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AN ASYMPTOTIC FOR THE HALL–PAIGE CONJECTURE

SEAN EBERHARD, FREDDIE MANNERS, AND RUDI MRAZOVIĆ

Abstract. Hall and Paige conjectured in 1955 that a finite group G has a
complete mapping if and only if its Sylow 2-subgroups are trivial or noncyclic.
This conjecture was proved in 2009 by Wilcox, Evans, and Bray using the
classification of finite simple groups and extensive computer algebra. Using a
completely different approach motivated by the circle method from analytic
number theory, we prove that the number of complete mappings of any group
G of order n satisfying the Hall–Paige condition is (e−1/2+o(1)) |Gab|n!2/nn.

1. Introduction

A complete mapping of a group G is a bijection φ : G→ G such that x 7→ xφ(x)
is also bijective. Complete mappings arise naturally in the theory of Latin squares:
the Latin square based on the multiplication table of G has an orthogonal mate1 if
and only if G has a complete mapping.

For example, if n = |G| is odd then x 7→ x2 is bijective, so φ(x) = x is a complete
mapping. On the other hand not all groups have complete mappings. Indeed, note
that if G is abelian and φ : G→ G is complete then

∏

x∈G

x =
∏

x∈G

(xφ(x)) =

(∏

x∈G

x

)2

,

so
∏

x∈G x must be trivial. Thus for example cyclic groups of even order do not
have complete mappings. This observation goes back in some form to Euler [Eul82]
and his “thirty-six officers problem” (1782), and has been rediscovered several times
(see [Eva18, Section 3.1.1]).

More generally, if G has a complete mapping then
∏

x∈G x must be trivial in

the abelianization Gab, i.e., we must have
∏

x∈G x ∈ G′, where G′ = [G,G] is the
commutator subgroup of G. We call this condition the Hall–Paige condition. Hall
and Paige [HP55] proved that this is equivalent to the condition that the Sylow 2-
subgroups of G are trivial or noncyclic, and they conjectured that this condition is
also sufficient for the existence of a complete mapping. This conjecture was finally
proved in 2009 in breakthrough work of Wilcox, Evans, and Bray [Wil09, Eva09].

Theorem 1.1 (The Hall–Paige conjecture, proved in 2009 by Wilcox, Evans, and
Bray). A finite group G has a complete mapping if and only if G satisfies the
Hall–Paige condition.

SE has received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement No. 803711); RM
is supported in part by the Croatian Science Foundation under the project UIP-2017-05-4129
(MUNHANAP).

1Two Latin squares of the same dimension are called orthogonal mates if all the pairs of entries
in corresponding cells are different.
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Let us very roughly describe the proof of Theorem 1.1.2 Hall and Paige proved
that if G has a normal subgroup N such that both N and G/N have complete
mappings thenG has a complete mapping, and they used this and related arguments
to prove the conjecture when G is solvable. On the other hand, the Feit–Thompson
Theorem implies that every nonsolvable group satisfies the Hall–Paige condition.
Thus a minimal counterexample to the Hall–Paige conjecture would have to be
either simple or a group G having a normal subgroup N such that exactly one of
N and G/N fails the Hall–Paige condition. Wilcox showed that we may further
assume |N | = 2 or |G/N | = 2, and showed in these circumstances how to construct
a complete mapping of G from one of N or G/N , thus reducing the Hall–Paige
conjecture to the case of simple groups. Complete mappings had already been
constructed for several families of simple groups, including the alternating groups
by Hall and Paige themselves. Wilcox gave a unified construction for groups of
Lie type, leaving only the Tits group and the 26 sporadic groups. Evans [Eva09]
combined Wilcox’s method with extensive computer algebra to check all remaining
cases save only the fourth Janko group J4, and this case was checked by Bray.3

In this paper we give a completely different proof of Theorem 1.1, for sufficiently
large groups, based on the foundational principle of probabilistic combinatorics:
to show that a thing exists, it suffices to count them. Using nonabelian Fourier
analysis and motivated by the circle method from analytic number theory, we prove
the following asymptotic for the number of complete mappings of a group satisfying
the Hall–Paige condition.

Theorem 1.2. Let G be a finite group of order n. If G satisfies the Hall–Paige
condition then the number of complete mappings of G is

(e−1/2 + o(1)) |Gab|n!2/nn.

In particular, we have a new proof that the Hall–Paige conjecture holds for every
sufficiently large finite group. The proof is elementary in that we do not require
the classification of finite simple groups, but nonconstructive: the only algorithm
our method suggests for constructing a complete mapping is to try bijections at
random until one works.

We also prove various extensions of this main result, which we now list.

1.1. Quantitative bounds. Our methods in proving Theorem 1.2 are effective:
one can compute an explicit (and not unreasonable) value for how large G must be
so that the proof shows that the number of complete mappings is positive. However,
this value is large enough that checking all the remaining smaller cases of the Hall–
Paige conjecture directly is not feasible. We can, however, leverage some of the
arguments from the sketch above to give a different proof of the full conjecture, one
that avoids extensive case-checking.

A careful quantitative analysis allows us to dispatch all but a few finite simple
groups. We defer the details to Section 7 (see Theorem 7.1), but the following
proposition is representative.

Proposition 1.3. Let G be a finite group of order |G| > 105 such that all nontrivial
complex representations of G have degree at least 21. Then G has a complete

2For a readable account of the full proof, see [Eva18, Part II].
3Bray’s work remained unpublished for some time, but finally appeared in [BCC+19].
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mapping. The same holds if |G| > 3 × 105 and all representations have degree at
least 13. 4

Given Wilcox’s reduction to simple groups, and his proof for simple groups of
Lie type, this proposition reduces the possible minimal counterexamples to just the
Mathieu groupsM11 andM12 (of orders 7920 and 95040), which still require another
method.5 The main value of our results here is therefore an alternative argument
for the large sporadic groups. We also substantially weaken the dependence on the
classification of finite simple groups: we need only a classification of finite simple
groups G such that either G 6 GL12(C) or |G| 6 3× 105. 6

We finally note that statements such as Proposition 1.3 do not represent the
absolute limit of these methods for small groups. Specifically, by a more careful
choice of parameters, and replacing analytic bounds on various quantities by their
actual computable values, the authors are fairly confident that, for example, the
Mathieu group M12 could also be handled by the same tools (while for instance
M11 seems just out of reach without new ideas). However, we will not attempt to
defend these rather involved computations in this paper.

1.2. An asymptotic expansion. In Theorem 1.2 we find the number of complete
mappings up to a factor 1 + o(1). By elaborating the proof, we can prove the
following finer asymptotic.

Theorem 1.4. Let G be a finite group of order n. If G satisfies the Hall–Paige
condition then the number of complete mappings of G is

e−1/2
(
1 + (1/3 + inv(G)/4)n−1 +O(n−2)

)
|Gab|n!2/nn,

where inv(G) = |{x ∈ G : x2 = 1}|/n is the proportion of involutions in G.

The method allows us in principle to extract further terms in the asymptotic
series more or less mechanically, though it is prohibitively tedious to do so.

We deduce the following corollary, confirming an observation of Wanless [Wan11,
Section 6.5] (see also McKay–McLeod–Wanless [MMW06, Section 3]).

Corollary 1.5. Among all groups of order n = 2k with k sufficiently large, the
number of complete mappings is uniquely maximized by the elementary abelian group
G = Ck

2 .

1.3. Counting configurations of permutations. In previous work [EMM19,
Ebe17] we proved the following theorem, proving conjectures of Wanless [Wan11,
Conjecture 6.9] and Vardi [Var91].

Theorem 1.6. Let G be an abelian group of order n and let f : {1, . . . , n} → G be
a function such that

n∑

i=1

f(i) =
∑

x∈G

x.

4These conditions imply that G is perfect, so it automatically satisfies the Hall–Paige condition.
5According to [Eva18, Section 4.3], the fact thatM11 and M12 are not minimal counterexamples

goes back to Aschbacher [Asc90]; the fact that they are not counterexamples at all was first proved
by Dalla Volta and Gavioli [DVG93].

6This is still extremely nontrivial. For example, as late as 1972 it was not known whether
there was a finite simple group of order 43200 (see Hall [Hal72]).
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Then the number of solutions to π1 + π2 + π3 = f with π1, π2, π3 : {1, . . . , n} → G
bijections is

(S(f) + o(1))n!3/nn−1.

Here S(f) = exp(− coll(f)/n2), where coll(f) is the number of collisions in f :

coll(f) =
∣∣{(i, j) : 1 6 i < j 6 n, f(i) = f(j)

}∣∣ =
∑

x∈G

(|f−1(x)|
2

)
.

In this paper we prove the following generalization to all finite groups, which
also generalizes Theorem 1.2.

Theorem 1.7. Let G be a group of order n and let f : {1, . . . , n} → G be a function
such that

n∏

i=1

f(i) =
∏

x∈G

x (mod G′). (1)

Then the number of solutions to π1π2π3 = f with π1, π2, π3 : {1, . . . , n} → G
bijections is

(S(f) + o(1)) |Gab|n!3/nn.

The case f ≡ 1 is equivalent to Theorem 1.2. Indeed, in this case (1) is precisely
the Hall–Paige condition, so the theorem asserts that if G satisfies the Hall–Paige
condition then the number of solutions to π1π2π3 ≡ 1 is (e−1/2+o(1)) |Gab|n!3/nn.
But for every such triple (π1, π2, π3) we have

π1(x)π2(x) = π3(x)
−1

for every x ∈ {1, . . . , n}, or equivalently
y π2(π

−1
1 (y)) = π3(π

−1
1 (y))−1

for every y = π1(x) ∈ {1, . . . , n}. So, the map φ = π2 ◦ π−1
1 is a bijection such that

y φ(y) = π3(π
−1
1 (y))−1

is also a bijection: thus, φ is a complete mapping. Conversely, given a complete
mapping φ and any bijection π1 we can reverse the argument to find a unique
triple (π1, π2, π3) satisfying π1π2π3 ≡ 1; i.e., the correspondence (π1, π2, π3) ↔ φ is
n!-to-1.

1.4. Heuristic explanation of the asymptotic. The asymptotic appearing in
Theorem 1.2 deserves a heuristic explanation. The following argument is similar
to the one given in [EMM19], and uses the “principle of maximum entropy” from
statistical physics: given limited observations about some unknown quantity, the
probability distribution which best represents the current state of knowledge is the
one with maximum entropy.7

Consider a random bijection φ : G → G, and let ψ : G → G be the function
defined by

ψ(x) = xφ(x).

If we incorporate no knowledge about ψ other than that ψ is a function G → G,
the principle of maximum entropy would encourage us to think of ψ as a uniformly
random function G→ G. Thus a zeroth-order approximation to the true probability

7Cf. Good [Goo63].
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that ψ is a bijection would be n!/nn. This would lead us to guess that the number
of complete mappings is roughly n!2/nn.

We know that that cannot be right in general, because for instance if the Hall–
Paige condition is not satisfied then the answer must be zero. We can inform our
approximation by observing that

∏

x∈G

ψ(x) ≡
(∏

x∈G

x

)2

≡ 1 (mod G′).

The collection of functions ψ satisfying this condition is a subgroupH ofGG of order
nn/|Gab|, and the most entropic distribution for ψ consistent with this information
is the uniform distribution on this subgroupH . Thus a first-order approximation to
the true probability that ψ is a bijection is |Gab| ·n!/nn if the Hall–Paige condition
is satisfied, and zero otherwise.

Finally we have the most subtle factor in the asymptotic: the factor of e−1/2.
This factor is related to the number of collisions in ψ. Note that if f is uniformly
random, or uniformly random over H , then

E coll(f) =

(
n

2

)
1

n
=
n− 1

2
.

By contrast, consider collisions in ψ. For any fixed distinct x, y we have

P(ψ(x) = ψ(y)) = P(φ(x)φ(y)−1 = x−1y) =
1

n− 1

since the random variable φ(x)φ(y)−1 is uniform on G \ {1}; thus

E coll(ψ) =

(
n

2

)
1

n− 1
=
n

2
.

Thus ψ is slightly more prone to collisions than an ordinary random function. The
maximum-entropy distribution for ψ consistent with this observation is the Gibbs
distribution defined by

P(ψ = g) =
eβ coll(g)

Z(β)
· 1H(g)

|H | , (2)

where Z(β) is a normalizing factor called the partition function, and the parameter
β must be chosen so that

E coll(ψ) = (logZ)′(β) =
n

2
.

By a Poisson heuristic for coll(f) we have

Z(β) = Eeβ coll(f) ≈ e(e
β−1)E coll(f) = e(e

β−1)(n−1)/2,

so

(logZ)′(β) ≈ eβ(n− 1)/2,

so we should have

β = 1/n+O(1/n2).
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Since coll(g) = 0 when g is a bijection we therefore need to adjust our previous
estimate by a factor of Z(β) ≈ e1/2. 8

The further correction expressed in Theorem 1.4, and indeed still smaller correc-
tions, can also be derived in this fashion, by counting “higher-order” collisions, but
doing so even in this heuristic setting rapidly becomes extremely tedious, as the
array of possible collision types exhibits combinatorial explosion. The interested
reader should refer to Section 8, where we develop a more systematic approach.

This argument is a special case of a general method for informing counting
conjectures: we guess a model for some random variable (such as ψ) and, if it is
found to be inadequate, the principle of maximum entropy offers a systematic way
of updating our guess. We caution that the difficult part is knowing when we are
close enough to the truth to stop. For the purposes of the argument above, the
only reason that no further corrections to the distribution of ψ are made is that
none of the ones we could think of changed the answer by more than a factor of
1 + o(1), but it is very difficult to rule out the possibility that some hypothetical
further observation might change the picture by a much larger amount.

1.5. Layout of the paper. The paper is organized as follows. We next (Section 2)
collect some standard tools and conventions which will form the foundation of all
our arguments.

With these in place, we can give a detailed account of the proof of Theorem 1.7
(and thereby of Theorem 1.2) in Section 3. The key ingredients for this proof are
proven in Sections 4, 5, and 6 (split up in the way explained in Section 3).

The remaining sections explain how to recombine these ingredients to prove the
refinements discussed above. In particular Section 7 handles the quantitative results
discussed in Section 1.1, and Section 8 deals with the asymptotic expansion from
Section 1.2.

2. Preliminaries

We review here some relevant background.

2.1. Nonabelian Fourier analysis. We briefly recall here the fundamentals of
nonabelian Fourier analysis. The reader needing a better introduction could refer
to Tao [Tao14, Chapter 18], with whom our notational conventions agree.

Given a finite group G, we write
∫

for averages over G, ρ for a representation
of G (usually irreducible, always unitary and finite-dimensional), and χ for the
corresponding character x 7→ trρ(x) of G. The Fourier transform of a function
f : G→ C at an irreducible representation ρ : G→ U(V ) is defined by

f̂(ρ) =

∫

G

f(x)ρ(x).

Note that f̂(ρ) defines an operator on V . The space of operators on V is denoted
HS(V ) and equipped with the Hilbert–Schmidt inner product

〈R,S〉 = tr(RS∗).

8It is interesting to compare (2) with the conclusion of Theorem 1.7. While the former is
a heuristic approximation for the distribution of xφ(x), the latter is a rigorous assertion that
the distribution of xφ(x)φ′(x), where φ′ is another random bijection, is approximately the Gibbs
distribution with β = −1/n2 (concentrated on a coset of H).
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We have the Fourier inversion formula

f(x) =
∑

ρ

〈f̂(ρ), ρ(x)〉dim ρ,

and the Parseval (or Plancherel) identity

〈f, g〉 =
∑

ρ

〈f̂(ρ), ĝ(ρ)〉dim ρ.

The sums here run over the irreducible representations of G. Note in particular

that if f̂(ρ) = 0 for all ρ, then f = 0.
Let ρ : G → U(V ) be an irreducible representation of G. Let e1, . . . , ed be an

orthonormal basis of V , and let Eij = ei ⊗ e∗j ∈ HS(V ). The functions 〈Eij , ρ(x)〉,
as ρ runs over irreducible representations and i and j run over {1, . . . , d} with
d = dim ρ, form an orthogonal basis for L2(G). Indeed, the fact that they span is
clear from the Fourier inversion formula, and orthogonality follows from Plancherel:
by comparison with the Fourier inversion formula the function f(x) = 〈Eij , ρ(x)〉
must have Fourier transform

f̂(ρ′) =

{
Eij/ dimρ if ρ′ = ρ,

0 else,

so ∫

G

〈Eij , ρ(x)〉〈Ei′j′ , ρ′(x)〉 =
{
1/ dimρ if ρ = ρ′, i = i′, j = j′

0 else.

The convolution f ∗ g of two functions f, g : G→ C is the function G→ C given
(under our conventions) by

(f ∗ g)(x) =
∫

G

f(y)g(y−1x).

The key feature of the Fourier transform is that it “diagonalizes” (as much as
possible anyway) the operation of convolution:

f̂ ∗ g(ρ) = f̂(ρ) ĝ(ρ).

The operation on the right is the usual multiplication of operators in HS(V ).
Given representations ρ1 : G1 → U(V1) and ρ2 : G2 → U(V2), the tensor product

ρ1 ⊗ ρ2 is the representation G1 ×G2 → U(V1 ⊗ V2) defined on pure tensors by

(ρ1 ⊗ ρ2)(g, h) · (u⊗ v) = (ρ1(g)u)⊗ (ρ2(g)v).

It is well known that the irreducible representations of G1 × G2 are precisely the
tensor products ρ1⊗ρ2 of irreducible representations ρ1, ρ2 of G1, G2, respectively.
Two such representations ρ1 ⊗ ρ2 and ρ′1 ⊗ ρ′2 are isomorphic if and only if ρ1 ∼= ρ′1
and ρ2 ∼= ρ′2.

