
Lawrence Berkeley National Laboratory
LBL Publications

Title
Simulation and Analysis of Hurricane-Driven Extreme Wave Climate Under Two Ocean 
Warming Scenarios

Permalink
https://escholarship.org/uc/item/055009bx

Journal
Oceanography, 31(2)

ISSN
1042-8275

Authors
Laboratory, Lawrence Berkeley National
Timmermans, Ben
Patricola, Christina
et al.

Publication Date
2018-06-01

DOI
10.5670/oceanog.2018.218
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/055009bx
https://escholarship.org/uc/item/055009bx#author
https://escholarship.org
http://www.cdlib.org/


CITATION

Timmermans, B., C. Patricola, and M. Wehner. 2018. Simulation and analysis of hurricane-driven 

extreme wave climate under two ocean warming scenarios. Oceanography 31(2):88–99, 

https://doi.org/10.5670/oceanog.2018.218.

DOI

https://doi.org/10.5670/oceanog.2018.218

PERMISSIONS

Oceanography (ISSN 1042-8275) is published by The Oceanography Society, 1 Research Court, 

Suite 450, Rockville, MD 20850 USA. ©2018 The Oceanography Society, Inc. Permission is 

granted for individuals to read, download, copy, distribute, print, search, and link to the full texts of 

Oceanography articles. Figures, tables, and short quotes from the magazine may be republished 

in scientific books and journals, on websites, and in PhD dissertations at no charge, but the materi-

als must be cited appropriately (e.g., authors, Oceanography, volume number, issue number, page 

number[s], figure number[s], and DOI for the article).

Republication, systemic reproduction, or collective redistribution of any material in 

Oceanography is permitted only with the approval of The Oceanography Society. Please contact 

Jennifer Ramarui at info@tos.org.

Permission is granted to authors to post their final pdfs, provided by Oceanography, on their 

personal or institutional websites, to deposit those files in their institutional archives, and to share 

the pdfs on open-access research sharing sites such as ResearchGate and Academia.edu.

OceanographyTHE OFFICIAL MAGAZINE OF THE OCEANOGRAPHY SOCIETY

DOWNLOADED FROM HTTPS://TOS.ORG/OCEANOGRAPHY

https://doi.org/10.5670/oceanog.2018.218
https://doi.org/10.5670/oceanog.2018.218
https://tos.org/oceanography


Oceanography |  Vol.31, No.288 Oceanography |  Vol.31, No.288

SPECIAL ISSUE ON OCEAN WARMING

SIMULATION AND ANALYSIS OF 

HURRICANE-DRIVEN
EXTREME WAVE CLIMATE

UNDER TWO OCEAN WARMING SCENARIOS

By Ben Timmermans, Christina Patricola, and Michael Wehner
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INTRODUCTION
Ocean waves driven by wind stress—
wind-waves—are familiar and often 
impressive, bringing the benefits of 
renewable energy and recreational activ-
ities like surfing, but frequently acting as 
hazards to coastal and offshore industries. 
For example, in recent years extreme lev-
els of erosion on coasts of the European 
Atlantic (Masselink et  al., 2016) and 
US Pacific (Barnard et  al., 2017), attrib-
utable to extremely energetic wave condi-
tions, have been reported. Barnard et al. 
(2017) showed that wave energy inci-
dent to the US Pacific coast, linked to the 
strong El Niño of 2015/2016, contrib-
uted to the largest observed integrated 
wave energy based on historical records. 
However, possible changes in wave inten-
sity are not always the most import-
ant finding because waves are complex 
and multivariate phenomena. Harley 
et  al. (2017) attributed the most severe 
coastal erosion observed in southeast 
Australia in 40 years to the joint effect of 
wave height and (anomalous) wave direc-
tion. With changing polar climate, there 
has been substantial interest in wave-sea 
ice interaction (Doble and Bidlot, 2013; 
Casas-Prat et al., 2018), with wave action 
linked directly to Antarctic ice-shelf 
collapse (Massom et  al., 2018). Island 
nations in particular are susceptible 

to changes in wave conditions (Hoeke 
et  al., 2015; Duvat et  al., 2016), and 
such severe impacts, noted in particu-
lar by the Intergovernmental Panel on 
Climate Change (IPCC; IPCC, 2014), 
motivate efforts such as the Coordinated 
Wave Climate Intercomparison Project 
(COWCLIP; Hemer et  al., 2012, 2013a; 
X.L. Wang et  al., 2016) that is in part 
supported through the submission of 
simulated global and regional wave 
climate data sets, two of which are 
described in this paper. 

With a strong research imperative, 
studies have focused on both historical 
and future conditions in various ways. 
Satellite and data buoy observations cap-
ture both the climate (Ruggiero et  al., 
2010; Izaguirre et al., 2011; Young et al., 
2012) and specific events (D.W. Wang 
et  al., 2005), while reanalysis data have 
been analyzed using dynamical and sta-
tistical methods (Camus et  al., 2014). 
Dynamical projections typically involve 
the generation of near-surface winds 
using a (possibly coupled) atmosphere 
model that can then be used to derive 
ocean waves either statistically (X.L. Wang 
and Swail, 2006; Perez et al., 2015; Camus 
et al., 2017) or dynamically (Hemer et al., 
2013b) using a global wave model such 
as WAVEWATCH III (WW3; Tolman, 
2014). So-called “phase-averaged” global 

models such as WW3 employ an aver-
aged spectral representation of waves 
and do not resolve individual waves 
(Komen et  al., 1994), including extreme 
“rogue waves,” although they can be 
informative (Babanin and Rogers, 
2014). WW3 has been used widely for 
global (Timmermans et  al., 2017) and 
regional studies (Shimura et  al., 2016; 
Aguirre et  al., 2017), and wave energy 
resource assessment (Mackay et al., 2010; 
Hemer et al., 2017).

Research suggests that wave climate 
may change substantially in the future, 
with considerable regional variation 
(Hemer et al., 2013a; Erikson et al., 2015; 
Shimura et  al., 2016; Aarnes et  al. 2017; 
Casas-Prat et  al., 2018). Erikson et  al. 
(2015) evaluate wave climate in the east-
ern north Pacific and report changes in 
both mean and extreme wave conditions, 
driven predominantly by extratropical 
cyclones (ETC) in the mid-latitudes, with 
a generally decreasing trend with sever-
ity of greenhouse gas forcing. Swell gen-
erated by ETCs in the Southern Ocean—
consistently the roughest on Earth 
(Young 1999)—is likely to result in future 
increases in wave height (Hemer et  al., 
2013a) that may contribute to inunda-
tion threat to islands in the western trop-
ical Pacific (Shope et al., 2016). Shimura 
et al. (2016) found that winter wave con-
ditions in the western North Pacific 
were dominated by ETCs with inten-
sity set to decrease under future scenar-
ios. They remark in particular that local 
coastal conditions, and resultant impacts, 
in Japan are a complex function of wind-
sea and remote swell and advocate for 
focused high-resolution regional studies 
in such areas in order to attribute effects.

Extreme wave conditions that typi-
cally present the greatest risks are also 
set to change (Fan et al., 2013; X.L. Wang 
et al., 2014; Barnard et al., 2017; Shimura 
et al., 2015, 2016, 2017), although inves-
tigation of extremes can be substantially 
more challenging than assessment of 
means. Inference about extremes (Coles, 
2001; see also section on Extreme Value 
Analysis) requires long time series of 

ABSTRACT. Ocean wave climate is an important area of research, particularly in the 
context of extremes driven by tropical cyclones (TC). We can now simulate global cli-
mate at resolutions sufficient to resolve TCs and for durations long enough to explore 
climatological changes. Both the devastating 2017 North Atlantic hurricane season and 
growing evidence for the connection between TC activity and increasing ocean tem-
perature motivate investigation of possible future changes. We present two simulated 
50-year global wave climate data sets under possible future warming scenarios char-
acterized by +1.5°C and +2.0°C stabilized global mean temperatures that capture the 
effects of TCs. Differences in extreme wave climate between these possible scenarios 
and present-day conditions appear to be significant in many areas, particularly those 
affected by TCs. However, for computational feasibility, simulations of this kind rely 
on fixed sea surface temperatures, so we also investigate and elucidate effects from the 
lack of a dynamic ocean by simulating waves from a number of recent hurricanes and 
comparing output to observations. We conclude that atmosphere-only forcing is likely 
to result in an overestimate of extreme wind speeds and wave heights in TC-affected 
regions. More ensemble studies are needed to help elucidate detailed processes relevant 
to extreme wave climate, and important community projects such as the Coordinated 
Wave Climate Intercomparison Project (COWCLIP) should be supported.
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output to robustly quantify the probabil-
ity of rare events. Furthermore, a model 
may be limited in its ability to accurately 
reproduce physical processes respon-
sible for extremes. Many of the afore-
mentioned studies are concerned with 
impacts from waves driven by ETCs—
large synoptic-scale storms—that typi-

cally originate in the mid-latitudes and 
impact the coasts of northern Europe and 
the northwestern United States. Being 
spatially broad, sometimes covering thou-
sands of kilometers, they allow waves to 
develop over very long fetch. Numerical 
investigation can be very effective for 
storms of this kind, which are typically 
well resolved at horizontal resolutions 
around 1° (~100 km). Such simulations 
are affordable to run and output is abun-
dant (Taylor et al., 2012). In contrast, trop-
ical cyclones (TC) are not well resolved at 
spatial and temporal resolutions typically 
employed in global atmosphere simula-
tions (Timmermans et al., 2017), but they 
are clearly important to atmospheric and 
oceanic climate and impacts (Sriver, 2016; 
S.S. Chen and Curcic, 2016).

