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Abstract

Understanding how children process ambiguous words is a
challenge because sense disambiguation depends on sentence
context bottom-up and top-down aspects. Here, we seek in-
sight into this phenomenon by investigating how such a com-
petence might arise in large distributional learners (Transform-
ers) that purport to acquire sense representations from lan-
guage input in a largely unsupervised fashion. We investigated
how sense disambiguation might be achieved using model rep-
resentations derived from naturalistic child-directed speech.
We tested a large pool of Transformer models, varying in their
pretraining input size/nature as well as the size of their param-
eter space. Tested across three behavioral experiments from
the developmental literature, we found that these models cap-
ture some essential properties of child sense disambiguation,
although most still struggle in the more challenging tasks with
contrastive cues. We discuss implications for both theories of
word learning and for using Transformers to capture child lan-
guage processing.

Keywords: Child Word Sense Disambiguation; Transformers

Introduction
Large language models are deep artificial neural networks
pretrained on large unlabeled datasets via self-supervised
learning. These models have had a great impact in the field
of Natural Language Processing for their performance in lan-
guage understanding and generation tasks (e.g., Bommasani
et al., 2022). Here, we examined the plausibility of these
models as distributional learners posited by usage-based ap-
proaches of language acquisition (e.g., Ambridge, 2020; By-
bee, 2010). We focused on child word sense disambigua-
tion (e.g., Cabiddu, Bott, Jones, & Gambi, 2022b; Rabagliati,
Pylkkänen, & Marcus, 2013). That is, how children use
sense-specific representations (e.g., band = music band, elas-
tic band).

We tested models based on the Transformer architecture
(Vaswani et al., 2017) that perform sense disambiguation us-
ing sentence context to form contextualized representations.
Transformers are sensitive to syntactic and semantic sentence
structures (e.g., Jawahar, Sagot, & Seddah, 2019; Tenney,
Das, & Pavlick, 2019) on which sense disambiguation de-
pends. Here, we refer to these high-level structures as top-
down cues that a usage-based learner might acquire through
language experience (Alishahi & Stevenson, 2013; Bybee,
2010). Transformers’ inherent sensitivity to these cues al-
lowed us to apply these models to raw naturalistic language,
without having to enrich the input with external resources to

provide sensitivity to such structures (e.g., Alishahi & Steven-
son, 2013).

Transformers form adult-like sense representations in nat-
ural language classification tasks, where annotators select
a fitting target sense given the sentence context (Loureiro,
Rezaee, Pilehvar, & Camacho-Collados, 2021). However,
these tasks may not suitably assess model developmental
plausibility as they use coherent test sentences (i.e., all cues
in the context unambiguously point toward one target sense).
Relying on these tasks makes it difficult to differentiate adult-
like from child-like performance, as both adults and chil-
dren perform well at disambiguating coherent sentences (e.g.,
Khanna & Boland, 2010; Rabagliati et al., 2013). Thus, we
tested models on contrastive tasks alongside coherent ones.
Contrastive tasks put bottom-up (i.e., word associations) and
top-down sentence cues in competition. They represent a
more suitable test of developmental plausibility because dif-
ferences exist in how children and adults behave in such
tasks. In fact, in sense disambiguation children rely more
on bottom-up aspects of sentence context (e.g., word associa-
tions) than adults, with less reliance on top-down cues likely
due to differences in language experience or slow cognitive
maturation (Khanna & Boland, 2010; Rabagliati et al., 2013).

Previous studies have computed models’ representations
based on adult language (Loureiro, Jorge, & Camacho-
Collados, 2022; Loureiro et al., 2021). Here, we evaluated
how properties of child sense processing could be captured
using model representations formed from naturalistic child-
directed speech. This choice is motivated by differences in
how senses are assigned to words in children and adults,
likely due to differences in word use in child and adult en-
vironments (Meylan, Mankewitz, Floyd, Rabagliati, & Srini-
vasan, 2021).