In the special case that G1 = G2 = G, the restriction of ρ1⊗ρ2 to the diagonally
embedded copy ofG is again a representation ofG. Conventionally in representation
theory this representation is also denoted simply ρ1⊗ρ2, and it is understood from
context whether ρ1 ⊗ ρ2 is a representation of G×G or of G. For us, the interplay
between these interpretations of ⊗ is essential, so we will use ⊗̂ to denote the latter.
Thus ρ1 ⊗ ρ2 is a representation of G2 and ρ1 ⊗̂ ρ2 is a representation of G.
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2.2. Argument projections. Given X ⊂ {1, . . . , n}, we identify L2(GX) with
the subspace of L2(Gn) consisting of functions f : Gn → C of (g1, . . . , gn) that
depend only on variables gi for i ∈ X . We denote by QX : L2(Gn) → L2(GX) the
corresponding orthogonal projection. Explicitly,

QX =
∏

i/∈X

Ei,

where Ei is the operator that “integrates out” the single variable gi: i.e., for F ∈
L2(Gn),

(
EiF

)
(g1, . . . , gn) =

∫

g∈G

F (g1, . . . , gi−1, g, gi+1, . . . , gn).

These subspaces L2(GX) are nested: if X ⊂ Y then L2(GX) ⊂ L2(GY ). We also
define inclusion–exclusion-type projections PX for X ⊂ {1, . . . , n} by

PX =
∏

i/∈X

Ei

∏

i∈X

(1 − Ei).

This is the projection onto the space

L2(GX) ∩
⋂

Y (X

L2(GY )⊥;

informally, the space of functions that depend “exactly” on the variables in X . By
inclusion–exclusion we have

PX =
∑

Y⊂X

(−1)|X|−|Y |QY (3)

and

QX =
∑

Y⊂X

PY .

We now describe the relationship between the projections PX and Fourier analy-
sis on Gn. The irreducible representations ρ of Gn are precisely the tensor products

ρ = ρ1 ⊗ · · · ⊗ ρn,

where ρ1, . . . , ρn are irreducible representations of G. Let

supp ρ = {i ∈ {1, . . . , n} : ρi 6= 1}.

Lemma 2.1. Let F ∈ L2(Gn).

(i)

P̂XF (ρ) =

{
F̂ (ρ) if supp ρ = X,

0 else.

(ii)

PXF (g) =
∑

ρ : supp ρ=X

〈F̂ (ρ), ρ(g)〉dim ρ.

In other words, the projection PX simply discards all Fourier coefficients except
those with support exactly X .
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Proof. For an irreducible representation ρi : G→ HS(Vi) we have

∫

x∈G

ρi(x) =

{
1 : ρi = 1

0 : ρi 6= 1;

this follows by considering the Fourier transform of the constant function 1 on G.
Hence for any F ∈ L2(Gn) and any ρ = ρ1 ⊗ · · · ⊗ ρn,

ÊiF (ρ) =

{
F̂ (ρ) : ρi = 1

0 : ρi 6= 1.

The first part follows. The second part follows by Fourier inversion. �

In particular we note the interaction between projections PX and QX and con-
volution.

Corollary 2.2. If F1, F2 ∈ L2(Gn) and X ⊂ {1, . . . , n} then

PX(F1 ∗ F2) = PXF1 ∗ PXF2

and

QX(F1 ∗ F2) = QXF1 ∗QXF2.

Moreover if Y ⊂ {1, . . . , n} and Y 6= X then

PXF1 ∗ PY F2 = 0.

Proof. These follow immediately from Lemma 2.1 and properties of Fourier analysis
and convolution. �

2.3. Möbius inversion for partitions. Let X be an m-element set. A partition
of X is a set P of nonempty subsets p ⊂ X (the parts or cells of P) such that
every element of X is a member of exactly one part of P . Given partitions P ,Q
of X , we say that P refines Q, and Q coarsens P , and we write P 6 Q, if every
cell of P is contained in a cell of Q: this makes the set ΠX of all partitions of X
into a partially ordered set called the partition lattice. As usual, given partitions P
and Q we write P ∧ Q for their meet (i.e., their coarsest common refinement) and
P ∨Q for their join (i.e., their finest common coarsening). The partition of X into
singletons is called the discrete partition, denoted 0, and the partition {X} is called
the trivial partition (or indiscrete partition), denoted 1: these are the minimal and
maximal elements of the partition lattice, respectively.

The incidence algebra of the partition lattice is the set of functions α assigning
to each pair of partitions (P ,Q) with P 6 Q a scalar α(P ,Q) (in some unital
commutative ring). Addition is defined pointwise, and multiplication is defined by
convolution:

(α ∗ β)(P ,Q) =
∑

R : P6R6Q

α(P ,R)β(R,Q).

The unit element is

δ(P ,Q) =

{
1 if P = Q,
0 else.

An element α of the incidence algebra is invertible if and only if each diagonal
element α(P ,P) is invertible. The inverse of the constant function 1 is called the
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Möbius function µ, and is given by the formula

µ(P ,Q) = (−1)|P|−|Q|
∏

q∈Q

(|{p ∈ P : p ⊂ q}| − 1)!

(see Stanley [Sta97, Example 3.10.4]). In the special case that P is discrete we omit
the symbol from the notation: thus

µ(Q) = µ(0,Q) = (−1)m−|Q|
∏

q∈Q

(|q| − 1)!.

Note that although Möbius inversion is defined most naturally for functions of pairs
of partitions, the following two inversion formulae for univariate functions follow:

α(P) =
∑

Q : P6Q

β(Q) ⇐⇒ β(P) =
∑

Q : P6Q

µ(P ,Q)α(Q);

α(P) =
∑

Q : Q6P

β(Q) ⇐⇒ β(P) =
∑

Q : Q6P

α(Q)µ(Q,P).

Partitions arise in our setting when we consider the set of injective functions
f : X → G and expand its indicator function using inclusion–exclusion; i.e., rewrit-
ing inequality constraints f(x) 6= f(x′) as equality constraints f(x) = f(x′). Möbius
inversion for partitions captures this cleanly: see Lemma 4.3 below. We thereby
relate incomplete character sums to sums of complete character sums with attached
Möbius function coefficients.

2.4. Cauchy’s residue theorem. We will use the following consequence of the
residue theorem.

Lemma 2.3. Let f(u) = a0 + a1u+ a2u
2 + · · · be a function in a complex variable

u, that converges uniformly on |u| 6 R, and obeys the estimate |f(u)| 6 A for
|u| = R. Then for any |u| < R and k > 0, we have

∣∣f(u)− a0 − a1u− · · · − aku
k
∣∣ 6 A

(|u|/R)k+1

1− |u|/R .

Proof. Consider the test function

ρ(z) =
1

z − u
− 1

z
− u

z2
− · · · − uk

zk+1

=
(u/z)k+1

z − u
.

By the residue theorem,

1

2πi

∮

|z|=R

ρ(z)f(z) dz = f(u)− a0 − a1u− · · · − aku
k,

but since

|ρ(z)| 6 (|u|/R)k+1

R− |u|
on |z| = R, the claimed bound follows. �
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3. Outline of the proofs

Let G be a group of order n, and denote by S ⊂ Gn the set of all tuples
(x1, . . . , xn) ∈ Gn with xi 6= xj for i 6= j (equivalently, the set of bijective functions
{1, . . . , n} → G). Let f ∈ Gn. Our main theorem, Theorem 1.7, asserts that if f
obeys (1) then

1S ∗ 1S ∗ 1S(f) = (S(f) + o(1)) |Gab|
(
n!

nn

)3

.

By Fourier analysis, we have

1S ∗ 1S ∗ 1S(f) =
∑

ρ

〈1̂S(ρ)3, ρ(f)〉dim ρ, (4)

where the sum runs over all irreducible representations

ρ = ρ1 ⊗ · · · ⊗ ρn

of Gn, where each ρi is an irreducible representation of G. We will divide the
summation in (4) into several parts depending on the multiplicities of the factors
ρ1, . . . , ρn.

If almost all of the factors ρi are isomorphic to some common one-dimensional

representation ρ0, then we call ρ a major arc. We will see that 〈1̂S(ρ)3, ρ(f)〉
is invariant under shifts of the form ρ 7→ ρ ⊗̂ ψn for one-dimensional ψ, so the
contribution from the major arcs is exactly |Gab| (the number of one-dimensional
representations) times that from the sparse representations, i.e., those ρ in which
only m factors ρi are nontrivial, for some small m. We call ρ m-sparse if exactly
m factors ρi are nontrivial.

The sparse representations are the topic of Section 4. Note for example that the
contribution from the trivial representation is (n!/nn)3. Other sparse representa-
tions contribute a comparable amount to the sum. Using argument projections and
Möbius inversion on the partition lattice to reduce to complete character sums, we
will prove that

∑

m-sparse ρ
06m62M

〈1̂S(ρ)3, ρ(f)〉dim ρ =
(
S(f) + O

(
1/(M + 1)!

)
+O(M2/n)

)( n!
nn

)3

(5)

provided M < cn1/2 for some absolute constant c. This will be established in
Proposition 4.2. In particular, the dominant contribution comes from O(1)-sparse
representations.

All other ρ are called minor arcs, and their contribution is bounded using

|〈1̂S(ρ)3, ρ(f)〉| 6 ‖1̂S(ρ)‖33 6 ‖1̂S(ρ)‖op‖1̂S(ρ)‖2HS,

where ‖ · ‖3 is the Schatten 3-norm9. Minor arcs may be further categorized by
their entropy: suppose up to permutation of factors we have

ρ = ρa1
1 ⊗ · · · ⊗ ρak

k ,

9The Schatten p-norm ‖ · ‖p of a linear operator with singular values (λi) is
(
∑

i λ
p
i

)1/p
, and

so ‖ · ‖2 = ‖ · ‖HS. Similarly the operator norm is ‖ · ‖op = maxi λi.
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where ρ1, . . . , ρk are distinct irreducible representations of G and a1+ · · ·+ak = n.
The entropy of ρ is defined by

H(ρ) =

k∑

i=1

ai
n

log
n

ai
.

Note that if H(ρ) = o(1) then the largest ai is (1− o(1))n. Informally, we say that
ρ is a low-entropy minor arc if H(ρ) = o(1), and if additionally the factor ρi of
multiplicity (1−o(1))n is one-dimensional; otherwise ρ is a high-entropy minor arc.

Low-entropy minor arcs are the subject of Section 5. As with the major arcs we
may focus on the sparse case: at the cost of a factor of |Gab| we may assume that
the representation with multiplicity (1 − o(1))n is the trivial representation. We
attack these representations with the following weapons:

(i) a (more or less sharp) estimate for the total L2 mass on sparse representa-
tions (dubbed sparseval):

∑

m-sparse ρ

‖1̂S(ρ)‖2HS dim ρ 6 O(m1/4)eO(m3/2/n1/2)

(
n

m

)1/2(
n!

nn

)2

;

(ii) a uniform bound for the operator norm for an m-sparse representation: if
m 6 n/2 then

‖1̂S(ρ)‖op 6

(
n

m

)−1/2
n!

nn
;

(iii) an “inverse theorem” capturing the near-equality case of the above bound:

‖1̂S(ρ)‖op 6 e−cǫm

(
n

m

)−1/2
n!

nn

unless more than (1 − ǫ)m of the nontrivial factors of ρ are equal to a
common one-dimensional representation ρ0 of order two.

By combining these we prove

∑

m-sparse ρ

‖1̂S(ρ)‖op‖1̂S(ρ)‖2HS dim ρ 6 O

(
e−c log(n/m)

log n m

(
n!

nn

)3
)

(6)

for m 6 cn/(logn)2. This will be established in Proposition 5.8.
Finally in Section 6 we bound the contribution from high-entropy minor arcs.

For these we use the still-cruder bound

|〈1̂S(ρ)3, ρ(f)〉| 6 ‖1̂S(ρ)‖op‖1̂S(ρ)‖2HS 6 ‖1̂S(ρ)‖3HS.

For high-entropy minor arcs ρ we prove a bound for ‖1̂S(ρ)‖HS roughly of the form

‖1̂S(ρ)‖2HS dim ρ . e−H(ρ)n

(
n!

nn

)2

.

Thus we deduce a bound of the rough shape

eH(ρ)n‖1̂S(ρ)‖3HS dim ρ . e−H(ρ)n/2

(
n!

nn

)3

.
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Note that eH(ρ)n is roughly the size of the orbit of ρ under permutation of factors.
Thus, assuming we can bound the number of orbits satisfactorily, we can try to
pigeonhole high-entropy minor arcs ρ by the size of H(ρ), and prove

∑

ρ : H(ρ)>cn

‖1̂S(ρ)‖3HS dim ρ 6 e−c′n

(
n!

nn

)3

.

In practice, we argue a little differently: we obtain a tidier argument and a stronger
bound by using generating function techniques to bound the sum over orbits (and
the quantity H(ρ) does not actually appear outside of this outline). In any event,
if Rm is the set of all ρ that have some one-dimensional factor of multiplicity at
least n−m, then we prove

∑

ρ∈Rc
m

‖1̂S(ρ)‖3HS dim ρ 6 e−cm

(
n!

nn

)3

(7)

for m > Cn3/4. This will be established in Proposition 6.6.
By combining (5), (6), and (7), we have

1S ∗ 1S ∗ 1S(f) =
∑

ρ

〈1̂S(ρ)3, ρ(f)〉dim ρ

=
(
S(f) +O(1/M !) +O(M2/n)

)
|Gab|

(
n!

nn

)3

+O
(
e−c log(n/M)

log n M |Gab|
) ( n!

nn

)3

+ e−cn3/4

(
n!

nn

)3

.

Theorem 1.7 follows by taking M to be a sufficiently slowly growing function of n
(say a small power of n).

We briefly discuss the other results. In Section 7, our aim is to prove the Hall–
Paige conjecture for all groups, not just sufficiently large groups. An argument
of Wilcox reduces the problem to simple groups. In particular, we may assume
that G has no low-dimensional representations (a weak version of quasirandom-
ness). In this circumstance our minor arc bounds become easier and stronger. In
the low-entropy minor arcs, the near-equality case (see weapons (ii)–(iii) above) is
now impossible, and we can prove a stronger version of (6). In the high-entropy
minor arcs, we combine this quasirandomness with sparseval (weapon (i)) to get an
alternative to the bounds in Section 6 which is useful in some regimes. We use these
stronger bounds in Section 7 to prove Proposition 1.3, which proves the Hall–Paige
conjecture except for a handful of simple groups.

In Section 8, for simplicity in the special case f ≡ 1, we discuss lower-order
terms in Theorem 1.7, in particular Theorem 1.4. Our approach differs only in its
treatment of the major arcs. The task is simplified by working exclusively with the
case f ≡ 1, but simultaneously harder in that we wish to evaluate the O(M2/n)
term in (5) up to an error of OM (1/n2).
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4. Major arcs

In this section we estimate the contribution to (4) from the major arcs: those
ρ with n−O(n1/2) factors isomorphic to the same one-dimensional representation
ρ0 of G. The following lemma shows that this contribution is exactly |Gab| (the
number of one-dimensional representations) times the contribution from those with
ρ0 trivial.

Lemma 4.1. Suppose ψ is a one-dimensional representation of G, and suppose
ρ = ρ1 ⊗ · · · ⊗ ρn and ρ′ = ρ′1 ⊗ · · · ⊗ ρ′n are irreducible representations of Gn such
that ρ′i = ρi ⊗̂ ψ for each i. Then

〈1̂S(ρ′)3, ρ′(f)〉 = 〈1̂S(ρ)3, ρ(f)〉 ·
∏

g∈G

ψ(g)

n∏

i=1

ψ(fi).

In particular, if
n∏

i=1

fi =
∏

g∈G

g (mod G′),

then

〈1̂S(ρ′)3, ρ′(f)〉 = 〈1̂S(ρ)3, ρ(f)〉.
Proof. Note that ρ′ = ρ ⊗̂ ψn, where

ψn =

n︷ ︸︸ ︷
ψ ⊗ · · · ⊗ ψ

is the one-dimensional representation of Gn defined by

ψn(g1, . . . , gn) =

n∏

i=1

ψ(gi).

Since 1S is by definition supported on permutations of G, we thus have

1̂S(ρ
′) =


∏

g∈G

ψ(g)


 1̂S(ρ),

and

ρ′(f) =

(
n∏

i=1

ψ(fi)

)
ρ(f).

Note that
(∏

g∈G ψ(g)
)2

= 1: indeed,

∏

g∈G

ψ(g) =
∏

g∈G

ψ(g−1) =

( ∏

g∈G

ψ(g)

)−1

.

The lemma follows. �

Call a representation ρ = ρ1 ⊗ · · · ⊗ ρn of G m-sparse if exactly m of the factors
ρi are nontrivial, i.e., if | supp ρ| = m. The goal of this section is to estimate the
total contribution from all m-sparse ρ for m 6 cn1/2, for some constant c. Define

Mm,f =
∑

ρ : | supp ρ|6m

〈1̂S(ρ)3, ρ(f)〉dim ρ.
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Define also

Sm(f) =
∑

2k6m

1

k!

(
−coll(f)

n2

)k

,

noting that

|S(f)−Sm(f)| 6 1

(⌊m/2⌋+ 1)!
.

We will prove the following proposition (the abelian case appeared previously, in a
weaker form, as [Ebe17, Theorem 3.1]).

Proposition 4.2. For m < 0.17n1/2,∣∣∣∣∣Mm,f −Sm(f)

(
n!

nn

)3
∣∣∣∣∣ 6 O(m2/n)

(
n!

nn

)3

.

Concretely, if n > 105 and m 6 20,∣∣∣∣∣Mm,f −Sm(f)

(
n!

nn

)3
∣∣∣∣∣ < 0.32

(
n!

nn

)3

.

