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The impact of the metabotropic glutamate
receptor and other gene family interaction
networks on autism
Dexter Hadley1, Zhi-liang Wu1, Charlly Kao1, Akshata Kini1, Alisha Mohamed-Hadley1, Kelly Thomas1,

Lyam Vazquez1, Haijun Qiu1, Frank Mentch1, Renata Pellegrino1, Cecilia Kim1, John Connolly1,

AGP Consortium*, Joseph Glessner1 & Hakon Hakonarson1,2

Although multiple reports show that defective genetic networks underlie the aetiology of

autism, few have translated into pharmacotherapeutic opportunities. Since drugs compete

with endogenous small molecules for protein binding, many successful drugs target large

gene families with multiple drug binding sites. Here we search for defective gene family

interaction networks (GFINs) in 6,742 patients with the ASDs relative to 12,544 neuro-

logically normal controls, to find potentially druggable genetic targets. We find significant

enrichment of structural defects (Pr2.40E�09, 1.8-fold enrichment) in the metabotropic

glutamate receptor (GRM) GFIN, previously observed to impact attention deficit hyperactivity

disorder (ADHD) and schizophrenia. Also, the MXD-MYC-MAX network of genes, previously

implicated in cancer, is significantly enriched (Pr3.83E� 23, 2.5-fold enrichment), as is the

calmodulin 1 (CALM1) gene interaction network (Pr4.16E�04, 14.4-fold enrichment),

which regulates voltage-independent calcium-activated action potentials at the neuronal

synapse. We find that multiple defective gene family interactions underlie autism, presenting

new translational opportunities to explore for therapeutic interventions.
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T
he autism spectrum disorders (ASDs) represent a group of
highly heritable childhood neuropsychiatric disorders
characterized by a variable phenotypic spectrum of

neurodevelopmental deficits of impaired socialization, reduced
communication and restricted, repetitive, or stereotyped beha-
viour1. ASDs are four times more common in boys2,3, and the
most recent prevalence estimates across the United States range
from 1%4 to 2%5, although a recent study reported a prevalence
as high as 2.6% in a general school-aged population in South
Korea6. The ASDs have an estimated heritability as high as 90%7

based on data on monozygotic twin concordance studies8–10,
whereas recent estimates of the sibling recurrence risk range from
19% to 22%11,12.

Despite being highly heritable, the vast majority of family
studies suggest that the ASDs do not segregate as a simple
Mendelian disorder, but rather display clinical and genetic
heterogeneity consistent with a complex trait13. Indeed, recent
studies estimate that the ASDs may comprise up to 400 distinct
genetic and genomic disorders that phenotypically converge14,15.
Common variants such as single-nucleotide polymorphisms seem
to contribute to ASD susceptibility, but, taken individually, their
effects appear to be small16. However, there is increasing evidence
that the ASDs can arise from rare or ‘private’ highly penetrant
mutations that segregate in families but are less generalizable to
the general population17–19. Many genes implicated thus far,
which are involved in chromatin remodelling, metabolism,
mRNA translation and synaptic function, seem to converge in
common pathways or genetic networks affecting neuronal and
synaptic homeostasis16.

Such remarkable phenotypic and genotypic heterogeneity when
coupled to the private nature of mutations in the ASDs has
hindered identification of new genetic risk factors with thera-
peutic potential. However, it is noteworthy that many of the
rare gene defects implicated in the ASDs belong to gene families.
For instance, rare defects impacting multiple members of both
the post-synaptic neuroligin (NLGN) gene family20 as well as
their pre-synaptic neurexin molecular-interacting partners21,22

have long been reported in patients with ASDs. In addition, a
number of other defective gene families with important
functional roles have subsequently been well-characterized
including ubiquitin conjugation23, gamma-aminobutyric acid
receptor signalling24–27 and cadherin/protocadherin cell
junction proteins28 in the brain. Furthermore, multiple defects
in voltage-gated calcium channels have been found in
schizophrenia29, and a defective network of metabotropic
glutamate (GRM) receptor signalling was found in both
ADHD30 and schizophrenia31–36, two neuropsychiatric dis-
orders that are highly coincident with the ASDs. Also, the vast
majority of significant defective genes identified from recent
whole-exome sequences belong to gene families17–19.