While damage from hurricanes (the 
strongest TCs) is the dominant economic 
cost from “billion dollar” natural disas-
ters (~63% of total) in the United States 
(NOAA NCEI, 2018), 2017 in particular 
was a stark reminder of the threat of hur-
ricanes to society. Three major hurricanes 
made US landfall, setting records, includ-
ing the most rainfall in a single storm 
(Harvey) and the largest annual losses due 
to hurricanes in US history (Munich RE, 
2018). Hurricane costs attributable to 
waves are difficult to ascertain because 

wind, waves, and storm surge act in com-
bination, but they can be substantial. 
During Katrina, 1,500 people lost their 
lives on shore due to storm-surge-related 
flooding, while offshore, dozens of oil and 
gas platforms were damaged or destroyed, 
resulting in near total shutdown of the 
Gulf of Mexico’s offshore production.

Research on TC climatology and 
related effects at the atmosphere-ocean 
boundary, including waves, is challeng-
ing. TCs and hurricanes form from atmo-
spheric disturbances typically at least 
5° north or south of the equator. When 
developed, the structure of the storm’s 
center—the eye—is typically smaller than 
~100 km and thus, where numerical sim-
ulation is required, resolution needs to 
be significantly higher than this in order 
to even approximate the process. High-
resolution coupled modeling, required to 
resolve various complex effects (Zambon 
et al., 2014; S.S. Chen and Curcic, 2016; 
Fan and Rogers, 2016), remains prohib-
itively expensive for climatological study. 
Nonetheless, it turns out that atmo-
spheric simulations below ~60 km hor-
izontal resolution can produce realistic 
TC climatology (Murakami et  al., 2012, 
2015). Furthermore, use of fixed sea sur-
face temperature (SST) boundary condi-
tions (Hurrell et  al., 2008), in place of a 
dynamic ocean, reduces computational 
cost, rendering this kind of approximate 
approach feasible for well-resourced 
institutions. Resulting winds, including 
TCs, can be used to drive a wave model, 
although such studies remain sparse 
(Fan et  al., 2013; Shimura et  al., 2015; 
Timmermans et al., 2017).

In this paper, using such a numerical 
approach, we augment the investigation 
of Timmermans et al. (2017) by present-
ing two future wave climate data sets and 
an analysis of changes in the extremes, 
in terms of the 20-year significant wave 
height, Hs, return level. The two scenarios 
follow the Half a degree Additional warm-
ing, Prognosis and Projected Impacts 
(HAPPI) protocol (Mitchell et al., 2017), 
representing 1.5°C and 2.0°C stabilized 
climates agreed upon as long-term targets 
to mitigate severe climate change impacts 
by members of the United Nations as part 
of the 2016 Paris agreement. However, 
cognizant of possible uncertainties intro-
duced through this approach, and dis-
cussed further in the next section, we also 
make use of recent hindcasts of a num-
ber of major US hurricanes. This allows 
us to compare directly with observations 
from data buoys and investigate sources 
and magnitudes of error that may exist in 
approximate climatological simulations. 
We find a tendency toward excessively 
extreme Hs, but with accuracy in more 
benign conditions, which raises ques-
tions about the validity of simulations of 
(extreme) wave climate and motivates fur-
ther research and corrective strategies. In 
the following section, we elaborate further 
on our understanding of TC and wave cli-
mate, and investigate it through numer-
ical approaches. Our approach to wave 
modeling, and subsequent application of 
extreme value analysis are described next. 
We then discuss results of the analysis of 
future extreme wave climate and describe 
the hurricane wave simulations and their 
analysis. We briefly offer our conclusions 
in the final section.

TROPICAL CYCLONES 
AND WAVES
Energetically, TCs can be considered 
to be a Carnot heat engine, powered 
by energy from warm ocean surface 
waters. The dependence of TC gene-
sis and evolution on SST has been stud-
ied at length (Emanuel, 2005; Vecchi and 
Soden, 2007a), although properties of 
the atmosphere such as the temperature 

 “Both the devastating 2017 North Atlantic 
hurricane season and growing evidence for the 
connection between tropical cyclone activity and 
increasing ocean temperature motivate investigation 
of possible future changes.

”
. 
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of the tropopause (Emanuel et al., 2013) 
and vertical wind shear (Vecchi and 
Soden, 2007b) are particularly influ-
ential. Feedback from the ocean is also 
important: mixing of cooler subsurface 
water by induced turbulence reduces heat 
availability and results in less-  favorable 
conditions. Seroka et  al. (2016) show 
that during Hurricane Irene (2011), 
“ahead-of-eye” cooling of coastal sur-
face waters due to currents induced by 
Irene itself, was a key causal factor in 
rapid de-intensification before mak-
ing landfall. Conversely, the availabil-
ity of warmer subsurface water may sup-
port particularly powerful events, as 
speculated for “Super Typhoon” Haiyan 
in 2013 (Lin et  al., 2014). A steepening 
subsurface temperature gradient under 
global warming may give rise to a greater 
cooling effect, thus suppressing intensi-
fication in future climates (Huang et al., 
2015). TC activity is also linked to the 
El Niño-Southern Oscillation (Patricola 
et  al., 2014, 2016; Zhang et  al. 2016), 
but as Murakami et al. (2017) point out, 
many factors are influential, and a strong 
El Niño does not solely predicate an 
active hurricane season. In general, the 
question of how climate change is affect-
ing TC climatology remains the subject of 
debate (Sobel et al., 2016).

Ocean waves arise from momentum 
transfer through wind stress—a func-
tion of surface drag—itself affected by the 
waves (Komen et  al., 1994; Moon et  al., 
2003). However, complex atmosphere- 
ocean- wave interactions, particularly 
under extreme conditions, remain poorly 
understood. Y. Chen and Yu (2017) found 
that choice of wind stress parameteriza-
tion resulted in differences of up to 12 m 
in peak wave heights under hurricane 
conditions. Research has also examined 
turbulent mixing by waves (Aijaz et  al., 
2017) and the effect of induced currents 
on wave height around the eye of the hur-
ricane (Fan et  al., 2009). Investigation 
of these complex interactions typically 
requires high (~ few kilometers) resolu-
tion coupled simulations (Zambon et al., 
2014; S.S. Chen and Curcic, 2016), but in 

general, the use of coupling in climato-
logical simulations remains limited. For 
example, coupling between atmosphere- 
wave (Fan et  al., 2013) and atmosphere- 
ocean (Li and Sriver, 2018) is possi-
ble on short (~100 year) climatological 
timescales. However, Fan et  al. (2013) 
report that the high-resolution atmo-
spheric model (HiRAM; ~ 50 km resolu-
tion) generates few major hurricanes. In 
addition, although the Community Earth 
System Model (CESM; ~25 km resolution) 
has been shown to produce remarkably 
good TC intensity distributions, includ-
ing major hurricanes, when using fixed 
SSTs (Wehner et al., 2015), Li and Sriver 
(2018) show that coupling the atmosphere 
to both slab and dynamic ocean alleviates 
spatial bias in TC storm track distribu-
tion seen in the uncoupled case. In gen-
eral, however, tropical SST biases com-
mon to generations of coupled climate 
models (Zuidema et al., 2016) are known 
to cause substantial errors in simulated 
TC activity, with an under-simulation of 
50% in the Atlantic and over- simulation 
of 80% in the east Pacific (Wei-Ching 
Hsu, Texas A&M University, pers. comm., 
2018). Noting the unavoidable uncer-
tainties, and difficulty in finding a tracta-
ble approach, the computational advan-
tage of using fixed SSTs is attractive, and 
this configuration has been used widely. 
Mizuta et  al. (2017), for example, ran 
5,000 years of global atmospheric simula-
tions at 60 km horizontal resolution, suf-
ficient to resolve the TC frequency distri-
bution, although statistical bias correction 
methods are required to investigate the 
most intense TCs, because they cannot 
be resolved numerically. Shimura et  al. 
(2015) used some of those simulations to 
examine extreme wave heights from TCs 
in the western North Pacific, alleviating 
the conditionality on fixed SSTs by using 
an ensemble. The analysis of extreme 
wave climate in this study (see section 
on Changes in Extreme Wave Climate) 
therefore utilizes atmospheric simula-
tions bounded by fixed SSTs, acknowl-
edging uncertainties associated with the 
approach described above.