The estimate (5) follows immediately from this. The remainder of this section
is concerned with the proof of this proposition.

To prove this proposition we will actually move away from the Fourier-analytic
formalism (though we will return to it for the minor arcs), using arguments projec-
tions and purely “physical-side” (as opposed to frequency-side) arguments.10

4.1. Applying argument projections. By Lemma 2.1,

Mm,f =
∑

|X|6m

(PX1S)
∗3(f). (8)

Recall that, according to our convention that L2(GX) ⊂ L2(Gn), PX1S and QX1S
are identified with functions X → G. Let SX ⊂ GX denote the set of injective
functions X → G. Then

QX1S =
(n− |X |)!
nn−|X|

1SX . (9)

Indeed, a function f : X → G can be extended to an injective function {1, . . . , n} →
G in (n − |X |)! ways if f is injective and 0 ways otherwise, and by definition
(QX1S)(f) is the number of these extensions normalized by n−(n−|X|). From this
we can derive a formula for PX1S .

Given a partition P of X ⊂ {1, . . . , n}, we say f : X → G is P-measurable if f
is constant on each cell of P . Let cP be the indicator of P-measurability: thus

cP(f) =

{
1 if f is constant on each cell of P ,
0 else.

By a further slight abuse of notation, we can consider a partition P of X ⊂
{1, . . . , n} to be a partition of the full set {1, . . . , n}, by giving each element of
{1, . . . , n} \X its own singleton cell. Moreover, we can think of two partitions P
and Q on different subsets of {1, . . . , n} as being identified if they give rise to the

10This fact suggests the interesting possibility that the results of this section may hold in
greater generality than just that of groups. We intend to return to this consideration in future
work.
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same partition of {1, . . . , n} in this way: in other words, if they differ just by adding
or deleting singletons. Note that this hypothesis implies cP = cQ as elements of
L2(Gn), so this is compatible with our existing conventions.

We define the rank of a partition P of X ⊂ {1, . . . , n} by rankP = |X | − |P|.
Again note that this quantity is invariant under adding or deleting singletons. Note
that

〈cP , 1〉 = n− rankP

(since there are n|P| P-measurable functions X → G).
The Möbius inversion theory from Section 2.3 allows us to expand SX in terms

of functions cP .

Lemma 4.3. Let SX ⊂ GX be the set of injective functions X → G. Then

1SX =
∑

P∈ΠX

µ(P)cP .

Proof. Let dP (f) be the indicator that f is P-measurable and takes a distinct value
on each cell of P . Then

cP =
∑

Q : P6Q

dQ.

Thus by Möbius inversion we have

dP =
∑

Q : P6Q

µ(P ,Q)cQ.

The claimed formula is the case P = 0. �

Finally, denote by suppP the union of the nonsingleton cells of P .

Remark 4.4. Note that cP only depends on variables gi for i ∈ suppP ; i.e.,
cP ∈ L2(GsuppP).

In particular, if X ) suppP is a proper superset then PXcP = 0 (as im(PX) ⊥
L2(GY ) for any Y ( X).

Lemma 4.5. If X ⊂ {1, . . . , n} has size m, then

PX1S =
(n−m)!

nn−m

∑

P : suppP=X

µ(P)PXcP .

Proof. By (9) and the previous lemma we have

PX1S = PXQX1S

=
(n−m)!

nn−m
PX1SX

=
(n−m)!

nn−m

∑

P∈ΠX

µ(P)PXcP ,

and by Remark 4.4 we may restrict the summation to those P with suppP = X . �
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4.2. Partition systems. A partition triple on a set X ⊂ {1, . . . , n} is simply a
triple P = (P1,P2,P3) of partitions of X . By our usual convention of adding and
deleting singletons, this also makes sense if Pi are partitions of {1, . . . , n} with
suppPi ⊂ X . The support of P is defined to be

suppP = suppP1 ∪ suppP2 ∪ suppP3

or in other words the smallest set X ⊂ {1, . . . , n} such that P can be thought of as
a partition triple on X (up to adding or deleting singletons).

A partition triple is called a partition system if the partitions all have the same
support, i.e., if suppPi = suppP for i = 1, 2, 3.

Given (8), Lemma 4.5 and Corollary 2.2, the task of proving Proposition 4.2
reduces to estimating

PXcP1 ∗ PXcP2 ∗ PXcP3(f) = PX(cP1 ∗ cP2 ∗ cP3)(f) (10)

for each subsetX ⊂ {1, . . . , n} of size6 m and each partition tripleP = (P1,P2,P3)
on X , and aggregating the results. By Remark 4.4, the left-hand side is zero unless
suppPi = X for each i = 1, 2, 3, so we may restrict attention to partition systems
P with suppP = X .

For most partition systems it will suffice to bound (10). We will do this (in
Proposition 4.11 below) by relating it to the simpler quantity

cP1 ∗ cP2 ∗ cP3(f),

which we can estimate much more easily.

Lemma 4.6. Define the triple rank of a partition triple P = (P1,P2,P3) by

trank(P) = max
σ∈S3

(
rank(Pσ(1)) + rank(Pσ(2) ∨ Pσ(3))

)

where S3 denotes the symmetric group. Then

0 6 cP1 ∗ cP2 ∗ cP3(f) 6 n− trank(P).

Proof. By definition, cP1 ∗cP2 ∗cP3(f) is the number of solutions to h1h2h3 = f over
Pi-measurable hi (i = 1, 2, 3) normalized by n−2n. Our claim is that the number

of such solutions is bounded by n|Pσ(1)|+|Pσ(2)∨Pσ(3)| for each permutation σ ∈ S3.
There are in total n|Pσ(1)| choices of Pσ(1)-measurable hσ(1), so it suffices to show,

given f and hσ(1), that there are at most nrank(Pσ(2)∨Pσ(3)) choices of hσ(2) and hσ(3)
such that h1h2h3 = f .

Fix a set Y ⊂ {1, . . . , n} consisting of one element from each cell of Pσ(2)∨Pσ(3),

and fix a choice of hσ(2)(y) for each y ∈ Y . There are n|Pσ(2)∨Pσ(3)| such choices. It
suffices to show that each such choice can be extended to at most one valid choice
of h1, h2, h3.

Note that, for any x ∈ {1, . . . , n}, if one of hσ(2)(x) or hσ(3)(x) is determined
then so is the other, since if a1, a2, a3, b ∈ G are a solution to a1a2a3 = b and b is
fixed then any two of a1, a2, a3 uniquely determine the third.11

Let Y ′ ⊃ Y be the set of indices y such that one, or equivalently both, of the
values hσ(2)(y), hσ(3)(y) is uniquely determined by our choices so far. It is clear
that if y ∈ Y ′ and x, y are in the same cell of Pσ(2) then x ∈ Y ′ (as hσ(2)(x) =
hσ(2)(y), as hσ(2) is Pσ(2)-measurable) and similarly for Pσ(3). Hence Y ′ is both

11Note this only uses the Latin square property of group multiplication, rather than the full
power of G being a group.
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Pσ(2)- and Pσ(3)-measurable, and contains a point of each cell of Pσ(2) ∨ Pσ(3), so
Y ′ = {1, . . . , n} as required. �

Remark 4.7. Note that rank(P) > | suppP|/2, with equality if and only if P is
a pairing: a partition of a set X of even order into |X |/2 pairs. Thus trank(P) >
| suppP|, with equality if and only if P = (P ,P ,P) for some pairing P .

Next we introduce a further notion of rank of a partition triple P which is weaker
than triple rank trank(P) defined above, but which is occasionally more convenient.

Lemma 4.8. For a partition triple P = (P1,P2,P3), define the lower rank by

lrank(P) =
1

2

(
rank(P1) + rank(P2) + rank(P3) + rank(P1 ∨ P2 ∨ P3)

)
.

Then

trank(P) > lrank(P).

Proof. It is immediate from the definition of trank(P) that

trank(P) >
1

2

(
rank(P1) + rank(P2 ∨ P3)

)
+

1

2

(
rank(P2) + rank(P1 ∨ P3)

)
.

The result follows from this and the submodularity property of rank,

rank(P ∨ Q) + rank(P ∧Q) 6 rank(P) + rank(Q),

applied to P2∨P3 and P1∨P3, and the fact that P3 6 (P2 ∨P3)∧ (P1∨P3).
12 �

Finally, the complexity of a partition system P is defined by

cxP = trank(P)− | suppP|.
Note that by Remark 4.7, cxP > 0 with equality if and only if P = (P ,P ,P) for
some pairing P .

We call P = (P1,P2,P3) connected if P1 ∨ P2 ∨ P3 is the indiscrete partition
{suppP}. In general, the connected components of P are its restrictions to each
cell of P1 ∨ P2 ∨ P3.

4.3. The quantities γ and γ0. For any f : {1, . . . , n} → G and any partition
triple P, define normalized quantities

γ0(P, f) = ntrank(P)cP1 ∗ cP2 ∗ cP3(f)

and

γ(P, f) = ntrank(P)PX(cP1 ∗ cP2 ∗ cP3)(f)

= ntrank(P)
(
PX(cP1) ∗ PX(cP2) ∗ PX(cP3)

)
(f)

where X = suppP. As observed above (using Remark 4.4) γ(P, f) = 0 unless P

is a partition system. In this notation, Lemma 4.6 asserts that

γ0(P, f) ∈ [0, 1].

In the rest of this subsection we show that γ(P, f) ≈ γ0(P, f) for pairings and in
general γ(P, f) is not too large.

12To see submodularity, consider a set of “marriages” that produces Q from P ∧Q. Applying
these to P produces P ∨ Q. Thus rank(P ∨ Q)− rank(P) 6 rank(Q)− rank(P ∧Q).
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Lemma 4.9. Suppose P1 = (P1,P2,P3) and P2 = (P ′
1,P ′

2,P ′
3) are two partition

triples such that suppP1 and suppP2 are disjoint, and we define

P = (P1 ∨ P ′
1,P2 ∨ P ′

2,P3 ∨ P ′
3)

to be their union in a natural sense. Then

γ0(P, f) = γ0(P1, f)γ0(P2, f)

and

γ(P, f) = γ(P1, f)γ(P2, f).

In other words, γ and γ0 are multiplicative over connected components.

Proof. It is clear that

cPi∨P′

i
(f) = cPi(f) · cP′

i
(f)

for each i ∈ {1, 2, 3}, so
cP1∨P′

1
∗ cP2∨P′

2
∗ cP3∨P′

3
(f) = cP1 ∗ cP2 ∗ cP3(f) · cP′

1
∗ cP′

2
∗ cP′

3
(f).

The claim for γ0 follows.
Let X = suppP, X1 = suppP1, X2 = suppP2. Then X is the disjoint union

of X1 and X2, and for any function F : GX → C that factors as F = F1 · F2 for
F1 : G

X1 → C and F2 : G
X2 → C we have13

PXF = PX1F1 · PX2F2.

Thus

PXcP1∨P′

1
∗cP2∨P′

2
∗cP3∨P′

3
(f) = PX1(cP1 ∗cP2 ∗cP3)(f |X1 )PX2(cP′

1
∗cP′

2
∗cP′

3
)(f |X2).

This proves the claim for γ. �

Lemma 4.10. Let P = (P ,P ,P) for some pairing P with | suppP| = 2k. Then

γ(P, f) = (1− 1/n)ℓ(−1/n)k−ℓ,

where ℓ is the number of cells of P on which f is constant. In particular |γ(P, f)| 6
1 and

|γ(P, f)− cP(f)| 6 k/n.

Proof. Let P = {p1, . . . , pk}. In general, by Lemma 4.9, γ is multiplicative over
connected components; in this case, this means

γ(P, f) =

k∏

i=1

γ
(
({pi}, {pi}, {pi}), f |pi

)
.

Hence it suffices to check the case k = 1. Suppose P = {X}, where |X | = 2. Then

γ(P, f) = n2PX(c∗3P (f))

= n2(c∗3P (f)− n−3)

= cP(f)− 1/n.

This proves the lemma. �

13In other words, PX = PX1
⊗ PX2

.
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In the next proposition we will use the following notation. Given two partitions
Q 6 R, we write rank(R/Q) to denote rank(R) − rank(Q). This can be thought
of as the number of marriages that have to be applied to the finer partition Q to
obtain the coarser partition R. Additionally, given a partition P on a set X and a
subset Y ⊂ X , define

P ∩ Y = {p ∩ Y : p ∈ P , p ∩ Y 6= ∅},
a partition of Y , and given a partition triple P = (P1,P2,P3) on X define

PY = (P1 ∩ Y,P2 ∩ Y,P3 ∩ Y ),

which is a partition triple on Y (but the restriction of a partition system is not
generally a partition system).

Proposition 4.11. Let P be a partition system. Then |γ(P, f)| 6 2m
′

, where m′

is the number of points of suppP contained in cells of P1 ∨P2 ∨P3 of size at least
3.

Proof. Let m = |X |. First we prove |γ(P, f)| 6 2m. From (3) and Corollary 2.2
we have

PX(cP1 ∗ cP2 ∗ cP3)(f) =
∑

Y ⊂X

(−1)|X|−|Y |QY (cP1 ∗ cP2 ∗ cP3)(f)

=
∑

Y ⊂X

(−1)|X|−|Y |(QY cP1 ∗QY cP2 ∗QY cP3)(f).

Note that
QY cQ = n− rank(Q/Q∩Y )cQ∩Y :

indeed, n− rank(Q/Q∩Y ) represents the probability that a random function

f : {1, . . . , n} → G

is Q-measurable, conditioned on the weaker assumption that f |Y : Y → G is
(Q∩ Y )-measurable. Thus, normalizing,

γ(P, f) =
∑

Y⊂X

(−1)|X|−|Y |γ0(PY , f)n
−t(P,Y )

where

t(P, Y ) = trank(PY )− trank(P) +

3∑

i=1

rank(Pi/Pi ∩ Y ).

Since γ0(PY , f) ∈ [0, 1], it suffices to prove that

t(P, Y ) > 0

for every Y ⊂ X . Assume without loss of generality that trank(P) = rank(P1 ∨
P2) + rank(P3). Then trank(PY ) > rank((P1 ∩ Y ) ∨ (P2 ∩ Y )) + rank(P3 ∩ Y ), so

t(P, Y ) > − rank((P1 ∨ P2)/(P1 ∩ Y ) ∨ (P2 ∩ Y )) +

2∑

i=1

rank(Pi/Pi ∩ Y ).

Hence it suffices to prove

rank(P1 ∨ P2/(P1 ∩ Y ) ∨ (P2 ∩ Y )) 6 rank(P1/P1 ∩ Y ) + rank(P2/P2 ∩ Y ).

More generally, if P ′
i 6 Pi for i = 1, 2 then

rank(P1 ∨ P2/P ′
1 ∨ P ′

2) 6 rank(P1/P ′
1) + rank(P2/P ′

2).
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To see this, consider a set of marriages that produces P1 from P ′
1 and a set of

marriages that produces P2 from P ′
2, and apply both to P ′

1 ∨ P ′
2: the result is

P1 ∨ P2. This proves the upper bound |γ(P, f)| 6 2m.

Now we deduce |γ(P, f)| 6 2m
′

. As in the previous lemma we may assume P

is connected. If m = 2 then m′ = 0 and we are done by the previous lemma. If
m > 2 then m′ = m and we are done by argument above. �

4.4. The Mm,f (z) series. For a partition triple P = (P1,P2,P3) we use the short-
hand

µ(P) = µ(P1)µ(P2)µ(P3).

From (8) and Lemma 4.5 we have14

Mm,f =

(
n!

nn

)3 ∑

| suppP|6m

(
n| suppP|

(n)| suppP|

)3

µ(P)γ(P, f)n− trank(P)

where the sum is over all partition systems on {1, . . . , n}. For z ∈ C define

Mm,f (z) =

(
n!

nn

)3 ∑

| suppP|6m

(
n| suppP|

(n)| suppP|

)3

µ(P)γ(P, f)n−| suppP|zcxP.

By design, Mm,f = Mm,f(1/n). We can now summarize the rest of the proof of
Proposition 4.2. As we have seen (Remark 4.7), trank(P) > | suppP| for every
partition system P, so Mm,f(z) is a polynomial. In this subsection we will show
that |Mm,f (z)| = O((n!/nn)3) for |z| 6 c/m2. From this it follows by elementary
complex analysis that

Mm,f =Mm,f (1/n) =Mm,f(0) + O(m2/n)(n!/nn)3.

Note thatMm,f(0) counts the contribution to Mm,f from partition systems P with
cxP = 0, or equivalently trank(P) = | suppP|: as we have noted (Remark 4.7),
these are precisely the partition systems of the form P = (P ,P ,P) for some pairing
P . In the next subsection, we will show that

Mm,f(0) ≈ Sm(f)

(
n!

nn

)3

,

and this will complete the proof of Proposition 4.2.
In order to bound Mm,f(z) we first need to bound some generating functions

related to “associated Stirling numbers of the second kind”: these numbers count
partitions of a set into nonsingleton subsets. Let

Π′
X = {P ∈ ΠX : suppP = X}.

Let Π′
m = Π′

{1,...,m}. For m > 1 define

αm(t) =
∑

P∈Π′

m

|µ(P)| trank(P).

Lemma 4.12. If t ∈ (0, 1/m), we have

αm(t) 6 tm/2m!em/2

mm/2
exp(φ(mt)m)

14Here, and elsewhere, (n)m denotes the falling factorial n(n− 1) . . . (n−m+ 1).
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where φ is the monotonic function (0, 1) → (0,∞) given by

φ(θ) =
(
− log(1− θ1/2)− θ1/2

)
/θ − 1/2.

Remark 4.13. Note φ(θ) → 0 as θ → 0, and the remaining expression is compa-
rable (for simplicity when m is even) to the contribution

tm/2 m!