Many studies have found defective genetic networks in the
ASDs21,23,37–40 (see ref. 16 for review), and we complement these
in this work by uncovering new networks and implicating specific
defective gene families that may be enriched for novel potential
therapeutic targets. Drug-binding sites on proteins usually exist
out of functional necessity33, and gene families derive from gene
duplication events that present additional binding sites for a given
drug to exert its effects. Most successful drugs achieve their
activity by competing for a binding site on a protein with an
endogenous small molecule41; therefore, many successful
pharmacologic gene targets are within large gene families.
Indeed, nearly half of the pharmacologic gene targets fall into
just six gene families: G-protein-coupled receptors (GPCRs),
serine/threonine and tyrosine protein kinases, zinc
metallopeptidases, serine proteases, nuclear hormone receptors
and phosphodiesterases41. Moreover, many large gene families

are localized to pre- and post synaptic neuronal terminals to
coordinate the highly complex and evolutionarily conserved
process of neurotransmission42, which is thought to be
compromised to varying degrees in the autistic brain43.
Therefore, we hypothesize that we may select more druggable
targets for the ASDs by enriching for defective interaction
networks defined by gene families.

Here we perform a large genome-wide association study
(GWAS) of structural variants that disrupt gene family protein
interaction networks in patients with autism. We find multiple
defective networks in the ASDs, most notably rare copy-number
variants (CNVs) in the metabotropic glutamate receptor
(mGluR) signalling pathway in 5.8% of patients with the ASDs.
Defective mGluR signalling was found in both ADHD30 and
schizophrenia31–36, two common neuropsychiatric disorders that
are highly coincident with the ASDs. Furthermore, we find other
attractive candidates such as the MAX dimerization protein
(MXD) network that is implicated in cancer, and a Calmodulin 1
(CALM1) gene interaction network that is active in neuronal
tissues. The numerous defective gene family interactions we find
to underlie autism present many novel translational opportunities
to explore for therapeutic interventions.

Results
To identify and comprehensively characterize defective genetic
networks underlying the ASDs, we performed a large-scale
genome association study for copy-number variation (CNVs)
enriched in patients with autism. By combining the affected cases
from previously published large ASD studies21,23,28,44 with more
recently recruited cases from the Children’s Hospital of
Philadelphia, we executed one of the largest searches for rare
pathogenic CNVs in ASDs to date. In sum, 6,742 genotyped
samples from patients with the ASDs were compared with those
from 12,544 neurologically normal controls recruited at The
Children’s Hospital of Philadelphia (CHOP).

These cases were each screened by neurodevelopmental
specialists to exclude patients with known syndromic causes for
autism. Genotyping was performed at CHOP for the vast
majority of the ASD cases as well as all the controls. After
cleaning the data to remove sample duplicates and performing
standard QC for CNVs, we first inferred the continental ancestry
of 5,627 affected cases and 9,644 disease-free controls using a
training set defined by populations from HapMap 3 (ref. 45) and
the Human Genome Diversity Panel46 (Table 1). Using this QC
criteria, we estimated that the sensitivity and specificity of calling
CNVs is B70% and 100%, respectively, across 121 different
genomic regions assayed by PCR (Methods). Across all
ethnicities, there was an increased burden of CNVs in cases
versus controls, a statistically significantly difference (Pr0.001)
in the larger European (63.3 versus 54.5 Kb, respectively) and
African-derived (70.4 versus 48.0 Kb, respectively) populations.

We then searched for pan-ethnic CNV regions (CNVRs)
discovered in the European-derived data set (4,602 cases versus
4,722 controls; Pr0.0001 by Fisher’s exact test) and replicated in
an independent ASD data set of African ancestry (312 cases
versus 4,169 controls; Pr0.001 by Fisher’s exact test) with
subsequent measurement of overall significance across the entire
multi-ethnic discovery cohort (5,627 cases versus 9,644 controls)
for maximal power (Fig. 1, Table 2). On the basis of these
selection criteria, two large well-known ASD risk loci emerged
that harboured multiple duplications in the Prader Willi/Angel-
man syndrome (15q11–13) critical region, and multiple deletions
were detected in the DiGeorge syndrome (22q11) critical region,
albeit notably smaller than the 22q11 deletion syndrome. A third
locus harbouring deletions in poly ADP-ribose polymerase family
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8 (PARP8) on chromosome 5q11 was also discovered. PARP8
was previously identified as associated with the ASDs in a Dutch
population47, but it has not previously been described for its pan
ethnic distribution across European-derived and African-derived
populations.