APPROACH TO WAVE MODELING
The approach to wave climate model-
ing and analysis follows Timmermans 
et  al. (2017), briefly summarized here. 
In the later section on Hurricane Wave 
Modeling, we also make use of 10 m winds 
from high-resolution (3 km, 4.5 km, and 
27 km) simulations drawn from ensem-
bles of individual hurricanes employing 
fixed (observed) SSTs generated by the 
Weather Research and Forecasting Model 
(WRF; Skamarock et al., 2008). For these, 
the wave model configuration is simi-
lar to that described here but employs 
regional grids (Gulf of Mexico and trop-
ical western Atlantic) at similar resolu-
tions (4 km and 27 km) and appropriate 
integration time steps. Note that in those 
cases, focusing on the locally generated 
hurricane waves, sea surface boundar-
ies were left open, thus ignoring remotely 
generated wave systems. More discussion 
of the WRF simulations is provided in the 
section on Hurricane Wave Modeling.

For global climate, 10 m three-hourly 
winds at ~25 km horizontal resolution 
were obtained from simulations of the 
atmosphere using the CESM (Hurrell 
et  al., 2013) bounded by SST patterns 
commensurate with +1.5°C and +2.0°C 
stabilized climates. Specifications of 
SST patterns are given by Mitchell et  al. 
(2017; their section 2.1) but, to sum-
marize construction of the +1.5°C sce-
nario, the difference between the aver-
age of 2090–2100, taken from Coupled 
Model Intercomparison Project Phase 5 
(CMIP5) RCP2.6 scenario ensemble, and 
the average of 2006–2015, is added to 
observed SSTs for 2006–2015. Five inde-
pendent CESM simulations, each initial-
ized with a microscopically perturbed 
atmospheric state, generate winds for the 
10-year period “2106–2115,” which are 
then used to force WW3. For each sce-
nario, we make the assumption that each 
year of output is an independent sample 
in a stationary climate, thus providing 
50 years for extremal analysis. WW3 is 
configured on a 0.25° global grid (corre-
sponding approximately to the resolution 
of the forcing winds), utilizing ST4 input 
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and dissipation scheme and NL1 (DIA) 
nonlinear interactions (see Timmermans 
et al., 2017, for more details), with three-
hourly output of global fields of various 
wave parameters. Hs at each model grid 
cell is analyzed using an extreme value 
approach, outlined in the next section. 
Note also that in the section Changes in 
Extreme Wave Climate, we compare out-
put in terms of 20-year return level to 
output from a similar 44-year data set 
representative of present-day climate, 
described in Timmermans et al. (2017).

EXTREME VALUE ANALYSIS
Extreme value (EV) theory is an active 
area of statistical research (Coles, 2001; 
Davison and Huser, 2015) and of ever- 
increasing importance in environmen-
tal studies, as interest in future extreme 
events grows (Risser and Wehner, 2017). 
It provides a statistical framework for the 
study of rare events and allows us to esti-
mate, for example, return levels and peri-
ods of wave height. The use of univari-
ate EV theory is now fairly common and 
facilitated by many off-the-shelf pack-
ages, such as the extRemes (http://www.
assessment.ucar.edu/toolkit/) package for 
R (https://www.r-project.org/). Méndez 
et al. (2006), for example, make use of EV 
theory to investigate trends in extreme 
Hs in the northeastern Pacific. However, 
many questions exist about more complex 
multivariate extreme phenomena where 

methodological challenges remain sub-
stantial (Davison and Huser, 2015). Here, 
following Timmermans et al. (2017), we 
make use of the “peaks- over- threshold” 
(POT) method (Coles, 2001), which 
involves statistically modeling threshold 
exceedances of Hs (typically >97.5 per-
centile), in order to derive an EV distri-
bution (EVD) from which 20-year return 
levels can be derived. Note that estimates 
of decay rate in the tail of the probability 
distribution can be sensitive to the occur-
rence of a single high-magnitude event 
so here, noting the high spatial variabil-
ity of extreme waves, we actually employ 
a dynamic threshold algorithm to fit the 
EV model more robustly. 

For brevity, we omit further details of 
fitting an EVD and refer the reader to 
Timmermans et  al. (2017), but we illus-
trate some important issues by examining 
observed and simulated wave height data. 
Figure 1 panels a and b show histograms 
for Hs at two NOAA data buoys that 
lay in the paths of hurricanes Irma and 
Maria, respectively. The general shape 
of the distributions is typical of the open 
ocean and is skewed, with a right-hand 
tail due to higher winds. Note that buoy 
41047 (Figure 1b), showing a slower tail 
decay rate, lies in the North Atlantic and 
is exposed to more energetic conditions, 
in contrast to buoy 42060 (Figure 1a) 
that is more sheltered in the Caribbean 
(buoy locations are shown in Figure 3, 

bottom left panel). However, the distribu-
tion statistics tell us very little about the 
most intense events, which are so infre-
quent that they cannot be resolved in 
the figures—maximum, pre- and post- 
hurricane passages (blue and red arrows, 
respectively) are indicated.

An EVD could be fitted using a POT 
approach to model the occurrence of 
the extremes; however, in these cases we 
can see that in approximately 10 years of 
observations, the variability in the max-
imum is substantial—a single event can 
result in an increase in the maximum of 
between 25% and 100%. In fact, at buoy 
42060, the single event of hurricane Irma 
is responsible for all observations in the 
highest 50% of the range of the data, so we 
have only a single independent data point 
(high threshold exceedance) from which 
to infer extremal behavior. Figure 1a 
includes point estimates and 95% con-
fidence intervals, based on the statisti-
cal sampling only, for 10-year return lev-
els for Hs. The estimates were derived 
from the data excluding (light blue) and 
including (orange) the passage of Irma, 
revealing that the earlier 95% confidence 
interval does not bound wave heights 
from the passage of Irma, and in fact sug-
gests them to be extremely unlikely. In 
this case, the short duration of the obser-
vational record with respect to the fre-
quency of TC passage (and extreme 
waves) in this region limits our ability 

FIGURE 1. Histograms for significant wave height (Hs) at NOAA data buoys (a) 42060 (Central Caribbean Sea) and (b) 41047 (Hatteras Plain, Western 
Atlantic). Arrows indicate the maximum value before (blue) and after (red) hurricane passage. Panel (c) shows 50 years of simulation output, with the 
(red) arrow indicating the maximum value.
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to infer extremal behavior. For compari-
son, Figure 1c shows an example of a his-
togram of Hs from simulated wave cli-
mate (our +2.0°C data set of 50 years) at 
a location in the Arabian Gulf affected by 
TCs on an infrequent basis. Note that the 
maximum value of approximately 22.5 m 
is indeed extreme, exceeding the largest 
in the observed record of approximately 
19 m, which was in the North Atlantic 
and not due to a TC.

CHANGES IN EXTREME 
WAVE CLIMATE
We fitted independent EVDs to each 
grid cell for each of the 50-year wave 
climate data sets and obtained 20-year 
return levels for Hs. We compare these 
to a similar (44-year) data set described 
by Timmermans et  al. (2017) in order 
to evaluate changes. Figure 2 shows 
differences in 20-year return levels 
for Hs between future +1.5°C and the 

present day (panel  a), +2.0°C and the 
present day (panel  b), and +2.0°C and 
+1.5°C (panel  c). In terms of magni-
tude of change, Figure 2 panels a and b 
look remarkably similar to each other, 
and also to Figure 3c of Timmermans 
et al. (2017), which shows the difference 
between the present day and the future 
RCP8.5 scenario. These results indicate 
only small differences in extreme wave 
climate between the future scenarios. 

FIGURE 2. Differences 
in Hs 20-year return 
level between (a) +1.5°C 
and the present day, 
(b) +2.0°C and the present 
day; (c) +2.0°C and +1.5°C. 
Stippling indicates areas 
where the difference is 
estimated to be statisti-
cally significant.

a

b

c
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However, there may be evidence of some 
large regional changes, of many meters, 
between present-day and future scenar-
ios. A higher density of storm tracks in 
the central and eastern Pacific is seen in 
all future scenarios, with possible evi-
dence of a reduction in extreme waves 
(due to reduced TC activity) in the Pacific 
east of Australia. 

These possible regional changes in 
extreme wave climate reflect the simu-
lated distribution of storm tracks in the 

warmer scenarios, which raises questions 
about the shift. Li and Sriver (2018, their 
Figure 5a–h) show the difference between 
TC climatologies arising from fixed SSTs 
and a coupled ocean when simulated 
in CESM. With respect to observations 
and coupled modeling, fixed SSTs lead 
to a high bias in the density of TCs, par-
ticularly in the eastern Pacific and the 
Atlantic and Indian Oceans. Here, how-
ever, the easterly bias in TC track den-
sity associated with fixed SST simulations 

appears to be further compounded in the 
projected climate. In the South Pacific, 
east of Australia, where track density bias 
appears to be lower, a possible reduc-
tion in extreme wave heights is apparent. 
However, owing to the limited duration 
of the data sets, the extremes are substan-
tially affected by individual TC tracks, 
and robust determination of differences 
is challenging. This is particularly prob-
lematic in areas of low frequency of pas-
sage of intense TCs. A particular example 
can be seen in Figure 2b in the Arabian 
Gulf, where a single event—bearing 
resemblance to Cyclone Gonu (2007)—
dramatically affects the 20-year Hs return 
level (see also Figure 1c). Note that dark 
stippling provides an estimate of statis-
tical significance of changes (calculated 
from estimates of the sampling distribu-
tion when fitting the EVD), revealing that 
robustness of difference is mostly lim-
ited to extremes arising from individ-
ual storms, including ETCs in the mid- 
latitudes. This challenge motivates both 
the generation of longer duration data 
sets and further detailed analysis of exist-
ing data (e.g., Shimura et al., 2017).