2m/2(m/2)!

from the minimal-rank partitions P ∈ Π′
m, the pairings.15

Proof. We may identify αm(t)/m! as the coefficient of xm in exp(a(x, t)), where

a(x, t) =

∞∑

k=2

xktk−1/k.

For t, |x| < 1 we have

a(x, t) = −x− 1

t
log(1− xt).

Since the coefficients of a(x, t) and hence of exp(a(x, t)) are nonnegative, for any
x ∈ (0, 1) we have

αm(t) 6 m!x−m exp(a(x, t)).

The optimal choice of x has different behavior either side of the “phase transition”
at t = 1/m. On the side t < 1/m of interest, we set x = (m/t)1/2. Then

a(x, t) = −(m/t)1/2 − 1

t
log
(
1− (mt)1/2

)
= (1/2 + φ(mt))m.

Substituting this into the expression above gives the claimed bound. �

We prove one more technical lemma in the same spirit. For m > 0 define16

βm(t) =
∑

P∈Π′

m

trank(P)−2m
∏

p∈P

2|p|[|p|>2]α|p|(t)
3.

In the same way that αm(t) is related to counting partitions P ∈ Π′
m with given

rank, the generating function βm(t) is related to a weighted count of configurations
{
(P ,P1,P2,P3) ∈ (Π′

m)4 : Pi 6 P for i = 1, 2, 3
}

where the total rank of P , P1, P2 and P3 is specified. This counting problem is
rather convoluted, but arises naturally in the proof of Proposition 4.15 below.

We need the following bound.

Lemma 4.14. If t 6 0.18/m then
m∑

k=0

βk(t)/k! = O(1).

Moreover, quantitatively, if m 6 20 and t 6 0.01 then
m∑

k=0

βk(t)/k! < e.

15Thinking of αm(t) as a Gibbs distribution on Π′
m where the energy is rankP, this says that

the range t < 1/m (where t is a proxy for the temperature) is in “solid state”, in the sense that
most of the probability mass is concentrated in the lowest energy states.

16Here and subsequently, [E] denotes the value 1 if the statement E is true and 0 if it is false.
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Proof. As formal power series,

∞∑

k=0

βk(t)
xk

k!
= exp

(
∞∑

r=2

2r[r>2]αr(t)
3t−r−1x

r

r!

)
.

Therefore, for real x > 0 we have

m∑

k=0

βk(t)
xk

k!
6 exp

(
m∑

r=2

2r[r>2]αr(t)
3t−r−1x

r

r!
.

)
,

and in particular by setting x = 1 we have

m∑

k=0

βk(t)/k! 6 exp

(
m∑

r=2

2r[r>2]αr(t)
3t−r−1/r!

)
. (11)

By the previous lemma and the bound r! 6 er1/2(r/e)r , the latter series is bounded
termwise by

O(1)

m∑

r=2

r2rtr/2−1(r/e)r/2 exp(3φ(rt)r).

Since t 6 0.18/m 6 0.18/r and φ(rt) 6 φ(0.18) (as r 6 m and φ is monotonic) this
series is bounded by

O(1)

∞∑

r=2

r22r(0.18/e)r/2 exp(3φ(0.18)r),

and it is readily verified that this is a convergent sum.17

For the quantitative part of the lemma, we use the bound (11) and explicit values
of αm(t) for m 6 20. For any given m, by definition αm(t) is an integer polyno-
mial of degree at most m− 1 in t, and moreover its coefficients may be computed
efficiently: e.g., by the argument in Lemma 4.12, αm(t)/m! is the coefficient of xm

in
m/2∑

ℓ=0

1

ℓ!

(
m∑

k=2

xktk−1/k

)ℓ

.

Using a computer we find, for t = 0.01,

20∑

r=2

2r[r>2]αr(t)
3t−r−1/r! ≈ 0.981 < 1,

as claimed. �

We can now bound Mm,f (z).

Proposition 4.15. For |z|1/2 6 0.18/m, we have

|Mm,f (z)| 6 O(1)

(
nm

(n)m

)2(
n!

nn

)3

.

Quantitatively, for m 6 20 and |z|1/2 6 0.01 we have

|Mm,f(z)| 6 e

(
nm

(n)m

)2(
n!

nn

)3

.

17Crucially, log 4− 1 + log θ + 6φ(θ) is negative for θ = 0.18. This function has a root around
θ ≈ 0.186, so the lemma would not hold for t = 0.19/m, for instance.
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Proof. By the definition of Mm,f(z), the triangle inequality, and Proposition 4.11,
the quantity (nn/n!)3|Mm,f(z)| is bounded by

∑

|X|6m

(
n|X|

(n)|X|

)3

n−|X|
∑

suppP=X

2m
′(P)|µ(P)| |z|cxP,

where m′(P) is the number of points of suppP contained in connected components
of size at least 3. Since the sum over P now depends only on |X |, not X , we may
rewrite this as

m∑

k=0

(
n

k

)(
nk

(n)k

)3

n−k
∑

suppP={1,...,k}

2m
′(P)|µ(P)| |z|trank(P)−k.

When |z| 6 1 we may apply the bound trank(P) > lrank(P) and rearrange again
to bound this above by

m∑

k=0

(
nk

(n)k

)2
1

k!

∑

suppP={1,...,k}

2m
′(P)|µ(P)| |z|lrank(P)−k.

The expression
(
nk/(n)k)

2 is largest when k = m, so we now apply this bound and
pull out this factor. By separating the sum based on the partition Q = P1∨P2∨P3,
we may rewrite the remaining expression as

m∑

k=0

1

k!

∑

suppQ={1,...,k}

|z|rank(Q)/2−k
∑

P=(P1,P2,P3)
suppPi={1,...,k}
P1∨P2∨P3=Q

2m
′(P)

3∏

i=1

|µ(Pi)| |z|rank(Pi)/2.

Replacing the condition P1∨P2∨P3 = Q with the weaker condition P1,P2,P3 6 Q
yields another upper bound, which rearranges to

m∑

k=0

1

k!

∑

suppQ={1,...,k}

|z|rank(Q)/2−k
∏

q∈Q

2|q|[|q|>2]


 ∑

suppP=q

|µ(P)| |z|rank(P)/2




3

,

since choosing P 6 Q with full support is equivalent to choosing a partition P ′

of q of full support independently for each cell q of Q, and the terms |µ(P)| and
|z|rank(P)/2 are multiplicative across the cells q. Now note that this expression is
simply

m∑

k=0

1

k!
βk(|z|1/2).

Hence

|Mm,f(z)| 6
(
n!

nn

)3(
nm

(n)m

)2 m∑

k=0

1

k!
βk(|z|1/2),

and the proposition thus follows from the previous lemma. �

Finally, we apply Lemma 2.3. Specifically, in this case,

|Mm,f (u)−Mm,f(0)| =
∣∣∣∣∣
1

2πi

∮

|z|=R

Mm,f(z)u

(z − u)z
dz

∣∣∣∣∣ 6 max
|z|=R

|Mm,f(z)| ·
|u|/R

1− |u|/R
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for |u| < R. Taking u = 1/n and assuming 1/n < R 6 (0.18/m)2,

|Mm,f −Mm,f(0)| 6 O(1)

(
nm

(n)m

)2(
n!

nn

)3

· n−1/R

1− n−1/R
, (12)

or, assuming 1/n < R 6 10−4 and m 6 20,

|Mm,f −Mm,f (0)| 6 e

(
nm

(n)m

)2(
n!

nn

)3

· n−1/R

1− n−1/R
. (13)

It will be useful to control the term nm/(n)m when m = O(n1/2). Note that for
t > 0,

(1− t)−1 = 1 + t/(1− t) 6 exp
(
t/(1− t)

)

and so

log

(
nm

(n)m

)
=

m−1∑

j=0

log

(
1

1− j/n

)
6

m−1∑

j=0

j/n

1−m/n
6

m2/2n

1−m/n
. (14)

We deduce the following two corollaries of (13).

Corollary 4.16. If m < 0.17n1/2,

|Mm,f −Mm,f(0)| 6 O(m2/n)

(
n!

nn

)3

.

Proof. Take R = (0.18/m)2 in (12). The hypthesis and (14) imply that nm/(n)m =
O(1). �

Corollary 4.17. If n > 105 and m 6 20,

|Mm,f −Mm,f(0)| < 0.31

(
n!

nn

)3

.

Proof. Take R = 10−4 in (13). By (14),

nm

(n)m
6 exp

(
202/105

1− 20/105

)
< 1.0021.

Thus (13) is bounded by

(1.0021)2e
n−1/R

1− n−1/R

(
n!

nn

)3

< 0.31

(
n!

nn

)3

. �

4.5. The constant term Mm,f(0). We have

Mm,f(0) =

(
n!

nn

)3 ∑

| suppP|6m
cxP=0

(
n| suppP|

(n)| suppP|

)3

µ(P)γ(P, f)n−| suppP|.

As we have mentioned several times now, cxP = 0 if and only if P = (P ,P ,P) for
some pairing P . In this case, where say | suppP| = 2k, we have (for k = O(n1/2))

n| suppP|

(n)| suppP|
=

n2k

(n)2k
≈ 1,

µ(P) = µ(P)3 = (−1)k,

γ(P, f) ≈ cP(f)
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(the last holds by Lemma 4.10). Let Nk be the number of pairings P of support
size 2k such that f is P-measurable; in other words, Nk is the number of unordered
k-tuples of disjoint collisions of f . We have

Nk ≈
(
coll(f)

k

)
≈ coll(f)k

k!
.

Thus we should have

Mm,f(0) ≈
(
n!

nn

)3 ⌊m/2⌋∑

k=0

(−1)k
coll(f)k

k!
n−2k =

(
n!

nn

)3

Sm(f).

To be precise, assuming 2k 6 0.17n1/2 and n > 105 we have 2k/n 6 0.17/n1/2 <
0.00054, so (14) gives

1 6
n2k

(n)2k
6 exp(2.0015k2/n)

and by Lemma 4.10 we have

|γ(P, f)− cP(f)| 6 k/n

so
∣∣∣∣∣

(
n2k

(n)2k

)3

γ(P, f)− cP(f)

∣∣∣∣∣ 6
(
n2k

(n)2k

)3

|γ(P, f)− cP(f)|+
∣∣∣∣∣

(
n2k

(n)2k

)3

− 1

∣∣∣∣∣ cP(f)

6 e6.004k
2/nk/n+ (e6.004k

2/n − 1)

6 3k2/n

(since x 7→ ex + (ex − 1)/x is bounded by 3 for 0 6 x 6 6.004× 0.172/4).
The total number of pairings of support size 2k is

n!

2kk!(n− 2k)!
6

n2k

2kk!
.

Thus
∣∣∣∣∣∣∣∣

∑

| suppP|=2k
cxP=0

(
n2k

(n)2k

)3

µ(P)γ(P, f)n−2k − (−1)kNkn
−2k

∣∣∣∣∣∣∣∣
6

3k2/n

2kk!
. (15)

Also, the difference coll(f)k − k!Nk is precisely the number of ordered k-tuples of
collisions, at least two of which overlap, so

0 6 coll(f)k − k!Nk 6 2

(
k

2

)
n2k−1.

Thus ∣∣∣∣(−1)kNkn
−2k − (−1)k

coll(f)k

k!
n−2k

∣∣∣∣ 6
k2n−1

k!
. (16)
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Combining (15) and (16),
∣∣∣∣∣

(
n!

nn

)−3

Mm,f (0)−Sm(f)

∣∣∣∣∣ 6
∑

2k6m

(
3k2/n

2kk!
+
k2n−1

k!

)

6
1

n

∞∑

k=0

(
3k2

2kk!
+
k2

k!

)

=
(
3(3e1/2/4) + 2e

)
/n < 10/n.

By combining with Corollary 4.16 we have
∣∣∣∣∣

(
n!

nn

)−3

Mm,f −Sm(f)

∣∣∣∣∣ 6 O(m2/n)

provided m < 0.17n1/2, and by combining with Corollary 4.17 we have
∣∣∣∣∣

(
n!

nn

)−3

Mm,f −Sm(f)

∣∣∣∣∣ < 0.32

provided n > 105 and m 6 20. This finishes the proof of Proposition 4.2.

5. Low-entropy minor arcs

5.1. Sparseval. For ρ1 ⊗ · · · ⊗ ρn, recall from Section 2.2 that supp ρ is the set of
i such that ρi 6= 1, and that ρ is called m-sparse if | supp ρ| = m. The first part of
following lemma, in the case that G is abelian, is [EMM19, Theorem 5.1]. We will
deduce the general version essentially by demonstrating that the lemma does not
depend on the group operation at all.
Lemma 5.1. We have

∑

m-sparse ρ

‖1̂S(ρ)‖2HS dim ρ 6 O(m1/4)eO(m3/2/n1/2)

(
n

m

)1/2(
n!

nn

)2

.

In fact,

∑

m-sparse ρ

‖1̂S(ρ)‖2HS dim ρ 6 (1 − (m/n)1/2)−1es(m/n)n

(
n!

nn

)2

,

where

s(t) = t1/2 − (1 − t) log(1 + t1/2)− t log(t1/2).

Although expressed in terms of Fourier analysis, we will show that this lemma
has nothing to do with group theory, and in particular we will deduce it from the
abelian case.

Proof. We recall also from Section 2.2 the projection operators PX on L2(Gn), for
each X ⊂ {1, . . . , n}. By Lemma 2.1 and Parseval we have

‖PX1S‖2 =
∑

supp ρ=X

‖1̂S(ρ)‖2HS dim ρ

and hence ∑

m-sparse ρ

‖1̂S(ρ)‖2HS dim ρ =
∑

|X|=m

‖PX1S‖2. (17)
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However, the right-hand side does not depend on the group operation on G, so the
first statement actually follows from [EMM19, Theorem 5.1].

The more precise second bound follows from the proof of [EMM19, Theorem 5.1].
Following the notation of that proof, let the quantity in (17) be equal to

Q(m,n)n!2/n2n.

Then for any r in the range 0 < r < n we have

Q(m,n) 6 max
±

e±r

(1± r/n)n−m+1

nm

rm
.

Taking r = (mn)1/2, and writing t = m/n, it follows that

Q(m,n) 6 max
±

exp
(
±t1/2 − (1− t+ 1/n) log(1 ± t1/2)− t log(t1/2)

)n

6 (1− t1/2)−1 max
±

exp
(
±t1/2 − (1 − t) log(1± t1/2)− t log(t1/2)

)n
.

The larger value is achieved by +, where we get (1− t1/2)−1es(t)n. �

5.2. An inverse theorem for m-sparse representations. In this subsection we

prove the following uniform bound for the operator norm ‖1̂S(ρ)‖op for m-sparse ρ
(cf. [Ebe17, Lemma 4.1]).

Lemma 5.2. Let ρ = ρ1 ⊗ · · · ⊗ ρn be an m-sparse representation of Gn, where
m 6 n/2. Then

‖1̂S(ρ)‖op 6

(
n

m

)−1/2
n!

nn
.

We will need to know when this bound is sharp within a subexponential factor.
The following “inverse theorem” characterizes this situation: this bound is nearly
sharp only when ρ is roughly ρm0 ⊗ 1n−m for some one-dimensional ρ0 of order two.

Theorem 5.3. Suppose ρ is an m-sparse representation of Gn, where m 6 n/3,18

and suppose that no more than (1 − ǫ)m of the nontrivial factors of ρ are equal to
the same one-dimensional representation ρ0 of order two. Then

‖1̂S(ρ)‖op 6 0.99ǫm
(
n

m

)−1/2
n!

nn
.

We begin with the proof of Lemma 5.2. Assume for notational convenience that
ρ = ρ1 ⊗ · · · ⊗ ρm ⊗ 1n−m, where ρi : G → U(Vi) (1 6 i 6 m) are nontrivial
irreducible representations of G (permuting the factors does not affect the operator

norm). Then 1̂S(ρ) is an operator on V1 ⊗ · · · ⊗ Vm, and by definition

1̂S(ρ) =
(n−m)!

nn

∑

x1,...,xm

distinct

ρ1(x1)⊗ · · · ⊗ ρm(xm).

Since ρm is nontrivial and irreducible,
∑

x ρm(x) = 0, so

1̂S(ρ) = − (n−m)!

nn

∑

x1,...,xm−1

distinct

∑

xm∈{x1,...,xm−1}

ρ1(x1)⊗ · · · ⊗ ρm(xm).

18We could replace n/3 by 0.49n at the cost of worsening the constant 0.99.
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Exchanging the order of summation, we write 1̂S(ρ) =
∑m−1

j=1 Rj where

Rj = − (n−m)!

nn

∑

x1,...,xm−1

distinct

ρ1(x1)⊗ · · · ⊗ ρm−1(xm−1)⊗ ρm(xj)

for 1 6 j 6 m− 1. For simplicity consider Rm−1. In equivalent notation,

Rm−1 = − (n−m)!

nn

∑

x1,...,xm−1

distinct

ρ1(x1)⊗ · · · ⊗ (ρm−1 ⊗̂ ρm)(xm−1).

We can decompose ρm−1 ⊗̂ ρm as an orthogonal direct sum of irreducible represen-
tations:

ρm−1 ⊗̂ ρm = σ1 ⊕ · · · ⊕ σk,

and correspondingly Rm−1 =
⊕k

r=1Rm−1,σr where

Rm−1,σr = − (n−m)!

nn

∑

x1,...,xm−1

distinct

ρ1(x1)⊗ · · · ⊗ σr(xm−1).

We observe that Rm−1,σr is essentially the same as − 1
n−m+1 1̂S(ρ1⊗· · ·⊗ρm−2⊗σr),

and certainly these have the same operator norm. Since the direct sum above is
orthogonal, and since ‖R⊕ S‖op = max(‖R‖op, ‖S‖op), we have

‖Rm−1‖op = max
16r6k

1

n−m+ 1
‖1̂S(ρ1 ⊗ · · · ⊗ ρm−2 ⊗ σr)‖op.