We examined Transformers using datasets from behav-
ioral studies that tested 4-year-old children’s abilities to use
bottom-up (word associations) and top-down (sentence global
plausibility, verb-event structure) cues to sense disambigua-
tion (Cabiddu et al., 2022b; Rabagliati et al., 2013). We
tested a large pool of models (N=45) from 14 different fam-
ilies. This integrative approach (Schrimpf et al., 2021) al-
lowed us to examine consistent dimensions across models, in-
stead of relying on single models which might be influenced
by specific peculiarities (architecture, pretraining objectives,
amount/type of pretraining input, etc.). Specifically, we ex-
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plored how scalability in models’ size (number of parame-
ters) and pretraining data size related to sense disambigua-
tion. These dimensions have been explored separately and
not specifically in child sense disambiguation. Based on find-
ings about word age of acquisition norms (Laverghetta Jr &
Licato, 2021), we expected models with a higher number of
parameters to better fit child data. We also expected a null
effect of pretraining size, in line with evidence of small (i.e.,
more realistic) pretraining input being enough to align models
to adult neural data and reading comprehension scores (Hos-
seini et al., 2022).

We first introduce evidence of child sense disambigua-
tion. Secondly, we discuss the theoretical significance of
Transformers and introduce a recent framework for evaluat-
ing models in sense disambiguation.

Child Word Sense Disambiguation

Sentence context plays a significant role in sense disambigua-
tion (e.g., Sophia [played in / twisted] a band). Children
master word ambiguities in naturalistic conversations (Mey-
lan et al., 2021), which raises a question about which sentence
properties facilitate child word disambiguation (Cabiddu et
al., 2022b; Hahn, Snedeker, & Rabagliati, 2015; Khanna &
Boland, 2010; Rabagliati et al., 2013). Children should ac-
cess cues at different linguistic levels to successfully disam-
biguate senses. Here, we focused on key studies that showed
that 4-year-old children could use both bottom-up and top-
down disambiguation cues, although to different degrees de-
pending on the specific cue. Table 1 shows an overview of the
three experiments considered. A general goal across experi-
ments was to test children’s sensitivity to sentence context
for sense disambiguation. Further, they tested if top-down
cues (global plausibility, verb-event structures) played a role
beyond bottom-up word associations (when the two types of
cues are in direct competition). Similarly, we investigated
if Transformers could use sentence context for word sense
disambiguation like children, and if they would demonstrate
comparable sensitivity to top-down cues in contrastive condi-
tions.

In all studies, children heard short stories ending with a
target word and saw four pictures. Two depicted the tar-
get word’s alternative senses: One frequent in child-directed
speech (dominant = elastic band) and one less frequent (sub-
ordinate = music band), with a 3:1 frequency ratio. The other
two pictures depicted semantic distractors (e.g., sock, sport
team). After the story, children chose the picture that best
matched the story’s final word.

In a first experiment, Rabagliati et al. (2013) tested if
children could use sentence context to disambiguate domi-
nant and subordinate senses. Disambiguation cues were pre-
sented in a previous sentence (Prior context), or in the same
sentence as the target (Current context). Example stimuli
are shown in Table 1. Children showed successful disam-
biguation across conditions, selecting more dominant senses
(above 50% chance) in dominant-plausible conditions, and
more subordinate senses in subordinate-plausible conditions
(i.e., less than 50% dominant selections).

However, in this experiment, children could have relied
solely on bottom-up associations. For example, in Dora was
in her room. She stretched the band, one could track the as-
sociation between stretching and elastic band in naturalistic
conversations without processing sentence structures (i.e., us-
ing verb-event knowledge to infer that stretchable entities are
usually objects). In the second experiment from Rabagliati et
al. (2013) and in Cabiddu et al. (2022b), bottom-up and top-
down cues were in competition. Stories always began with a
prior context containing word associates of the target subor-
dinate sense. As shown in Table 1, prior contexts contain the
words music or songs pointing toward the subordinate music
band. Further, in experimental conditions, stories ended with
top-down cues pointing toward the opposite dominant sense
elastic band (see underlined cues in Table 1).

