as above, w∗j, j = 1 for j ∈ 1, . . . ,J and

w∗j,k = 0 for k 6= j. If

βr(θ) =

∫  J∑
j=1

1
{

θ j < 0
}

r j(x;J)∑J
j=1 r j(x;J)

·1


J∑

j=1

r j(x;J)> 0


dFθ (x)−C(J), (4.30)

any decision rule that controls the FDR under the null hypothesis Θ0 at level C(J) is maximin

optimal. Equation (4.30) imposes that the researcher is malevolent in the sense that her utility

is increasing in the number of false discoveries. We interpret this result as suggesting that

FDR control does not arise as a natural solution in our frequentist maximin framework. As

we will discuss in Section 4.4, however, we see other cogent arguments for FDR control once

one is willing to move outside such frameworks and consider decision-making from a Bayesian

perspective.

Single Policy-Maker

In this section, we turn to the case of a single policy-maker (J = 1), indexed by j = 1.

In this case, there is only one policy decision to be made such that r1(X ;G) ∈ {0,1}, where

r1(X ;G) := r1(X ;G,1), and the researcher utility becomes

βr(θ) =

∫
r1(x;G)dFθ (x)−C(G).

Throughout this section, we will omit the policy-maker’s index j = 1 to simplify the notation.

An immediate implication of the general result in Proposition 4.3.1 is that, if X ∼

N (θ ,Σ), one-sided t-tests based on a weighted average of the outcome-specific statistics X>w
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are maximin optimal for any choice of weights w summing to one,

r(X ;G) = 1
{

X>w√
w>Σw

> Φ
−1(1−C(G))

}
. (4.31)

The choice of the optimal weights (i.e., the weights leading to the most powerful rec-

ommendation functions) depends on our interpretation of the outcomes Y , the corresponding

statistics X , and the parameter space Θ. We consider two alternative interpretations. In the first,

each entry of X measures impacts on distinct arguments in the policy-maker’s utility function.

For example, a study might report the effects of a single micro-credit intervention on livelihoods

and women’s empowerment, both of which matter independently to the policy-maker. Second,

we assume that each entry of X is a distinct measure of the same underlying welfare-relevant

outcome. This describes settings in which there are multiple ways of measuring the same con-

struct, as for example the dual income- and expenditure-based measures of the transfer multiplier

reported by Egger et al. (2020). It is also closely related to “latent variable” models in which

multiple outcomes are interpreted as proxies for some deeper, underlying construct of interest,

e.g. multiple measures of “health” in medical studies. See Appendix D.2.7.

We start by consider a setting where each entry of X measures impacts on economically

distinct outcomes. We make the following assumption.

Assumption 4.3.2 (Economically distinct outcomes). Θ = [−1,1]G

Assumption 4.3.2 encompasses two separate requirements. First, we normalize the

parameter space of θg to [−1,1].31 Second, we assume that there are no cross-parameter

restrictions, formalizing what we mean by “economically distinct” outcomes.

The next proposition shows that with economically distinct outcomes, one-sided t-tests

based on the welfare-optimal index X>w∗ are optimal.

31This normalization is not restrictive, and we could instead use any interval [−M,M] for 0 < M < ∞.
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Proposition 4.3.2. Let Assumptions 4.2.3, 4.3.1, and 4.3.2 hold. Suppose further that Assumption

4.2.4 holds with w∗>Σw∗ > 0. Then

r∗(X ;G) = 1
{

X>w∗√
w∗>Σw∗

> Φ
−1(1−C(G))

}
(4.32)

is r∗ is locally most powerful. Namely, for all r′ : X 7→ {0,1} that are maximin, i.e., r′ ∈M ,

lim
ε↓0

1
ε

[
inf

θ∈Θ̃(ε)
θ
>w∗P(r∗(X ;G) = 1|θ)− inf

θ∈Θ̃(ε)
θ
>w∗P(r′(X ;G) = 1|θ)

]
≥ 0 (4.33)

where Θ̃(ε) =
{

θ ∈Θ : θ>w∗ = ε
}

.

Proof. See Appendix D.3.2.

The intuition for the optimality result in Proposition 4.3.2 is that choosing X>w∗ as the

test statistic is optimal because it guarantees that

P
(

r∗(X ;G) = 1|θ>w∗1 = 0
)
=C(G),

so that the test is similar at the boundary of the null space.

Unlike with multiple treatments in Section 4.2, the optimal critical value of the one-

sided t-test (4.32), Φ−1(1−C(G)), is decreasing in G whenever C(G) is increasing in G. This

is because the researcher only tests one hypothesis such that she has no incentives to collect

additional outcomes. Thus, if the social planner wants to incentivise the researcher to conduct

experiments with many outcomes, she needs to lower the critical value to encourage them to do

so.

The essence of Proposition 4.3.2 is that if a weighted average of the underlying parameters

is what determines the welfare consequences of implementing the policy, then an analogous

weighted average of the individual statistics is the appropriate test statistic. One important

practical implication is that it is important to the publication process for the researcher to elicit
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the optimal weights so that her paper can report a test of the appropriate index.

Conducting separate hypothesis tests on the outcomes individually (whether with or

without MHT adjustment) is not optimal when there is a single policy-maker; this would discard

valuable information about the relative magnitudes of the effects. See Appendix D.2.5 for a

formal discussion and a simple example. We emphasize that this implication of model is fairly

different from empirical practice, where researchers typically first run separate tests and then

discuss significant effects. By contrast, our model suggests that aggregating information before

testing is optimal from a welfare perspective.

Now consider the case in which each element of X is a distinct measure of a common

underlying parameter. We make the following assumption.

Assumption 4.3.3 (Multiple measurements). Θ = {θ1 = θ2 = · · ·= θG, θ1 ∈ [−1,1]}

Under Assumption 4.3.3, welfare conditional on the researcher recommending imple-

mentation of the treatment is u(θ) = θ>w∗ = θ1 and the null space is

Θ0 =
{

θ1 : θ1 < 0
}
.

Since welfare and the null space are invariant to the choice of the weights when all components of

θ are equal, it is optimal to aggregate X1, . . . ,XG into a single statistic with variance-minimizing

weights. This is in the spirit of disjunction testing (e.g., Rubin, 2021). The next proposition

provides the formal result.

Proposition 4.3.3. Let Assumptions 4.2.3, 4.2.4, 4.3.1, and 4.3.3 hold. Then

r∗(X ;G) = 1
{

ws>X√
ws>Σws

> Φ
−1(1−C(G))

}
,

where ws minimizes w>Σw subject to
∑

g wg = 1, is locally most powerful. That is

lim
ε↓0

P(r∗(X ;G) = 1|θ = ε)− lim
ε↓0

P(r′(X ;G) = 1|θ = ε)≥ 0
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for all r′ : X 7→ {0,1} that are maximin, i.e., r′ ∈M .

Proof. See Appendix D.3.2.

Proposition 4.3.3 implies that the most powerful threshold crossing rule r∗ chooses the

weights ws to minimize w>Σw, under the constraint that such weights sum to one. The above

rule coincides with classical notions of uniformly most powerful tests in the statistical literature

of single hypothesis testing (Van der Vaart, 2000; Wald, 1950).

Remark 17 (Aggregating statistics vs. aggregating outcomes). The above arguments show that

one-sided t-tests based on a weighted average of statistics X are optimal. In practice, researchers

often first aggregate the outcomes Y and then run tests based on the aggregate outcome (e.g.

Anderson, 2008). For linear estimators like OLS, these two approaches are equivalent; see

Appendix D.2.6 for a further discussion.

Discussion & Implications for Practice

In this section we discuss takeaways for practice that, in our view, one might reasonably

draw from our analysis. Careful judgment is of course needed to map the results into new

practices and norms, keeping in mind that professional norms should take into account many

considerations that are necessarily “outside” of our model. For example, it may be beneficial to

have consistent and coherent norms such that researchers know what to expect when they plan

studies, even if these norms do not respect every detail of the problem we have studied here.

We focus our discussion on broad and intuitive themes that seem likely to hold in a variety of

plausible models of the research publication process, rather than on the functional forms that

emerge as solutions to our specific model.

The first main idea we emphasize is that MHT adjustments are potentially appropriate

when experimental research can reasonably be expected to guide multiple, distinct policy

decisions. Studies that describe the effects of multiple interventions, or effects on multiple
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sub-populations, clearly fit this description.32 It is thus useful to distinguish these cases from the

multiple outcomes case.

Whether MHT adjustments are actually appropriate in these cases, however, still depends

on the costs of conducting research. This conclusion follows directly from the view of MHT

as a way of “getting incentives right” for researchers. If incentives matter, then it must be net

incentives, i.e. rewards net of costs, that determine behavior. And this means that the optimal

structure of rewards depends on the structure of costs. Specifically, our results suggest that it is

reasonable to request MHT adjustments (e.g. average size control, as via a Bonferroni correction)

when it seems clear that the costs of conducting the research were largely invariant to the number

of tests. If, however, costs scale with the number of hypotheses tested, then no correction at

all may be more appropriate. Intuitively, to the extent that the appropriate correction is already

“built in” to the costs of conducting research, no further correction is required.

In practice, the structure of the research cost function may often lie somewhere in-between

these two extremes. Testing an additional intervention usually increases the costs of running an

experiment, for example, but may well do so less than proportionately. Our framework would

then motivate forms of multiple testing correction that are weaker than Bonferroni adjustments.

There could even be dis-economies of scale in some research production processes, in which

case our framework yields the interesting implication that hypothesis testing procedures should

reward rather than penalize researchers for testing multiple hypotheses. Clearly, some actual

data on the costs of doing program evaluation research and the way these scale with the number

of interventions or sub-populations studied would be useful to sharpen guidance here.

In the case of multiple outcomes, the argument for MHT adjustment is not as clear. While

it is quite common to measure impacts on many outcomes, what matters for decision-making is

usually not whether we accept or reject hypotheses about these outcomes individually but rather

whether in aggregate the effects we see are “worth more” than the costs of the intervention. The

32Indeed, the multiple-intervention case—genetic association testing in particular—has often been cited as the
leading motivation for new MHT procedures proposed in the literature (see Dudoit et al., 2003; Efron, 2008a, for a
review).
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important task is therefore to conduct this aggregate assessment of worth.

The method of aggregation should reflect the meaning of the outcomes. If we interpret

them as different statistical measures of some common underlying economic concept, then the

right aggregation may be the one that is statistically most efficient. If we observe two distinct

tests of literacy, for example, we might aggregate them based on how informative they are

about actual reading and writing abilities, putting more weight on the more informative test

(as for example in Anderson, 2008). But if multiple outcomes capture concepts with distinct

economic value, then aggregation should instead reflect the relative economic value placed on

each outcome. If we observe tests of literacy and of numeracy, for example, we might aggregate

these using information about the relative market returns to each skill.

The clearest argument for introducing MHT adjustment in the case of multiple outcomes

rests on the idea that some papers address heterogeneous audiences who value different things

(e.g., Andrews and Shapiro, 2021). In this case our theory suggests that researchers could

proceed by constructing multiple indices, each reflecting the preferences of a different member

of this “policy audience,” and then apply MHT adjustments across tests of these indices. This

leads to very conservative procedures, however, and in practice seems an unreasonable burden

to place on researchers. A more realistic approach when feasible may be for researchers to ask

a policy-maker in their target audience to value outcomes, and report a test based on an index

constructed using those valuations.

This approach would not preclude learning by other audience members. Journals already

typically require the publication of enough data to replicate published results, which means that

anyone with enough technical knowledge could re-do the analysis using alternative weights that

reflect their own, distinct preferences. This process could be streamlined by publishing point

estimates and covariance matrices, which are often all that is needed for audience members to

draw their own conclusions (e.g. in the leading case of (asymptotically) normally distributed

estimators). For non-technical audiences the process could be made more accessible using

simple tools allowing them to “plug in” their own weights and obtain results customized to their

147



preferences. In this vision the publication process itself would become more interactive, enabling

a dynamic exchange between researchers and their audience(s).

We have analyzed MHT within the context of a single paper examining results from

a single experiment. In practice, however, researchers conduct many experiments and write

many papers. This raises the question of how the mapping from experiments to papers should

affect the use of MHT adjustments. The broad principle remains that MHT adjustments may

be appropriate in our framework when research costs do not scale in proportion to the number

of hypotheses being tested. For a single paper reporting results from multiple experiments, this

suggests that the results should be treated as independent for hypothesis testing if the costs of

conducting the underlying experiments do not interact. MHT adjustments might be appropriate,

however, if the costs are interdependent. For multiple papers reporting results from the same

experiment there will be cost complementarities if these exist in the underlying experiment, in

which case MHT adjustments across those papers would be appropriate.

Our focus here has been on experimental research. In part this is pragmatic, as this

is by far where MHT adjustments are most common in current practice.33 It also reflects the

fact, however, that in non-experimental studies it is not as clear how to require researchers to

pre-commit to the tests they will report. Observational work is often iterative in complex ways,

and issues such such as p-hacking may consequently loom larger than multiple testing. That said,

the central role of the research cost function is a point of commonality across these problems.34

Finally, we emphasize that these takeaways presume that we choose to continue operating

within a frequentist hypothesis-testing paradigm. There is of course a deeper question whether

to move away from this paradigm altogether. In connection with this issue, we close with a

remark on control of false discovery rates. While this approach does not emerge as a natural

solution within our framework, several papers have pointed out a cogent rationale: controlling

33In 2020, fewer than 5% of non-experimental empirical papers even mention multiple testing as an potential
issue.

34McCloskey and Michaillat (2020) show, for example, how research costs influence the appropriate critical
values for single hypothesis testing in a setting where researchers can decide how long to continue gathering data
before reporting results.
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the (positive) False Discovery Rate can be interpreted as rejecting hypotheses with a sufficiently

low Bayesian posterior probability (e.g., Storey, 2003; Gu and Koenker, 2020; Kline et al., 2021).

In fact one can show that this argument applies even in the case of a single hypothesis, as its

essence is simply that it makes sense to balance the costs of false positives and false negatives

rather than to prioritize size control regardless of the power cost. In this sense we view the

argument less as support for a particular solution to the MHT problem, and more as a reminder

of the value of Bayesian reasoning more broadly.

Chapter 4 was prepared for publication Viviano, Davide; Wüthrich Kaspar; Niehaus,

Paul. The Chapter is coauthored with Paul Niehaus and Kaspar Wüthrich. Davide Viviano is one

of the primary investigators.
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Appendix A

Appendix to Chapter 1

Main Extensions

Estimation with Global Interference

In this section, we relax the local dependency assumptions. The treatment affects each

unit in a cluster k through a global interference mechanism mediated by a random variable p(k)t .

For example, we can think of p(k)t as the average number of treated units in a cluster or the

adjusted price in a particular market or village due to the program. For simplicity, we consider

the case where X (k)
i = 1, i.e., the policy of interest is a global policy (e.g., the probability of

treatment). We discuss assumptions on the outcome model below.

Assumption A.1.1 (Global interference). Let treatments be assigned as in Definition 1.2.3 with

exogenous vector of parameters βk,1:t . Let

Y (k)
i,t = αt + τk +g

(
p(k)t ,βk,t

)
+ ε

(k)
i,t , Eβk,1:t

[
ε
(k)
i,t |p

(k)
t

]
= 0,

for some function g(·) unknown to the researcher, bounded and twice continuously differ-

entiable with bounded derivatives, and unobservable p(k)t . Assume in addition that ε
(k)
i,t ⊥

ε
(k)

j 6∈I (k)
i ,t
|βk,1:t , p(k)t for some set |I (k)

i |= O(γN).

Assumption A.1.1 states that the outcome within each cluster is a function of a common

factor, and treatment assignment rule βk,t plus unobservables centered around zero and locally

150



dependent. The factor p(k)t also depends on the treatment assignments of all individuals. This is

formalized below.

Assumption A.1.2 (Global interference component). Let treatments be assigned as in Definition

1.2.3. Assume that

p(k)t = q(βk,t)+op(ηn),

with q(β ) being unknown, bounded and twice continuously differentiable in β with uniformly

bounded derivatives.

Assumption A.1.2 states that the factor can be expressed as the sum of two components.

The first component q(·) depends on the policy parameter βk,t assigned at time t and on the

distribution of covariates of all units in a cluster.1 The second component is a stochastic

component that depends on the realized treatment effects. We illustrate an example below.

Example A.1.1 (Within cluster average). Suppose that

Y (k)
i,t = t(D̄(k)

t ,νi,t), ν
(k)
i,t ∼i.i.d. Pν , D(k)

i,t ∼i.i.d. Bern(β )

where t(·) is some arbitrary (smooth) function. Then p(k)t = D̄(k)
t i.e., individuals depend on the

average exposure in a cluster. We can write

Y (k)
i,t = t(p(k)t ,ν

(k)
i,t ) where p(k)t = β +(D̄(k)

t −β )︸ ︷︷ ︸
=Op(n−1/2)

,

which satisfies Assumption A.1.2 for ηn = n−1/3 or larger.

Example A.1.1 illustrates how we can accommodate a global interference mechanism

whenever individuals depend on statistics of treatment assignments, such as their average.

1Observe that we can equivalently relax Assumption A.1.2 and assume that q(β , ·) depends on the empirical
distribution of covariates and use basic concentration arguments (Wainwright, 2019) to show that asymptotically the
two definitions are equivalent.
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Example A.1.1 does not allow for local spillovers between units but only for global interference.2

We are interested in the marginal effects defined below.

Vg(β ) =
∂Wg(β )

∂β
, Wg(β ) = g(q(β ),β ).

Estimation of the marginal effect follows similarly to Equation (1.7). The following

theorem guarantees consistency.

Theorem A.1.1. Let Assumption A.1.1, A.1.2 hold with subgaussian ε
(k)
i,t , X = 1. Then for

V̂(k,k+1) estimated as in Algorithm 2, for k being odd holds:

∣∣∣V̂(k,k+1)−Vg(β )
∣∣∣= Op

(√
γN log(γN)

η2
n n

+ηn

)
+op(1).

The proof is in Appendix A.3.4. Theorem A.1.1 guarantees consistency of the estimated

gradient. The experiment can be conducted similarly to what discussed in Section 1.4 and

omitted for the sake of brevity.

Matching Clusters with Distributional Embeddings

In this section, we turn to the problem of matching clusters, allowing for covariates

having different distributions in different clusters. In particular, we assume that X (k)
i ∼i.i.d. F(k)

X .

The main distinction from previous sections is that F(k)
X is cluster-specific. The section works as

follows: first, we characterize the bias of the difference in means estimators; second, we propose

a matching algorithm that minimizes the worst-case bias.

We start from the simple setting with two clusters k,k′ only, and two periods t ∈ {0,1}.
2Assumption A.1.2 builds on the model of demand as a function of individual prices in Wager and Xu (2021).

The difference is that we do not rely on a specific modeling assumption of market interactions. Instead, we model
outcomes as functions of exposures in a certain cluster and exploit the two-cluster variation for consistent estimation,
as we discuss below.
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Treatments are assigned as follows

t = 0 : D(h)
i,0 ∼ π(X (h)

i ;β0), h ∈ {k,k′}

t = 1 : D(k)
i,1 ∼ π(X (k)

i ;β ), D(k′)
i,1 ∼ π(X (k′)

i ;β
′).

(A.1.1)

Namely, at time t = 0, treatments are assigned with a parameter β0. At time t = 1 treatments are

assigned with parameter β in cluster k and β ′ in cluster k′.

The estimand of interest is the difference in the average effects in cluster k, formally

ωk =

∫
y(x;β )dF(k)

X (x)−
∫

y(x;β
′)dF(k)

X (x).

We study the properties of the difference in differences estimator

ω̂k(k′) =
[
Ȳ (k)

1 − Ȳ (k′)
1

]
−
[
Ȳ (k)

0 − Ȳ (k′)
0

]
,

which defines a difference in differences between the two clusters over two consecutive periods.

Our focus is to control the bias of the estimator. This is defined in the following lemma.

Lemma A.1.2. Let Assumption 1.2.1, 1.2.2, and treatments assigned as in Equation (A.1.1).

Then

E[ω̂k(k′)]−ωk =

∫ (
y(x;β

′)− y(x;β0)
)

d
(

F(k)
X (x)−F(k′)

X (x)
)
.

Lemma A.1.2 shows that the bias depends on the difference between the expectations

averaged over two different distributions. Unfortunately, the bias is unknown since it depends on

the function y(·), which is not identifiable with finitely many clusters. We therefore bound the

worst-case error over a class of functions x 7→ [y(x;β ′)− y(x;β0)] ∈M , with M defined below.

The proof follows directly from Lemma 1.2.1 and rearrangement.

We start by defining M be a reproducing kernel Hilbert space (RKHS) equipped with a
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norm || · ||M .3 Without loss of generality, we study the worst-case functionals over the unit-ball.

Formally, we focus on bounding the worst-case error of the form4

sup
[y(·;β ′)−y(·;β0)]∈M :||y(·;β ′)−y(·;β0)||M≤1

∣∣∣ωk−E[ω̂k(k′)]
∣∣∣

= sup
f∈M :|| f ||M≤1

{∫
f (x)d(F(k)

X −F(k′)
X )

}
.

(A.1.2)

The right-hand side is know as the maximum mean discrepancy (MMD), a measure of

distances in RKHS (see Muandet et al., 2016, and references therein). It is known that the MMD

can be consistently estimated using kernels. In particular, given a particular choice of a kernel

k(·), which corresponds to a certain RKHS, we can estimate

M̂MD
2
(k,k′) =

1
n(n−1)

n∑
i=1

∑
j 6=i

h
(

X (k)
i ,X (k′)

i ,X (k)
j ,X (k′)

j

)
,

h(xi,yi,x j,y j) = k(xi,x j)+ k(yi,y j)− k(xi,y j)− k(x j,yi).

(A.1.3)

The estimator estimates the squared MMD. It only depends on the kernel function k(·) and hence

can be easily constructed in a finite sample without requiring an explicit characterization of

RKHS. Here, M̂MD
2
(k,k′)→p

∣∣∣∣∣∣µF(k)
X
−µ

F(k′)
X

∣∣∣∣∣∣2
M

(Sriperumbudur et al., 2012).

We now turn to the problem of matching clusters. We do so using the estimated MMD in

Equation (A.1.3). We first note that the estimator M̂MD
2
(k,k′) only depends on pre-treatment

variables, and hence can be computed before treatments are assigned. As a result, given cluster k,

we can match k with the k′ 6= k having the smallest estimated MMD. Formally, the following

matching algorithm is considered:

• construct

k′ ∈ argmin
k 6=k

M̂MD
2
(k,k′). (A.1.4)

3A RKHS is an Hilbert space of functions where all the evaluations functionals are bounded, namely, where for
each f ∈M , and x ∈X , f (x)≤C|| f ||M for a finite constant C. Intuitively, assuming that [y(·;β ′)−y(·;β0)] ∈M
imposes smoothness conditions on the average effect as a function of x.

4Here Equation (A.1.2) follows directly from Lemma A.1.2 and the fact that the integral is a scalar.
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based on the minimum estimated MMD in Equation (A.1.3).

• Randomize treatments as in Equation (A.1.1);

• Estimate ω̂k(k′).

When instead we want to match without replacement clusters, we can minimize some

aggregate measures of error (e.g., the sum of estimated MMD across clusters).

Policy Choice with Dynamic Treatments

This section studies an experimental design when carry-overs occur. For simplicity, we

omit covariates and assume that Xi = 1.

We start our discussion by introducing the dynamic model. For the sake of brevity, we

directly impose a high-level condition on the outcome model.

Assumption A.1.3 (Dynamic model). For treatments assigned with exogenous parameters

(βk,1, · · · ,βk,t) as in Definition 1.2.3, let the followig hold

Y (k)
i,t = Γ(βt ,βt−1)+ ε

(k)
i,t , Eβk,1:t

[
ε
(k)
i,t

]
= 0,

for some unknown Γ(·), ε
(k)
i,t .

The components βk,t ,βk,t−1 capture present and carry-over effects that result from indi-

vidual and neighbors’ treatments in the past two periods. Here, we allow for both panels and

repeated cross-sections. We study the problem of estimating a path of treatment probabilities

(0,β1, · · · ,βT ) from an experiment, where, in the first period, we assume for simplicity that none

of the individuals is treated. This path is then implemented on a new population without having

access to the outcomes of such a new population. We provide a simple example below.
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Example A.1.2. Suppose that

Y (k)
i,t = D(k)

i,t φ1 +

∑
j 6=i A(k)

i, j Di,t−1∑
j 6=i A(k)

i, j

φ2 +ν
(k)
i,t , D(k)

i,t ∼i.i.d. Bern(βt).

That is, individuals depend on their present treatment assignment and on the treatment assign-

ments of the neighbors in the previous period. Let νi,t be a zero-mean random variable. The

expression simplifies to

Y (k)
i,t = βtφ1 +βt−1φ2 + ε

(k)
i,t

where ε
(k)
i,t is zero mean, and depends on neighbors’ and individual assignments.

We now define the long-run welfare.

Definition A.1.1 (Long-run welfare). Given an horizon T ∗, define the long-run welfare as

follows:

W ({βs}T ∗
s=1) =

T ∗∑
t=1

qt
Γ(βt ,βt−1),

for a known discounting factor q < 1, where β0 = 0.

The long-run welfare deifines the cumulative (discounted) welfare obtained from a certain

sequence of decisions (β1,β2, · · ·).

Our goal is to maximize the long-run welfare. We parametrize future treatment probabili-

ties based on past treatment probabilities as follows

βt+1 = hθ (βt ,βt−1), θ ∈Θ.

The parametrization is imposed for computational convenience. For some arbitrary large T ∗, the
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objective function takes the following form

W̃ (θ) =
T ∗∑

t=1

qt
Γ

(
βt ,βt−1

)
,

βt = hθ (βt−1,βt−2) for all t ≥ 1, β0 = β−1 = 0.

(A.1.5)

Here W̃ (θ) denotes the long-run welfare indexed by a given policy’s parameter θ . The objective

function defines the discounted cumulative welfare induced by the policy hθ .

Definition A.1.2 (Non-stationary policy decisions). A non-stationary policy is defined as as a

map hθ : B×B,θ ∈Θ. Define the non-stationary estimand as follows:

hθ∗(·), θ
∗ ∈ argmax

θ∈Θ

W̃ (θ).

The algorithm estimates the function Γ(·) using a single wave experiment, i.e., we use a

single period of experimentation. We then use the estimated function Γ(·) and its gradient for

estimating the optimal policy.

The randomization and estimators are described in Algorithm A.5.2. We conduct the

randomization using two periods of experimentation only. We partition the space [0,1]2 into a

grid G of equally spaced components (β r
1 ,β

r
2) for each triad of clusters r. Within each triad, we

induce small deviations to the parameters β . For each triad r, the algorithm returns

Γ̃(β r
2 ,β

r
1), ĝ1(β

r
2 ,β

r
1), ĝ2(β

r
2 ,β

r
1)

where the latter two components are the estimated partial derivatives of Γ(·), and Γ̃(β r
2 ,β

r
1) is the

within cluster average. For each pair of parameters (β2,β1), we estimate Γ̂(β2,β1) as follows

Γ̂(β2,β1) = Γ̃(β r
2 ,β

r
1)+ ĝ2(β

r
2 ,β

r
1)(β2−β

r
2)+ ĝ1(β

r
2 ,β

g
1 )(β1−β

r
1),

where (β r
1 ,β

r
2) = arg min

(β̃1,β̃2)∈G

{
||β1− β̃1||2 + ||β2− β̃2||2

}
.

(A.1.6)
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The idea is as follows: we estimate Γ(β2,β1) at (β2,β1) using a a first-order Taylor approximation

around the closest pairs of parameters in the grid G . Given Γ̂, we estimate the welfare-maximizing

parameter5

θ̂ ∈ argmax
θ∈Θ

T ∗∑
t=1

qt
Γ̂(βt ,βt−1), βt = hθ (βt−1,βt−2) ∀t ≥ 1, β0 = β−1 = 0.

In the following theorem, we study the behavior of θ̂ , in terms of out-of-sample regret.

Theorem A.1.3 (Out-of-sample regret). Let Assumption A.1.3 hold. Let X = 1, and suppose

that Γ(β2,β1) is twice differentiable with bounded derivatives. Let treatments be assigned as in

Algorithm A.5.2. Suppose in addition that ε
(k)
i,t ⊥ ε

(k)

j 6∈I (k)
i

where |I (k)
i | ≤ γN , for some arbitrary

γN and ε
(k)
i,t is sub-gaussian. Let γN log(γN)/(η

2
n n) = o(1). Then

lim
n→∞

P
(

sup
θ∈Θ

W̃ (θ)−W (θ̂)≤ C̄
K

)
= 1

for a constant C̄ independent of K.

The proof is in Appendix A.3.4. To our knowledge, Algorithm A.5.2 is novel to the

literature on experimental design.6

Theorem A.1.3 shows that with probability converging to one as the size of each cluster

increases, the regret scales at a rate of 1/K. To gain further intuition on the derivation of the

5Here, θ̂ can be obtained using off-the-shelf algorithms. A simple example is running in-parallel multiple
gradient descent algorithms initialized over different starting points and choosing the one which leads to the largest
objective

∑T ∗
t=1 qt Γ̂(βt ,βt−1).

6We note that optimal dynamic treatments have been studied in the literature on bio-statistics, see, e.g., Laber
et al. (2014), while here we consider the different problems of the design of the experiment. Adusumilli et al. (2019)
discuss off-line policy estimation in the presence of dynamic budget constraints with i.i.d. observations. The authors
assume no carry-overs and do not discuss the problem of experimental design.
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theorem, observe that we can bound

sup
θ∈Θ

W̃ (θ)−W̃ (θ̂)≤ 2
∑

t

qt× sup
(β1,β2)∈[0,1]2

∣∣∣Γ̂(β2,β1)−Γ(β2,β1)
∣∣∣︸ ︷︷ ︸

(A)

.

To bound (A), observe first that each element in the grid G has a distance of order 1/
√

K since

the grid has two dimensions and K/3 components. As a result for any element (β2,β1), we can

write

Γ(β2,β1) =Γ(β r
2 ,β

r
1)︸ ︷︷ ︸

(B)

+
∂Γ(β r

2 ,β
r
1)

∂β r
1

(β1−β
r
1)+

∂Γ(β r
2 ,β

r
1)

∂β r
2

(β2−β
r
2)︸ ︷︷ ︸

(C)

+O
(
||β1−β

r
1 ||2 + ||β2−β

r
2 ||2
)

︸ ︷︷ ︸
(D)

where β r ∈ G is some value in the grid such that (D) is of order 1/K. We can then show that

(B)+(C)− Γ̂(β r
2 ,β

r
1) converges in probability to zero as n grows which is possible since we use

the estimated gradient to construct Γ̂. If instead we had not used information on the estimated

gradient, the rate would be dominated by (C) which is of order 1/
√

K.

However, we note that different from previous sections, the rate 1/K is specific to the

one-dimensional setting and carry-overs over two consecutive periods. In p dimensions, the rate

would be of order 1/K2/(p+1) due to the curse of dimensionality.

Welfare Maximization with a Non-Adaptive Experiment and Local
Perturbations

Next, we revisit the non-adaptive experiment in Section 1.3 and introduce estimators of

β ∗ without adaptivity. This sub-section serves two purposes. First, it sheds light on comparisons

of the adaptive procedure with grid-search-type methods, showing drawbacks of the grid-search

approach in terms of convergence of the regret. Second, it shows how, when an adaptive

procedure is not available, we can still use information from the marginal effect estimated as we
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propose in Algorithm 1 to improve rates of convergence in the number of clusters.

The algorithm that we propose is formally discussed in Algorithm A.5.3 in Appendix

A.5 and works as follows. First, we construct a fine grid G of the parameter space B (with p

dimensions), with equally spaced parameters under the l2-norm. Second, we pair clusters, and

we assign a different parameter β k for each pair (k,k+1) from the grid G . Third, in each pair, we

estimate the gradient V̂(k,k+1) ∈Rp, by perturbing, sequentially for T = p periods, one coordinate

at a time of the parameter β k.7 We estimate welfare using a first-order Taylor expansion

Ŵ (β ) = W̄ k∗(β )+V̂>(k∗(β ),k∗(β )+1)(β −β
k∗(β )), β̂

ow = argmax
β∈B

Ŵ (β ), (A.1.7)

where k∗(β ) = arg min
k∈{1,3,···},β k∈G

||β k−β ||2, W̄ k =
1
2

[ 1
T

T∑
t=1

Ȳ k
t − Ȳ k

0 +
1
T

T∑
t=1

Ȳ k+1
t − Ȳ k+1

0

]
.

Here, Ȳ k
t is the average outcome in cluster k at time t, and V̂(k∗,k∗+1) is estimated as in Equation

(A.5.3). Also, W̄ k denotes the average outcome, as we pool outcomes from two clusters in the

same pair (k,k+1). The estimator in Equation (A.1.7) uses a first-order Taylor expansion around

β , using information from the closest element β k.

We can now characterize guarantees of the estimator as n→ ∞, and K, p < ∞.

Theorem A.1.4. Suppose that ε
(k)
i,t is sub-gaussian. Let Assumptions 1.2.1, 1.2.2, 1.3.1 hold.

Let ηn = o(n−1/4). Let γN log(nγNK)/(η2
n n) = o(1). Consider β̂ ow as in Algorithm A.5.3, with

B ⊆ [0,1]p. Then for a constant C̄ < ∞ independent of (n,T,K),

lim
n→∞

P
(

W (β ∗)−W (β̂ ow)≤ C̄
K2/p

)
= 1.

The proof is in Appendix A.3.3. Theorem A.1.4 showcases two properties of the method.

First, for p = 1, the rate of convergence is of order 1/K2, which is possible because we also

estimate and leverage the gradient V̂ . Our insight here is to use local perturbations to recover

7Sequentiality here is for notational convenience only, and can be replaced by T = 1, but with 2p clusters
allocated to each coordinate.
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the gradient directly by choosing pairs of points on the grid that are close enough (but not too

close, which we control through the perturbation ηn) so that we can recover V̂ at a given point

consistently as n→ ∞, fixing K. We then augment the estimator of the welfare with V̂ , since,

otherwise, the rate would be slower in K.8 One drawback of a grid search approach is that, as

p > 1, the method suffers a curse of dimensionality and the rate in K decreases as p increases.

This is different from the adaptive procedure (e.g., Corollary 4), where the rate in K does not

depend on p. A second disadvantage of the grid search is that the method does not control the

in-sample regret, formalized below.

Proposition A.1.5 (Non-vanishing in-sample regret). There exists a strongly concave W (·), such

that, for p = 1, W (β ∗)− 1
K
∑K

k=1W (β k)≥ c, for a constant c > 0 independent of (n,K,T ).

Proposition A.1.5 shows that the grid search method performs poorly for the in-sample

regret, which is of interest when optimizing participants’ welfare (or costs of the experiment),

differently from the adaptive procedure in the main text. Similar reasoning can be used for

related procedures to the grid search approach.

Inference and Estimation with Observed Cluster Heterogeneity

In this subsection, we discuss an extension to allow for cluster heterogeneity. Consider

θk ∈Θ to denote the cluster’s type for cluster k, where Θ is a finite space (i.e., there are finitely

many cluster types). Let θk be observable by the researcher and be non-random (i.e., conditions

should be interpreted conditional on {θk}K
k=1). Consider the following assumptions.

Assumption A.1.4. Let the following holds:

(A) For each cluster k, let Assumption 1.2.1 holds, with FX ,FU |X replaced by FX(θk),FU |X(θk)

as a function of θk;

(B) Assumption 1.2.2 with r(·) which also depends on θk.
8By a second-order Taylor expansion, using information from the gradient guarantees that Ŵ (β ) converges to

W (β ) up-to a second-order term of order O(||β −β k||2), instead of a first-order term O(||β −β k||).
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Assumption A.1.4 allows for both the distribution of covariates and unobservables and

potential outcomes to also depend on the cluster’s type θk. We can now state the following

lemma.

Lemma A.1.6. Under Assumption A.1.4, under an assignment in Assumption 1.2.3 with exoge-

nous (i.e., not data-dependent) βk,t the following holds:

Y (k)
i,t = y

(
X (k)

i ,βk,t ,θk

)
+ ε

(k)
i,t +αt + τk, Eβk,t

[
ε
(k)
i,t |X

(k)
i

]
= 0, (A.1.8)

for some function y(·) unknown to the researcher. In addition, for some unknown m(·),

Eβk,t

[
Y (k)

i,t |D
(k)
i,t = d,X (k)

i = x
]
= m(d,x,βk,t ,θk)+αt + τk.

Differently from Lemma 1.2.1, here the the functions also depend on the cluster’s type

θk. The proof of Lemma A.1.6 follows verbatim from the one of Lemma 1.2.1, taking here into

account also the (deterministic) cluster’s type. In the following lines, we discuss the single-wave

for inference and multi-wave experiments for estimation under heterogeneity.

Single-wave experiment

In the context of a single-wave experiment, we are interested in testing the null hypothesis

of whether a class of decisions β (θ),θ ∈ Θ, which depends on the cluster’s type, is optimal.

Namely, let

W
(

β (θ),θ
)
=

∫
y(x,β (θ),θ)dFX(θ), β : Θ 7→B, θ ∈Θ

be the welfare corresponding to cluster’s type θ , for a decision rule β (θ). Also, let

V
(

β (θ),θ
)
=

∂W (b,θ)
∂b

∣∣∣
b=β (θ)
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be the marginal effect with respect to changing β (θ) (for fixed θ ). Our null hypothesis is

H0 : V
(

β (θ),θ
)
= 0, ∀θ ∈Θ, (A.1.9)

i.e., the (baseline) policy β (θ) is optimal for all clusters under consideration. The algorithm

follows similarly to Algorithm 2 with the following modification: instead of matching arbitrary

clusters, we construct pairs such that elements in the same pair (k,k+1) are such that θk = θk+1.

We can now state the following corollary.

Corollary 10. Suppose that for all x ∈X ,d ∈ {0,1},b ∈B,θ ∈ Θ,π(x,b),m(d,x,β ,θ) are

uniformly bounded and twice differentiable with bounded derivatives. Let Assumption 1.3.2,

A.1.4 hold. Consider Algorithm 2, with parameter β (θ) as a function of the cluster’s type and for

each pair of clusters (k,k+1),k being odd, being such that θk = θk+1. Let Tn as in Algorithm 2.

Then for 4≤ K < ∞, α ≤ 0.08,

lim
n→∞

P
(
|Tn| ≤ cvK/2−1(α)

∣∣∣H0

)
≥ 1−α, (A.1.10)

where cvK/2−1(h) is the size-h critical value of a t-test with K/2−1 degrees of freedom, and H0

is as defined in Equation (A.1.9).

Corollary 10 states that the proposed algorithm guarantees asymptotic size control also in

the presence of cluster heterogeneity, under the null hypothesis that the policy β (θ) as a function

of the cluster’s type is optimal for all types. Importantly, here we construct a test statistics using

information from all clusters. Consistency of the marginal effect follows verbatim as in Theorem

1.3.1, assuming that clusters of the same type are matched.

Multi-wave experiment

For the multi-wave experiment, our goal is to find β ∗(θ) such that

β
∗(θ) ∈ argmax

b∈B
W (b,θ), ∀θ ∈Θ.
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Similarly to the single-wave experiment, clusters (k,k′) of the same type θk = θk′ are first

matched together. The first extension consists of grouping clusters of the same type together,

estimating separately β ∗(θ) for each θ ∈Θ. In this case the regret bound holds up-to a factor of

order mint P(θ = t), with P(θ = t) denoting the (exact) share of clusters of type t. Intuitively, the

same analysis carry-over to this case, as we restrict our attention to each subgroup separately. The

second approach instead consists of updating the same policy from a given pair using information

from that same pair.

Additional Extensions

Tests with a p-dimensional Vector of Marginal Effects

In the following lines we extend Algorithm 2 to testing the following null

H0 : V ( j)(β ) = 0, for some p≥ l ≥ 1,

where we consider a generic number of dimensions tested l. We introduce the algorithmic

procedure in Algorithm A.2.1.

We define K j the set of pairs in Algorithm A.2.1 used to estimate the jth entry of V (β ).

Define

V̄ ( j)
n =

2l
K

∑
k∈K j

V̂k,

the average marginal effect for coordinate j estimated from those clusters is used to estimate the

effect of the jth coordinate. We construct

Q j,n =

√
K/(2l)V̄ ( j)

n√
(K/(2l)−1)−1

∑
k∈K j

(V̂ ( j)
k −V̄ ( j)

n )2
, Tn = max

j∈{1,··· ,l}
|Q j,n|, (A.2.3)

where Tn denotes the test statistics. The choice of the l-infinity norm is motivated by its

theoretical properties: the statistics Q j,n follows an unknown distribution as a result of possibly
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Algorithm A.2.1. One wave experiment for inference

Require: Value β ∈ Rp, K clusters, 2 periods of experimentation, number of tests t.
1: Match clusters into pairs K/2 pairs with consecutive indexes {k,k+1};
2: t = 0 (baseline):

a: Treatments are assigned at some baseline β0 D(h)
i,0 ∼ π(X (h)

i ,β0),h∈ {1, · · · ,K} (e.g., none
of the individuals is treated).
b: Collect baseline values: for n units in each cluster observe Y (h)

i,0 ,h ∈ {1, · · · ,K}.
3: t = 1 (experimentation-wave)
4: Assign each pair of clusters {k,k+1} to a coordinate j ∈ {1, · · · , p} (with the same number

of pairs to each coordinate)
5: For each pair {k,k+1}, k is odd, assigned to coordinate j

a: Randomize

D(h)
i,1 ∼

{
π(X (h)

i ,β +ηne j) if h = k

π(X (h)
i ,β −ηne j) if h = k+1

, n−1/2 < ηn ≤ n−1/4

b: For n units in each cluster h ∈ {k,k+1} observe Y (h)
i,1 .

c: Estimate the marginal effect for coordinate j as

V̂k =
1

2ηn

[
Ȳ (k)

1 − Ȳ (k)
0

]
− 1

2ηn

[
Ȳ (k+1)

1 − Ȳ (k+1)
0

]
(A.2.1)

return
Ṽn =

[
V̂1,V̂3, · · · ,V̂K−1

]
(A.2.2)

heteroskedastic variances of V̂k across different clusters. However, the upper-bound on the

critical quantiles of the proposed test-statistic for unknown variance attains a simple expression

under the proposed test-statistics. From a conceptual stand-point, the proposed test-statistic is

particularly suited when a large deviation occurs over one dimension of the vector.9 We now

introduce the following theorem.

Theorem A.2.1 (Nominal coverage). Let Assumptions 1.2.1, 1.2.2, 1.3.2 hold. Let n1/4ηn =

o(1),γ2
N/N1/4 = o(1), K < ∞. Let K ≥ 4l, H0 be as defined in Equation (1.8). For any α ≤ 0.08,

lim
n→∞

P
(
Tn ≤ qα

∣∣∣H0

)
≥ 1−α, where qα = cvK/(2l)−1

(
1− (1−α)1/l

)
, (A.2.4)

9Observe that alternatively, we may also consider randomization tests as discussed in Canay et al. (2017). This
is omitted for the sake of brevity.
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with cvK/(2l)−1(h) denotes the critical value of a two-sided t-test with level h with test-statistic

having K/(2l)−1 degrees of freedom.

The proof is in Appendix A.3.4.

Non Separable Fixed Effects

In the following lines, we show how we can leverage direct and marginal spillover effects

to identify (and then estimate) the marginal effects when fixed effects are non-separable in time

and cluster identity.

Theorem A.2.2 (Marginal effects with non-separable fixed effects). Let X = 1, and suppose

that m(d,1,β ) is bounded and twice differentiable with bounded derivatives for d ∈ {0,1}. Let

Assumptions 1.2.1 hold. Suppose that fixed-effects are non-separable, with

Y (k)
i,t = m(D(k)

i,t ,1,β )+αk,t + ε
(k)
i,t , E[ε(k)i,t ] = 0, D(k)

i,t ∼i.i.d. Bern(β ),

and m(1,1,β ) being a constant function in β . Then

E
[
∆̂k(β )+ Ŝ(0,β )(1−β )− (1−β )Ŝ(1,β )

]
=V (β )+O(ηn).

The proof is in Appendix A.3.4. Theorem A.2.2 shows that we can use the information

on the spillover and direct treatment effects to identify the marginal effects in the presence

of non-separable time and cluster fixed effects. The theorem leverages the assumption that

spillovers only occur in the control individuals but not the treated. We note that in applications

where treatment effects have disproportionately large effects on the outcome of an individual,

and the treated outcomes do not depend on the neighbors’ assignments, there might be some

tension with the assumption of fixed effects assumption. Studying economic settings where the

assumption does and does not hold is an interesting future direction.
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Out-of-sample Regret with Strict Quasi-Concavity

In the following lines, we provide guarantees on the regret bounds for the adaptive

algorithm in Section 1.4 under quasi-concavity. We replace Assumption 1.4.2 with the following

condition.

Assumption A.2.1 (Local strong concavity and strict quasi-concavity). Assume that the follow-

ing conditions hold.

(A) For every β ,β ′ ∈B, such that W (β ′)−W (β )≥ 0, then V (β )>(β ′−β )≥ 0,

(B) For every β ∈B, ||V (β )||2 ≥ µ||β −β ∗||2, for a positive constant µ > 0;

(C) ∂ 2W (β )
∂β 2

∣∣∣
β=β ∗

has negative eigenvalues bounded away from zero at β ∗, with β ∗ ∈ B̃ ⊂B

being in the interior of B.

Condition (A) imposes a quasi-concavity of the objective function. The condition is

equivalent to common definitions of quasi concavity (Hazan et al., 2015). Condition (A) holds

when increasing the probability of treating more neighbors has decreasing marginal effects.

Condition (B) assumes that the marginal effect only vanishes at the optimum, ruling out regions

over which marginal effects remain constant at zero. A notion of strict quasi-concavity can be

found in Hazan et al. (2015), where the authors assume (A) and that the gradient vanishes at the

optimum only. Condition (C) also imposes that the function has negative definite Hessian at β ∗

only but not necessarily globally. The above restrictions guarantee strong concavity locally at

the optimum, but not necessarily globally. We now introduce out-of-sample guarantees in this

setting. In such a case, the choice of the learning rate consists of a gradient norm rescaling, as

discussed in Remark 7.

Theorem A.2.3. Let Assumptions 1.2.1, 1.2.2, 1.4.1, A.2.1 hold, and choose αk,w as in Equation

(1.14), for arbitrary v ∈ (0,1), κ as defined in Equation (A.3.7), and εn as in Lemma A.3.12.

Take a small 1/4 > ξ > 0, and let n1/4−ξ ≥ C̄
√

log(n)pγNT 2eBpT log(KT ), ηn = 1/n1/4+ξ , for
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finite constants ∞ > Bp,C̄ > 0. Then for T ≥ ζ 1/v, for a finite constant ζ < ∞, with probability

at least 1−1/n,

W (β ∗)−W (β̂ ∗) = O(Ť−1+v).

The proof is in Appendix A.3.4.

Staggered Adoption

In this section, we sketch the experimental design in the presence of staggered adoption,

i.e., when treatments are assigned only once to individuals and post-treatment outcomes are

collected once. The algorithm works similarly to what was discussed in Section 1.4 with one

small difference: every period, we only collect information from a given clusters’ pair and update

the policy for the subsequent pair and proceed in an iterative fashion. See Algorithm A.5.4 for

details.

For simplicity, we only discuss the case where β ∈ R (single coordinate), while for the

case where β ∈Rp the algorithm works similarly with the only difference that every perturbation

to each coordinate requires a new pair of clusters (with in total 2p times the number of iterations

many clusters).

Theorem A.2.4 (In-sample regret). Let the conditions in Theorem 1.4.3 hold and let β ∈R, with

β̌ t estimated as discussed in the current section. Then with probability at least 1−1/n,

1
T

T∑
t=1

[
W (β ∗)−W (β̌ t)

]
≤ C̄

p log(T )
T

for a finite constant C̄ < ∞.

See Appendix A.3.4 for the proof.
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Selection of ηn: Rule of Thumb

In this subsection we provide a rule of thumb for selecting ηn. Following Theorem 1.3.1

and following Lemma A.3.3 which provides exact constants, we can write with probability at

least 1−1/n

∣∣∣V̂(k,k+1)−V (β )
∣∣∣≤
√

2σ2γN log(2γNn)
nη2

n
+ cηn, c =

∣∣∣∣∣∣∂ 2m(d,x,β )
∂β 2

∣∣∣∣∣∣
∞

,

where the l∞ is taken with respect to each element of the Hessian, x,β .10 Note that we cannot

directly minimize the upper bound since otherwise, the bias and variance would converge to

zero at the same rate, and we would violate the condition that ηn = o(n−1/4) used for inference.

Instead, we minimize

min
ηn

√
2σ2γN log(2γNn)

nη2
n

+ cηn/s2
n, sn = o(1),

where sn penalizes the bias by an o(1) component and chosen below. It follows that

η
2
n =

√
2snσ2γN log(2γNn)

nc
.

Note that under the conditions for inference, we assume that γN/n1/4 = o(1). To also remove the

logarithmic terms (which are asymptotically negligible), let sn = γN/(n1/4 log(nγN)), assumed

to be o(1) for inference. We can then write the solution to the optimization problem as

γN

√
2σ2

c
n−5/16 ≈ γN

√
2σ2

c
n−1/3.

10The constants for the upper bound for the variance follow from Lemma A.3.3, while the component cηn
captures the bias obtained from a second-order Taylor expansion to m(·), noting that only one entry of β is perturbed
by ηn in opposite directions for two clusters in a pair as discussed in Algorithm 1.

169



Here, we can replace σ2 and c with some out-of-sample estimates of the outcomes’ variance and

curvature. Since, in practice, the researcher may impose a small sample upper bound on the bias,

our proposal is

ηn =


γN

√
2σ2

c n−1/3 if γN

√
2σ2

c n−1/3 ≤ B

B otherwise

where Bc denotes an upper bound on the bias of the estimator imposed by the researcher (e.g.,

cB= 0.05). The problem here is that γN is unknown. Therefore, whenever the researcher does not

have a good guess for γN ,we recommend choosing ηn =
√

2σ2

c n−1/3 (without the term γN) which

also leads to valid inference, but slightly smaller small-sample bias (and larger small-sample

variance) than the optimal choice.

Derivations

Notation and Definitions

First, we introduce conventions and notation. We define x . y if x ≤ cy for a positive

constant c < ∞. For K many clusters, we say that

bke=


k if k ≤ K

k−K otherwise.

We will refer to V̂(k,k+1) as V̂k for k is odd for short of notation. Also, we define V̌k,s = V̂bk+2e,s.

The following definition introduces the notion of a dependency graph (see also Janson

2004).

Definition A.3.1 (Dependency graph). For given random variables R1, · · · ,Rn, Wn ∈ {0,1}n×n

is a non-random matrix defined as dependecy graph of (R1, · · · ,Rn) if, for any i, Ri ⊥ R
j:W (i, j)

n =0
.

We denote the dependency neighbors Ni = { j : W (i, j)
n = 1}.

Intuitively, a dependency graph denotes a deterministic adjacency matrix with entry (i, j)
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equal to one if (i, j) are statistical dependent.