Note that ρ1 ⊗ · · · ⊗ ρm−2 ⊗ σr is either (m− 1)- or (m− 2)-sparse, depending on
whether σr is trivial.

The situation for other Rj is identical up to permuting factors. Applying the

triangle inequality to 1̂S(ρ) =
∑m−1

j=1 Rj , we deduce

‖1̂S(ρ)‖op 6
m− 1

n−m+ 1
max

(m − 1)- or (m − 2)-sparse ρ′

‖1̂S(ρ′)‖op.

The claimed bound (which is monotonic in m for m 6 n/2) follows from this by

induction, with the base cases 1̂S(1
n) = n!/nn and 1̂S(ρ1 ⊗ 1n−1) = 0.

Remark 5.4. We are being a little lazy with the form of the bound. The same
recurrence actually proves

‖1̂S(ρ)‖op 6
(m− 1)(m− 3) · · · 1

(n−m+ 1)(n−m+ 3) · · · (n− 1)
· n!
nn

when m is even, and

‖1̂S(ρ)‖op 6
m− 1

n−m+ 1
· (m− 2)(m− 4) · · · 1
(n−m+ 2)(n−m+ 4) · · · (n− 1)

· n!
nn

when m is odd.

In order to prove Theorem 5.3, we re-examine the above proof. Given ρ =
ρ1 ⊗ · · · ⊗ ρm ⊗ 1n−m, and given indices 1 6 i < j 6 m and σ an irreducible
component of ρi ⊗̂ ρj, we write

ρ′i,j,σ = ρ1 ⊗ · · · ⊗ σ ⊗ · · · ⊗ 1⊗ · · · ⊗ ρm ⊗ 1n−m

for the representation obtained by replacing ρi with σ and ρj with the trivial
representation. (In the above, we always permute factors so that i = m.)
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Two potentially weak inequality steps in the above proof are (i) pessimistically
assuming that ρ′i,j,σ is (m−2)-sparse rather than (m−1)-sparse when applying the

recursive bound, and (ii) using the triangle inequality on
∥∥∥
∑m−1

j=1 Rj

∥∥∥
op
.

These and all other steps in the proof are sharp when each of the m nontrivial
factors ρi is equal to the same one-dimensional ρ0 of order two: in this case the
representation σi is always the trivial representation, so the sparsity is indeedm−2,
and because the representation is one-dimensional the triangle inequality is sharp.
Thus

‖1̂S(ρ)‖op =
(m− 1)(m− 3) · · · 1

(n−m+ 1)(n−m+ 3) · · · (n− 1)

n!

nn

for such ρ.
Let us say that ρ has height h if it takes h iterations of the recursion in the proof

of Lemma 5.2 to get to a representation of the above form. In other words,

(1) ρ has height zero if, up to permutation of factors, ρ = ρm0 ⊗ 1n−m for some
even m and some one-dimensional ρ0 of order two;

(2) ρ = ρ1 ⊗ · · · ⊗ ρm ⊗ 1n−m has height at most h if one can pick indices
1 6 i < j 6 m and an irreducible component σ of ρi ⊗̂ ρj, such that ρ′i,j,σ
has height at most h− 1.

Note that ρ has finite height if and only if ρ1 ⊗̂ · · · ⊗̂ρn contains a copy of the trivial
representation, i.e., if and only if 〈χ1 · · ·χn, 1〉 6= 0. If ρ does not have finite height

then 1̂S(ρ) = 0.
Using height for bookkeeping, we will use the idea of the proof of Lemma 5.2 to

prove the following recurrence.

Proposition 5.5. Let F (m,h) be the maximum value of ‖1̂S(ρ)‖op over all m-
sparse ρ of height at least h. If m > 2 and h > 0 then

F (m,h) 6
m− 1

n−m+ 1
max

{
F (m− 1, h− 1)

(1− θ)F (m − 1, h− 1) + θF (m− 2, h− 1),

where

θ = max

(
m

2m− 2
,

(
1

m− 1

(
1 +

m− 2

d

))1/2
)
,

and where d is the minimal dimension of a non-one-dimensional self-dual represen-
tation of G.

We recall some representation-theoretic preliminaries. For a representation U
of G, we denote by UG the G-invariant subspace of U . The case σ = 1 in the
above discussion (which is of interest as this is when the sparsity decreases by 2)
corresponds to considering the subspaces (Vi ⊗ Vj)

G.
For given representations U, V , there is a natural correspondence between U ⊗V

and the space of linear maps U∗ → V , where U∗ is the linear dual (identifying u⊗v
with the map ψ 7→ ψ(u)v). The subspace (U⊗V )G corresponds to the G-equivariant
maps U∗ → V . If U, V are irreducible, by Schur’s lemma the space of G-equivariant
maps U∗ → V has dimension 1 if U∗ and V are isomorphic as G-representations
(spanned by such an isomorphism) and is zero otherwise. If V = U∗, the element
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of (U ⊗ V )G corresponding to the identity may be written explicitly as

d∑

i=1

ui ⊗ u∗i

where u1, . . . , ud is any basis for U and u∗1, . . . , u
∗
d is the dual basis.

It follows that the case σ = 1 can only arise if Vi and Vj are dual to each other.
In this case, we will need the following lemma, which can be interpreted as saying
that the subspaces of V1⊗· · ·⊗Vm induced by (Vi⊗Vj)G are somewhat orthogonal
across different choices of j.

Lemma 5.6. Let ρ : G → U(V ) be an irreducible representation of G. Suppose
v, w ∈ V ⊗ V ∗ ⊗ V are unit vectors such that

v ∈ (V ⊗ V ∗)G ⊗ V

and

w ∈ V ⊗ (V ∗ ⊗ V )G.

Then |〈v, w〉| 6 1/ dimV .

Proof. Let u1, . . . , ud be any orthonormal basis for V where d = dim V . By the
discussion above, we may write

v =

(
d∑

i=1

ui ⊗ u∗i

)
⊗ v′

and

w = w′ ⊗
(

d∑

i=1

u∗i ⊗ ui

)

for some v′, w′ ∈ V . Then

‖v‖2 = 1 =

d∑

i=1

‖ui ⊗ u∗i ⊗ v′‖2 = d‖v′‖2

so ‖v′‖ = 1/
√
d, and similarly ‖w′‖ = 1/

√
d. But

〈v, w〉 =
d∑

i,j=1

〈ui, w′〉 〈u∗i , u∗j 〉 〈v′, uj〉

=

d∑

i=1

〈v′, ui〉 〈ui, w′〉

=〈v′, w′〉
and so |〈v, w〉| 6 ‖v′‖ ‖w′‖ = 1/d as claimed. �

Proof of Proposition 5.5. Suppose ρ has sparsity m > 2 and height h > 0. We may
assume ρ = ρ1 ⊗ · · · ⊗ ρm ⊗ 1n−m, where each ρi is nontrivial. Since ρ has positive
height, one of the following alternatives holds:

(1) there is some nontrivial factor, without loss of generality ρm, that is dual
to at most m/2 of the other factors ρi;

(2) ρ = ρm0 ⊗ 1n−m for some self-dual ρ0 of dimension at least 2.
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Assume (1) holds. Then we proceed as in the proof of Lemma 5.2. Let A ⊂
{1, . . . ,m − 1} be the indices j such that ρj ∼= ρ∗m; so |A| 6 m/2. The tensor

product ρj ⊗̂ ρm (1 6 j 6 m− 1) contains a trivial component only if j ∈ A, so in
the language of the proof of Lemma 5.2,

‖Rj‖op 6
1

n−m+ 1

{
F (m− 2, h− 1) : j ∈ A

F (m− 1, h− 1) : j /∈ A.

Applying the triangle inequality to 1̂S(ρ) =
∑m−1

j=1 Rj ,

‖1̂S(ρ)‖op 6
m− 1

n−m+ 1
((1− θ)F (m− 1, h− 1) + θF (m− 2, h− 1))

for some θ 6 (m/2)/(m− 1).
Now assume (2) holds, for say ρ0 : G → U(V0). Thus V1, . . . , Vm ∼= V0. For

1 6 j 6 m−1, let Φj be the projection from V1⊗· · ·⊗Vm to the subspace obtained
by replacing Vj ⊗Vm with its G-invariant subspace (Vj ⊗Vm)G. By Lemma 5.6, for
any 1 6 i < j 6 m− 1, if u ∈ imΦi and w ∈ imΦj then19

|〈u,w〉| 6 ‖u‖‖w‖/ dimV0.

Again in the language of Lemma 5.2, recall that

1̂S(ρ) =
m−1∑

j=1

⊕

σ

Rj,σ,

where the direct sum runs over irreducible components σ of ρj ⊗̂ ρm, and the

operator Rj,σ acts like − 1
n−m+1 1̂S(ρ1⊗· · ·⊗ ρ̂j⊗· · ·⊗ρm−1⊗σ). Note that Rj,1 =

Rj,1Φj , and Rj,σΦj = 0 for σ nontrivial. Thus for a unit vector v ∈ V1 ⊗ · · · ⊗ Vm,

‖Rjv‖2 =
∑

σ

‖Rj,σv‖2

= ‖Rj,1Φjv‖2 +
∑

σ 6=1

‖Rj,σ(1 − Φj)v‖2

6 ‖Rj,1‖2op‖Φjv‖2 +max
σ 6=1

‖Rj,σ‖2op(1− ‖Φjv‖2).

Note that

‖Rj,1‖op 6
1

n−m+ 1
F (m− 2, h− 1)

and

max
σ 6=1

‖Rj,σ‖op 6
1

n−m+ 1
F (m− 1, h− 1).

Hence

‖Rjv‖ 6
1

n−m+ 1

(
F (m− 2, h− 1)2‖Φjv‖2 + F (m− 1, h− 1)2(1− ‖Φjv‖2)

)1/2
,

19It is straightforward to show that if U,U ′ are subspaces with an upper bound on inner
products of this form, then U ⊗W and U ′ ⊗W obey the same bound for any inner product space
W .
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and

‖1̂S(ρ) v‖ 6
1

n−m+ 1
·

m−1∑

j=1

(
F (m− 2, h− 1)2 ‖Φjv‖2 + F (m− 1, h− 1)2(1 − ‖Φjv‖2)

)1/2
.

Applying Cauchy–Schwarz and rearranging gives

‖1̂S(ρ) v‖ 6
m− 1

n−m+ 1

(
θF (m− 2, h− 1)2 + (1− θ)F (m− 1, h− 1)2

)1/2
,

where

θ =
1

m− 1

m−1∑

j=1

‖Φjv‖2.

To bound θ, note that if u1, . . . , um−1 are vectors with uj ∈ imΦj , then
∥∥∥∥∥∥

m−1∑

j=1

uj

∥∥∥∥∥∥

2

=
∑

j

‖uj‖2 +
∑

i6=j

〈ui, uj〉,

which by Lemma 5.6 and the AM–GM inequality is bounded by

∑

j

‖uj‖2 +
∑

i6=j

1

dimV0
‖ui‖‖uj‖ 6

(
1 +

m− 2

dimV0

)m−1∑

j=1

‖uj‖2.

In other words, the map
⊕m−1

j=1 imΦj → V1 ⊗ · · · ⊗ Vm sending (u1, . . . , um−1) 7→

u1 + · · ·+ um−1 has operator norm at most
(
1 + m−2

dimV0

)1/2
, and hence so does its

adjoint, which is the map v 7→
(
Φjv)

m−1
j=1 . It follows that

m−1∑

j=1

‖Φjv‖2 6

(
1 +

m− 2

dim V0

)
‖v‖2

and so

θ 6
1

m− 1

(
1 +

m− 2

dimV0

)
.

Finally, note the inequality

((1− θ)x2 + θy2)1/2 6 (1− θ1/2)x+ θ1/2y

for 0 6 x 6 y and θ ∈ [0, 1]. Indeed we have

(1− θ)x2 + θy2 = (1− θ1/2)(1 + θ1/2)x2 + θy2

6 (1− θ1/2)2x2 + 2θ1/2(1− θ1/2)xy + θy2

=
(
(1− θ1/2)x+ θ1/2y

)2
.

This completes the proof. �

Corollary 5.7. For m 6 n/3 we have

F (m,h) 6 0.97h
(
n

m

)−1/2
n!

nn
.
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Proof. We use the previous proposition and induction on height. The case h = 0
follows from Lemma 5.2. If m = 2 and h = 1, from Remark 5.4 we have

‖1̂S(ρ)‖op 6
1

n− 1

n!

nn
=

(n/(n− 1))1/2

21/2

(
n

2

)−1/2
n!

nn
6 0.78

(
n

2

)−1/2
n!

nn

(as n > 6). Hence assume h > 1, m > 3. Then by the previous proposition and the
inductive hypothesis we have

F (m,h) 6
m− 1

n−m+ 1

(
(1− θ)

(
n

m− 1

)−1/2

+ θ

(
n

m− 2

)−1/2
)
0.97h−1 n!

nn

=
m− 1

n−m+ 1

(
(1− θ)

(
n−m

m

)1/2

+ θ

(
(n−m)(n−m+ 1)

m(m− 1)

)1/2
)

× 0.97h−1

(
n

m

)−1/2
n!

nn

6

(
(1− θ)

(
m− 1

n−m+ 1

)1/2

+ θ

)
0.97h−1

(
n

m

)−1/2
n!

nn
.

Now note that if 3 6 m 6 n/3 then θ 6 (3/4)1/2, so

(1− θ)

(
m− 1

n−m+ 1

)1/2

+ θ 6 0.97. �

The claimed inverse theorem, Theorem 5.3, follows directly: if no more than
(1− ǫ)m of the nontrivial factors of ρ are equal to the same one-dimensional ρ0 of
order two, then ρ has height at least ǫm/2.

5.3. The m-sparse contribution. The total contribution to (4) from m-sparse
representations is bounded by

Cm =
∑

m-sparse ρ

‖1̂S(ρ)‖op‖1̂S(ρ)‖2HS dim ρ.

We now use the bounds proved in this section to bound this sum (and in particular
prove (6)). Recall that, together with Lemma 4.1 and the major arc bounds, this
dispatches all representations ρ = ρ1 ⊗ · · · ⊗ ρn where all but m representations ρi
are equal to the same one-dimensional representation ρ0.

Proposition 5.8. There is a constant c > 0 such that

Cm 6 O

(
e−c log(n/m)

log n m

(
n!

nn

)3
)

for m 6 cn/(logn)2 and sufficiently large n.

Call an m-sparse representation ρ exceptional if more than (1− ǫ)m of its non-
trivial factors are equal to the same one-dimensional ρ0 of order two, where ǫ > 0 is
a parameter we can optimize. Let Em be the set of exceptional ρ. By Theorem 5.3
we have

max
ρ/∈Em

‖1̂S(ρ)‖op 6 0.99ǫm
(
n

m

)−1/2
n!

nn
,
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so by Lemma 5.1,

∑

ρ/∈Em

‖1̂S(ρ)‖op‖1̂S(ρ)‖2HS dim ρ 6 O(m1/4)eO(m3/2/n1/2)0.99ǫm
(
n!

nn

)3

. (18)

For ρ ∈ Em we just use Lemma 5.2. Note that dim ρ 6 nǫm/2 (since irreducible
representations of G have dimension at most n1/2). Thus

‖1̂S(ρ)‖op‖1̂S(ρ)‖2HS dim ρ 6 ‖1̂S(ρ)‖3op(dim ρ)2

6

(
n

m

)−3/2

nǫm

(
n!

nn

)3

.

The number of ρ ∈ Em is at most(
n

m

)
mǫm+1nǫm+1

(as there are
(
n
m

)
ways to choose which factors should be nontrivial, at most m

ways to choose how many ρi should be equal to ρ0, at most
(

m
⌊ǫm⌋

)
6 mǫm ways to

choose which factors should be equal to ρ0, and at most nǫm+1 ways to choose ρ0
and the other ρi from the n or fewer irreducible representations of G). Thus

∑

ρ∈Em

‖1̂S(ρ)‖op‖1̂S(ρ)‖2HS dim ρ 6

(
n

m

)−1/2

n3ǫm+2

(
n!

nn

)3

6 (m/n)m/2n3ǫm+2

(
n!

nn

)3

.

The proposition follows from this and (18) by taking ǫ = 1
10

log(n/m)
logn .

Finally, we note some quantitative improvements in the case that G has no low-
dimensional self-dual representations. In particular assume that |Gab| is odd. Then
there are in fact no order-two one-dimensional representations ρ0, and so every
m-sparse representations has height at least m/2. Hence, under this hypothesis
the height may be completely ignored: writing F (m) for the maximum value of

‖1̂S(ρ)‖op over all m-sparse ρ, Proposition 5.5 states more simply that for m > 2,

F (m) 6
m− 1

n−m+ 1
max

{
F (m− 1)

(1 − θ)F (m− 1) + θF (m− 2),
(19)

where θ is as in the original statement.
Let us now assume n > 105 and G has no self-dual representation of dimension

less than 4. Then in Proposition 5.5 we have

θ 6
1

2

(
m+ 2

m− 1

)1/2

(recalling m > 2). If we define η(m) by

F (m) = η(m)

(
n

m

)−1/2
n!

nn

then (19) implies the bound (for m > 2)

η(m) 6

(
(1− θ)

(
m− 1

n−m+ 1

)1/2

+ θ

)
max

(
η(m− 1), η(m− 2)

)
.
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Using this recurrence and the initial values η(0) = 1 and η(1) = 0 (see, e.g.,
Remark 5.4), we can tabulate bounds for η(m) for m 6 1000, say, in the worst case
n = 105. For m ∈ [1000, 0.06n], we claim

η(m) 6 0.8m.