In Rabagliati et al. (2013) experiment 2, experimental sto-
ries shifted global semantic plausibility toward the dominant
sense. Children struggled to use global plausibility and relied
heavily on word associations (39% dominant selections, be-
low chance). However, a significant difference from a control
condition emerged (21% dominant selections when the story

Table 1: Behavioral experiments. Target words are shown in bold. Underlined text indicates cues to the dominant sense
elastic band, while italicized text refers to cues to subordinate music band. The Dominant selection column indicates average
dominant sense selections in children, for dominant-plausible (underlined) and subordinate-plausible conditions (italicized).
Study Cue type Example Dominant selection
(Rabagliati et al., 2013) Prior Context Dora [looked in her drawer / heard some music]. The 79% / 33%
Exp 1, Coherent cues band was cool.

Current Context Dora was in her room. She [stretched / listened to] the 81% / 38%
band, which was cool.

(Rabagliati et al., 2013) Global Plausibility Elmo and his class were singing songs. The teacher
Exp 2, Contrastive cues could play music with [anything / anyone], even a band. 39% / 21%
(Cabiddu et al., 2022b) Verb-Event Structure Sophia listened to some music. Then she [twisted / 62% / 26%
Contrastive cues played in] a band.

Verb-Lexical association Sophia listened to some music. Then she [got / played in] 60% / 26%
a band.
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fully supported the subordinate; see italicized cue in Table 1).
This result indicated residual sensitivity to top-down global
plausibility in 4-year-old children.

Cabiddu et al. (2022b) focused on verbs. As shown in Ta-
ble 1, in a Verb-Event condition, stories ended with verbs that
never co-occurred with dominant senses in naturalistic con-
versations (i.e., children never or rarely hear twisting a band,
which controls for verb-object associations). However, the
verbs’ event structure only accepted the dominant senses (i.e.,
one can only twist an elastic band, not a music band), making
it the only available cue.

Further, the researchers examined the effect of verb-object
associations (see Verb-Lexical condition in Table 1): Verbs
had a neutral verb-event structure (e.g., one could get an
elastic or music band), but often co-occurred with dominant
senses in naturalistic conversations (i.e., children frequently
hear getting an elastic band). Given the role of verb-object
associations in children’s word processing (Mani, Daum, &
Huettig, 2016), this condition tested if children would weigh
more word associations coming from a verb than the rest of
the context.

Children successfully resolved dominant senses using both
verb-event structures and verb-object associations, beyond
bottom-up word associations from prior contexts.

Word Sense Disambiguation in Transformers
Testing a usage-based learner requires an architecture that
forms top-down abstractions while accounting for effects
of bottom-up statistical cues in language development (e.g.,
Ambridge, Kidd, Rowland, & Theakston, 2015; McCauley &
Christiansen, 2019; Saffran, Aslin, & Newport, 1996). Con-
sider the meaning of table in Ambridge (2019). A fixed top-
down rule defining a table category (e.g., has legs; used for
eating; made of wood, metal, or plastic; waist height) be-
comes falsifiable by counterexamples (e.g., an empty barrel
used as a table at a bar). A solution is to embed specific
contexts in the table representation (Ambridge, 2020; Srini-
vasan & Rabagliati, 2021). Bottom-up context-dependent in-
formation allows the child to estimate the similarity between
a new instance barrel table and previously encountered ta-
bles. This recursive process of estimation facilitates the emer-
gence of a context-independent, fuzzy, and probabilistic cat-
egory of table (i.e., a prototype). In sense disambiguation,
context-dependent and context-independent representations
could gradually lead to multiple sense categories for a sin-
gle word (Srinivasan & Rabagliati, 2021), with clusters of in-
stances sufficiently separated in the semantic space (e.g., an
object band prototype, a music band prototype).