We examined the genetic interaction networks derived from
gene families with members localized to the the Prader Willi/
Angelman syndrome (15q11-13) critical region, the DiGeorge
syndrome (22q11) critical region, and the novel PARP8 (5q11)
region using a method previously applied to ADHD30; however,
hardly any of the most significant genes harbouring significant
CNVRs clustered within gene families. Consequently, we
broadened our search for gene family interaction networks
(GFINs) and searched the entire genome for GFINs with CNVs
enriched in autism. For every gene family, we defined a GFIN as
the genetic interaction network spawned by its multiple
duplicated members. We used standard HUGO48 gene names
to define 1,732 GFINs across which we searched for enrichment
of network defects associated with the ASDs. However, because
there is an a priori excess of CNV burden in ASD cases over
disease-free controls (Table 1), larger GFINs are expected to
display significant enrichment of case defects by virtue solely of
their increased size and complexity. Therefore, for each GFIN, we
used a network permutation test of case enrichment across 1,000
random sets of networked genes to control for the GFIN size and
complexity. With this approach, we robustly identified network
defects associated with the ASDs by minimizing statistical artefact
derived from any a priori excessive CNV burden in cases over
controls, as well as other unknown biases that may be inherent in
the human interactome data49–51 that we mined.

Out of 1,732 GFINs, we used the network permutation test to
rank 1,557 GFINs with defined CNVs for enrichment of genetic
defects in the ASDs. Among the top GFINs (Table 3) was the
metabotropic glutamate receptor (mGluR) pathway defined by
the GRM family of genes that impacts glutamatergic neuro-
transmission. The GRM family contains eight members, all of
which were defined in the human interactome to cumulatively
spawn a GFIN of 279 genes (Fig. 2). Across this GFIN for
the GRM family of genes, we found CNV defects in 5.8% of

Table 1 | Distribtion of CNVs across samples and estimated
ancestry.

Continental ancestry Case Control Total

Europe
Number of samples 4,602 4,722 9,324
*CNV burden (Kb) 63.3 54.5

Africa
Number of samples 312 4,169 4,481
*CNV burden (Kb) 70.4 48.0

America
Number of samples 485 276 761
CNV burden (Kb) 59.1 58.4

Asia
Number of samples 201 350 551
CNV burden (Kb) 56.1 54.1

Other
Number of samples 27 127 154
CNV burden (Kb) 51.5 49.4

All Ethnicities
Number of samples 5,627 9,644 15,271
*CNV burden (Kb) 63.0 51.7

CNV¼copy-number variation. The table shows the distribution of cases, controls and CNV
coverage across estimated continental ancestry. For groups of cases and controls across
estimated ancestries, the table lists the numbers of subjects that passed quality control and their
group-wise CNV burden, defined as the average span of CNVs in Kb for each group.
*Statistically significant (Pr0.01 by PLINK permutation test) differences in CNV burden are
marked with an asterix(*).
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Figure 1 | Significance of CNVRs by GWAS of ASDs in European-derived or African-derived populations. The Manhattan plots show the � log10

transformed P-value of association for each CNVR along the genome. Adjacent chromosomes are shown in alternating red and blue colours. The regions

discovered in Europeans (Pr0.0001) that replicated in Africans (Pr0.001) are highlighted with black arrows labelled by chromosome band. GWAS of

4,634 cases versus 4,726 controls in Europeans is shown on top and GWAS of 312 cases versus 4,173 controls in Africans is shown below.
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European-derived ASD cases (265/4,602) versus only 3% of
ethnically matched controls (153/4,722), a 1.8-fold enrichment of
frequency (PFisher r2.40E� 09). By 1,000 random network
permutations, we found this excess of enrichment across cases
in the mGluR pathway to also be statistically significant (Pperm

r0.05). In addition, 69.2% (124/181) of the informative genes
within our mGluR network showed an excess of CNVs among
cases. However, the component genes that harbour the most
significant CNVRs contributing to this overall network signifi-
cance reveal that the duplicated mGluR genes themselves (GRM1,
GRM3, GRM4, GRM5, GRM6, GRM7 and GRM8) fail to achieve
significance individually, although there is a trend for an excess
of CNV defects across a specific subset of mGluR receptors
(GRM1, GRM3, GRM5, GRM7, GRM8) that is unique to cases
(Supplementary Table 1).

Many large studies of CNVs implicate genes within the
glutamatergic signaling pathway in the aetiology of the
ASDs21,23,37–40, and SNP52,53 and CNV duplications54 of
GRM8 have been reported in association with the ASDs before
in humans. Moreover, a recent functional study demonstrated
that in mouse models of tuberous sclerosis and fragile X, two
different forms of syndromic autism, the autistic phenotype was
ameliorated by modulation of GRM5 in opposite directions for

each syndrome, which suggests that GRM5 functional activity is
central in defining the axis of synaptopathophysiology in
syndromic autism55. Our GRM network findings implicate rare
defects in mGluR signalling also contribute to the ASDs outside
of fragile X and tuberous sclerosis, and we posit that functional
mGluR synaptopathophysiology may be initiated from many
dozens if not hundreds of defective genes within the mGluR
pathway that may account for as much as 6% of the
endophenotypes of the ASDs (Table 3).