HURRICANE WAVE MODELING
The large Hs apparent in our data 
sets (max. 22.5 m), and reported in 
Timmermans et al. (2017), may be com-
mensurate with excessive TC intensity in 
simulations using fixed SSTs, as suggested 
by Li and Sriver (2018). We elucidate this 
for waves from hindcasts of individual 
hurricanes, generated using WRF, with 
a fixed SST surface boundary condition. 
Although WRF and CESM differ in for-
mulation and application, given the com-
mon lack of coupling, we anticipate errors 
in WRF-driven simulations to be infor-
mative with respect to potential errors in 
CESM. We have access to ensemble simu-
lations of a range of hurricanes, designed 
to robustly detect response to increased 
SSTs (Patricola and Wehner, in press). 
These simulations employ local fixed- 
resolution grids of 3 km (for Katrina) 
and 4.5 km, and are forced by observed 
SSTs and lateral boundary conditions 
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FIGURE 3. (left panels) Hurricane tracks for the different simulations (for each scenario) used and 
locations of relevant NOAA data buoys. (right panels) Corresponding maximum wind speeds.
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from NCAR’s Climate Forecast System 
Reanalysis (CFSR) data. Each ensemble 
is composed of 10 simulations for each 
of historic and RCP8.5 (observed +2.0°C 
elevated SSTs) scenarios. We studied four 
hurricanes—Katrina (2005, category 5), 
Ike (2009, category 4), Irma (2017, cate-
gory 5), and Maria (2017, category 5)—
and selected from each ensemble wind 
fields from the simulation that exhibited 
a storm track that corresponded most 
closely to observations. In the case of hur-
ricanes Ike and Katrina, we also (fortu-
itously) have access to a single simulation 
at 27 km, commensurate with the reso-
lution used for our climatological sim-
ulations. The output time step was set at 
15 minutes. Wave fields were generated 
every 15 minutes using WW3, configured 
as described earlier in Approach to Wave 
Modeling. For these simulations in partic-
ular, unbounded numerical grids at 4 km 
resolution were employed, spanning the 
Gulf of Mexico (Katrina and Ike) and a 
region extended to the east to capture the 
coastal Atlantic (Irma and Maria). While 
this potentially excludes incoming wave 
systems crossing the grid boundary, no 
significant events were identified during 
the periods of interest, and observations 
suggest that the hurricanes were solely 
responsible for the extremes in each case. 
Furthermore, initial condition error was 
judged to be minimal, given that initial Hs 
observations were relatively small (<1 m) 
in all cases (see, e.g.,  Figures 5 and 6), 
and discrepancy with simulation output 
was also typically small, indicating that 
spin-up occurred within a few hours.

Figure 3 shows storm tracks and max-
imum wind speeds. While Hurricane 
Katrina principally impacted the Gulf of 
Mexico, the other three events had longer 
storm tracks spanning the outlying 
Caribbean islands. Figure 3 shows that 
the selected tracks, while similar, exhibit 
discrepancies from observation in space 
and time. Furthermore, the right-hand 
panels show discrepancies in the magni-
tude and timing of the maximum wind 
speeds, compared with HURDAT2 obser-
vations (http://www.aoml.noaa.gov/hrd/

hurdat/Data_Storm.html). Spatial dis-
crepancies tend to be small compared 
with the radius of the hurricane, although 
the divergence is more significant for 
Hurricane Maria. These discrepancies 
affect subsequent simulations of waves, 
although the objective is not to perfectly 
recreate each hurricane but rather, by 
comparison with observations, to eluci-
date sources of error and uncertainty in 
simulated extreme wave conditions.

We begin by comparing simulated 
10  m wind speed (U10) and Hs with 
observations at a number of NOAA 

data buoys, and in the interest of brev-
ity we only show more detailed results 
from Hurricane Ike. Note that other 
hurricanes were qualitatively similar in 
terms of deviation from observations. 
Simulations were conducted at 4 km 
and 27 km using historical winds, and 
at 4 km using winds conditioned on an 
RCP8.5 scenario forced by warmer SSTs. 
During Ike, the eye passed very close to 
buoys 42001 and 42019, thus provid-
ing an opportunity to examine the most 
intense part of the storm. Figure 4 shows  
comparisons of U10.

FIGURE 4. Hurricane Ike: Simulated 10 m wind speed (U10; top half of each panel, solid and dashed 
lines) under historical conditions at 4 km (blue), 27 km (light blue), and RCP8.5 winds, 4 km only (red) 
compared with observations from NOAA data buoys (circles and triangles), and wind direction (bot-
tom half of each panel) simulated under historical conditions at 4 km (crosses) compared with obser-
vations (squares).
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The three simulations (historical, 
RCP8.5, and 27 km) reveal a range of 
agreement with observations, with sev-
eral notable features. Considering the his-
torical simulation (solid blue line) first, 
between Cuba and landfall in Texas, the 
simulated track coincided closely with 
the observed track. Agreement appears 
good with observations for both U10 and 
direction, with the exception of excessive 
U10 (>20 m s–1) at buoy 42001 in panel a. 
Buoy 42001 was fortuitously positioned 
in the path of Ike, and in fact, from both 

observations and simulation, the passage 
of the eye is indicated by a rapid drop in 
wind speed, around 2008-09-12 00:00, 
before a subsequent rapid increase. The 
high wind speeds shown in Figure 4a 
are commensurate with the discrepancy 
between simulated and observed peak 
wind speed estimates from HURDAT2 
data shown in Figure 3. In contrast, at 
distances further from the hurricane’s 
eye, U10 agreement is much better. The 
RCP8.5 (red line) and 27 km histori-
cal (dashed blue line) cases show more 

variability, with discrepancies in timing 
and intensity. In particular, peak inten-
sity of the 27 km run leads the others by 
at least 12 hours, likely due to errors in 
translation speed, seen also between the 
historical and RCP8.5 simulations. High 
wind speeds and temporal lag at buoy 
42002 appear to be due to divergence of 
the track (red line), which passes much 
closer to 42002 than the historic track 
(see Figure 3), and makes landfall some 
200 km west of observations. We also 
note there is no clear (visual) evidence 
that the RCP8.5 simulation consistently 
yields higher wind speeds, although the 
27 km simulation does appear to gen-
erate 40% lower wind speeds at buoys 
42001 and 42002. Note also that buoy 
42035 is located in shallow water (15 m), 
where depth-induced breaking would be 
expected to constrain wave height in par-
ticularly energetic conditions.

We find that the characteristics of the 
wind speed are reflected closely in the 
wave simulations, shown in Figure 5. We 
compare simulation output to buoy mea-
surements for Hs (top half panel) and 
peak period, Tp, (4 km historical simula-
tion only, bottom half panel). Tp appears 
to be consistently well reproduced, gen-
erally falling within observational scatter 
(buoy observations typically lack uncer-
tainty estimates). In general, discrepan-
cies in Hs follow discrepancies in U10, 
with some variation. For example, his-
toric U10 at buoy 42002 (solid blue line, 
Figure 4b) closely follows observations, 
but Hs exceeds observations by at least 2 m 
(solid blue line, Figure 5b). Discrepancies 
in U10 for the RCP8.5 and 27 km simu-
lations also tend to be reflected in the Hs 
output. In general, large positive errors 
tend to occur close to the storm track, 
and much smaller, mostly negative, errors 
further away.

For comparison, Figure 6 shows simi-
lar analysis of Hs and Tp at the buoy loca-
tion(s) showing the most intense condi-
tions across all four hurricanes. Note in 
particular that buoy 42003 (Figure 6b) 
failed during Katrina (the first loss of a 
NOAA deep water buoy in 30 years of 
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FIGURE 5. Hurricane Ike: Simulated Hs (top half of panel, solid and dashed lines) under histori-
cal conditions at 4 km (blue), 27 km (light blue), and RCP8.5 winds, 4 km only, (red) compared with 
observations from NOAA data buoys (circles), and peak wave period (bottom half of panel) under 
historical conditions at 4 km (blue dashed line) compared with observations (crosses).
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operations in the Gulf), hence the loss of 
data, and that the second peak in Hs, seen 
in Figure 6e, is in fact hurricane Jose (but 
not relevant here). Four of the six exam-
ples show maximum Hs that substantially 
exceed observations, while, similar to 
the case for Hurricane Ike, performance 
for Tp generally seems good in spite of 
numerous potential sources of uncer-
tainty. Anomalous timing and magni-
tude of some simulations can be related 
directly to storm tracks. For example, 
although the timing is well synchronized 
in the three cases for Katrina, discrepancy 
in wave heights at buoy 42001 (Figure 6a) 
appears to be explained by the proximity 
of the respective tracks to the buoy when 
intensity was highest. Given that the his-
toric track (solid blue line, Figure 3) so 
closely matches the observed track, but 
simulated Hs exceeds observations by 
approximately 35%, it appears that high 
wind speeds are substantially biasing the 
extremes. This also seems likely at buoy 
42060 during Hurricane Maria (panel f), 
where although simulated storm tracks 
appear realistic, Hs dramatically exceeds 
observations.