This holds for m ∈ {1000, 1001} by direct calculation, and for larger m it suffices
to calculate that θ < 0.51 and

(1− θ)

(
m− 1

n−m+ 1

)1/2

+ θ < 0.82.

We use these effective bounds in the following proposition.

Proposition 5.9. Suppose that G has no self-dual representation of dimension less
than 4 and n > 105. Then

0.06n∑

m=21

Cm < 0.12

(
n!

nn

)3

.

Proof. By the previous discussion and Lemma 5.1 we have

Cm 6
(
1− (m/n)1/2

)−1
η(m)es(m/n)n

(
n

m

)−1/2 (
n!

nn

)3

.

Note that

log

(
n

m

)
>

∫ n

n−m

log x dx−
(
m logm−m+1+

1

2
logm

)
= nh(m/n)− 1

2
logm− 1

where h(t) is the entropy function

h(t) = t log(1/t) + (1− t) log(1/(1− t)).

Thus

Cm 6
(
1− (m/n)1/2

)−1
e1/2m1/4η(m)ef(m/n)m

(
n!

nn

)3

,

where

f(t) =
s(t)− h(t)/2

t
.

Note that f is monotonically increasing on [0, 0.06]. Now by direct calculation,
using tabulated bounds for η(m), we have

e1/2
1000∑

m=21

(
1− (m/105)1/2

)−1
m1/4η(m)ef(m/105)m < 0.11.

On the other hand, the sum over m ∈ [1001, 0.06n] is bounded by the convergent
sum

1.33e1/2
∞∑

m=1001

m1/40.8mef(0.06)m 6
1.33e1/2

10013/4

∞∑

m=1001

mαm

=
1.33e1/2

10013/4
α1001(1001− 1000α)

(1− α)2

< 10−22

where α = 0.8ef(0.06). �



AN ASYMPTOTIC FOR THE HALL–PAIGE CONJECTURE 37

6. High-entropy minor arcs

Finally we turn to the bound on high-entropy minor arcs, (7).

6.1. Bounding the Hilbert–Schmidt norm. In the previous section we proved

and used bounds for ‖1̂S(ρ)‖op for sparse ρ. In this subsection we prove the following

general bound for ‖1̂S(ρ)‖HS, which is the crucial ingredient for (7).

Theorem 6.1. Suppose G is a group, and suppose ρ = ρa1
1 ⊗ · · · ⊗ ρak

k , where
ρ1, . . . , ρk are distinct irreducible representations of G. Let dj = dim ρj. Then

(
n

a1, . . . , ak

)
‖1̂S(ρ)‖2HS dim ρ 6

n!

nn

k∏

j=1

(aj + d2j − 1)!

a
aj

j (d2j − 1)!
.

The abelian case is worth highlighting, as it sharpens [EMM19, Theorem 4.1].

In this case dj = 1 for each j and 1̂S(ρ) is a scalar, so we get
(

n

a1, . . . , ak

)
|1̂S(ρ)|2 6

a1! · · ·ak!
aa1
1 · · · aak

k

n!

nn
. (20)

Another illustrative case is k = 1, a1 = n: in this case the theorem states

‖1̂S(ρ⊗n
1 )‖2HS 6

1

dn

(
n+ d2 − 1

d2 − 1

)(
n!

nn

)2

,

where d = d1 = dim ρ1. Thus ‖1̂S(ρ⊗n
1 )‖2HS is exponentially smaller than (n!/nn)2

whenever dim ρ1 > 2 (while, if dim ρ1 = 1, then 1̂S(ρ
⊗n
1 ) is n!/nn or 0 depending

on whether χn
1 = 1).

Similarly to the proof of Lemma 5.1, this theorem turns out to have very little to
do with group theory: the bound holds in general for projections of 1S onto tensor
products of subspaces of L2(G) of dimension d2j , and this statement is independent
of the group operation. The full abstract formulation is Lemma 6.4 below. First
we prove a key lemma in this direction.

Lemma 6.2. Let V be an inner product space with orthonormal basis e1, . . . , en,
and let v1, . . . , vk ∈ V be orthogonal. For r : {1, . . . , n} → {1, . . . , k}, write r ∼
(a1, . . . , ak) if |r−1(i)| = ai for each i. Then

∑

a1+···+ak=n

∣∣∣∣∣
∑

r∼a

〈e1, vr(1)〉 · · · 〈en, vr(n)〉
∣∣∣∣∣

2

6
(
(|v1|2 + · · ·+ |vk|2)/n

)n
.

Proof. Consider the integral

I =

∫

(z1,...,zk)∈(S1)k

n∏

i=1

∣∣∣∣∣∣

k∑

j=1

〈ei, vj〉zj

∣∣∣∣∣∣

2

.

By expanding the product we get
∫

(z1,...,zk)∈(S1)k

∑

r,s : {1,...,n}→{1,...,k}

(
n∏

i=1

〈ei, vr(i)〉zr(i)
)(

n∏

i=1

〈ei, vs(i)〉zs(i)
)
.

For any j, if |r−1(j)| 6= |s−1(j)| then the product results in a nonzero power of zj,
so the integral vanishes, while if |r−1(j)| = |s−1(j)| for all j then the integrand is
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constant. Thus

I =
∑

a1+···+ak=n

∣∣∣∣∣
∑

r∼a

〈e1, vr(1)〉 · · · 〈en, vr(n)〉
∣∣∣∣∣

2

.

On the other hand by the AM–GM inequality we have

I 6

∫

(z1,...,zk)∈(S1)k


 1

n

n∑

i=1

∣∣∣∣∣∣

k∑

j=1

〈ei, vj〉zj

∣∣∣∣∣∣

2



n

=

∫

(z1,...,zk)∈(S1)k


 1

n

k∑

j=1

|vj |2|zj |2



n

=
(
(|v1|2 + · · ·+ |vk|2)/n

)n
. �

In particular, suppose we fix a = (a1, . . . , ak). Then
∣∣∣∣∣
∑

r∼a

〈e1, vr(1)〉 · · · 〈en, vr(n)〉
∣∣∣∣∣

2

6 ((|v1|2 + · · ·+ |vk|2)/n)n.

Note that the left-hand side is 2a-homogeneous in v1, . . . , vk. By applying the same

inequality to the rescaled vectors v′i =
a
1/2
i

|vi|
vi, so that |v′i|2 = ai, we deduce that

∣∣∣∣∣
∑

r∼a

〈e1, vr(1)〉 · · · 〈en, vr(n)〉
∣∣∣∣∣

2

6
1

aa1
1 · · · aak

k

|v1|2a1 · · · |vk|2ak . (21)

(The inequality is trivial if any vi is zero.) The abelian case (20) of Theorem 6.1
follows directly from (21) by taking v1, . . . , vk to be ρ1, . . . , ρk ∈ L2(G).

Remark 6.3. Put another way, if W is the matrix whose columns comprise a1
copies of v1, a2 copies of v2, etc., where v1, . . . , vk are orthogonal, then the perma-
nent perW obeys

| perW | 6 a1! · · · ak!
a
a1/2
1 · · · aak/2

k

|v1|a1 · · · |vk|ak . (22)

This is sharp when vi have unit-norm entries, and disjoint supports of size ai.
The inequality (22) can be compared with an inequality of Carlen, Lieb, and

Loss [CLL06, Theorem 1.1], which states that

| perW | 6 n!

nn/2
|w1| · · · |wn| (23)

for any n×n matrixW with columns w1, . . . , wn (with no orthogonality condition).
Neither result implies the other. They agree when w1 = · · · = wn = v1, k = 1 and
a1 = n, in which case the result is just AM–GM.

In fact, (22) and (23) admit a common generalization. We have

| perW | 6 a1! · · · ak!
a
a1/2
1 · · ·aak/2

k

|w1| · · · |wn|

whenever the columns w1, . . . , wn ofW can be partitioned into sets of sizes a1, . . . , ak
such that vectors in different sets are orthogonal. This follows from (22) and an
observation originally due to Banach [Ban38] that the injective tensor norm of
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a symmetric tensor is achieved at diagonal tensors x ⊗ · · · ⊗ x: see the discus-
sion in [Mau81, Problem 73], and [BS71, Proposition 1.1(2)], [Har75, Theorem 4],
or [PST07, Theorem 2.1] for modern proofs.

The full nonabelian case of Theorem 6.1 is a little more involved. We now give
the analogous abstract statement.

Lemma 6.4. Let V be an inner product space with orthonormal basis e1, . . . , en, let
W1, . . . ,Wk be orthogonal subspaces of V , let di = dimWi, and let a1, . . . , ak > 0
be integers such that a1 + · · ·+ ak = n. Let s ∈ V ⊗n be the element

s =
1

n!

∑

σ∈Sn

eσ(1) ⊗ · · · ⊗ eσ(n).

Then (
n

a1, . . . , ak

)∣∣PW
a1
1 ⊗···⊗W

ak
k

(s)
∣∣2 6 ‖s‖2

k∏

j=1

(aj + dj − 1)!

a
aj

j (dj − 1)!
.

Proof. Let (wij)16j6di be an orthonormal basis for Wi, for each i. For b =

(b11, . . . , bkdk
), write wb = wb11

11 ⊗ · · · ⊗ w
bkdk

kdk
. Let tij > 0 be arbitrary scalars.

By applying Lemma 6.2 to the collection of all vectors t
1/2
ij wij we have

∑

b11+···+bkdk
=n

(
n

b11, . . . , bkdk

)2

|〈s, wb〉|2 tb1111 · · · tbkdk

kdk
6 ((t11 + · · ·+ tkdk

)/n)n .

Let B(a) be the set of those b such that bi1 + · · · + bidi = ai for each i. Then by
simply restricting the sum above it is clear that

∑

b∈B(a)

(
n

b11, . . . , bkdk

)2

|〈s, wb〉|2 tb1111 · · · tbkdk

kdk
6 ((t11 + · · ·+ tkdk

)/n)
n
.

We now integrate over all choices of tij > 0 satisfying ti1 + · · ·+ tidi = ai for each
1 6 i 6 k. Note the right-hand side is 1 for all such choices. Using∫

x1+···+xm=a

xr11 · · ·xrmm = ar1+···+rm
r1! · · · rm!

(r1 + · · ·+ rm +m− 1)!
,

for any a > 0 and integers r1, . . . , rm > 0, we get

∑

b∈B(a)

(
n

b11, . . . , bkdk

)2

|〈s, wb〉|2

∏

i,j

bij !



(∏

i

aai

i

(ai + di − 1)!

)
6

k∏

i=1

1

(di − 1)!

and rearranging gives
∑

b∈B(a)

(
n

b11, . . . , bkdk

)
|〈s, wb〉|2 6

(a1 + d1 − 1)!

aa1
1 (d1 − 1)!

· · · (ak + dk − 1)!

aak

k (dk − 1)!

1

n!
.

The left-hand side is
(

n
a1,...,ak

)
|PW

a1
1 ⊗···⊗W

ak
k

(s)|2. �

Apply this to V = L2(G), ei = n1/21gi for some enumeration G = {g1, . . . , gn},
and Wj = {〈v, ρj〉 : v ∈ HS(Vj)} (the ρj-isotypic component). We have

‖1̂S(ρ)‖2HS dim ρ = ‖PW
a1
1 ⊗···⊗W

ak
k

(1S)‖22.

Note that dimWj = d2j and 1S = n!
nn/2 s. Theorem 6.1 follows immediately.
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6.2. The sum over orbits. Assume that ρ1, . . . , ρk is a complete list of the distinct
irreducible representations of G. From Theorem 6.1 and elementary manipulations,
it follows that
(

n

a1, . . . , ak

)
‖1̂S(ρ)‖3HS dim ρ 6

k∏

j=1

d
−aj/2
j

(
aj + d2j − 1

aj

)3/2
aj !

2

a
3aj/2
j

n!

n3n/2
. (24)

To show (7), we need to bound the sum of the left-hand side over all ρ in the high-
entropy minor arcs. As stated in Section 3, it is cleaner to do this with generating
function techniques.

If we sum (24) over all choices of a1, . . . , ak such that a1 + · · · + ak = n, and
such that aj 6 n −m wherever dj = 1, we obtain exactly the coefficient of zn in
the power series

k∏

j=1

θdj(z) ·
n!

n3n/2
,

where

θd(z) =

n∑

a=0

d−a/2

(
a+ d2 − 1

a

)3/2
a!2

a3a/2
za

for d > 1, while for d = 1 we take the truncation

θ1(z) =

n−m∑

a=0

a!2

a3a/2
za.

To bound the sum, it therefore suffices to bound the generating functions θd(z) for
some suitable choice of z. It turns out the correct choice is always of the shape
z = we2n−1/2 where w > 1 is some small constant. With this in mind we prove the
following technical bounds.

Lemma 6.5. Let θd(z) be defined as above.

(i) If z 6 0.15 and n−m 6 e4z−2
(
1− 0.66z2 log(1/z)

)
, then

θ1(z) 6 exp(z + z3/10).

(ii) If n > 104, d > 1 and z 6 min(0.9d1/2, 2)e2n−1/2, then

θd(z) 6 exp(d5/2z).

Proof. We first consider (i). We will in fact show that, under these conditions,

θ1(z) 6 ez + (1/10)(z3 + z4)

which is sufficient (as ez > 1 + z). We have

θ1(z) = 1 + z + z2/2 +
3!2

39/2
z3 +

n−m∑

a=4

a!2

a3a/2
za

and hence

θ1(z)− ez 6

(
3!2

39/2
− 1

3!

)
z3 +

(
9∑

a=4

(
a!2

a3a/2
− 1

a!

)
(0.15)a−4

)
z4 +

n−m∑

a=10

a!2

a3a/2
za.

By direct computation, the terms 3 6 a 6 9 contribute at most 0.09z3 + 0.12z4,
and it is easy to check this is at most 0.095(z3 + z4) when z 6 0.15.
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For a > 10, using a! 6 e a1/2(a/e)a we have

a!2

a3a/2
za 6 e2a(a1/2z/e2)a = exp(χ(a))

where χ is the function

χ(x) = 2 + log x+ x
(
(1/2) logx+ log z − 2

)
.

We set

A = e4z−2
(
1− 0.66z2 log(1/z)

)
> 2000

Since χ is convex on x > 2, the maximum value of χ on the interval [10, A] occurs
at one of the endpoints. We claim that in fact it occurs at 10. Indeed, we have

logA 6 4 + 2 log(1/z)− 0.66z2 log(1/z) 6 4 + 2 log(1/z)

and for z 6 0.15 we have A > 0.9718e4z−2, so

χ(A) = 2 + logA+A
(
(1/2) logA+ log z − 2

)

6 6 + 2 log(1/z)− 0.9718(0.33e4 log(1/z)
)

6 6− 15.5 log(1/z)

whereas

χ(10) > −4.2− 10 log(1/z)

and it is straightforward to deduce χ(A) 6 χ(10) when z 6 0.15. This proves the
claim.

Bounding each term by this maximum value, we deduce that

n−m∑

a=10

a!2

a3a/2
za 6 (n−m) exp(χ(10))

6 (n−m)0.0153z10 6 (n−m) (1.162× 10−6)z5 6 0.00007z3

where we used the bounds z 6 0.15 and n−m 6 e4/z2 again. Combining this with
the bounds on a = 3, . . . , 9 gives (i).

Now we consider (ii). We write z = u e2n−1/2, where u 6 min
(
0.9d1/2, 2

)
by

hypothesis. We may expand

θd(z) = 1 + d5/2z +

(
1 + 1/d2

2

)3/2 (
d5/2z

)2

2!
+

n∑

a=3

d−a/2

(
a+ d2 − 1

a

)3/2
a!2

a3a/2
za

and note that
(

1+1/d2

2

)3/2
6 (5/8)3/2 < 1/2. Hence it suffices to show that

n∑

a=3

d−a/2

(
a+ d2 − 1

a

)3/2
a!2

a3a/2
za 6

d5z2

4
+

n∑

a=3

(d5/2z)a

a!
. (25)

We observe that

d−a/2

(
a+ d2 − 1

a

)3/2
a!2

a3a/2
za =

(d5/2z)a

a!

(
a!

aa

a−1∏

r=1

(1 + r/d2)

)3/2

.

We claim that, for d > 2 and 3 6 a 6 3d2, we have the inequality

a!

aa

a−1∏

r=1

(1 + r/d2) 6 1. (26)
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Indeed, we note that

a−1∑

r=0

log(1+r/d2) 6

∫ a

0

log(1+x/d2) dx = a
(
(1+d2/a) log(1+a/d2)−1

)
= a η(a/d2)

where η : [0,∞) → [0,∞] is the monotonic function η(t) = (1 + 1/t) log(1 + t) −
1, where in particular η(3) < 0.85. As usual we may bound log(a!/aa) 6 1 +
(1/2) log a− a; hence, the inequality holds provided

−a+ (1/2) log a+ 1 + 0.85a < 0,

i.e., provided a > 16. On the other hand, for fixed a the left-hand side of (26) is
monotonic in d, so it suffices to check the cases d = 2, a ∈ {3, . . . , 12} and d = 3,
a ∈ {13, 14, 15} of (26) directly, which all hold by direct calculation, proving the
claim.

The bound (26) handles the terms 3 6 a 6 3d2 in (25), and in particular it now
suffices to show that

n∑

a=3d2+1

d−a/2

(
a+ d2 − 1

a

)3/2
a!2

a3a/2
za 6

d5z2

4
.

Expanding z = u e2n−1/2 and again bounding a! 6 ea1/2(a/e)a, the left-hand side
is at most

n∑

a=3d2+1

e2a

(
a+ d2 − 1

a

)3/2(
u/d1/2

)a
(a/n)a/2,

and dividing by d5z2/4, it suffices to show that

4e−2d−6
n∑

a=3d2+1

a2
(
a+ d2 − 1

a

)3/2(
u/d1/2

)a−2
(a/n)a/2−1 6 1.