Definition A.3.2 (Proper Cover). Given an adjacency matrix An, with n rows and columns, a

family Cn = {Cn( j)} j of disjoint subsets of {1, · · · ,n} is a proper cover of An if ∪ jCn( j) =

{1, · · · ,n} and Cn( j) contains units such that for any pair of elements {i,k ∈ Cn( j)}, then

A(i,k)
n = 0.

Namely, a proper cover of An defines a set of disjoint sets, where each disjoint set contains

some indexes of units that are not neighbors in An. Note that a proper cover always exists since,

if An is fully connected, then the number of disjoint sets is just n, one for each element.

The size of the smallest proper cover is the chromatic number, defined as χ(An).

Definition A.3.3. (Chromatic Number) The chromatic number χ(An), denotes the size of the

smallest proper cover of An.

In the following lines we define the oracle descent procedure absent of sampling error.

Let β ∈B = [B1,B2]
p, where B1,B2 are finite. Also, let PB1,B2 be the projection operator

onto B.

Definition A.3.4 (Oracle gradient descent under strong concavity). We define

β
∗∗
w = PB1,B2

[
β
∗∗
w−1 +αw−1V (β ∗∗w−1)

]
, β

∗∗
1 = β0, (A.3.1)

with αw = η

w+1 , equal for all clusters.

Note that in our proofs, we will refer to the general p-dimensional case for the multi-wave

experiment, which uses Ť = T/p waves. See Algorithm A.5.1.

Lemmas

Preliminary Lemmas

Lemma A.3.1. (Ross, 2011) Let X1, ...,Xn be random variables such that E[X4
i ]< ∞, E[Xi] = 0,

σ2 = Var(
∑n

i=1 Xi) and define W =
∑n

i=1 Xi/σ . Let the collection (X1, ...,Xn) have dependency
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neighborhoods Ni, i = 1, ...,n and also define D = max1≤i≤n|Ni|. Then for Z a standard normal

random variable, we obtain

dW (W,Z)≤ D2

σ3

n∑
i=1

E|Xi|3 +
√

28D3/2
√

πσ2

√√√√ n∑
i=1

E[X4
i ], (A.3.2)

where dW denotes the Wasserstein metric.

Lemma A.3.2. (Brook’s Theorem,Brooks (1941)) For any connected undirected graph G with

maximum degree ∆, the chromatic number of G is at most ∆ unless G is a complete graph or an

odd cycle, in which case the chromatic number is ∆+1.

Concentration for Local Dependency Graphs

In the following lemma, we study the concentration of the average of locally dependent

random variables (see also Janson 2004 for concentration with local dependency graphs) (we

provide exact constants which are useful to derive the rule of thumb for ηn in Appendix A.2.5).

Lemma A.3.3 (Concentration for dependency graphs). Define {Ri}n
i=1 sub-gaussian random

variables with parameter σ2 < ∞, forming a dependency graph with adjacency matrix An with

maximum degree bounded by γN . Then with probability at least 1−δ , for any δ ∈ (0,1),

∣∣∣1
n

n∑
i=1

(Ri−E[Ri])
∣∣∣≤√2σ2γN log(2γN/δ )

n
.

Proof of Lemma A.3.3. First, we construct a proper cover Cn as in Definition B.3.1, with chro-

matic number χ(An). We can write

∣∣∣1
n

n∑
i=1

(Ri−E[Ri])
∣∣∣≤ ∑

Cn( j)∈Cn

∣∣∣1
n

∑
i∈Cn( j)

(Ri−E[Ri])
∣∣∣

︸ ︷︷ ︸
(A)

.

Here, we sum over each subset of index Cn( j) ∈ Cn in the proper cover, and then we sum over
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each element in the subset Cn( j). Observe now that by definition of the dependency graph,

components in (A) are mutually independent. Using the Chernoff’s bound (Wainwright, 2019),

we have that with probability at least 1−δ , for any δ ∈ (0,1)

∣∣∣ ∑
i∈Cn( j)

(Ri−E[Ri])
∣∣∣≤√2σ2|Cn( j)| log(2/δ ),

where |Cn( j)| denotes the number of elements in Cn( j). As a result, using the union bound, we

obtain that with probability at least 1−δ , for any δ ∈ (0,1)

∣∣∣1
n

n∑
i=1

(Ri−E[Ri])
∣∣∣≤ 1

n

∑
Cn( j)∈Cn

√
2σ2|Cn( j)| log(2χ(An)/δ )

︸ ︷︷ ︸
(B)

.

Using concavity of the square-root function, after multiplying and dividing (B) by χ(An), we

have

(B)≤ 1
n

χ(An)

√√√√2σ2 1
χ(An)

∑
Cn( j)∈Cn

|Cn( j)| log(2χ(An)/δ )

=
1
n

√
2σ2χ(An)n log(χ(An)/δ ).

The last equality follows by the definition of proper cover. The final result follows by Lemma

B.7.2.

Proof of Lemma 1.2.1 and Local Dependence

Lemma 1.2.1 is stated as a corollary of Lemma A.3.4.

Lemma A.3.4. Let Assumption 1.2.1, 1.2.2 hold. For treatment assigned as in Assumption

1.2.3 with exogenous parameter βk,t in cluster k at time t, Lemma 1.2.1 hold. Also, ε
(k)
i,t ⊥

{ε(k)j,t } j 6∈I (k)
i
|βk,t for a set |I (k)

i |= O(γN).
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Proof of Lemma A.3.4. Under Assumption 1.2.2, we can write for some function g,

r
(

D(k)
i,t ,D

(k)

j:A(k)
i, j >0,t

,X (k)
i ,X (k)

j:A(k)
i, j >0

,A(k)
i ,U (k)

i ,U (k)

j:A(k)
i, j >0

,ν
(k)
i,t

)
= g(Z(k)

i,t ).

Here, Z(k)
i,t depends on A(k)

i , i.e., the edges of individual i, and on unobservables and observables

of all those individuals such that A(k)
i, j > 0, namely,

Z(k)
i,t =

[
D(k)

i,t ,X
(k)
i ,ν

(k)
i,t ,A

(k)
i ⊗

(
X (k),U (k),D(k)

t

)]
.

Importantly, under Assumption 1.2.1, A(k)
i is a function of

{[
X (k)

j ,U (k)
j

]
, j : 1{ik↔ jk}= 1

}
,

only, and each entry depends on (X j,U j,Xi,Ui) through the same function f for each individual.

What is important, is that
∑

j 1{ik↔ jk}= γ
1/2
N for each unit i. Therefore, for some function g̃

(which depends on f in Assumption 1.2.1), we can equivalently write

Z(k)
i,t = g̃(D(k)

i,t ,ν
(k)
i,t ,X

(k)
i , Z̃(k)

i,t ), Z̃(k)
i,t =

{[
X (k)

j ,U (k)
j ,D(k)

j,t

]
, j : 1{ik↔ jk}= 1

}
,

where Z̃(k)
i,t is the vector of

[
X (k)

j ,U (k)
j ,D(k)

j,t

]
of all individuals j with 1{ik↔ jk}= 1.

Now, observe that since (U (k)
i ,X (k)

i )∼i.i.d. FX |U FU , and {νi,t} are i.i.d. conditionally on

U (k),X (k) (Assumption 1.2.2) and treatments are randomized independently (Assumption 1.2.3),

we have [
X (k)

j ,U (k)
j ,ν

(k)
j,t ,D

(k)
j,t

]∣∣∣βk,t ∼i.i.d. D(βk,t)

is i.i.d with some distribution D(βk,t) which only depends on the exogenous coefficient βk,t gov-

erning the distribution of D(k)
i,t under Definition 1.2.3. As a result for βk,t being exogenous, Lemma

1.2.1 holds since
∑

j 1{ik↔ jk}= γ
1/2
N for all i, hence Z̃i,t are identically distributed across units i.

Similarly, also ε
(k)
i,t |βk,t is a measurable function of a vector

[
X (k)

j ,U (k)
j ,ν

(k)
j,t ,D

(k)
j,t

]
j:1{ik↔ jk}=1

.11

As a result since such vectors are independent conditional on βk,t , ε
(k)
i,t is mutally independent

11Here for notational convenience convenience only, we are letting 1{ik↔ ik}= 1.

174



with ε
(k)
v,t for all v such that they do not share a common element

[
X (k)

j ,U (k)
j ,ν

(k)
j,t ,D

(k)
j,t

]
, that is,

such that max j 1{ik↔ jk}1{vk↔ jk}= 0.

There are at most γ
1/2
N + γN many of ε

(k)
v,t which can share a common neighbor with ε

(k)
i,t

(γ1/2
N many neighhbors and γN many neighbors of the neighbors), which concludes the proof.

Concentration of the Average Outcomes

In this subsection, we provide three auxiliary lemmas.

Lemma A.3.5. Suppose that treatments are assigned as in Assumption 1.2.3 with

D(k)
i,0 ∼ π(X (k)

i ,β0), D(k+1)
i,0 ∼ π(X (k+1)

i ,β0)

D(k)
i,t ∼ π(X (k)

i ,β ), D(k+1)
i,t ∼ π(X (k+1)

i ,β ′)

with exogenous parameters β0,β ,β
′. Let Assumption 1.2.1, 1.2.2 hold. Then with probability at

least 1−δ , for any δ ∈ (0,1)

∣∣∣Ȳ (k)
t − Ȳ (k+1)

t − Ȳ (k)
0 + Ȳ (k+1)

0 −
∫

(y(x,β )− y(x,β ′))dFX(x)
∣∣∣= O(

√
γN log(γN/δ )

n
).

Proof of Lemma A.3.5. First, note that by Lemma A.3.4, we can write

E
[
Ȳ (k)

t − Ȳ (k+1)
t

]
=

∫
(y(x,β )− y(x,β ′))dFX(x)+ τk− τk+1

E
[
Ȳ (k)

0 − Ȳ (k+1)
0

]
= τk− τk+1.

(A.3.3)

In addition, by Lemma A.3.4, ε
(k)
i,t (and so Y (k)

i,t ) form a dependency graph with maximum degree

bounded by γN . The proof completes by invoking Lemma A.3.3.

Lemma A.3.6. Let y(x,β ) be twice differentiable with uniformly bounded derivatives for all
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x ∈X ,β ∈B. Then for all β ∈B, where B is a compact space

∫ [
y(x,β +ηne j)− y(x,β −ηne j)

]
dFX(x) = 2ηn

∫
∂y(x,β )

∂β j dFX(x)+O(η2
n )

= 2ηnV ( j)(β )+O(η2
n ).

Proof of Lemma A.3.6. We can write

y(x,β +ηne j) = y(x,β )+
∂y(x,β )

∂β j ηn +O(η2
n )

y(x,β −ηne j) = y(x,β )− ∂y(x,β )
∂β j ηn +O(η2

n )

from the mean-value theorem which guarantees that the first equality holds. The second equality

holds by the dominated convergence theorem.

Lemma A.3.7. Let the conditions in Lemma A.3.5 hold. Let y(x,β ) be twice differentiable in

β with uniformly bounded derivatives for all x ∈X ,β ∈B. Suppose that β = β̌ +ηne j and

β ′ = β̌ −ηne j. Then with probability at least 1−δ , for any δ ∈ (0,1)

∣∣∣Ȳ (k)
t − Ȳ (k+1)

t − Ȳ (k)
0 + Ȳ (k+1)

0
2ηn

−V ( j)(β̌ )
∣∣∣= O

(√
γN log(γN/δ )

η2
n n

+ηn

)

Proof of Lemma A.3.7. Using Lemma A.3.5 and the triangular inequality, with probability at

least 1−δ ,

∣∣∣Ȳ (k)
t − Ȳ (k+1)

t − Ȳ (k)
0 + Ȳ (k+1)

0
2ηn

−V ( j)(β̌ )
∣∣∣

≤
∣∣∣ 1
2ηn

∫
(y(x, β̌ +ηne j)− y(x, β̌ −ηne j))dFX(x)−V ( j)(β̌ )

∣∣∣+O
(√

γN log(γN/δ )

η2
n n

)
.

By Lemma A.3.6

∫
(y(x, β̌ +ηne j)− y(x, β̌ −ηne j))dFX(x) = 2ηnV ( j)(β̌ )+O(η2

n ),.
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Proof of Lemma 1.4.1

To prove the claim it suffices to show that β̌ w
k is independent of potential outcomes

and covariates in cluster k for all w ∈ {1, · · · , Ť}, since βk,t is a deterministic function of some

coefficient β̌ w
k (see Algorithm A.5.1). Take k to be odd. To show that the claim holds it

suffices to show that β̌ w
k is a function of observables and unobservables only of those units

in clusters k′ 6∈ {k,k+1}. The recursive claim that we want to prove is the following: for all

w, β̌ w
k is exogenous with respect to potential outcomes and covariates in clusters with index

{h > bk+2w+1e or h ∈ {k,k+1}}. Clearly, for β̌ 1
k the lemma holds, since β̌ 1

k depends on the

gradient in the pair {bk+2e,bk+3e} only. Suppose that the lemma holds for all w≤ Ť−1. Then

consider β̌ Ť
k . Observe that β̌ Ť

k is chosen based on the gradient V̂k+2,Ť−1 estimated in the previous

wave in clusters {bk+2e,bk+3e}, and β̌
Ť−1
k . By the recursive algorithm, β̌

Ť−1
k is exogenous

with respect to covariates and potential outcomes in clusters with index {h > bk+2Ť −1e or

h ∈ {k,k+1}}, which is possible since K ≥ 2Ť , hence bk+2Ť −1e< k. We only need to prove

exogeneity of V̂k+2,Ť−1. The gradient estimated V̂k+2,Ť−1 is a function of the unobservables and

observables at any time t ≤ T (where T = Ť p) in clusters {bk+2e,bk+3e} and the policy β̌
Ť−1
k+2 .

Since K ≥ 2Ť , again by the recursive algorithm β̌
Ť−1
k+2 is exogenous with respect to potential

outcomes and covariates in clusters with index {h≥ bk+2Ťe or h∈ {k,k+1}} which completes

the proof.

Lemmas for the Adaptive Experiment with Strong Concavity

In this section, we discuss theoretical guarantees of the algorithm, assuming the global

strong concavity of the objective function W (β ). The following lemma follows by standard

properties of the gradient descent algorithm (Bottou et al., 2018).

Lemma A.3.8. For the learning rate as αw = η/(w+ 1), and β ∗∗w as defined in Equation

(A.3.6), under Assumption 1.3.1, 1.4.1, 1.4.2, with σ -strong concavity, for M ≥ η ≥ 1/σ , for
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Figure A.3.1. Proof’s strategy. Let p = 1. Since we have three clusters pairs (each pair of
boxes), by assumption T = 2. Then the treatments at T = 2 in the first pair are assigned using
information from the second pair at T = 1. Treatments in the second pair at T = 1, depend on
information at T = 0 in the third pair. Hence, the parameter used at T = 2 in the first pair must be
independent of covariates and potential outcomes in the first pair of clusters. The same reasoning
applies to the other pairs of clusters.

any M ∈ [1/σ ,∞), and let L = max{2(B2−B1)
2,G2M2}, with G = supβ ||

∂W (β )
∂β
||∞. Then the

following holds:

||β ∗∗w −β
∗||2 ≤ Lp

w

for a constant L < ∞.

Proof of Lemma A.3.8. The proof follows standard arguments of the gradient descent method

(Bottou et al., 2018), where, here, we leverage strong concavity and the assumption that the

gradient is uniformly bounded. Denote β ∗ the estimand of interest and recall the definition of

β ∗∗w in Equation (A.3.6). We define ∇w−1 the gradient evaluated at β ∗∗w−1. From strong concavity,

we can write

W (β ∗)−W (β ∗∗w )≤ ∂W (β ∗∗w )

∂β
(β ∗−β

∗∗
w )− σ

2
||β ∗−β

∗∗
w ||22

W (β ∗∗w )−W (β ∗)≤ ∂W (β ∗)

∂β
(β ∗∗w −β

∗)− σ

2
||β ∗−β

∗∗
w ||22.

As a result, since ∂W (β ∗)
∂β

= 0, we have

(
∂W (β ∗)

∂β
− ∂W (β ∗∗w )

∂β

)
(β ∗−β

∗∗
w ) =

∂W (β ∗∗w )

∂β
(β ∗−β

∗∗
w )≥ σ ||β ∗∗w −β

∗||22. (A.3.4)

178



In addition, we can write:

||β ∗∗w −β
∗||22 = ||β ∗−PB1,B2(β

∗∗
w +αw−1∇w−1)||22 ≤ ||β ∗−β

∗∗
w −αw−1∇w−1||22

where the last inequality follows from the fact that β ∗ ∈ [B1,B2]
p. Observe that we have

||β ∗−β
∗∗
w ||22 ≤ ||β ∗−β

∗∗
w−1||22−2αw−1∇w−1(β

∗−β
∗∗
w−1)+α

2
w−1||∇w−1||22.

Using Equation (A.3.4), we can write

||β ∗∗w+1−β
∗||22 ≤ (1−2σαw)||β ∗∗w −β

∗||22 +α
2
wG2 p.

We now prove the statement by induction. Clearly, at time w = 1, the statement trivially holds.

Consider a general time w. Then using the induction argument, we write

||β ∗∗w+1−β
∗||22 ≤ (1−2

1
w+1

)
Lp
w

+
Lp

(w+1)2 ≤ (1−2
1

w+1
)
Lp
w

+
Lp

w(w+1)

= (1− 1
w+1

)
Lp
w

=
Lp

w+1
.

Lemma A.3.9. Let Assumption 1.2.2, 1.2.1, 1.4.1 hold. Let αw be as defined in Lemma A.3.8.

Then with probability at least 1−δ , for any δ ∈ (0,1), for all w≥ 1,

∣∣∣∣∣∣PB1,B2−ηn

[ w∑
s=1

αsV̌k,s

]
−PB1,B2

[ w∑
s=1

αsV (β ∗∗s )
]∣∣∣∣∣∣

∞

= O(PŤ (δ ))

where P1(δ ) = α1× err(δ ) and Pw(δ ) = BpαwPw−1(δ ) + Pw−1(δ ) +αwerrw(δ ), for a finite

constant Bp < ∞, and errw(δ ) = O
(√

γN
log(pŤ K/δ )

η2
n n + pηn

)
.

Proof of Lemma A.3.9. Recall that by Lemma A.3.7 we can write for every k and w∈ {1, · · · , Ť}
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(here using the union bound),

V̌ ( j)
k,w =V ( j)(β̌ w

k+2)+O
(√

γN
log(KŤ/δ )

η2
n n

+ηn

)
.

We now proceed by induction. We first prove the statement, assuming that the constraint is

always attained. We then discuss the case of the constraint not being attained. Define (where we

suppress the dependence with p for simplicity)

B = psup
β

∣∣∣∣∣∣∂ 2W (β )

∂β 2

∣∣∣∣∣∣
∞

.

Unconstrained case

Consider w = 1. Then since we initialize parameters at β0 (recall that β0 = β ∗∗1 ), for all

clusters, we can write with probability 1−δ , for any δ ∈ (0,1),

∣∣∣∣∣∣α1V̌k,1−α1V (β0)
∣∣∣∣∣∣

∞

= α1err(δ ).

Consider t = 2, then we obtain for every j ∈ {1, · · · , p},

α2V̌ ( j)
k,2 =α2V ( j)(β̌ 2

k+2)+α2err(δ )=α2V ( j)(β ∗∗1 +α1V (β ∗∗1 )+α1V̌k,w−α1V (β ∗∗1 ))+α2err(δ ).

Using the mean value theorem and Assumption 1.3.1, we obtain

∣∣∣∣∣∣α2V̌k,2−α2V (β ∗∗2 )
∣∣∣∣∣∣

∞

≤ α2err(δ )+Bα2α1err(δ )

⇒
∣∣∣∣∣∣ 2∑

w=1

αwV̌k,w−
2∑

w=1

αwV (β ∗∗w )
∣∣∣∣∣∣

∞

≤ α2err(δ )+Bα2α1err(δ )+α1err(δ ).

Consider now a general w. Then we can write with probability 1−δ , for any δ ∈ (0,1),

αwV̌k,w = αwV (β̌ w−1
k+2 )+αwerr(δ ).
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Let P̃( j)
w (δ ) = αwP̃( j)

w−1(δ )+ P̃( j)
w−1(δ )+αwerr(δ ), with P̃( j)

1 (δ ) = α1err(δ ), the cumulative error

for the jth coordinate. Then, recursively, we have (here, P̃w−1(δ ) is the vector of cumulative

errors)

αwV̌k,w = αwV (β ∗∗w + P̃w−1(δ ))+αwerr(δ ).

Using the mean value theorem and Assumption 1.3.1, we obtain

αwV̌k,w = αwV (β ∗∗w )+αwBmax
j

P̃( j)
w−1(δ )+αwerr(δ ).

Therefore, with probability 1−wδ̃ (using the union bound)

∣∣∣∣∣∣ w∑
s=1

αsV̌k,s−
w∑

s=1

αsV (β ∗∗s )
∣∣∣∣∣∣

∞

≤
∣∣∣∣∣∣αwV̌k,w−αwV (β ∗∗w )

∣∣∣∣∣∣
∞

+
∣∣∣∣∣∣w−1∑

s=1

αsV̌k,s−
w−1∑
s=1

αsV (β ∗∗s )
∣∣∣∣∣∣

∞

≤ αwBPw−1(δ̃ )+αwerr(δ̃ )+Pw−1(δ̃ ),

where Pw−1(δ̃ ) captures the largest cumulative error up-to iteration w− 1 as defined in the

statement of the lemma (the log-term as a function of p follows from the union bound). The

proof completes once we write δ = δ̃/w.

Constrained case

Since the statement is true for w = 1, we can assume that it is true for all s≤ w−1 and

prove the statement by induction. Since B is a compact space, we can write,

∣∣∣∣∣∣PB1,B2−ηn

[ w∑
s=1

αsV̌k,s

]
−PB1,B2

[ w∑
s=1

αsV (β ∗∗s )
]∣∣∣∣∣∣

∞

≤
∣∣∣∣∣∣PB1,B2−ηn

[ w∑
s=1

αsV̌k,s

]
−PB1,B2−ηn

[ w∑
s=1

αsV (β ∗∗s )
]∣∣∣∣∣∣

∞

+O(pηn)

≤ 2
∣∣∣∣∣∣ w∑

s=1

αsV̌k,s−
w∑

s=1

αsV (β ∗∗s )
∣∣∣∣∣∣

∞

+O(pηn)

completing the proof.
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Lemma A.3.10. Let the conditions in Lemma A.3.9 hold. Then with probability at least 1−δ ,

for any δ ∈ (0,1), for all w≥ 1,k ∈ {1, · · · ,K},

||β ∗− β̌
w
k ||

2
2 ≤

Lp
w

+ pw2Bp×O
(

γN
log(pŤ K/δ )

η2
n n

+ p2
η

2
n

)
,

for finite constants Bp,L < ∞.

Proof. Using the triangular inequality, we can write

||β ∗− β̌
w
k ||

2
2 ≤ ||β ∗−β

∗∗
w ||22 + ||β̌ w

k −β
∗∗
w ||22.

The first component on the right-hand side is bounded by Lemma A.3.8. Using Lemma A.3.9,

we bound the second component with probability at least 1−δ , as follows

||β̌ w
k −β

∗∗
w ||22 ≤ p||β̌ w

k −β
∗∗
w ||2∞ = p×O(P2

w(δ )).

We conclude the proof by explicitely characterizing the rate of Pw(δ ) as defined in Lemma

A.3.9. Following Lemma A.3.9, we can define recursively Pw(δ ) for any 1≤ w≤ Ť (recall that

αw ∝ 1/w) as

Pw(δ ) = (1+
B
w
)Pw−1(δ )+

1
w

errn(δ ), P1(δ ) = errn(δ ).

where errn = O(

√
γN

log(pŤ K/δ )
η2

n n + pηn). Take, without loss of generality, B≥ 1 (if B < 1), we

can find an upper bound with a different B = 1. Substituting recursively each term, we can

write12

Pw(δ )≤ errn(δ )
w∑

s=1

1
s

w∏
j=s

(
B
j
+1).

12The expression is ≤ instead of = since the first term in the expression errn(δ ) multiplies by (B/w+1) instead
of just 1.
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We now write

w∑
s=1

1
s

w∏
j=s

(
B
j
+1)≤

w∑
s=1

1
s

exp(
w∑

j=s

B
j
)≤

w∑
s=1

1
s

exp
(

1+B log(w)−B log(s)
)

.
w∑

s=1

1
s2 eB log(w)+1 . wB,

completing the proof.

Proof of the Theorems in the Main Text

Proof of Theorem 1.3.1

First observe that for any δ ∈ (0,1),

E
[
V̂k(β )

]
=V (1)(β )+O(ηn), P

(∣∣∣V̂k(β )−V (1)(β )
∣∣∣> O

(
ηn +

√
γN log(γN/δ )

nη2
n

))
≤ δ ,

with the proof of the first claim follows similarly as in the proof of Lemma A.3.6 and the second

claim being a direct corollary of Lemma A.3.7. Finally observe that with probability at least

1−δ , for any δ ∈ (0,1), we also have

∣∣∣V̂k(β )−V (1)(β )
∣∣∣= O(ηn)+O

(√
ρn

δnη2
n

)
,

by Chebishev inequality and the triangular inequality.

Proof of Theorem 1.3.2

Consider Algorithm 2 for a generic coordinate j. Let β be the target parameter as in

Algorithm 2. By Lemma A.3.6, we have

E[V̂ ( j)
k ] =V ( j)(β )+O(ηn).
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We have
V̂ ( j)

k −E[V̂ ( j)
k ]√

Var(V̂ ( j)
k )

=
V̂ ( j)

k −V ( j)(β )√
Var(V̂ ( j)

k )

+O
(

ηn√
Var(V̂ ( j)

k )

)
.

Observe that under Assumption 1.3.2,

O
(

ηn√
Var(V̂ ( j)

k )

)
≤O(η2

n ×
√

n).

First, observe that by Lemma A.3.4, and the fact that covariates are independent, then Y (k)
i,t −Y (k)

i,0

form a locally dependent graph of maximum degree of order O(γN). We now invoke Lemma

A.3.1. We can write

dW

( 1

2ηn

√
Var(V̂ ( j)

k )

[
Ȳ (k)

t − Ȳ (k)
0

]
− 1

2ηn

√
Var(V̂ ( j)

k )

[
Ȳ (k+1)

t − Ȳ (k+1)
0

]
,G
)

≤
γ2

N
σ3

∑
h∈{k,k+1}

n∑
i=1

[
E
∣∣∣Y (k)

i,t −Y (k)
i,0

ηnn

∣∣∣3]
︸ ︷︷ ︸

(A)

+

√
28γ

3/2
N√

πσ2

√√√√ n∑
i=1

[
E
∣∣∣Y (k)

i,t −Y (k)
i,0

ηnn

∣∣∣4]︸ ︷︷ ︸
(B)

,

G ∼N (0,1), σ
2 = Var

( 1
2ηn

[
Ȳ (k)

t − Ȳ (k)
0

]
− 1

2ηn

[
Ȳ (k+1)

t − Ȳ (k+1)
0

])
and dW denotes the Wasserstein metric. We now inspect each argument on the right hand side.

Under Assumption 1.3.2, σ2 ≥Ck
1

nη2
n

for a constant Ck > 0, and the third and fourth moment are

bounded. Hence, we have for a constant C′ < ∞,

(A)≤C′
γ2

N
n3η3

n
×n5/2

η
3
n �

γ2
N

n1/2 → 0.

Similarly, for (B), we have

(B)≤ c′
γ

3/2
N nη2

n

η2
n n3/2 �

γ
3/2
N

n1/2 → 0.

The proof completes.
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Proof of Theorem 1.3.3

By Lemma 1.2.1, we can write (we omit the superscript k from X (k) for sake of brevity)

E
{ 1

2n

n∑
i=1

[ D(k+1)
i,1 Y (k+1)

i,1

π(Xi,β +ηne1)
−

(1−D(k+1)
i,1 )Y (k+1)

i,1

1−π(Xi,β +ηne1)
+

Di,1Y (k)
i,1

π(Xi,β −ηne1)
−

(1−D(k)
i,1 )Y

(k)
i,1

1−π(Xi,β −ηne1)

]}

=
1
2
E
{[ D(k+1)

i,1 Y (k+1)
i,1

π(Xi,β +ηne1)
−

(1−D(k+1)
i,1 )Y (k+1)

i,1

1−π(Xi,β +ηne1)

]
+

1
2n

n∑
i=1

[ Di,1Y (k)
i,1

π(Xi,β −ηne1)
−

(1−D(k)
i,1 )Y

(k)
i,1

1−π(Xi,β −ηne1)

]}
=

1
2

∫ [
m(1,x,β +ηne1)−m(0,x,β +ηne1)+m(1,x,β −ηne1)−m(0,x,β −ηne1)

]
dFX(x)︸ ︷︷ ︸

(i)

.

The last equality follows from Lemma 1.2.1 and exogeneity of β . Doing a Taylor expansion to

each component around β , we obtain that (i) equals∫ [
m(1,x,β )−m(0,x,β )+

∂m(1,x,β )
2∂β 1 ηn−

∂m(0,x,β )
2∂β 1 ηn−

∂m(1,x,β )
2∂β 1 ηn +

∂m(0,x,β )
2∂β 1 ηn

]
dFX(x)

+O(η2
n ) =

∫ [
m(1,x,β )−m(0,x,β )

]
dFX(x)+O(η2

n ),

which completes the proof, since ηn = o(n−1/4).

Proof of Theorem 1.3.4

We are interested in studying

E
{ 1

2n

∑
h∈{k,k+1}

vh

ηn

n∑
i=1

[ Y (h)
i,1 (1−D(h)

i,1 )

1−π(X (h)
i ,β + vhηne1)

− Ȳ (h)
0

]}
, vh =


1 if h = k

−1 otherwise.

Using Lemma 1.2.1, similarly to the derivation of Lemma A.3.6, we can write the above

expression equal to

1
2ηn

∫
[m(0,x,β +ηne1)−m(0,x,β −ηne1)]dFX(x).

Note that from the mean value theorem, and Assumption 1.3.1

m(0,x,β +ηne1)−m(0,x,β −ηne1) = m(0,x,β )−m(0,x,β )+2
∂m(0,x,β )

∂β 1 ηn +O(η2
n )
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which completes the proof.

Proof of Theorem 1.4.2

Consider Lemma A.3.10 where we choose δ = 1/n. We can write for each k

||β ∗− β̌
Ť
k ||22 ≤

pL
Ť

+O(1/Ť ),

for a finite constant L < ∞, since, under the conditions for n stated in the theorem, for finite B,

the second component is O(1/Ť ). Note that

||β ∗− 1
K

K∑
k=1

β̌
Ť
k ||22 ≤

1
K

K∑
k=1

||β ∗− β̌
Ť
k ||22

by Jensen’s inequality, which completes the proof.

Theorem 1.4.3

By the mean value theorem and Assumption 1.3.1, we have

Ť∑
w=1

W (β ∗)−W (β̌ w
k )≤ C̄

Ť∑
w=1

||β ∗− β̌
w
k ||

2
2,

for a finite constant C̄ < ∞, since ∂W (β ∗)
∂β

= 0, and the Hessian is uniformly bounded (Assumption

1.3.1). By Lemma A.3.10, choosing δ = 1/n, and for n satisfying the conditions in Theorem

1.4.3, it follows that for all k,

Ť∑
w=1

W (β ∗)−W (β̌ w
k )≤

Ť∑
w=1

pκ ′

w
. p log(Ť )

for κ ′ < ∞ being a finite constant. The proof completes.
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Proof of Theorem 1.4.4

First, note that for a finite constant c0, under Assumption 1.3.1 and Assumption 1.4.2

W (β ∗)−W (β̂ ∗)≤ c0||β ∗− β̂ ||2 ≤ c0
1
K

K∑
k=1

||β ∗− β̌
Ť+1
k ||2

where in the first inequality we used strong concavity (gradient equals zero), and in the second

equality we used Jensen’s inequality. Define β ∗∗w as in Equation (A.3.6), where, however, the

learning rate is chosen so that αw = 1/τ . Using the triangular inequality, we can write

||β ∗− β̌
Ť+1
k ||22 ≤ ||β ∗−β

∗∗
Ť+1||

2
2 + ||β̌ Ť+1

k −β
∗∗
Ť+1||

2
2.

The first component is bounded by Theorem 3.10 in Bubeck (2014) (using the fact that B is

compact) as follows:

||β ∗−β
∗∗
Ť+1||

2
2 ≤ c0 exp(−c′02(Ť +1)) = c0 exp(−Kc′0)

for finite constants 0 < c0,c′0 < ∞, where we used the fact that 2(Ť + 1) = K. Using Lemma

A.3.9, we bound the second component with probability at least 1− δ , as follows (for any

w≤ Ť +1)

||β̌ w
k −β

∗∗
w ||22 ≤ p||β̌ w

k −β
∗∗
w ||2∞ = p×O(P2

w(δ )).

We conclude the proof by explicitely characterizing the rate of Pw(δ ) as defined in Lemma

A.3.9. Following Lemma A.3.9, we can define recursively Pw(δ ) for any 1≤ w≤ Ť (recall that

αw ∝ 1/w) as

Pw(δ ) = (1+B)Pw−1(δ )+ errn(δ ), P1(δ ) = errn(δ ).
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where errn = O(

√
γN

log(pŤ K/δ )
η2

n n + pηn), and B > 0 is a finite constant with depends on p only.

Using a recursive argument, we can write

Pw(δ )≤ w(1+B)werrn(δ ).

The proof completes as we choose n sufficiently large as stated in the theorem.

Proof of Theorem 1.4.5

Recall that from Assumption 1.2.1, the maximum degree is γ
1/2
N . We break the proof

into several steps. We will write the model dividing by 1/
∑

j 6=i Ai, j1{X j = x} instead of

1/max{
∑

j 6=i Ai, j1{X j = x},1} for notational convenience, but implicitely consider the expres-

sion 1/
∑

j 6=i Ai, j1{X j = x} equal to one if
∑

j 6=i Ai, j1{X j = x}= 0.

Upper bound on W ∗N

We first provide an upper bound on the largest achievable welfare. Recall that ∆ = c.

Therefore, we can write

W ∗N ≤
1
N

N∑
i=1

sup
P

E
[
ED∼P(A,X)

[
s
([∑

j 6=i Ai, jD j1{X j = x}∑
j 6=i Ai, j1{X j = x}

]
x∈{1,··· ,|X |}

)∣∣∣A,X]].
Let

β
G = arg max

β1,··· ,β|X |∈[0,1]|X |
s
(

β1, · · · ,β|X |
)
.

Note that since D j ∈ {0,1}, we can write

sup
P

E
[
ED∼P(A,X)

[
s
([∑

j 6=i Ai, jD j1{X j = x}∑
j 6=i Ai, j1{X j = x}

]
x∈{1,··· ,|X |}

)∣∣∣A,X]]≤ s
(

β
G
1 , · · · ,β G

|X |

)
.
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Lower bound on W (β ∗)

Using the fact that B = [0,1]|X |, we can write13

W (β ∗) = max
β∈[0,1]|X |

Eβ

[
s
([∑

j 6=i Ai, jD j1{X j = x}∑
j 6=i Ai, j1{X j = x}

]
x∈{1,··· ,|X |}

)]
≥ Eβ G

[
s
([∑

j 6=i Ai, jD j1{X j = x}∑
j 6=i Ai, j1{X j = x}

]
x∈{1,··· ,|X |}

)]
,

where we use the fact that β G = (β G
1 , · · · ,β G

|X |) ∈ [0,1]|X |, and ∆(·) = c(·). From the mean

value theorem

Eβ G

[
s
([∑

j 6=i Ai, jD j1{X j = x}∑
j 6=i Ai, j1{X j = x}

]
x∈{1,··· ,|X |}

)]
= s(β G)+Eβ G

{
∂ s(β )

∂β

∣∣∣
β∈
[[∑

j 6=i Ai, jD j1{Xj=x}∑
j 6=i Ai, j1{X j=x}

]
x∈{1,··· ,|X |}

,β G

]×
×
([∑

j 6=i Ai, jD j1{X j = x}∑
j 6=i Ai, j1{X j = x}

]
x∈{1,··· ,|X |}

−β
G
)}

,

where ∂ s(·)
∂β

is evaluated at a point between the shared of treated neighbors and β G.

Bound on the difference

Combining the two bounds, we can write

W ∗N −W (β ∗)≤∣∣∣Eβ G

{
∂ s(β )

∂β

∣∣∣
β∈
[[∑

j 6=i Ai, jD j1{Xj=x}∑
j 6=i Ai, j1{Xj=x}

]
x∈{1,··· ,|X |}

,β G

]×([∑ j 6=i Ai, jD j1{X j = x}∑
j 6=i Ai, j1{X j = x}

]
x∈{1,··· ,|X |}

−β
G
)}∣∣∣

︸ ︷︷ ︸
(I)

,

where we took the absolute value in the last equation.

Bound with Cauchy-Schwarz

We can now bound (I) as follows.

(I)≤ sup
β

∣∣∣∣∣∣∂ s(β )
∂β

∣∣∣∣∣∣
2
×|X |max

x∈X

√
Eβ G

[(∑
j 6=i Ai, jD j1{X j = x}∑

j 6=i Ai, j1{X j = x}
−β G

x

)2]
︸ ︷︷ ︸

(II)

,

13Eβ

[
s
([∑

j 6=i Ai, jD j1{X j=x}∑
j 6=i Ai, j1{X j=x}

]
x∈{1,··· ,|X |}

)]
does not depend on i similarly to Lemma 1.2.1.
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where we first used Cauchy-Schwarz and then bound the first component by the supremum over

β ,x and the second component by the largest term over x ∈X times the number of elements

|X |.

Bound for (II)

we now want to bound (II). We do so fixing X j = x and show that for all x ∈X (and

so also for the maximum) we can obtain a useful bound. Recall that here Eβ G indicates that

Di,t |X (k)
i = x∼i.i.d. Bern(β G

x ). Now, note that

Eβ G

[∑
j 6=i Ai, jD j1{X j = x}∑

j 6=i Ai, j1{X j = x}

∣∣∣X (k),A(k)
]
= β

G
x .

Also, note that since we take the maximum over x∈X , here βx is fixed, and therefore, Var(βx) =

0. Therefore, we can write

Eβ G

[(∑
j 6=i Ai, jD j1{X j = x}∑

j 6=i Ai, j1{X j = x}
−β

G
x

)2]
= Eβ G

[
Var
(∑

j 6=i Ai, jD j1{X j = x}∑
j 6=i Ai, j1{X j = x}

∣∣∣X (k),A(k)
)]

.

In addition,

Varβ G

(∑
j 6=i Ai, jD j1{X j = x}∑

j 6=i Ai, j1{X j = x}

∣∣∣X (k),A(k)
)
= β

G
x (1−β

G
x )
/∑

j 6=i

Ai, j1{X j = x},

since treatments are independent conditional on X (k), independent of A(k) conditional on X (k) by

construction, and binary. Let κ ′ = κP(X = x), where, without loss of generality, P(X = x)> 0

since |X |< ∞, and hence, if P(X = x) = 0, we can re-index s(·), for all types except X = x and
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conduct the same analysis as above, without the case X = x. Note that

E
[
β

G
x (1−β

G
x )
/∑

j 6=i

Ai, j1{X j = x}
]
= β

G
x (1−β

G
x )E

[
1
/∑

j 6=i

Ai, j1{X j = x}
]

≤ β
G
x (1−β

G
x )P

(∑
j 6=i

Ai, j1{X j = x}< κ
′
γ

1/4
N

)
+β

G
x (1−β

G
x )P

(∑
j 6=i

Ai, j1{X j = x} ≥ κ
′
γ

1/4
N

) 1

κ ′γ
1/4
N

≤ β
G
x (1−β

G
x )P

(∑
j 6=i

Ai, j1{X j = x}< κ
′
γ

1/4
N

)
︸ ︷︷ ︸

(III)

+
1

κ ′γ
1/4
N

,

where in the second inequality we used the fact that we are implicitely using in our notation that

1/
∑

j 6=i Ai, j1{X j = x} equals one if
∑

j 6=i Ai, j1{X j = x}= 0 for notational convenience.

Bound for (III)

We are left to derive a bound for (III), since the second term converges to zero as γN→∞.

Define hx(Xi,Ui) =P(X = x)
∫

l(Xi,Ui,x,u)dFU |X=x(u). Note that (recall that 1{i↔ j} are fixed)

E[Ai, j1{X j = x}|Xi,Ui] = E[l(Xi,Ui,X j,U j)1{X j = x}1{i↔ j}|Xi,Ui] = hx(Xi,Ui)1{i↔ j},

since, conditional on (Xi,Ui),the indicator 1{i↔ j} is fixed (exogenous), and (Xi,Ui) ∼i.i.d.

FX FU |X . Also, recall that
∑

j 1{i↔ j} = γ
1/2
N . Hence, only γ

1/2
N many edges of i can at most

be non-zero, while the remaining ones are zero almost surely. Therefore, using Hoeffding’s

inequality (Wainwright, 2019), and using independence conditional on Xi,Ui,

P
(∣∣∣ 1

γ
1/2
N

∑
j 6=i

Ai, j1{X j = x}−hx(Xi,Ui)
∣∣∣≤ C̄

√
log(2γN)

γ
1/2
N

∣∣∣Xi,Ui

)
≥ 1−1/γN , (A.3.5)

for a finite constant C̄ < ∞. Observe that hx(Xi,Ui)≥ κ ′ > 0,κ ′ = P(X = x)κ almost surely by

assumption. Define the event

E =
{
|
∑
j 6=i

Ai, j1{X j = x}− γ
1/2
N hx(Xi,Ui)| ≤ C̄

√
log(2γN)γ

1/2
N

}
.
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We can write

P
(∑

j 6=i

Ai, j1{X j = x}< κ
′
γ

1/4
N

)
= P

(∑
j 6=i

Ai, j1{X j = x}− γ
1/2
N hx(Xi,Ui)+ γ

1/2
N hx(Xi,Ui)< κ

′
γ

1/4
N

)
≤ P

(
γ

1/2
N hx(Xi,Ui)< κ

′
γ

1/4
N + |

∑
j 6=i

Ai, j1{X j = x}− γ
1/2
N hx(Xi,Ui)|

)
≤ P

(
γ

1/2
N hx(Xi,Ui)< κγ

1/4
N + |

∑
j 6=i

Ai, j1{X j = x}− γ
1/2
N hx(Xi,Ui)|

∣∣∣E )
+P
(

γ
1/2
N hx(Xi,Ui)< κ

′
γ

1/4
N + |

∑
j 6=i

Ai, j1{X j = x}− γ
1/2
N h(Xi,Ui)|

∣∣∣E c
)
×P
(
E c
)
.

Note that by Equation (A.3.5) (which holds conditionally and so also unconditionally)

P
(

γ
1/2
N hx(Xi,Ui)< κ

′
γ

1/4
N + |

∑
j 6=i

Ai, j1{X j = x}− γ
1/2
N hx(Xi,Ui)|

∣∣∣E c
)
×P
(
E c
)
≤ 1

γN
= o(1).

Finally, we can write for a finite constant C̄ < ∞,

P
(

γ
1/2
N hx(Xi,Ui)< κ

′
γ

1/4
N + |

∑
j 6=i

Ai, j1{X j = x}− γ
1/2
N hx(Xi,Ui)|

∣∣∣E )
≤ P

(
γ

1/2
N hx(Xi,Ui)< κ

′
γ

1/4
N +C̄

√
log(2γN)γ

1/2
N

∣∣∣E )
≤ P

(
inf

x,x′,u′
γ

1/2
N hx(x′,u′)< κ

′
γ

1/4
N +C̄

√
log(2γN)γ

1/2
N

∣∣∣E )
= 1
{

inf
x,x′,u′

hx(x′,u′)< κ
′
γ
−1/4
N +C̄

√
log(2γN)γ

−1/4
N

}
which equals to zero for N,γN large enough, since infx,x′,u′ hx(x′,u′)> 0.

Proof of Theorem A.1.4

Recall that G denotes a finite grid with K/2 elements. First, we bound

W (β ∗)−W (β̂ ow)≤ 2 sup
β∈[0,1]p

∣∣∣W (β )−Ŵ (β )
∣∣∣.

By the mean value theorem, we can write for any β k ∈ G

W (β ) =W (β k)+V (β k)>(β −β
k)+O

(
||β k−β ||2

)
,
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Since we construct Ŵ (β ) as in Equation (A.1.7), we can choose β k closest to β . In such a case,

by construction of the grid, O
(
||β k−β ||2

)
= O(1/K2/p) by construction of the grid. We can

then write (using the fact that p < ∞)

sup
β∈[0,1]

∣∣∣W (β )−Ŵ (β )
∣∣∣

≤ sup
β∈[0,1]p,k∈{1,··· ,K}

∣∣∣W (β k)+V (β k)>(β −β
k)−W̄ k−V̂>(k,k+1)(β −β

k)
∣∣∣+O(1/K2/p)

≤ sup
k∈{1,··· ,K}

∣∣∣W (β k)−W̄ k
∣∣∣+ ||V (β k)−V̂k,k+1||∞O(1)+O(1/K2/p).

Observe now that similarly to what discussed in Lemma A.3.6, where here the first order

derivatives cancel out with a second order Taylor expansion, due to the opposite sign of ±ηn in

each cluster,

2E
[
W̄ k
]
=

∫
y(x,β k +ηn)dFX(x)+

∫
y(x,β k−ηn)dFX(x) = 2

∫
y(x,β k)dFX(x)+O(η2

n ).

Using Lemma A.3.3, we can write for all k ≤ K, with probability at least 1−δ ,

W̄ k =W (β k)+O
(√

γN log(pKγN/δ )/n+η
2
n

)
,

where we used the union bound over K, p in the expression. Similarly, from Lemma A.3.7, also

using the union bound over K and p, with probability at least 1−δ ,

||V̂(k,k+1)−V (β k)||∞ = O
(√

γN log(K pγN/δ )/(nη2
n )+ηn

)
,

which concludes the proof as we choose δ = 1/n, since ηn = o(1), and p is finite.
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Proofs for the Extensions

Proof of Theorem A.1.1

Observe that we can write

E
[
Ȳ (k)

t

∣∣∣p(k)t

]
= αt + τk +g

(
q(β +ηn)+op(ηn),β +ηn

)
,

E
[
Ȳ (k)

t

∣∣∣p(k+1)
t

]
= αt + τk +g

(
q(β −ηn)+op(ηn),β −ηn

)
.

From a Taylor expansion in its first argument around q(β +ηn), we obtain

g
(

q(β +ηn)+op(ηn),β +ηn

)
= g
(

q(β +ηn),β +ηn

)
+op(ηn)

and similarly once we subctract ηn. Therefore, we obtain

E
[
Ȳ (k)

t − Ȳ (k+1)
t

∣∣∣p(k)t , p(k+1)
t

]
= τk− τk+1 +g

(
q(β +ηn),β +ηn

)
+op(ηn)−g

(
q(β −ηn),β −ηn

)
.

We can now proceed with a Taylor expansion around of the functions g(·) around β to obtain

(this follows similarly to Lemma A.3.6)

g
(

q(β +ηn),β +ηn

)
−g
(

q(β −ηn),β −ηn

)
= 2Vg(β )ηn +O(η2

n ).

In addition observe that since at the baseline β0 is the same for both clusters,

E[Y (k)
0 −Y (k+1)

0 |p(k)t , p(k+1)
t ] = τk− τk+1 +op(ηn).

The proof concludes from Lemma A.3.3 and the local dependence assumption in Assumption

A.1.1.

Proof of Theorem A.2.3

In this subsection, we derive the theorem for the gradient descent method under Assump-

tion A.2.1, for our extension where we relax global strong concavity. The derivation is split into
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the following lemmas. First define the oracle descent as follows.

Definition A.3.5 (Oracle gradient descent). We define for positive constants ∞ > µ,κ > 0, κ as

defined in Lemma A.3.11, arbitrary v ∈ (0,1)

β
∗
w =


PB1,B2

[
β ∗w−1 +αw−1V (β ∗w−1)

]
if ||V (β ∗w)||2 ≥ κ

µŤ 1/2−v/2

β ∗w−1 otherwise
β
∗
1 = β0, (A.3.6)

for αw = J
Ť 1/2−v/2||V (β ∗w−1)||

,J < 1.

Lemma A.3.11 (Adaptive gradient descent for quasi-concave functions and locally strong

concave). Let B be compact. Define G = max{supβ∈B 2||β ||2,1}. Let Assumption 1.3.1, 1.4.1,

A.2.1 hold. Let κ be a positive finite constant, defined as in Equation (A.3.7). Then for any

v ∈ (0,1), for Ť ≥ ((G+1)/J)1/v, the following holds:

||β ∗Ť −β
∗||2 ≤ κŤ−1+v.

Proof of Lemma A.3.11. To prove the statement, we use properties of gradient descent methods

with gradient norm rescaling (Hazan et al., 2015), with modifications to the original arguments

to explicitely obtain a rate T−1+v for an arbitrary small v, and account for the formalization of

local strong concavity based on the Hessian which we provide in our context.

Preliminaries

Clearly, if the algorithm terminates at w, under Assumption A.2.1 (B), this implies that

||β ∗w−β
∗||22 ≤ κŤ−1+v,

proving the claim. Therefore, assume that the algorithm did not terminate at time w. This

implies that for any w̌≥ 1, ||β ∗w̌−β ∗||22 > κŤ−1+v. Define ε = Ť−1+v and let ∇w be the gradient

evaluated at β ∗w. For every β ∈ B, define H(β )
∣∣∣
[β ∗,β ]

the Hessian evaluated at some point
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β̃ ∈ [β ∗,β ], such that

W (β ) =W (β ∗)+
1
2
(β −β

∗)>H(β )
∣∣∣
[β ∗,β ]

(β −β
∗),

which always exists by the mean-value theorem and differentiability of the objective function.

Define
1
2
(β −β

∗)>H(β )
∣∣∣
[β ∗,β ]

(β −β
∗) = f (β )≤ 0,

where the inequality follows by definition of β ∗ (note that f (β ) also depends on β̃ , whose

dependence we implicitely suppressed).

Claim

We claim that

−|λmax|||β −β
∗||2 ≤ f (β )≤−|λmin|||β −β

∗||2

for constants λmax > λmin > 0. The lower bound follows directly by Assumption 1.3.1, while the

upper bound follows directly from Assumption A.2.1 (C), compactness of B, and continuity of

the Hessian. We provide details for the upper bound in the following paragraph.

Proof of the claim on the upper bound

We now use a contradiction argument. Suppose that the upper bound does not hold. Then

since B is compact (and hence ||β −β ∗|| is bounded away from infinity for all β ∈B), and β ∗

is unique by (A, B) in Assumption A.2.1, there must exist a sequence βs ∈B,βs→ β ∗ such that

f (βs)≥ o(||βs−β ∗||2). Recall that twice continuously differentiability of W (β ), we have that

H(βs)→ H(β ∗). As a result, we can find, for s≥ S, for S large enough, a point in the sequence

such that (since p is finite)

2 f (βs)≤ (βs−β
∗)>H(β ∗)(βs−β

∗)+δ (s)||βs−β
∗||2,
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for δ (s) = |λ̃max(s)|, where λ̃max(s) is the maximum eigenvalue of H(β )
∣∣∣
β∈[βs,β ∗]

−H(β ∗). Note

that such decomposition holds by symmetry of H(β )
∣∣∣
β∈[βs,β ∗]

−H(β ∗). Since H(β ∗) is negative

definite, the above expression is bounded as follows

2 f (βs)≤−(|λ̃min|−δ (s))||βs−β
∗||2,

where |λ̃min|> 0 is the minimum eigenvalue of H(β ∗) (in absolute value) bounded away from

zero by Assumption A.2.1 (C). By continuity of the Hessian, δ (s)→ 0, and we reach a contra-

diction. This result implies strong concavity locally at the optimum. Here λmax > λmin since the

lower bound holds for any finite and large enough λmax.