Notably, Y. Chen and Yu (2017) also 
raise the issue of high simulated Hs at 
buoy 42001 (see their Figure 6), during 
Katrina. They speculate that the hurri-
cane’s rotation created offshore winds on 
its left side, thus resulting in fetch-limited 
conditions due to the coastline, which 
might be more poorly represented by 
the modeling setup. We assert that there 
may be more to this issue because our 
results appear to show consistent over-
estimation of peak Hs in a number of 
cases where fetch is essentially unlimited. 
Indeed, Y. Chen et al. (2018) call for more 
expansive studies by looking at addi-
tional hurricanes in order to draw more 
robust conclusions.

CONCLUSIONS
We presented two 50-year simulated 
global wave climate data sets under 
+1.5°C and +2.0°C warming scenar-
ios. Changes in extreme wave height 
may be evident, particularly increases in 

the tropical North Pacific and Atlantic 
basins, and possible reduction in the 
tropical South Pacific. However, these 
changes are characterized by poor sam-
pling of TCs, which introduces uncer-
tainty, and in turn motivates the need 
for much longer duration data sets. 
Furthermore, recent research suggests 
that the use of fixed SST boundary con-
ditions in CESM may introduce regional 
bias in storm track density, so we advise 
caution in interpretation. Simulations 
of individual hurricanes using the WRF 

model with observed SSTs suggest that 
extreme wind speeds, and resulting wave 
heights, are likely to be excessive. Noting 
also that evolution of simulated storm 
track, intensity, and translation speed 
contribute substantially to variability in 
output wind and wave characteristics, 
we echo Y. Chen et al. (2018) and advo-
cate for broader ensemble studies of this 
type. Such data sets would add value to 
COWCLIP and help advance the investi-
gation of the effects of atmosphere-ocean 
processes on extreme wave climate. 
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(b) Hurricane Katrina (2005): NDBC 42003
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(c) Hurricane Ike (2008): NDBC 42001
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(d) Hurricane Ike (2008): NDBC 42035
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(e) Hurricane Irma (2017): NDBC 41043
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(f) Hurricane Maria (2017): NDBC 42060
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FIGURE 6. Wave parameters at selected buoys where conditions were the most energetic due to 
Hurricanes Katrina, Ike, Irma, and Maria simulated with historical 4 km winds (blue), historical 27 km 
winds (light blue, where applicable), and RCP8.5 winds (red), compared with observations (circles 
and crosses) at buoys that observed the largest waves in each case.



Oceanography |  Vol.31, No.298

REFERENCES
Aarnes, O.J., M. Reistad, Ø. Breivik, E. Bitner-

Gregersen, L.I. Eide, O. Gramstad, A.K. Magnusson, 
B. Natvig, and E. Venem. 2017. Projected changes 
in significant wave height toward the end of 
the 21st century: Northeast Atlantic. Journal 
of Geophysical Research 122:3,394–3,403, 
https://doi.org/ 10.1002/ 2016JC012521.

Aguirre, C., J.A. Rutllant, and M. Falvey. 2017. 
Wind waves climatology of the south-
east Pacific Ocean. International Journal of 
Climatology 37:4,288–4,301, https://doi.org/ 
10.1002/joc.5084.

Aijaz, S., M. Ghantous, A.V. Babanin, I. Ginis, 
B. Thomas, and G. Wake. 2017. Nonbreaking 
wave-induced mixing in upper ocean during 
tropical cyclones using coupled hurricane- 
ocean- wave modeling. Journal of Geophysical 
Research 122:3,939–3,963, https://doi.org/ 
10.1002/2016JC012219.

Babanin, A.V., and W.E. Rogers. 2014. Generation 
and limiters of rogue waves. International 
Journal of Ocean and Climate Systems 5:38–49, 
https://doi.org/ 10.1260/ 1759-3131.5.2.39.

Barnard, P.L., D. Hoover, D.M. Hubbard, A. Snyder, 
B.C. Ludka, J. Allan, G.M. Kaminsky, P. Rugggiero, 
T.W. Gallien, L. Gable, and others. 2017. 
Extreme oceanographic forcing and coastal 
response due to the 2015–2016 El Niño. Nature 
Communications 8:14365, https://doi.org/10.1038/
ncomms14365.

Camus, P., I.J. Losada, C. Izaguirre, A. Espejo, 
M. Menéndez, and J. Pérez. 2017. Statistical wave 
climate projections for coastal impact assess-
ments. Earth’s Future 5:918–933, https://doi.org/ 
10.1002/2017EF000609.

Camus, P., M. Menéndez, F.J. Méndez, C. Izaguirre, 
A. Espejo, V. Cánovas, J. Pérez, A. Rueda, 
I.J. Losada, and R. Medina. 2014. A weather- 
type statistical downscaling framework for 
ocean wave climate. Journal of Geophysical 
Research 119:7,389–7,405, https://doi.org/ 
10.1002/2014JC010141.

Casas-Prat, M., X. Wang, and N. Swart. 2018. 
CMIP5-based global wave climate projec-
tions including the entire Arctic Ocean. Ocean 
Modelling 123:66–85, https://doi.org/10.1016/ 
j.ocemod.2017.12.003.

Chen, S.S., and M. Curcic. 2016. Ocean surface waves 
in Hurricane Ike (2008) and Superstorm Sandy 
(2012): Coupled model predictions and observa-
tions. Ocean Modelling 103:161–176, https://doi.org/ 
10.1016/j.ocemod.2015.08.005.

Chen, Y., and X. Yu. 2017. Sensitivity of storm 
wave modeling to wind stress evaluation meth-
ods. Journal of Advances in Modeling Earth 
Systems 9:893–907, https://doi.org/ 10.1002/ 
2016MS000850.

Chen, Y., F. Zhang, B.W. Green, and X. Yu. 2018. 
Impacts of ocean cooling and reduced wind drag 
on Hurricane Katrina (2005) based on numerical 
simulations. Monthly Weather Review 146:287–306, 
https://doi.org/10.1175/MWR-D-17-0170.1.

Coles, S. 2001. An Introduction to Statistical 
Modeling of Extreme Values. Springer, 209 pp., 
https://doi.org/ 10.1007/978-1-4471-3675-0.

Davison, A., and R. Huser. 2015. Statistics of 
extremes. Annual Review of Statistics and Its 
Application 2:203–235, https://doi.org/10.1146/
annurev-statistics-010814-020133.

Doble, M.J., and J.-R. Bidlot. 2013. Wave buoy mea-
surements at the Antarctic sea ice edge com-
pared with an enhanced ECMWF WAM: Progress 
towards global waves-in-ice modelling. Ocean 
Modelling 70:166–173, https://doi.org/10.1016/ 
j.ocemod.2013.05.012.

Duvat, V.K.E., A.K. Magnan, S. Etienne, C. Salmon, 
and C. Pignon-Mussaud. 2016. Assessing the 
impacts of and resilience to Tropical Cyclone 

Bejisa, Reunion Island (Indian Ocean). Natural 
Hazards 83:601–640, https://doi.org/10.1007/
s11069-016-2338-5.

Emanuel, K. 2005. Increasing destructiveness 
of tropical cyclones over the past 30 years. 
Nature 436:686–688, https://doi.org/10.1038/
nature03906.

Emanuel, K., S. Solomon, D. Folini, S. Davis, and 
C. Cagnazzo. 2013. Influence of tropical tropo-
pause layer cooling on Atlantic hurricane activity. 
Journal of Climate 26:2,288–2,301, https://doi.org/ 
10.1175/JCLI-D-12-00242.1.

Erikson, L., C. Hegermiller, P. Barnard, P. Ruggiero, 
and M. van Ormondt. 2015. Projected wave condi-
tions in the Eastern North Pacific under the influ-
ence of two CMIP5 climate scenarios. Ocean 
Modelling 96:171–185, https://doi.org/10.1016/ 
j.ocemod.2015.07.004.

Fan, Y., I. Ginis, and T. Hara. 2009. The effect 
of wind-wave-current interaction on air-
sea momentum fluxes and ocean response 
in tropical cyclones. Journal of Physical 
Oceanography 39(4):1,019–1,034, https://doi.org/ 
10.1175/2008JPO4066.1.