In addition, we recently demonstrated the importance of
mGluRs in ADHD30,56, a highly co-incident neuropsychiatric
disorder within the autism spectrum. However, in contrast to
ADHD where defects within the mGluR receptors themselves
(GRMs) were among the most significant copy-number defects
contributing to the overall network significance, we found that in
the ASDs defects of component GRMs contributed only modestly
to the overall significance of the mGluR pathway. Nonetheless,
the defects within GRM1, GRM3, GRM5, GRM7 and GRM8 that
we identified as unique to cases and thus enriched are the same
GRMs we identified as being pathogenic in ADHD and may
impact glutamatergic signalling.

Among the most highly ranked GFINs by permutation testing,
the MAX dimerization protein (MXD) GFIN (PFisher r3.83E� 23,

Table 2 | Significant copy-number variable regions.

CNVR Genes Bands Size (Kb) No. of
SNP

No. of
Case

No. of
Control

All Europe Africa

P-value OR P-value OR P-value OR

del ZNF280B 22q11.22 53.4 13 130 0 2.56E� 57 Inf 1.94E� 33 Inf 3.34E�04 Inf
del *PARP8 5q11.1 47.7 8 70 8 2.76E� 22 15.1 3.84E� 13 12.0 2.69E�06 40.9
dup *GABRB3 15q12 49.0 20 28 0 7.60E� 13 Inf 1.50E�06 Inf 3.34E�04 Inf
dup *GABRG3 15q12 135.3 13 27 1 3.72E� 11 Inf 1.60E�05 19.5 3.34E�04 Inf
dup *HERC2 15q13.1 84.4 2 24 0 4.12E� 11 Inf 6.17E�06 Inf 3.34E�04 Inf

CNVR¼ copy-number variable region; OR¼ odds ratio. The table shows CNVRs distinguishing cases from controls significant across both European-derived populations (Pr0.0001 by Fisher’s exact
test) and African-derived populations (Pr0.001). For each CNVR, the table lists the type (del or dup), the closest gene impacted, the chromosomal band, the approximate size of the defect (Kb), the
number of contributing SNPs, the numbers of affected cases and controls, as well as P-value and odds ratio (OR) from Fisher’s exact test for across all populations, and subsets of European-derived and
African-derived populations.
*Genes with an asterix (*) harbour CNVRs that disrupt their exons of directly, while those without the asterix are located in the genomic region around the intergenic CNVRs.

Table 3 | Top gene family interaction networks discovered.

Gene family Enriched genes Cases Controls Gene Network Association

Name Size No. Frequency No. Frequency No. Frequency Pfisher Enrichment Pperm

BRF 2 242/326 0.742 567 0.123 370 0.078 3.30E� 13 1.65 0.040
CCL 24 108/144 0.75 231 0.05 129 0.027 5.62E�09 1.88 0.008
CCNT 2 183/254 0.72 613 0.133 381 0.081 1.10E� 16 1.75 0.007
ELAVL 4 108/156 0.692 327 0.071 152 0.032 6.87E� 18 2.3 0.043
ERCC 7 263/369 0.713 836 0.182 560 0.119 7.67E� 18 1.65 0.035
GRM 8 124/181 0.685 265 0.058 153 0.032 2.40E�09 1.82 0.043
GTF2H 5 152/223 0.682 391 0.085 233 0.049 3.21E� 12 1.79 0.049
KIAA 106 268/373 0.718 988 0.215 647 0.137 3.12E� 23 1.72 0.045
KPNA 7 256/367 0.698 560 0.122 369 0.078 1.26E� 12 1.63 0.028
MXD 3 52/64 0.813 366 0.08 156 0.033 3.83E� 23 2.53 0.042
POU5F 2 94/130 0.723 293 0.064 131 0.028 2.96E� 17 2.38 0.041
RAD 7 218/309 0.706 535 0.116 339 0.072 9.68E� 14 1.7 0.042
SAP 4 111/150 0.74 274 0.06 151 0.032 9.61E� 11 1.92 0.040
SMAD 8 845/1,225 0.69 1,782 0.387 1,424 0.302 1.81E� 18 1.46 0.039
SMARCC 2 106/147 0.721 239 0.052 131 0.028 1.22E�09 1.92 0.043
SMC 5 88/120 0.733 336 0.073 176 0.037 1.71E� 14 2.03 0.034