Cases

Define

κ =
|λmax|
|λmin|

≥ 1. (A.3.7)

Observe now that if ||β ∗w−β ∗||2 ≤ εκ , the claim trivially holds. Therefore, consider the case

where

||β ∗w−β
∗||2 > εκ.

Comparisons within the neighborhood

Take β̃ = β ∗−
√

ε
∇w
||∇w||2 . Observe that

W (β̃ )−W (β ∗w) =
1
2
(β̃ −β

∗)>H(β̃ )
∣∣∣
[β ∗,β̃ ]

(β̃ −β
∗)− 1

2
(β ∗w−β

∗)>H(β ∗w)
∣∣∣
[β ∗,β ∗w]

(β ∗w−β
∗)

≥−|λmax|ε + |λmin|εκ = 0.

As a result, for all β ∗w : ||β ∗w−β ∗||2 > εκ , using quasi-concavity

∇
>
w (β̃ −β

∗
w)≥ 0⇒ ∇

>
w (β

∗−β
∗
w)≥

√
ε||∇w||2 (A.3.8)

197



Plugging in the above expression in the definition of β ∗w

By construction of the algorithm, we write

||β ∗−β
∗
w+1||2 ≤ ||β ∗−β

∗
w||2−2αwJ∇

>
w (β

∗−β
∗
w)+ J2

α
2
w||∇w||2.

By Equation (A.3.8), we can write

||β ∗−β
∗
w+1||2 ≤ ||β ∗−β

∗
w||2−2Jαw

√
ε||∇w||2 + J2

α
2
w||∇w||2.

Plugging in the expression for αw, and using the fact that J ≤ 1, we have

||β ∗−β
∗
w+1||2 ≤ ||β ∗−β

∗
w||2− Jε.

Recursive argument

Recall that since the algorithm did not terminate, ||β ∗−β ∗w̌||2 > εκ , for all w̌≤ w. Using

this argument recursively, we obtain

||β ∗−β
∗
Ť ||

2 ≤ ||β ∗−β0||2− J
Ť∑

s=1

ε = 2max
β∈B
||β ||2− JŤ v ≤ G+1− JŤ v.

Whenever Ť > (G/J+1/J)1/v, we have a contradiction. The proof completes.

Lemma A.3.12. Let Assumption 1.2.1, 1.2.2, 1.4.1, A.2.1 hold. Assume that

εn ≥
√

p
[
C̄

√
γN

log(γN Ť K/δ )

η2
n n

+ηn

]
,

1
4µŤ 1/2−v/2

− εn ≥ 0

for a finite constant C̄ < 0.

Then with probability at least 1−δ , for any δ ∈ (0,1) for any w≤ Ť ,

either (i)
∣∣∣∣∣∣β̌ w

k −β
∗
w

∣∣∣∣∣∣
∞

= O(Pw(δ )+ pηn), or (ii)
∣∣∣∣∣∣β̌ w

k −β
∗
∣∣∣∣∣∣2

2
≤ p

Ť 1−v
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where P1(δ ) = err(δ ) and Pw(δ ) =
2
√

p
νn

Bp
1

Ť 1/2−v/2 Pw−1(δ )+Pw−1(δ )+
2
√

p
νn

1
Ť 1/2−v/2 err(δ ), for

a finite constant Bp < ∞, and err(δ ) = O
(√

γN
log(γN pŤ K/δ )

η2
n n + pηn

)
, with νn =

1
µŤ 1/2−v/2 −2εn.

Proof of Lemma A.3.12. First, by Lemma 1.4.1, the estimated coefficients are exogenous. Hence,

by invoking Lemma A.3.7 and the union bound, we can write for every k and t, δ ∈ (0,1),

V̌ ( j)
k,w =V ( j)(β̌ w

k+2)+O
(√

γN
log(γNKŤ/δ )

η2
n n

+ηn

)
.

We now proceed by induction. We first prove the statement, assuming that the constraint is

always attained. We then discuss the case of the constrained solution. Define

B = psup
β

∣∣∣∣∣∣∂ 2W (β )

∂β 2

∣∣∣∣∣∣
∞

.

Unconstrained case

Consider w = 1. Then since all clusters start from the same starting point β0 recall that

(β ∗1 = β0), we can write with probability 1−δ , by the union bound over p (which hence enters

in the log(p) component of errn) and Lemma A.3.7

∣∣∣∣∣∣V̌k,1−V (β ∗1 )
∣∣∣∣∣∣

∞

≤ err(δ ). (A.3.9)

Consider now the case where the algorithm stops. This implies that it must be that ||V̌k,1||2 ≤
1

µŤ 1/2−v/2 − εn. By Lemma A.3.7

||V (β ∗1 )||2 ≤ ||V̌k,1||2 +
√

perr(δ )≤ 1
µŤ 1/2−v/2

− εn +
√

perr(δ )≤ 1
µŤ 1/2−v/2

. (A.3.10)
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since εn ≥
√

perr(δ ). As a result, also the oracle algorithm stops at β ∗1 by construction of εn.

Suppose the algorithm does not stop. Then it must be that ||V̌k,1|| ≥ 1
µŤ 1/2−v/2 − εn and

||V1(β
∗
1 )|| ≥

1
µŤ 1/2−v/2

− εn−
√

perr1 ≥
1

µŤ 1/2−v/2
−2εn := νn > 0.

Observe now that

∣∣∣∣∣∣ V̌k,1

||V̌k,1||2
−

V (β ∗1 )

||V (β ∗1 )||2

∣∣∣∣∣∣
∞

≤
∣∣∣∣∣∣V̌k,1−V (β ∗1 )

||V (β ∗1 )||2

∣∣∣∣∣∣
∞

+
∣∣∣∣∣∣V̌k,1(||V̌k,1||2−||V (β ∗1 )||2)

||V (β ∗1 )||2||V̌k,1||2

∣∣∣∣∣∣
∞

≤
∣∣∣∣∣∣V̌k,1−V (β ∗1 )

||V (β ∗1 )||2

∣∣∣∣∣∣
∞

+
√

p
∣∣∣∣∣∣V̌k,1−V (β ∗1 )

||V (β ∗1 )||2

∣∣∣∣∣∣
∞

.

(A.3.11)

The last inequality follows from the reverse triangular inequalities and standard properties of the

norms. Then with probability at least 1−δ , for any δ ∈ (0,1)

(A.3.11)≤ 1
νn
×2
√

perr(δ ).

completing the claim for w = 1. Consider now a general w. Define the error until time w−1

as Pw−1.Then for every j ∈ {1, · · · , p}, by Assumption 1.3.1, we have with probability at least

1−wδ (using the union bound),

V̌ ( j)
k,w =V ( j)(β̌ w

k+2)+ err(δ ) =V ( j)(β ∗w +Pw(δ ))+ err(δ )

⇒
∣∣∣∣∣∣V̌k,w−V (β ∗w)

∣∣∣∣∣∣
∞

≤ BPw(δ )+ err(δ ),

where the above inequality follows by the mean-value theorem and Assumption 1.3.1. Suppose

now that ||V̌k,w||2 ≤ 1
µŤ 1/2−v/2 −εn. Then for the same argument as in Equation (A.3.10), we have

||V (β̌ w
k )||2 ≤

1
µŤ 1/2−v/2

.
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Under Assumption A.2.1 (B) this implies that

||β̌ w
k −β

∗||22 ≤
1

Ť 1−v
,

which proves the statement. Suppose instead that the algorithm does not stop. Then we can write

by the induction argument

∣∣∣∣∣∣β̌ w
k +

1
Ť 1/2−v/2

V̌k,w

||V̌k,w||2
−β

∗
w−

1
Ť 1/2−v/2

V (β ∗w)

||V (β ∗w)||2

∣∣∣∣∣∣
∞

≤ Pw(δ )+
1

Ť 1/2−v/2

∣∣∣∣∣∣ V̌k,w

||V̌k,w||2
− V (β ∗w)

||V (β ∗w)||2

∣∣∣∣∣∣
∞︸ ︷︷ ︸

(B)

.

Using the same argument in Equation (A.3.11), we have with probability at least 1−δ ,

(B)≤
2
√

p
νn

[
err(δ )+BPw(δ )

]
,

which completes the proof for the unconstrained case. The Ť component in the error expression

follows from the union bound across all Ť events. The constrained case follows similarly and

omitted for brevity.

Lemma A.3.13. Let the conditions in Lemma A.3.12 hold. Then with probability at least 1−δ ,

for any k ∈ {1, · · · ,K}, for any v ∈ (0,1),δ ∈ (0,1), Ť ≥ ζ 1/v, for ζ < ∞ being a finite constant

||β ∗− β̌
Ť
k ||22 ≤

κ

Ť 1−v
+ Ť eBp

√
pŤ ×O

(
γN

log(pγN Ť K/δ )

η2
n n

+ p2
η

2
n

)
,

with κ,Bp < ∞ being constants independent on (n, Ť ) and εn as defined in Lemma A.3.12.

Proof. We invoke Lemma A.3.12. Observe that we only have to check that the result holds for

(i) in Lemma A.3.12, since otherwise the claim trivially holds. Using the triangular inequality,
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we can write

||β ∗− β̌
Ť
k ||22 ≤ ||β ∗−β

∗
Ť ||

2
2 + ||β̌ Ť

k −β
∗
Ť ||

2
2.

The first component on the right-hand side is bounded by Lemma A.3.11, with Ť ≥ ζ 1/v,ζ being

a constant defined in Lemma A.3.11.

Using Lemma A.3.12, we bound with probability at least 1−δ , the second component

as follows

||β̌ Ť
k −β

∗
Ť ||

2
2 ≤ p||β̌ Ť

k −β
∗
Ť ||

2
∞ = p×O(P2

Ť (δ )).

We conclude the proof by explicitely defining recursively, for all 1 < w≤ Ť ,

Pw = (1+
2Bp
√

p
νnŤ 1/2−v/2

)Pw−1 +
1

Ť 1/2−v/2
errn(δ ), P1 = errn(δ ).

where errn(δ ) =
2
√

p
νn

O(
√

γN
log(pT K/δ )

η2
n n + pηn), and B < ∞ denotes a finite constant. Using a

recursive argument, we obtain

Pw = errn(δ )
w∑

s=1

αs

w∏
j=s

(
2Bp
√

p
νnŤ 1/2−v/2

+1).

Recall now that νn ≥ 1
2µŤ 1/2−v/2 as in Lemma A.3.12. As a result we can bound the above

expression as

w∑
s=1

αs

w∏
j=s

(
2Bp
√

p
νnŤ 1/2−v/2

+1)≤
w∑

s=1

αs

w∏
j=s

(
8µ2Ť 1/2−v/2B

√
p

Ť 1/2−v/2
+1)≤

w∑
s=1

αs exp
( w∑

j=s

8µ
2Bp
√

p
)
.

Now we have

exp
( w∑

j=s

8µ
2Bp
√

p
)
≤ exp

(
8µ

2(w− s)Bp
√

p
)
.
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We now write

Pw(δ )≤ errn(δ )
w∑

s=1

αs exp
(

8µ
2(w− s)Bp

√
p
)
≤ errn(δ )Ť 1/2+v exp

(
8µ

2Ť Bp
√

p
)
,

where we replaced w with Ť . The proof completes.

Corollary 11. Theorem A.2.3 holds.

Proof. Consider Lemma A.3.12 where we choose δ = 1/n. Observe that we choose εn ≤
1

4µŤ 1/2−v/2 , which is attained by the conditions in Lemma A.3.12 as long as n is small enough

such that
√

p
[
C̄

√
log(n)γN

log(pγN Ť K)

η2
n n

+ηn

]
≤ 1

4µŤ 1/2−v/2

attained under the assumptions stated in Lemma A.3.12. As a result, we have νn =
1

4µŤ 1/2−v/2 .

By Lemma A.3.13 for all k, with probability at least 1−1/n,

||β̌ Ť
k −β

∗||2 . p
Ť 1−v

.

Also, we have

||β ∗− 1
K

∑
k

β̌
Ť
k ||22 ≤

1
K

∑
k

||β̌ Ť
k −β

∗||2.

The proof concludes by Theorem A.3.13 and Assumption 1.3.1, after observing that

W (β ∗)−W (β̂ ∗). ||β ∗− β̂
∗||22.
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Proof of Theorem A.1.3

First, we bound

sup
θ∈Θ

W̃ (θ)−W (θ̂)≤ 2
∑

t

qt× sup
(β1,β2)∈[0,1]2

∣∣∣Γ̂(β2,β1)−Γ(β2,β1)
∣∣∣︸ ︷︷ ︸

(A)

. (A),

since
∑

t qt < ∞. To bound (A) observe first that each element in the grid G has a distance

of order 1/
√

K, since the grid has two dimensions and K/3 components. As a result for any

element (β2,β1), we can write

Γ(β2,β1) = Γ(β r
2 ,β

r
1)︸ ︷︷ ︸

(B)

+
∂Γ(β r

2 ,β
r
1)

∂β r
1

(β1−β
r
1)+

∂Γ(β r
2 ,β

r
1)

∂β r
2

(β2−β
r
2)︸ ︷︷ ︸

(C)

+O
(
||β1−β

r
1 ||2 + ||β2−β

r
2 ||2
)

︸ ︷︷ ︸
(D)

where β r ∈ G is some value in the grid such that (B) is of order 1/K. We can now write

(A)≤ sup
(β r

1 ,β
r
2 )∈G ,||β r

1−β1||2+||β r
2−β2||2.1/K

∣∣∣Γ̃(β r
2 ,β

r
1)−Γ(β r

2 ,β
r
1)
∣∣∣︸ ︷︷ ︸

(i)

+ sup
(β r

1 ,β
r
2 )∈G

∣∣∣ĝ2(β
r
2 ,β

r
1)−

∂Γ(β r
2 ,β

r
1)

∂β r
2

∣∣∣(|β2−β
r
2 |+ |β1−β

r
1 |
)

︸ ︷︷ ︸
(ii)

+ sup
(β r

1 ,β
r
2 )∈G

∣∣∣ĝ1(β
r
2 ,β

r
1)−

∂Γ(β r
2 ,β

r
1)

∂β r
1

∣∣∣(|β2−β
r
2 |+ |β1−β

r
1 |
)

︸ ︷︷ ︸
(iii)

+O
(
|β2−β

r
2 |2 + |β1−β

r
1 |2
)
.

We now study each component separately. We start from (i). We observe that under Assumption

A.1.3, by doing a Taylor expansion around (β r
1 ,β

r
2), it is easy to observe that we can write

E[Ȳ (k)
t+1] = Γ(β r

2 ,β
r
1)+O(ηn).

Therefore by Lemma A.3.3, and the union bound over K many elements in G as γN log(γNK)/n→

0, (i)→ 0. Consider now (ii). We observe that since B is compact, we have
(
|β2−β r

2 |+ |β1−

β r
1 |
)
= O(1). In addition, similarly to what discussed in Lemma A.3.7, it follows that with
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probability at least 1−δ ,

∣∣∣ĝ1(β
r
2 ,β

r
1)−

∂Γ(β r
2 ,β

r
1)

∂β r
1

∣∣∣= O
(√

γN log(γN/δ )

η2
n n

+ηn

)
.

Hence, by the union bound as γN log(γNK)
η2

n n = o(1) (ii) = op(1) and similarly (iii). The proof

concludes after observing that |β r
1 −β1|2 + |β r

2 −β2|2 . 1/K by construction of the grid.

Proof of Theorem A.2.1

Let K̃ = K/2l. Take

t j
z =

1√
z

∑z
i=1 X j

i√
(z−1)−1

∑z
i=1(X

j
i − X̄ j)2

, X j
i ∼N (0,σ j

i ).

Recall that by Theorem 1 in Ibragimov and Müller (2010), we have that for α ≤ 0.08

sup
σ1,··· ,σq

P(|tz| ≥ cvα) = P(|Tq−1| ≥ cvα),

where cvα is the critical value of a t-test with level α , and Tz−1 is a t-student random variable with

z−1 degrees of freedom. The equality is attained under homoskedastic variances (Ibragimov

and Müller, 2010). We now write

P
(
Tn ≥ q|H0

)
= P

(
max

j∈{1,··· ,l}
|Q j,n| ≥ q|H0

)
= 1−P

(
|Q j,n| ≤ q∀ j|H0

)
= 1−

l∏
j=1

P
(
|Q j,n| ≤ q|H0

)
,

where the last equality follows by between cluster independence. Observe now that by Theorem

1.3.2 and the fact that the rate of convergence is the same for all clusters (Assumption 1.3.2) 14,

for all j, for some (σ1, · · · ,σz), z = K̃,

sup
q

∣∣∣P(|Q j,n| ≤ q|H0

)
−P
(
|t j

K̃| ≤ q
)∣∣∣= o(1).

14Here we use continuity of the Gaussian distribution, and the fact that l is finite.
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As a result, we can write

sup
σ1,··· ,σK

lim
n→∞

1−
l∏

j=1

P
(
|Q j,n| ≤ q|H0

)
= 1−

l∏
j=1

inf
σ

j
1 ,··· ,σ

j
K̃

P
(
|t j

K̃| ≤ q
)
,

where we used the fact that we use different pairs of (independent) clusters for each entry j.

Using the result in Bakirov and Szekely (2006), we have

inf
σ

j
1 ,··· ,σ

j
K̃

P
(
|t j

K̃| ≤ q
)
= P

(
|TK̃−1| ≤ q|H0

)
.

Therefore,

1−
l∏

j=1

inf
σ

j
1 ,··· ,σ

j
K̃

P
(
|t j

K̃| ≤ q|H0

)
= 1−Pl

(
|TK̃−1| ≤ q

)
.

Setting the expression equal to α , we obtain

1−Pl
(
|TK̃−1| ≤ q

)
= α ⇒ P

(
|TK̃−1| ≥ q

)
= 1− (1−α)1/l.

The proof completes after solving for q.

Proof of Theorem A.2.2

By Lemma 1.2.1, we can write

E[∆̂k(β )] = m(1,1,β )−m(0,1,β )+O(η2
n ).

Following the same strategy as in the proof of Theorem 1.3.4, it is easy to show that

E[Ŝ(0,β )] =
∂m(0,1,β )

∂β
+

1
2

[
αt,k−αt−1,k−αt,k+1 +αt−1,k+1

]
+O(ηn).
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Similarly, we can write

E[Ŝ(1,β )] =
∂m(1,1,β )

∂β
+

1
2

[
αt,k−αt−1,k−αt,k+1 +αt−1,k+1

]
+O(ηn).

The proof completes after noticing that ∂m(1,1,β )
∂β

= 0.

Proof of Theorem A.2.4

The proof mimics the proof of Theorem 1.4.3.

Consider Lemma A.3.10 where we choose δ = 1/n. Note that we can directly apply

Lemma A.3.10 also to the gradient estimated with Algorithm A.5.4, since, by the circular-cross

fitting argument, each parameter β̌ w
k is estimated using sequentially pairs of different clusters as

in Algorithm A.5.4. The rest of the proof follows verbatim from the one of Theorem 1.4.3 and

omitted for brevity.

Proof of Proposition A.1.5

By concavity, we can write

W (β ∗)− 1
K

K∑
k=1

W (β k)≥W (β ∗)−W (
1
K

K∑
k=1

β
k) =W (β ∗)−W (0.5),

which completes the proof, for a suitable choice of W (β ∗)−W (0.5) (e.g., a quadratic function

with β ∗ = 0.3).

Proof of the Corollaries

In this subsection we provide proofs to the corollary which do not directly follow from

the corresponding theorem.
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Proof of Corollary 2

The result directly follows from Theorem A.2.1, here applied to l = 1. The reader may

refer to the proof of Theorem A.2.1 for details.

Proof of Corollary 3

The corollary follows from Lemma A.3.3 and the triangular inequality. Note that the rate

is Kn since, after pooling observations from clusters, we can equivalently interpret ∆̄n as the

estimator from two clusters, each with K/2×n observations.

Proof of Corollary 4

The corollary follows from a second-order Taylor expansion, using the assumption that

the Hessian is uniformly bounded.

Proof of Corollary 10

From Theorem 1.3.2, we know that

(V̂k,k+1−V (β (θk),θk))√
Var(V̂k,k+1)

→d N (0,1),

since θk = θk+1 by construction of the pairs (assumption in the corollary). Therefore, we can

directly apply Theorem A.2.1, here applied to l = 1, since, under H0, each estimated marginal

effect (for each type) is centered around zero, and, the theorem does not require that clusters

have the same variance. The reader may refer to the proof of Theorem A.2.1 for details.

Numerical Studies: Additional Results

One-wave Experiment

In Figure A.4.3 we report the power plot for ρ = 6. In Figure A.4.4 we report the

welfare gain from increasing β by 5% upon rejection of H0 for ρ = 6. In Figure A.4.7 we report
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comparisons for different values of ηn.

Multiple-wave Experiment

In Table A.4.1 the comparison with competitors for ρ = 6. Results are robust as in the

main text. In Figure A.4.5 we report a comparison among different learning rates, which are

the one which rescales by 1/t, the one that rescales by 1/
√

T and the one that rescales by 1/
√

t.

The best performing learning rate rescales the step size by a factor of order 1/
√

t.

Calibrated Experiment with Covariates for Cash Transfers

In this subsection, we turn to a calibrated experiment where we also control for covariates,

as discussed in Section 1.2.3. We use data from Alatas et al. (2012, 2016). We estimate a

function heterogenous in the distance of the household’s village from the district’s center. We

use information from approximately four hundred observations, whose eighty percent or more

neighbors are observed. We let Xi ∈ {0,1},Xi = 1 if the household is far from the district’s center

than the median household, and estimate

Yi|Xi = x = φ0 + X̃iτ +Diφ1,x +

∑
j 6=i A j,iD j

max{
∑

j 6=i A j,i,1}
φ2,x +

( ∑
j 6=i A j,iD j

max{
∑

j 6=i A j,i,1}

)2
φ3,x +ηi,

(A.4.1)

where ηi are unobservables centered on zero conditional on Xi = x, and X̃i denotes controls

which also include Xi.15 Using the estimated parameter, we can then calibrate the simulations

as follows. We let ηi,t ,∼N (0,σ2), where σ2 is the residual variance from the regression. We

then generate the network and the covariate as follows:

Ai, j = 1
{
||Ui−U j||1 ≤ 2ρ/

√
N
}
, Ui ∼i.i.d. N (0, I2), Xi = 1{U (1)

i > 0}.

15We also control for the education level, village-level treatments, i.e., how individuals have been targeted in a
village (i.e., via a proxy variable for income, a community-based method, or a hybrid), the size of the village, the
consumption level, the ranking of the individual poverty level, the gender, marital status, household size, the quality
of the roof and top (which are indicators of poverty).
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Here, U (1)
i is continuous and captures a measure of distances. Individuals are more likely to be

friends if they have similar distances from the center, and Xi is equal to one if an individual is

far from the district’s center from the median household. We fix ρ = 1.5 to guarantee that the

objective’s function optimum is approximately equal to the optimum observed from the data (in

calibration, the optimum is β ≈ 0.26, while β ∗ ≈ 0.29 on the data). We then generate data

Yi,t |Xi = x = Diφ̂1,x +

∑
j 6=i A j,iD j

max{
∑

j 6=i A j,i,1}
φ̂2,x +

( ∑
j 6=i A j,iD j

max{
∑

j 6=i A j,i,1}

)2
φ̂3,x +ηi,t . (A.4.2)

where we removed covariates that did not interact with the treatment rule (i.e., do not affect

welfare computations). Our policy function is π(x;β ) = xβ +(1− x)(1−β ) where β is the

probability of treatment for individuals farer from the center. Here, we implicitely imposed a

budget constraint βP(Xi = 1)+(1−β )P(Xi = 0) = 1/2, where, by construction P(Xi = 1) = 1/2.

We collect results for the one-wave experiment in Figure A.4.6, A.4.8 (left-panel), where

we report power and the relative improvement from improving by 5% the treatment probability

for people in remote areas as discussed in the main text. Welfare improvements (and power)

are increasing in the cluster size and the number of clusters. However, such improvements

are negligible as we increase clusters from twenty to forty, suggesting that twenty clusters are

sufficient to achieve the largest welfare effects.16 In the right-hand side panel of Figure A.4.8 we

report the out-of-sample regret. The regret is generally decreasing in the number of iterations,

especially as the regret is further away from zero. As the regret gets almost zero (0.06%), the

regret oscillates around zero as the number of iterations increases due to sampling variation. This

behavior is suggestive that for some applications, few iterations (in this case, ten) are sufficient to

reach the optimum, up to a small error. In Table A.4.2, we observe perfect coverage for n = 600,

and under-coverage by no more than five percentage points in the remaining cases.

16The order of magnitude of the welfare gain is smaller compared to simulations with the unconditional probability
since, here, we always treat exactly half of the population. As a result, welfare oscillates between 0.24 and 0.29
only (as opposed to zero to one as in the unconditional case), as shown in Figure 1.2.
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Calibrated Simulations to M-Turk Experiment: Additional Details

In this subsection, we provide details for estimation for the experiment in Section 1.5.3.

In the treatment arm there were multiple answers questions. The first question asked is

Which of these events caused more deaths of Covid in the US? (more answers allowed), giving

four options (World War I and II, 50 times more than 9/11, US Civil war); What is the percentage

of people in the US who had Covid within the last year? (approximately); The number of

people infected from Covid in the last year is comparable to ... (giving three options). Each

correct answer rewarded a small bonus and was displayed right after the participant submitted

her answer to the three questions (before the end of the survey). In addition, at the end of the

survey, participants were asked again one of the three questions, whose correct answer rewards a

bonus. Participants were made aware of the bonuses and the survey’s structure. The scope of

the treatment was to increase awareness of the severity of the disease by asking questions and

showing the correct answers to facilitate information transmission. At the end of the survey, both

controls and treated units were asked when they would have done the vaccine. Our outcome of

interest is binary and equals whether individuals would have done the vaccine either as soon

as possible or during the spring. We estimate the model with 1035 participants. We estimate

treatment effects by running a simple linear regression, where the treatment dummy interacts

with the dummy, indicating whether the individual classifies herself as liberal, conservative, or

“prefer not to say”. We consider a model and policy function as in Section A.4.3, where X , in

this case, denotes whether an individual is liberal or conservative (drawn with the same DGP as

in Section A.4.3 for simplicity), and ρ = 2 as in the main text. We calibrate φ̂1,x to the estimated

direct treatment effect and fix the percentage of treatment units to fifty percent. A challenge

here is that we do not know spillovers φ2x,φ3x. Therefore, we choose φ3,x = rφ2,x, where r

is estimated from data on information diffusion from Cai et al. (2015) for simplicity.17 We

choose φ2,x + rφ2,x = max{αφ1,x,0}, i.e., total spillovers equal direct effect φ1,x times a constant

17Other choices are possible but omitted for brevity.
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α ∈ {0.1,0.2,0.3,0.4} if these are positive, and zero otherwise.

Additional Figures and Tables
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Figure A.4.1. Simulations: power in one-wave experiment in Section 1.5. 200 replications,
ρ = 2. The panels at the top fix n = 400 and varies K. The panels at the bottom fix K = 20 and
vary n.

212



Cluster_size 200 400 600

0.08

0.12

0.16

0.20

5 10 15 20

T (=K/2)

R
e

g
re

t

Targeting Information

0.20

0.24

0.28

5 10 15 20

T (=K/2)

R
e

g
re

t

Targeting Cash Transfers

Figure A.4.2. Simulations: in-sample regret in Section 1.5. 200 replications. ρ = 2.
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Figure A.4.3. Simulations: power plot with a dense network in Section 1.5, ρ = 6. The panels
at the top fix n = 400 and varies K. The panels at the bottom fix K = 20 and vary n.
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Figure A.4.4. Simulations: welfare analysis with a dense network. One-wave experiment in
Section 1.5. ρ = 6. Expected percentage increase in welfare from increasing the probability of
treatment β by 5% upon rejection of H0. Here, the x-axis reports β ∈ [0.1, · · · ,β ∗−0.05]. The
panels at the top fix n = 400 and varies the number of clusters. The panels at the bottom fix
K = 20 and vary n.
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Figure A.4.6. Simulations: Single-wave experiment in Section A.4.3. Power, 200 replications.
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Figure A.4.7. Simulations: comparisons between different perturbations. One wave experiment
calibrated to Alatas et al. (2012) and Cai et al. (2015). The plot reports power for different values
of ηn varies, with K = 200,n = 400, with 200 replications.
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Table A.4.1. Simulations: welfare with a dense network. Multiple-wave experiment in Section
1.5, ρ = 6. The panel at the top reports the out-of-sample regret and the one at the bottom the
worst case in-sample regret across clusters.

Information Cash Transfer

T = 5 10 15 20 5 10 15 20

n = 200 -0.023 0.012 0.039 0.029 0.405 0.475 0.542 0.358

n = 400 0.001 0.020 0.019 0.029 0.546 0.483 0.602 0.548

n = 600 0.0004 0.030 0.022 0.020 0.571 0.481 0.614 0.643

n = 200 1.238 1.488 1.546 1.516 0.347 0.415 0.429 0.416

n = 400 1.494 1.690 1.704 1.624 0.482 0.576 0.550 0.498

n = 600 1.579 1.791 1.809 1.689 0.606 0.689 0.664 0.586

Table A.4.2. Simulations: coverage with covariates. Single-wave experiment in Section A.4.3,
200 replications, size 5%.

K = 10 20 30 40

n = 200 0.940 0.950 0.895 0.900
n = 400 0.970 0.940 0.905 0.935
n = 600 0.950 0.970 0.950 0.940
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Figure A.4.8. Simulations: results with covariates (Section A.4.3). The panel on the left reports
the relative welfare improvement from increasing the treatment probability in remote areas by
5% upon rejection of H0. The panel on the right reports the in-sample regret. 400 replications.
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Additional Algorithms

Algorithm A.5.1. Adaptive Experiment with Many Coordinates

Require: Starting value β0 ∈ R, K clusters, T +1 periods of experimentation, constant C̄.
1: Create pairs of clusters {k,k+1},k ∈ {1,3, · · · ,K−1};
2: t = 0(baseline):

a: Assign treatments as D(h)
i,0 |X

(h)
i = x∼ π(x;β0) for all h ∈ {1, · · · ,K}.

b: For n units in each cluster observe Y (h)
i,0 ,h ∈ {1, · · · ,K}.

c: For cluster k initalize a gradient estimate V̂k,t = 0 and initial parameters β̌ o
k = β0.

3: while 1≤ w≤ Ť = T
p do

4: for each j ∈ {1, · · · , p} do
a: Define

β̌
w
h =

 PB1,B2−ηn

[
β̌

w−1
h +αh+2,w−1V̂h+2,w−1

]
, h ∈ {1, · · · ,K−2},

PB1,B2−ηn

[
β̌

w−1
h +αh+2,w−1V̂1,w−1

]
,h ∈ {K−1,K}.

Here, PB1,B2−ηn denotes the projection operator onto the set [B1,B2−ηn]
p.

b: Assign treatments as (for a finite constant C̄)

D(h)
i,t |X

(h)
i,t = x∼ π(x,βh,w), βh,w =

{
β̌ w

h +ηne j if h is odd
β̌ t

h−ηne j if h is even
, C̄n−1/2 < ηn < C̄n−1/4

where e j is the vector of zero, with entry j equal to one (see Equation (1.9)).

c: For n units in each cluster h ∈ {1, · · · ,K} observe Y (h)
i,t .

d: For each pair {k,k+1}, estimate

V̂ ( j)
k,w = V̂ ( j)

k+1,w =
1

2ηn

[
Ȳ (k)

t − Ȳ (k)
0

]
− 1

2ηn

[
Ȳ (k+1)

t − Ȳ (k+1)
0

]
.

e: t← t +1.
5: end for

f: w← w+1.
6: end while
7: Return β̂ ∗ = 1

K
∑K

k=1 β̌ Ť
k
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Algorithm A.5.2. Dynamic Treatment Effects with β ∈ R
Require: Parameter space B, clusters {1, · · · ,K}, two periods {t, t +1}, perturbation ηn.

1: Group clusters into groups r ∈ {1, · · · ,K/3} of {k,k+1,k+2};
2: Construct a grid of parameters G ⊂ [0,1]2 equally spaced on [0,1]2;
3: Assign each parameter (β r

1 ,β
r
2) ∈ G to a different triad r.

4: for each r ∈ {1, · · · ,K/3} do

D(k)
i,t |X

(k)
i ,β r

1 ,β
r
2 ∼ π(X (k)

i ,β r
2)

D(k)
i,t+1|X

(k)
i ,β r

1 ,β
r
2 ∼ π(X (k)

i ,β r
1)

D(k+1)
i,t |X (k)

i ,β r
1 ,β

r
2 ∼ π(X (k)

i ,β r
2 +ηn)

D(k+1)
i,t+1 |X

(k)
i ,β r

1 ,β
r
2 ∼ π(X (k)

i ,β r
1)

D(k+2)
i,t |X (k)

i ,β r
1 ,β

r
2 ∼ π(X (k)

i ,β r
2)

D(k+2)
i,t+1 |X

(k)
i ,β r

1 ,β
r
2 ∼ π(X (k)

i ,β r
1 +ηn)

. (A.5.1)

5: end for
6: For each k ∈ {1,4, · · · ,K−2} estimate

ĝ1,k =
Ȳ (k)

t+1− Ȳ (k+2)
t+1

ηn
, ĝ2,k =

Ȳ (k)
t+1− Ȳ (k+1)

t+1

ηn
, Γ̃k =

1
3

∑
h∈{k,k+1,k+2}

Ȳ (h)
t+1 (A.5.2)

Algorithm A.5.3. Welfare maximization with a “non-adaptive” experiment

Require: K clusters, T = p periods; pairs of clusters {k,k+1},k ∈ {1,3, · · · ,K−1};
1: t = 0:

a: For n units in each cluster observe the baseline outcome Y (h)
i,0 ,h ∈ {1, · · · ,K}.

b: Assign each pair (k,k+1) to an element β k ∈ G , where G is an equally spaced grid of B
2: while 1≤ t ≤ T do

a: Assign treatments as

D(h)
i,t ∼ π(1,β h), β

h =

{
β̌ h +ηnet if h is even
β̌ h−1−ηnet if h is odd

, n−1/2 < ηn ≤ n−1/4

b: For each pair (k,k+1), constructs the t entry

V̂ (t)
(k,k+1)(β

k) =
1

2ηn

[
Ȳ k

t − Ȳ k
0

]
− 1

2ηn

[
Ȳ k+1

t − Ȳ k+1
0

]
(A.5.3)

3: end while
4: Return β̂ ow as in Equation (A.1.7).
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Algorithm A.5.4. Adaptive Experiment with staggered adoption

Require: Starting value β ∈ R, K clusters, T +1 periods of experimentation.
1: Create pairs of clusters {k,k+1},k ∈ {1,3, · · · ,K−1};
2: t = 0:

a: For n units in each cluster observe the baseline outcome Y (h)
i,0 ,h ∈ {1, · · · ,K}, β̌ 0 = β .

b: Initalize a gradient estimate V̂t = 0
3: while 1≤ t ≤ T do

a: Sample without replaceent one pair of clusters {k,k + 1} not observed in previous
iterations;
b: Define

β̌
t = β̌

t−1 +αtV̂t ;

c: Assign treatments as

D(h)
i,t ∼ π(1,βt), βt =

{
β̌ t +ηn if h is even
β̌ t−ηn if h is odd

, n−1/2 < ηn ≤ n−1/4

d: For n units in each cluster h ∈ {1, · · · ,K} observe Y (h)
i,t .

4: end while
5: Return β̂ ∗ = β̌ T
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Appendix B

Appendix to Chapter 2

Extensions

In this section, we discuss two extensions: spillovers on non-compliance and target and

sampled units having different distributions.

Spillovers on Non-Compliance: Identification of Welfare Effects

In the presence of non-compliance, we interpret the problem from an intention to treat

perspective. A challenge is that the treatment assigned to an individual also influences the

selection into the treatment of her friends. We use as a working model the one in Equation (2.7).

The model is consistent with an exogenous interference model over the compliance: it states

that the selection into the treatment of an individual depends on her and neighbors’ treatment

assignment. Denote

Ti(π) = hθ

(
π(Xi),

∑
k∈Ni

π(Xk),Zi, |Ni|,νi

)
the potential selected treatment, if treatments Di were assigned under policy π(·) (i.e., Di =

π(Xi))). In the following theorem, we show that the utilitarian welfare is the expected outcome,

once treatments Di are assigned according to the deterministic rule π(Xi). Denote Eπ the

expectation conditional on the event that Di = π(Xi) for all i ∈ {1, · · · ,E}.
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Theorem B.1.1. Consider the model in Equation (2.7). Assume that the following holds:

εi ⊥
(

A,Z,(ν j)
E
j=1,(εD j)

E
j=1

)∣∣∣Zi, |Ni|, νi ⊥
(

A,Z,(εD j)
E
j=1

)
,

with νi being i.i.d.. Then, for each i ∈ {1, · · · ,E},

Eπ [Yi] =E
[
r
(

Ti(π),
∑
k∈Ni

Tk(π),Zi, |Ni|,εi

)]
= E

[ ∑
d∈{0,1},s∈{0,··· ,|Ni|}

Ji(d,s)×Hi(d,s,π)
]
, (B.1.1)

where
Ji(d,s) = E

[
Yi

∣∣∣Zi, |Ni|,Ti = d,
∑
k∈Ni

Tk = s
]

Hi(d,s,π) = Pθ

(
Ti = d

∣∣∣Zi, |Ni|,Vi(π)
)
×

∑
u1,··· ,ul :

∑
v uv=s

|Ni|∏
k=1

Pθ

(
T
N

(k)
i

= uk

∣∣∣Z
N

(k)
i

, |N
N

(k)
i
|,V

N
(k)

i
(π)
)
,

(B.1.2)

where Vi(π) =
{

Di = π(Xi),
∑

k∈Ni
Dk =

∑
k∈Ni

π(Xk),π(Xi),
∑

k∈Ni
π(Xk)

}
, and Pθ (Ti = 1|·)

denotes the conditional probability of selection into treatment indexed by the parameters θ .

The proof is contained in Appendix B.6. Theorem B.1.1 defines a causal estimand in

terms of simple to estimate conditional expectations. This is commonly adopted in the literature

on mediation analysis and g-estimation in bio-statistics (see, e.g., Naimi et al. 2017), while here

we adopt such a framework in the context of interference.

The welfare effect of an incentive π depends on conditional mean functions that can be

estimated from observed data. Here Ji(·) denotes the conditional mean of the outcome variable

given the selected treatment, and Hi(·) denotes the conditional probability of selecting into

treatment, conditional on the individual and neighbors’ incentives. Observe that Hi(·) takes

a simple expression which only depends on the individual probability of selected treatments

Pθ (Ti = 1|·), conditional on individual’s and neighbors’ treatment assignments.

Interestingly, Hi(·) also depends on the treatment assigned to the second-degree neighbors.

This is intuitive: an incentive to Elena affects the selection into the treatment of her friend Matteo
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whose decision affects the outcome of Matteo’s friend Riccardo. Therefore identification requires

information from first-degree and second-degree neighbors.

Contrasting with existing literature, a strand of literature on interference and non compli-

ance includes Imai et al. (2018), Kang and Imbens (2016), Vazquez-Bare (2022), DiTraglia et al.

(2020), and the recent work of Kim (2020). The above references discuss the identification of

treatment effects under non-compliance without discussing the problem of welfare maximization.

This is an important difference that motivates the exogenous interference model we propose

in Equation (2.7) and the identification strategy that uses information from the second-degree

neighbors.1

Different Target and Sample Units

Finally, we study the case where target and sampled units are drawn from different

populations. The following condition is imposed.

Assumption B.1.1. Assume that target and sample units follow the following laws:

(Zi,Zk∈Ni)
∣∣∣|Ni| ∼ Fs,|Ni|, |Ni| ∼ Gs ∀i ∈ {1, · · · ,E},

(Zi,Zk∈Ni)
∣∣∣|Ni| ∼ Ft,|Ni|, |Ni| ∼ Gt ∀i ∈I .

with unobservables εi|Zi,Zk∈Ni, |Ni| having the same conditional distribution in the target and

sample population.

Assumption B.1.1 states that the distributions of individual covariates, neighbors’ co-

variates, and the number of neighbors differ across the target and sampled units only. The

assumption reads as follows: the joint distribution of (Zi,Zk∈Ni), given the degree |Ni| is the

same across units having the same degree and being in the same population (either target or

1We note in particular that the difference with Kim (2020) is that our model provides a simple closed-form
expression of potential outcomes as functions of the realized treatments and exploits a local interference model also
over the compliance, while Kim (2020) proposes potential outcomes as functions of expected treatments.
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sampled population) and similarly the marginal distribution of |Ni|, whereas such distributions

may be different between target and sampled units.

Under the second condition in Assumption B.1.1 the conditional mean function is the

same on target and sampled units, whereas the distribution of covariates and network may

differ. We define fs,|Ni|, ft,|Ni| the corresponding Radon-Nikodym derivatives of Fs,|Ni|,Ft,|Ni|,

of sampled and target units with respect to a common dominating measure on Z ×Z |Ni| and

similarly gs,gt the corresponding Radon-Nikodym derivatives of Gs,Gt .2 Then, we impose the

following condition:

Assumption B.1.2. Assume that

ft,|Ni|(Zi,Zk∈Ni)gt(|Ni|) = ρ(Zi,Zk∈Ni, |Ni|) fs,|Ni|(Zi,Zk∈Ni)gs(|Ni|),

with ρ(Zi,Zk∈Ni, |Ni|)≤ ρ̄ < ∞ almost surely.

Assumption B.1.2 follows similarly to Kitagawa and Tetenov (2018), where the ratio of

the two densities is assumed to be bounded almost surely. The empirical welfare criterion is

constructed as follows:

W t
n(π,m

c,ec) =

1
n

n∑
i=1

[1{Si(π) =
∑

k∈Ni
Dk,π(Xi) = Di}

ec
(

π(Xi),Si(π),Zk∈Ni ,Zi, |Ni|
) (Yi−mc(π(Xi),Si(π),Zi, |Ni|)

)
ρ(Zi,Zk∈Ni , |Ni|)

]

+
1
n

n∑
i=1

[
mc(π(Xi),Si(π),Zi, |Ni|)ρ(Zi,Zk∈Ni , |Ni|)

]
.

(B.1.3)

We can now state the following theorem whose proof is contained in Appendix B.5.

Theorem B.1.2. Let Assumptions 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.3.1, 2.3.2, B.1.1, B.1.2, and

either mc = m or ec = e hold. Then we obtain that for π̂
aipw
mc,ec maximizing Equation (B.1.3),

E
[

sup
π∈Π

W (π)−W (π̂aipw
mc,ec)

]
= O

(
E[PM,|L |(NE)]

√
VC(Π)

n

)
,

2Since |Ni| is discrete, gs(l),gt(l) corresponds to the probability of the number of neighbors being equal to l.
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for a polynomial function PM,|L | with bounded degree.

A Numerical Study

In this section, we study the numerical performance of the proposed methodology in a

small simulation study. We simulate data according to the following data generating process

(DGP):

Yi = |Ni|−1
(

Xiβ1 +Xiβ2Di +µ

)∑
k∈Ni

Dk +Xiβ3Di + εi

εi = ηi/
√

2+
∑
k∈Ni

ηk/
√

2|Ni|, ηi ∼i.i.d. N (0,1),
(B.2.1)

where |Ni| is set to be one for the elements with no neighbors. We simulate covariates as

Xi,u ∼i.i.d. U (−1,1) for u ∈ {1,2,3,4}. We draw β1,β2,µ ∈ {−1,1}3 independently and with

equal probabilities. We draw β3 ∈ {−1.5,1.5} with equal probabilities. We evaluate the NEWM

method with and without balancing score adjustment, under correct specification of the condi-

tional mean function. We impose trimming at 1% on the estimation of the balancing score. We

compare the performance of the proposed methodology to two competing methods that ignore

network effects. These are the empirical welfare maximization procedures with and without

regression adjustment (Kitagawa and Tetenov, 2018; Athey and Wager, 2021).3 For any of the

method under consideration, we consider a policy function of the form

π(Xi) = 1
{

Xi,1φ1 +Xi,2φ2 +φ3 ≥ 0
}
. (B.2.2)

Optimization is performed using the MILP formulation.

3Namely, first, we consider the empirical welfare maximization method that does not account for network
interference discussed in Kitagawa and Tetenov (2018) with a known balancing score of individual treatment.
Second, we also compare the double robust formulation of the EWM method discussed in Athey and Wager (2021),
with a linear model specification without network information.
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In the first set of simulations, we consider a geometric network formation of the form

Ai, j = 1
{
|Xi,2−X j,2|/2+ |Xi,4−X j,4|/2≤ rn

}
(B.2.3)

where rn =
√

4/2.75n similarly to simulations in Leung (2020). In the second set of simulations,

we generate Barabasi-Albert networks, where we first draw n/5 edges uniformly according to

Erdős-Rényi graph with probabilities p = 10/n, and second, we draw sequentially connections

of the new nodes to the existing ones with probability equal to the number of connection of

each pre-existing node divided by the overall number of connections in the graph. We estimate

the methods over 200 data sets, and we evaluate the performance of each estimate over 1000

networks, drawn from the same DGP. Results are collected in Table B.2.1. The table reports the

welfare for different sample sizes. Observe that by construction, the sample size also corresponds

to different data-generating processes of the network formation model, which, in turn, may shift

by a constant the value of the regret.4 The table shows that our procedure uniformly outperforms

methods that ignore network effects.

Table B.2.1. Simulation results. Out-of-sample median welfare over 200 replications. DR is the
method in Athey and Wager (2021) with estimated balancing score and EWM PS is the method
in Kitagawa and Tetenov (2018) with known balancing score. NEWM1 is the proposed method
with a correctly specified outcome model. NEWM2 is the double robust NEWM. G denotes the
geometric network, and AB the Albert-Barabasi network. Different sample sizes correspond to
different data-generating processes.

Welfare n = 50 n = 70 n = 100 n = 150 n = 200

G AB G AB G AB G AB G AB

DR 1.51 0.94 1.50 1.08 1.42 1.05 1.53 0.95 1.41 0.95

EWM PS 1.21 0.93 1.23 0.92 1.32 0.93 1.38 0.90 1.29 0.95

NEWM1 1.74 1.31 1.87 1.38 1.93 1.37 1.91 1.40 2.00 1.39

NEWM2 1.78 1.22 1.89 1.33 1.89 1.37 1.94 1.28 1.95 1.33

4Namely supπ∈Π W (π) may differ across sample sizes because sample sizes correspond to different DGPs.
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Proofs: Notation and Definitions

Before discussing the main results, we need to introduce the necessary notation. We

define Si(π) =
∑

k∈Ni
π(Xk). We denote An the space of symmetric matrices in Rn×n with

entries being either zero or ones.

Definition B.3.1 (Proper Cover). Given an adjacency matrix An ∈An, with n rows and columns,

a family Cn = {Cn( j)} of disjoint subsets of [n] is a proper cover of An if ∪Cn( j) = [n] and Cn( j)

contains units such that for any pair of elements {(i,k) ∈ Cn( j),k 6= i}, A(i,k)
n = 0.

The size of the smallest proper cover is the chromatic number, defined as χ(An).

Definition B.3.2 (Chromatic number). The chromatic number χ(An), denotes the size of the

smallest proper cover of An.

Definition B.3.3. For a given matrix A ∈A , we define A2
n(A) ∈An the adjacency matrix where

each row corresponds to a unit i ∈ {1, ...,n} and where two of such units are connected if they

are neighbor or they share one first or second degree neighbor. Similarly AM
n (A) is the adjacency

matrix obtained after connecting such units sharing common neighbors up to Mth degree. Here

Ni,M defines the set of neighbors of individual i ∈ {1, · · · ,n} with adjacency matrix AM
n .

The proper cover of A2
n is defined as C 2

n = {C 2
n ( j)} with chromatic number χ(A2

n).

Similarly C M
n = {C M

n ( j)} with chromatic number χ(AM
n ) is the proper cover of AM

n .

Next, we discuss definitions on covering numbers.5 For zn
1 = (z1, ...,zn) be arbitrary

points in Z , for a function class F , with f ∈F , f : Z 7→ R, we define,

F (zn
1) = { f (z1), ..., f (zn) : f ∈F}. (B.3.1)

Definition B.3.4. For a class of functions F , with f : Z 7→ R, ∀ f ∈ F and n data points

z1, ...,zn ∈Z define the lq-covering number Nq

(
ε,F (zn

1)
)

to be the cardinality of the smallest

5Here we adopt similar notation to Chapter 28 and Chapter 29 of Devroye et al. (2013).
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cover S := {s1, ...,sN}, with s j ∈ Rn, such that for each f ∈F , there exist an s j ∈S such that

(1
n
∑n

i=1 | f (zi)− s(i)j |q)1/q < ε.

Throughout our analysis, for a random variable X = (X1, ...,Xn) we denote EX [.] the

expectation with respect to X . The Rademacher complexity is defined as follows.

Definition B.3.5. Let X1, ...,Xn be arbitrary random variables. Let σ = {σi}n
i=1 be i.i.d

Rademacher random variables (i.e., P(σi =−1) = P(σi = 1) = 1/2), independent of X1, ...,Xn.

We define the empirical Rademacher complexity as

Rn(F ) = Eσ

[
sup f∈F |

1
n

n∑
i=1

σi f (Xi)|
∣∣∣X1, ...,Xn

]
. (B.3.2)

Main Lemmas

Lemma B.4.1. The following holds: χ(An)≤ χ(AM
n )≤MN M+1

n,M+1.

Proof of Lemma B.4.1. The first inequality follows by Definition B.3.3. The second inequality

follows by Brook’s Theorem (Brooks, 1941), since two individuals (i, j) ∈ {1, · · · ,n}2 are

connected if they share a common neighbor up to the Mth degree. The maximum degree is

bounded by Nn,1 +Nn,1×Nn,2 + · · ·+
∏M+1

s=1 Nn,s ≤MN M+1
n,M+1.

Lemma B.4.2. Let F1, · · · ,Fk be classes of bounded functions with VC-dimension v < ∞ and

envelope F̄ < ∞, for k ≥ 2. Let

J =
{

f1( f2 + ...+ fk), f j ∈F j, j = 1, ...,k
}
, Jn(zn

1) =
{

h(z1), ...,h(zn);h ∈J
}
.

For arbitrary fixed points zn
1 ∈ Rd ,

∫ 2F̄
0

√
log
(
N1

(
u,J (zn

1)
))

du < cF̄
√

k log(k)v. for a con-

stant cF̄ < ∞ that only depend on F̄.

Proof of Lemma B.4.2. Let F−1(zn
1) = { f2(zn

1)+ ...+ fk(zn
1), f j ∈F j, j = 2, ...,k}. By Theorem
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29.6 in Devroye et al. (2013),

N1

(
ε,F−1(zn

1)
)
≤

k∏
j=2

N1

(
ε/(k−1),F j(zn

1)
)
.