The idea of context-dependent representations aligns with
Transformers’ core self-attention mechanism. For each to-
ken, these models construct distinct representations that dy-
namically integrate sentence context. Although children have
access to referential and social cues beyond sentence context,
using Transformers is useful to answer the question: How far
can a distributional learner that uniquely processes naturalis-
tic sentence context go?

After training, Transformers encode generalized (context-
independent) knowledge. Tokens from different senses orga-
nize into separate clusters within model layers, reflecting the
organization of senses in dictionaries and adult representa-
tions (Loureiro et al., 2022, 2021). In Loureiro et al. (2021),
Transformers were evaluated using a nearest neighbor ap-
proach (e.g., Melamud, Goldberger, & Dagan, 2016; Peters et
al., 2018). This uses sense-annotated corpora to create model
sense prototypes by averaging the representations of a col-
lection of tokens belonging to a specific sense (see Method).
Sense prototypes are then used to evaluate the model disam-
biguation at test. Using this method led to a Pearson’s corre-
lation of .9 between the best model and adult annotators. This
method is useful because it investigates knowledge of models
that are not pretrained on disambiguation, but only on pre-
dicting a word given its context (which should be more in line
with what children do). Further, compared to previous stud-
ies (Haber & Poesio, 2020), Loureiro et al. (2021) showed
that models’ performance better aligned with adults’ when a
reference sense-annotated corpus reflected the coarse-grained
knowledge that adults have (e.g., collapsing senses that adults
likely do not distinguish, but that are differentiated in a dic-
tionary). This suggests that it is possible to tailor the models’
sense prototypes to a specific population. In our work, ref-
erence sentences were transcribed child-directed utterances,
reflecting children’s naturalistic input and containing senses
known to 4-year-olds based on behavioral evidence.

Method
Models
We used 13 Transformer-based model families with varying
training tasks and input encoding mechanisms. We also in-
cluded a bidirectional recurrent neural network (ELMo, Pe-
ters et al., 2018), which achieved state-of-the-art results in
sense disambiguation before the introduction of Transform-
ers (e.g., Wiedemann, Remus, Chawla, & Biemann, 2019).
Model descriptions can be found on our OSF page, where we
also share materials and code to reproduce the study results
(https://doi.org/10.17605/OSF.IO/A2BZQ).

In various configurations within families, we varied model
size (number of million parameters, M = 287, range = 8 -
1,630) and pretraining size in gigabytes of text (M = 103,
range = .005 - 806). On our OSF, we also include results
from models with randomly initialized weights, showing that
performance differences were not due to architectural differ-
ences in connection patterns among units.

Model Evaluation via Nearest Neighbor
Following Loureiro et al. (2021), we extracted sense proto-
types using annotated sentences (see Corpora for details) in
which a word occurred in a specific sense (e.g., elastic band).
We extracted a model’s contextualized vector for each sense
occurrence, summing the last four layers. For models that
work at the subword level, we first averaged representations
of subword tokens for the target word. Finally, we averaged
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the word vectors to obtain a centroid representing the elastic
band prototype. We repeated the process for the alternative
music band.

To evaluate model performance, we extracted a contextual-
ized vector for each test sentence’s target word. We compared
each vector to the two sense prototypes using cosine similar-
ity. The most similar prototype determined the assigned sense
for the test word. We then transformed this binary measure
(Dominant = 1, Subordinate = 0) into a continuous measure
by computing the percentage of dominant senses assigned in
a specific condition (matching the child outcome measure in
Table 1).

Corpora
We took sentences for computing prototypes from ChiSense-
12 (Cabiddu, Bott, Jones, & Gambi, 2022a), which contains
speech directed to children up to age 4 from the English sec-
tion of the CHILDES database (MacWhinney, 2000). Each
sentence was tagged for occurrences of 12 ambiguous words
in dominant or subordinate senses (e.g., chicken animal,
chicken food). We used 9 words, excluding homophones
with different spelling (e.g., son, sun) for which no ambigu-
ity exists as the models process orthographic input. We also
tagged 4 new words to cover more items from children’s ex-
periments. Details about items and annotation process are on
our OSF. The final corpus had 15,901 sentences for 13 target
words, with dominant senses appearing 69% of the time on
average (3:1 dominant/subordinate ratio).