The table shows significant gene family interaction networks (GFINs) by network permutation testing (Ppermr0.05) enriched for CNV defects across at least 5% of cases. The table lists the name and
size of gene family tested, the number and frequency of network genes enriched in the second degree gene interaction network, the number and frequency of cases harbouring defects across the network,
the number and frequency of controls harbouring defects across the network, the significance of association by Fisher’s exact test, the enrichment of CNV defects in cases, and the significance of that
enrichment by 1,000 random network permutations.
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enrichment¼ 2.53, Pperm r0.042) was the most enriched. The
MXD family of genes encode proteins that interact with MYC/
MAX network of basic helix-loop-helix leucine zipper (bHLHZ)
transcription factors that regulate cell proliferation, differentiation
and apoptosis (MIM 600021)57; MXD genes are important
candidate tumour suppressor genes as the MXD-MYC-MAX
network is dysregulated in various types of cancer58. Interestingly
an epidemiological link between autism and specific types of
cancer has been reported59, and anticancer therapeutics were
recently shown to modulate ASD phenotypes in the mouse
through regulation of synaptic NLGN protein levels60. Within the
component genes contributing to the MXD GFIN significance,
duplications in PARP10 (Pr4.06E� 11, OR¼ 2.04) and UBE3A
(1.50E� 06, OR¼ inf) are the most significantly enriched
(Supplementary Table 2). It is notable that we found PARP8 as
significant across ethnicities as described earlier (Table 2), and we
previously described the importance of structural defects in
UBE3A in the ASDs23.

Other notable significant GFINs uncovered were POU
class 5 homeobox (POU5F) GIFN (PFisherr2.96E� 17,
enrichment¼ 2.3, Pperm r0.008, and the SWI/SNF related,

matrix associated, actin-dependent regulator of chromatin,
subfamily c (SMARCC) GFIN (PFisher r1.22E� 09,
enrichment¼ 1.9, Pperm r0.035). The POU5F family of genes
encodes for transcription factors containing a POU home-
odomain, and their role has been demonstrated in embryonic
development, especially during early embryogenesis, and it is
necessary for embryonic stem cell pluripotency. Component
genes of the SMARCC gene family are members of the SWI/SNF
family of proteins, whose members display helicase and ATPase
activities and which are thought to regulate transcription of
certain genes by altering the chromatin structure around those
genes. Most interestingly, the KIAA family of genes ranked
among the top GFINs (PFisher r3.12E� 23, enrichment¼ 1.6,
Pperm r0.040). KIAA genes have been identified in the Kazusa
cDNA sequencing project61 and are predicted from novel large
human cDNAs; however, they have no known function.

We also hypothesized that some component members of gene
families may contribute disproportionately to the significance of a
GFIN because they are highly connected to interacting gene
partners that are enriched for CNV defects in ASD. Therefore, we
decomposed the 1,732 gene families into their 15,352 component
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duplicated genes of which 1,218 had defined networks with data
to test for significance by genome-wide network permutation.
The calmodulin 1 (CALM1) gene interaction network ranked
highest by network permutation testing of case enrichment for
CNV defects across 1,000 random gene networks (Fig. 3, Table 4)
and represents a novel and attractive candidate gene for the
ASDs. Across the CALM1 network, we found CNV defects in 14/
4,618 cases versus only 1/4726 controls (Pfisher r4.16E� 04,
enrichment¼ 14.37, Pperm r0.002), and these defects were
distributed such that 90% (9/10) of genes that harboured CNVs
in the CALM1 interactome were enriched in cases. Closer
inspection of the most significant CNVR contributing to the
CALM1 network significance (Supplementary Table 3) revealed
that no single gene was significant on its own; instead, with the
exception of only one gene (PTH2R), each contributing CNVR
tagged highly penetrant rare defects unique to cases. Calmodulin
is the archetype of the family of calcium-modulated proteins of
which nearly 20 members have been found. Calmodulin contains
149 amino acids that define four calcium-binding domains used
for Ca2þ -mediated coordination of a large number of enzymes,
ion channels and other proteins including kinases and phospha-
tases; its functions include roles in growth and cell cycle
regulation as well as in signal transduction and the synthesis
and release of neurotransmitters [MIM 114180]57.

Among other highly ranked first degree gene interaction
networks were the nuclear receptor co-repressor 1 (NCOR1;
Pfisher r1.11E� 06, enrichment¼ 13.37, Pperm r0.004) and
BCL2-associated athanogene 1 (BAG1; Pfisher r2.18E� 04,
enrichment¼ 15.40, Pperm r0.014) networks. NCOR1 is a
transcriptional coregulatory protein that appears to assist nuclear
receptors in the downregulation of DNA expression through
recruitment of histone deacetylases to DNA promoter regions; it
is a principal regulator in neural stem cells51. The oncogene BCL2
is a membrane protein that blocks the apoptosis pathway, and
BAG1 forms a BCL2-associated athanogene and represents a link
between growth factor receptors and antiapoptotic mechanisms.
The BAG1 gene has been implicated in age-related neuro-
degenerative diseases, including Alzheimer’s disease62,63.