By Theorem 29.7 in Devroye et al. (2013),

N1

(
ε,Jn(zn

1)
)
≤

k∏
j=2

N1

(
ε

2(k−1)F̄
,F j(zn

1)
)
N1

(
ε

2F̄
,F1(zn

1)
)
. (B.4.1)

By standard properties of covering numbers, for a generic set H , N1(ε,H ) ≤ N2(ε,H ).

Therefore

(B.4.1)≤
k∏

j=2

N2

(
ε

2(k−1)F̄
,F j(zn

1)
)
N2

(
ε

2F̄
,F1(zn

1)
)
.

We apply now a uniform entropy bound for the covering number. By Theorem 2.6.7 of Van

Der Vaart and Wellner (1996), we have that for a universal constant C < ∞,

N2

(
ε

2(k−1)F̄
,F j(zn

1)
)
≤C(v+1)(16e)(v+1)

(2F̄2(k−1)
ε

)2v

which implies that

log
(
N1

(
ε,Jn(zn

1)
))
≤

k−1∑
j=1

log
(
N2

(
ε

2F̄(k−1)
,F j(zn

1)
))

+ log
(
N2

(
ε

2F̄
,F1(zn

1)
))

≤ k log
(

C(v+1)(16e)v+1
)
+ k2v log(2CF̄2(k−1)/ε).

Since
∫ 2F̄

0

√
k log

(
C(v+1)(16e)v+1

)
+ k2v log(2CF̄2(k−1)/ε)dε ≤ cF̄

√
k log(k)v for a con-

stant cF̄ < ∞, the proof completes.

The following lemma controls the Rademacher complexity with individualized treat-

ments.

Lemma B.4.3. Let Π be a function class with π : Rd 7→ {0,1} for any π ∈ Π, with finite VC-

dimension, denoted as VC(Π). Take arbitrary random variables (X (1)
i , · · · ,X (hi)

i ,Vi),Xi,Vi ∈ Rd ,

functions fi : Z 7→ R, with fi L-lipschitz for all i ∈ {1, · · · ,n}. Let h̄ = maxi hi. Let σ1, · · · ,σn be
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independent Rademacher random variables (independent of (Xi,Vi)
n
i=1). Then for a constant

C < ∞ independent of L, h̄ and n

Eσ

[
sup
π∈Π

∣∣∣1
n

n∑
i=1

fi

( ∑
k∈{1,...,hi}

π(X (k)
i )
)

π(Vi)σi

∣∣∣]≤CL

√
(h̄+1) log(h̄+1)VC(Π)

n
. (B.4.2)

Proof of Lemma B.4.7. We first discuss the case where hi = h for all i. We then turn to the case

where this condition fails at the end of the proof.

Lipschitz properties

First, we add and subtract the value of the function fi(0) at zero. Namely,

Eσ

[
sup
π∈Π

∣∣∣1
n

n∑
i=1

σi

(
fi

( ∑
k∈{1,...,h}

π(X (k)
i )
)
− fi(0)+ fi(0)

)
π(Vi)

∣∣∣]

≤ Eσ

[
sup
π∈Π

∣∣∣1
n

n∑
i=1

σi

(
fi

( ∑
k∈{1,...,h}

π(X (k)
i )
)
− fi(0)

)
π(Vi)

∣∣∣]
︸ ︷︷ ︸

(1)

+Eσ

[
sup
π∈Π

∣∣∣1
n

n∑
i=1

σi fi(0)π(Vi)
∣∣∣]︸ ︷︷ ︸

(2)

(B.4.3)

where the last inequality follows by the triangular inequality. We bound first (1). We decompose

the supremum over π ∈Π as follows.

Eσ

[
sup
π∈Π

∣∣∣1
n

n∑
i=1

σi

(
fi

( ∑
k∈{1,...,h}

π(X (k)
i )
)
− fi(0)

)
π(Vi)

∣∣∣]

≤ Eσ

[
supπ1∈Π,π2∈Π

∣∣∣1
n

n∑
i=1

σi

(
fi

( ∑
k∈{1,...,h}

π2(X
(k)
i )
)
− fi(0)

)
π1(Vi)

∣∣∣].
Let φi(s) =

(
fi(s)− fi(0)

)
. Conditional on the data, φi is not random. It is Lipschitz and

φi(0) = 0 by assumption and by the fact that Yi is uniformly bounded. By Theorem 4.12 in

Ledoux and Talagrand (2011) (see also Lemma B.4.5)

Eσ

[
supπ1∈Π,π2∈Π

∣∣∣1
n

n∑
i=1

σi

(
fi

( ∑
k∈{1,...,h}

π2(X
(k)
i )
)
− fi(0)

)
π1(Vi)

∣∣∣]

≤ L2Eσ

[
supπ1∈Π,π2∈Π

∣∣∣1
n

n∑
i=1

σi

( ∑
k∈{1,...,h}

π2(X
(k)
i )
)

π1(Vi)
∣∣∣]. (B.4.4)
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Function class decomposition

We decompose the supremum as follows:

LEσ

[
supπ1∈Π,π2∈Π

∣∣∣1
n

n∑
i=1

σi

( ∑
k∈{1,...,h}

π2(X
(k)
i )
)

π1(Vi)
∣∣∣]

≤ LEσ

[
supπ1∈Π,π2∈Π,··· ,πh+1∈Π

∣∣∣1
n

n∑
i=1

σi

( ∑
k∈{1,...,h}

πk+1(X
(k)
i )
)

π1(Vi)
∣∣∣]

︸ ︷︷ ︸
(J)

.

We re-parametrize the class of functions as follows.

(J) = Eσ

[
supπ1∈Π,π̃2∈Π2,··· ,π̃h+1∈Πh+1

∣∣∣1
n

n∑
i=1

σi

( ∑
k∈{1,...,h}

π̃k+1(X
(1)
i , · · · ,X (h)

i )
)

π1(Vi)
∣∣∣],

where Π2, ...,Πh+1, are such that π̃ j ∈Π j : π̃ j(X
(1)
i , · · · ,X (k)

i , · · · ,X (h)
i ) = π(X ( j)

i ). By Theorem

29.4 in Devroye et al. (2013), VC(Π j) = VC(Π) for all j ∈ {1, ...,h}. Let

Π̃ =
{

π1

( h∑
j=1

π j+1

)
,πk ∈Πk,k = 1, · · · ,h+1

}
.

For any fixed point data point zn
1, by Lemma B.4.2, the Dudley’s integral of the function

class Π̃(zn
1) is bounded by C

√
(h+1) log(h+1)VC(Π), for a finite constant C. Therefore, by

B.4.2 and the Dudley’s entropy integral bound (Lemma B.7.8) we can bound the conditional

Rademacher complexity

Eσ

[
supπ1∈Π1,π2∈Π2,...,πh+1∈Πh+1

∣∣∣1
n

n∑
i=1

σi

( ∑
k∈{1,...,h}

πk+1(X
(k)
i )
)

π1(Vi)
∣∣∣]

≤C

√
(h+1)

VC(Π) log(h+1)
n

for a constant C < ∞.

Remaining components

For (2) in Equation (B.4.3) we can use the same argument used for (1). In particular,

since Π has finite VC-dimension, and it contains functions mapping to {0,1}, by Theorem 2.6.7

of Van Der Vaart and Wellner (1996) 6,
∫ 2

0

√
N2(u,Π(zn

1))du <C
√

VC(Π) for a constant C.

6The argument is the same used in the proof of Lemma B.4.2.
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Conclusion

We are now left to discuss the case where hi is different for each individual. In this

case, we can assign to each unit covariates {Xk∈Ni, /0, /0, · · · , /0} with in total h̄ and parametrizing

π( /0) = 0. The rest of the proof follows similarly as before.

Lemma B.4.4. ec(.) ∈ (δ ,1−δ ) for δ ∈ (0,1). Then
1{N=

∑
k∈Ni

Dk,d=Di}

ec

(
d,N,Zk∈Ni ,Zi,|Ni|

) is 2/δ -Lipschitz in its

second argument for all d ∈ {0,1}

Proof of Lemma B.4.4. Let Oi = (Zk∈Ni,Zi, |Ni|). Then for any N,N′ ∈ Z∣∣∣1{N =
∑

k∈Ni
Dk,d = Di}

ec
(

d,N,Oi

) −
1{N′ =

∑
k∈Ni

Dk,d = Di}

ec
(

d,N′,Oi

) ∣∣∣≤ 2
δ
.

for N 6= N′. The last inequality follows from the fact that by the overlap condition and the

triangular inequality. Since N is discrete, the right-hand side is at least 2/δ |N−N′| which

completes the proof.

Auxiliary Lemmas for an Unbounded Outcome

The next lemma provides a bound on the Rademacher complexity in the presence of the

composition of functions. We discuss the Ledoux-Talagrand contraction inequality (Ledoux and

Talagrand, 2011; Chernozhukov et al., 2014) to the case of interest in this paper.

Lemma B.4.5. Let φi : R 7→ R be Lipschitz functions with parameter L, ∀i ∈ {1, ...,n}, i.e.,

|φi(a)− φi(b)| ≤ L|a− b| for all a,b ∈ R, with φi(0) = 0. Then, for any T ⊆ Rn, with t =

(t1, ..., tn) ∈ R, α = (α1, ...,αn) ∈A ⊆ {0,1}n,

1
2
Eσ

[
supt∈T ,α∈A

∣∣∣1
n

n∑
i=1

σiφi(ti)αi

∣∣∣]≤ LEσ

[
supt∈T ,α∈A

∣∣∣1
n

n∑
i=1

αiσiti
∣∣∣].

Proof of Lemma B.4.5. The proof follows closely the one in Theorem 4.12 of Ledoux and

Talagrand (2011) while dealing with the additional α vector. First note that if T is unbounded,

there will be some setting so that the right hand side is infinity and the result trivially holds.
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Therefore, we can focus to the case where T is bounded. First we aim to show that for T ⊆ R2,

for α ∈ {0,1}2,

E
[

supt∈T ,α∈A α1t1 +σ2φ(t2)α2

]
≤ E
[

supt∈T ,α∈A α1t1 +Lσ2t2α2

]
. (B.4.5)

If the claim above is true, than it follows that

E
[

supt∈T ,α∈A α1φ1(t1)σ1 +σ2φ(t2)α2|σ1

]
≤ E

[
supt∈T ,α∈A α1φ1(t1)σ1 +Lσ2t2α2

∣∣∣σ1

]
.

as σ1φ(t1) simply transforms T (and it is still bounded, if not the claim would trivially holds),

and we can iteretively apply this result. Hence, we first prove Equation (B.4.5). Define for

a,b ∈A , I(t,s,a,b) := 1
2

(
t1a1+a2φ(t2)

)
+ 1

2

(
s1b1−b2φ(s2)

)
. We want to show that the right

hand side in Equation (B.4.5) is larger thant I(t,s,a,b) for all t,s ∈T and a,b ∈A . Since we

are taking the supremum over t,s,a,b, we can assume without loss of generality that

t1a1 +a2φ(t2)≥ s1b1 +b2φ(s2), s1b1−b2φ(s2)≥ t1a1−a2φ(t2). (B.4.6)

We can now define four quantities of interest, being

m = b1s1−b2φ(s2), n = b1s1−Ls2b2, m′ = a1t1 +La2t2, n′ = a1t1 +a2φ(t2).

We would like to show that 2I(t,s,a,b) = m+n′ ≤m′+n. We consider four different cases, simi-

larly to the proof of Ledoux and Talagrand (2011) and argue that for any value of (a1,a2,b1,b2)∈

{0,1}4 the claim holds.

Case 1 Start from the case a2t2,s2b2 ≥ 0. We know that φ(0) = 0, so that |b2φ(s2)| ≤ Lb2s2.

Now assume that a2t2 ≥ b2s2. In this case

m−n = Lb2s2−b2φ(s2)≤ La2t2−a2φ(t2) = m′−n′ (B.4.7)

since |a2φ(t2)− b2φ(s2)| ≤ L|a2t2− b2s2| = L(a2t2− b2s2). To see why this last claim holds,

note that for a2,b2 = 1, then the results hold by the condition a2t2≥ b2s2 and Lipschitz continuity.
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If instead a2 = 1,b2 = 0, the claim trivially holds. While the case a2 = 0,b2 = 1, then it must be

that s2 = 0 since we assumed that a2t2 ≥ 0,b2s2 ≥ 0 and a2t2 ≥ b2s2. Thus m−n≤ m′−n′. If

instead b2s2 ≥ a2t2, then use −φ instead of φ and switch the roles of s, t giving a similar proof.

Case 2 Let a2t2 ≤ 0,b2s2 ≤ 0. Then the proof is the same as Case 1, switching the signs where

necessary.

Case 3 Let a2t2 ≥ 0,b2s2 ≤ 0. Then we have a2φ(t2)≤ La2t2, since a2 ∈ {0,1} and by Lipschitz

properties of φ , −b2φ(s2) ≤ −b2Ls2 so that a2φ(t2)− b2φ(s2) ≤ a2Lt2− b2Ls2 proving the

claim.

Case 4 Let a2t2 ≤ 0,b2s2 ≥ 0. Then the claim follows simmetrically to Case 3.

We now conclude the proof. Denote [x]+ = max{0,x} and [x]− = max{−x,0}. Then we have

E
[1

2
supt∈T ,α∈A

∣∣∣ n∑
i=1

σiφi(ti)αi

∣∣∣]≤ E
[1

2
supt∈T ,α∈A

( n∑
i=1

σiφi(ti)αi

)
+

]
+E
[1

2
supt∈T ,α∈A

( n∑
i=1

σiφi(ti)αi

)
−

]
≤ E

[
supt∈T ,α∈A

( n∑
i=1

σiφi(ti)αi

)
+

]
where the last inequality follows by symmetry of σi and the fact that (−x)− = (x)+. note that

supx(x)+ = (supxx)+. Therefore, using Equation (B.4.5)

E
[
supt∈T ,α∈A

( n∑
i=1

σiφi(ti)αi

)
+

]
= E

[(
supt∈T ,α∈A

n∑
i=1

σiφi(ti)αi

)
+

]
≤ E

[(
supt∈T ,α∈A

n∑
i=1

Lσitiαi

)
+

]
≤ E

[∣∣∣supt∈T ,α∈A

n∑
i=1

σiφi(ti)αi

∣∣∣]≤ E
[
supt∈T ,α∈A

∣∣∣ n∑
i=1

σiφi(ti)αi

∣∣∣]
which completes the proof.

Lemma B.4.6. Let Z be an arbitrary random variable and F a class of uniformly bounded

functions, i.e., there exist F̄ < ∞, such that || f ||∞ ≤ F̄ for all f ∈F . Let Yi ∼Pi|Z, where Y ≥ 0

is a scalar. Let (Yi)
n
i=1|Z be pairwise independent across individuals i. Assume that for some

u > 0, E[Y 2+u
i |Z]< B, ∀i ∈ {1, ...,n}. In addition assume that for any fixed points zn

1, for some
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V < ∞,
∫ 2F̄

0

√
log
(
N1

(
u,F (zn

1)
))

du <
√

V . Let σi be i.i.d Rademacher random variables

independent of Y,Z. Then there exist a constant 0 <CF̄ < ∞ that only depend on F̄ and u, such

that ∫
∞

0
E
[

sup f∈F

∣∣∣1
n

σi

n∑
i=1

f (Zi)1{Yi > y}
∣∣∣Z]dy≤CF̄

√
BV
n

for all n≥ 1.

Proof of Lemma B.4.6. The proof follows closely the one in Kitagawa and Tetenov (2019)

(Lemma A.5) to express the bound as a function of the covering number (instead of the VC-

dimension). First, define

ξn(y) = sup f∈F

∣∣∣1
n

n∑
i=1

f (Zi)1{Yi > y}σi

∣∣∣.
Denote p̄(y) = 1

n
∑n

i=1 P(Yi > y|Z).

Case 1

Consider first values of y for which np̄(y) =
∑n

i=1 P(Yi > y|Z)≤ 1. Due to the envelope

condition, and the definition of Rademacher random variables, we have∣∣∣1
n

n∑
i=1

f (Zi)1{Yi > y}σi

∣∣∣≤ F̄
1
n

n∑
i=1

1{Yi > y},∀ f ∈F .

Taking expectations we have E[ξn(y)]≤ F̄E
[

1
n
∑n

i=1 1{Yi > y}
∣∣∣Z]= F̄ p̄(y) and the right hand

side is bounded by F̄ 1
n for this particular case.

Case 2

Consider now values of y such that np̄(y) > 1. Define the random variable Ny =∑n
i=1 1{Yi > y}. Then we can write

1
n

n∑
i=1

f (Zi)1{Yi > y}σi =


0 if Ny = 0

Ny
n

1
Ny

∑n
i=1 f (Zi)1{Yi > y}σi if Ny ≥ 1.
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If Ny ≥ 1, then

ξn(y) = sup f∈F

∣∣∣Ny

n
1

Ny

n∑
i=1

f (Zi)σi1{Yi > y}
∣∣∣

= sup f∈F

∣∣∣Ny

n
1

Ny

n∑
i=1

f (Zi)σi1{Yi > y}− p̄(y)
1

Ny

n∑
i=1

f (Zi)1{Yi > y}σi+

+ p̄(y)
1

Ny

n∑
i=1

f (Zi)1{Yi > y}σi

∣∣∣
≤
∣∣∣Ny

n
− p̄(y)

∣∣∣sup f∈F

∣∣∣ 1
Ny

n∑
i=1

f (Zi)1{Yi > y}σi

∣∣∣+ p̄(y)sup f∈F

∣∣∣ 1
Ny

∑
i=1

f (Zi)σi1{Yi > y}
∣∣∣.

Denote Eσ the expectation only with respect to the Rademacher random variables σ . Conditional

on Ny, ξn(y) sums over Ny terms. Therefore, for a constant 0 <C1 < ∞ that only depend on F̄ ,

Eσ

[
p̄(y)sup f∈F |

1
Ny

∑
i=1

f (Zi)σi1{Yi > y}
∣∣∣]≤C1 p̄(y)

√
V g(Ny)

by Theorem 5.22 in Wainwright (2019) (Lemma B.7.8 in Appendix B.7) where g(.) is defined in

Lemma B.7.4. Similarly,

Eσ

[∣∣∣Ny

n
− p̄(y)

∣∣∣sup f∈F

∣∣∣ 1
Ny

n∑
i=1

f (Zi)1{Yi > y}σi

∣∣∣|Z]≤ ∣∣∣Ny

n
− p̄(y)

∣∣∣C1
√

V g(Ny).

For Ny ≥ 1, it follows by the law of iterated expectations,

E[ξn(y)|Ny,Z]≤ |
Ny

n
− p̄(y)|C1

√
V g(Ny)+C1 p̄(y)

√
V g(Ny)≤ |

Ny

n
− p̄(y)|C1

√
V +C1 p̄(y)

√
V g(Ny)

(B.4.8)

where the last inequality follows by the definition of the g(.) function and the fact that Ny ∈

{1,2, · · ·}. For Ny = 0 instead, we have

E[ξn(y)|Ny,Z]≤
∣∣∣Ny

n
− p̄(y)

∣∣∣C1
√

V g(Ny)+C1 p̄(y)
√

V g(Ny) = 0

by the definition of g(.). Hence, the bound in Equation (B.4.8) always holds.

Unconditional expectation

We are left to bound the unconditional expectation with respect to Ny. Notice first that

E
[∣∣∣Ny

n
− p̄(y)

∣∣∣|Z]≤C1
√

V

√
E
[∣∣∣Ny

n
− p̄(y)

∣∣∣2∣∣∣Z]=C1
√

V

√√√√Var
(1

n

n∑
i=1

1{Yi > y}
∣∣∣Z).
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By independence assumption,

C1
√

V

√√√√Var
(1

n

n∑
i=1

1{Yi > y}
∣∣∣Z)≤C1

√
V

√√√√ 1
n2

n∑
i=1

P(Yi > y|Z).

In addition, since np̄(y)> 1, by Lemma B.7.9 , E[g(Ny)|Z]≤ 2√
n
√

p̄(y)
. Combining the inequali-

ties, it follows

E[ξn(y)|Z]≤C1
√

V

√√√√ 1
n2

n∑
i=1

P(Yi > y|Z)+ p̄(y)C1
√

V
2

√
n
√

p̄(y)

≤ 2(1+C1)

√
V
n

√√√√1
n

n∑
i=1

P(Yi > y|Z).

This bound is larger than the bound derived for np̄(y) < 1, up to a constant factor CF̄ < ∞.

Therefore,

E[ξn(y)|Z]≤CF̄

√
V
n

√√√√1
n

n∑
i=1

P(Yi > y|Z).

Integral bound

We can now write∫
∞

0
E[ξn(y)|Z]dy≤

∫
∞

0
CF̄

√
V
n

√√√√ n∑
i=1

P(Yi > y|Z)
n

dy =
∫ 1

0
CF̄

√
V
n

√√√√ n∑
i=1

P(Yi > y|Z)
n

dy

+

∫
∞

1
CF̄

√
V
n

√√√√ n∑
i=1

P(Yi > y|Z)
n

dy.

The first term is bounded as follows.
∫ 1

0 CF̄

√
V
n

√∑n
i=1

P(Yi>y|Z)
n dy≤CF̄

√
V
n . The second term

is bounded instead as follows.∫
∞

1
CF̄

√
V
n

√√√√ n∑
i=1

P(Yi > y|Z)
n

dy≤CF̄

√
V
n

∫
∞

1

√√√√ n∑
i=1

E[Y 2+u
i |Z]

ny2+u dy≤CF̄

√
V
n

∫
∞

1

√
B

y2+u dy

≤C′F̄

√
V B
n

for a constant C′F̄ < ∞ that only depend on F̄ and u.

Lemma B.4.7. Let Π be a function class with π : Rd 7→ {0,1} for any π ∈ Π, with finite VC-

dimension, denoted as VC(Π). Let X1, ...,Xhi,V ∈ Rd,O ∈ Rk,Y ∈ R.
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Let K = (Vi,X1
i ,X

2
i , ...,X

hi
i ,Oi)

n
i=1. Suppose that E[Y 2+u

i |K]< B1 < ∞ for all i ∈ {1, · · · ,n} for

some u> 0 and (Yi)
n
i=1 are pairwise independent conditional on K. Let σ1, · · · ,σn be independent

Rademacher random variables, independent of (Ki,Yi)
n
i=1. Let f : Z×Rk 7→ R be L-Lipschitz in

its first argument. Assume that E[ f (0,Oi)
2+uY 2+u

i |K]< B2 < ∞ for all i ∈ {1, · · · ,n} for some

u > 0. Let h̄ = maxi hi. Then for a constant C < ∞ that only depend on u,

EY,σ

[
sup
π∈Π

∣∣∣1
n

n∑
i=1

f
( ∑

k∈{1,...,h}

π(X (k)
i ),Oi

)
π(Vi)σiYi

∣∣∣]≤C(L+1)

√
(h̄+1) log(h̄+1)VC(Π)(B1 +B2)

n
,

(B.4.9)

where EY,σ denotes the conditional expectation taken only with respect to the variables (Yi,σi)
n
i=1

conditional on K.

Proof of Lemma B.4.7. The proof follows similarly to Lemma B.4.3. We can consider the case

where all units correspond to sums over h components, and discuss the case where this is violated

at the end of the proof.

First decomposition

First, we add and subtract the value of the function f (0,Oi) at zero. Namely, the left

hand side in Equation (B.4.9) equals

EY,σ

[
sup
π∈Π

∣∣∣1
n

n∑
i=1

σi

(
f
( ∑

k∈{1,...,h}

π(X (k)
i ),Oi

)
− f
(

0,Oi

)
+ f
(

0,Oi

))
Yiπ(Vi)

∣∣∣]

≤ EY,σ

[
sup
π∈Π

∣∣∣1
n

n∑
i=1

σi

(
f
( ∑

k∈{1,...,h}

π(X (k)
i ),Oi

)
− f
(

0,Oi

))
Yiπ(Vi)

∣∣∣]
︸ ︷︷ ︸

(1)

+EY,σ

[
sup
π∈Π

∣∣∣1
n

n∑
i=1

σi f
(

0,Oi

)
Yiπ(Vi)

∣∣∣]︸ ︷︷ ︸
(2)

(B.4.10)

where the last inequality follows by the triangular inequality.
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Decomposition with integral

We bound first (1). We write

EY,σ

[
sup
π∈Π

∣∣∣1
n

n∑
i=1

σi

(
f
( ∑

k∈{1,...,h}

π(X (k)
i ),Oi

)
− f
(

0,Oi

))
Yiπ(Vi)

∣∣∣]

= EY,σ

[
sup
π∈Π

∣∣∣1
n

n∑
i=1

σi

(
f
( ∑

k∈{1,...,h}

π(X (k)
i ),Oi

)
− f
(

0,Oi

))
|Yi|sign(Yi)π(Vi)

∣∣∣]

≤ 2EY,σ̃

[
sup
π∈Π

∣∣∣1
n

n∑
i=1

σ̃i

(
f
( ∑

k∈{1,...,h}

π(X (k)
i ),Oi

)
− f
(

0,Oi

))
|Yi|π(Vi)

∣∣∣]
(B.4.11)

where σ̃i are Rademacher random variables independent of Y1, ...,Yn.7 Since |Yi|> 0, we have

(D.3.7) = 2EY,σ̃

[
sup
π∈Π

∣∣∣1
n

n∑
i=1

σ̃i

(
f
( ∑

k∈{1,...,h}

π(X (k)
i ),Oi

)
− f
(

0,Oi

))∫ ∞

0
1{|Yi|> y}dyπ(Vi)

∣∣∣]

≤ 2EY,σ̃

[
sup
π∈Π

∫
∞

0

∣∣∣1
n

n∑
i=1

σ̃i

(
f
( ∑

k∈{1,...,h}

π(X (k)
i ),Oi

)
− f
(

0,Oi

))
1{|Yi|> y}π(Vi)

∣∣∣dy
]

≤ 2
∫

∞

0
EY,σ̃

[
sup
π∈Π

∣∣∣1
n

n∑
i=1

σ̃i

(
f
( ∑

k∈{1,...,h}

π(X (k)
i ),Oi

)
− f
(

0,Oi

))
1{|Yi|> y}π(Vi)

∣∣∣]dy

where the last inequality follows by the properties of the supremum function and Fubini theorem.

Lipschitz property

We decompose the supremum over π ∈Π as follows.∫
∞

0
EY,σ̃

[
sup
π∈Π

∣∣∣1
n

n∑
i=1

σ̃i

(
f
( ∑

k∈{1,...,h}

π(X (k)
i ),Oi

)
− f
(

0,Oi

))
1{|Yi|> y}π(Vi)

∣∣∣]dy

≤
∫

∞

0
EY,σ̃

[
supπ1∈Π,π2∈Π

∣∣∣1
n

n∑
i=1

σ̃i

(
f
( ∑

k∈{1,...,h}

π2(X
(k)
i ),Oi

)
− f
(

0,Oi

))
1{|Yi|> y}π1(Vi)

∣∣∣]dy.

Let φi(N) = f
(

N,Oi

)
− f
(

0,Oi

)
. Conditional on the data, φi is not random. By assumption it

is Lipschitz and φi(0) = 0. By Lemma B.4.5,∫
∞

0
EY,σ̃

[
supπ1∈Π,π2∈Π

∣∣∣1
n

n∑
i=1

σ̃i

(
f
( ∑

k∈{1,...,h}

π2(X
(k)
i ),Oi

)
− f
(

0,Oi

))
1{|Yi|> y}π1(Vi)

∣∣∣]dy

≤ 2L
∫

∞

0
EY,σ̃

[
supπ1∈Π,π2∈Π

∣∣∣1
n

n∑
i=1

σ̃i

( ∑
k∈{1,...,h}

π2(X
(k)
i )
)

1{|Yi|> y}π1(Vi)
∣∣∣]dy.

(B.4.12)

7To check the last claim the reader might consider that P(σ̃i = 1|Yi) = P(σisign(Yi) = 1|Yi) = 1/2.
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Supremum over Π

We decompose the supremum as follows:

L
∫

∞

0
EY,σ̃

[
supπ1∈Π,π2∈Π

∣∣∣1
n

n∑
i=1

σ̃i

( ∑
k∈{1,··· ,h}

π2(X
(k)
i )
)

1{|Yi|> y}π1(Vi)
∣∣∣]dy

≤ L
∫

∞

0
EY,σ̃

[
supπ1∈Π,π2∈Π,··· ,πh+1∈Π

∣∣∣1
n

n∑
i=1

σ̃i

( ∑
k∈{1,...,h}

πk+1(X
(k)
i )
)

1{|Yi|> y}π1(Vi)
∣∣∣]dy

︸ ︷︷ ︸
(J)

.

We re-parametrize the class of functions as follows.

(J) =∫
∞

0
EY,σ̃

[
supπ1∈Π,π̃2∈Π2,··· ,π̃h+1∈Πh+1

∣∣∣1
n

n∑
i=1

σ̃i

( ∑
k∈{1,...,h}

π̃k+1(X
(1)
i , · · · ,X (h)

i )
)

1{|Yi|> y}π1(Vi)
∣∣∣]dy

where Π2, ...,Πh+1, are such that π̃ j ∈Π j : π̃ j(X
(1)
i , · · · ,X (k)

i , · · · ,X (h)
i ) = π(X ( j)

i ). By Theorem

29.4 in Devroye et al. (2013), VC(Π j) = VC(Π) for all j ∈ {1, ...,h}.8 Let

Π̃ =
{

π1

( h∑
j=1

π j+1

)
,πk ∈Πk,k = 1, · · · ,h+1

}
.

For any fixed point data point zn
1, by Lemma B.4.2, the Dudley’s integral of the function class

Π̃(zn
1) is bounded by C

√
(h+1) log(h+1)VC(Π), for a finite constant C. Therefore, by Lemma

B.4.6 and B.4.2∫
∞

0
EY,σ̃

[
supπ1∈Π1,π2∈Π2,...,πh+1∈Πh+1

∣∣∣1
n

n∑
i=1

σ̃i

( ∑
k∈{1,...,h}

πk+1(X
(k)
i )
)

1{|Yi|> y}π1(Vi)
∣∣∣]dy

≤C

√
B1(h+1)

VC(Π) log(h+1)
n

for a constant C < ∞.

Remaining component

Next, we bound the term (2) in Equation (B.4.10). Following the same argument used

for term (1), we have

EY,σ̃

[
sup
π∈Π

∣∣∣1
n

n∑
i=1

σ̃i f
(

0,Oi

)
Yiπ(Vi)

∣∣∣]≤ 2EY,σ̃

[
sup
π∈Π

∣∣∣1
n

n∑
i=1

σ̃i| f
(

0,Oi

)
Yi|π(Vi)

∣∣∣]
≤
∫

∞

0
2EY,σ̃

[
sup
π∈Π

∣∣∣1
n

n∑
i=1

σ̃i1{| f
(

0,Oi

)
Yi|> y}π(Vi)

∣∣∣]dy.

8The reader might recognize that each π j ∈Π j can be written as the sum of π and functions constant at zero.
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Since Π has finite VC-dimension, and it contains functions mapping to {0,1}, by Theorem 2.6.7

of Van Der Vaart and Wellner (1996) 9,
∫ 2

0

√
N2(u,Π(zn

1))du < C
√

VC(Π) for a constant C.

Hence, by Lemma B.4.6 and B.4.2,∫
∞

0
2EY,σ̃

[
sup
π∈Π

∣∣∣1
n

n∑
i=1

σ̃i1{| f
(

0,Oi

)
Yi|> y}π(Vi)

∣∣∣]dy≤ c′0

√
B2VC(Π)

n

for a constant c′0 < ∞.

Conclusion

We are now left to discuss the case where hi is different for each individual. In this

case, we can assign to each unit covariates {X (1)
i , · · · ,X (hi)

i , /0, /0, · · · , /0} with in total h̄ and

parametrizing π( /0) = 0. The rest of the proof follows similarly as before.

Lemmas for Identification

We conclude this section discussing the lemmas useful for identification.

Lemma B.4.8. Let Assumption 2.2.1, 2.2.2, 2.2.4 hold. Then

E
[1{Si(π) =

∑
k∈Ni

Dk,π(Xi) = Di}

e
(

π(Xi),Si(π),Zk∈Ni ,Zi, |Ni|
) Yi

∣∣∣A,Z]= m
(

π(Xi),Si(π),Zi, |Ni|
)
.

Proof. Under Assumption 2.2.1, we can write

E
[1{Si(π) =

∑
k∈Ni

Dk,π(Xi) = Di}

e
(

π(Xi),Si(π),Zk∈Ni ,Zi, |Ni|
) Yi

∣∣∣A,Z]

= E
[1{Si(π) =

∑
k∈Ni

Dk,π(Xi) = Di}

e
(

π(Xi),Si(π),Zk∈Ni ,Zi, |Ni|
) r

(
π(Xi),Si(π), |Ni|,Zi,εi

)∣∣∣A,Z]. (B.4.13)

Under Assumption 2.2.2, we can then write

(B.4.13) = E
[1{Si(π) =

∑
k∈Ni

Dk,π(Xi) = Di}

e
(

π(Xi),Si(π),Zk∈Ni ,Zi, |Ni|
) |A,Z]×

×E
[
r
(

π(Xi),Si(π), |Ni|,Zi,εi

)∣∣∣A,Z].
9The argument is the same used in the proof of Lemma B.4.2.
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By the first condition in Assumption 2.2.2 E
[1{Si(π)=

∑
k∈Ni

Dk,π(Xi)=Di}

e
(

π(Xi),Si(π),Zk∈Ni ,Zi,|Ni|
) |A,Z] = 1. Finally, by

Assumption 2.2.2 and Assumption 2.2.4

E
[
r
(

π(Xi),Si(π), |Ni|,Zi,εi

)∣∣∣A,Z]= m
(

π(Xi),Si(π), |Ni|,Zi,
)
,

where m(·) not being individual specific follows by Assumption 2.2.4.

Lemma B.4.9. Let Si(π) =
∑

k∈Ni
π(Xk). Let Assumption 2.2.1, 2.2.2, 2.2.4 hold. Then

E
[ 1{Si(π) =

∑
k∈Ni

Dk,d = Di}

ec
(

π(Xi),Si(π),Zk∈Ni ,Zi, |Ni|
)(Yi−mc

(
π(Xi),Si(π),Zi, |Ni|

))
+mc

(
π(Xi),Si(π),Zi, |Ni|

)∣∣∣A,Z]
= m

(
π(Xi),Si(π),Zi, |Ni|

)
,

if either ec = e or (and) mc = m.

Proof. Whenever ec = e, similarly to what discussed in Lemma B.4.8, we obtain that

E
[ 1{Si(π) =

∑
k∈Ni

Dk,d = Di}

ec
(

π(Xi),Si(π),Zk∈Ni ,Zi, |Ni|
)Yi

∣∣∣A,Z]= m
(

π(Xi),Si(π),Zi, |Ni|
)
.

The remaining component depending on mc cancels out similarly as above. Let now mc = m.

Then

E
[ 1{Si(π) =

∑
k∈Ni

Dk,d = Di}

ec
(

π(Xi),Si(π),Zk∈Ni ,Zi, |Ni|
)(Yi−m

(
π(Xi),Si(π),Zi, |Ni|

))∣∣∣A,Z]

= E
[ 1{Si(π) =

∑
k∈Ni

Dk,d = Di}

ec
(

π(Xi),Si(π),Zk∈Ni ,Zi, |Ni|
)(r

(
π(Xi),Si(π),Zi, |Ni|,εi

)
−m

(
π(Xi),Si(π),Zi, |Ni|

))∣∣∣A,Z]

= E
[ 1{Si(π) =

∑
k∈Ni

Dk,d = Di}

ec
(

π(Xi),Si(π),Zk∈Ni ,Zi, |Ni|
)∣∣∣A,Z]×

×E
[(

r
(

π(Xi),Si(π),Zi, |Ni|,εi

)
−m

(
π(Xi),Si(π),Zi, |Ni|

))∣∣∣A,Z]= 0.

Proofs of Lemmas in the Main Text

In this section we prove the lemmas in the main text.
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Proof of Lemma 2.2.1. Under Assumption 2.2.3, the welfare on the target sample reads as

follows

W (π) =
1
|I |

∑
j∈I

E
[
r
(

π(X j),
∑

k∈N j

π(Xk),Z j, |N j|,ε j

)]
.

Under the distributional condition in the statement of the lemma we have

W (π) = E
[
r
(

π(X j),
∑

k∈N j

π(Xk),Z j, |N j|,ε j

)]

is constant in j. In addition, by Assumption 2.2.1 and 2.2.2, welfare on the sampled units takes

the expression
1
n

n∑
i=1

E
[
r
(

π(Xi),
∑
k∈Ni

π(Xk),Zi, |Ni|,εi

)]
.

The proof completes again by the distributional assumption in the statement of the lemma.

Proof of Lemma 2.2.2. By the law of iterated expectations, we write

E
[
r(π(Xi),

∑
k∈Ni

π(Xk),Zi, |Ni|,εi)
]
= E

[
E
[
r(π(Xi),

∑
k∈Ni

π(Xk),Zi, |Ni|,εi)
∣∣∣Zi,Ni,Xk∈Ni]

]

Under Assumption 2.2.2, 2.2.4 we obtain

E
[
E
[
r(π(Xi),

∑
k∈Ni

π(Xk),Zi, |Ni|,εi)
∣∣∣Zi,Ni,Xk∈Ni

]]
= E

[
m(π(Xi),

∑
k∈Ni

π(Xk),Zi, |Ni|)
]
.

The rest of the proof follows from Lemma B.4.8 and the law of iterated expectations.
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Regret Bounds

Theorem B.5.1. Suppose the conditions in Theorem 2.3.1 holds. Then,

E
[

sup
π∈Π

|W (π)−Wn(π̂
aipw
mc,ec)|

]
≤ |L |2(Γ1 +Γ2)

C̄
δ

(
L+

L

δ

√
3

0

+
1

δ

√
3

0

)
E[N M

n,MN
|L |

n N
3/2

n

√
log(Nn,1)]

2

√
VC(Π)

n
+KΠ(n),

for a finite constant C̄ < ∞.

Proof of Theorem B.5.1. Let Si(π) =
∑

k∈Ni
π(Xk). We denote L = (L j)

E
j=1 under Assumption

2.3.2. Recall under Assumption 2.3.2 that we can decompose covariates Zi into two components,

one Li having arbitrary dependence and endogenous with respect to the network but with finite

support, and the other, Qi having local dependence but arbitrary support.

Preliminaries

Notice first that by Definition 2.2.1,

E
[

sup
π∈Π

|W (π)−Wn(π)|
]
≤KΠ(n)+E

[
sup
π∈Π

|W ∗(π)−Wn(π)|
]

where

W ∗(π) =
1
n

n∑
i=1

E
[
r
(

π(Xi),Si(π),Zi, |Ni|,εi

)]
=

1
n

n∑
i=1

E
[
m
(

π(Xi),Si(π),Zi, |Ni|
)]

,

and where the second equality follows from Assumption 2.2.1, 2.2.2 and 2.2.4 similarly to what

discussed in the proof of Lemma B.4.9. By Lemma B.4.9, we have that W ∗(π)=E[Wn(π,mc,ec)]

under correct specification of either mc or ec. Therefore for i ∈ {1, · · · ,n}

W ∗(π) =
1
n

n∑
i=1

E
[1{π(Xi) = Di,

∑
k∈Ni

π(Xk) =
∑

k∈Ni
Dk}

ec
(

π(Xi),Si(π),Oi

) (
Yi−mc

(
π(Xi),Si(π),Zi, |Ni|

))]
+

+E
[
mc
(

π(Xi),Si(π),Zi, |Ni|
)]

,

where Oi =
(

Zk∈Ni,Zi, |Ni|
)

.
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Decomposition

Using the triangular inequality, we decompose the supremum of the empirical process

into three terms as follows.

E
[

sup
π∈Π

|W ∗(π)−Wn(π,mc,ec)|
]
≤E
[

sup
π∈Π

∣∣∣T1(π,mc,ec)−E[T1(π,mc,ec)]
∣∣∣]︸ ︷︷ ︸

(A)

+E
[

sup
π∈Π

∣∣∣T2(π,mc,ec)−E[T2(π,mc,ec)]
∣∣∣]︸ ︷︷ ︸

(B)

+E
[

sup
π∈Π

∣∣∣T3(π,mc)−E[T3(π,mc)]
∣∣∣]︸ ︷︷ ︸

(C)

,

where

T1(π,mc,ec) =
1
n

n∑
i=1

1{π(Xi) = Di,
∑

k∈Ni
π(Xk) =

∑
k∈Ni

Dk}

ec
(

π(Xi),Si(π),Oi

) Yi

T2(π,mc,ec) =
1
n

n∑
i=1

1{π(Xi) = Di,
∑

k∈Ni
π(Xk) =

∑
k∈Ni

Dk}

ec
(

π(Xi),Si(π),Oi

) mc
(

π(Xi),
∑
k∈Ni

π(Xk),Zi, |Ni|
)

T3(π,mc) =
1
n

n∑
i=1

mc
(

π(Xi),Si(π),Zi, |Ni|
)
.

(B.5.1)

The rest of the proof consists in providing upper bounds for (A), (B), and (C). We discuss (A)

first.

Preparation for (A)

We create an independent copy of (T1(·),A,L), defined as (T ′1(·),A′,L′) with the same

distribution of (T1(·),A,L). Using Jensen’s inequality, we can write

E
[

sup
π∈Π

∣∣∣T1(π,mc,ec)−E[T1(π,mc,ec)]
∣∣∣]= E

[
sup
π∈Π

∣∣∣T1(π,mc,ec)−E[T ′1(π,mc,ec)]
∣∣∣]

≤ E
[

sup
π∈Π

∣∣∣T1(π,mc,ec)−T ′1(π,m
c,ec)

∣∣∣].

244



We now use the law of iterated expectations to write

E
[

sup
π∈Π

∣∣∣T1(π,mc,ec)−E[T1(π,mc,ec)]
∣∣∣]

≤ E
[
E
[

sup
π∈Π

∣∣∣T1(π,mc,ec)−T ′1(π,m
c,ec)

∣∣∣∣∣∣A,L,A′,L′]].
Denote each summand corresponding to T1 as Ui and each summand corresponding to T ′1 as U ′i .

That is,

Ui =
1{π(Xi) = Di,

∑
k∈Ni

π(Xk) =
∑

k∈Ni
Dk}

ec
(

π(Xi),Si(π),Oi

) Yi.

Observe that
[
(Ui)

n
i=1,A,L

]
and

[
(U ′i )

n
i′=1,A

′,L′
]

are independent by construction. Since we

condition on (A,L), (A′,L′), we can write

Ui

(
Li, |Ni|,Lk∈Ni,π

)

as an explicit function of Li, |Ni|,Lk∈Ni (and π) conditional on (A,L) and similarly

U ′i (L
′
i, |Ni|′,L′k∈Ni

,π). Conditional on (A,L),(A′,L′), the marginal distribution of Ui,U ′i depends

on (A,L,A′,L′) only through the individual, neighbors’ covariates and number of neighbors under

Assumption 2.2.2, Assumption 2.2.4.10 Also, observe Ui(Li, |Ni|,Lk∈Ni,π) is exchangeable in

Lk∈Ni .
11 Define N ′

n the maximum degree under A′ and write Rn = max{Nn,N ′
n }. Define

L̃m ⊂L m the space of vectors of dimension m with each component taking value in L after

removing exchangable duplicates, where two vectors are duplicates if they are equal up-to

10To observe why, note that conditional on (L,A), Ui is just a function of (Li,Qi,Lk∈Ni ,Qk∈Ni , |Ni|,εi,εDi ,εDk∈Ni
),

where the distribution of (εi,εDi ,εDk∈Ni
) given (A,L) only depends on (Li,Lk∈Ni , |Ni|) since εDi are i.i.d. and

exogenous.
11This can be observed from Definition 2.2.3 and Assumption 2.2.2 for the treatment assignments.
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exchanging the entries of the vectors. We can then write

E
[

sup
π∈Π

∣∣∣T1(π,mc,ec)−T ′1(π,m
c,ec)

∣∣∣∣∣∣A,Z,A′,Z′]
= E

[
sup
π∈Π

∣∣∣1
n

n∑
i=1

Ui(Li, |Ni|,Lk∈Ni,π)−
1
n

n∑
i=1

U ′i (L
′
i, |Ni|′,L′k∈Ni

,π)
∣∣∣∣∣∣A,L,A′,L′]

≤
∑

m,m′≤Rn

∑
l∈L×L̃m,l′∈L×L̃m′

E
[

sup
π∈Π

∣∣∣1
n

n∑
i=1

[
Ui(Li, |Ni|,Lk∈Ni,π)−U ′i (L

′
i, |Ni|′,L′k∈Ni

,π)
]
Ii(l, l′,m,m′)

∣∣∣∣∣∣A,L,A′,L′]
(B.5.2)

where Ii(l, l′,m,m′) = 1{(Li,Lk∈Ni) = l,(L′i,L
′
k∈Ni

) = l′,m = |Ni|,m′ = |Ni|′}. Finally, define

C M
n the proper cover of the adjacency matrix Wn where two elements are connected if they are

neighbors of M degree either (or both) under A or A′. We can then write

E
[

sup
π∈Π

∣∣∣1
n

n∑
i=1

[
Ui(Li, |Ni|,Lk∈Ni,π)−U ′i (L

′
i, |Ni|′,L′k∈Ni

,π)
]
Ii(l, l′,m,m′)

∣∣∣∣∣∣A,L,A′,L′]
≤

∑
C M

n ( j)∈C M
n

E
[

sup
π∈Π

∣∣∣1
n

∑
i∈C M

n ( j)

[
Ui(Li, |Ni|,Lk∈Ni,π)−U ′i (L

′
i, |Ni|′,L′k∈Ni

,π)
]
Ii(l, l′,m,m′)

∣∣∣∣∣∣A,L,A′,L′]
︸ ︷︷ ︸

(i)

.

The goal is to bound (i).

Analysis of (i)

Observe first that each summand Ui(Li, |Ni|,Lk∈Ni,π) is a function of(
Li, |Ni|,Lk∈Ni,εi,Qi,εDi,Qk∈Ni,εDk∈Ni

,π
)

only. In addition, by construction of C M
n , each

summand is mutually independent with the others conditional on (A,L,A′,L′) by Assumption

2.2.5 and the first condition in Assumption 2.2.2 and Assumption 2.3.2. Finally, each non-zero

summand is evaluated at the same values of individual, neighbors’ covariates Li and number of

neighbors for both Ui,U ′i .
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Symmetrization

Under the above observation, we note that each summand whose indicator Ii is non-zero

in (i) is i.i.d. conditional on A,L,A′,L′ under 2.2.5, 2.3.2 the fact that εDi are i.i.d. and exogenous

(Assumption 2.2.2), since each summand is evaluated at the same values of (Li,Lk∈Ni, |Ni|).

The remaining summands are instead equal to zero almost surely conditional on (A,L,A′,L′).

Hence, using a standard symmetrization argument, we bound (i) as follows

(i) = E
[

sup
π∈Π

∣∣∣1
n

∑
i∈C M

n ( j)

σi

[
Ui(Li, |Ni|,Lk∈Ni ,π)−U ′i (L

′
i, |Ni|′,L′k∈Ni

,π)
]
Ii(l, l′,m,m′)

∣∣∣∣∣∣A,L,A′,L′]
≤ E

[
sup
π∈Π

∣∣∣1
n

∑
i∈C M

n ( j)

σiUi(Li, |Ni|,Lk∈Ni ,π)Ii(l, l′,m,m′)
∣∣∣∣∣∣A,L,A′,L′]

︸ ︷︷ ︸
( j)

+E
[

sup
π∈Π

∣∣∣1
n

∑
i∈C M

n ( j)

σiU ′i (L
′
i, |Ni|′,L′k∈Ni

,π)Ii(l, l′,m,m′)
∣∣∣∣∣∣A,L,A′,L′]

︸ ︷︷ ︸
( j j)

(B.5.3)

where σi are i.i.d. Rademacher random variables. Note here that a key step is to have i.i.d. of

all non-zero components. For those components that are zero, the value of σi is not relevant

conditional on (A,L,A′,L′), and hence we can just use σi to be all i.i.d.. We then bound ( j)

(and symmetrically ( j j)) with Lemma B.4.7. To invoke Lemma B.4.7 we observe that under

Assumption 2.3.1, by Lemma B.4.4

φi(d,s) :=
1{d = Di,s =

∑
k∈Ni

Dk}

ec
(

d,N,Oi

)
is 2

δ
-Lipschitz in s conditional on the data. In addition, the function is bounded by Assumption

2.3.1, therefore

E
[
Y 3

i
1{π(Xi) = Di,0 =

∑
k∈Ni

Dk}

ec
(

π(Xi),0,Oi

)3

∣∣∣A,L]< Γ2
1

δ 3
0
< ∞,

since σ(L)⊆ σ(Z) Since Yi is independent of (A′,L′) the moment bound also holds conditionally

on (A′,L′). Hence we can invoke Lemma B.4.7 for each term ( j) and ( j j) symmetrically.
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Collecting the outer sum for (A)

Using a symmetric argument for each of the two terms in Equation (B.5.3), we can write

by Lemma B.4.7 and collecting the outer sums in Equation (B.5.2)

(A)≤ 2|L |2C̄E
[
|L̃Nn|

2R2
n|C M

n |
Γ1L

δδ
3/2
0

√
Nn log(Nn)

n

]
,

for a universal constant C̄.

Bounding the constants to obtain a polynomial bound in the degree

We can bound Rn ≤Nn +N ′
n , and |C M

n | ≤N M
E ×N M′

E (see Lemma B.4.1). Note that

N M
E ,N M′

E are independent. To characterize |L̃Nn|, we can assume, since |L | is fixed with n

that Nn > |L |. Observe that we can find at most N
|L |

n many exchangeable combinations. To

observe why, note that the number of exchangeable combinations is less or equal than the the

number of distinct values that the vector [V1, · · · ,V|L |] can take with V1 ∈ {1, · · · ,Nn}.12 The

number of entries is of order N
|L |

n .

Conclusion

Finally, observe that the same reasoning directly applies also to (B),(C), completing the

proof.

Theorem 2.3.1 and Theorem 2.3.5

We state these two theorems as corollaries of Theorem B.5.1.

Corollary 12. Theorem 2.3.1 holds.
12Namely, we can represent the vector Li as a vector of binary dummies. Due to exchangeability we are interested

in the number of combinations that the sum of Nn of such vectors can take.
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Proof. Following Kitagawa and Tetenov (2018),

E
[

sup
π∈Π

W (π)−W (π̂mc,ec)
]
= E

[
sup
π∈Π

W (π)−Wn(π̂mc,ec ,mc,ec)+Wn(π̂mc,ec ,mc,ec)−W (π̂mc,ec)
]

≤ E
[

sup
π∈Π

W (π)−Wn(π,mc,ec)+Wn(π̂mc,ec ,mc,ec)−W (π̂mc,ec)
]

≤ E
[
2 sup

π∈Π

|W (π)−Wn(π,mc,ec)|
]

where the last inequality follows by the triangular inequality. The bound on the right hand side is

given by Theorem B.5.1.

Corollary 13. Theorem 2.3.5 hold.