Fan, Y., I.M. Held, S.-J. Lin, and X.L. Wang. 2013. 
Ocean warming effect on surface gravity wave cli-
mate change for the end of the twenty-first century. 
Journal of Climate 26:6,046–6,066, https://doi.org/ 
10.1175/JCLI-D-12-00410.1.

Fan, Y., and W.E. Rogers. 2016. Drag coefficient com-
parisons between observed and model simulated 
directional wave spectra under hurricane condi-
tions. Ocean Modelling 102:1–13, https://doi.org/ 
10.1016/j.ocemod.2016.04.004.

Harley, M.D., I.L. Turner, M.A. Kinsela, J.H. Middleton, 
P.J. Mumford, K.D. Splinter, M.S. Phillips, 
J.A. Simmons, D.J. Hanslow, and A.D. Short. 2017. 
Extreme coastal erosion enhanced by anoma-
lous extratropical storm wave direction. Nature 
Scientific Reports 7:6033, https://doi.org/10.1038/
s41598-017-05792-1.

Hemer, M.A., Y. Fan, N. Mori, A. Semedo, and 
X.L. Wang. 2013a. Projected changes in wave 
climate from a multi-model ensemble. Nature 
Climate Change 3:471–476, https://doi.org/10.1038/
nclimate1791.

Hemer, M.A., J. Katzfey, and C.E. Trenham. 2013b. 
Global dynamical projections of surface ocean 
wave climate for a future high greenhouse gas 
emission scenario. Ocean Modelling 70:221–245, 
https://doi.org/10.1016/j.ocemod.2012.09.008.

Hemer, M.A., X.L. Wang, R. Weisse, and V.R. Swail. 
2012. Advancing wind-waves climate science: 
The COWCLIP project. Bulletin of the American 
Meteorological Society 93(6)791–796, 
https://doi.org/ 10.1175/ BAMS-D-11-00184.1.

Hemer, M.A., S. Zieger, T. Durrant, J. O’Grady, 
R.K. Hoeke, K.L. McInnes, and U. Rosebrock. 
2017. A revised assessment of Australia’s 
national wave energy resource. Renewable 
Energy 114(Part A):85–107, https://doi.org/10.1016/ 
j.renene.2016.08.039.

Hoeke, R.K., K.L. McInnes, and J.G. O’Grady. 2015. 
Wind and wave setup contributions to extreme 
sea levels at a tropical high island: A stochastic 
cyclone simulation study for Apia, Samoa. Journal 
of Marine Science and Engineering 3:1,117–1,135, 
https://doi.org/ 10.3390/jmse3031117.

Huang, P., I.-I. Lin, C. Chou, and R.-H. Huang. 2015. 
Change in ocean subsurface environment to 
suppress tropical cyclone intensification under 
global warming. Nature Communications 6:7188, 
https://doi.org/ 10.1038/ncomms8188.

Hurrell, J.W., J.J. Hack, D. Shea, J.M. Caron, and 
J. Rosinski. 2008. A new sea surface tem-
perature and sea ice boundary dataset for the 
Community Atmosphere Model. Journal of 
Climate 21:5,145–5,153, https://doi.org/ 10.1175/ 
2008JCLI2292.1.

Hurrell, J.W., M.M. Holland, P.R. Gent, S. Ghan, 
J.E. Kay, P.J. Kushner, J.-F. Lamarque, W.G. Large, 
D. Lawrence, K. Lindsay, and others 2013. The 
Community Earth System Model: A frame-
work for collaborative research. Bulletin of the 
American Meteorological Society 94:1,339–1,360, 
https://doi.org/ 10.1175/ BAMS-D-12-00121.1.

IPCC. 2014. Climate Change 2014: Impacts, 
Adaptation, and Vulnerability. Part A: Global 
and Sectoral Aspects. Contribution of Working 
Group II to the Fifth Assessment Report of the 
Intergovernmental Panel on Climate Change. 
C.B Field, V.R. Barros, D.J. Dokken, K.J. Mach, 
M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, 
Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, 
A.N. Levy, S. MacCracken, P.R. Mastrandrea, and 
L.L. White, eds, Cambridge University Press, 
Cambridge, UK, and New York, NY, USA, 1,132 pp.

Izaguirre, C., F.J. Méndez, M. Menéndez, and 
I.J. Losada. 2011. Global extreme wave height 
variability based on satellite data. Geophysical 
Research Letters 38(10), https://doi.org/ 10.1029/ 
2011GL047302.

Komen, G.J., L. Cavaleri, M. Donelan, K. Hasselmann, 
S. Hasselmann, and P.A.E.M. Janssen. 1994. 
Dynamics and Modelling of Ocean Waves. 
Cambridge University Press, 532 pp.

Li, H., and R.L. Sriver. 2018. Tropical cyclone activity in 
the high-resolution Community Earth System Model 
and the impact of ocean coupling. Journal of 
Advances in Modeling Earth Systems 10:165–186, 
https://doi.org/10.1002/2017MS001199.

Lin, I.-I., I.-F. Pun, and C.-C. Lien. 2014. “Category-6” 
supertyphoon Haiyan in global warming hiatus: 
Contribution from subsurface ocean warming. 
Geophysical Research Letters 41:8,547–8,553, 
https://doi.org/10.1002/2014GL061281.

Mackay, E.B., A.S. Bahaj, and P.G. Challenor. 
2010. Uncertainty in wave energy resource 
assessment: Part 1. Historic data. Renewable 
Energy 35:1,792–1,808, https://doi.org/10.1016/ 
j.renene.2009.10.026.

Masselink, G., B. Castelle, T. Scott, G. Dodet, 
S. Suanez, D. Jackson, and F. Floc’h. 2016. Extreme 
wave activity during 2013/2014 winter and morpho-
logical impacts along the Atlantic coast of Europe. 
Geophysical Research Letters 43:2,135–2,143, 
https://doi.org/10.1002/2015GL067492.

Massom, R.A., T.A. Scambos, L.G. Bennetts, P. Reid, 
V.A. Squire, and S.E. Stammerjohn. 2018. Antarctic 
ice shelf disintegration triggered by sea ice 
loss and ocean swell. Nature 558:383–389, 
https://doi.org/ 10.1038/s41586-018-0212-1.

Méndez, F.J., M. Menéndez, A. Luceno, and 
I.J. Losada. 2006. Estimation of the long-term vari-
ability of extreme significant wave height using 
a time-dependent peak over threshold (POT) 
model. Journal of Geophysical Research 111(C7), 
https://doi.org/ 10.1029/ 2005JC003344.

Mitchell, D., K. AchutaRao, M. Allen, I. Bethke, 
U. Beyerle, A. Ciavarella, P.M. Forster, 
J. Fuglestvedt, N. Gillett, K. Haustein, and others. 
2017. Half a degree additional warming, progno-
sis and projected impacts (HAPPI): Background 
and experimental design. Geoscientific Model 
Development 10:571–583, https://doi.org/10.5194/
gmd-10-571-2017.

Mizuta, R., A. Murata, M. Ishii, H. Shiogama, K. Hibino, 
N. Mori, O. Arakawa, Y. Imada, K. Yoshida, 
T. Aoyagi, and others. 2017. Over 5,000 years of 
ensemble future climate simulations by 60-km 
global and 20-km regional atmospheric mod-
els. Bulletin of the American Meteorological 
Society 98(7):1,383–1,398, https://doi.org/10.1175/
BAMS-D-16-0099.1.

Moon, I.-J., I. Ginis, T. Hara, H.L. Tolman, C.W. Wright, 
and E.J. Walsh. 2003. Numerical simulation of 
sea surface directional wave spectra under 
hurricane wind forcing. Journal of Physical 
Oceanography 33:1,680–1,706, https://doi.org/ 
10.1175/2410.1.