In summary, given the private nature of mutations in the
ASDs, considering the cumulative contributions of rare highly
penetrant genetic defects boosts our power to discover and
prioritize significant pathway defects. As a result, our compre-
hensive, unbiased analytical approach has identified a diverse set
of specific defective biological pathways that contribute to the
underlying aetiology of the ASDs. Among GFINs robustly
enriched for structural defects, the most enriched was that of

the MXD family of genes that has been implicated in cancer
pathogenesis58, thereby providing concrete genetic defects to
explore the reported coincidence of specific cancers with the
ASDs59. The most highly ranked component duplicated gene
interaction network involves defects in CALM1 and its multiple
interacting partners that are important in regulating voltage-
independent calcium-activated action potentials at the neuronal
synapse. Moreover, we found significant enrichment for
defects within the GFIN for GRM that defines the mGluR
pathway that has previously been shown to be defective in other
neuropsychiatric diseases29,30. While specific mGluR gene family
members have been shown to underlie syndromic ASDs55, our
findings suggest that rare defects in mGluR signalling also
contribute to idiopathic autism across the entire GFIN for GRM
genes.

Consequently, in addition to specific neuronal pathways that
are expected to be defective in the ASDs like those defined by
GRM and CALM duplicate genes, we implicate completely novel

Table 4 | Most significant individual gene interaction networks ranked by permutation testing.

Gene Family Member Enriched Genes Cases Controls Gene Network Association

No. Frequency No. Frequency # Frequency Pfisher Enrichment Pperm

AKAP13 7/7 1.00 16 0.0035 1 0.0002 1.14E�04 16.43 0.012
BAG1 7/7 1.00 15 0.0032 1 0.0002 2.18E�04 15.40 0.014
CALM1 9/10 0.90 14 0.0030 1 0.0002 4.16E�04 14.37 0.002
CASP6 16/17 0.94 46 0.0100 6 0.0013 2.96E�09 7.91 0.012
GTF2H3 23/26 0.88 42 0.0091 8 0.0017 3.66E�07 5.41 0.009
MAP3K5 11/12 0.92 34 0.0074 4 0.0008 2.02E�07 8.76 0.012
NCOR1 9/10 0.90 26 0.0056 2 0.0004 1.11E�06 13.37 0.004
PARP1 5/5 1.00 5 0.0011 0 0.0000 2.95E�02 inf 0.012
PTPN13 6/6 1.00 9 0.0019 0 0.0000 1.75E�03 inf 0.007
TCEA1 22/26 0.85 39 0.0084 7 0.0015 5.94E�07 5.74 0.009

The table lists the name and gene family member tested, the number and frequency of network genes enriched, the number and frequency of cases harbouring defects, the number and frequency of
controls harbouring defects, and the significance of association by Fisher’s exact test, the odds ratio of the effect size, and the significance of association by random permutation of network while
controlling for number of genes tested.
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Figure 3 | Enrichment of optimal CNVRs across CALM1 network. The first

degree-directed interaction network defined by CALM1 is shown.
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biological pathways such as the MXD pathway specific forms of
which may be associated with the ASDs59. Given the unmet need
for better treatment for neurodevelopmental diseases64, the
functionally diverse set of defective genetic interaction networks
we report presents attractive genetic biomarkers to consider for
targeted therapeutic intervention in ASDs and across the
neuropsychiatric disease spectrum.

Methods
Ethics statement. The research presented here has been approved by the Chil-
dren’s Hospital of Philadelphia IRB (CHOP IRB#: IRB 06-004886). Some patients
and their families were recruited through CHOP outreach clinics. Written
informed consent was obtained from the participants or their parents using IRB
approved consent forms prior to enrollment in the project. There was no dis-
crimination against individuals or families who chose not to participate in the
study. All data were analysed anonymously and all clinical investigations were
conducted according to the principles expressed in the Declaration of Helsinki.