Proof. Let Oi =
(

Zk∈Ni,Zi, |Ni|
)

and Ii(π) = 1{Di = π(Xi),
∑

k∈Ni
Dk = Si(π)}. We have

E
[

sup
π∈Π

W (π)−W (π̂aipw
m̂,ê )

]
≤ 2E

[
sup
π∈Π

|W aipw
n (π,mc,ec)−W (π)|

]
︸ ︷︷ ︸

(I)

+2E
[

sup
π∈Π

|W aipw
n (π, m̂, ê)−Wn(π,mc,ec)|

]
︸ ︷︷ ︸

(II)

.

Term (I) is bounded by Theorem B.5.1.

Bounding (II)

We now study (II). We separate two components of (II).

(II) = E
[

sup
π∈Π

∣∣∣1
n

n∑
i=1

Ii(π)

ê(π(Xi),Si(π),Oi)

(
Yi− m̂(π(Xi),Si(π),Zi, |Ni|

)
+

1
n

n∑
i=1

(
m̂(π(Xi),Si(π),Zi, |Ni|

)
−mc(π(Xi),Si(π),Zi, |Ni|

))
− 1

n

n∑
i=1

Ii(π)

ec(π(Xi),Si(π),Oi)

(
Yi−mc(π(Xi),Si(π),Zi, |Ni|

)∣∣∣].
(B.5.4)
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We can now use the triangular inequality.

(B.5.4)≤ E
[

sup
π∈Π

∣∣∣1
n

n∑
i=1

Ii(π)

ec(π(Xi),Si(π),Oi)ê(π(Xi),Si(π),Oi)
(Yi−mc(π(Xi),Si(π),Zi, |Ni|))×

×
(

ec(π(Xi),Si(π),Oi)− ê(π(Xi),Si(π),Oi)
)∣∣∣]

+E
[

sup
π∈Π

∣∣∣1
n

n∑
i=1

(
m̂(π(Xi),Si(π),Zi, |Ni|

)
−mc(π(Xi),Si(π),Zi, |Ni|

))∣∣∣]
+E
[

sup
π∈Π

∣∣∣1
n

n∑
i=1

Ii(π)

ê(π(Xi),Si(π),Oi)
(m̂(π(Xi),Si(π),Zi, |Ni|)−mc(π(Xi),Si(π),Zi, |Ni|)

∣∣∣].
By Assumption 2.3.1, and Holder’s inequality we have that

E
[

sup
π∈Π

∣∣∣1
n

n∑
i=1

Ii(π)

ec(π(Xi),Si(π),Oi)ê(π(Xi),Si(π),Oi)
(Yi−mc(π(Xi),Si(π),Zi, |Ni|))

×
(

ec(π(Xi),Si(π),Oi)− ê(π(Xi),Si(π),Oi)
)∣∣∣]

≤ 1
δ 2E

[
sup
π∈Π

1
n

n∑
i=1

∣∣∣(Yi−mc(π(Xi),Si(π),Zi, |Ni|))×
(

ec(π(Xi),Si(π),Oi)− ê(π(Xi),Si(π),Oi)
∣∣∣)].

(B.5.5)

Similarly,

E
[

sup
π∈Π

∣∣∣1
n

n∑
i=1

Ii(π)

ê(π(Xi),Si(π),Oi)

(
m̂(π(Xi),Si(π),Zi, |Ni|)−mc(π(Xi),Si(π),Zi, |Ni|

)∣∣∣]
≤ 1

δ
E
[

sup
π∈Π

1
n

n∑
i=1

∣∣∣(m̂(π(Xi),Si(π),Zi, |Ni|)−mc(π(Xi),Si(π),Zi, |Ni|
)∣∣∣].

Now note that for the conditional mean we have that the following expression

sup
π∈Π

∣∣∣m̂(π(Xi),
∑
k∈Ni

π(Xk),Zi, |Ni|)−mc(π(Xi),
∑
k∈Ni

π(Xk),Zi, |Ni|)
∣∣∣.

is bounded by Holder’s inequality by

∣∣∣ |Ni|∑
h=1

(mc(π(Xi),h,Zi, |Ni|)− m̂(π(Xi),h,Zi, |Ni|))1{
∑
k∈Ni

π(Xk) = h}
∣∣∣

≤ max
s≤|Ni|

|mc(π(Xi),s,Zi, |Ni|)− m̂(π(Xi),s,Zi, |Ni|)|,

since
∑|Ni|

h=1 1{
∑

k∈Ni
π(Xk) = h}= 1. A similar bound applies to Equation (B.5.5). By Assump-

tion 2.3.4 the proof completes.
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Proof of Theorem 2.3.3

The proof follows a similar strategy of Theorem B.5.1.

Studying the expectation

Define Ii(π) = 1
{

Di = π(Xi),
∑

k∈Ni
Dk =

∑
k∈Ni

π(Xk)
}

. First, by Lemma 2.2.1

KΠ(n) = 0, and by the distributional assumption in Lemma 2.2.1 we have

W (π) =
1
|I |

∑
j∈I

E
[
r
(

π(X j),
∑

k∈N j

π(Xk),Z j, |N j|,ε j

)]
= E

[
m(π(Xi),

∑
k∈Ni

π(Xk),Zi, |Ni|)
]

for all i ∈ {1, · · · ,E}. Following the same proof as in Lemma B.4.8 and by the definition of

conditional expectation

E
[
m
(

π(Xi),
∑
k∈Ni

π(Xk),Zi, |Ni|
)∣∣∣|Ni| ≤ κn

]
P(|Ni| ≤ κn)

= E
[
Yi

1{Di = π(Xi),
∑

k∈Ni
Dk =

∑
k∈Ni

π(Xk)}
e(π(Xi),Si(π),Zi, |Ni|)

1{|Ni| ≤ κn}
]
.

(B.5.6)

Bounding the regret with two main terms

We can then write

sup
π∈Π

W (π)−W (π̂ tr)≤ 2 sup
π∈Π

∣∣∣W (π)−W tr
n (π)

∣∣∣
= 2 sup

π∈Π

∣∣∣W (π)− 1
n

n∑
i=1

Yi
Ii(π)

e(π(Xi),Si(π),Zi, |Ni|)
1{|Ni| ≤ κn}

∣∣∣
≤ 2 sup

π∈Π

∣∣∣E[m(π(Xi),
∑
k∈Ni

π(Xk),Zi, |Ni|)
∣∣∣|Ni| ≤ κn

]
P(|Ni| ≤ κn)−

1
n

n∑
i=1

Yi
Ii(π)1{|Ni| ≤ κn}

e(π(Xi),Si(π),Zi, |Ni|)︸ ︷︷ ︸
(A)

∣∣∣

+2BP(|Ni| ≥ κn),

where we used the fact that the outcome is uniformly bounded by B.

Bounding (A) and symmetrization

The rest of the proof follows similarly to the proof of Theorem B.5.1. Namely, we bound

the above term using the symmetrization argument as in Equation (B.5.2) and below. Therefore,
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we can show using the same argument in Theorem B.5.1 that

E[(A)]≤ 2C̄E
[ ∑

m,m′≤Rn

∑
l∈L×L̃m,l′∈L×L̃m′

∑
C M

n ( j)∈C M
n

E
[

sup
π∈Π

∣∣∣1
n

∑
i∈C M

n ( j)

σiUi(Li, |Ni|,Lk∈Ni,π)Ii(l, l′,m,m′)
∣∣∣|A,L,A′,L′]

︸ ︷︷ ︸
(A)

]

with the above quantities
(

Ii(l, l′,m,m′),Rn,C M
n ,A′,L′,(σi)

n
i=1,L̃m

)
defined above and below

Equation (B.5.2) and Ui(Li, |Ni|,Lk∈Ni,π) denoting random variables equal to the summands

Yi
Ii(π)1{|Ni|≤κn}

e(π(Xi),Si(π),Zi,|Ni|) . Such random variables are measurable with respect to

(εi,Qi,Qk∈Ni,εDi,εDk∈Ni
,Li,Lk∈Ni, |Ni|).

Rademacher complexity bound and conclusion

We then bound the Rademacher complexity obtained from the argument as in Theorem

B.5.1 with Lemma B.4.3. In particular we observe that since Yi is bounded we have that

Yi
Ii(π)1{|Ni| ≤ κn}

e(π(Xi),Si(π),Zi, |Ni|)

is a Lipschitz function of Si(π) with constant 2B/δ , since Si(π) takes discretely many values.

The bound on (A) follows by Lemma B.4.3. The outer sums are bounded as discussed at the end

of the proof of Theorem B.5.1.
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Proof of Theorem 2.3.2

Notation

Throughout the proof we define

Ii(π) = 1
{

π(Xi) = Di,
∑
k∈Ni

π(Xk) =
∑
k∈Ni

Dk

}
, Ĩi(d,s) = 1

{
d = Di,s =

∑
k∈Ni

Dk

}
,

ei(π) = e
(

π(Xi),
∑
k∈Ni

π(Xk),Zk∈Ni ,Zi, |Ni|
)
, ẽi(d,s) = e

(
d,s,Zk∈Ni ,Zi, |Ni|

)
mi(π) = m

(
π(Xi),

∑
k∈Ni

π(Xk),Zi, |Ni|
)
, m̃i(d,s) = m

(
d,s,Zi, |Ni|

)
.

(B.5.7)

We also denote ε̃i = Yi−m(π(Xi),
∑

k∈Ni
π(Xk),Zi, |Ni|). Whenever we use ê, m̂ we refer to

the estimated nuisances. Recall that Z denotes the matrix of covariates for all individuals

i ∈ {1, · · · ,E} in the network of participants.

Preliminaries

By Lemma B.7.3, we have

E
[

sup
π∈Π

W (π)−W (π̂aipw
m̂,ê )

]
≤ 2E

[
sup
π∈Π

|W aipw
n (π,mc,ec)−W (π)|

]
︸ ︷︷ ︸

(I)

+2E
[

sup
π∈Π

|W aipw
n (π, m̂, ê)−Wn(π,mc,ec)|

]
︸ ︷︷ ︸

(II)

.

Term (I) is bounded by Theorem B.5.1. We now study (II).

E
[

sup
π∈Π

|W aipw
n (π, m̂, ê)−Wn(π,mc,ec)|

]
= E

[
sup
π∈Π

|1
n

n∑
i=1

Ii(π)

êi(π)
(mi(π)− m̂i(π))+ εi

Ii(π)

êi(π)
+ m̂i(π)−mi(π)|

]
= E

[
sup
π∈Π

|1
n

n∑
i=1

( Ii(π)

êi(π)
− Ii(π)

ei(π)

)
(mi(π)− m̂i(π))+ ε̃i

Ii(π)

êi(π)
+
( Ii(π)

ei(π)
−1
)

m̂i(π)−mi(π)|
]
.

(B.5.8)

The last equality follows after adding and subctracting the component Ii(π)
ei(π)

(mi(π)−
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m̂i(π)). Observe now that we can bound the above component as follows.

E
[

sup
π∈Π

|1
n

n∑
i=1

( Ii(π)

êi(π)
− Ii(π)

ei(π)

)
(mi(π)− m̂i(π))+ ε̃i

Ii(π)

êi(π)
+
( Ii(π)

ei(π)
−1
)

m̂i(π)−mi(π)|
]

≤E
[

sup
π∈Π

|1
n

n∑
i=1

( Ii(π)

êi(π)
− Ii(π)

ei(π)

)
(mi(π)− m̂i(π))

∣∣∣]︸ ︷︷ ︸
(i)

+E
[

sup
π∈Π

∣∣∣1
n

n∑
i=1

ε̃i

( Ii(π)

êi(π)
− Ii(π)

ei(π)

)
︸ ︷︷ ︸

(ii)

∣∣∣]

+E
[

sup
π∈Π

∣∣∣1
n

n∑
i=1

ε̃i
Ii(π)

ei(π)︸ ︷︷ ︸
(iii)

∣∣∣]+E
[

sup
π∈Π

∣∣∣1
n

n∑
i=1

( Ii(π)

ei(π)
−1
)
(m̂i(π)−mi(π))︸ ︷︷ ︸
(iv)

∣∣∣].
(B.5.9)

The first step consists in showing that the terms (ii), (iii), (iv) are centered around zero. (iii)

directly follows since none of the nuisance functions is estimated. We therefore discuss the

expectation of (ii) and (iv).

Expectation of (ii)

We start from (ii). By Algorithm 1, we claim that

E
[
ε̃i

( Ii(π)

êi(π)
− Ii(π)

ei(π)

)]
= 0. (B.5.10)

This follows from the following argument: using the law of iterated expectations

E[(ii)] = E
[
E
[(

r(π(Xi),
∑
k∈Ni

π(Xk),Zi, |Ni|,εi)−mi(π)
)( Ii(π)

êi(π)
− Ii(π)

ei(π)

)∣∣∣êi,Z,A
]]

. (B.5.11)

Observe now that êi(π) is estimated on an independent sample from εi, conditional on (A,Z).

Under Assumption 2.2.5 and the first condition in Assumption 2.2.213,

E
[
r(π(Xi),

∑
k∈Ni

π(Xk),Zi, |Ni|,εi)
( Ii(π)

êi(π)
− Ii(π)

ei(π)

)∣∣∣êi,Z,A
]
=

m(π(Xi),
∑
k∈Ni

π(Xk),Zi, |Ni|)E
[ Ii(π)

êi(π)
− Ii(π)

ei(π)

∣∣∣êi,Z,A
]
.

(B.5.12)

13Namely εDi are i.i.d. and exogenous.
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Expectation of (iii)

Notice now that the same reasoning for (ii) directly applies to (iii) for the fact that

E
[ Ii(π)

ei(π)
−1|m̂i,A,Z

]
= E

[ Ii(π)

ei(π)
−1|A,Z

]
= 0

by the cross fitting argument.

Concentration bound for (ii),(iii),(iv)

We can therefore apply the same argument used for Theorem B.5.1 also to these three

components directly (see the argument on Equation (B.5.2) and below) and obtain a bound

of order O
(
E[PM,|L |(NE)]

√
VC(Π)/n

)
. Here, Lipschitz properties are guaranteed by the

second condition of Assumption 3.4.3 for which the estimated m̂ and 1/ê are bounded .

Bounding (i)

We are now left to bound (i). Observe that we have

(i)≤ E
[√√√√1

n

n∑
i=1

sup
d,s

( 1
ẽi(d,s)

− 1
ˆ̃ei(d,s)

)2

√√√√1
n

n∑
i=1

sup
d,s

(
m̃i(d,s)− ˆ̃mi(d,s)

)2]

≤

√√√√E
[1

n

n∑
i=1

sup
d,s

( 1
ẽi(d,s)

− 1
ˆ̃ei(d,s)

)2]√√√√E
[1

n

n∑
i=1

sup
d,s

(
m̃i(d,s)− ˆ̃mi(d,s)

)2]
≤ C̄n1/2,

(B.5.13)

for a finite constant C̄ < ∞ by Assumption 3.4.3.

Proof of Theorem 2.3.4

As in the above theorem, it suffices to bound E
[

supπ∈Π |W (π)−Wn(π)|
]
.

Expectation

We can write

E
[

sup
π∈Π

|W (π)−Wn(π)|
]
≤KΠ(n)+E

[
sup
π∈Π

|W ∗(π)−Wn(π)|
]

where

W ∗(π) =
1
n

n∑
i=1

E
[
r
(

π(Xi),Si(π),Zi, |Ni|,εi

)]
=

1
n

n∑
i=1

E
[
m
(

π(Xi),Si(π),Zi, |Ni|
)]

,
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and where the second equality follows from Assumption 2.2.1, 2.2.2 and 2.2.4 similarly to what

discussed in the proof of Lemma B.4.9. By Lemma B.4.9, we have that W ∗(π)=E[Wn(π,mc,ec)]

under correct specification of either mc or ec. Therefore for i ∈ {1, · · · ,n}

W ∗(π) =
1
n

n∑
i=1

E
[1{π(Xi) = Di,

∑
k∈Ni

π(Xk) =
∑

k∈Ni
Dk}

ec
(

π(Xi),Si(π),Oi

) (
Yi−mc

(
π(Xi),Si(π),Zi, |Ni|

))]
+

+E
[
mc
(

π(Xi),Si(π),Zi, |Ni|
)]

,

where Oi =
(

Zk∈Ni,Zi, |Ni|
)

.

Bound in terms of K

We can then decompose

E
[

sup
π∈Π

|W ∗(π)−Wn(π)|
]
≤

K∑
k=1

E
[

sup
π∈Π

|W ∗(π)−W k
n (π)|

]

where W k
n (π) is the empirical welfare in a group k of independent observations.

Symmetrization and conclusion

Using Lemma B.7.1 we can use the standard symmetrization argument to

E
[

supπ∈Π |W ∗(π)−W k
n (π)|

]
, since each summand in W k

n (π) is independent and identically

distributed. The proof concludes invoking Lemma B.4.7 and by Jensen’s inequality to bound

E[
√

Nn log(Nn)]≤
√

E[Nn log(Nn)] .

Proof of Theorem B.1.2

By the law of iterated expectations we obtain that if either mc or ec are correctly specified,

and under Assumption 2.2.3

E[W t
n(π,m

c,ec)] =W (π) (B.5.14)

similarly to what discussed in Lemma B.4.9. By trivial rearrengement, we obtain that

sup
π∈Π

W (π)−W (π̂aipw)≤ 2 sup
π∈Π

∣∣∣W t
n(π,m

c,ec)−W (π)

∣∣∣. (B.5.15)
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Notice now that the exact same argument for bounding the above term follows from the proof

of Theorem B.5.1 holds, whereas in such a case the moment conditions also depend on ρ̄ . In

particular the moment bounds are multiplied by ρ̄3. Similarly, the Lipschitz constant of the

conditional mean function also must be multiplied by the term ρ̄ .

Proof of Theorem B.1.1

First equality

First we want to show that (note that
{

Di = π(Xi)∀i ∈ {1, · · · ,E}
}

denotes the event

that Di = π(Xi) but do not condition on the values of Di)

E
[
r
(

Ti,
∑
k∈Ni

Tk,Zi, |Ni|,εi

)∣∣∣{Di = π(Xi)∀i ∈ {1, · · · ,E}
}]

= E
[
r
(

Ti(π),
∑
k∈Ni

Tk(π),Zi, |Ni|,εi

)]
.

The proof of the claim follows from the assumption that (ε j,ν j)
E
j=1 ⊥

(
Z,A,(εD j)

E
j=1

)
. In

particular, we can write

E
[
r
(

Ti,
∑
k∈Ni

Tk,Zi, |Ni|,εi

)∣∣∣{Di = π(Xi)∀i ∈ {1, · · · ,E}
}]

= E
[
r
(

Ti(π),
∑
k∈Ni

Tk(π),Zi, |Ni|,εi

)∣∣∣{Di = π(Xi)∀i ∈ {1, · · · ,E}
}]

= EA,Z

[
E
[
r
(

Ti(π),
∑
k∈Ni

Tk(π),Zi, |Ni|,εi

)∣∣∣{Di = π(Xi)∀i ∈ {1, · · · ,E}
}
,A,Z

]]
= EA,Z

[
E
[
r
(

Ti(π),
∑
k∈Ni

Tk(π),Zi, |Ni|,εi

)∣∣∣A,Z]]
= E

[
r
(

Ti(π),
∑
k∈Ni

Tk(π),Zi, |Ni|,εi

)]
.

Second equality

Second, we want to derive the main decomposition in the second equality. Let denote Eπ

the expectation conditional on the event
{

Di = π(Xi)∀i ∈ {1, · · · ,E}
}

. Using the law of iterated
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expectations and the equality above, we have

Eπ

[
r(Ti,

∑
k∈Ni

Tk,Zi, |Ni|,εi)
]

= E
[
E
[
r(Ti(π),

∑
k∈Ni

Tk(π),Zi, |Ni|,εi)
∣∣∣Z,A]].

Using the definition of the expectation, we have that (I) equals∑
s∈{0,··· ,|Ni|}

E
[
r(d,s,Zi, |Ni|,εi)

∣∣∣Ti(π) = d,
∑
k∈Ni

Tk(π) = s,Z,A
]

︸ ︷︷ ︸
(i)

×P
(

Ti(π) = d,
∑
k∈Ni

Tk(π) = s
∣∣∣A,Z)︸ ︷︷ ︸

(ii)

.

We now discuss (i) and (ii) separately. First, we observe that since (ε j)
E
j=1⊥

(
Z,A,(εD j ,ν j)

E
j=1

)
(i) = E

[
r(d,s,Zi, |Ni|,εi)

∣∣∣Zi, |Ni|,Ti(π) = d,
∑
k∈Ni

Tk(π) = s,Z,A
]

= Eπ

[
r(d,s,Zi, |Ni|,εi)

∣∣∣Zi, |Ni|,Ti = d,
∑
k∈Ni

Tk = s,Z,A
]

= E
[
r(d,s,Zi, |Ni|,εi)

∣∣∣Zi, |Ni|,Ti = d,
∑
k∈Ni

Tk = s,Z,A
]

= E
[
r(d,s,Zi, |Ni|,εi)

∣∣∣Zi, |Ni|,Ti = d,
∑
k∈Ni

Tk = s
]
.

Consider now (ii). Observe that by indepedence and exogeneity of (ν j)
E
j=1, we can write

(ii) = P
(

Ti(π) = d
∣∣∣A,Z)× ∑

u1,··· ,ul :
∑

v uv=s

|Ni|∏
k=1

P
(

T
N

(k)
i

(π) = uk

∣∣∣A,Z)
where the expression sums over all possible combinations of selected treatments such that the

sum of the selected treatments of the neighbors is s. Using again exogeneity of νi, we have

P
(

Ti(π) = d
∣∣∣A,Z)= P

(
Ti = d

∣∣∣Zi, |Ni|,Di = π(Xi),
∑
k∈Ni

Dk =
∑
k∈Ni

π(Xk),
∑
k∈Ni

π(Xk),π(Xi)
)
.

Similar reasoning also applies to neighbors’ selected treatments, which depend on the assigned

treatments to the second-degree neighbors. The proof completes.

Preliminary Lemmas

This section collects a first set of lemmas from past literature that we invoke in our proofs.
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Lemma B.7.1. (Van Der Vaart and Wellner (1996)) Let σ1, ...,σn be Rademacher sequence

independent of X1, ...,Xn. Suppose that X1, · · · ,Xn are i.i.d.. Then

E
[

sup f∈F

∣∣∣ n∑
i=1

f (Xi)−E[ f (Xi)]
∣∣∣]≤ 2E

[
sup f∈F

∣∣∣ n∑
i=1

σi f (Xi)
∣∣∣].

Lemma B.7.2. (Brook’s Theorem,Brooks (1941)) For any connected undirected graph G with

maximum degree ∆, the chromatic number of G is at most ∆ unless G is a complete graph or an

odd cycle case the chromatic number is ∆+1.

The next lemma discuss the case of estimated conditional mean and balancing score

function. The lemma follows from Kitagawa and Tetenov (2018).

Lemma B.7.3. (From Kitagawa and Tetenov (2018)) The following holds.

sup
π∈Π

W (π)−W (π̂aipw
m̂,ê )≤ 2 sup

π∈Π

|W aipw
n (π,mc,ec)−W (π)|+2 sup

π∈Π

|Ŵ aipw
n (π, m̂, ê)−Wn(π,mc,ec)|.

Lemma B.7.4. (Lemma A.1, Kitagawa and Tetenov (2019)) Let t0 > 1, define

g(t) :=


0, for t = 0

t−1/2, t ≥ 1
, h(t) = t−1/2

0 − 1
2

t−3/2
0 (t− t0)+ t−2

0 (t− t0).

Then g(t)≤ h(t), for t = 0 and all t ≥ 1.

In the next two lemmas we formalize two key properties of covering numbers.

Lemma B.7.5. (Theorem 29.6, Devroye et al. (2013)) Let F1, ...,Fk be classes of real functions

on Rd . For n arbitrary points zn
1 = (z1, ...,zn) in Rd , define the sets F1(zn

1), ...,Fk(zn
1) in Rn by

F j(zn
1) = { f j(z1), ..., f j(zn) : f j ∈F j}, j = 1, ...,k.

Also, introduce

F = { f1 + ...+ fk; f j ∈F j, j = 1, ...,k}.
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Then for every ε > 0 and zn
1,

N1

(
ε,F (zn

1)
)
≤

k∏
j=1

N1

(
ε/k,F j(zn

1)
)

Lemma B.7.6. (Pollard, 1990) Let F and G be classes of real valued functions on Rd bounded

by M1 and M2 respectively. For arbitrary fixed points zn
1 in Rd , let

J (zn
1) = {(h(z1), ...,h(zn);h ∈J }, J = { f g; f ∈F ,g ∈ G }.

Then for every ε > 0 and zn
1,

N1

(
ε,J (zn

1)
)
≤N1

(
ε

2M2
,F (zn

1)
)
N1

(
ε

2M1
,G (zn

1)
)
.

Lemma B.7.7. (Wenocur and Dudley, 1981) Let g : Rd 7→ R be an arbitrary function and

consider the class of functions G = {g+ f , f ∈F}. Then

VC(G ) =VC(F )

where VC(F ), VC(G ) denotes the VC dimension respectively of F and G .

An important relation between covering numbers and Rademacher complexity is given

by Dudley’s entropy integral bound.

Lemma B.7.8. (From Theorem 5.22 in Wainwright (2019)) For a function class F of uniformly

bounded functions and arbitrary fixed points zn
1 ∈ Rd , and i.i.d. Rademacher random variables

σ1, ...,σn in R,

Eσ

[
sup f∈F

∣∣∣1
n

n∑
i=1

σi f (zi)
∣∣∣]≤ 32√

n

∫ Dq

0

√
log
(
Nq

(
u,F (zn

1)
))

du,
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where Dq denotes the maximum diameter of F (zn
1) according to the metric

dq( f ,g) =
(

1
n
∑n

i=1( f (zi)−g(zi))
q
)1/q

.

Theorem 5.22 in Wainwright (2019) provides a general version of Lemma B.7.8. Equiva-

lent versions of Lemma B.7.8 can be found also in Van Der Vaart and Wellner (1996).

Lemma B.7.9. Let X1, ...,Xn be independent Bernoulli random variables with bi ∼ Bern(pi).

Let p̄ = 1
n
∑n

i=1 pi with np̄ > 1 and g(.) as defined in the Lemma B.7.4. Then

E
[
g
( n∑

i=1

Xi

)]
< 2(np̄)−1/2

Proof. The proof follows similarly as in Kitagawa and Tetenov (2019). Let h(.) be the function

defined in Lemma B.7.4 with t0 = np̄. By Lemma B.7.4,

E
[
g
( n∑

i=1

Xi

)]
≤ E

[
h
( n∑

i=1

Xi

)]
= E

[
(np̄)−1/2− 1

2

√
(np̄)3

( n∑
i=1

Xi−
n∑

i=1

E[Xi]
)
+(np̄)−2

( n∑
i=1

Xi−
n∑

i=1

E[Xi]
)2]

= (np̄)−1/2− 1
2
(np̄)−3/20+(np̄)−2Var

( n∑
i=1

Xi

)
= (np̄)−1/2 +(np̄)−2

n∑
i=1

pi(1− pi)

≤ (np̄)−1/2 +(np̄)−2
n∑

i=1

pi

= (np̄)−1/2 +(np̄)−2np̄

= (np̄)−1/2 +(np̄)−1 < 2(np̄)−1/2

since np̄ > 1 and (np̄)−1 < (np̄)−1/2.

We conclude our discussion with an extension under lack of point-wise measurability.

Lemma B.7.10. (Lemma 2.6, Hajłasz and Malỳ (2002)) Let U be a class of measurable functions

defined on a measurable space E ⊂ Rn. Then the lattice supremum defined as
∨

U exists and
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there is a countable sub-family V ⊂U such that

∨
U =

∨
V = supV . (B.7.1)

The above lemma has one important implication: whenever the function Π is not point-

wise measurable, by taking the lattice supremum over a function class, we are guaranteed that

such supremum corresponds to a supremum over a countable subset, for which the pointwise

supremum is defined. By construction, such class V has VC-dimension bounded by the VC-

dimension of the original function class U .
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Appendix C

Appendix to Chapter 3

Extensions and Mathematical Details

Comparison under Strong Duality

We now sketch the differences in the optimization problem with the one in Equation (3.9)

assuming strong duality for expositional convenience and providing an intuition on the result in

Proposition 8. Assuming strong-duality, the optimization problem of maximizing welfare under

fairness constraint in Equation (3.9) can be equivalently rewritten as:

π̃ ∈ argmin
π∈Π

UnFairness(π), such that p1W1(π)+(1− p1)W0(π)≥ λ (κ) (C.1.1)

for some constant λ (κ)≤ W̄p1 which depends on κ . We now constrast Equation (C.1.1) to our

proposed approach (Equation (3.7)). Suppose first that λ (κ) = W̄p1 , i.e., π̃ is Pareto optimal.

Then the constraint in Equation (C.1.1) is stricter than the constraint in Equation (3.7), since the

latter case imposes that αW1(π)+(1−α)W0(π)≥ W̄α , for some α , instead of for a particular

chosen weight (e.g., p1). As a result, π? leads to a lower level of UnFairness whenever π̃ is

Pareto optimal, since π? minimizes UnFairness under weaker constraints compared to π̃ . When

instead π̃ is not Pareto optimal, i.e., λ (κ)< W̄p1 , π̃ is Pareto dominated by some other allocation˜̃π . However ˜̃π leads to a larger UnFairness than π?, while not Pareto dominating π?.

The key intuition is the following: under strong duality, the dual of π̃ corresponds
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S = 1S = 0

Ik

S = 1S = 0

Ik

Figure C.1.1. Graphical representation of cross-fitting under two alternative models. The light
gray area is the training set, used to construct an estimator of m̂d,s=1, whereas the darker gray
area is an evaluation set, area in which a prediction of m̂d,s=1 is computed.

to minimizing UnFairness for one particular weighted combination of welfare exceeding a

certain threshold. In contrast, our decision problem imposes the constraint that some weighted

combination of welfares exceeds a certain threshold. This difference reflects the difference

between the lexicographic preferences that we propose as opposed to an additive social planner’s

utility. It guarantees that whenever π̃ is Pareto optimal, its fairness is dominated by the one under

π?.

Cross-fitting with UnFairness

In this section we discuss cross-fitting with fairness. Two alternative cross-fitting pro-

cedures are available to the researcher. The first one, consists in dividing the sample into K

folds and estimating the conditional mean m̂(−k(i))
d,s (Xi) using observations for which S = s only,

after excluding the fold k corresponding to unit i (panel on the right in Figure C.1.1). Formally,

let i ∈Ik∩S1 where Ik is the k-th fold of the data and S1 = {i : Si = s1}. Let m̂(−k(i))
d,s2

be an

estimator obtained using samples not in the fold k, I c
k ∩S c

1 for which S c
1 = {i : Si = s2}; for

example by a random forest or linear regression of Yj onto X j for S j = s2, and j /∈Ik. Such an

approach does not impose parametric restrictions on the dependence of md,s on the attribute s,

at the expense of shrinking the effective sample size used for estimation. The second approach

consists in further imposing additional parametric restrictions on the depends of md,s on s and

using all observations in all folds except k for estimating m̂(−k(i))
d,s (Xi) (panel on the right in Figure

C.1.1).
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Linear or Quadratic Constraints for the Policy Function Space Represen-
tation

In this section we discuss mixed integer formualtions of probabilistic and deterministic

decisions rules. Consider first a deterministic decision rule of the form

Π =
{

πβ (X ,S) = 1{X>β +Sβ0 > 0}, β ∈B
}
.

Then we can write the constraint (A) in Equation (3.16) as (Kitagawa and Tetenov, 2018)

X>i β + sβ0

|Ci|
< zs,i ≤

X>i β + sβ0

|Ci|
+1, Ci > supβ∈B|X>i β |+ |β0|, zs,i ∈ {0,1}.

Consider now the following probabilistic decision

Π =
{

πβ (X ,S) = p11{X>i β +Sβ0 > 0}+ p01{X>β +Sβ0 ≤ 0}, p1, p0 ∈ [0,1],β ∈B
}
.

(C.1.2)

Then we can represent each decision variable as follows

zs,i = p1ξs,i + p0(1−ξs,i)

X>i β + sβ0

|Ci|
< ξs,i ≤

X>i β + sβ0

|Ci|
+1, Ci > supβ∈B|X>i β |+ |β0|, ξs,i ∈ {0,1}.

where we introduced the additional variables ξs,i. We use this probablistic rule in the empirical

application.

One last type of function class of interest is a linear probability rule of the following form

zs,i = X>i β +β0Si, zs,i ∈ [0,1]

which leads to fast computations due lack of integer variables in the program, and which we use

for the simulations in Section 6.1 for computational feasibility.
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Extension: Additional Notions of UnFairness

Predictive parity has been discussed in Kasy and Abebe (2020) among others. Here

we consider its definition within the context of policy-targeting. Its notion requires additional

assumption for its implementation, assuming deterministic treatment assignments π(Xi) ∈ {0,1}

(i.e., T = {0,1}). The notion reads as follows:

Ps(π) =
∣∣∣E[Y (1)∣∣∣π(X) = 1,S = s

]
−E
[
Y (1)

∣∣∣π(X) = 1
]∣∣∣.

Larger values of Ps(π) increase UnFairness. Using the definition of the conditional expectation,

and using consistency of potential outcomes, the following lemma holds.

Lemma C.1.1. Let T = {0,1}. Then following holds.

Ps(π) = (1− ps)
∣∣∣E
[
Y (1)1{Si = s}π(X)

]
psP(π(X) = 1|S = s)

−
E
[
Y (1)π(X)1{S = s′}

]
(1− ps)P(π(X) = 1|S = s′)

∣∣∣.
Proof of Lemma C.1.1. Using the definition of conditional expectation:

E
[
Y
∣∣∣π(X) = 1,S = s

]
= E

[ Y (1)1{S = s}π(X)

psP(π(X) = 1|S = s)

]
. (C.1.3)

We also write

E
[
Y
∣∣∣π(X) = 1

]
= psE

[
Y
∣∣∣π(X) = 1,S = s

]
+(1− ps)E

[
Y
∣∣∣π(X) = 1,S = s′

]
.

Combining the expression with Equation (C.1.3) completes the proof.

Given two sensitive groups S = {0,1}, the corresponding notion of UnFairness we

consider takes the following form:

P(π) ∝
P1(π)

1− p1
=

P0(π)

p1
. (C.1.4)
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We consider a double-robust estimator which takes the following form:

V̂n(π) =
∣∣∣ n∑

i=1

π(Xi)Si

{
(Yi−m̂1(Xi,Si))Di

ê(Xi,Si)
+ m̂1(Xi,Si)

}
np1P(π(Xi) = 1|Si = 1)

−
(1−Si)π(Xi)

{
(Yi−m̂1(Xi,Si))Di

ê(Xi,Si)
+ m̂1(Xi,Si)

}
n(1− p1)P(π(Xi) = 1|Si = 0)

∣∣∣.
(C.1.5)

Observe that the estimator depends on the estimated conditional mean function and propensity

score, whereas ps and P(π(X) = 1|S = s) are assumed to be known. These two components

can be obtained, for instance from census data, since ps and P(π(X) = 1|S = s) only depend

on the distribution of covariates and sensitive attributes. Whenever P(π(Xi) = 1|Si = s) is

replaced by its sampled analog Pn(π(Xi) = 1|Si = s) = 1
nps

∑n
i=1 π(Xi)1{Si = s}, we require that

Pn(π(Xi) = 1|Si = s) is bounded away from zero almost surely.

Theorem C.1.2 (Predictive parity). Let Assumptions 3.2.1, 3.4.1,3.4.2, 3.4.3 hold. Let either

UnFairness(π) be defined using the notion of Predictive (dis)-parity. Assume that P(π(X ,S) =

1|S = 1),P(π(X ,S) = 1|S = 0) ∈ (κ,1−κ) for all π ∈ Π, κ ∈ (0,1). Then for some constant

c0 < ∞, for any γ ∈ (0,1),λ ≥ b
√

v log(2/γ)
n , for a constant b > 0, independent of the sample size

with probability at least 1−2γ ,

UnFairness(π̂)− inf
π∈Πo

UnFairness(π)≤ c0

√
log(2/γ)

n
+ c0

√
v
n
,

for a finite constant c0 < ∞.

The proof is in Appendix C.3.14.

Remark 18 (Mixed-integer linear representation of Predictive Parity). Let P(π(Xi)|Si = 1) =

1
psN
∑N

i=1 π(Xi)Si where N denotes the number of individuals whose census-information (i.e.,

baseline covariates and sensitive attributes) are observed. The optimization problem can be for-

mulated as a mixed-integer fractional linear program for π(X) satisfying a linear representation.

This follows after the linearization of the constraint (B), which can be achieved by introducing

2N×n many additional binary variables. Since fractional linear programs admit a mixed-integer
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linear program representations (Charnes and Cooper, 1962), the optimization problem can be

solved as a mixed integer linear program.

Numerical Studies and Application: Further Results and
Details

Empirical Application

Estimation details

We control for confounding of the treatment assignment by estimating the probability

of treatment using a penalized logistic regression, where we condition on the non-Caucasian

attribute, gender, the average score, years to graduation, whether the individual had previously

had entrepreneurship activities, the startup region (which a dummy since only two regions are

considered), the degree (either engineer or business) and the school rank. We estimate the

outcome using a penalized logistic regression, after conditioning on the above covariates, and

any interaction term between gender, treatment assignment, and a vector of covariates, which

include years to graduation, prior entrepreneurship, startup region, and the school rank. We

estimate treatment effects using a doubly robust estimator. We use cross-fitting with five folds in

our estimation.

Additional results for probabilistic treatment assignments

We also consider in our analysis the class of probabilistic assignment rules, which assign

treatments with a probability decision as in Equation (C.1.2). Results are collected in Figure

C.2.1, where we observe that the set of probabilistic decision Pareto dominates the determinitic

ones up-to a small optimization error.
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Figure C.2.1. Application: frontier of the probabilistic assignment rule. Dots denote Pareto
optimal allocations. Red dots (circle) correspond to Π1, blue dots (triangle) to Π2 and black
dots (square) to Π3. The gray area denotes the set of allocations dominated by a deterministic
decision rule.

Numerical Studies

Data genering process

We consider the following data generating process: we draw

Si ∼i.i.d. Bern(p̂1),

where p̂1 is the probability of being female in the experiment. We draw covariates X |S = 1 from

the empirical distribution of covariates of the female applicants and similarly we draw X |S = 0

from the empirical distribution of male applicants. We draw D|X ,S∼ Bern(ê(X ,S)). Finally, we

draw the potential outcome of interest as

Y (d)|X ,S = m̂d,S(X)+ ε, ε ∼N (0,1).

Both ê, m̂ are estimated using a penalized logistic regression from the empirical distribution.
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Method Fair Policy Targeting Fairness Constraint
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Figure C.2.2. Calibrated experiment to Lyons and Zhang (2017). Results averaged over 500
replications. n = 600. The left panel collects results for κ = 1 (stricted fairness constaint) and
the right panel for κ = 10 (slacker fairness constraint). Colored in red is the proposed method,
and in blue, the method that maximizes the empirical welfare imposing fairness constraints. In
each panel, the first two columns report the welfare of each group, and the third column the
difference in probability of being treated between females and males students.

Estimation

Over each iteration we estimate the propensity score and the conditional mean using a

correctly model for the propensity score and a linear model for the conditional mean (estimated

with penalized regression). We consider a class of probabilistic assignment rules, taking the

following form:

Π =
{

π(x) = β0 + x>β , β ∈ [−1,1]p+1 : π(x) ∈ [0,1], ∀x ∈Xn

}
,

where Xn denotes the empirical support of covariates. The above function class allows for faster

computations compared to the maximum score function class since it does not require the use of

any binary decision variable for the policy representation.

Additional results

In Figures C.2.2, we collect additional numerical results for n = 600 where we observe

consistent results with those in the main text.
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Main Proofs

Throughout the rest of our discussion we define

Πo,n =
{

πα ∈Π : πα ∈ arg sup
π∈Π

{
αŴ0(π)+(1−α)Ŵ1(π)

}
, s.t. α ∈ (0,1)

}
, (C.3.1)

and let N =
√

n as discussed in the main text. We denote α1−α2 = ε , where, recall, the grid

of (αi)
N
i=1 contains element equally spaced. We say that x . y if y≤ c0x for a finite constant c0

independent of n.

Auxiliary Lemmas

Lemma C.3.1. Under Assumption 3.2.1, 3.4.2 for any sensitive attribute s ∈ {0,1}

Ws(π) = E
[1{Si = s}

ps

( YiDi

e(Xi,s)
− Yi(1−Di)

1− e(Xi,s)

)
π(Xi,s)

]
. (C.3.2)

Proof of Lemma C.3.1. Assumption 3.4.2 guarantees existence of the expectation. By definition

of the conditional expectation

(C.3.2) = E
[( YiDi

e(Xi,s)
− Yi(1−Di)

1− e(Xi,s)

)
π(Xi,s)

∣∣∣Si = s
]
.

Using the law of iterated expectations and Assumption 3.2.1 the result directly follows.

Lemma C.3.2. Let Ws,n =
1
n
∑n

i=1(Γ1,s,i−Γ0,s,i)π(Xi,s), where Γd,s,i is defined as in Equation

(3.10). Let Assumptions 3.2.1, 3.4.1, and 3.4.2 hold. Then with probability at least 1− γ ,

sup
α∈(0,1)

sup
π∈Π

∣∣∣αW0(π)+(1−α)W1(π)−αW0,n(π)+(1−α)W1,n(π)
∣∣∣

≤ C̄
M
δ 2

√
v/n+

C̄M
δ 2

√
log(2/γ)/n

(C.3.3)
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for a universal constant C̄ < ∞. In addition,

E
[

sup
α∈(0,1)

sup
π∈Π

∣∣∣αW0(π)+(1−α)W1(π)−αW0,n(π)+(1−α)W1,n(π)
∣∣∣]≤ C̄

M
δ 2

√
v/n. (C.3.4)

Proof of Lemma C.3.2. Throughout the proof we refer to C̄ < ∞ as a universal constant. Observe

first that under Assumption 3.4.2 and Assumption 3.4.1, we have

sup
α∈(0,1)

sup
π∈Π

∣∣∣αW0(π)+(1−α)W1(π)−αW0,n(π)+(1−α)W1,n(π)
∣∣∣, (C.3.5)

satisfies the bounded difference assumption (Boucheron et al., 2013) with constant 2M
δ 2n . See for

instance Boucheron et al. (2005). By the bounded difference inequality, with probability at least

1− γ ,

sup
α∈(0,1)

sup
π∈Π

∣∣∣αW0(π)+(1−α)W1(π)−αW0,n(π)+(1−α)W1,n(π)
∣∣∣

≤ E
[

sup
α∈(0,1)

sup
π∈Π

∣∣∣αW0(π)+(1−α)W1(π)−αW0,n(π)+(1−α)W1,n(π)
∣∣∣]

+C̄
M
δ 2

√
log(2/γ)/n.

(C.3.6)

We now move to bound the expectation in the right-hand side of Equation (C.3.6). Under

Assumption 3.2.1, we obtain by Lemma C.3.1 and trivial rearrangments, that

E
[
αW0(π)+(1−α)W1(π)−αW0,n(π)+(1−α)W1,n(π)

]
= 0. (C.3.7)

Using the symmetrization argument (Van Der Vaart and Wellner, 1996), we can now

bound the above supremum with the Radamacher complexity of the function class of interest

(e.g., Athey and Wager (2021), Viviano (2019), Mbakop and Tabord-Meehan (2021)), which
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combined with the triangle inequality reads as follows:

E
[

sup
α∈(0,1)

sup
π∈Π

∣∣∣αW0(π)+(1−α)W1(π)−αW0,n(π)+(1−α)W1,n(π)
∣∣∣]

≤ E
[

sup
α∈(0,1)

sup
π∈Π

∣∣∣αW0(π)−αW0,n(π)
∣∣∣]+E

[
sup

α∈(0,1)
sup
π∈Π

∣∣∣(1−α)W1(π)− (1−α)W1,n(π)
∣∣∣]

≤ E
[

sup
π∈Π

∣∣∣W0(π)−W0,n(π)
∣∣∣]+E

[
sup
π∈Π

∣∣∣W1(π)−W1,n(π)
∣∣∣]

≤ E
[

sup
π∈Π

∣∣∣1
n

n∑
i=1

σiπ(Xi,1)Γ1,1,i

∣∣∣]+E
[

sup
π∈Π

∣∣∣1
n

n∑
i=1

σiπ(Xi,1)Γ0,1,i

∣∣∣]
+E
[

sup
π∈Π

∣∣∣1
n

n∑
i=1

σiπ(Xi,0)Γ1,0,i

∣∣∣]+E
[

sup
π∈Π

∣∣∣1
n

n∑
i=1

σiπ(Xi,0)Γ0,0,i

∣∣∣],
(C.3.8)

where here σi are independent Radamacher random variables. We can study each component of

the above expression separately. By the Dudley’s entropy integral bound, since the VC-dimension

of the function class Π is bounded by Assumption 3.4.1, and since each Γd,s, is bounded, we

obtain (see for instance Wainwright (2019)), under Assumption 3.4.1 (A) and (B), with trivial

rearrangement

E
[

sup
π∈Π

∣∣∣1
n

n∑
i=1

σiπ(Xi,s)Γd,s,i

∣∣∣]≤ MC̄
δ 2

√
v/n. (C.3.9)

for each d,s. The remaining terms follow similarly. The proof is complete.

Lemma C.3.3. Let Assumptions 3.2.1, 3.4.1-3.4.3 hold. Then with probability at least 1− γ ,

sup
α∈(0,1)

sup
π∈Π

∣∣∣αW0(π)+(1−α)W1(π)−αŴ0(π)+(1−α)Ŵ1(π)
∣∣∣

≤ C̄
M
δ 2

√
v/n+

C̄M
δ 2

√
log(2/γ)/n

(C.3.10)

for a universal constant C̄ < ∞.
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Proof of Lemma C.3.3. First observe that we can bound the above expression as

sup
α∈(0,1)

sup
π∈Π

∣∣∣αW0(π)+(1−α)W1(π)−αŴ0(π)+(1−α)Ŵ1(π)
∣∣∣≤

sup
α∈(0,1)

sup
π∈Π

∣∣∣αW0(π)+(1−α)W1(π)−αW0,n(π)+(1−α)W1,n(π)
∣∣∣︸ ︷︷ ︸

(I)

+ sup
α∈(0,1)

sup
π∈Π

∣∣∣αW0,n(π)+(1−α)W1,n(π)−αŴ0(π)+(1−α)Ŵ1(π)
∣∣∣︸ ︷︷ ︸

(II)

.

(C.3.11)

Here Ws,n is as defined in Lemma C.3.2. The term (I) is bounded as in Lemma C.3.2. Therefore,

we are only left to discuss (II).

Using the triangular inequality, we only need to bound

sup
π∈Π

∣∣∣W0,n(π)−Ŵ0,n(π)
∣∣∣+ sup

π∈Π

∣∣∣W1,n(π)−Ŵ1,n(π)
∣∣∣. (C.3.12)

We bound the first term while the second term follows similarly. We write

sup
π∈Π

∣∣∣Ws,n(π)−Ŵs(π)
∣∣∣

≤
∣∣∣1
n

n∑
i=1

1{Si = s}
ps

Di(Yi−m1,s(Xi))

e(Xi,s)
π(Xi,s)+

1{Si = s}
ps

m1,s(Xi)π(Xi,s)

− 1
n

n∑
i=1

1{Si = s}
p̂s

Di(Yi− m̂1,s(Xi))

ê(Xi,s)
π(Xi,s)−

1{Si = s}
p̂s

m̂1,s(Xi)π(Xi,s)
∣∣∣

+
∣∣∣1
n

n∑
i=1

1{Si = s}
ps

(1−Di)(Yi−m0,s(Xi))

1− e(Xi,s)
π(Xi,s)+

1{Si = s}
ps

m0,s(Xi)π(Xi,s)

− 1
n

n∑
i=1

1{Si = s}
p̂s

(1−Di)(Yi− m̂s,0(Xi))

1− ê(Xi,s)
π(Xi,s)−

1{Si = s}
p̂s

m̂0,s(Xi)π(Xi,s)
∣∣∣.

(C.3.13)

We discuss the first component while the second follows similarly.

With trivial re-arrengment, using the triangular inequality, we obtain that the following
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holds

∣∣∣1
n

n∑
i=1

1{Si = s}
ps

Di(Yi−m1,s(Xi))

e(Xi,s)
π(Xi,s)+

1{Si = s}
ps

m1,s(Xi)π(Xi,s)

− 1
n

n∑
i=1

1{Si = s}
p̂s

Di(Yi− m̂1,s(Xi))

ê(Xi,s)
π(Xi,s)−

1{Si = s}
p̂s

m̂1,s(Xi)π(Xi,s)
∣∣∣

≤ sup
π∈Π

∣∣∣1
n

n∑
i=1

1{Si = s}Di(Yi−m1,s(Xi))
( 1

pse(Xi,s)
− 1

p̂sê(Xi,s)

)
π(Xi,s)

∣∣∣︸ ︷︷ ︸
(i)

+ sup
π∈Π

∣∣∣1
n

n∑
i=1

(1{Si = s}Di

ê(Xi,s)p̂s
− 1{Si = s}

ps

)
(m1,s(Xi)− m̂1,s(Xi))π(Xi,s)

∣∣∣︸ ︷︷ ︸
(ii)

.

(C.3.14)

We study (i) and (ii) separately. We start from (i). Recall, that by cross fitting ê(Xi,s) =

ê−k(i)(Xi,s), where k(i) is the fold containing unit i. Therefore, observe that given the K folds

for cross-fitting, we have

∣∣∣1
n

n∑
i=1

1{Si = s}Di(Yi−m1,s(Xi))
( 1

pse(Xi,s)
− 1

p̂sê(Xi,s)

)
π(Xi,s)

∣∣∣
≤

∑
k∈{1,...,K}

∣∣∣1
n

∑
i∈Ik

1{Si = s}Di(Yi−m1,s(Xi))
( 1

pse(Xi,s)
− 1

p̂(−k(i))
s ê(−k(i))(Xi,s)

)
π(Xi,s)

∣∣∣.
(C.3.15)

In addition, we have that

E
[∑

i∈Ik

1{Si = s}Di(Yi−m1,s(Xi))
( 1

pse(Xi,s)
− 1

p̂(−k(i))
s ê(−k(i))(Xi,s)

)
π(Xi,s)

]
= E

[
E
[∑

i∈Ik

1{Si = s}Di(Yi−m1,s(Xi))
( 1

pse(Xi,s)
− 1

p̂(−k(i))
s ê(−k(i))(Xi,s)

)
π(Xi,s)

∣∣∣p̂(−k(i)), ê(−k(i))
]]

= 0,
(C.3.16)

by cross-fitting. By Assumption 3.4.3, we know that

sup
x∈X ,s∈S

∣∣∣ 1
pse(x,s)

− 1

p̂(−k(i))
s ê(−k(i))(x,s)

∣∣∣≤ 2/δ
2 (C.3.17)
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and therefore each summand in Equation (C.3.57) is bounded by a finite constant 2/δ 2. We now

obtain, using the symmetrization argument (Van Der Vaart and Wellner, 1996), and the Dudley’s

entropy integral (Wainwright, 2019)

E
[

sup
π∈Π

|1
n

∑
i∈Ik

1{Si = s}Di(Yi−m1,s(Xi))
( 1

pse(Xi,s)
− 1

p̂(−k(i))
s ê(−k(i))(Xi,s)

)
π(Xi,s)|

∣∣∣p̂(−k(i)), ê(−k(i))
]

.
M
δ 2

√
v/n.