https://doi.org/10.1002/2016JC012521
https://doi.org/10.1002/joc.5084
https://doi.org/10.1002/joc.5084
https://doi.org/10.1002/2016JC012219
https://doi.org/10.1002/2016JC012219
https://doi.org/10.1260/1759-3131.5.2.39
https://doi.org/10.1038/ncomms14365
https://doi.org/10.1038/ncomms14365
https://doi.org/10.1002/2017EF000609
https://doi.org/10.1002/2017EF000609
https://doi.org/10.1002/2014JC010141
https://doi.org/10.1002/2014JC010141
https://doi.org/10.1016/j.ocemod.2017.12.003
https://doi.org/10.1016/j.ocemod.2017.12.003
https://doi.org/10.1016/j.ocemod.2015.08.005
https://doi.org/10.1016/j.ocemod.2015.08.005
https://doi.org/10.1002/2016MS000850
https://doi.org/10.1002/2016MS000850
https://doi.org/10.1175/MWR-D-17-0170.1
https://doi.org/10.1007/978-1-4471-3675-0
https://doi.org/10.1146/annurev-statistics-010814-020133
https://doi.org/10.1146/annurev-statistics-010814-020133
https://doi.org/10.1016/j.ocemod.2013.05.012
https://doi.org/10.1016/j.ocemod.2013.05.012
https://doi.org/10.1007/s11069-016-2338-5
https://doi.org/10.1007/s11069-016-2338-5
https://doi.org/10.1038/nature03906
https://doi.org/10.1038/nature03906
https://doi.org/10.1175/JCLI-D-12-00242.1
https://doi.org/10.1175/JCLI-D-12-00242.1
https://doi.org/10.1016/j.ocemod.2015.07.004
https://doi.org/10.1016/j.ocemod.2015.07.004
https://doi.org/10.1175/2008JPO4066.1
https://doi.org/10.1175/2008JPO4066.1
https://doi.org/10.1175/JCLI-D-12-00410.1
https://doi.org/10.1175/JCLI-D-12-00410.1
https://doi.org/10.1016/j.ocemod.2016.04.004
https://doi.org/10.1016/j.ocemod.2016.04.004
https://doi.org/10.1038/s41598-017-05792-1
https://doi.org/10.1038/s41598-017-05792-1
https://doi.org/10.1038/nclimate1791
https://doi.org/10.1038/nclimate1791
https://doi.org/10.1016/j.ocemod.2012.09.008
https://doi.org/10.1175/BAMS-D-11-00184.1
https://doi.org/10.1016/j.renene.2016.08.039
https://doi.org/10.1016/j.renene.2016.08.039
https://doi.org/10.3390/jmse3031117
https://doi.org/10.1038/ncomms8188
https://doi.org/10.1175/2008JCLI2292.1
https://doi.org/10.1175/2008JCLI2292.1
https://doi.org/10.1175/BAMS-D-12-00121.1
https://doi.org/10.1029/2011GL047302
https://doi.org/10.1029/2011GL047302
https://doi.org/10.1002/2017MS001199
https://doi.org/10.1002/2014GL061281
https://doi.org/10.1016/j.renene.2009.10.026
https://doi.org/10.1016/j.renene.2009.10.026
https://doi.org/10.1002/2015GL067492
https://doi.org/10.1038/s41586-018-0212-1
https://doi.org/10.1029/2005JC003344
https://doi.org/10.5194/gmd-10-571-2017
https://doi.org/10.5194/gmd-10-571-2017
https://doi.org/10.1175/BAMS-D-16-0099.1
https://doi.org/10.1175/BAMS-D-16-0099.1
https://doi.org/10.1175/2410.1
https://doi.org/10.1175/2410.1


Oceanography  |  June 2018 99

Munich RE. 2018. Natural catastrophe review: Series 
of hurricanes makes 2017 year of highest insured 
losses ever. Press release, January 4, 2018, 
https://www.munichre.com/en/media-relations/ 
publications/press-releases/2018/2018-01-04-
press-release/index.html.

Murakami, H., R. Mizuta, and E. Shindo. 2012. Future 
changes in tropical cyclone activity projected by 
multi-physics and multi-SST ensemble experi-
ments using the 60-km-mesh MRI-AGCM. Climate 
Dynamics 39:2,569–2,584, https://doi.org/10.1007/
s00382-011-1223-x.

Murakami, H., G.A. Vecchi, T.L. Delworth, 
A.T. Wittenberg, S. Underwood, R. Gudgel, X. Yang, 
L. Jia, F. Zeng, K. Paffendorf, and W. Zhang. 2017. 
Dominant role of subtropical Pacific warming in 
extreme eastern Pacific hurricane seasons: 2015 
and the future. Journal of Climate 30:243–264, 
https://doi.org/10.1175/JCLI-D-16-0424.1.

Murakami, H., G.A. Vecchi, S. Underwood, 
T.L. Delworth, A.T. Wittenberg, W.G. Anderson, 
J.-H. Chen, R.G. Gudgel, L.M. Harris, S.-J. Lin, and 
F. Zeng. 2015. Simulation and prediction of cat-
egory 4 and 5 hurricanes in the high-resolution 
GFDL HiFLOR coupled climate model. Journal of 
Climate 28:9,058–9,079, https://doi.org/10.1175/
JCLI-D-15-0216.1.

NOAA NCEI (National Centers for Environmental 
Information). 2018. U.S. Billion-Dollar Weather and 
Climate Disasters, https://www.ncdc.noaa.gov/
billions/.

Patricola, C.M., P. Chang, and R. Saravanan. 2016. 
Degree of simulated suppression of Atlantic trop-
ical cyclones modulated by flavour of El Niño. 
Nature Geoscience 9:155–160, https://doi.org/ 
10.1038/NGEO2624.

Patricola, C.M., R. Saravanan, and P. Chang. 2014. 
The Impact of the El Niño-Southern Oscillation 
and Atlantic Meridional Mode on seasonal 
Atlantic tropical cyclone activity. Journal of 
Climate 27:5,311–5,328, https://doi.org/10.1175/
JCLI-D-13-00687.1.

Patricola, C., and M. Wehner. In press. Anthropogenic 
influences on major tropical cyclone events. 
Nature.

Perez, J., M. Menéndez, P. Camus, F.J. Méndez, and 
I.J. Losada. 2015. Statistical multi-model climate 
projections of surface ocean waves in Europe. 
Ocean Modelling 96:161–170, https://doi.org/ 
10.1016/ j.ocemod.2015.06.001.

Risser, M.D., and M.F. Wehner. 2017. Attributable 
human-induced changes in the likelihood and 
magnitude of the observed extreme precipi-
tation during Hurricane Harvey. Geophysical 
Research Letters 44(2):12,457–12,464, 
https://doi.org/10.1002/2017GL075888.

Ruggiero, P., P.D. Komar, and J.C. Allan. 2010. 
Increasing wave heights and extreme value pro-
jections: The wave climate of the U.S. Pacific 
Northwest. Coastal Engineering 57:539–552, 
https://doi.org/10.1016/j.coastaleng.2009.12.005.

Seroka, G., T. Miles, Y. Xu, J. Kohut, O. Schofield, and 
S. Glenn. 2016. Hurricane Irene sensitivity to strat-
ified coastal ocean cooling. Monthly Weather 
Review 144:3,507–3,530, https://doi.org/10.1175/
MWR-D-15-0452.1.

Shimura, T., N. Mori, and M.A. Hemer. 2016. 
Variability and future decreases in winter wave 
heights in the Western North Pacific. Geophysical 
Research Letters 43:2,716–2,722, https://doi.org/ 
10.1002/2016GL067924.

Shimura, T., N. Mori, and M.A. Hemer. 2017. Projection 
of tropical cyclone-generated extreme wave cli-
mate based on CMIP5 multi-model ensem-
ble in the Western North Pacific. Climate 
Dynamics 49:1,449–1,462, https://doi.org/10.1007/
s00382-016-3390-2.

Shimura, T., N. Mori, and H. Mase. 2015. Future 
projections of extreme ocean wave climates 
and the relation to tropical cyclones: Ensemble 

experiments of MRI-AGCM3.2H. Journal of 
Climate 28:9,838–9,856, https://doi.org/10.1175/
JCLI-D-14-00711.1.

Shope, J.B., C.D. Storlazzi, L.H. Erikson, and 
C.A. Hegermiller. 2016. Changes to extreme wave 
climates of islands within the Western Tropical 
Pacific throughout the 21st century under RCP 4.5 
and RCP 8.5, with implications for island vulner-
ability and sustainability. Global and Planetary 
Change 141:25–38, https://doi.org/10.1016/ 
j.gloplacha.2016.03.009.

Skamarock, W.C., J.B. Klemp, J. Dudhia, D.O. Gill, 
D.M. Barker, M.G. Duda, X.-Y. Huang, W. Wang, and 
J.G. Powers. 2008. A Description of the Advanced 
Research WRF Version 3. NCAR Technical Note 
NCAR/TN-475+STR, 125 pp., https://doi.org/ 
10.5065/D68S4MVH.

Sobel, A.H., S.J. Camargo, T.M. Hall, C.-Y. Lee, 
M.K. Tippett, and A.A. Wing. 2016. Human 
influence on tropical cyclone intensity. 
Science 353:242–246, https://doi.org/10.1126/ 
science.aaf6574.

Sriver, R.L. 2016. Observational evidence supports 
the role of tropical cyclones in regulating climate. 
Proceedings of the National Academy of Sciences 
of the United States of America 38:15,173–15,174, 
https://doi.org/10.1073/pnas.1314721110.

Taylor, K.E., R.J. Stouffer, and G.A. Meehl. 2012. 
An overview of CMIP5 and the experiment 
design. Bulletin of the American Meteorological 
Society 93:485–498, https://doi.org/10.1175/
BAMS-D-11-00094.1.

Timmermans, B., D. Stone, M. Wehner, and 
H. Krishnan. 2017. Impact of tropical cyclones on 
modeled extreme wind-wave climate. Geophysical 
Research Letters 44:1,393–1,401, https://doi.org/ 
10.1002/2016GL071681.

Tolman, H.L., and the WAVEWATCH III 
Development Group. 2014. User Manual and 
System Documentation of WAVEWATCH III, 
version 4.18. Environmental Modeling Center 
Marine Modeling and Analysis Branch, National 
Oceanic and Atmospheric Administration, 282 pp. 
plus appendices.