Comparing Child to Model Performance
We computed an optimal outcome measure comparing
child and model performance. We examined if the mod-
els exhibited a dominant sense bias reflecting the domi-
nant/subordinate ratio in the input. For experiment 1 in
Rabagliati et al. (2013) with non-contrastive cues, we fitted a
linear mixed-effects model using the percentage of dominant
senses selected by each model as the outcome, and model size
and pretraining size as the predictors. Model family was used
as random effect intercept. Only pretraining size negatively
predicted dominant selection (β = -1.53, 95% CI = [-2.30,
-.75], p <.001), but not model size (β = -1.47, 95% CI =
[-3.01, .08], p = .062). As shown in Figure 1, the models bet-
ter approximated the 69% dominant sense bias as pretraining
size decreased.

Differences in dominant sense bias pose a confound: A
model pretrained on a small corpus might select a similar per-
centage of dominant senses to children not only due to context
cue sensitivity, but also because it prefers dominant senses
more than a model pretrained on a large corpus. We con-
trolled for this confound by examining the relative difference
in dominant sense selections between dominant-plausible and
subordinate-plausible conditions.

For example, in the first experiment, children selected
dominant senses (e.g., elastic band) in 81% of trials in the
dominant-plausible condition (She streched the band) and
38% in the subordinate-plausible (She listened to the band).

Figure 1: Percentage of dominant senses selected by each
model in Rabagliati et al. (2013) experiment 1, by pretraining
size in log GB. The dashed horizontal line indicates dominant
sense prevalence in ChiSense-12.

For a relative difference of 81% - 38% = 43% in children, a
model with 60% - 17% difference and one with 80% - 37%
were considered equally similar to children. Essentially, the
relative difference focused on a model’s sensitivity to shifts
in sentence context and compared it to children’s sensitivity.
The final outcome measure estimated the distance between
model and children (e.g., [60% – 17%]) – [81% – 38%]), with
values of 0 indicating equal sensitivity in the model and chil-
dren, and values lower and higher than 0 indicating lower and
higher sensitivity, respectively.

Results
Rabagliati et al. (2013) - Experiment 1
Figure 2 shows models’ performance by model size (2a)
and pretraining size (2b). Some models reached child base-
line (y = 0), while others performed worse (y < 0) or bet-
ter (y > 0). The best nested linear mixed-effects model in-
dicated higher context sensitivity as model size increased (β
= 5.36, 95% CI = [2.07, 8.64], p = .002) and pretraining size
increased (β = 3.81, 95% CI = [2.16, 5.47], p <.001). A main
effect of condition (β = -9.98, 95% CI = [-16.18, -3.78], p =
.002) showed models performing better in the current-context
condition, which may not align with child performance. Al-
though the main effect of condition was not tested in the child
experiment, children’s average scores might suggest similar
sensitivity to prior and current context (see Table 1).

Rabagliati et al. (2013) - Experiment 2
This task used contrastive bottom-up and top-down cues,
which most models seemed to struggle with: Figure 3 shows
a floor effect, which led to null effects of model size (β =
3.37, 95% CI = [-.35, 7.09], p = .075) and pretraining size (β
= 0.12, 95% CI = [-1.74, 1.98], p = .895). As confirmed in
Appendix S4, the floor effect led to only few models showing
a difference in dominant selection between conditions. This
aligns with children’s residual sensitivity to top-down cues,
as they displayed a difference between conditions despite low
selection rates. Nevertheless, most models performed worse
than children, suggesting an overall difficulty in managing
contrastive cues.
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Cabiddu et al. (2022b)

The models better handled contrastive bottom-up and top-
down cues in this task, resembling the strong role of verbs
in child processing. The models showed higher sensitivity
to verbs with a strong event structure (Figure 4a; e.g., She
twisted a band), with model size being positively related to
models’ sensitivity to verb-event cues (β = 7.57, 95% CI =
[3.48, 11.67], p = .001), but not pretraining size (β = -.30,
95% CI = [-2.35, 1.74], p = .765). Instead, sensitivity was
lower to verbs that were only lexically associated with the
dominant sense (Figure 4b; e.g., She got a band), with no
significant effects of model size (β = 1.73, 95% CI = [-0.87,
4.34], p = .186) or pretraining size (β = 0.16, 95% CI = [-1.14,
1.45], p = .809).