(C.3.18)

In addition, by the bounded difference inequality (Boucheron et al., 2005), with probability at

least 1− γ , for a universial constant c < ∞

sup
π∈Π

∣∣∣1
n

∑
i∈Ik

1{Si = s}Di(Yi−m1,s(Xi))
( 1

pse(Xi,s)
− 1

p̂(−k(i))
s ê(−k(i))(Xi,s)

)
π(Xi,s)

∣∣∣≤
E
[

sup
π∈Π

|1
n

∑
i∈Ik

1{Si = s}Di(Yi−m1,s(Xi))
( 1

pse(Xi,s)
− 1

p̂(−k(i))
s ê(−k(i))(Xi,s)

)
π(Xi,s)|

∣∣∣p̂(−k(i)), ê(−k(i))
]

+ c
M
δ 2

√
log(2/γ)

n
.

(C.3.19)

We now consider the term (ii). Observe that we can write

(ii)≤ sup
π∈Π

∣∣∣1
n

n∑
i=1

(Di1{Si = s}
p̂sê(Xi,s)

− Di1{Si = s}
pse(Xi,s)

)
(m1,s(Xi)− m̂1,s(Xi))π(Xi,s)

∣∣∣︸ ︷︷ ︸
( j)

+ sup
π∈Π

∣∣∣1
n

n∑
i=1

(Di1{Si = s}
pse(Xi,s)

− 1{Si = s}
ps

)
(m1,s(Xi)− m̂1,s(Xi))π(Xi,s)

∣∣∣︸ ︷︷ ︸
( j j)

.

(C.3.20)

We consider each term seperately. Consider ( j j) first. Using the cross-fitting argument we obtain

sup
π∈Π

∣∣∣1
n

n∑
i=1

(Di1{Si = s}
pse(Xi,s)

− 1{Si = s}
ps

)
(m1,s(Xi)− m̂1,s(Xi))π(Xi,s)

∣∣∣
≤

∑
k∈{1,...,K}

sup
π∈Π

∣∣∣1
n

∑
i∈Ik

(Di1{Si = s}
pse(Xi,s)

− 1{Si = s}
ps

)
(m1,s(Xi)− m̂(−k(i))

1,s (Xi))π(Xi,s)
∣∣∣.

(C.3.21)
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Observe now that

E
[(Di1{Si = s}

pse(Xi,s)
− 1{Si = s}

ps

)
(m1,s(Xi)− m̂(−k(i))

1,s (Xi))π(Xi,s)
∣∣∣m̂(−k(i))

1,s

]
= 0. (C.3.22)

Therefore, following the same argument discussed before, we obtain that with probability at least

1− γ

sup
π∈Π

∣∣∣1
n

∑
i∈Ik

(Di1{Si = s}
pse(Xi,s)

− 1{Si = s}
ps

)
(m1,s(Xi)− m̂(−k(i))

1,s (Xi))π(Xi,s)
∣∣∣. M

δ 2

√
v
n
+

M
δ 2

√
log(2/γ)

n
.

(C.3.23)

We are now left to bound ( j). We obtain that

( j)≤

√√√√1
n

n∑
i=1

( 1
p̂sê(Xi,s)

− 1
pse(Xi,s)

)2

√√√√1
n

n∑
i=1

(m1,s(Xi)− m̂1,s(Xi))2. (C.3.24)

Such a bound does not depend on π . Observe now that we can write by Assumption 3.4.3√√√√1
n

n∑
i=1

( 1
p̂sê(Xi,s)

− 1
pse(Xi,s)

)2

√√√√1
n

n∑
i=1

(m1,s(Xi)− m̂1,s(Xi))2

≤ 1
δ

√√√√ ∑
k∈{1,...,K}

1
n

∑
i∈Ik

( 1
ê(−k(i))(Xi,s)p̂−k(i)

− 1
e(Xi,s)ps

)2
√√√√ ∑

k∈{1,...,K}

1
n

∑
i∈Ik

(m1,s(Xi)− m̂(−k(i))
1,s (Xi))2.

(C.3.25)

By the bounded difference inequality, and the union bound we obtain that the following holds:√√√√ ∑
k∈{1,...,K}

1
n

∑
i∈Ik

( 1
ê(−k(i))(Xi,s)p̂−k(i)

− 1
e(Xi,s)ps

)2
√√√√ ∑

k∈{1,...,K}

1
n

∑
i∈Ik

(m1,s(Xi)− m̂(−k(i))
1,s (Xi))2

≤ K

√
E
[( 1

ê(Xi,s)p̂
− 1

e(Xi,s)ps

)2]√
E
[
(m1,s(Xi)− m̂1,s(Xi))2

]
+2 4
√

log(2K/γ)/n

√
E
[( 1

ê(Xi,s)p̂
− 1

e(Xi,s)ps

)2]
+2 4
√

log(2K/γ)/n

√
E
[
(m1,s(Xi)− m̂1,s(Xi))2

]
+2
√

log(2K/γ)/n,
(C.3.26)

with probability at least 1−γ . Under Assumption 3.4.3 and the union bound, the result completes

since K is a finite number.
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Lemma C.3.4. Let

G(α) = sup
π∈Π

{
αW0(π)+(1−α)W1(π)

}
− sup

π∈Π̂o

{
αW0(π)+(1−α)W1(π)

}
. (C.3.27)

Define

G = {G(α),α ∈ (0,1)}.

Under Assumption 3.4.1, for any ε > 0, there exist a set {α1, ...,αN(ε)}, such that for all

α ∈ (0,1),

|G(α)− max
j∈{1,...,N(ε)}

G(α j)| ≤ 4εM, (C.3.28)

and N(ε)≤ 1+1/ε .

Proof of Lemma C.3.4. We denote {α1, ...,αN(ε)} an ε-cover of the interval (0,1) with respect

to the L1 norm. Namely, {α1, ...,αN(ε)} are equally spaced numbers between (0,1). Clearly, we

have that the covering number N(ε)≤ 1+1/ε . We denote

G(α) = sup
π∈Π

αW0(π)+(1−α)W1(π)− sup
π∈Π̂o

{
αW0(π)+(1−α)W1(π)

}
. (C.3.29)

To characterize the corresponding cover of the function class

G = {G(α),α ∈ (0,1)},

we claim that for any α ∈ (0,1), there exist an α j in the ε cover such that

|G(α)−G(α j)| ≤ 4εM. (C.3.30)

Such a result follows by the argument outlined in the following lines.
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Take α j closest to α . Consider

|G(α)−G(α j)|

=
∣∣∣ sup

π∈Π

{
αW0(π)+(1−α)W1(π)

}
− sup

π∈Π̂o

{
αW0(π)+(1−α)W1(π)

}
− sup

π∈Π

{
α jW0(π)+(1−α j)W1(π)

}
+ sup

π∈Π̂o

{
α jW0(π)+(1−α j)W1(π)

}∣∣∣
≤
∣∣∣ sup

π∈Π

{
αW0(π)+(1−α)W1(π)

}
− sup

π∈Π

{
α jW0(π)+(1−α j)W1(π)

}∣∣∣︸ ︷︷ ︸
(i)

+
∣∣∣ sup

π∈Π̂o

{
αW0(π)+(1−α)W1(π)

}
− sup

π∈Π̂o

{
α jW0(π)+(1−α j)W1(π)

}∣∣∣︸ ︷︷ ︸
(ii)

.

(C.3.31)

We study (i) and (ii) separately. Consider first (i). We observe the following fact:

whenever

sup
π∈Π

αW0(π)+(1−α)W1(π)− sup
π∈Π

α jW0(π)+(1−α j)W1(π)> 0 (C.3.32)

then we can bound

(i)≤
∣∣∣αW0(π

∗)+(1−α)W1(π
∗)−α jW0(π

∗)+(1−α j)W1(π
∗)
∣∣∣. (C.3.33)

Here π∗ ∈ argsupπ∈Π αW0(π)+(1−α)W1(π). When instead

sup
π∈Π

αW0(π)+(1−α)W1(π)− sup
π∈Π

α jW0(π)+(1−α j)W1(π)≤ 0 (C.3.34)

we can use the same argument by switching sign, which, with trivial rearrengment reads as

(i)≤
∣∣∣αW0(π

∗∗)+(1−α)W1(π
∗∗)−α jW0(π

∗∗)+(1−α j)W1(π
∗∗)
∣∣∣. (C.3.35)
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Here π∗∗ ∈ argsupπ∈Π α jW0(π)+(1−α j)W1(π). Therefore we obtain,

(i)≤ sup
π∈Π

∣∣∣αW0(π)+(1−α)W1(π)−α jW0(π)+(1−α j)W1(π)
∣∣∣≤ 2|α−α j|M (C.3.36)

where the last inequality follows by Assumption 3.4.1 and the triangle inequality. Similar

reasoning also applies to (ii). Since α j was chosen to be the closest to α , we have |α j−α| ≤

ε .

Proof of Lemma 3.2.1

The proof follows similarly to standard microeconomic textbook (Mas-Colell et al., 1995).

Let

Π̃ = {πα : πα ∈ arg sup
π∈Π

α1W0(π)+α2W1(π), α ∈ R2
+,α1 +α2 > 0}. (C.3.37)

Then we want to show that Πo = Π̃. Trivially Π̃⊆Πo, since otherwise the definition of Pareto

optimality would be violated. Consider now some π∗ ∈ Πo. Then we show that there exist a

vector α ∈ R2
+, such that π∗ maximizes the expression

sup
π∈Π

α1W0(π)+α2W1(π). (C.3.38)

Denote the set

F = {(W̃0,W̃1) ∈ R2 : ∃π ∈Π : W̃0 ≤W0(π) and W̃1 ≤W1(π)}. (C.3.39)

Since (0,0) ∈ F , such a set is non-empty. Notice now that Ws(π) is linear is π for

s ∈ {0,1}. Therefore, we obtain that the set F is a convex set, since it denotes the sub-graph of

a concave functional. We denote W̄ = (W0(π
∗),W1(π

∗)) and G = R2
+++W̄ the set of welfares

that strictly dominates π∗. Then G is non-empty and convex. Since π∗ ∈Πo, we must have that
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F ∩G = /0. Therefore, by the separating hyperplane theorem, there exist an α ∈R2, with α 6= 0,

such that α>F ≤ α>(W̄ +d) for any F ∈F , d ∈ R2
++. Let d1→ ∞, it must be that α1 ∈ R+,

and similarly for α2. So α ∈ R2
+. By letting d→ 0, we have that α>F ≤ α>W̄ . This implies

that

α1W0(π)+α2W1(π)≤ α1W0(π
∗)+α2W1(π

∗) (C.3.40)

for any π ∈Π (since it is true for any F ∈F ). Hence π∗ maximizes welfare over all possible

feasible allocations once reweighted by (α1,α2). Since the maximizer is invariant to multiplica-

tion of the objective function by constants, the result follows after dividing the objective function

by the sums of the coefficients, which is non-zero by the separating hyperplane theorem. This

completes the proof.

Proof of Proposition 3.2.2

First, observe that by rationality, preferences are complete and transitive. Observe also

that the preference function equivalently correspond to lexico-graphic with π � π ′ if π Pareto

dominates π ′. If instead neither π,π ′, Pareto dominates the other, then π � π ′ is UnFairness (π)

< UnFairness (π ′). Therefore, it must be that C (Π)⊆Πo, with π? ∈ C (Π) if and only if

π
? ∈ arg min

π∈Πo

UnFairness(π).

By Lemma 3.2.1 the result directly follows.

Proof of Corollary 7

Define Π̃⊆Π the set of policies that satisfy the constraint in Equation (3.7) (i.e., feasible

allocations). By Proposition 3.2.2 Π̃ = Πo. Observe now that πω is a feasible allocation under

the constraint in Equation (3.7). This directly implies the conclusion.
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Proof of Corollary 8

If π̃ is Pareto optimal, then it represents a feasible allocation (i.e. it satisfies the constraint

in Equation (3.7)). If it is not, then any other allocation that is Pareto optimal and Pareto

dominates π̃ is feasible under the constraint in Equation (3.7) completing the proof.

Proof of Corollary 9

The proof follows directly from the fact that whenever fairness constraints are binding,

the estimated policy contains as one possible solution the policy which maximizes the utilitarian

welfare under fairness constraints. This follows from the fact that in such case

π̃ ∈
{

argmax
π∈Π

p1W1(π)+(1− p1)W0(π)
}
⊆Πo,

since Π = Π(κ).

Proof of Theorem 3.4.1

Throughout the proof we refer to C̄ < ∞ as a universal constant. We write

sup
α∈(0,1)

sup
π∈Π

∣∣∣αW0(π)+(1−α)W1(π)− max
α j∈{α1,...,αN}

α jŴ0(π)− (1−α j)Ŵ1(π)−λ/
√

n
∣∣∣

≤ sup
α∈(0,1)

sup
π∈Π

∣∣∣αW0(π)+(1−α)W1(π)−αŴ0(π)− (1−α)Ŵ1(π)
∣∣∣︸ ︷︷ ︸

(I)

+
λ√

n

+ sup
α∈(0,1)

sup
π∈Π

∣∣∣αŴ0(π)+(1−α)Ŵ1(π)− max
α j∈{α1,...,αN}

α jŴ0(π)− (1−α j)Ŵ1(π)
∣∣∣︸ ︷︷ ︸

(II)

.

(C.3.41)

(I) is bounded as in Lemma C.3.3. (II) is bounded as follows.

(II)≤ ε sup
π∈Π

|Ŵ0(π)|+ ε sup
π∈Π

|Ŵ1(π)|. (C.3.42)
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Under Assumption 3.4.3, the estimated conditional mean and propensity score are uniformly

bounded. Therefore we obtain that

ε sup
π∈Π

|Ŵ0(π)|+ sup
π∈Π

ε|Ŵ1(π)| ≤ C̄ε
M
δ 2 ≤ C̄

M
Nδ 2 .

Proof of Theorem 3.4.2

Recall the definition of W̄α in Equation (3.4). The set of Pareto optimal policies reads as

follows

π : αW1(π)+(1−α)W0(π)≥ W̄α for some α ∈ (0,1).

Now it suffices to show for the claim to hold that

P
(
∀α ∈ (0,1), max

j∈{1,··· ,N}
W̄α −W̄j,n +λ (γ)/

√
n+

b
N
≥ 0
)
≤ γ,

where λ (γ) = b(
√

v+
√

log(2/γ)), whenever N =
√

n (and hence λ = λ (γ)+b). Observe that

since {α1, · · · ,αN} are equally spaced, we have that for all α ∈ (0,1)

sup
π∈Π

αW1(π)+(1−α)W0(π)≥ sup
π∈Π

α jW1(π)+(1−α j)W0(π)+Mε

for some j ∈ {1, · · · ,N} by Assumption 3.4.2 (ii). Taking b≥M,ε = 1/N, we have

P
(
∀α ∈ (0,1), max

j∈{1,··· ,N}
W̄α −W̄j,n +λ (γ)/

√
n+

b
N
≥ 0
)

≤ P
(

max
j∈{1,··· ,N}

W̄α j −W̄j,n +λ (γ)/
√

n≥ 0
)
.

283



We now observe that the following inequality holds:

sup
π∈Π

α jW1(π)+(1−α j)W0(π)−W̄j,n

= sup
π∈Π

{
α jW1(π)+(1−α j)W0(π)

}
− sup

π∈Π

{
αŴ1(π)+(1−α)Ŵ0(π)

}
≤ 2 sup

π∈Π

∣∣∣α jW1(π)+(1−α j)W0(π)−α jŴ1(π)+(1−α j)Ŵ0(π)
∣∣∣.

By Lemma C.3.3, with probability at least 1− γ ,

sup
π∈Π

max
α j, j∈{1,··· ,N}

∣∣∣α jW1(π)+(1−α j)W0(π)−α jŴ1(π)+(1−α j)Ŵ0(π)
∣∣∣≤ C̄

√
v
n
+C̄

√
log(2/γ)

n

for a finite constant C̄ independent of n. By choosing b≥ 2C̄+M, the proof completes.

Proof of Theorem 3.4.3

By Theorem 3.4.2 with probability at least 1− γ , Πo ⊆ Π̂o(λ ) with Π̂o(λ ) in Equation

(3.14). As a result, we can write with probability 1− γ ,

UnFairness(π̂)− infπ∈ΠoUnFairness(π)≤ UnFairness(π̂)− inf
π∈Π̂o(λ )

UnFairness(π).

We then write

UnFairness(π̂)− inf
π∈Π̂o(λ )

UnFairness(π)

= UnFairness(π̂)− V̂n(π̂)+ V̂n(π̂)− inf
π∈Π̂o(λ )

UnFairness(π).

Since π̂λ ∈ Π̂o(λ ), we have

UnFairness(π̂)− V̂n(π̂)+ V̂n(π̂)− inf
π∈Π̂o(λ )

UnFairness(π)

≤ 2 sup
π∈Π̂o(λ )

∣∣∣UnFairness(π)− V̂n(π)
∣∣∣≤ 2 sup

π∈Π

∣∣∣UnFairness(π)− V̂n(π)
∣∣∣

where the last equality follows from the fact that Π̂o(λ ) ⊆ Π. Assumption 3.4.4 bounds

supπ∈Π

∣∣∣UnFairness(π)− V̂n(π)
∣∣∣ completing the proof.
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Proof of Theorem 3.4.4

For D̂(π) it suffices to observe that

sup
π∈Π

∣∣∣Ŵ (π1)−Ŵ0(π)−W1(π)+W0(π)
∣∣∣≤ sup

π∈Π

∣∣∣Ŵ (π1)−W1(π)
∣∣∣+ sup

π∈Π

∣∣∣W0(π)−Ŵ0(π)
∣∣∣

with each term being bounded with probability at least 1−2γ1, by C̄
√

v/n+C̄
√

log(2/γ)/n for

a finite constant C̄ < ∞, similarly to what discussed in the proof of Lemma C.3.3. The UnFairness

bound follows as a corollary of Theorem 3.4.3.

For Ĉ(π) the argument follows similarly, after noticing that we can bound

sup
π∈Π

∣∣∣ 1
np̂1

n∑
i=1

π(Xi)Si−E[π(X)|S = 1]+
1

n(1− p̂1)

n∑
i=1

π(Xi)(1−Si)−E[π(X)|S = 0]
∣∣∣

≤ sup
π∈Π

∣∣∣ 1
np̂1

n∑
i=1

π(Xi)Si−E[π(X)|S = 1]
∣∣∣︸ ︷︷ ︸

(A)

+ sup
π∈Π

∣∣∣ 1
(1− p̂1)n

n∑
i=1

π(Xi)(1−Si)−E[π(X)|S = 0]
∣∣∣︸ ︷︷ ︸

(B)

.

We proceed by bounding (A),while (B) follows similarly. We have

(A)≤ sup
π∈Π

∣∣∣ 1
p1n

n∑
i=1

π(Xi)Si−E[π(X)|S = 1]
∣∣∣︸ ︷︷ ︸

(i)

+
∣∣∣ 1

p1
− 1

p̂1

∣∣∣︸ ︷︷ ︸
(ii)

,

where the second component follows by the triangular inequality and the fact that π(Xi)Si ∈{0,1}.

We now observe that each summand in (i) is centered around its expectation. Therefore, we can

bound (i) using the Radamacher complexity of Π, with

E[(i)]≤ 2
δ
E
[

sup
π∈Π

∣∣∣1
n

n∑
i=1

σiπ(Xi)Si

∣∣∣],
with σ1, · · · ,σn being independent Radamacher random variables. Using the Dudley’s entropy

bound (see Wainwright (2019)) it is easy to show that the right-hand side is bounded by C̄
√

v/n

for a constant C̄ < ∞. Finally, using the bounded difference inequality (Boucheron et al., 2003),
12γ follows by the union bound.
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with probability at least 1− γ ,

|(i)−E[(i)]| ≤ C̄

√
log(2/γ)

n
,

for a finite constant C̄. The bound on the second component (ii) follows from standard property

of the sample mean and the assumption that p̂1 ≥ δ . The final statement follows as a direct

corollary of Theorem 3.4.3.

For I (π) the claim holds since

sup
π∈Π

∣∣∣Is(π)− Îs(π)
∣∣∣≤

sup
π∈Π

∣∣∣1
n

n∑
i=1

(Γ̂1,s,i− Γ̂0,s,i)π(Xi,s′)−E
[
(Γ1,s,i−Γ0,s,i)π(Xi,s′)

]∣∣∣︸ ︷︷ ︸
(A)

+ sup
π∈Π

∣∣∣1
n

n∑
i=1

(Γ̂1,s,i− Γ̂0,s,i)π(Xi,s)−E[(Γ1,s,i−Γ0,s,i)π(Xi,s)]
∣∣∣︸ ︷︷ ︸

(B)

.

(C.3.43)

Observe now that under Assumption 3.4.3, following the same argument in Lemma C.3.3, we

can bound (A) and (B) as follows

(A).
√

v
n
+

√
log(2/γ)

n
, (B).

√
v
n
+

√
log(2/γ)

n
.

with probability at least 1− γ . The reader may refer to the proof of Lemma C.3.3 for details.

Proof of Theorem 3.4.5

First, since π(x,s) is constant in s with an abuse of notation we can write π(x) as a

function of x only. We first observe that we can write

C(π) = E
[
(
(1−S)
1− p1

− S
p1

)π(X)
]
= E

[ (p1−S)
(1− p1)p1

π(X)
]

286



For the lower bound it suffices to find one distribution which satisfies the condition. We choose

Y (1) = 0, and Y (0) = 0 almost surely, which satisfies the bounded assumption on Y . This

condition implies that any π ∈Π satisfies Pareto optimality, hence Πo = Π.

Observe that the expression for C(π) corresponds to the risk associated with a classifier

π(X) for classifying the sensitive attribute S with loss

l(S,π(X)) ∝ (p1−S)π(X) =


p1−1 if S = 1,π(X) = 1

p1 if S = 0,π(X) = 1

0 otherwise .

.

We now proceed following some of the steps in Theorem 14.5 and Theorem 14.6 in

Devroye et al. (2013), but introducing modifications in the construction of the set of distributions

under consideration and in the data-generating process due to the different loss function and

its dependence with P(S = 1) (which itself depends on the distribution of (X ,S)).2 We start by

choosing D to be distributed as a Bernoulli random variable independent of (X ,S). As a result,

(Y,D) are independent of (X ,S). Therefore, since (Y,D) is independent of (X ,S) it suffices to

focus on classifiers πn(X) constructed using information (X1,S1), · · · ,(Xn,Sn) only. The rest of

the proof consists in constructing a distribution of (X ,S) such that the lower bound is attained.

Recall that classifiers depend on X only and not on S by assumption.

Consider first the case where (v−1)/2 is an integer. The case where it is not follows

similarly to below and discussed at the end of the proof. We construct a family of distributions

for (X ,S), defined F as follows: first we find points x1, · · ·xv that are shattered by Πo. Each

distribution in F is concentrated on the set of these points. A member in F is described by

v−1 bits b1, · · · ,bv−1. This is representated as a bit vector b⊂ {0,1}v−1. Each bit vector that

2The lack of restriction on the error of the classifier represents a further difference.

287



we consider is assumed to sum to (v−1)/2, namely

v−1∑
i=1

bi =
v−1

2
.

Assume that v−1≤ n. For each vector b, we let X put mass m at xi, i < v, and mass 1− (v−1)m

at xv. This imposes the condition (v−1)m≤ 1, which will be satisfied. We choose for all b that

we consider P(S = 1) = p1 ∈ (δ ,1−δ ) which we choose later in the proof. Next, introduce the

constant c ∈ (0, p1). Let U a uniform random variable on [0,1],

S =


1 if U ≤ p1− c+2cbi,X = xi, i < v

1 if U ≤ p1,X = xv

0 otherwise

.

Thus for X = xi, i < v, S is one with probability p1− c or p1 + c, while for X = xv S is one with

probability p1. Now observe that the choice of S and the fact that P(S = 1) = p1 implies that

p1 =
v−1∑
i=1

m(p1− c+2cbi)+ p1(1−m(v−1)) = (v−1)mp1 + p1(1−m(v−1)), (C.3.44)

since c
∑v−1

i=1 bi = c v−1
2 by the restriction on b ∈B. The above expression is satisfied for any m,

so no restrictions on m are implied by the Equation (D.3.18). With a simple argument, it is easy

to show that one of the best rules3 for b is the one which sets

fb(x) =


1 if x = xi, i < v,bi = 1

0 otherwise.

Such rule is feasible since it has VC-dimension v. Notice now that we can write for the decision
3A different which leads to the same objective is the one that classifies one also for X = xv. This would be

indifferent with respect to fb since the loss function at X = xv is always zero in expectation for either prediction.
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rule fb(x), E[l(S, fb(X))|X = xi] =−c for i < v, for fixed b. Observe now that we can write for

any πn,X ∈ {x1, · · · ,xv−1} , for fixed b,

E[l(S,πn(X))|X ]−E[l(S, fb(X))|X ]≥ 2c1{πn(X) 6= fb(X)},

since if πn(X) = 1− fb(X), then E[l(S,1− fb(X))|X ] = c. Therefore we can bound for any πn,

and a fixed b

UnFairness(πn)− inf
π∈Πo

UnFairness(π) ∝ E[l(S,πn(X))]− inf
π∈Π

E[l(S,π(X))]

≥
v−1∑
j=1

2mc1{πn(x j) = 1− fb(x j)}

≥
v−1∑
j=1

2mc1{πn(x j) = 1− fb(x j)}.

(C.3.45)

Since we take the supremum over the class of distribution Pb ∈F indexed by the bit-vector b, it

suffices to provide upper bound with respect to b being a random variable and take expectations

over b. We replace b by a uniformly distributed random variable B over B ⊂ {0,1}v−1, where

B is the set of bit vectors which sum to (v−1)/2. We observe that for any t ≥ 0,

sup
(X ,S)∈F

P
(

UnFairness(πn)− inf
π∈Πo

UnFairness(π)> t
)

= sup
b

P
(

UnFairness(πn)− inf
π∈Πo

UnFairness(π)> t
)

≥ Eb

[
1{UnFairness(πn)− inf

π∈Πo
UnFairness(π)> t}

]
(with random b)

≥ Eb

[
1
{ v−1∑

j=1

2mc1{πn(x j) = 1− fb(x j)}> t
}]

where the last inequality uses Equation (C.3.45) and the monotonicity of the indicator function.

289



We can now write

Eb

[
1
{ v−1∑

j=1

2mc1{πn(x j) = 1− fb(x j)}> t
}]

=
1
|B|

∑
(x1,··· ,x′n,s1,··· ,sn)∈({x1,··· ,xv}×{0,1})2∑

b∈B
1
{ v−1∑

j=1

2mc1{πn(x j) = 1− fb(x j)}> t
} n∏

j=1

pb(x′j,s j)

with pb(x′j,s j) denoting the joint probability of x′j,s j. For a fixed b, define bc = (1−b1, · · · ,1−

bv−1). Observe that if b ∈B, then bc ∈B since we assumed that (v−1)/2 is an integer. Now

observe that if
t

2mc
≤ (v−1)/2, (C.3.46)

then

1
{ v−1∑

j=1

2mc1{πn(x j) = 1− fb(x j)}> t
}
+1
{ v−1∑

j=1

2mc1{πn(x j) = 1− fbc(x j)}> t
}
≥ 1

since it must be that either (or both) indicators are equal to one. Therefore for t
/

2mc≤ (v−1)/2,

the last expression in the lower bound above is bounded from below by

1
|B|

∑
(x1,··· ,x′n,s1,··· ,sn)∈({x1,··· ,xv}×{0,1})2

∑
b∈B

1
2

min
{ n∏

j=1

pb(x′j,s j),
n∏

j=1

pbc(x′j,s j)
}
.

By LeCam’s inequality, we have that the above expression is bounded from below by (see Page

244 in Devroye et al. 2013)

1
4|B|

∑
b∈B

(∑
(x,s)

√
pb(x,s)pbc(x,s)

)2n
.
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Observe that we have for x = xv,

pb(x,1) = pbc(x,1) = p1(1−m(v−1)), pb(x,1) = pbc(x,1) = (1− p1)(1−m(v−1)).

For x = xi, i < v, we have

pb(x,s)pbc(x,s) = m2(p2
1− c2), s ∈ {0,1}.

Therefore, we obtain

∑
(x,s)

√
pb(x,s)pbc(x,s) = (1−m(v−1))+2(v−1)m

√
(p2

1− c2)

= (1− (v−1)m)+2(v−1)m
√

(p2
1− c2).

Hence we can write

1
4|B|

∑
b∈B

∑
(x,s)

√
pb(x,s)pbc(x,s) =

1
4

{
(1− (v−1)m)+2(v−1)m

√
(p2

1− c2)
}
.

Define F = m(v−1)(p1− c). Then we can write

1
4|B|

∑
b∈B

(∑
(x,s)

√
pb(x,s)pbc(x,s)

)2n
=

1
4

{
(1− (v−1)m)+2(v−1)m

√
(p2

1− c2)
}

=
1
4

{
1− F

p1− c

(
1−
√

4p2
1−4c2

)}2n
.

We now choose p1 = 1/2. We can now follow Devroye et al. (2013), end of Page 244 and write

1
4

{
1− F

p1− c

(
1−
√

4p2
1−4c2

)}2n
=

1
4

{
1− F

p1− c

(
1−
√

1−4c2
)}2n

≥ 1
4

{
1− F

p1− c
4c2
}2n

≥ 1
4

exp
(
− 16nFc2

1−2c

/(
1− 8Fc2

1−2c

))
,
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where we used 1− x≥ e−x/(1−x).

We now choose c = t
(v−1)m , which satisfies Equation (C.3.46), and where we need the

condition that 0 < t ≤ (v−1)m
2 which we check later in the proof. We write

16nFc2

1−2c

/(
1− 8Fc2

1−2c

)
=

16nFc2

1−2c−8Fc2 .

Fix a constant h ∈ (0,1) whose conditions will be discussed below together with the conditions

for t. Take t,h such that 1−2c−8Fc2 ≥ h ∈ (0,1). Then it follows that (since c = t
(v−1)m )

16nFc2

1−2c−8Fc2 ≤
16nt2F

(v−1)2m2h
.

Hence, the lower bound reads as follows:

sup
(X ,S)∈F

P
(

UnFairness(πn)− inf
π∈Πo

UnFairness(π)> t
)
≥ 1

4
exp
(
− 16nt2F

(v−1)2m2h

)
.

Let 1
4 exp

(
− 16nt2F

(v−1)2m2h

)
= κ . By re-arranging the expression, we write with probability at least

κ , for some distribution in F , for all πn,

UnFairness(πn)− inf
π∈Πo

UnFairness(π)≥

√
F(v−1)2m2 log( 1

4κ
)

16nh
(C.3.47)

where we chose t =
√

F(v−1)2m2 log( 1
4κ

)
16nh .

Next, we check the condition for t,h, and characterize the constants m,h,F . Recall that

the conditions are the following:

0 < t ≤ (v−1)m
2

, 1−2c−8Fc2 ≥ h, c =
t

(v−1)m
, F = m(v−1)(

1
2
− c), 0 < m≤ 1

v−1
,

t =

√
F(v−1)2m2 log( 1

4κ
)

16nh
, h ∈ (0,1),

where the first condition on t follows from Equation (C.3.46). Take first h = F/8. Then the first

condition on t implies that n≥ log(1/4κ). The second condition on h (with h = F/8) is satisfied
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if the first inequality holds

1−F/8≥ c(2+4F)≥ c(2+8Fc)

since c ∈ (0,1/2). Now, observe that F ≤ 1/2, hence it suffices to show that

c≤ 1−1/16
4

⇒

√
log( 1

4κ
)

2n
≤ 15

64
⇒ n≥ C̄ log(1/4κ),

for a finite constant C̄. The proof completes since the remaining conditions can be satisfied for

an arbitrary choice of 0 < m < 1/(v−1).

We are left to show that the claim holds if (v−1)/2 is not an integer. For this case we

follow the same steps of the proof where we construct a set of distributions F which puts mass

m on v−2 xi, i < v−1 and mass 1−(v−2)m
2 on the remaining xv−1,xv. We construct a bit vector

b ∈B ⊂ {0,1}v−2 with
∑v−2

i=1 bi =
v−2

2 which must be equal to an integer since v−1
2 is not. We

construct (since v≥ 3)

S =


1 if U ≤ p1− c+2cbi,X = xi, i < v−1

1 if U ≤ p1,X = xi, i ∈ {v−1,v}

0 otherwise

,

while the remaining part of the proof follows similarly to above.

Envy-Freeness UnFairness

Lemma C.3.5. Under Assumption3.4.1, 3.4.2, 3.4.3, 3.5.1, 3.5.2, the following holds: with

probability at least 1− γ ,

sup
π∈Π

∣∣∣A (s,s′;π)−An(s,s′;π)
∣∣∣≤ cM

δ 2

√
log(2/γ)

n
+

c
δ

n−η +

√
v
n

(C.3.48)
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for a universal constant c < ∞.

Proof of Lemma C.3.5. We consider the case where s′ 6= s, whereas s′ = s follows trivially.

Observe that we can write∣∣∣A (s,s′;π)−An(s,s′;π)
∣∣∣≤∣∣∣EX(s)

[
Vπ(X(s),s)(X(s),s′)

]
− 1

n

n∑
i=1

(1{Si = s}
p̂s

m̂1,s′(Xi)π(Xi,s)+
1{Si = s}

p̂s
m̂0,s′(Xi)(1−π(Xi,s))

)∣∣∣︸ ︷︷ ︸
(A(π))

+ |Ŵs′(π)−Ws′(π)|︸ ︷︷ ︸
(B(π))

.

(C.3.49)

The term (B(π)) is bounded uniformly as discussed in Lemma C.3.3. Therefore, we are only left

to discuss bounds on (A(π)). To derive bounds in such a scenario, we first observe that we can

write

sup
π∈Π

A(π)≤ sup
π∈Π

∣∣∣1
n

n∑
i=1

1{Si = s}
ps

m1,s′(Xi)π(Xi,s)−E
[1{Si = s}

ps
m1,s′(Xi)π(Xi,s)

]∣∣∣︸ ︷︷ ︸
(I)

+ sup
π∈Π

∣∣∣1
n

n∑
i=1

1{Si = s}
ps

m0,s′(Xi)(1−π(Xi,s))−E
[1{Si = s}

ps
m0,s′(Xi)(1−π(Xi,s))

]∣∣∣︸ ︷︷ ︸
(II)

+ sup
π∈Π

∣∣∣1
n

n∑
i=1

(1{Si = s}
p̂s

m̂1,s′(Xi)−
1{Si = s}

ps
m1,s′(Xi)

)
π(Xi,s)

∣∣∣︸ ︷︷ ︸
(III)

+ sup
π∈Π

∣∣∣1
n

n∑
i=1

(1{Si = s}
p̂s

m̂0,s′(Xi)−
1{Si = s}

ps
m0,s′(Xi)

)
(1−π(Xi,s))

∣∣∣︸ ︷︷ ︸
(IV )

.

We discuss (I) and (III), whereas (II) and (IV) follow similarly. Observe first that by Assumption

3.4.1 and the bounded difference inequality, with probability 1− γ ,

sup
π∈Π

∣∣∣1
n

n∑
i=1

1{Si = s}
ps

m1,s′(Xi)π(Xi,s)−E
[1{Si = s}

ps
m1,s′(Xi)π(Xi,s)

]∣∣∣
≤ E

[
sup
π∈Π

∣∣∣1
n

n∑
i=1

1{Si = s}
ps

m1,s′(Xi)π(Xi,s)−E
[1{Si = s}

ps
m1,s′(Xi)π(Xi,s)

]∣∣∣]+C̄
M
δ

√
log(2/γ)/n
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for a constant C̄ < ∞. Under Assumption 3.5.1 each summand is centered around zero. Using

the symmetrization argument (Van Der Vaart and Wellner, 1996), we have

E
[

sup
π∈Π

∣∣∣1
n

n∑
i=1

1{Si = s}
ps

m1,s′(Xi)π(Xi,s)−E
[1{Si = s}

ps
m1,s′(Xi)π(Xi,s)

]∣∣∣]≤
2E
[

sup
π∈Π

∣∣∣1
n

n∑
i=1

σi
1{Si = s}

ps
m1,s′(Xi)π(Xi,s)

∣∣∣]

where σi are i.i.d. Radamacher random variables. Since m1,s is uniformly bounded and similarly

ps is bounded, and by Assumption 3.4.1, we obtain by the properties of the Dudley’s entropy

integral (Wainwright, 2019),

E
[

sup
π∈Π

∣∣∣1
n

n∑
i=1

σi
1{Si = s}

ps
m1,s′(Xi)π(Xi,s)

∣∣∣]≤ C̄
M
δ

√
v/n

for a universal constant C̄ < ∞. We now move to bound (III). Using the triangular inequality and

Holder’s inequality, we obtain

(III)≤ 1
n

n∑
i=1

1{Si = s}
ps

∣∣∣m1,s′(Xi)− m̂1,s′(Xi)
∣∣∣ (C.3.50)

The above bound is deterministic and it does not depend on π . Observe now that by consistency

of potential outcomes and covariates

1
n

n∑
i=1

1{Si = s}
ps

∣∣∣m1,s′(Xi)− m̂1,s′(Xi)
∣∣∣

=
1
n

n∑
i=1

1{Si = s}
ps

∣∣∣m1,s′(Xi(s))− m̂1,s′(Xi(s))
∣∣∣≤ 1

nδ

n∑
i=1

∣∣∣m1,s′(Xi(s))− m̂1,s′(Xi(s))
∣∣∣.

(C.3.51)

We now separate the contribution of each of the K folds using in the cross-fitting algorithm.
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Namely, we define

1
nδ

n∑
i=1

∣∣∣m1,s′(Xi(s))− m̂1,s′(Xi(s))
∣∣∣≤ ∑

k∈{1,...,K}

1
nδ

∑
i∈Ik

∣∣∣m1,s′(Xi(s))− m̂(−k(i))
1,s′ (Xi(s))

∣∣∣
(C.3.52)

where Ik denotes the set of indexes in fold k, and m̂(−k(i))
1,s′ denotes the estimator obtained from

all folds except k. Next, we bound the following term using Liaponuv inequality:

1
n

∑
i∈Ik

E
[
|m1,s′(Xi(s))− m̂1,s′(Xi(s))|

]
.

√
E
[
|m1,s′(Xi(s))− m̂1,s′(Xi(s))|2

]
≤ cn−η .

(C.3.53)

The last inequality follows by Assumption 3.5.2, for a universal constant c < ∞. Finally,

we discuss exponential concentration of the empirical counterpart. By boundeness of m̂ in

Assumption 3.4.3, we have

sup
x∈X

∣∣md,s′(x)− m̂d,s′(x)
∣∣∣≤ 2M. (C.3.54)

By the bounded difference inequality, with probability at least 1− γ ,

1
n

∑
i∈Ik

∣∣∣m1,s′(Xi(s))− m̂1,s′(Xi(s))
∣∣∣≤ E

[∣∣∣m1,s′(Xi(s))− m̂1,s′(Xi(s))
∣∣∣]+4M

√
log(2/γ)/n.

(C.3.55)

Combining the above bounds, the proof completes.

Corollary 14. Theorem 3.5.1 holds.

Proof. This follows from Theorem 3.5.1 and Lemma C.3.2.
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Regret Bounds for |D(π)|, and |C(π)|

To obtain UnFairness bounds for unfairness being defined as either D(π) or C(π) in

absolute value it suffices to bound the following empirical processes

sup
π∈Π

∣∣∣|Ĉ(π)|− |C(π)|
∣∣∣, sup

π∈Π

∣∣∣|D̂(π)|− |D(π)|
∣∣∣.

We bound the first on the left-hand side while the second follows similarly. We write by the

reverse triangular inequality

sup
π∈Π

∣∣∣|Ĉ(π)|− |C(π)|
∣∣∣≤ sup

π∈Π

∣∣∣Ĉ(π)−C(π)
∣∣∣.

The rest of the proof follows similarly to Theorem 3.5.1.

Proof of Theorem C.1.2

We write

E
[

sup
π∈Π

∣∣∣ P̂s(π)

1− ps
− Ps(π)

1− ps

∣∣∣]
≤ E

[
sup
π∈Π

∣∣∣∑n
i=1 π(Xi)Si

{
(Yi−m̂1(Xi,Si))Di

ê(Xi,Si)
+ m̂1(Xi,Si)

}
np1P(π(X) = 1|S = 1)

−E
[
Y |π(X) = 1,S = 1

]∣∣∣]︸ ︷︷ ︸
(A)

+E
[

sup
π∈Π

∣∣∣∑n
i=1 π(Xi)(1−Si)

{
(Yi−m̂1(Xi,Si))Di

ê(Xi,Si)
+ m̂1(Xi,Si)

}
nP(π(X) = 1|S = 0)(1− p1)

−E
[
Y |π(X) = 1,S = 0

]∣∣∣]︸ ︷︷ ︸
(B)

.
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We study (A) while (B) follows similarly. First, we write

(A)≤ E
[

sup
π∈Π

∣∣∣∑n
i=1 π(Xi)Si

{
(Yi−m̂1(Xi,Si))Di

ê(Xi,Si)
+ m̂1(Xi,Si)− (Yi−m1(Xi,Si))Di

e(Xi,Si)
−m1(Xi,Si)

}
np1P(π(X) = 1|S = 1)

∣∣∣]︸ ︷︷ ︸
(I)

+E
[

sup
π∈Π

∣∣∣∑n
i=1 π(Xi)Si

{
(Yi−m1(Xi,Si))Di

e(Xi,Si)
+m1(Xi,Si)

}
np1P(π(X) = 1|S = 1)

−E
[
Y |π(X) = 1,S = 1

]∣∣∣]︸ ︷︷ ︸
(II)

.

We study (I) first. Define

Vn(π) =
1

np1

n∑
i=1

π(Xi)Si

{(Yi− m̂1(Xi,Si))Di

ê(Xi,Si)
+ m̂1(Xi,Si)−

(Yi−m1(Xi,Si))Di

e(Xi,Si)
−m1(Xi,Si)

}
.

We have

(I)≤ 1
κ
E
[

sup
π∈Π

|Vn(π)|︸ ︷︷ ︸
(a)

]
.

We write

(a)≤ 1
δ

sup
π∈Π

∣∣∣1
n

n∑
i=1

SiDi(Yi−m1,Si(Xi))
( 1

e(Xi,Si)
− 1

ê(Xi,Si)

)
π(Xi,Si)

∣∣∣︸ ︷︷ ︸
( j)

+
1
δ

sup
π∈Π

∣∣∣1
n

n∑
i=1

( Di

ê(Xi,Si)
−1
)
(m1,Si(Xi)− m̂1,Si(Xi))π(Xi,Si)Si

∣∣∣︸ ︷︷ ︸
( j j)

.

(C.3.56)

We study ( j) and ( j j) separately. We start from ( j). Recall, that by cross fitting

ê(Xi,Si) = ê−k(i)(Xi,Si), where k(i) is the fold containing unit i. Therefore, observe that given

the K folds for cross-fitting, we have

∣∣∣1
n

n∑
i=1

SiDi(Yi−m1,Si(Xi))
( 1

e(Xi,Si)
− 1

ê(Xi,Si)

)
π(Xi,Si)

∣∣∣
≤

∑
k∈{1,...,K}

∣∣∣1
n

∑
i∈Ik

SiDi(Yi−m1,Si(Xi))
( 1

e(Xi,Si)
− 1

ê(−k(i))(Xi,Si)

)
π(Xi,Si)

∣∣∣. (C.3.57)
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In addition, we have that

E
[∑

i∈Ik

SiDi(Yi−m1,Si(Xi))
( 1

e(Xi,Si)
− 1

ê(−k(i))(Xi,Si)

)
π(Xi,Si)

]
= E

[
E
[∑

i∈Ik

SiDi(Yi−m1,Si(Xi))
( 1

e(Xi,Si)
− 1

ê(−k(i))(Xi,Si)

)
π(Xi,Si)

∣∣∣ê(−k(i))
]]

= 0,

(C.3.58)

by cross-fitting. By Assumption 3.4.3, we know that

sup
x∈X ,s∈S

∣∣∣ 1
e(x,s)

− 1
ê(−k(i))(x,s)

∣∣∣≤ 2/δ
2 (C.3.59)

and therefore each summand in Equation (C.3.57) is bounded by a finite constant 2/δ 2. We now

obtain, using the symmetrization argument (Van Der Vaart and Wellner, 1996), and the Dudley’s

entropy integral (Wainwright, 2019)

E
[

sup
π∈Π

|1
n

∑
i∈Ik

SiDi(Yi−m1,Si(Xi))
( 1

e(Xi,Si)
− 1

ê(−k(i))(Xi,Si)

)
π(Xi,Si)|

∣∣∣ê(−k(i))
]
.

M
δ 2

√
v/n.

(C.3.60)

We now consider the term ( j j). Observe that we can write

( j j)≤ sup
π∈Π

∣∣∣1
n

n∑
i=1

( Di

ê(Xi,Si)
− Di

e(Xi,Si)

)
(m1,Si(Xi)− m̂1,Si(Xi))Siπ(Xi,Si)

∣∣∣︸ ︷︷ ︸
(v)

+ sup
π∈Π

∣∣∣1
n

n∑
i=1

( Di

e(Xi,Si)
−1
)
(m1,Si(Xi)− m̂1,Si(Xi))π(Xi,Si)Si

∣∣∣︸ ︷︷ ︸
(vv)

.

(C.3.61)

We consider each term seperately. Consider (vv) first. Using the cross-fitting argument we obtain
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sup
π∈Π

∣∣∣1
n

n∑
i=1

( Di

e(Xi,Si)
−1
)
(m1,Si(Xi)− m̂1,Si(Xi))π(Xi,Si)Si

∣∣∣
≤

∑
k∈{1,...,K}

sup
π∈Π

∣∣∣1
n

∑
i∈Ik

( Di

pse(Xi,Si)
−1
)
(m1,Si(Xi)− m̂(−k(i))

1,Si
(Xi))π(Xi,Si)Si

∣∣∣. (C.3.62)

Observe now that

E
[( Di

e(Xi,Si)
−1
)
(m1,Si(Xi)− m̂(−k(i))

1,Si
(Xi))π(Xi,Si)Si

∣∣∣m̂(−k(i))
1,Si

]
= 0. (C.3.63)

Therefore, following the same argument discussed before,

E
[

sup
π∈Π

∣∣∣1
n

∑
i∈Ik

( Di

e(Xi,Si)
−1
)
(m1,Si(Xi)− m̂(−k(i))

1,Si
(Xi))π(Xi,Si)Si

∣∣∣]. M
δ 2

√
v
n
. (C.3.64)

We are now left to bound (v). We obtain that

(v)≤

√√√√1
n

n∑
i=1

( 1
ê(Xi,Si)

− 1
e(Xi,Si)

)2

√√√√1
n

n∑
i=1

(m1,Si(Xi)− m̂1,Si(Xi))2. (C.3.65)

Using Jensen inequality and Assumption 3.4.3 E[(v)]. n−1/2.

We now move to bound the expectation of (II). First, observe that by Lemma C.1.1, and

standard properties of the double-robust estimator, we have that

E
[ 1

p1n
∑n

i=1 π(Xi)Si

{
(Yi−m1(Xi,Si))Di

e(Xi,Si)
+m1(Xi,Si)

}
P(π(X) = 1|S = s)

]
= E

[
Y (1)|π(X) = 1,S = 1

]
.

Using the symmetrization argument (see Van Der Vaart and Wellner (1996)), we have

(II)≤ 2E
[

sup
π∈Π

∣∣∣ 1
p1n
∑n

i=1 π(Xi)σiSi

{
(Yi−m1(Xi,Si))Di

e(Xi,Si)
+m1(Xi,Si)

}
P(π(X) = 1|S = s)

∣∣∣],
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where {σi} are i.i.d. exogenous Radamacher random variables. Using the assumption that

P(π(X) = 1|S = s) ∈ (κ,1−κ), we write

E
[

sup
π∈Π

∣∣∣ 1
p1n
∑n

i=1 π(Xi)σiSi

{
(Yi−m1(Xi,Si))Di

e(Xi,Si)
+m1(Xi,Si)

}
P(π(X) = 1|S = s)

∣∣∣]
≤ 1

κ
E
[

sup
π∈Π

∣∣∣ 1
p1n

n∑
i=1

π(Xi)σiSi

{(Yi−m1(Xi,Si))Di

e(Xi,Si)
+m1(Xi,Si)

}∣∣∣].
We now proceed using a standard argument. Using the fact that each summand in the above

expression are uniformly bounded, and Π has finite VC-dimension, using the Dudley’s entropy

integral bound, it directly follows that

E
[

sup
π∈Π

∣∣∣ 1
p1n

n∑
i=1

π(Xi)σiSi

{(Yi−m1(Xi,Si))Di

e(Xi,Si)
+m1(Xi,Si)

}∣∣∣].√v
n

which concludes the proof.
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Appendix D

Appendix to Chapter 4

Main Extensions

Throughout the appendix, we will often suppress the dependence of the hypothesis testing

protocol on J and G and simply write r(X).

Imperfectly Informed Researchers

In Section 4.2 we assume that the researcher is perfectly informed and knows θ . Here

we show that our main results continue to hold in settings where the researcher has imperfect

information in the form of a prior about θ .1 Denote this prior by π ∈Π, where Π is the class of

all distributions supported on Θ. Throughout this section, we assume that Π is unrestricted.2 The

prior π represents knowledge about θ that is available to both the researcher and the policy-maker,

but not to the social planner.3

We assume that the vector of statistics X is drawn from a normal distribution conditional

on θ , where θ itself is drawn from the prior π:

X | θ ∼N (θ ,Σ), θ ∼ π, π ∈Π,

1In the single-hypothesis testing case, Tetenov (2016) gives results under imperfect information. However, these
results rely on the Neyman-Pearson lemma, which is not applicable with multiple tests.

2This assumption is made for simplicity. For our theoretical results, we only need that the class of priors Π

contains at least one element that is supported on the null space Θ0, which holds by construction if Π is unrestricted.
3If the prior π was known to the social planner, she would act as a Bayesian decision-maker.
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where Σ is positive definite.

The researcher acts as a Bayesian decision maker. She experiments whenever her ex-ante

utility β̄r(π) is positive, where

β̄r(π) =

∫
βr(θ)dπ(θ).

Welfare is

v̄r(π) =



∫ ∫
u(θ)>δ (r(x))dFθ (x)dπ(θ) if β̄r(π)> 0

max
{∫ ∫

u(θ)>δ (r(x))dFθ (x)dπ(θ),0
}

if β̄r(π) = 0

0 if β̄r(π)< 0.

Under imperfect information, we define maximin rules with respect to the prior π , which

is known to the researcher and policy-maker.

Definition D.1.1 (Π-maximin optimal). We say that r∗ is Π-maximin optimal if and only if

r∗ ∈ argmax
r∈R

inf
π∈Π

v̄r(π).

Definition D.1.1 generalizes the notion of maximin optimality in Section 4.2.3, which

is stated in terms of the parameter θ . When Π contains only point mass distributions, the two

notions of maximin optimality are equivalent.

The following lemma provides a characterization of maximin recommendation functions.