Vecchi, G.A., and B.J. Soden. 2007a. Effect of remote 
sea surface temperature change on tropical 
cyclone potential intensity. Nature 450:1,066–1,071, 
https://doi.org/10.1038/nature06423.

Vecchi, G.A., and B.J. Soden. 2007b. Increased 
tropical Atlantic wind shear in model pro-
jections of global warming. Geophysical 
Research Letters 34(8), https://doi.org/ 10.1029/ 
2006GL028905.

Wang, D.W., D.A. Mitchell, W.J. Teague, E. Jarosz, 
and M.S. Hulbert. 2005. Extreme waves under 
Hurricane Ivan. Science 309:896, https://doi.org/ 
10.1126/science.1112509.

Wang, X.L., Y. Feng, and V.R. Swail. 2014. Changes 
in global ocean wave heights as projected using 
multimodel CMIP5 simulations. Geophysical 
Research Letters 41:1,026–1,034, https://doi.org/ 
10.1002/2013GL058650.

Wang, X.L., A. Semedo, M. Hemer, M. Dobrynin, 
and COWCLIP contributors. 2016. Report of the 
2016 Meeting for the WCRP-JCOMM Coordinated 
Ocean Wave Climate Project (COWCLIP). Technical 
Report, Joint WMO/IOC Technical Commission 
for Oceanography and Marine Meteorology 
(JCOMM), 35 pp.

Wang, X.L., and V.R. Swail. 2006. Climate change 
signal and uncertainty in projections of ocean 
wave heights. Climate Dynamics 26:109–126, 
https://doi.org/ 10.1007/s00382-005-0080-x.

Wehner, M., Prabhat, K.A. Reed, D. Stone, W.D. Collins, 
and J. Bacmeister. 2015. Resolution dependence 
of future tropical cyclone projections of CAM5.1 in 
the U.S. CLIVAR hurricane working group idealized 
configurations. Journal of Climate 28:3,905–3,925, 
https://doi.org/10.1175/JCLI-D-14-00311.1.

Young, I. 1999. Seasonal variability of the global 
ocean wind and wave climate. International 
Journal of Climatology 19:931–950, https://doi.org/ 
10.1002/(SICI)1097-0088(199907)19:9<931::AID-
JOC412>3.0.CO;2-O.

Young, I.R., J. Vinoth, S. Zieger, and A.V. Babanin. 
2012. Investigation of trends in extreme value 
wave height and wind speed. Journal of 
Geophysical Research 117(C11), https://doi.org/ 
10.1029/2011JC007753.

Zambon, J.B., R. He, and J.C. Warner. 2014. 
Investigation of Hurricane Ivan using 
the coupled ocean- atmosphere- wave- 
sediment transport (COASWT) model. Ocean 
Dynamics 64:1,535–1,554, https://doi.org/10.1007/
s10236-014-0777-7.

Zhang, W., G.A. Vecchi, H. Murakami, T. Delworth, 
A.T. Wittenberg, A. Rosati, S. Underwood, 
W. Anderson, L. Harris, R. Gudgel, and others. 
2016. Improved simulation of tropical cyclone 
responses to ENSO in the Western North Pacific 
in the high-resolution GFDL HiFLOR coupled cli-
mate model. Journal of Climate 29:1,391–1,415, 
https://doi.org/ 10.1175/ JCLI-D-15-0475.1.

Zuidema, P., P. Chang, B. Medeiros, B.P. Kirtman, 
R. Mechoso, E.K. Schneider, T. Toniazzo, 
I. Richter, R.J. Small, K. Bellomo, and others. 
2016. Challenges and prospects for reducing 
coupled climate model SST biases in the east-
ern tropical Atlantic and Pacific Oceans: The U.S. 
CLIVAR eastern tropical oceans synthesis work-
ing group. Bulletin of the American Meteorological 
Society 97(12):2,305–2,327, https://doi.org/10.1175/
BAMS-D-15-00274.1.

ACKNOWLEDGMENTS
This material is based upon work supported by the 
Regional and Global Climate Modeling Program of 
the US Department of Energy, Office of Science, 
Office of Biological and Environmental Research, 
under contract number DE-AC02-05CH11231. These 
simulations were performed using resources of the 
National Energy Research Scientific Computing 
Center, a DOE Office of Science User Facility sup-
ported by the Office of Science of the US Department 
of Energy, also under contract no. DE-AC02-
05CH11231. All data buoy observations were obtained 
from the US National Oceanic and Atmospheric 
Administration (NOAA) National Data Buoy Center 
(NDBC) at http://www.ndbc.noaa.gov. We thank two 
anonymous reviewers for comments that helped 
improve this paper.

AUTHORS
Ben Timmermans (ben.timmermans@gmail.com) 
is Postdoctoral Fellow and Christina Patricola is 
Research Scientist, Climate and Ecosystems Sciences 
Division, Lawrence Berkeley National Laboratory, 
Berkeley, CA, USA. Michael Wehner is Senior Staff 
Scientist, Computational Research Division, Lawrence 
Berkeley National Laboratory, Berkeley, CA, USA.

ARTICLE CITATION
Timmermans, B., C. Patricola, and M. Wehner. 2018. 
Simulation and analysis of hurricane-driven extreme 
wave climate under two ocean warming scenarios. 
Oceanography 31(2):88–99, https://doi.org/10.5670/
oceanog.2018.218.

https://www.munichre.com/en/media-relations/publications/press-releases/2018/2018-01-04-press-release/index.html
https://www.munichre.com/en/media-relations/publications/press-releases/2018/2018-01-04-press-release/index.html
https://www.munichre.com/en/media-relations/publications/press-releases/2018/2018-01-04-press-release/index.html
https://doi.org/10.1007/s00382-011-1223-x
https://doi.org/10.1007/s00382-011-1223-x
https://doi.org/10.1175/JCLI-D-16-0424.1
https://doi.org/10.1175/JCLI-D-15-0216.1
https://doi.org/10.1175/JCLI-D-15-0216.1
https://www.ncdc.noaa.gov/billions/
https://www.ncdc.noaa.gov/billions/
https://doi.org/10.1038/NGEO2624
https://doi.org/10.1038/NGEO2624
https://doi.org/10.1175/JCLI-D-13-00687.1
https://doi.org/10.1175/JCLI-D-13-00687.1
https://doi.org/10.1016/j.ocemod.2015.06.001
https://doi.org/10.1016/j.ocemod.2015.06.001
https://doi.org/10.1002/2017GL075888
https://doi.org/10.1016/j.coastaleng.2009.12.005
https://doi.org/10.1175/MWR-D-15-0452.1
https://doi.org/10.1175/MWR-D-15-0452.1
https://doi.org/10.1002/2016GL067924
https://doi.org/10.1002/2016GL067924
https://doi.org/10.1007/s00382-016-3390-2
https://doi.org/10.1007/s00382-016-3390-2
https://doi.org/10.1175/JCLI-D-14-00711.1
https://doi.org/10.1175/JCLI-D-14-00711.1
https://doi.org/10.1016/j.gloplacha.2016.03.009
https://doi.org/10.1016/j.gloplacha.2016.03.009
https://doi.org/10.5065/D68S4MVH
https://doi.org/10.5065/D68S4MVH
https://doi.org/10.1126/science.aaf6574
https://doi.org/10.1126/science.aaf6574
https://doi.org/10.1073/pnas.1314721110
https://doi.org/10.1175/BAMS-D-11-00094.1
https://doi.org/10.1175/BAMS-D-11-00094.1
https://doi.org/10.1002/2016GL071681
https://doi.org/10.1002/2016GL071681
https://doi.org/10.1038/nature06423
https://doi.org/10.1029/2006GL028905
https://doi.org/10.1029/2006GL028905
https://doi.org/10.1126/science.1112509
https://doi.org/10.1126/science.1112509
https://doi.org/10.1002/2013GL058650
https://doi.org/10.1002/2013GL058650
https://doi.org/10.1007/s00382-005-0080-x
https://doi.org/10.1175/JCLI-D-14-00311.1
https://doi.org/10.1002/(SICI)1097-0088(199907)19:9<931::AID-JOC412>3.0.CO;2-O
https://doi.org/10.1002/(SICI)1097-0088(199907)19:9<931::AID-JOC412>3.0.CO;2-O
https://doi.org/10.1002/(SICI)1097-0088(199907)19:9<931::AID-JOC412>3.0.CO;2-O
https://doi.org/10.1029/2011JC007753
https://doi.org/10.1029/2011JC007753
https://doi.org/10.1007/s10236-014-0777-7
https://doi.org/10.1007/s10236-014-0777-7
https://doi.org/10.1175/JCLI-D-15-0475.1
https://doi.org/10.1175/BAMS-D-15-00274.1
https://doi.org/10.1175/BAMS-D-15-00274.1
http://www.ndbc.noaa.gov
https://doi.org/10.5670/oceanog.2018.218
https://doi.org/10.5670/oceanog.2018.218