Sample processing. The majority of cases (5,049 of 6,742) and all controls
(12,544) were genotyped with genome-wide coverage using the Infinium II plat-
form across various iterations of the HumanHap BeadChip with 550 K, 610 K,
660 K and 1 M markers by the Center for Applied Genomics at The Children’s
Hospital of Philadelphia (CHOP). There were 1,693 cases genotyped by the AGP
consortium. All cases and B50% of controls were re-used from previously pub-
lished large ASD studies21,23,28,44. All cases were diagnosed by ADI-R/ADOS and
fulfilled standard criteria for ASDs. Duplicate samples were removed by selecting
unique samples with the best quality (based on genotyping statistics used to QC
samples) from clusters defined by single linkage clustering of all pairs of samples
with high pairwise identity by state measures (IBS Z0.9) across 140 K non-
correlated SNPs. Ethnicity of samples was inferred by a supervised k-means
classification (k¼ 3) of the first 10 eigenvectors estimated by principal component
analysis across the same subset of 140 K non-correlated SNPs. We used HapMap 3
(ref. 45) and the Human Genome Diversity Panel46 samples with known
continental ancestry to train the k-means classifier implemented by the R Language
for Statistical Computing65.

CNV inference and association. We called CNVs with the PennCNV algo-
rithm66, which combines multiple values, including genotyping fluorescence
intensity (Log R Ratio), population frequency of SNP minor alleles (B-allele
frequency) and SNP spacing into a hidden Markov model. The term ‘CNV’
represents individual CNV calls, whereas ‘CNVR’ refers to population-level
variation shared across subjects. Quality control thresholds for sample inclusion in
CNV analysis included a high call rate (call rate Z95%) across SNPs, low s.d. of
normalized intensity (s.d. r0.3), low absolute genomic wave artefacts (|GCWF|
r0.02) and low numbers of CNVs called (#CNVs r100). Genome-wide
differences in CNV burden, defined as the average span of CNVs, between cases
and controls and estimates of significance were computed using PLINK67. CNVRs
were defined based on the genomic boundaries of individual CNVs, and the
significance of the difference in CNVR frequency between cases and controls was
evaluated at each CNVR using Fisher’s exact test.

Gene family interaction networks definition and association. We extended our
previous work on ADHD30 here to rank all GFINs by a network permutation test.
Specifically, using merged human interactome data from three different yeast two
hybrid generated data sets49–51 accessed through the Human Interactome
Database68, we defined the directed second-degree gene interaction network for all
gene families here just as we did for the sole metabotropic glutamate receptor gene
family network in ADHD. Specifically, here we use GFIN to refer to these gene
family-derived interaction networks. In sum, we found 2,611 gene families with at
least two members based on official HUGO48 gene nomenclature, and generated
1,732 GFINs using. For 1,557 GFINs with defined CNVs, we calculated an odds ratio
of cumulative network enrichment over all genes harbouring CNVs within the
network. Moreover, for each GFIN, we quantified its enrichment by a permutation
test of 1,000 second-degree gene interaction networks derived from a random set of N
genes, where N is the number of members of a given gene family. Because the CNVs
we are focused on are so rare, we are relatively underpowered to achieve significance
by permutation testing after correcting for multiple GFIN tests. However, we report
all GFINs in the manuscript in order of their nominal/marginal significance.

Experimental validation of CNVs. Significant CNVRs that we identified were
validated using commercially available qPCR Taqman probes run on the ABI
GeneAmp 9700 system from Life Technology. Supplementary Data 1 lists 251
reactions that we tested using 121 different genomic probes across 85 different
samples for which DNA was available. For deletions, our sensitivity¼ 0.65,
specificity¼ 1.00, NPV¼ 1.00 and PPV¼ 0.88. For duplications, our
sensitivity¼ 0.68, specificity¼ 0.99, NPV¼ 0.94 and PPV¼ 0.91.
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54. Cuscó, I. et al. Autism-specific copy number variants further implicate
the phosphatidylinositol signaling pathway and the glutamatergic
synapse in the etiology of the disorder. Hum. Mol. Genet. 18, 1795–1804
(2009).

55. Auerbach, B. D., Osterweil, E. K. & Bear, M. F. Mutations causing
syndromic autism define an axis of synaptic pathophysiology. Nature 480,
63–68 (2011).

56. Elia, J. et al. Rare structural variants found in attention-deficit hyperactivity
disorder are preferentially associated with neurodevelopmental genes. Mol.
Psychiatry 15, 637–646 (2009).

57. OMIM - Online Mendelian Inheritance in Man (n.d.). Available http://
omim.org/. Accessed 18 February (2013).

58. Nair, S. K. & Burley, S. K. X-ray structures of Myc-Max and Mad-Max
recognizing DNA. Molecular bases of regulation by proto-oncogenic
transcription factors. Cell 112, 193–205 (2003).

59. Kao, H.-T., Buka, S. L., Kelsey, K. T., Gruber, D. F. & Porton, B. The correlation
between rates of cancer and autism: an exploratory ecological investigation.
PLoS ONE 5, e9372 (2010).

60. Gkogkas, C. G. et al. Autism-related deficits via dysregulated eIF4E-dependent
translational control. Nature 493, 371–377 (2013).