Lemma D.1.1 (Conditions for maximin optimality). Let Θ0 6= /0 as in Definition 4.2.1. The recom-

mendation function r∗ is Π-maximin optimal (Definition D.1.1), if and only if infπ∈Π v̄r∗(π)≥ 0.

Proof. See Appendix D.3.1.

Lemma D.1.1 states that maximin optimality is equivalent to the worst-case welfare

being non-negative. Based on this result, the next proposition shows that one-sided t-tests
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with appropriately chosen critical values are maximin optimal and admissible under imperfect

information.

Proposition D.1.2 (Maximin optimality and admissibility). Let J > 1. Let Assumption 4.2.1,

4.2.2, 4.2.3, and 4.2.4 hold. Suppose that Θ = [−1,1]J and C(J)> 0. Then the recommendation

function

r∗j (X) = 1
{

X j/
√

Σ j, j ≥Φ
−1 (1−C(J)/J)

}
, ∀ j ∈ {1, . . . ,J}

is Π-maximin optimal. In addition, r∗ is also admissible with respect to any π ∈Π.

Proof. See Appendix D.3.2. The proof of the first result (maximin optimality) uses the duality

properties of the linear program. The second result is a consequence of Proposition 4.2.5. The

assumption that Θ = [−1,1]J is made for simplicity and can be replaced with a compactness

assumption on Θ.

Proposition D.1.2 shows that the conclusions in Section 4.2.5 on the maximin optimality

of t-tests remain valid under imperfect information. Proposition D.1.2 further states that r∗ is

admissible. While maximin optimality connects to size control in hypothesis testing, admissibility

captures a notion of power. It implies that we cannot find any other decision rule that is more

powerful than r∗ for all prior distributions π ∈Π.

Remark 19 (Locally most powerful rules under imperfect information). Unlike the result under

perfect information in Proposition 4.2.5, we do not characterize locally most powerful rules

in Proposition D.1.2. This is because with imperfect information, there are several different

notions of locally most powerful recommendation functions. For instance, we may consider

local alternatives that assign ε probability to a certain parameter value in the alternative space, or

alternatives that assign probability one to the parameter taking value ε . The first notion implicitly

imposes a certain prior on a specific value of the parameter, which may be hard to justify in

practice. The second notion coincides with the one discussed in the main text and is satisfied by

the recommendation function in Proposition D.1.2.
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Our results for imperfectly informed researchers can be extended to the settings with

threshold crossing publication rules and general welfare functions as in Section 4.2.6 and

Appendix D.1.3. In these sections, maximin optimality is defined with respect to Θ0 only. We

can impose an equivalent condition under imperfect information with respect to

Π
weak =

{
π :
∫

θ∈Θ0

π(θ)dθ = 1
}
.

The set Πweak denotes the set of priors that impose mass one on the null space Θ0. The notion of

weak maximin optimality and the characterization of weakly maximin decisions is the same as the

one in Equation (D.1.3). To see why, note that any decision rule that satisfies βr(θ)≤ 0,∀θ ∈Θ0,

also satisfies
∫

βr(θ)dπ(θ)≤ 0 for all π ∈Πweak.

Endogenous Number of Hypotheses

In Section 4.2, we assume that the number of hypotheses, J, is exogenous. Here we relax

this assumption and consider a setting where the researcher can choose which and how many

hypotheses to test.

The model is similar to that in Section 4.2 with small modifications. First, the social

planner commits to a family of hypothesis testing protocols for any number of selected policies,

S≤ J, {rS}S∈{1,...,J}. Given {rS}S∈{1,...,J}, the researcher chooses an arbitrary subset of treatments

indexed by s∗ ∈ {0,1}J out of the J possible treatments and decides whether to experiment.

Conditional on experimentation, the researcher draws a vector Xs∗ ∈ RS∗ , where S∗ =
∑J

j=1 s∗j ,

containing information on the selected treatments and reports r∗S∗(Xs∗). We assume that for the

treatments that the researcher does not select, the status quo remains in place. This structure of

the model reflects a setting where the social planner commits to a recommendation functions for

any number of treatments, and the researcher then selects which treatment(s) to analyze.4

Formally, define an indicator s j ∈ {0,1} such that s j = 1 if treatment j is selected by the

4Extensions to the case where r depends on the identity of selected treatments are possible but omitted for
brevity.
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researcher and s j = 0 otherwise. If the researcher experiments, her utility is

J∑
j=1

s jrS, j(Xs)−C(S), S =

J∑
j=1

s j.

Similar to Section 4.2, the utility is linear in the number of discoveries, and the cost depends on

the number of tests S that the researcher conducts (for simplicity, we are assuming that the cost

of each test is the same).

We assume that welfare is linear and additive urS,s(Xs) =
∑J

j=1 s jθ jrS, j(Xs). Under

Assumption 4.2.3), we can write welfare as

vE
r (θ) =


Eθ

[∑J
j=1 s∗jθ jrS∗, j(Xs∗)

]
if Eθ

[∑J
j=1 s∗jrS∗, j(Xs∗)

]
−C(S∗)> 0

max
{

0,Eθ [urS∗ ,s∗(Xs∗)]
}

if Eθ

[∑J
j=1 s∗jrS∗, j(Xs∗)

]
−C(S∗) = 0

0 otherwise,

(D.1.1)

where S∗ =
∑J

j=1 s∗j and

s∗ ∈ arg max
s∈{0,1}J

J∑
j=1

s jEθ

[
r∑J

j=1 s j, j
(Xs)

]
−C
( J∑

j=1

s j

)
.

To alleviate the exposition, we omit the dependence of s∗ and S∗ on θ (that is, it should read

s∗(θ) and S∗(θ)).

The following lemma characterizes the class of maximin decisions.

Lemma D.1.3. Let Θ = [−1,1]J and consider the model described in the current section. Then

r∗ is maximin optimal, i.e.,

r∗ ∈ argmax
r∈R

min
θ∈Θ

vE
r (θ)

if and only if vE
r∗(θ)≥ 0 for all θ ∈Θ.

Proof. See Appendix D.3.1.
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We conclude our discussion by showing that separate t-tests are also maximin optimal

and locally most powerful when the number of hypotheses is selected endogenously. To do so,

we introduce a slightly modified notion of local power.

Definition D.1.2 (Local power with endogenous treatments). We say that r is locally more

powerful than r′ if

[
lim
ε↓0

1
ε

inf
θ∈ΘE

1 (ε)
vE

r∗(θ)− lim
ε↓0

1
ε

inf
θ∈Θ1(ε)

vE
r′(θ)

]
≥ 0,

where ΘE
1 (ε) =

{
θ : θ j ≥ ε for some j,θ− j = 0

}
.

Definition D.1.2 modifies Definition 4.2.4 as follows. Instead of allowing θ− j ≥ 0, it

imposes that parameters are either ε (or larger) or zero. The main reason is technical: if the

parameters can be smaller than ε but larger than zero, we can choose θ− j ≥ 0 but smaller than

ε (e.g., ε2) so that the researcher selects all J treatments. However, each treatments leads to a

welfare effect that converges to zero at a rate faster than ε (i.e., o(ε)).

The following proposition shows that, under some additional conditions, one-sided t-tests

remain optimal even when the researcher selects the hypotheses she wants to test. Different

from the case of exogenous J, here the threshold depends on the number of tests selected by

the researcher. In what follows, we say that a hypothesis testing protocol exhibits symmetric

size control if P(r′S, j(Xs) = 1|θ = 0) = P(r′S, j′(Xs) = 1|θ = 0) for all j, j′ ∈ {1, . . . ,S} and

S ∈ {1, . . . ,J}. As discussed in the main text, symmetry is a desirable property absent additional

restrictions on the relative importance of the different hypotheses.

Proposition D.1.4 (Maximin optimality and local power). Let J > 1. Suppose that Assumptions

4.2.1, 4.2.2, 4.2.3 hold and that Xs ∼ N (θs,Σ
s) for all s ∈ {0,1}J . Suppose further that

Θ = [−1,1]J and S≥C(S)> 0 for all S ∈ {1, . . . ,J}. Then the protocol

r∗S, j(Xs) = 1
{

Xs, j/
√

Σs
j, j ≥Φ

−1 (1−C(S)/S)
}
, ∀ j ∈ {1, . . . ,J},S ∈ {1, . . . ,J}, (D.1.2)
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is maximin optimal. If C(S) =C(1) for all S, {r∗S, j} is locally most powerful among maximin

protocols. If C(S) is strictly increasing in S with C(1)≥C(S)/S, {r∗S, j} is locally most powerful

among maximin protocols with symmetric size control.

Proof. See Appendix D.3.2.

Proposition D.1.4 states two results. First, one-sided t-tests are maximin optimal for any

cost function C(S). Second, they are also locally most powerful if either the costs are constant,

or, if the costs are increasing in S, but we restrict attention to protocols with symmetric size

control.

Additional Forms of Interactions Between Treatments

Section 4.2.6 provides a brief discussion of settings with additional forms of interactions.

Here we present the detailed formal treatment of these settings. We focus on the case where the

researcher knows θ . See Appendix D.1.1 for settings with imperfectly informed researchers.

Weakly Maximin Recommendation Functions

Maximin recommendation functions may be very conservative when we start considering

additional forms of interactions between the treatments. Therefore, we introduce a weaker notion

of maximin optimality that considers the worst case over Θ0 :=
{

θ : u j(θ)< 0 for all j
}

only,

instead of Θ. It corresponds to the concept of weak size control in the MHT literature. Even

under this weaker criterion we will often obtain conservative hypothesis testing protocols, which

helps motivate attention to it.

Definition D.1.3 (Weak maximin optimality). We say that r∗ is weakly maximin if and only if

r∗ ∈ argmax
r∈R

min
θ∈Θ0

vr(θ).

Following the same argument as in the proof of Proposition 4.2.1, we can show that r∗ is
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weakly maximin if and only if5

βr∗(θ)≤ 0 for all θ ∈Θ0. (D.1.3)

Different from the notion of maximin optimality, Definition D.1.3 considers the worst-

case allocation over the set Θ0 instead of Θ. It is a weaker notion of optimality since it requires

size control only over the subset of parameters that lead to negative treatment effects for each

possible recommendation function. That is, it imposes size control only under the weak null.6 By

definition, all maximin protocols are also weakly maximin, while the converse is not necessarily

true. A weakly maximin protocol is also maximin only if welfare is weakly positive over Θ\Θ0.

Linear Welfare and Threshold-Crossing Publication Rule

We now introduce interactions in the publication rule, replacing the linear rule in As-

sumption 4.2.2 with a threshold rule in which only papers that find sufficiently many results can

be published.

Assumption D.1.1 (Threshold publication rule). With a threshold publication rule, the re-

searcher’s utility conditional on experimenting is (up-to-rescaling)

βr(θ) = γ

∫
1


J∑

j=1

r j(x)≥ κ

dFθ (x)−C(J) (D.1.4)

for exogenous constants κ ≥ 0,γ >C(J).

The threshold crossing publication rule leads to optimal hypothesis testing protocols

which depend on the joint distribution of X in a complicated way. To illustrate, consider the

5The formal argument is as follows: any recommendation function r yields weakly negative welfare for θ ∈Θ0.
Therefore, the maximin recommendation function achieves zero utility over θ ∈Θ0, which holds if Equation (D.1.3)
holds. This proves the “if” direction. If Equation (D.1.3) does not hold, then any r achieves negative utility, proving
the “only if” direction.

6See Proschan and Brittain (2020) for related notions in the context of MHT.
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leading case where X ∼N (θ ,Σ). One can show7 that any weakly maximin and locally most

powerful recommendation function must satisfy

P(r∗j (X) = 1|θ = 0)≥ p∗, p∗ = min{p∗1, . . . , p∗J}, (D.1.5)

where (p∗1, . . . , p∗J) are the solutions to the following optimization problem

(p∗1, . . . , p∗J) ∈ arg max
p∈[0,1]J

min
j∈{1,...,J}

p j

such that
∑
k∈K

P(δk(r(X)) = 1|θ)≤C(J)/γ ∀θ ∈Θ0

and P(r j(X) = 1|θ = 0) = p j ∀ j ∈ {1, · · · ,J}.

The above expression shows that most powerful recommendation functions impose that the

probability of discovery of each separate treatment exceeds a certain (uniform) threshold p∗.

The threshold depends on the joint distribution of the entries of X , which rules out separate size

control if there is dependence between the entries of X .

Therefore, we restrict attention to the class of independent recommendation functions.

Assumption D.1.2 (Independent recommendation functions). Consider a class of recommenda-

tion functions r ∈Rind with r j(X)⊥ r j′(X) with j 6= j′.

Assumption D.1.2 states that tests for distinct treatments are statistically independent.

This holds under the normality Assumption 4.2.4 when Σ is a diagonal matrix and r j(X) is a

function of X j only. Assumption D.1.2 allows for separating the interactions arising from the

threshold crossing publication rule from those occurring because of the statistical dependence

between the components of X .8

7The proof follows similarly to the proof of Lemma 4.2.4 where the worst case alternative puts mass ε on the
discovery with the smallest probability. As a result, the social planner wants to maximize the minimal probability
across all discoveries.

8Independence assumptions have been commonly used as a starting point for developing approaches to multiple
testing (e.g., Benjamini and Liu, 1999; Finner and Roters, 2001), and provide an interesting benchmark for
contrasting our results against existing procedures and recommendations.
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The following proposition characterizes the locally most powerful maximin recommen-

dation functions under independence.

Proposition D.1.5 (Optimality of separate size control). Let J > 1. Let Assumptions 4.2.1, 4.2.3,

4.2.4, D.1.1, and D.1.2 hold, and let Θ = [−1,1]J . Then any r∗ ∈Rind is weakly maximin optimal

and locally most powerful if and only if r∗ satisfies Equation (D.1.3) and

lim
θ↓0

P
(

r∗j (X) = 1|θ
)
= P(r∗j (X) = 1|θ = 0) = p∗ ∀ j ∈ {1, . . . ,J},

where p∗ :
∑

k∈{κ,··· ,J}

(
J
k

)
(p∗)k =C(J)/γ,

(D.1.6)

assuming such r∗ exists.

Proof. See Appendix D.3.2. We note that the proof does not rely on normality of X (Assumption

4.2.4). We only require that X is continuously distributed with CDF Fθ , which admits a PDF

fθ (x) that is continuous in θ for all x ∈X .

Proposition D.1.5 states that the optimal recommendation function involves separate size

control and assigns to each false discovery the same probability p∗, which depends both on the

number of hypotheses J and the threshold number of rejections κ needed for publication.

An immediate implication of Proposition D.1.5 is that under Assumption 4.2.4, the

threshold crossing protocol of the form

r∗j (X) = 1
{

X/
√

Σ j, j ≥Φ
−1(1− p∗)

}
, ∀ j ∈ {1, . . . ,J},

is (weakly) maximin optimal. The critical value depends on p∗ defined in Proposition D.1.5.

As with a linear publication rule, a central implication of Proposition D.1.5 is that the

way the size p∗ of hypothesis tests should vary with the number J of hypotheses tested depends

on the structure of the research cost function C(J). To better understand the dependence of p∗ on

J, it is useful to analyze settings with very many treatments (J→ ∞). We consider two different
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cases: one where C(J)/γ is constant, and one where C(J)/γ = 1/J. The first case is essentially

equivalent to assuming a constant publication probability and constant costs in the number of

discoveries. The second case corresponds to assuming that the researcher’s utility is increasing

in J.

Corollary 15 (Asymptotic approximation). Assume that κ is fixed. Let p∗ be as defined in

Proposition D.1.5. Suppose that C(J)/γ = α for a constant 1 > α > 0 that does not depend on

J. Then p∗ � 1/J as J→ ∞. If, instead, C(J)/γ = α/J, then p∗ � 1/J(κ+1)/κ as J→ ∞.

Proof. See Appendix D.3.3.

Corollary 15 shows that fixed-cost research production functions (C(J)/γ = α) again

rationalize Bonferroni-style corrections. Here for a threshold publication rule this holds asymp-

totically, as opposed to the linear publication rule case in which the result was exact. Interestingly,

when C(J)/γ = α/J, size control is of order 1/J2 for κ = 1 and approximately 1/J for κ � 1.

Figure D.1.1 plots the optimal level of size control for different values of J. It shows a

comparison between the optimal level of size control under a linear publication rule (Lemma

4.2.4) and threshold crossing publication rule (Proposition D.1.5) with γ = J. We find that for

any finite J the comparison of optimal test size under linear and threshold publication rules is

ambiguous, depending on J and on the research cost function.

As Figure D.1.1 illustrates, the optimal level of size control with a threshold crossing

publication rule also depends on the location of the publication threshold κ . One can show that

p∗ is increasing in the threshold κ . Intuitively, as the threshold increases, it becomes harder for

the researcher to publish, and larger incentives are necessary to guarantee experimentation. As a

result, for large-enough κ and fixed J, standard levels of size control such as 10% or 5% may be

too stringent.
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Publication Linear Threshold Cost C(J) = 0.1 C(J) = 0.1 x J
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Figure D.1.1. Optimal size under linear and threshold publication rules. We set C(J) ∈
{0.1,0.1×J}, where for the threshold crossing rule we fix γ = J. Different panels correspond to
different values of κ for the threshold rule.

General Welfare and Threshold-crossing Publication Rule

We now introduce the possibility of economic interactions between the interventions

being studied, in addition to interactions in the cost function C(J) and the publication rule.

Assumption D.1.3 (General welfare). u j(θ) = θ j for all j, with Θ = [−1,1]2
J−1.

Importantly, unlike Assumption 4.2.1, Assumption D.1.3 allows for interactions in the

welfare impact of multiple treatments. We illustrate this more general setup in the context of our

running example.

Example D.1.1 (Fully saturated regression model). Consider the fully saturated regression model

Yi = Di,1(1−Di,2)θ1 +Di,2(1−Di,1)θ2 +Di,1Di,2θ3 + εi. (D.1.7)

Unlike the “short” model (4.3), the “long” regression model (D.1.7) allows for interaction

effects between the treatments, and θ3 will differ from θ1 + θ2 in general. In this example,

each entry of X corresponds to the OLS estimator of the effect of a combination of treatments,

X = (θ̂1, θ̂2, θ̂3)
>.
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To state the results we define some additional notation. Let

δ̃ j(r(X)) = δ j(r(X))1


J∑

j=1

r j(X)≥ κ

 , δ̃ (r(X)) ∈ {0,1}2J−1 (D.1.8)

indicate the policy decisions taken only in the case that the experiment results in a paper that is

publishable given the threshold publication rule.

The next assumption is a generalization of Assumption 4.2.3.

Assumption D.1.4 (General tie-breaking assumption). Assume that, conditional on X and for

any r ∈R, the researcher does not write the paper (or equivalently, reports r(X) = (0, . . . ,0)>)

if
∑K

k=1 rk(X)< κ .

We can interpret Assumption D.1.4 as imposing some infinitesimally small cost on the

writing and submission process. If the researcher knows that the paper will not be accepted after

having seen X , she will not write up and submit the paper. We therefore consider the following

modified version of the local alternative space.

Definition D.1.4 (General ε-alternatives). For ε > 0, define the local alternative space as

Θ1(ε) :=
{

θ : u j(θ)≥ ε for some j ∈K ,u j(θ)≥ 0, for all j
}
,

where K denotes the set of indexes k ∈ {1, . . . ,2J−1} that corresponds to groups of κ or more

hypotheses.

Under Assumption D.1.4, the social planner only needs to consider groups of hypotheses

for which it is profitable for the researcher to conduct research. Therefore, we can write the

researcher utility and welfare as

βr(θ) = γ

∫
δ̃ (r(x))>1dFθ (x)−C(J) and vr(θ) =

∫
δ̃ (r(x))>u(θ)dFθ (x). (D.1.9)
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The expressions for βr(θ) and vr(θ) in Equation (D.1.9) incorporate that whenever the number

discoveries does not exceed the threshold κ , the researcher does not submit the article such that

the status-quo prevails.

The next proposition characterizes the optimal recommendation function for any given

δ̃ j, which aggregates separate discoveries into a single recommendation. To state the proposition,

we assume existence of an optimal solution. Such optimal solutions may not exist in general,

and existence will depend on the distribution of X .

Proposition D.1.6 (Equal size control on compound error rates). Let J > 1. Suppose that

Assumptions 4.2.3, 4.2.4, D.1.1, D.1.3, and D.1.4 hold. Suppose further that Θ = [−1,1]2
J−1.

Let K be as in Definition 4.2.3. Then any r∗ ∈R is weakly maximin optimal and locally most

powerful if and only if r∗ satisfies Equation (D.1.3) and

P
(

δ̃ j(r∗(X)) = 1|θ = 0
)
=

C(J)
γ|K |

∀ j ∈K , (D.1.10)

assuming such r∗ exists.

Proof. See Appendix D.3.2. We note that the proof does not rely on normality of X (Assumption

4.2.4). We only require that X is continuously distributed with CDF Fθ , which admits a PDF

fθ (x) that is continuous in θ for all x ∈X .

Proposition D.1.6 shows that separate size control with a Bonferroni-type correction over

each group of discoveries is maximin optimal and locally most powerful whenever the effect of

each group of discoveries has equal weight on the researcher’s utility. It rationalizes a specific

form of FWER control.

Corollary 16 (Rationalization of the weak FWER). Let the conditions in Proposition D.1.6

hold. Then any MHT procedure that satisfies Equation (D.1.10) controls the weak FWER at level
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C(J)/γ at θ = 0, namely

P
(

δ̃ j(r∗(X)) = 1 for at least one j|θ = 0
)
=C(J)/γ.

Proof. See Appendix D.3.3.

In other words, Proposition D.1.6 rationalizes (weak) FWER control between groups

of hypotheses sufficient for publication. Importantly, FWER is not applied to each separate

discovery r j(X), but instead to each group. When a single result is sufficient for publication

(κ = 1), however, this implies control of the probability of a single false rejection, i.e. of the

standard notion of weak FWER control. This follows from the fact that rejecting any group of

hypotheses implies rejecting its constituent members individually (for κ = 1, max j δ j(r(X)) = 1

if and only if max j r j(X) = 1).

Next we provide an example of a hypothesis testing protocol that satisfies the conditions

in Proposition D.1.6.

Example D.1.2 (Recommendation function with |K | and independence). Consider a vector

X̃ ∈ R|K |, with each entry corresponding to a statistic X j corresponding to a certain group of

treatments with number of discoveries exceeding κ .9 Note that X̃ is a subvector of X . Assume

that X ∼N (θ , I), then the recommendation function10

δ̃ j(r(X)) = 1
{

X j > max
j′ 6= j

X̃ j′ and X j > t
}

1{ j ∈K } (D.1.11)

is maximin and locally most powerful if t is chosen such that P
(
max j X̃ j > t|θ = 0

)
=C(J)/γ.11

9Consider Example D.1.1 where J = 2: if κ = 1, then |K |= 22−1 = 3; if instead, κ = 2, then |K |= 1.
10This recommendation function bears some resemblance with step-down procedures in Lehmann and Romano

(2005b, Chapter 9), where the maximum is considered a statistic of interest.
11We note that a simple threshold crossing protocol violates the constraint that

∑
j δ j(r(X))≤ 1.
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The recommendation function (D.1.11) is maximin optimal since12

P
(

max
j

X̃ j > t|θ
)
= P

(
max

j
(X̃ j +θ j)> t|θ = 0

)
≤ P

(
max

j
X̃ j > t|θ = 0

)

for any θ ∈Θ0 = {θ ∈Θ : θ < 0}. It is locally most powerful because

P
(

1
{

X̃ j > max
j′ 6= j

X̃ j′ and X̃ j > t
}
|θ = 0

)
= P

(
max

j′
X̃ j′ > t|θ = 0,max

j′
X̃ j′ ≤ X̃ j

)
P
(

max
j′

X̃ j′ ≤ X̃ j|θ = 0
)
.

Example D.1.2 provides an example of a maximin and locally most powerful recom-

mendation function. The independence between the entries of X is important here; without it

the existence of an optimal recommendation function is not guaranteed. Example D.1.2 also

illustrates the complexity of optimal recommendation functions in the presence of potential

interactions between interventions.

Additional Extensions and Details

One-sided and Two-sided Hypothesis Testing

The structure of the model we study naturally justifies one-sided hypothesis testing.

Researchers test whether or not a proposed treatment strictly improves upon baseline. Treatments

that lead to negative values of welfare are effectively excluded from consideration since the

social planner discourages experimentation in this case. This structure is a direct consequence

of the assumption that the policy-maker always implements the recommended treatment. Our

framework can justify two-sided hypothesis testing under appropriate changes to the model. We

outline these modifications here but leave the formal analysis of the resulting model for future

12Note that here we only need to consider X̃ , since for the remaining entries the recommendation is zero almost
surely.
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research.

Consider a policy-maker who randomly selects a treatment to implement using a uniform

distribution when no recommendation is made. For each treatment, the researcher can make

three recommendations: (i) implement the treatment; (ii) not implement the treatment; (iii)

“do not know”, which corresponds to the baseline, i.e., implement the treatment with some

prior probability. Denote the recommendation for treatment j as r j(X) ∈ {−1,0,1}, with

r j(X) =−1 corresponding to not implementing the treatment, r̃ j(X) = 0 corresponding to no

recommendation, and r j(X) = 1 corresponding to implementing the treatment. Consider a

linear model without complementarities between treatments. The welfare generated by the

recommendation r j(X) is

vr(θ) =
J∑

j=1

∫ (
1
{

r j(x) = 1
}

θ j,1 +1
{

r j(x) =−1
}

θ j,−1

)
dFθ (x).

The coefficients θ j,1,θ j,−1 capture the benefit net of the opportunity cost of implementing the

treatment and not implementing the treatment respectively, relative to the random baseline. For

the case where the policy-maker implements no treatment as baseline, then θ j,−1 = 0, recovering

our model formulation. By assuming that the baseline intervention is a random intervention, the

model justifies two-sided hypothesis testing: not implementing a treatment has a benefit (or cost)

relative to random implementation.

Σ-robust Recommendation Functions

In the main text, we assume that the experimental design and sample size (and thus the

covariance matrix of X , Σ) are known to the social planner. In this setting, the planner chooses

the recommendation function r to maximize worst-case welfare given Σ. Here we analyze a

variant of our model in which the planner chooses r when Σ unknown and adversarially chosen

by nature. We refer to recommendation functions that are maximin optimal in this setting as

Σ-robust.
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Definition D.2.1 (Σ-robust). We say that r∗ is Σ-robust if

r∗ ∈ argmax
r∈R

min
θ ,Σ j, j>κ∀ j

vr(θ), for some κ > 0.

Definition D.2.1 states that the rule r∗ is Σ-robust if it is maximin optimal not only with

respect to θ but also with respect to Σ. The definition imposes a lower bound κ on the diagonal

elements of the covariance matrix, ensuring that the signal-to-noise ratio θ j/
√

Σ j, j is uniformly

bounded. This lower bound can be interpreted as a lower bound on the sample size necessary to

publish a paper.

The next proposition shows that threshold crossing protocols are Σ-robust.

Proposition D.2.1. Let J > 1. Let Assumption 4.2.1, 4.2.2, 4.2.3, and 4.2.4 hold, and let

Θ = [−1,1]J . Then the recommendation function

r∗j (X) = 1
{

X j/
√

Σ j, j ≥Φ
−1 (1−C(J)/J)

}
, ∀ j ∈ {1, . . . ,J}

is Σ-robust.

Proof. The proof mimics the proof of Proposition 4.2.5 (see Appendix D.3.2), since the opti-

mization problem only depends on θ j/
√

Σ j, j, and is omitted.

Proposition D.2.1 shows that threshold crossing protocols and standard t-tests are also

optimal in settings where the social planner seeks recommendation functions that are optimal

irrespectively of the particular experimental design.

Alternative Notions of Power

In this section, we discuss two alternative notions of power: (i) a local notion of power,

where the local alternatives are such that every parameter (instead of at least one) is small and

positive; (ii) a global weighted average power (WAP) criterion that allows parameters in the

alternative space to be large and positive.
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Locally Most Powerful Recommendation Function in Every Direction

Consider the following power criterion.

Definition D.2.2 (Local power in every direction). Let r be locally more powerful than r′ in

every direction if

lim
ε↓0

1
ε

(
vr(θ

ε)− vr′(θ
ε)
)
≥ 0, θ

ε
j = ε ∀ j ∈ {1, . . . ,J}.

In Definition D.2.2, the local alternatives are such that every parameter is equal to ε ,

instead of at least one as in Definition 4.2.4.

The following proposition provides a characterization of recommendation functions that

are locally most powerful in every direction.

Proposition D.2.2 (Locally most powerful in every direction). Let J > 1. Let Assumptions 4.2.1,

4.2.2, 4.2.3, and 4.2.4 hold, and let Θ = [−1,1]J . Then, the recommendation function r∗(X) is

maximin and locally most powerful in every direction if it satisfies Equation (4.10) and

J∑
j=1

P(r∗j (X) = 1|θ = 0) =C(J).

Proof. See Appendix D.3.2.

Unlike Lemma 4.2.4, Proposition D.2.2 does not restrict the rejection probability of each

individual hypothesis, but only imposes a condition on the aggregate rejection probability. As

a consequence, Definition D.2.2 is less useful than Definition 4.2.4 for our purpose because it

does not provide any guidance on how to specify the rejection probabilities for every test. For

example, consider the following two recommendation functions

r(X) =
{

r1(X) = 1
{

X1/
√

Σ1,1 > Φ
−1(1−C(J))

}
,r j>1(X) = 0

}
,

r′(X) =
{

rJ(X) = 1
{

XJ/
√

ΣJ,J > Φ
−1(1−C(J))

}
,r j<J(X) = 0

}
.
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While both recommendation functions are maximin and locally most powerful in every direction,

neither is locally most powerful according to Definition 4.2.4 since they violate the condition in

Lemma 4.2.4 for every j ∈ {1, . . . ,J}.

A direct corollary of Proposition D.2.2 and Lemma 4.2.4 is that any locally most powerful

recommendation function is also locally most powerful in every direction, while the converse is

not necessarily true.

Corollary 17. Under the conditions in Proposition D.2.2, any locally most powerful recommen-

dation function is also locally most powerful in every direction.

In view of Corollary 17, Definition 4.2.4 can be seen as a refinement of Definition

D.2.2 that imposes additional symmetry, allowing us to overcome the indeterminacy implied by

Proposition D.2.2.

Globally Most Powerful Rules

Consider the following WAP-style global notion of power.

Definition D.2.3 (w(θ)-more powerful (WAP)). For a given weighting scheme w(θ) :∫
Θ

w(θ)dθ = 1, r is w(θ)-more powerful than r′ if

∫
Θ

w(θ)
(

vr(θ)− vr′(θ)
)

dθ ≥ 0.

Definition D.2.3 states that r is more powerful than r′ if the difference in welfare, weighted

by w(θ), is weakly positive.

The following proposition shows that no recommendation function is w(θ)-most powerful

uniformly in w(θ), even after restricting weights to be positive only over Θ1.

Proposition D.2.3. Let J > 1,C(J) > 0. Suppose that Assumptions 4.2.1, 4.2.2, 4.2.3, and

4.2.4 hold and that Θ = [−1,1]J . For any maximin rule r ∈M there exists a set of weights
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w(θ) :
∫

θ∈Θ1
w(θ) = 1 such that

∫
Θ

w(θ)
(

vr(θ)− vr′(θ)
)

dθ < 0.

for some r′.

Proof. See Appendix D.3.2.

Proposition D.2.3 implies that the characterization of w(θ)-most powerful recommen-

dation functions will depend on the particular choice of w(θ), and ultimately on the properties

of the recommendation function over the alternative space. In contrast, our local power crite-

rion (Definition 4.2.4) has the advantage of yielding optimality results that do not depend on

specifying weights over a potentially high-dimensional alternative space.

Multiple Outcomes Adversarial Weights

In the main text, we assume that the weights of the policy-makers w∗j are known. Here

we consider the case of unknown adversarial weights. For simplicity, we assume that there is

only one policy-maker (J = 1) and suppress the indexing with j.

Suppose that the welfare weights w∗ are unknown to the social planner (but not the

policy-maker) and—in the spirit of the maximin criteria we studied above—chosen adversarially

by nature. This assumption reflects information asymmetry between the researcher and policy-

maker on the one hand and the planner on the other. As in the main text, we assume that the

policy-maker passively implements the recommendation.

The adversarial welfare criterion is

vr(θ ;wadv), wadv ∈ argmin
w∈∆

G∑
g=1

wgug(θ), (D.2.1)

where ∆ denotes the G− 1-simplex. The worst-case welfare conditional on the researcher
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experimenting can be written as

∫
min
w∈∆

r(x)
G∑

g=1

wgug(θ)dFX(θ) =

∫
r(x)dFX(θ)

G∑
g=1

wadv
g ug(θ)

=

∫
r(x)dFX(θ)min

{
u1(θ), · · · ,uG(θ)

}
.

The researcher’s utility only depends on publication prospects and costs, and on the welfare and

the weights. The null space takes the following form:

Θ0 :=
{

θ : ug(θ)< 0, for some g ∈ {1, . . . ,G}
}

(D.2.2)

where we use the superscript y to make explicit that this is the null space in the case of multiple

outcomes. The definition of the null space is similar to Section 4.3.3.13

The next proposition characterizes the set of maximin recommendation functions with

adversarial welfare weights.

Proposition D.2.4 (Adversarial weights). Let Assumption 4.2.3 hold and suppose that Θ0 6= /0.

A recommendation function r∗ is maximin-optimal with adversarial weights i.e.

r∗ ∈ argmax
r∈R

min
θ∈Θ

vr(θ ;wadv)

if and only if

βr∗(θ)≤ 0 ∀θ ∈Θ0, (D.2.3)

where Θ0 is defined in Equation (D.2.2).

Proof. See Appendix D.3.2.

Note that the structure of the result is similar to that in Proposition 1 in Tetenov (2016);

13It is interesting to note that, as a result, the problem in this subsection and the one in Section 4.3.3 lead to
similar conclusions.
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the key difference is that null set within which the researcher is deterred from experimenting is

potentially much larger.

The next corollary provides an example of a maximin recommendation function in this

context. As in Section 4.2.2 we write C :=C(1). Recall that here r(X) is a scalar.14

Corollary 18 (Threshold crossing recommendation function with maximin protocols over out-

comes). Suppose that

Xg ∼N
(

θg,1
)
, θ1, . . . ,θG ∈ [−M,M], Xg ⊥ Xg′ 6=g.

Define X := min{X1, . . . ,XG}. Consider a linear publication rule as in Lemma 4.2.4, and

a protocol r(X ; t) = 1{X ≥ t}. Then r∗(·) := r(·; t∗) is maximin optimal, where t∗ satisfies

P(Xg ≥ t∗|θg = 0) = C. In addition, for some M large enough, any protocol r(X ; t) with

P(Xg ≥ t|θ = 0)>C is not maximin.

Proof. See Appendix D.3.3.

Corollary 18 characterizes a particular class of maximin protocols. Interestingly, the

corollary shows that under independence, by choosing X = min{X1, . . . ,XG}, a maximin thresh-

old recommendation function imposes a very stringent size control of the form

P(r(X) = 1|θ = 0) =CG, (D.2.4)

Note that C < 1 if the researcher experiments, so that this implies the size of the test shrinks

with respect to the number of outcomes at an exponential rate. This adjustment arises due to the

adversarial nature of the model with unknown weights and the independence assumption.

Corollary 18 also states that any threshold crossing recommendation function that violates

the above size control is not maximin optimal.15 That said, there may exist an alternative class

14This is different from Section 4.3.3 where r(X) is a G×1 vector.
15The idea of the proof is that by taking X = ming Xg, we violate maximin optimality whenever each parameter
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of hypothesis testing protocols that lead to higher power as G increases; we leave this for future

study.

Separate Test are not Optimal with a Single Policy Maker

In the main text, we show that with a single policy maker, testing based on a single

index is optimal. Here we discuss why separate testing with or without MHT adjustments is

not optimal in such settings. Specifically, we show that any most powerful hypothesis testing

protocol based on X (such as the tests based on a single index in Section 4.3.4) is weakly more

powerful than protocols based on separate testing with or without MHT adjustments.

Separate testing corresponds to a two-step protocol. The researcher reports a vector of

tests rsep(X) ∈ {0,1}G. For example, rsep,g(X) may correspond to a one-sided tests about the

effect of the treatment on the Yg. Standard procedures for multiple hypothesis testing adjust

the size of the tests rsep. The size of each test is chosen by the social planner who optimizes

over the (multivariate) function rsep(·). The researcher chooses whether to experiment and, upon

experimentation, reports G recommendations rsep(X). At this point, the policy-maker must

aggregate such tests and make a single policy decision. Formally, for a given recommendation

function rsep(X), the policy-maker chooses whether to implement the policy if ragg(rsep(X)) = 1,

where ragg is an exogenous “aggregator” function. The resulting overall protocol is simply the

composition of ragg and rsep, ragg ◦ rsep. Since we do not impose any restrictions on r ∈R, any

two-step protocol ragg ◦ rsep can be replicated by an unrestricted protocol r : X 7→ {0,1}, while

the converse is not true. Therefore, since ragg ◦ rsep ∈R, it follows that if r ∈R is more powerful

than any other r′ ∈ R, r is more powerful than any two-step protocol. Intuitively, two-step

protocols are more restrictive since they do not operate directly on X but instead reduce the

information in X into binary indicators in the first step. This information reduction can result in

a loss of power. Example D.2.1 provides an illustration.

except for one is large and positive, and for one g′ only θg′ is close to zero but negative. In such a case the probability
of a discovery, which under independence is obtained by taking the product of each P(Xg > t|θ) exceeds the overall
cost C and thus induces experimentation.
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Example D.2.1 (Separate testing with or without MHT adjustments is not optimal). Suppose

that G = 2 and that X ∼ N (θ , I). Instead of reporting a single recommendation, condi-

tional on experimentation, the researcher reports a vector of recommendations rsep(X ;2) =

(rsep,1(X ;2),rsep,2(X ;2)) ∈ {0,1}2, where rsep,g(X ;2) = 1
{

Xg > tg
}

for g = 1,2. The threshold

tg may embed a multiple testing adjustment, can depend on g, and is assumed to be positive

and finite. The policy-maker then uses ragg to aggregate rsep(X ;2) into a single policy decision.

Specifically, she implements the policy if ragg(rsep(X ;2)) = 1.

This two-step protocol is less powerful than tests based on a single index. To see this,

suppose that the policy-maker implements the treatment if there are “enough” rejections,

ragg(rsep(X ;2)) = 1{1{X1 > t1}+1{X2 > t2} ≥ κ} .

It can be shown that if κ ≤ 1, then ragg ◦ rsep is strictly dominated for θ>w∗ < 0 and thus not

maximin. On the other hand, if κ = 2, then we can always find a configuration of parameters

such that ragg ◦ rsep has approximately zero power. For example, suppose that researchers put

equal weights on each outcome, formally w∗ = (1/2,1/2)>. Choose the first parameter θ1

to be large and negative θ1 = −M, for M > 0, and the second parameter positive and larger

in absolute value than θ1, namely θ2 = M + u for u > 0. In this case, the welfare is positive,

θ>w∗ = u/2 > 0, while the two-step procedure has approximately zero power for large enough

M, P(ragg(rsep(X ;2)) = 1|θ = (−M,M + u)) ≈ 0. The reason is that the researcher (almost)

never rejects the first hypothesis, since the expectation of the first outcome can be arbitrary small

(θ =−M) such that P(X1 > t1|θ1 =−M)≈ 0.

Aggregating Statistics vs. Aggregating Outcomes

Here we show that (i) first estimating G separate OLS regressions and then aggregating

the estimators and (ii) first aggregating the G outcomes and then running one OLS regression

with the aggregate outcome are equivalent.
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Suppose that we are interested in the effect of a binary treatment D on a vector of

outcomes Y = (Y1, . . . ,YG)
>. Suppose further that, for g = 1, . . . ,G,

Yi,g = µ +θDi + εi,g, i = 1, . . . ,N, εi,g
iid∼N (0,σ2

g )

We choose Xg to be the OLS estimator of the effect of D on outcome Yg,

Xg = θ̂g =
1

N1

∑
i:Di=1

Yi,g−
1

N0

∑
i:Di=0

Yi,g,

where N1 is the number of treated units and N0 is number of control units. This fits into our

framework since X = (θ̂1, . . . , θ̂G)
> ∼N (θ ,Σ).

Now, instead of separately estimating G regressions and aggregating the corresponding

OLS estimators, suppose that we first aggregate the outcomes into a single index using weights

w = (w1, . . . ,wG)
>, Y>w, and then run an OLS regression of Y>w on D. The resulting OLS

estimator can be written as

1
N1

∑
i:Di=1

G∑
g=1

wgYi,g−
1

N0

∑
i:Di=0

G∑
g=1

wgYi,g =
G∑

g=1

wg

 1
N1

∑
i:Di=1

Yi,g−
1

N0

∑
i:Di=0

Yi,g

=
G∑

g=1

wgXg.

This derivation shows that both approaches are equivalent.

A Factor Model for Multiple Outcomes

Suppose the researcher analyzes the effect of the treatment on some latent factor F (see,

e.g., Ludwig et al., 2017). For example, for a health-related treatment, F may represent an

underlying measure of overall health. The effect of the treatment on individual i is F1
i −F0

i
iid∼

N (θ ,1), where F1
i and F0

i denote the potential factors with and without the treatment. The

average treatment effect θ determines welfare upon experimentation.16 We assume that the

16It is important to note that treatment effects are defined up-to re-scaling in this set-up.
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outcome g of individual i is generated by a factor model

Yi,g = λg

(
F1

i Di +F0
i (1−Di)

)
+ εi,g,

(
εi,1, . . . ,εi,G

)
| F1

i ,F
0
i

iid∼N (0, IG), (D.2.5)

where λg ∈ (0,∞) is an outcome-specific factor loading, and, for expositional convenience, we

assumed that errors are independent and have the same variance.

If the researcher experiments, she samples N units and assigns a binary treatment Di
iid∼

Bern(p) to each unit i. Let Xg be the difference between the mean outcomes in the treated and

control group,

Xg =
1
N

n∑
i=1

Yi,g

(
Di

p
− 1−Di

1− p

)
, (D.2.6)

Standard asymptotic results imply that X a∼N (λθ ,ΣN), where λ = (λ1, . . . ,λG)
> and

ΣN is a covariance matrix. We are interested in constructing the recommendation function r(X),

which is maximin and (approximately) locally most powerful. Suppose that the researcher knows

(λ ,Σ), or (asymptotically) equivalently, that she has access to consistent estimators.17 Then

r∗(X) = 1


G∑

g=1

Xg

λg
√

λ−1>Σλ−1
> Φ

−1(1−C(G))

 ,

is maximin optimal. In addition, for any maximin rule r′, r∗ achieves asymptotically the largest

local power, namely,

lim
ε↓0

[
inf

θ∈Θ̃

θ
>

λP(r∗(X) = 1|θ)− inf
θ∈Θ̃

θ
>

λP(r′(X) = 1|θ)
]
≥ 0,

17Asymptotic equivalence follows since

G∑
g=1

Xg

λ̂g

√
λ̂−1>Σ̂λ̂−1

=

G∑
g=1

Xg

λg
√

λ−1>Σλ−1
+op(1), where

G∑
g=1

Xg

λg
√

λ−1>Σλ−1
∼N (θ ,1).

Also, observe that consistent estimation can be achieved only up-to a rescaling constant (which is irrelevant for our
testing procedure).
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Θ̃(ε) = {θ ∈Θ : λ>θ = ε}.18

(Some) Benevolent Researchers

One of the core assumptions in our baseline model is that the researcher and planner in-

centives are misaligned — the researcher’s utility only depends on the benefits from publications

and the costs of research. Here we show that all our main results continue to hold when some

(but not all) researchers’ incentives are aligned (i.e., care about social welfare). We focus on the

model with multiple treatments (Section 4.2); results for the case of multiple outcomes (Section

4.3) can be derived using similar arguments.

Suppose that there are two types of researchers, indexed by ω ∈ {0,1}. The utility of

the researchers of type ω = 0 is equal to welfare, δ (r(X))>u(θ), whereas the the utility of

researchers of type ω = 1 is the same as in Section 4.2. We assume that both types occur with

positive probability, P(ω = 1) ∈ (0,1).

Consider a setting where the researchers’ type is unknown to the social planner, and the

planner is maximin with respect to the researcher type:

max
r∈R

min
θ∈Θ,ω∈{0,1}

ṽr(θ ,ω), (D.2.7)

where (for vr(θ) as defined in as Equation (4.7))

ṽr(θ ,ω = 1) = vr(θ), ṽr(θ ,ω = 0) = δ (r(X))>u(θ)1
{

δ (r(X))>u(θ)≥ 0
}
.

The first equality follows by definition of vr(θ). The second equality follows from the fact that

the benevolent researcher only experiments when welfare is positive.

We have the following equivalence result.

18Maximin optimality follows from the fact that P(r(X) = 1|θ) ≤ C(G), for all θ ≤ 0. The power property
follows by a first order Taylor expansion of P(r∗(X) = 1|θ) around θ = 0, and continuity of the distribution of X in
θ .
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Proposition D.2.5. Suppose that u(θ) = 0, for some θ ∈Θ. Then for any βr(θ)

min
θ∈Θ,ω∈{0,1}

ṽr(θ ;ω) = min
θ∈Θ

vr(θ)

where vr(θ) is given in Equation (4.7).

Proof. See Appendix D.3.2.

Proposition D.2.5 shows that the social planner solves the same problem as she would

have when there are only type ω = 1 researchers (as in Section 4.2). It implies that all the results

in Section 4.2 remain continue to hold when some researchers are benevolent.

Proofs

In our proofs we will sometimes write C instead of C(J) and P(r j(X)|θ) instead of

P(r j(X) = 1|θ) to lighten up the notation whenever it does not cause any confusion. For nota-

tional convenience, without loss of generality, whenever possible, we standardize the threshold

utility with respect to γ , taking γ = 1. To distinguish maximin from weakly maximin, we refer to

maximin as strongly maximin when is not clear from the context.

Lemmas

Here we collect the proofs of all lemmas.

Proof of Lemma 4.2.4

We prove the statement in the following steps. First observe that we can write the

researcher’s utility as
J∑

j=1

P(r j(X)|θ)−C. (D.3.1)

The proof proceeds as follows. We first find a lower bound on the worst-case power of r∗. We

then argue that any weakly maximin recommendation function that does not satisfy maximin
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optimality has a lower power using an upper bound on any maximin r 6= r∗.

Step 1: Maximin optimality.

This directly follows from Proposition 4.2.1.

Step 2: Locally more powerful calculations

We claim that

lim inf
ε↓0

1
ε

inf
θ∈Θ1(ε)

vr∗(θ)≥
C
J
.

We now show why. Define θ(ε) ∈ Θ1(ε) the vector of parameter under the local alternative.

Observe that the utility under the local alternative reads as follows

(A) = inf
θ(ε)

J∑
j=1

θ(ε)P(r∗j (X)|θ = θ(ε)), such that θ j(ε)≥ ε for some j,θ j(ε)≥ 0 ∀ j.

We then write

(A)≥ inf
w∈[0,1]J :

∑
j w j≥ε,θ(ε)∈Θ1(ε)

J∑
j=1

w jP(r∗j (X)|θ = θ(ε))

≥ inf
w∈[0,1]J :

∑
j w j≥ε,θ ′∈[0,1]J :

∑
j θ j≥ε

∑
j

w jP(r∗j (X)|θ = θ
′) := g(ε).

Define W (ε1,ε2) =
{
(w,θ) ∈ [0,1]2J :

∑
j w j ≥ ε1,

∑
j θ j ≥ ε2

}
. Observe that we can write

1
ε

g(ε) = inf
(w,θ ′)∈W (1,ε)

J∑
j=1

w jP(r∗j (X)|θ = θ
′) = inf

(w,θ ′)∈W (1,1)

J∑
j=1

w jP(r∗j (X)|θ = εθ
′).

Observe that W (1,1) is a compact space. In addition P(r∗j (X)|θ = εθ ′) is continuous

in ε for any θ ′ ∈ Θ by Assumption 4.2.4. As a result, g(ε)/ε is a continuous function in ε .

Therefore, we obtain that

lim
ε→0

g(ε)
ε

= inf
(w,θ ′)∈W (1,1)

J∑
j=1

w jP(r∗j (X)|θ = θ
′×0) = inf

(w,θ ′)∈W (1,1)

J∑
j=1

w j
C
J
=

C
J
.
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This completes the proof of our claim.

Step 3: Alternative set of maximin protocols.

We now claim that any maximin protocol which is not r∗ must satisfy for some j ∈

{1, · · · ,J},

P
(

r j(X) = 1|θk = 0, ∀k ∈ {1, · · · ,J}
)
<

C
J
. (D.3.2)

The claim holds for the following reasons. Consider a maximin recommendation function r′

such that for all j Equation (D.3.17) does not hold. Then if r′ is maximin optimal and satisfies

Equation (D.3.2) with equality for all j, then there must be an r∗ defined as in the proposition

statement equal to r′, which leads to a contradiction. Therefore it must be that r′ is such that for

some j Equation (D.3.2) is satisfies with reversed strict inequality and for all j is satisfied with

reversed weak inequality. To observe why, by the above argument

∑
j

P
(

r′j(X) = 1|θk = 0, ∀k ∈ {1, · · · ,J}
)
>C.

As a result, take θ = (−t,−t, · · · ,−t)∈Θ0 for some small t. Then by Assumption 4.2.4 (namely,

by continuity of Fθ ), we have for t small enough

∑
j

P
(

r′j(X) = 1|θk =−t, ∀k ∈ {1, · · · ,J}
)
>C.

As a result, for t small enough, the policy r′ contradicts Proposition 4.2.1.

Step 4: Power comparison.

Observe now that for the class of alternative treatments, we have

inf
θ(ε)

J∑
j=1

θ(ε)P(r j(X)|θ = θ(ε))≤ εP(r j(X) = 1|θ j = ε,θ− j = 0),
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since the allocation (θ j = ε,θ− j = 0) ∈Θ1(ε). Using Assumption 4.2.4 we have

lim
ε→0

P(r j(X) = 1|θ j = ε,θ− j = 0) = P(r j(X) = 1|θ = 0)<
C
J
.

This completes the proof of the if statement.

Step 5: “Only if” statement

The only if statement follows from the fact that if r∗ does not satisfy the condition in the

proposition, then we can find a different function r′ which leads to larger power than r∗ following

the same argument after Equation (D.3.2). As a result, in this case r∗ violates the condition of

local optimality.

Proof of Lemma D.1.1

First, recall that by construction vr(θ)≤ 0, for all θ ∈ Θ0 and all r. As a result, for all

r,
∫

vr(θ)sπ(θ)≤ 0, for all π ∈Π, such that
∫

θ∈Θ0
π(θ)dθ = 1. Since there exists at least one

π which puts probability one on Θ0, it follows that infπ∈Π ṽr(π) ≤ 0 for all r. Therefore, r is

maximin optimal if infπ∈Π ṽr(π)≥ 0.

Note now that by choosing rt(X) = (0, · · · ,0) almost surely, we are guaranteed that

infπ∈Π ṽr(π) = 0. Therefore, r∗ is maximin optimal only if infπ∈∆ ṽr(π) ≥ 0, since otherwise

dominated by rt .