Since n > 104, we may in turn bound this by the infinite sum

4e−2d−6
∞∑

a=3d2+1

a2
(
a+ d2 − 1

a

)3/2

min
(
0.9, 2/d1/2

)a−2
min(a/104, 1)a/2−1. (27)

This sum is convergent (as the exponential saving 0.9a dominates), and depends
only on d. To complete the proof, we claim that (27) is bounded by 1 for all d > 2.

For 2 6 d 6 38, it is routine to compute the sum (27) to sufficient precision to
verify that bound is indeed satisfied, so assume d > 39. Then min(0.9, 2/d1/2) =
2/d1/2. We may ignore the other min factor. Hence it suffices to bound

4e−2d−6
∞∑

a=3d2+1

a2
(
a+ d2 − 1

a

)3/2

(2/d1/2)a−2. (28)

For a > 3d2, for any x ∈ (0, 1) we may bound
(
a+ d2 − 1

a

)
6 x−a(1− x)−(d2−1) 6 x−a(1− x)−a/3+1 6 (x−1(1− x)−1/3)a,

and setting x = 3/4 gives an upper bound of 2.1166a. Thus (28) is bounded by

e−2d−5
∞∑

a=3d2+1

a2
(
6.16/d1/2

)a
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and since
∞∑

r=1

r2yr 6

∞∑

r=1

r(r + 1)yr =
2y

(1− y)3
6

2

(1− y)3

for 0 6 y < 1, when d > 39 this is bounded by

e−239−5 2

(1− 6.16/391/2)3
< 0.002 < 1.

This completes the (very technical, for which we apologize) proof. �

Let Rm be the set of all ρ that have some one-dimensional factor of multiplicity
at least n−m. Then by the discussion preceding the lemma we have

∑

ρ∈Rc
m

‖1̂S(ρ)‖3HS dim ρ 6

k∏

j=1

θdj (z) ·
1

zn
n!

n3n/2

for all z > 0. Set z = we2n−1/2 for some w ∈ [1, 2]. Suppose the hypotheses of
Lemma 6.5 are satisfied for this z (and the given values n, m and d1, . . . , dk); in
particular, for (i) it is sufficient that n > (2e2/0.15)2 (i.e., n > 9707), and

w 6 (1−m/n)−1/2
(
1− 0.66e4w2/n log(e−2w−1n1/2)

)

and for (ii) we require n > 104 and w 6 0.9d
1/2
j for each dj 6= 1. Then we conclude

∑

ρ∈Rc
m

‖1̂S(ρ)‖3HS dim ρ 6 exp




k∑

j=1

d
5/2
j z + (1/10)z3k



(

n!

znn3n/2

)

6 exp


we2

k∑

j=1

d
5/2
j n−1/2 − n logw + (1/10)z3k



(

n!

e2nnn

)
.

Since
k∑

j=1

d
5/2
j 6 max

j
d
1/2
j

k∑

j=1

d2j 6 n5/4,

we therefore have
∑

ρ∈Rc
m

‖1̂S(ρ)‖3HS dim ρ 6 exp(we2n3/4 − n logw + (1/10)z3n)
n!

e2nnn
. (29)

Proposition 6.6. For some constants C, c > 0, the following holds for sufficiently
large n. If m > Cn3/4, then

∑

ρ∈Rc
m

‖1̂S(ρ)‖3HS dim ρ 6 e−cm

(
n!

nn

)3

.

Proof. We may apply (29) with w = em/5n. For n and m sufficiently large it is
clear that the hypotheses above are satisfied, and we have

we2n3/4 − n logw + (1/10)(e2w/n1/2)3n 6 O(n3/4)−m/5 + o(1).

As long as m > Cn3/4 for a sufficiently large constant C, and n is sufficiently large,
this is bounded by −cm for some c > 0. �
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Proposition 6.7. Suppose m > 0.06n and that n > 1010. Then

∑

ρ∈Rc
m

‖1̂S(ρ)‖3HS dim ρ 6 e−0.005n

(
n!

nn

)3

.

Proof. We may apply (29) with w = 1.03; it is easy to check that the hypotheses
are satisfied. Then

we2n3/4 − n logw + (1/10)(e2w/n1/2)3n 6 −0.005n

for n > 1010. Finally, note n!/(e2nnn) < (n!/nn)3. �

Proposition 6.8. Suppose m > 0.71n, that n > 3 × 105, and that G has no
irreducible representations of dimension d ∈ [2, 4]. Then

∑

ρ∈Rc
m

‖1̂S(ρ)‖3HS dim ρ 6 e−0.03n

(
n!

nn

)3

.

Proof. We may apply (29) with w = 1.85; again it is straightforward to check that
the hypotheses hold for n > 3× 105, and

we2n3/4 − n logw + (1/10)(e2w/n1/2)3n 6 −0.03n.

Now again use n!/(e2nnn) < (n!/nn)3. �

7. Proof of the Hall–Paige conjecture

We have now completed the proof of Theorem 1.2. In particular, the Hall–
Paige conjecture holds for every sufficiently large group. In this section we explain
some quantitative improvements in the special case that G has no low-dimensional
representations, and use these to give a complete proof of the Hall–Paige conjecture,
apart from a few explicit cases that we list.

Let d(G) denote the minimal degree of a nontrivial complex representation of G.
The quality of our bounds depends on d(G): for every d0 6 20, say, we can compute
some n0 such that any counterexample G would have to satisfy either d(G) 6 d0
or |G| 6 n0, with larger values of d0 leading to smaller values of n0. The choices
d0 ∈ {3, 11, 20} are sufficiently representative for our needs.

Theorem 7.1. Suppose G is a counterexample to the Hall–Paige conjecture.

(i) Either d(G) 6 3 or |G| 6 1010.
(ii) Either d(G) 6 11 or |G| 6 3× 105.
(iii) Either d(G) 6 20 or |G| 6 105.

Proof. Let G be a finite group of order n > 105 and minimal complex representation
degree d > 4. Recall that S ⊂ Gn denotes the set of bijections {1, . . . , n} → G. We
claim that

1S ∗ 1S ∗ 1S(1) > 0.

By (4) we have

1S ∗ 1S ∗ 1S(1) =
∑

ρ

〈1̂S(ρ)3, ρ(1)〉dim ρ.

Let Cm be the contribution to this sum from m-sparse ρ, and let

Mm = C0 + C1 + · · ·+ Cm.
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By Proposition 4.2, we have
∣∣∣∣∣M20

(
n!

nn

)−3

−S20

∣∣∣∣∣ < 0.32,

where

S20 =
∑

k610

1

k!

(
−n− 1

2n

)k

> 0.6.

Thus

M20 > 0.28

(
n!

nn

)3

.

Meanwhile, by Proposition 5.9,

0.06n∑

m=21

|Cm| < 0.12

(
n!

nn

)3

.

Thus we need only show

∑

m>0.06n

|Cm| < 0.16

(
n!

nn

)3

. (30)

If n > 1010, (30) is immediate from Proposition 6.7.
If n > 3× 105 and d > 5, from Proposition 6.8,

∑

m>0.71n

|Cm| < e−0.03n

(
n!

nn

)3

.

Hence we need only worry about the intermediate rangem/n ∈ [0.06, 0.71]. It turns
out that we can eliminate this range using Lemma 5.1 alone, assuming d > 12. By
Lemma 5.1 we have

∑

m-sparse ρ

‖1̂S(ρ)‖2HS dim ρ 6 (1 − (m/n)1/2)−1es(m/n)n

(
n!

nn

)2

.

Note that dim ρ > dm. Moreover, every m-sparse ρ has a permutation orbit of size
at least

(
n
m

)
. Thus

(
n

m

)
‖1̂S(ρ)‖2HSd

m 6 (1− (m/n)1/2)−1es(m/n)n

(
n!

nn

)2

.

Thus
∑

m-sparse ρ

‖1̂S(ρ)‖3HS dim ρ

6

(
n

m

)−1/2

d−m/2(1− (m/n)1/2)−3/2e(3/2)s(m/n)n

(
n!

nn

)3

6 (1− (m/n)1/2)−3/2e1/2m1/4efd(m/n)n/2

(
n!

nn

)3

,

where

fd(t) = 3s(t)− h(t)− t log d,
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for h(t) = t log(1/t) + (1 − t) log(1/(1 − t)) as in Section 5. The function f12 has
roots near .0424 . . . and 0.7172 . . . , and

max
t∈[0.06,0.71]

f12(t) 6 −0.005.

Hence

∑

m-sparse ρ
m/n∈[0.06,0.71]

‖1̂S(ρ)‖3HS dim ρ 6 100n1/4e−0.0025n

(
n!

nn

)3

6 10−10

(
n!

nn

)3

.

The required bound (30) follows.
Finally, assume n > 105 and d > 21. As above we have

∑

m-sparse

‖1̂S(ρ)‖3HS dim ρ 6 (1− (m/n)1/2)−3/2e1/2m1/4efd(m/n)n/2

(
n!

nn

)3

.

The function f21 is uniformly negative on [0.06, 1], and

max
t∈[0.06,1]

f21(t) = f21(0.06) < −0.03.

Hence

∑

m-sparse ρ
m/n∈[0.06,1)

‖1̂S(ρ)‖3HS dim ρ 6 (1 − (1− 1/n)1/2)−3/2e1/2n1/4e−0.015n

(
n!

nn

)3

6 10−10

(
n!

nn

)3

.

The endpoint m = n can be handled almost identically, replacing Lemma 5.1 with
Parseval’s identity

∑

ρ

‖1̂S(ρ)‖2HS dim ρ =
n!

nn
.

This completes the proof. �

Corollary 7.2. If G is a nonabelian simple counterexample to the Hall–Paige con-
jecture, then G is either An (5 6 n 6 12), PSL2(q) (7 6 q 6 53), or one of the
groups listed in Table 1.

Proof. For G = An we have d(G) = n − 1 for n > 6 and |G| = n!/2, so we must
have n 6 12. For G = PSL2(q) we have d(G) = q− 1 if q is even, (q+1)/2 if q ≡ 1
(mod 4), (q− 1)/2 if q ≡ 3 (mod 4), and |G| = (q3 − q)/(2, q− 1), so we must have
q 6 53.

Let d̃(G) denote the minimal degree of a nontrivial complex projective repre-
sentation of G (equivalently, representation of a central extension). The value of

d̃(G) is given for all classical groups by Tiep and Zalesskii [TZ96] and for excep-
tional groups by Lübeck [Lüb01]. Minimal degrees for sporadic groups are listed
in Jansen [Jan05]. (See also Hiss–Malle [HM02] for a list of low-dimensional repre-
sentations.)

Using d(G) > d̃(G), the value of d̃(G) given in the cited literatue can be used to
eliminate all simple groups except those in Table 1 and additionally PSU4(3) and
Ω+

8 (2). The exact values of d(G) and |G| for all these groups can be computed in
GAP. �
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G d(G) |G|
PSL3(3) 12 5616
PSU3(3) 6 6048
M11 10 7920
PSL3(4) 20 20160
PSU4(2) 5 25920
Sz(8) 14 29120
PSU3(4) 12 62400
M12 11 95040
PSU3(5) 20 126000
PSp6(2) 7 1451520
PSU5(2) 10 13685760

Table 1. Nonabelian simple groups not ruled out by Theorem 7.1,
apart from An (5 6 n 6 12) and PSL2(q) (7 6 q 6 53)

By Wilcox [Wil09, Theorem 12], a minimal counterexample G to the Hall–Paige
conjecture would have to be simple (Wilcox quotes the Feit–Thompson Theorem to
prove this, but it is not necessary: see Section 7.2). Cyclic and alternating groups
were known to Hall and Paige to satisfy their conjecture [HP55]. For case-specific
constructions for PSL2(q) and Mathieu groups, as well as most of the other groups
listed in Table 1, see Evans’s book [Eva18] (the only exceptions seem to be PSL3(3),
PSU3(3), and PSU3(5); see [Eva18, Theorem 7.17]). As we have mentioned, Wilcox
gave a unified proof for groups of Lie type. The main new contribution of this
section therefore is a uniform proof for sporadic groups other than M11 and M12.
In fact we do not need the full strength of the classification of finite simple groups:
we need only a classification of the finite simple groups satisfying the conclusion of
Theorem 7.1.

7.1. Further numerical improvements. As noted in the introduction, with fur-
ther computational effort, the authors believe it is possible to extend the range of
these arguments to include some, but not all, of the groups in Table 1, without
introducing any genuinely new ideas. For example, M12 and PSU3(5) should defi-
nitely be tractable, M11 does not appear to be, and the tipping point (in terms of
the sizes of |G| and d(G)) is somewhere in between.

We have not attempted to put these numerical calculations into the form of a
proof. Instead, for reference, we briefly outline the various tweaks that we believe
allow these improvements. The general rule is that whenever something may be
computed efficiently and exactly rather than bounded, do so.

• Throughout, we may use an explicit list of dimensions d1, . . . , dk of the
irreducible representations of G, rather than generalities.

• In two notable places we make explicit and not necessarily optimal choices
of tunable parameters: the values R in (12) and w in (29). In both cases,
we are free to search for closer-to-optimal values.

• The values θd(z), which we bound in Lemma 6.5, may be computed di-
rectly from their definition. Similarly, the functions αm(t) considered in
Lemma 4.12 may be computed exactly using that their coefficients are as-
sociated Stirling numbers of the second kind. This in turn allows improved
estimates of βm(t) in the proof of Lemma 4.14.
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• The value
∑

m-sparse ρ ‖1̂S(ρ)‖2HS dim ρ, estimated in Lemma 5.1, may be

computed exactly using the recurrence in the proof of [EMM19, Theo-
rem 5.1] (although the need for high or exact numerical precision makes
this expensive for large m).

7.2. Reducing to simple groups without Feit–Thompson. Wilcox quotes the
Feit–Thompson theorem as part of his reduction of the Hall–Paige conjecture to
the case of simple groups, but it is not needed, as we explain now.

Let HP denote the Hall–Paige condition, i.e., G satisfies HP if and only if its Sylow
2-subgroups are trivial or noncyclic. The following is a special case of Burnside’s
transfer theorem.

Lemma 7.3. Let G be a finite group not satisfying HP. Then G has a unique
subgroup K such that |K| is odd and [G : K] is a power of 2.

Proposition 7.4. Suppose G is not simple and satisfies HP. Then G has a non-
trivial proper normal subgroup N such that each of N and G/N either satisfies HP
or has order 2.

Proof. Let N be a nontrivial proper normal subgroup of G. If N and G/N both
satisfy HP we are done.

Suppose N does not satisfy HP. Then by the lemma N has a unique subgroup K
such that |K| is odd and [N : K] is a power of 2. But then K is normal in G and
G/K has the same Sylow 2-subgroups as G, so we are done unless K is trivial, i.e.,
N is a cyclic 2-group. By replacing it with its unique order-2 subgroup, we may
assume |N | = 2, and thus we are done if G/N satisfies HP.

Hence it suffices to consider the case in which G/N does not satisfy HP. In this
case the lemma shows that G/N and hence G itself has an index-2 subgroup, so we
may assume [G : N ] = 2. If N does not satisfy HP then by repeating the argument
of the previous paragraph we are either done or N is a 2-group. In the latter case
G itself is a noncyclic 2-group, and a short argument completes the proof in this
case. �

This proposition together with [Wil09, Propositions 3, 7, 11] reduces the Hall–
Paige conjecture to the simple case without the use of Feit–Thompson. (However,
the fact that every insoluble group satisfies HP is plainly equivalent to the Feit–
Thompson theorem, in view of Lemma 7.3 and the insoluble groups G × C2 with
G nonabelian simple.)

8. The asymptotic expansion

In this final section we derive an algebraic-combinatorial formula for lower-order
terms in the asymptotic in Theorem 1.2, or equivalently Theorem 1.7 with f = 1.
This formula enables us in principle to compute the number of complete mappings
of an arbitrary finite group G of order n, asymptotically as n → ∞, up to a
multiplicative error of 1 +O(n−m) for any fixed m > 0.

In Section 4 we indexed the main contributions (or major arcs) to 1S ∗ 1S ∗
1S(f) by partition systems P = (P1,P2,P3). In this section, in the special case
f = 1, two partition systems contribute the same if they are the same up to
permuting the base set {1, . . . , n} (as these permutations now do not affect f), so
we may aggregate the contributions from each Sn-orbit of partition systems, and
thus express the asymptotic in terms of partition systems up to isomorphism. The
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orbit size of a partition system P depends on the size of its automorphism group
AutP, and thus its total contribution carries a factor of 1/|AutP|. Additionally,
we get a simplified asymptotic by decomposing an arbitrary partition system into
its connected components and applying the exponential formula from enumerative
combinatorics (see Wilf [Wil94, Chapter 3] for background).

When the dust settles we will find that the main term e−1/2 comes from the
single isomorphism class P given by P1 = P2 = P3 = {{1, 2}} (with in particular
the “2” in “e−1/2” coming from |AutP| = 2), and lower-order terms come from
connected partition systems of increasing complexity. The lower-order terms can
be computed mechanically, though extremely tediously, and expressed in terms of
invariants of the underlying group G. We do the calculation explicitly for the 1/n
term, with Theorem 1.4 as the result.

To state the formula we first need to further develop the language from Section 4.
We recall here the relevant definitions from Section 4 and we add several more.

Definition 8.1. We recall the convention (see Section 4.1) that two partitions on
different (possibly overlapping) base sets may be regarded as the same if one can
be obtained from the other by repeatedly adding or removing singletons.

(i) A partition system on a set X is a triple P = (P1,P2,P3) of partitions of
X with the same support, denoted suppP. (By our convention, we lose
nothing by assuming X = suppP.)