Figure 2: Models’ distance from children by model size (a)
and pretraining size (b), in current and prior context condi-
tions. Model families are shown in the legend. The black hor-
izontal line indicates child performance. The dashed regres-
sion line with 95% confidence interval shows performance
across models. Colored regression lines are also shown for
each model family, although only when examining model size
as there is almost null variation in pretraining size within fam-
ily. Points in panel b are jittered by 2 points in the y axis to
facilitate visualization of overlapping points.

Discussion
We examined the capabilities of large Transformer models in
capturing child word sense disambiguation. Our results sup-
port the idea that children, like these models, might be usage-
based learners who bootstrap word knowledge from the nat-
uralistic environment (Bybee, 2010), and that sense knowl-
edge can, in principle, arise from probabilistic representations

embedding context-dependent and context-independent in-
formation (Ambridge, 2020; Srinivasan & Rabagliati, 2021).

In line with Laverghetta Jr and Licato (2021), larger mod-
els were more sensitive to both coherent (Figure 2) and con-
trastive cues (Figure 4a), likely because they form more
precise representations based on both bottom-up and top-
down aspects of sentence structure (Devlin, Chang, Lee, &
Toutanova, 2019; Hewitt & Manning, 2019; Radford et al.,
2019).

Contrary to our prediction, models trained on larger cor-
pora were more sensitive to coherent cues (Figure 2), while
we found the predicted null effect of pretraining for con-
trastive cues (Figure 3 and 4). In coherent sentences, a model
can rely on both word associations and top-down cues, with
more pretraining likely increasing sensitivity to both. How-
ever, more pretraining might not always be as valuable for
resolving contradicting bottom-up and top-down cues in the
other conditions. Larger models might instead have an ad-
vantage in this regard.

Figure 3: Models’ distance from children by model size and
pretraining size, in Rabagliati et al. (2013) experiment 2.

Further, a visual inspection of models’ performance at con-
trastive tasks (see raw plots of sense selection for each model
in OSF, Appendix S4) showed a stronger overall preference
for subordinate senses across conditions compared to chil-
dren, which might indicate models’ higher sensitivity to prior
context word associations (an analysis of relative differences
could not highlight this, as it specifically controls for abso-
lute differences in sense selection). In a follow-up analysis
(see OSF, Appendix S5), we found evidence for this interpre-
tation. We used an alternative outcome measure (Euclidean
distance) which, compared to the relative difference, addi-
tionally looked at how close models got to y = 0 (Figure 2,
3, and 4), and at the exact match between models and chil-
dren (i.e., difference in absolute scores): Given 81% - 38% as
the children’s response difference, a model performing 80% -
37% would be now closer to children than one that performs
60% - 17%. This measure might suffer from dominant sense
bias (Figure 1), which we included as covariate in the statis-
tical models to control for its effect. We replicated the pos-
itive effect of pretraining size in experiment 1 (Figure 2b),
and found a negative effect of pretraining size in the verb-
event structure condition of the third experiment (Figure 4a).
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Figure 4: Models’ distance from children by model size and
pretraining size, when comparing verb-event vs. control (a)
and verb-lexical vs. control conditions (b).

This result might indicate that smaller pretraining prevented
an extreme sensitivity to word associations, allowing mod-
els to find the right balance between bottom-up and top-down
cues. Interestingly, the best models in this condition received
pretraining that was judged as psychologically plausible in
previous studies (100 million tokens, Hosseini et al., 2022),
although for an older population than ours (10-year-olds). To
gain deeper insights into word association sensitivity, future
work will examine by-item performance across models. This
will help us assess how prior context associations for each
target word impact models’ performance, and whether this
relation aligns with that observed in children.