Proof of Lemma D.1.3

We first prove the only if statement. To achieve this goal, note that any decision rule

r that does not satisfy vr(θ) ≥ 0 is not maximin optimal, since otherwise the social planner

can choose r′ constant at zero for all S and guarantee that vr′(θ) = 0, ∀θ ∈Θ. Therefore any

rule is maximin only if vr∗(θ) ≥ 0 for all θ ∈ Θ. To prove the if statement, observe that for

any r, minθ∈Θ vr(θ)≤ 0, since we can choose θ = (0, · · · ,0). As a result, any rule is maximin

if infθ∈Θ vr∗(θ) = 0, that, under linearity and the assumption that Θ = [−1,1]J , implies that
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vr∗(θ)≥ 0 for all θ ∈Θ, completing the proof.

Propositions

Here we collect the proofs of all propositions.

Proof of Proposition 4.2.1

Let Θs
0 = Θ\

{
θ : u j(θ)≥ 0∀ j

}
. We start with a general observation. Define θ ∗(r) =

minθ∈Θ vr(θ) the worst-case θ as a function of the recommendation function r. First, observe

that since Θ0 6= /0, we have that vr(θ)≤ 0 for any r ∈R,θ ∈Θ0. Therefore, it must be that any

recommendation function is maximin if and only if vr∗(θ
∗(r∗)) = 0, since (i)if vr∗(θ

∗(r∗))< 0,

then the social planner can choose r̃(X) = (0,0, . . . ,0) and obtain vr̃(X)(θ) = 0,∀θ ∈ Θ; (ii) if

instead vr∗(θ
∗(r∗))> 0, then we reach a contradiction since we can find a θ ∈Θ0 which leads

to non-positive utility. This shows that maximin rules can equivalently be characterized by

vr∗(θ
∗(r∗)) = 0.

Based on this observation, to prove the “if” direction, we only need to show that the

worst-case utility under r∗ equals zero, that is vr∗(θ
∗(r∗)) = 0. Under Assumption 4.2.3, welfare

is exactly zero for all θ ∈ Θ0, as long as Equation (4.11) is satisfied. To complete the first

direction of the claim, we are left to show that for any θ ∈Θ\Θ0 welfare is always non-negative.

This is true since if θ 6∈Θs
0 then the utility is trivially positive, since u(θ) has all entries weakly

positive. If instead θ ∈Θs
0, then either (i) θ ∈Θ0 or (ii) θ ∈Θs

0 \Θ0. (i) was discussed before.

Therefore consider (ii). Observe that since vr∗(θ̃)≥ 0 for all θ̃ ∈Θs
0 \Θ0 by assumption, it must

be that vr∗(θ
∗(r∗)) = 0. As a result if Equation (4.11) holds, r∗ is maximin.

We now discuss the “only if” direction. Consider the case where βr(θ) > 0 for some

θ ∈Θ0. Then we have vr(θ
∗(r))≤ vr(θ)< 0 for some θ ∈Θ0. Suppose instead that vr∗(θ̃)< 0,

for some θ̃ ∈Θ\Θ0. Then similarly vr(θ
∗(r))≤ vr(θ̃)< 0, completing the proof.
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Proof of Proposition 4.2.2

We can write the researcher’s payoffs proportional to

J∑
j=1

P(r j(X)|θ)−C, (D.3.3)

where we suppress the dependence of C with J for notational convenience. We take the parameter

space19

Θ =
{

θ ∈ [−1,1]J such that sign(θ1) = sign(θ2) = · · ·= sign(θJ−1)
}

and the costs C/J < 1. corresponding to the positive and negative quadrants for all parameters

except θJ which can have an arbitrary sign irrespective of the sign of the other parameters. To

prove the statement we show that there exists a maximin protocol that strictly dominates all others

over an arbitrary set Θ′ ⊆Θ, and a different maximin recommendation function that it strictly

dominates all others over some arbitrary set Θ′′ 6= Θ′, Θ′′ ⊆ Θ. We choose Θ′ = (0, · · · ,0, t)

for a small t and Θ′′ = (t, · · · , t,0) for a small t. Details are discussed in the following paragraphs.

Since we can choose any distribution Fθ , we choose

X ∼N (θ , I).

Observe that we can define

Θ0 ⊆ Θ̃0 =
{

θ : θ j ≤ 0 for all j
}
,

where Θ̃0 also contains those elements that lead to weakly negative welfare. We break the proof

into several steps.

19This condition is not necessary by maximin optimality of threshold crossing protocols (Proposition 4.2.5) for
arbitrary parameter spaces, but it simplifies the discussion.
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Step 1: construction of the function class.

Define a class of recommendation functions of the form

R1 =
{

r ∈R : C ≥ P
(

r1
J(X)|θ = 0

)
>

C
J

and r is maximin
}
.

We claim that R1 6= /0 (note that C/J < 1 by assumption). To prove this claim it suffices

to find a function r ∈R1. An example is

P
(

r j(X)
∣∣∣∀θ ∈Θ

)
= 0 ∀ j ≤ J−1,

P
(

rJ(X)|∀θJ = 0,∀θ j<J ≤ 0
)
= min{C,1},

(D.3.4)

and P(rJ(X)|θJ,θ−J) is constant in θ−J and decreasing in θJ , which exist since C
J < 1. r is

maximin optimal since the researcher’s utility is weakly non-negative for any θ ∈ Θ.20 This

follows by (i) monotonicity of P(rJ(X) = 1|θJ,θ−J) in θJ and (ii) the fact that P(rJ(X) =

1|θJ,θ−J) is constant in θ−J . A simple example satisfying such conditions is a threshold crossing

recommendation function of the form

r j(X) = 1{X j > t j}, t j<J = ∞, tJ = Φ
−1(1−minC,1)

where Φ(·) denotes the normal CDF. In addition, we observe that

sup
r∈R1

P
(

rJ(X)|θJ = 0,θ j<J = 0
)
≥min{C,1}

as a result of the above example. Define τ = min{C,1} for the rest of the proof.

20See the proof of Proposition 4.2.1 for an explanation why a weakly non negative utility for all θ ∈Θ implies
maximin optimality.
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Step 2: comparisons with maximin protocols.

We now claim that for θ = (0,0, · · · ,0, t), for t approaching zero, there exists a maximin

recommendation function r1 ∈ R1 which leads to strictly larger welfare than any maximin

decisions r2 ∈R \R1. To show our claim, it suffices to compare r1, to any recommendation

function r2 6∈R1, such that

P
(

r2
J(X)|θ = 0

)
≤ C

J
. (D.3.5)

To see why, observe that whenever the above probability is between (C
J ,τ], we contradict the

statement that r2 6∈R1. When instead

P
(

r2
J(X)|θ = 0

)
> τ

the recommendation function r2 is not maximin optimal, since this implies that C ≤ 1, which

in turn implies that by Assumption 4.2.4, the researcher would conduct experimentation under

(θJ =−t,θ j<J =−t), for some small positive t, leading to strictly negative welfare.

Step 3: Comparisons of welfare.

Observe now that for θ = (0,0, · · · ,0, t), the welfare is

1
t

vr1(0,0, · · · ,0, t) = P
(

r1
J(X1,X2, · · · ,XJ)

∣∣∣θ−J = 0,θJ = t
)
= fr1

J
(t).

Notice that fr(t) is a continuous function in t due to Assumption 4.2.4. By comparing the utilities

under r1 and r2, and taking the difference we have

sup
r1∈R1

vr1(θJ = t,θ j<J = 0)− sup
r2:P(r2

J (X)|θ=0)≤C
J

vr2(θJ = t,θ j<J = 0) =

t
[

sup
r1∈R1

fr1
J
(t)− sup

r2:P(r2
J (X)|θ=0)≤C

J

fr2
J
(t)
]
=

t
[

sup
r1∈R1

fr1
J
(0)− sup

r2:P(r2
J (X)|θ=0)≤C

J

fr2
J
(0)+ εr1

J
(t)− εr2

J
(t)
]
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where limt→0 εr1
J
(t) = limt→0 εr2

J
(t) = 0, by Assumption 4.2.4. As a result, we can take some

small t > 0, such that

εr1
J
(t)− εr2

J
(t)< sup

r1∈R1
fr1

J
(t)− sup

r2:P(r2
J (X)|θ=0)≤C

J

fr2
J
(t),

since supr1∈R1 fr1
J
(t) > C

J , and therefore supr1∈R1 fr1
J
(t)− supr2:P(r2

J (X)|θ=0)≤C
J

fr2
J
(t) > 0. For

this case, we have

sup
r1∈R1

vr1(θJ = t,θ j<J = 0)− sup
r2:P(r2

J (X)|θ=0)≤C
J

vr2(θJ = t,θ j<J = 0)> 0.

Therefore, for some t small enough, r1 leads to strictly larger utility than any maximin recom-

mendation function r2 6∈R1.

Step 4: the recommendation function r1 is not dominant

We are left to show that there exists a function r3 6∈R1 which is maximin optimal and

that leads to strictly larger utility than any r1 ∈R1 for some different combinations of θ . We

choose θ = (t, t, · · · ,0). We construct a set of decisions

R2 =
{

r 6∈R1 and r is maximin optimal
}
.

Observe that R1∩R2 = /0 by definition.

Step 5: welfare computation for R2.

We claim that R2 is non-empty. An example is the treatment that assigns P(rJ(X) =

1|θ = 0) = 0,

P(r j<J(X) = 1|θ j = 0, ∀θ− j) = min{ C
(J−1)

,1},

which P(r j(X) = 1|θ j,θ− j) decreasing in θ j and does not depend on θ− j, for j 6= J. A threshold

crossing recommendation function satisfies this condition. Such a recommendation function is
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maximin by the assumption on Θ and the monotonicity of P(r j(X) = 1|θ j) in θ j. Consider the

alternative θ̌ = (t, · · · , t,0). Observe now that we have

sup
s2∈R2

vs2(θ̌)− sup
r1∈R1

vr1(θ̌) = t×
[∑

j<J

P(s2
j(X) = 1|θ = θ̌)−

∑
j<J

P(r1
j (X) = 1|θ = θ̌)

]
.

We write [∑
j<J

P(s2
j(X) = 1|θ = θ̌)−

∑
j<J

P(r1
j (X) = 1|θ = θ̌)

]
=
[∑

j<J

P(s2
j(X) = 1|θ = 0)−

∑
j<J

P(r1
j (X) = 1|θ = 0)

]
+ ε(t)

where ε(t)→ 0 as t→ 0 by continuity (Assumption 4.2.4).

Step 6: Upper bound on r1.

We claim that

∑
j<J

P(r1
j (X) = 1|θ = 0)< (J−1)(min{C/(J−1),1}).

We prove the claim by contradiction. Suppose that the above equation does not hold. Then it

must be that (since P(r1
J(X) = 1|θ = 0)>C/J)

∑
j<J

P(r1
j (X) = 1|θ = 0)+P(r1

J(X) = 1|θ = 0)> (J−1)(min{C/(J−1),1})+ C
J
. (D.3.6)

Clearly if C/(J− 1) ≤ 1, the statement is true since otherwise we would contradict maximin

optimality of r1. Suppose that C/(J−1)> 1. Then for r1 to be maximin optimal we must have

that (J−1)+C/J ≤C. However, it is easy to show that this implies that C/J ≥ 1 which leads to

a contradiction. This completes the claim.

Using continuity, we obtain that for t small enough any r1 ∈R1 is dominated by r2. The

proof is complete.
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Proof of Proposition 4.2.3

We structure the proof as follows: we first prove the first part of the claim. We show

that any decision which is strongly maximin and locally more powerful than any other strongly

maximin protocol is admissible. Second, we show that such decision is also admissible once

compared to recommendation functions which are not maximin. Finally, we prove the second

part of the claim (the only if statement).

Since admissibility is stated with respect to the rules r′ 6∈ E , by construction, for any

r ∈ E and r′ 6∈ E , the inequality in Equation (4.13) holds with strict inequality if r′ is maximin.

Step 1: Locally most powerful implies admissibility among strongly maximin protocols.

We first compare to maximin rules r′ 6∈ E . Observe first that we can take u j(θ) =

ε,u(θ)i 6= j = 0 which belongs to Θ1(ε) since by assumption [−1,1] ∈ {u j(θ),θ ∈Θ}. Observe

that by the definition of locally more powerful

0≤ inf
θ∈Θ1(ε)

vr(θ) = inf
θ∈Θ1(ε)

E[δ (r(X))>u(θ)]ε ≤ E[δ (r(X))>(ε,0, · · · ,0)]≤ ε (D.3.7)

for some j, where the right-hand side follows by definition of Θ1(ε). As a result we have that

0≤ infθ∈Θ1(ε) vr(θ)/ε ≤ 1 and so the lim-inf and lim-sup are uniformly bounded. We now have

that

(I) = lim inf
ε↓0

{1
ε

inf
θ∈Θ1(ε)

vr(θ)−
1
ε

inf
θ ′∈Θ1(ε)

vr′(θ
′)
}

is finite since by Equation (D.3.7) the above expression for any ε > 0 is bounded from below by

zero and from above by one. Now observe that by definition of lim-inf, there exists a subsequence

εn ↓ 0, such that 1
εn

infθ∈Θ1(εn) vr(θ)− 1
εn

infθ ′∈Θ1(εn) vr′(θ
′) converges to (I). Take some finite n

over the subsequence but large enough such that

1
εn

inf
θ∈Θ1(εn)

vr(θ)−
1
εn

inf
θ ′∈Θ1(εn)

vr′(θ
′)> 0.
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Such an εn exists since r′ is maximin and r′ 6∈ E . Define θεn = infθ ′∈Θ1(εn) vr′(θ
′). Observe that

1
εn

vr(θεn)−
1
εn

vr′(θεn)≥
1
εn

inf
θ∈Θ1(εn)

vr(θ)−
1
εn

inf
θ ′∈Θ1(εn)

vr′(θ
′)> 0, (D.3.8)

since21

inf
θ∈Θ1(εn)

vr(θ)≤ vr(θεn).

Now observe that Equation (D.3.8) implies that r strictly dominates r′ at some θεn . We now

want to show that r is admissible within the class of maximin protocols. Since r is locally more

powerful than all maximin protocols, we can apply the same reasoning to any other r′′ for some

(different) θ ′εn
. Clearly, r is not dominated by any other maximin protocol recommendation

function by the argument above.

Step 2: Comparison to non-maximin recommendation function.

Next we show that the strongly maximin locally most powerful r is also admissible within

the larger class of strongly maximin and non-strongly maximin protocols. To show this we use

a contradiction argument. Suppose that there exists a recommendation function r̃ which is not

maximin. Then r̃ is dominated by r either over the parameter θ ∈Θ0 or over Θ\Θ0 since r is

maximin. Therefore r is admissible with respect to all r′ 6∈ E .

Proof of Proposition 4.2.5

Observe that

P(r j(X) = 1|θ = 0) =
C
J
, ∀ j ∈ {1, · · · ,J}.

21The inequality below follows from the fact that the constraint set Θ1(ε) does not depend on r.
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As a result, we only need to prove maximin optimality. Observe first that r j(X) is monotonically

increasing in θ j and constant in θ− j. In addition, the null is defined as

Θ0 ⊆
{

θ : θ j ≤ 0, ∀ j
}
.

By monotonicity, the first condition in Proposition 4.2.1 is satisfied. We show that also the

second condition holds.

To show this it suffices to show that the worst-case objective function is weakly positive.

With an abuse of notation we define θ j the coefficient rescaled by
√

Σ j, j (which are finite by the

assumption of Σ being positive-definite). We write the nature’s adversarial game with a threshold

crossing recommendation function as follows

min
θ∈Θ

J∑
j=1

(1−Φ(t−θ j))θ j, s.t.
J∑

j=1

(1−Φ(t−θ j))≥ J(1−Φ(t)). (D.3.9)

Observe that since C(J)> 0, t must be finite. We can write Θ as a compact space [−M,M]J for

some finite M, by assumption:

min
θ∈[−M,M]J

J∑
j=1

(1−Φ(t−θ j))θ j, s.t.
J∑

j=1

(1−Φ(t−θ j))≥ J(1−Φ(t)). (D.3.10)

for some arbitrary large M whose choice is discussed below. Observe that Equation (D.3.10)

is weakly smaller than Equation (D.3.9) hence a lower bound on Equation (D.3.10) suffices to

prove the claim.

Claim.

We claim that welfare can only be negative if the minimizer θ ∗ is such that for some

j, θ ∗j < 0 and for some other j′ 6= j θ ∗j′ > 0. That there must exist some negative θ ∗j trivially

follows from the objective function. That there must be a positive θ ∗j′ follows directly from the

constraint function: if such condition is not met and θ ∗j < 0 for all j, then it follows that the
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constraint is violated.

Focus on interior solution for M large enough.

We now argue that at least one component of the minimizer must satisfy −∞ < θ ∗j < 0

for the resulting objective function to be strictly negative. To show this it suffices to observe

that z(1−Φ(t− z))→ 0 as z→−∞. Therefore if for all θ ∗j < 0 these are unbounded, then the

objective function is trivially zero proving the claim. Second, following this same argument

we also observe that it suffices to focus our analysis on solutions θ ∗ ∈ Θ ⊆ [−M,M]J for

some arbitrary large but finite M. To see why observe that if at least one θ ∗j is unbounded

its contribution to the objective function is zero, while it decreases the researcher’s utility∑J
j=1(1−Φ(t−θ ∗j )), hence having a weakly positive effect on the objective function. For the

θ ∗j > 0 these must instead be finite since otherwise the objective function is strictly positive

(hence, the claim trivially holds). Hence there must exist a minimizer θ ∗ which is in the interior

of [−M,M]J for some arbitrary large and finite M.

Constraint qualification.

We now show that the KKT conditions are necessary for the optimality of θ ∗ ∈ Θ ⊂

[−M,M]J . To show this we use the LICQ. In particular observe that the derivative of the

constraint function is

−
J∑

j=1

φ(t−θ j) 6= 0

for t being finite, for any point θ such that at least one θ j is finite (in absolute value). If such

condition is not met, then the objective function is (weakly) non negative as discussed in the

previous paragraph.
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Lagrangian.

We now study necessary conditions for the optimal solution of the problem in Equation

(D.3.9). Consider the Lagrangian function

J∑
j=1

(1−Φ(t−θ j))θ j +λ

[
J(1−Φ(t))−

J∑
j=1

(1−Φ(t−θ j))
]
+µ1, j[θ −M]+µ2, j[−θ −M].

Now observe that by the argument in the second paragraph, and complementary slackness we

can focus on the cases where µ1, j = µ2, j = 0 for all j (i.e. θ ∗ is an interior of [−M,M]J for some

finite M large enough). Taking first order conditions of the Lagrangian we obtain

φ(t−θ j)θ j +(1−Φ(t−θ j)) = λφ(t−θ j)⇒ λ
∗ =

1
φ(t−θ j)

[
φ(t−θ j)θ j +(1−Φ(t−θ j))

]
.

Contradiction argument.

We conclude this proof using a contradiction argument using the claim we established at

the beginning of the proof. Suppose that the objective function is strictly negative. The there

must exists a j such that θ ∗j < 0 and j′ 6= j such that θ ∗j′ > 0. In addition, observe that using the

equation for the optimal λ , we can write

0 > θ
∗
j = λ

∗−
(1−Φ(t−θ ∗j ))

φ(t−θ ∗j )
0 < θ

∗
j′ = λ

∗−
(1−Φ(t−θ ∗j′))

φ(t−θ ∗j′)
.

Using the fact that t is finite, it follows that

1−Φ(t−θ ∗j′)

φ(t−θ ∗j′)
< λ

∗ <
1−Φ(t−θ ∗j )

φ(t−θ ∗j )
.

Observe now that the expression implies

1−Φ(z)
φ(z)

<
1−Φ(z′)

φ(z′)
for some z < z′.
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However, by standard properties of the normal CDF (1−Φ(z))/φ(z) is monotonically decreasing

in z hence leading to a contradiction.

Proof of Proposition 4.3.1

The proof mimics the proof of Proposition 4.2.1. Observe that since Θ0 6= /0, there exist

a θ ∈ Θ0 such that vr(θ) ≤ 0 for any r ∈ R. Then the maximin welfare equals zero, since

otherwise the social planner can set r(X) = 0 and achieve zero welfare. Observe that the welfare

is negative for all θ ∈ Θ0. Under Assumption 4.2.3, welfare is exactly zero for all θ ∈ Θ0, as

long as Equation (D.2.3) is satisfied. In addition, welfare is always non-negative for θ ∈Θ\Θ0

and any r, for any θ \Θ0 each ug(θ) is weakly positive. As a result if Equation (D.2.3) holds,

r∗ is maximin. Consider now the case where βr(θ)> 0 for some θ ∈Θ0. Then, we can find a

θ ∈Θ0 which leads to negative utility, for any decision r(·). Assumption 4.2.3 is invoked for the

equality in Equation (D.2.3) to be a weak inequality.

Proof of Proposition 4.3.2

First, we prove that the power function is continuous in ε . We then show that the local

power of r∗ is C(G). Finally, we show that no maximin function r′ can lead to a power larger

than C(G) in the limit as ε ↓ 0. First, for any r, we can write

1
ε

inf
θ∈Θ̃(ε)

G∑
g=1

w∗gθgP(r(X) = 1|θ) = inf
θ∈Θ∩{θ :

∑G
g=1 w∗gθg=ε}

P(r(X) = 1|θ)

= inf
θ̃∈Θ∩{θ̃ :

∑G
g=1 w∗gθ̃g=1}

P(r(X) = 1|θ = εθ̃) = gr(ε).

Since the set Θ∩{θ̃ :
∑G

g=1 w∗gθ̃g = 1} is a compact set, and, by normality of X , P(r(X) = 1|θ =

εθ̃) is continuous in ε for any θ̃ , we obtain that gr(ε) is a continuous function in ε for any r.

This implies that

lim
ε↓0

gr∗(ε) =C(G).

345



In addition, for any r′ that is maximin, it must be that

lim
ε↓0

gr(ε)≤C(G), r′ ∈M

since otherwise we can take ε < 0 and small enough such gr(ε) > C(G), which contradicts

maximin optimality.

Proof of Proposition 4.3.3

We now study local power, and constrast this to other maximim optimal decisions.22 For

any r, letting θ = ε local power equals

lim
ε↓0

1
ε

εP(r(X) = 1|θ = ε) = P(r(X) = 1|θ = 0).

By continuity of the density of X in θ , it suffices to show that r∗ is such that for any maximin

rule r′,

P(r∗(X) = 1|θ = 0)−P(r′(X) = 1|θ = 0)≥ 0

to show that r∗ is locally most powerful. This directly follows since for any maximin rule

P(r′(X) = 1|θ = 0) ≤ C(G), since otherwise, by continuity we would violate maximin for

θ =−ε , for some small ε .

Proof of Proposition D.1.2

We first show maximin optimality. To show maximin optimality, it suffices to show that

the worst-case objective function is weakly positive. With an abuse of notation, we define θ j the

coefficient rescaled by
√

Σ j, j.

22Maximin optimality follows directly from the fac that at θ ≤ 0, the probability of discovery is smaller than the
cost of experimentation.
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Preliminaries for maximin optimality.

To show maximin optimality it suffices to show that the worst case utility, upon experi-

mentation, is weakly positive. Therefore, we write the nature’s adversarial game with a threshold

crossing recommendation function as follows

min
π∈Π

∫ J∑
j=1

(1−Φ(t−θ j))θ jdπ(θ), s.t.
∫ J∑

j=1

(1−Φ(t−θ j))dπ(θ)≥ J(1−Φ(t)).

(D.3.11)

Observe that since C(J)> 0, t must be finite. It will be convenient to consider the equivalent

optimization program

max
π∈Π
−
∫ J∑

j=1

(1−Φ(t−θ j))θ jdπ(θ), s.t.
∫ J∑

j=1

(1−Φ(t−θ j))dπ(θ)≥ J(1−Φ(t)).

(D.3.12)

Here, we inverted the sign of the objective and consequently inverted the maximum with the

minimum. We will show that Equation (D.3.12) is bounded from above by zero, which suffices

to show maximin optimality.

Finite dimensional optimization program.

The maximization over π ∈ Π can be equivalently rewritten as a minimization over

π1(·), · · · ,πJ(·),θ j ∼ π j, i.e., with respect to marginal distributions. This follows directly by

additivity. By Theorem 1, result 3 in Gaivoronski (1986), we can write the optimization

problem in Equation (D.3.11) as an optimization over some finitely many n× J discrete points(
θ i

1, · · · ,θ i
J

)n

i=1
, each point θ i

j having marginal probability pi, j.23 Hence, we write

(D.3.11) = max
π∈Πn

n∑
i=1

∫ J∑
j=1

(Φ(t−θ
i
j)−1)θ j pi, j, s.t.

n∑
i=1

J∑
j=1

(Φ(t)−Φ(t−θ
i
j))pi, j ≥ 0,

(D.3.13)
23The conditions in the above reference are satisfied since Φ(t−θ j) is a continuous function in θ j, Θ is a compact

space, and we can find a distribution so that the constraint holds with strict inequality.
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where

Πn =
{
(pi, j)

n,J
i=1, j=1, pi, j ≥ 0,

n∑
i=1

pi, j = 1 for all j ∈ {1, · · · ,J}
}
,

for some
(

θ i
1, · · · ,θ i

J

)n

i=1
.

Dual formulation.

The optimization in Equation (D.3.13) is a linear program with linear constraints. There-

fore, the dual is directly defined as follows.

min
y1,··· ,yJ ,yJ+1

J∑
j=1

y j, y1, · · · ,yJ ∈ R, yJ+1 ≤ 0

such that
J∑

j=1

y j ≥−yJ+1(Φ(t)−Φ(t−θ
i
j))− (1−Φ(t−θ

i
j))θ

i
j ∀( j, i).

(D.3.14)

By weak duality, we have that

(D.3.13)≤ (D.3.14).

Therefore, to prove that Equation (D.3.12) is bounded from above by zero, it is sufficient to

prove that its dual is bounded from above by zero.

Upper bound on the dual’s objective function.

To compute the upper bound on the dual’s objective, it suffices to observe that the dual’s

objective is minimized over values (y1, · · · ,yJ), which can be arbitrary in R (and yJ+1 ≤ 0), but

whose sum is constrained by the constraint in Equation (D.3.14). As a result, we have

(D.3.14)≤ min
yJ+1≤0

max
θ i

j

−yJ+1(Φ(t)−Φ(t−θ
i
j))− (1−Φ(t−θ

i
j))θ

i
j

= min
y≥0

max
θ i

j

y(Φ(t)−Φ(t−θ
i
j))− (1−Φ(t−θ

i
j))θ

i
j

≤min
y≥0

max
θ̌∈[−1/

√
min j Σ j, j,1/

√
min j Σ j, j]

y(Φ(t)−Φ(t− θ̌))− (1−Φ(t− θ̌))θ̌ .
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The first equality follows directly by construction of the optimization program and the fact

that we take the maximum over every possible value of θ i
j. The second equality is a change of

variable where we wrote −yJ+1 = y, and the third inequality substitutes the maximum over the

set of (unknown) n× J parameters θ i
j over a minimization over a parameter θ̌ taking arbitrary

values in the parameter space.

Claim of maximin optimality.

To show maximin optimality it sufficies to show that the function

inf
y≥0

sup
θ̌∈[−1/

√
min j Σ j, j,1/

√
min j Σ j, j]

f (t,y, θ̌), f (t,y, θ̌) := y(Φ(t)−Φ(t− θ̌))− (1−Φ(t− θ̌))θ̌

is bounded from above from zero for all t. Positivity can be shown numerically. We provide an

analytical argument below.

Check the function value.

Define

θ̌(y) ∈ arg max
θ∈[−1/

√
min j Σ j, j,1/

√
min j Σ j, j]

y(Φ(t)−Φ(t− θ̌))− (1−Φ(t− θ̌))θ̌ ,

y∗ ∈ argmin
y≥0

y(Φ(t)−Φ(t− θ̌(y)))− (1−Φ(t− θ̌(y)))θ̌(y).

Suppose first that θ̌(ỹ) = 0 for some ỹ≥ 0. Then it follows that

min
y≥0

f (t,y, θ̌(y))≤ f (t, ỹ, θ̌(ỹ)) = 0.

We are left to discuss the case where θ̌(y) 6= 0. Notice that (1−Φ(t−θ̌(y))θ̌(y)
Φ(t)−Φ(t−θ̌(y))

≥ 0, for all θ̌(y) 6= 0

since if θ̌(y) < 0, the denominator and numerator are both negative and viceversa are both

positive if θ̌(y)> 0. Therefore, (assuming θ̌(y) 6= 0, for all y≥ 0) we can always find a value

ỹ≥ 0 (since we minimize over ỹ≥ 0), such that ỹ≤ (1−Φ(t−θ̌(ỹ))θ̌(ỹ)
Φ(t)−Φ(t−θ̌(ỹ))

. In such a case, we obtain a

349



(weakly) negative valued objective function. As a result,

min
y≥0

y(Φ(t)−Φ(t− θ̌(y)))− (1−Φ(t− θ̌(y)))θ̌(y)≤ 0.

Admissibility.

Admissibility follows directly from most-powerful claimed in Proposition 4.2.5, and

Proposition 4.2.3, where, in this case, admissibility is with respect to a point-mass distribution

over some θ ∈Θ1(ε), for some small enough ε > 0.

Proof of Proposition D.1.4

We separately prove that the test is maximin and locally most powerful.

Maximin optimality

We start by proving maximin optimality. Following Lemma D.1.3 it suffices to show that

vr∗(θ)≥ 0 for all θ ∈ Θ. Note that s∗j depends on θ , so that we can explicitly write s∗(θ). To

prove maximin optimality, it suffices to prove that

min
θ∈Θ̃

J∑
j=1

(1−Φ(tS∗(θ)−θ j))θ js∗j(θ) s.t.
J∑

j=1

(1−Φ(tS∗(θ)−θ j))s∗j(θ)≥ S∗(θ)(1−Φ(tS∗(θ))).

is positive. This holds if we can prove that

min
θ∈Θ̃

min
s,S=

∑
j s j

J∑
j=1

(1−Φ(tS−θ j))θ js j s.t.
J∑

j=1

(1−Φ(tS−θ j))s j ≥ S(1−Φ(tS)),

where in the second equation we allow s to be arbitrary. Switching the minimum over θ and over

s, it suffices to show that

min
θ∈Θ̃

J∑
j=1

(1−Φ(tS−θ j))θ js j s.t.
J∑

j=1

(1−Φ(tS−θ j))s j ≥ S(1−Φ(tS)),
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is positive for all s∈ {0,1}J,S =
∑J

j=1 s j, where Θ̃ = [−1/min j, j
√

Σ j, j,1/min j, j
√

Σ j, j]
J after

rescaling the coefficients by their corresponding variance. The argument is similar to that in the

proof of Proposition 4.2.5. In particular, suppose first s j = 1,s− j = 0, i.e., only one treatment is

selected. Then

(1−Φ(t1−θ j))≥ (1−Φ(t1)),

only if θ j ≥ 0, guaranteeing that the objective function is positive. Suppose now that S≥ 2. Then

since s j is a binary indicator, without loss of generality, we can reshuffle coefficients’ indexes so

that (s1, · · · ,sS) = (1, · · · ,1), and write the objective function as

min
θ∈Θ̃S

S∑
j=1

(1−Φ(tS−θ j))θ j, s.t.
S∑

j=1

(1−Φ(tS−θ j))≥ S(1−Φ(tS)),

where Θ̃S = [−1/min j, j
√

Σ j, j,1/min j, j
√

Σ j, j]
S. The argument of Proposition 4.2.5 in Ap-

pendix D.3.2 follows verbatim and guarantees that the objective function is weakly positive. This

completes the claim of maximin optimality.

We now discuss local power. The idea is to show that, in the worst case, any maximin

rule cannot yield more local power than C(1) (as defined in Equation (D.3.15)) for θ ∈ΘE
1 (ε).

Local power: Part 1

First, we claim that

lim
ε↓0

1
ε

inf
θ∈Θ1(ε)

vE
r∗(θ) =C(1). (D.3.15)

To prove the claim, observe first that for a single θ j > 0,

1−Φ(tS−θ j)> (1−Φ(tS)).

Hence, the researcher finds it profitable to select policy j. In such a case, if the researcher selects

exactly one treatment j, she achieves a positive utility and conducts the experiment. In addition,

since θ− j = 0, it will be profitable for the researcher to only select a single treatment if C(S) is
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strictly monotonic in S. If instead C(S) =C(1) for all S, any combination of selected treatments,

whenever θ j = ε for a single j will leave welfare invariant and equal to C(1)/S ≤ C(1). By

Assumption 4.2.3, the researcher, who is indifferent of whether select those treatments with

θ− j = 0, will only select a single treatments corresponding to θ j = ε , maximizing the welfare

(making it equal to C(1)). This proves the claim that the welfare is C(1) whenever θ j = ε for a

single j. The case where θ j > ε is not of interest since, once we look at the worst case scenario

over θ j ≥ ε , we will select θ j = ε .

Our goal is to show that for any other combination of θ j ≥ ε,θ− j = 0 (e.g., more than

one parameter is positive) welfare weakly improves. If this is the case, the claim is proven, since

the worst case utility for θ ∈ ΘE
1 (ε) must be C(1). Clearly, if S∗ = 1, we are back to the case

discussed above regardless of the value of the other parameters. Here, the selected parameter

must be the one equal to ε since it leads to the largest experimenter’s utility.

Suppose now that there are S∗ ≥ 2 policies selected by the researcher. Then it must be

that (by Assumption 4.2.3)

S∗∑
j=1

(1−Φ(tS∗−θ j))−C(S∗)>
S∑

j=1

(1−Φ(tS−θ j))−C(S) ∀S≤ S∗.

Since tS∗ and C(S∗) are increasing in S∗, a necessary condition for this to hold for θ ∈ΘE
1 (ε) is

that θ j ≥ ε for all j ≤ S∗. This is true, since, otherwise, θ j = 0 by construction of ΘE
1 (ε), and,

in such a case, the researcher’s utility generated by selecting policy j is zero, but the threshold tS

increases in the number of selected policies, hence decreasing the researcher’s utility if one more

policy j with no effect is selected. Therefore it will be profitable to drop those tests with θ j = 0

to improve researcher’s utility.

Therefore, for this case, the welfare divided by ε is

1
ε

S∗∑
j=1

θ j(1−Φ(tS∗−θ j)), θ j ≥ ε ⇒ 1
ε

S∗∑
j=1

θ j(1−Φ(tS∗−θ j))≥C(S∗)≥C(1),
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since Φ(tS∗−θ j) is monotonically descreasing in θ j. This completes the claim and proves that

for θ ∈ΘE
1 (ε), welfare is at least C(1) and exactly C(1) as we choose a single parameter to be

≥ ε .

Local Power: Part 2

We show that in the worst case scenario, any maximin rule cannot improve local power

more than C(1) as in Equation (D.3.15) under the conditions stated. Welfare is (without loss of

generality, let rS, j(X) = 0 almost surely if j > S)

lim
ε↓0

1
ε

inf
θ∈Θ̃(ε)

1
ε

J∑
j=1

s∗j(θ)P(rS∗(θ), j(Xs) = 1|θ = ε)θ j

≤ lim
ε↓0

1
ε

inf
θ∈Θ̃(ε)

max
s∈{0,1}J

∑
j

s jθ jP(r1>s, j(Xs) = 1|θ)

≤ lim
ε↓0

max
s

P(r1>s,1(Xs) = 1|θ1 = ε,θ−1 = 0)

= max
s

P(r1>s,1(Xs) = 1|θ = 0)

where in the second inequality we chose θ1 = ε,θ−1 = 0, and in the last inequality we used

continuity of X . If C(1) = C(S), it follows that maxs P(r1>s,1(Xs) = 1|θ = 0) ≤ C(1), since

otherwise we can find a combination s and θ1 =−t,θ−1 = 0, for a small enough t, which leads

to positive researcher utility, but negative welfare, thus violating maximin optimality. If instead

the protocol is symmetric, it must be that P(rS,1(Xs) = 1|θ = 0) ≤C(S)/S ≤C(1), for all s,S

since, otherwise, we would violate maximin optimality.

Proof of Proposition D.1.5

For the sake of brevity we refer to maximin protocols as weakly maximin. The proof

of the theorem follows similarly to Lemma 4.2.4. First, observe that the researcher’s utility is

linear in δk(r(X)) for every k ∈K , since
∑

k∈K δk(r(X))≤ 1 and δk(r(X)) ∈ {0,1}. Namely,

353



the researcher’s utility reads as follows

∑
k∈K

P(δk(r(X)) = 1|θ)−C(J),

where K denotes the set of discoveries exceeding κ recommendations, where we rescaled γ = 1.

We first prove the first part of the statement.

Step 1: Maximin optimality.

Maximin optimality directly follows from Equation (D.1.3).

Step 2: Locally most powerful calculations.

We claim that

lim inf
ε↓0

1
ε

inf
θ∈Θ1(ε)

vr∗(θ)≥ p∗.

The claim holds following the same argument as in the proof of Lemma 4.2.4.

Step 3: Alternative set of maximin protocols

We now claim that any maximin protocol which is not r∗ must satisfy for some j ∈

{1, · · · ,J},

P
(

r′j(X) = 1|θk = 0, ∀k
)
< p∗. (D.3.16)

The claim follows directly from the incentive-compatibility constraint, following the same

argument as in Lemma 4.2.4, with P(δ j(r(X))|θ)= p∗k for any group j having k many treatments

(all treatments must be selected). There are
(J

k

)
many groups having k treatments. As a result,

we can find a worst-case allocation for r′j(X) which leads to a utility bounded from above by

ε p∗. The rest of the proof follows similarly to Lemma 4.2.4 and Proposition D.1.6 below.

Proof of Proposition D.1.6

For the sake of brevity we refer to maximin protocols as weakly maximin. Observe that

since the researcher never submits discoveries with less than κ treatments (Assumption D.1.4),
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we only focus on discoveries having a positive effect on the researcher’s utility. Therefore we

refer to
∑

k as
∑

k∈K . Finally, observe that the researcher’s utility is linear in δk(r(X)) for

every k ∈K , since
∑

k∈K δk(r(X))≤ 1 and δk(r(X)) ∈ {0,1}. As a result, we can prove the

statement in the following steps following the proof of Lemma 4.2.4 with minor modifications.

We first prove the first part of the statement.

Step 1: Maximin optimality.

This directly follows from Equation (D.1.3).

Step 2: Locally most powerful calculations.

We claim that

lim inf
ε↓0

1
ε

inf
θ∈Θ1(ε)

vr∗(θ)≥
C
|K |

.

We now show why. Define θ(ε) ∈ Θ1(ε) the vector of parameter under the local alternative.

Observe that the utility under the local alternative reads as follows

(A) = inf
θ(ε)

∑
k∈K

θ(ε)P(δk(r∗(X)) = 1|θ = θ(ε)), s.t. θk(ε)≥ ε for some k ∈K ,θk(ε)≥ 0,∀k ∈K .

We then write

(A)≥ inf
w∈[0,1]|K |:

∑
k wk≥ε,θ(ε)∈Θ1(ε)

∑
k∈K

wkP(δk(r∗(X)) = 1|θ = θ(ε))

≥ inf
w∈[0,1]|K |:

∑
k wk≥ε,θ∈[0,1]|K |:

∑
k θk≥ε

∑
k

wkP(δk(r∗(X))|θ) := g(ε).

Define W (ε1,ε2) =
{
(w,θ) ∈ [0,1]2×|K | :

∑
j wk ≥ ε1,

∑
k θk ≥ ε2

}
. Observe that we can write

1
ε

g(ε) = inf
(w,θ ′)∈W (1,1)

∑
k∈K

wkP
(

δk(r∗(X))|θ = θ
′
ε

)
.

Observe that W (1,1) is a compact space. In addition P(δk(r∗(X)) = 1|θ) is continuous

in θ by Assumption 4.2.4. As a result, g(ε)/ε is a continuous function in ε . Therefore, we
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obtain that

lim
ε→0

g(ε)
ε

= inf
(w,θ)∈W (1,1)

∑
k∈K

wkP(δk(r∗(X)) = 1|θ ×0).

Observe now that by construction of the recommendation function, the above expression equals

to

inf
(w,θ)∈W (1,1)

∑
k∈K

wkP(δk(r∗(X)) = 1|θ ×0) = inf
(w,θ)∈W (1,0)

∑
k∈K

wk
C
|K |

=
C
|K |

.

This completes the proof of our claim.

Step 3: Alternative set of maximin protocols.

We now claim that any maximin protocol which is not r∗ must satisfy for some j ∈K ,

P
(

δ j(r(X)) = 1|θk = 0, ∀k
)
<

C
|K |

. (D.3.17)

The claim holds for the following reasons. Consider a maximin protocol r′ such that for all k

Equation (D.3.17) does not hold. Then if r′ is maximin optimal and satisfies Equation (D.3.17)

with equality for all k, then there must be an r∗ defined as in the proposition statement equal to r.

Therefore it must be that r′ is such that for some k Equation (D.3.17) is satisfied with reversed

strict inequality and for all k is satisfied with reversed weak inequality. To observe why, by the

above argument ∑
j

P
(

δ j(r′(X)) = 1|θk = 0, ∀k
)
>C.

As a result, take θ = (−t,−t, · · · ,−t)∈Θ0 for some small t. Then by Assumption 4.2.4 (namely,

by continuity of Fθ ), we have for t small enough

∑
j

P
(

δ j(r′(X)) = 1|θk =−t, ∀k
)
>C.

As a result, for t small enough, the protocol r′ contradicts Proposition 4.2.1.
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Step 4: Power comparison.

Observe now that for the class of alternative treatments, we have

inf
θ(ε)

∑
k∈K

θ(ε)P(δk(r(X))|θ = θ(ε))≤ εP(δk(r(X)) = 1|θk = ε,θ−k = 0),

since the allocation (θk = ε,θ−k = 0) ∈Θ1(ε). Using Assumption 4.2.4 we have

lim
ε→0

P(δk(r(X)) = 1|θk = ε,θ−k = 0) = P(δk(r(X)) = 1|θ = 0)<
C
|K |

.

This completes the “if” part of the statement. The “only if” part follows from the same argument

used after Equation (D.3.17).

Proof of Proposition D.2.2

To prove the claim, it suffices to observe that under additivity

1
ε

J∑
j=1

εP(r j(X) = 1|θ = ε) =
J∑

j=1

P(r j(X) = 1|θ = ε)

for any ε 6= 0. By taking the limit, and using continuity of the CDF of X in θ , we have

lim
ε↓0

J∑
j=1

P(r j(X) = 1|θ = ε) =
J∑

j=1

P(r j(X) = 1|θ = 0).

By maximin optimality, we must have

J∑
j=1

P(r j(X) = 1|θ = 0)≤C(J),

completing the proof.
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Proof of Proposition D.2.3

Under Proposition 4.2.1 and continuity of X (Assumption 4.2.4) every maximin rule

must satisfy
J∑

j=1

P(r j(X) = 1|θ = 0)≤C(J).

We can write the weighted power of r as

∫
θ∈Θ1

w(θ)
J∑

j=1

P(r j(X) = 1|θ)θ jdθ .

We now discuss two cases. First, P(rJ(X) = 1|θ = 0) = C(J); second P(rJ(X) = 1|θ = 0) <

C(J).

Case 1: P(rJ(X) = 1|θ = 0) =C(J)

Suppose first that P(rJ(X) = 1|θ = 0) =C(J), which implies that P(r1(X) = 1|θ = 0) =

0. Then choose w(θ) to be a point-mass distribution at (θ1, · · · ,θJ) = (ε,0, . . . ,0) for some

small ε > 0. Take r′ such that

r′1(X) = 1
{

X1/
√

Σ1,1 ≥Φ
−1(1−C(J))

}
, r′j(X) = 0, ∀ j > 1.

It is easy to show that r′(X) is maximin under Assumption 4.2.2 and 4.2.4. Then it follows that∫
θ∈Θ

w(θ)
(

vr(θ)− vr′(θ)
)

dθ = ε

(
P(r1(X) = 1|θ = (ε,0, . . . ,0))−P(r′1(X) = 1|θ = (ε,0, . . . ,0))

)
.

By continuity, it follows that as ε ↓ 0

P(r1(X) = 1|θ = (ε,0, . . . ,0))→ 0, P(r′1(X) = 1|θ = (ε,0, . . . ,0))→C(J)> 0.

Hence, by continuity, we can take ε > 0 small enough such that

∫
θ∈Θ

w(θ)
(

vr(θ)− vr′(θ)
)
< 0.
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Case 2: P(rJ(X) = 1|θ = 0)<C(J)

Suppose now that P(rJ(X) = 1|θ = 0)<C(J). Then we can take

r′J(X) = 1
{

X1/
√

ΣJ,J ≥Φ
−1(1−C(J))

}
, r′j(X) = 0, ∀ j < J,

and w(θ) being a point mass at θ = (0, . . . ,0,ε). The same argument follows verbatim as for the

previous case with the first entry replacing the last entry.

Proof of Proposition D.2.4

The proof mimics the proof of Proposition 4.2.1, and uses the assumption of uncon-

strained R. Observe that since Θ0 6= /0, there exist a θ ∈Θ0 such that vr(θ)≤ 0 for any r ∈R.

Then the maximin welfare equals zero, since otherwise the social planner can set r(X) = 0 and

achieve zero welfare. Observe that welfare is negative for all θ ∈Θ0. Under Assumption 4.2.3,

welfare is exactly zero for all θ ∈ Θ0, as long as Equation (D.2.3) is satisfied. In addition, the

welfare is always non-negative for θ ∈ Θ\Θ0 and any r, for any θ \Θ0 each ug(θ) is weakly

positive. As a result if Equation (4.11) holds, r∗ is maximin. Consider now the case where

βr(θ) > 0 for some θ ∈ Θ0. Then, we can find a θ ∈ Θ0 which leads to negative utility, for

any decision r(·). Assumption 4.2.3 is invoked for the equality in Equation (4.11) to be a weak

inequality.

Proof of Proposition D.2.5

Let θ̃ ∈Θ be such that u(θ̃) = 0. Such a θ̃ exists by assumption. We can then write

min
θ∈Θ

ṽr(θ ,ω = 1) = min
θ

vr(θ)≤ vrθ̃)≤ 0.

On the other hand, we can write

min
θ∈Θ

ṽr(θ ,ω = 0)≥ 0⇒min
θ∈Θ

ṽr(θ ,ω = 1)≤min
θ∈Θ

ṽr(θ ,ω = 1).
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It follows that

min
θ∈Θ,ω

ṽr(θ ,ω) = min
ω

min
θ∈Θ

ṽr(θ ∈Θ,ω) = min
θ∈Θ

ṽr(θ ∈Θ,ω = 1) = vr(θ).

The proof is complete.

Corollaries

Here we collect the proofs of the corollaries that are not immediate.

Proof of Corollary 15

We first prove the first statement (notice: we let γ = 1 for notational convenience).

Case with C(J)/γ = α .

We write ∑
k∈{κ,··· ,J}

(
J
k

)
(p∗)k ≤

∑
k∈{0,··· ,J}

(
J
k

)
(p∗)k

By the Binomial theorem, we have

(1+ p∗)J =
∑

k∈{0,··· ,J}

(
J
k

)
(p∗)k.

We then observe that

(1+ p∗)J ≤ exp(p∗J).

Observe that for p∗ ≤ 1/J the expression is O(1). Therefore, any order 1/J or slower, guarantees

that the publication probability is bounded from below by a finite constant. Faster order are

instead not possible, since if p∗ was of order faster than 1/J this would imply that the publication

probability converges to zero. However, this would lead to a contradiction since the publication

probability must equal α > 0. To rule out orders of convergence slower than 1/J, we use a

contradiction argument. The argument works as follows: any order of convergence slower than

360



1/J for p∗ implies that the publication probability converges to infinity. This would lead to a

contradiction since the publication probability must equal α < 1. First, take

∑
k∈{κ,··· ,J}

(
J
k

)
(p∗)k ≥

(
J
κ

)
(p∗)κ . (D.3.18)

Suppose now that p∗ is of order slower than 1/J, e.g. p∗ � hJ/(J), for some arbitrary hJ→ ∞ as

J→ ∞. Then we have (
J
κ

)
(p∗)κ � (J−κ)κ hκ

J
Jκ
→ ∞,

since κ < ∞, leading to a contradiction.

Case with C(J)/γ = α/J.

We first start from the lower bound. We observe that we can write

J×
∑

k∈{κ,··· ,J}

(
J
k

)
(p∗)k ≥ J×

(
J
κ

)
(p∗)κ ≥ J× (J−κ)κ

κκ

1
Jκ+1 =

(J−κ)κ

κκ

1
Jκ

=
1

κκ
(1−κ/J)κ > 0

hence bounded away from zero. We now move to the upper bound. Consider first the case where

κ = 1. Using the binomial theorem, we can write

∑
k∈{κ,··· ,J}

(
J
k

)
(p∗)k = (1+ p∗)J−

∑
k∈{0,··· ,κ−1}

(
J
k

)
(p∗)k = (1+ p∗)J−1≤ exp(1/J)−1.

where the second equality follows from the fact that κ = 1 and the last equality by the fact that

for κ = 1, p∗ = 1/J2. Using the mean value theorem, we have

exp(1/J)−1 =
1
J
+O(

1
J2 ) = O(1/J)

completing the claim for κ = 1. Let κ > 1. We have

J×
∑

k∈{κ,··· ,J}

(
J
k

)
(p∗)k ≤ J×

∑
k∈{κ,··· ,J}

Jk

k(k−1)
1

J(1+1/κ)k
=

∑
k∈{κ,··· ,J}

1
k(k−1)

J
Jk/κ

.

361



The inequality follows from the fact that
(J

k

)
≤ Jk

k(k−1) for k > 1 by definition of the binomial

coefficient. Observe that since the sum starts from κ > 1 we have that for each summand J
Jk/κ
≤ 1.

Hence, we can write

∑
k∈{κ,··· ,J}

1
k(k−1)

J
Jk/κ

≤
∑

k∈{κ,··· ,J}

1
k(k−1)

= O(1)

completing the proof since κ > 1.

Proof of Corollary 16

Observe that since

∑
k

δ̃k(r(X))≤ 1, δ̃k : {0,1}J 7→ {0,1}2J−1,

we have that

P
(

δ̃k(r∗(X)) = 1 for some k|θ = 0
)
=
∑

k

P
(

δ̃k(r∗(X)) = 1|θ = 0
)
,

since the events are disjoint. The result directly follows from Equation (D.1.10).

Proof of Corollary 18

First, observe that we can write:

P
(

min{X1, · · · ,XG}> t|θ
)
=

G∏
g=1

P(Xg > t|θ). (D.3.19)

Observe now that maximin optimality of r∗ follows from the fact that the recommendation

function is decreasing in each θ j and that for any θ ∈ Θ0 the probability of discovery cannot

exceed the cost. To observe consider the extreme case where θg→∞ for each g ∈ {1, · · · ,G−1}

and θG = 0. Then P(Xg > t|θ = ∞) = 1 while P(XG > t|θ = 0) = C. Hence
∏G

g=1 P(Xg >
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t|θ) =C satisfying maximin optimality. The same argument applies if we shuffle the indexes.

Finally, we discuss the second part of the claim. To show lack of maximin optimality we choose

θ1:(G−1) large enough so that P(Xg > t|θ) = 1 for all g < G. As a result, any allocation with

P(XG > t|θ)>C is not maximin optimal. The same result applies to any other coordinate g 6= G.
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