(ii) The Möbius function is defined on a partition system P = (P1,P2,P3) by

µ(P) = µ(P1)µ(P2)µ(P3).

(iii) The complexity of a partition system P = (P1,P2,P3) is

cxP = max
σ∈S3

(
rank(Pσ(1)) + rank(Pσ(2) ∨ Pσ(3))

)
− | suppP|.

(iv) The gamma function of a partition system P = (P1,P2,P3) is

γG(P) = n|X|+cxPPX(cP1 ∗ cP2 ∗ cP3)(1),

where X = suppP. Note this value depends on the group G, not just on
n = |G|.

(v) An isomorphism from a partition system P = (P1,P2,P3) to a partition
system P′ = (P ′

1,P ′
2,P ′

3) is a bijection f : suppP → suppP′ that sends Pi

to P ′
i for each i.

(vi) The automorphism group AutP of a partition system P is the subgroup of
Sym(suppP) consisting of all isomorphisms P → P.

The following lemma will be used to show that if we only care about asymptotics
up to a given order n−C then we only need to worry about finitely many partition
systems.

Lemma 8.2. For any connected partition system P we have

| suppP| 6 4 cxP+ 2.

In particular, there are only finitely many isomorphism classes of connected par-
tition system of any given complexity, and the only connected partition system of
complexity zero up to isomorphism is

P0 = ({{1, 2}}, {{1, 2}}, {{1, 2}}) .



50 SEAN EBERHARD, FREDDIE MANNERS, AND RUDI MRAZOVIĆ

Proof. Let P be a connected partition system of support size m. Then P1, P2, P3

all have rank at least m/2, and P1 ∨ P2 ∨ P3 has rank m− 1, so by Lemma 4.8,

trank(P) > lrank(P) > (m/2 +m/2 +m/2 +m− 1)/2 = 5m/4− 1/2;

see Section 4.2 for the definitions of these terms. Hence cxP > m/4− 1/2. �

We are now ready to state the main formula. We use a formal device inspired
by “umbral calculus” (the unfamiliar reader is advised only to consult sources at
least as modern as Roman–Rota [RR78]). Let u and z be formal variables, let
m,C > 0 be cut-off parameters, and let20 L = Lm,C be the linear map defined on
u-monomials by

Luk =

{
n2k/(n)2k : k 6 m,

0 : k > m,

on z-monomials by

L zk =

{
n−k : k 6 C,

0 : k > C,

and on a general power series in u and z by

L
∑

i,j>0

aiju
izj =

∑

i,j>0

aij(Lu
i)(Lzj) (aij ∈ C).

For this to make sense we assume n > m; thus the image of L is a function of n
for integers n > m. The map L simply allows us to express certain sums more
compactly, such as

L exp(−u2/2) =
∑

2k6m

(−1)k
n4k

2kk!(n)22k
,

or

L exp(uz) =
∑

k6min(C,m)

nk

k!(n)2k
.

Theorem 8.3. Let cm(G) be the number of complete mappings of a finite group G
of order n satisfying the Hall–Paige condition, and let fG(u, z) be the formal power
series

fG(u, z) =
∑

P connected

µ(P)

|AutP|γG(P)u| suppP|zcxP

where the sum extends over all connected partition systems P up to isomorphism.
Then for any fixed integer C > 0 we have

cm(G)

|Gab|n!2/nn
= Lm,C exp

(
fG(u, z)

)
+O(n−C−1),

where Lm,C is as above and m = (logn)2.

20“In the nineteenth century—and among combinatorialists well into the twentieth—the lin-
ear functional L would be called an umbra, a term coined by Sylvester, that great inventor of
unsuccessful terminology.” [RR78]
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Remark 8.4.

(i) Formally, the sum defining fG(u, z) is not restricted to partition systems P
of bounded complexity or bounded support (we even permit | suppP| > n).
However, for the purposes of computing Lm,C exp(fG(u, z)), we may restrict
the sum to isomorphism classes of connected partition systems P with
cxP 6 C without changing the answer. By Lemma 8.2, the restricted sum
is finite.

(ii) The form of the cut-off m = (logn)2 is not essential; anything growing
faster than logn but slower than n1/2−ǫ would also work, with suitable
modifications.

Proof. Note that
cm(G)

n!2/nn
=

1S ∗ 1S ∗ 1S(1)
(n!/nn)3

.

We will estimate 1S ∗ 1S ∗ 1S(1) using (4) as usual. By Propositions 5.8 and 6.6,
we may ignore the contribution from the minor arcs: that is,

1S ∗ 1S ∗ 1S(1)
|Gab|(n!/nn)3

=Mm(1/n) +O(e−cm),

where, as in Section 4,

Mm(z) =
∑

| suppP|6m

(
n| suppP|

(n)| suppP|

)3

µ(P)γG(P)n−| suppP|zcxP.

It follows from Lemma 2.3 (with f = Mm, u = 1/n, R = c/m2, k = C) and
Proposition 4.15 that

Mm(1/n) =
∑

| suppP|6m
cxP6C

(
n| suppP|

(n)| suppP|

)3

µ(P)γG(P)n−| suppP|−cxP +O(m2/n)C+1.

Hence

cm(G)

|Gab|n!2/nn
=

∑

| suppP|6m
cxP6C

(
n| suppP|

(n)| suppP|

)3

µ(P)γG(P)n−| suppP|−cxP

+O(n−C−1+o(1)).

Isomorphic partition systems contribute the same amount to the sum,21 and each
abstract partition system P appears exactly (n)| suppP|/|AutP| times in the sum,
so

cm(G)

|Gab|n!2/nn
=

∑

| suppP|6m
cxP6C

(up to isomorphism)

(
n| suppP|

(n)| suppP|

)2
µ(P)

|AutP|γG(P)n− cxP

+O(n−C−1+o(1)).

21This is where we need the hypothesis f = 1: otherwise we would need to consider isomor-
phism types of pairs (P, f).
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Using L = Lm,C , u, and z, this can be written (dropping the “up to isomorphism”
warning from now on)

cm(G)

|Gab|n!2/nn
= L

∑

P

µ(P)

|AutP|γG(P)u| suppP|zcxP +O(n−C−1+o(1)). (31)

Our next move is to relate the sum in (31) over all partition systems to a sum
just over connected partition systems. To do this, we need to show that each of the
factors appearing in (31) is “multiplicative” with respect to connected components.
Consider an arbitrary partition system P. By decomposing P into its connected
components we have

P = Pe1
1 ∪ · · · ∪Pek

k .

Here P1, . . . ,Pk are distinct connected partition systems, and e1, . . . , ek are multi-
plicities, and (P1, e1), . . . , (Pk, ek) are uniquely determined up to order by P, and
conversely. In particular

| suppP| = e1| suppP1|+ · · ·+ ek| suppPk|,
and

cxP = e1 cxP1 + · · ·+ ek cxPk.

It is trivial that22

µ(P) = µ(P1)
e1 · · ·µ(Pk)

ek ,

u| suppP| = (u| suppP1|)e1 · · · (u| suppPk|)ek ,

zcxP = (zcxP1)e1 · · · (zcxPk)ek .

It is not hard to see that

AutP ∼= (AutP1 ≀ Se1)× · · · × (AutPk ≀ Sek),

and in particular
|AutP| = |AutP1|e1! · · · |AutPk|ek!.

Finally, the (not quite so obvious) identity

γG(P) = γG(P1)
e1 · · · γG(Pk)

ek

follows from repeated application of Lemma 4.9.
Hence, from (31),

cm(G)

|Gab|n!2/nn
= L


 ∑

P=P
e1
1 ∪···∪P

ek
k

k∏

i=1

µ(Pi)
ei

ei!|AutPi|ei
γG(Pi)

eiu| suppPi|eizei cxPi




+O(n−C−1+o(1))

= L


exp


 ∑

P connected

µ(P)

|AutP|γG(P)u| suppP|zcxP






+O(n−C−1+o(1)).

This proves the theorem with an error of the slightly poorer quality O(n−C−1+o(1))
in place of O(n−C−1).

22The multiplicativity of u| suppP| is the reason for introducing L and u: certainly
(n| suppP|/(n)| suppP|)

2 is not multiplicative.
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Finally, we argue that the error self-improves to the sharper form O(n−C−1).
To see this, we apply the bound above for C + 1, giving an acceptable error term
O(n−C−2+o(1)), and show that the contribution from terms zC+1 is O(n−C−1). I.e.,
it suffices to show that

L
([
zC+1

]
exp(fG(u, z))

)
= OC(1),

where by [zC+1]F (z, u) we mean the coefficient of zC+1 in F as an element of
C[[u]][[z]], which is an element of C[[u]]. Placing absolute value signs everywhere,
it suffices to show that

L



[
zC+1

]
exp




∑

P connected
cxP6C+1

|µ(P)|
|AutP| |γG(P)|u| suppP|zcxP





 = OC(1)

since the left-hand side is an upper bound for the previous quantity. As all the
coefficients of this power series in u, z are now nonnegative, using the bound

L(uk) = n2k/(n)2k 6 eO(k2/n) = O(1)

when 0 6 k 6 m (and vacuously L(uk) = O(1) for k > m), in turn it suffices to
show that

[
zC+1

]
exp




∑

P connected
cxP6C+1

|µ(P)|
|AutP| |γG(P)| zcxP


 = OC(1).

However, this last fact is clear, as the power series inside the exponential has coeffi-
cients OC(1) (by Lemma 8.2 and Proposition 4.11), and this property is preserved
after taking the exponential. �

There is one further operation we can apply to partition systemsP = (P1,P2,P3)
to reduce the number of possibilities we need to consider: we can reorder the con-
stituent factors P1,P2,P3. Clearly µ(P), AutP, | suppP|, and cxP are invariant
under reordering. Less obviously, γG(P) is also invariant. It suffices to observe that

cQ1 ∗ cQ2 ∗ cQ3(1)

is invariant under permutation of indices for any triple of partitons (Q1,Q2,Q3).
Up to normalization this quantity is just

P(h1h2h3 = 1),

where hi is a random Qi-measurable function. Now note that

h1h2h3 = 1 ⇐⇒ h2h3h1 = 1,

and
h1h2h3 = 1 ⇐⇒ h−1

3 h−1
2 h−1

1 = 1,

and all permutations of the indices are generated in this way.
Table 2 lists all connected partition systems of support size m 6 4 up to isomor-

phism and reordering. These include all partition systems of complexity cxP 6 1,
as verified by a direct computer check of systems of support size m 6 6 (which is
enough by Lemma 8.2). By Theorem 8.3, to understand the asymptotic number
of complete mappings up to order n−C−1, we need only consider the connected
partition systems P of complexity cxP 6 C.
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P P1 P2 P3 cxP
P0 {{1, 2}} {{1, 2}} {{1, 2}} 0
P1 {{1, 2, 3}} {{1, 2, 3}} {{1, 2, 3}} 1
P2 {{1, 2}, {3, 4}} {{1, 3}, {2, 4}} {{1, 4}, {2, 3}} 1
P3 {{1, 2}, {3, 4}} {{1, 2}, {3, 4}} {{1, 3}, {2, 4}} 1
P4 {{1, 2, 3, 4}} {{1, 2}, {3, 4}} {{1, 2}, {3, 4}} 1
P5 {{1, 2, 3, 4}} {{1, 2}, {3, 4}} {{1, 3}, {2, 4}} 2
P6 {{1, 2, 3, 4}} {{1, 2, 3, 4}} {{1, 2}, {3, 4}} 2
P7 {{1, 2, 3, 4}} {{1, 2, 3, 4}} {{1, 2, 3, 4}} 2

Table 2. Connected partition systems P = (P1,P2,P3) of sup-
port at most 4, up to isomorphism and reordering

P cxP | suppP| µ(P) |AutP| #reorderings γG(P)
P0 0 2 −1 2 1 1− 1/n
P1 1 3 8 6 1 1 +O(n−1)
P2 1 4 1 4 1 inv(G) +O(n−1)
P3 1 4 1 4 3 1 +O(n−1)
P4 1 4 −6 8 3 1 +O(n−1)

Table 3. Partition systems P from Table 2 with cxP 6 1: sup-
port size, Möbius value, automorphism group size, number of non-
isomorphic reorderings, and gamma function

Corollary 8.5. As n→ ∞ we have

cm(G)

|Gab|n!2/nn
= e−1/2

(
1 + (1/3 + inv(G)/4)n−1 +O(n−2)

)
,

where inv(G) is the proportion of involutions in G.

Proof. We consider all connected partition systemsP listed in Table 2 of complexity
cxP 6 1. These are listed again in Table 3 together with the relevant data. We
now justify the listed estimates of γG(P). For P0, see Lemma 4.10. For each
of the systems of complexity 1, we check that, in the notation of the proof of
Proposition 4.11, t(P, Y ) > 1 for each Y ( suppP; it follows that

γG(P) = n| suppP|+1cP1 ∗ cP2 ∗ cP3(1) +O(1/n).

Furthermore,

cP1 ∗ cP2 ∗ cP3(1) = n− rank(P1)−rank(P2)P(h1h2 is P3-measurable),

where hi is a random Pi-measurable function (and similarly for other permutations
of the indices).

The one interesting case is the “Klein pairing” P2, defined by

P1 = {{1, 2}, {3, 4}},
P2 = {{1, 3}, {2, 4}},
P3 = {{1, 4}, {2, 3}}.
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In this case if we represent

h1 = (x1, x1, x2, x2),

h2 = (y1, y2, y1, y2),

then

h1h2 = (x1y1, x1y2, x2y1, x2y2),

and this is P3-measurable if and only if

x1y1 = x2y2,

x1y2 = x2y1,

or equivalently

x1 = x2z,

y1 = zy2

for some involution z. Thus

P(h1h2 is P3-measurable) = inv(G)/n.

Thus the contributions to the sum

∑

P connected

µ(P)

|AutP|γG(P)u| suppP|zcxP

are

µ(P0)

|AutP0|
γG(P0)u

| suppP0|zcxP0 =
−1

2
(1− 1/n)u2,

µ(P1)

|AutP1|
γG(P1)u

| suppP1|zcxP1 =
8

6
(1 +O(n−1))u3z,

µ(P2)

|AutP2|
γG(P2)u

| suppP2|zcxP2 =
1

4
(inv(G) +O(n−1))u4z,

3× µ(P3)

|AutP3|
γG(P3)u

| suppP3|zcxP3 = 3× 1

4
(1 +O(n−1))u4z,

3× µ(P4)

|AutP4|
γG(P4)u

| suppP4|zcxP4 = 3× −6

8
(1 +O(n−1))u4z,

so

∑

P connected

µ(P)

|AutP|γG(P)u| suppP|zcxP = −1

2
(1 − 1/n)u2

+

(
4

3
u3 − 3

2
u4 +

1

4
inv(G)u4 +O((u3 + u4)/n)

)
z +O(z2).

Hence by Theorem 8.3 with C = 1 we have

cm(G)

|Gab|n!2/nn
= L

[
e−

1
2 (1−1/n)u2

(
1 +

(
4

3
u3 − 3

2
u4 +

1

4
inv(G)u4

)
z

)]
+O(n−2).
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Noting that n2k/(n)2k = 1 + 2
(
k
2

)
/n + O(k3/n2) when k <

√
n/10, it is routine to

check that

L
[
e−

1
2 (1−1/n)u2

]
=

m∑

k=0

(−1/2)k

k!

(
1− k/n+ 2k(2k − 1)/n+O(k3/n2)

)

= e−1/2 + e−1/2 1

2
n−1 +O(n−2),

and similarly that

L
[
e−

1
2 (1−1/n)u2

p(u)z
]
= e−1/2p(1)/n+O(n−2)

for any fixed polynomial p. Hence

cm(G)

|Gab|n!2/nn
= e−1/2

(
1 +

(
1

3
+

1

4
inv(G)

)
n−1 +O(n−2)

)
,

as claimed. �

Corollary 8.6. If n = 2k is sufficiently large then Ck
2 has more complete mappings

than any other group of order n.

Proof. If G = Ck
2 then |Gab| = n and inv(G) = 1, so by the previous corollary the

number of complete mappings in G satisfies

cm(G)

n!2/nn
= ne−1/2

(
1 + (1/3 + 1/4)n−1 +O(n−2)

)
.

On the other hand if |G| = n and G 6∼= Ck
2 then either |Gab| 6 n/2 or inv(G) 6 1/2,

so
cm(G)

n!2/nn
6 ne−1/2

(
1 + (1/3 + 1/8)n−1 +O(n−2)

)
.

Thus if n is sufficiently large we have cm(G) < cm(Ck
2 ). �

More generally, let n be any positive integer, and let 2k be the 2-part of n. By
the asymptotic in Corollary 8.5, if n is sufficiently large then any group G of order
n that maximizes cm(G) must be abelian, and if k is sufficiently large then the
Sylow 2-subgroup of G must be elementary abelian. (Note that, if G is abelian,
either inv(G) = 2k/n or inv(G) 6 2k−1/n.) To say more about G we would need
to compute more terms in the expansion.

We can also say something about groups G, satisfying the Hall–Paige condition,
that minimize cm(G). The abelianization |Gab| must be as small possible, so in
particular if there is a perfect group of order n then Gmust be perfect. For example,
if n = p(p − 1)(p + 1) for some prime p > 3, then the only perfect group of order
n is SL2(p) (see [Rob]), so G = SL2(p) is the unique minimizer of cm(G) among
groups of this order if p is sufficiently large. Among groups with |Gab| as small as
possible, the number of involutions in G must be within O(1) of the minimum.
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[Lüb01] Frank Lübeck. Smallest degrees of representations of exceptional groups of Lie type.
Comm. Algebra, 29(5):2147–2169, 2001. 46

[Mau81] R. Daniel Mauldin, editor. The Scottish Book. Birkhäuser, Boston, Mass., 1981. Math-
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