Basing sense prototypes on child input partially tuned
models’ representations to children’s. Only models with
small pretraining approximated the dominant sense bias in
the child input (Figure 1), and only few models (Figure
4b) showed sensitivity to verb-sense associations (e.g., get-
elastic band), which are idiosyncrasies of the child input,
likely not present in the adult language used for pretraining
(e.g., Wikipedia). One way to align models with the child en-
vironment would be pretraining directly on child input (Hos-
seini et al., 2022; Warstadt & Bowman, 2022). However,
this task is limited by the lack of sufficiently large corpora.
For example, in our study we included BabyBERTa (Hueb-
ner, Sulem, Cynthia, & Roth, 2021), which despite being pre-
trained on child input showed no sensitivity to sentence con-
text, likely due to its small pretraining (5 million tokens).

Models’ performance was impaired in tasks that introduced
contrastive cues (Figure 3 and 4). This suggests that previ-
ous results showing that Transformers can even approximate

adult performance (Loureiro et al., 2021) still require further
investigation. Sense prototypes based on child input might
have contributed to the low performance of the models in our
study. In upcoming work, we will examine the role of ref-
erence sentences by additionally using adult-directed sense-
tagged sentences (from the spoken part of the British National
Corpus; BNC Consortium, 2007). Given that previous stud-
ies have not used contrastive tasks, another possibility is that
such tasks might be difficult for models. Few models were
sensitive to contrastive cues (Figure 3 and 4), indicating that
at least some information about top-down structures might
be captured from sentence context via distributional learning.
However, overall models’ performance was lower than chil-
dren’s. Difficulties in approximating child knowledge could
be due to the fact that children’s representations of top-down
structures are not only based on sentence context but also
include real-world knowledge, which would need to be in-
tegrated into neural systems. For example, when modelling
word acquisition trajectories, Transformers are not influenced
by grounded sensorimotor, social, and cognitive factors (e.g.,
noun concreteness), but rely on surface features (e.g., word
frequency) to a greater extent than children (Chang & Bergen,
2021). We speculate that this lack of grounded knowledge
might also explain the fact that the models performed worse
at disambiguating prior contexts than current contexts (Fig-
ure 2). Current contexts contained words that might appear
closer to target words in naturalistic language, becoming eas-
ier to track by a distributional learner. This difficulty might
not exist for children who can use their real-world knowledge
for semantically-related (but distant) words (e.g., in “Dora
looked in her drawer. The band was cool”, a child can in-
fer that entities stored in a drawer are usually objects). In-
deed, word acquisition trajectories can probably be better
captured by neural models that process a richer multimodal
signal comprising auditory features, communicative inten-
tions, and perceptual information about word referents (e.g.,
Frank, Goodman, & Tenenbaum, 2009; Nikolaus & Fourtassi,
2021; Nyamapfene & Ahmad, 2007). Future work should
focus on modelling child multimodal processing, currently
limited by the scarcity of naturalistic multimodal corpora
(e.g., Nikolaus, Alishahi, & Chrupała, 2022). Finally, enrich-
ing models’ input would allow researchers to test if acquir-
ing multimodal knowledge suffices to capture sensitivity to
top-down structures, or whether one would need to integrate
domain-specific constraints in line with nativist approaches
(e.g., Pinker, 1989; Thornton, 2012) or more domain-general
innate biases (e.g., Perfors, Tenenbaum, & Regier, 2011).

We began to examine the capabilities and limitations of
Transformer models for studying early word sense disam-
biguation. We showed that an evaluation approach that lever-
ages sense-annotated corpora can sensibly be used to exam-
ine the developmental plausibility of sense representations in
large language models. We emphasized the importance of
filling the gap between children and models by integrating
multimodal knowledge in neural systems.
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