61. Kikuno, R. et al. HUGE: a database for human KIAA proteins, a 2004 update
integrating HUGEppi and ROUGE. Nucleic Acids Res. 32, D502–D504 (2004).

62. Elliott, E., Tsvetkov, P. & Ginzburg, I. BAG-1 associates with Hsc70.Tau
complex and regulates the proteasomal degradation of Tau protein. J. Biol.
Chem. 282, 37276–37284 (2007).

63. Elliott, E., Laufer, O. & Ginzburg, I. BAG-1M is up-regulated in hippocampus
of Alzheimer’s disease patients and associates with tau and APP proteins. J.
Neurochem. 109, 1168–1178 (2009).

64. McMahon, F. J. & Insel, T. R. Pharmacogenomics and personalized medicine in
neuropsychiatry. Neuron 74, 773–776 (2012).

65. R Core Team (n.d.) R: A language and environment for statistical computing.
Available http://www.r-project.org/. Accessed 18 February (2013).

66. Wang, K. et al. PennCNV: an integrated hidden Markov model designed for
high-resolution copy number variation detection in whole-genome SNP
genotyping data. Genome Res. 17, 1665–1674 (2007).

67. Purcell, S. et al. PLINK: a tool set for whole-genome association and
population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

68. Human Interactome Database (n.d.). Available http://
interactome.dfci.harvard.edu/H_sapiens/. Accessed 18 February (2013).

Acknowledgements
We thank all study participants and their families. We thank all the staff at the Center for
Applied Genomics at CHOP for their invaluable contributions to recruitment of study
subjects and genotyping of samples. We also gratefully acknowledge the resources pro-
vided by the AGRE Consortium and their participating families, and by the Autism
Genome Project (AGP) Consortium and their participating families. The study was
funded by an Institutional Development Fund from The Children’s Hospital of Phila-
delphia; The Margaret Q Landenberger Foundation; The Lurie Family Foundation; The
Kubert Estate Fund and by U01HG005830. AGRE is a program of Autism Speaks and is
at present supported, in part, by grant 1U24MH081810 from the National Institute of
Mental Health to C.M. Lajonchere (PI) and formerly by grant MH64547 to D.H.
Geschwind (PI). AGRE-approved academic researchers can acquire the data sets from
AGRE at http://www.agre.org. There were 1,693 cases of the full AGP data sets that were
genotyped by the AGP consortium. The full AGP data sets are made available from
dbGaP at http://www.ncbi.nlm.nih.gov/gap. The remaining 5,049 cases and all 12,544
controls were all genotyped by the Center for Applied Genomics at the Children’s
Hospital of Philadelphia.

Author contributions
D.H., Z.W., C.K., J.C., J.G. and H.H. conceived the study. D.H., A.K., K.T., F.M., and
H.Q. performed computational analyses. A.M.H., L.V., R.P., and C.K. performed geno-
typing and experimental validation. H.H. and AGP consortium coordinated sample
recruitment. D.H., C.K., Z.W., and H.H. interpreted the results. D.H. and H.H. wrote the
manuscript. All authors read, edited and approved the final manuscript

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors have no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Hadley, D. et al. The impact of the metabotropic glutamate
receptor and other gene family interaction networks on autism. Nat. Commun. 5:4074
doi: 10.1038/ncomms5074 (2014).

This work is licensed under a Creative Commons Attribution 3.0
Unported License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5074

8 NATURE COMMUNICATIONS | 5:4074 | DOI: 10.1038/ncomms5074 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.genenames.org/
http://omim.org/
http://omim.org/
http://www.r-project.org/
http://interactome.dfci.harvard.edu/H_sapiens/
http://interactome.dfci.harvard.edu/H_sapiens/
http://www.agre.org
http://www.ncbi.nlm.nih.gov/gap
http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/3.0/
http://www.nature.com/naturecommunications


Dalila Pinto1,2,3,4,5,6, Alison Merikangas11, Lambertus Klei12, Jacob A.S. Vorstman13, Ann Thompson14,

Regina Regan15,16, Alistair T. Pagnamenta17, Bárbara Oliveira18,19, Tiago R. Magalhaes15,16, John Gilbert22,

Eftichia Duketis23, Maretha V. De Jonge13, Michael Cuccaro22, Catarina T. Correia18,19, Judith Conroy16,26,

Inês C. Conceição18,19, Andreas G. Chiocchetti23, Jillian P. Casey15,16, Nadia Bolshakova11, Elena Bacchelli27,

Richard Anney11, Lonnie Zwaigenbaum28, Kerstin Wittemeyer29, Simon Wallace30, Herman van Engeland13,
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