
UCLA
UCLA Previously Published Works

Title
Leveraging ancestry to improve causal variant identification in exome sequencing for 
monogenic disorders

Permalink
https://escholarship.org/uc/item/0551429t

Journal
European Journal of Human Genetics, 24(1)

ISSN
1018-4813

Authors
Brown, Robert
Lee, Hane
Eskin, Ascia
et al.

Publication Date
2016

DOI
10.1038/ejhg.2015.68
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0551429t
https://escholarship.org/uc/item/0551429t#author
https://escholarship.org
http://www.cdlib.org/


ARTICLE

Leveraging ancestry to improve causal variant
identification in exome sequencing for monogenic
disorders

Robert Brown*,1, Hane Lee2, Ascia Eskin3, Gleb Kichaev1, Kirk E Lohmueller1,4, Bruno Reversade5,6,7,
Stanley F Nelson2,3 and Bogdan Pasaniuc*,1,2,3

Recent breakthroughs in exome-sequencing technology have made possible the identification of many causal variants of

monogenic disorders. Although extremely powerful when closely related individuals (eg, child and parents) are simultaneously

sequenced, sequencing of a single case is often unsuccessful due to the large number of variants that need to be followed up

for functional validation. Many approaches filter out common variants above a given frequency threshold (eg, 1%), and then

prioritize the remaining variants according to their functional, structural and conservation properties. Here we present methods

that leverage the genetic structure across different populations to improve filtering performance while accounting for the finite

sample size of the reference panels. We show that leveraging genetic structure reduces the number of variants that need to be

followed up by 16% in simulations and by up to 38% in empirical data of 20 exomes from individuals with monogenic disorders

for which the causal variants are known.

European Journal of Human Genetics (2016) 24, 113–119; doi:10.1038/ejhg.2015.68; published online 22 April 2015

INTRODUCTION

Vast decreases in the cost of exome sequencing have allowed for major
advancements in the identification of causal variants for rare mono-
genic traits and disorders.1–4 Although each individual carries 20 000–
24 000 single-nucleotide variants, most are common in the population
and are unlikely to explain a rare monogenic trait. Variants that are
too common to be consistent with the prevalence of a rare disorder
are removed from consideration2 and the remaining variants
are prioritized based on functional, structural and conservation
properties.5–7 Recent prioritization approaches use cross-species
comparisons8 or a combination of scores from several stand-alone
methods for increased performance.9–12 Although such techniques are
very powerful when family data are available,2–4,13–17 hundreds of
variants often remain for follow-up validation when only a single case
individual is sequenced.11,18,19

Variant filtering in exome-sequencing studies is usually performed
using frequencies that are estimated across large databases of human
variation either by ignoring ancestry, or by matching at the level of
continental ancestry (eg, the Exome Variant Server (EVS)20)21 thus
ignoring sub-continental ancestry. Although FST values calculated
within continental populations are usually low (mostly due to the
dependency of FST on allele frequency),22,23 detectable population
structure still exists.24,25 Population genetic models predict that rare
variants show greater clustering within continental populations
than more common variants26 and empirical studies support this

prediction.27–33 Therefore, a variant might appear rare (o1%) when
its frequency is estimated across many populations, when in reality it is
only rare in most populations and less rare or even common (41%)
in a one or more clustered sets of populations (see Supplementary
Figure 1). For example, variant rs17046386 is common in Africans
(therefore unlikely to be pathogenic) and generally rare or absent in
non-Africans34,35 (see Figure 1). However, this variant would not be
discarded in the filtering step based on frequency estimates from
European reference panels thus increasing the validation burden in the
subsequent steps. In addition, the limited size of existing reference
panels, especially when defining ancestry at the level of a country
(often o100 individuals), induces significant statistical variance in
allele frequency estimates that needs to be accounted for (eg, a variant
with true frequency of 0.5% has 9.0% probability of being observed
with a frequency 41% in a sample of 100 individuals and thus
erroneously discarded).
In this work we investigate the use of sub-continental allele

frequencies (typically estimated at the level of a country36,37) for
a discrete frequency-based filtering step in exome-sequencing studies
but such ideas can also be applied to general statistical methodologies
aimed at finding causal genes in exome scans. We propose approaches
that leverage the frequency estimates across all sub-continental
populations in filtering while accounting for the statistical noise
introduced by the smaller number of individuals used to estimate
frequencies. We use simulations starting from the 1000 Genomes,28
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the NHLBI GO Exome Sequencing Project Exome Variant Server
(EVS)20 and the ClinVar38 data to show that our approach improves
efficacy of filtering (eg, a reduction of 16% in the number of variants
to be followed up in case-only simulations). Importantly, we show that
the standard approach that ignores statistical noise in the allele
frequency estimation is miscalibrated with respect to the false-
negative rate (FNR) (ie, the probability of filtering out a true causal
variant). Finally, we validate our approach using exome-sequencing
data from 20 real individuals with monogenic disorders for which the
true causal variants are known. Here we successfully reduce the
number of variants to be functionally tested (a 38% reduction from
750 to 468 in the heterozygous case), while never discarding the
known causal variants. Our results show that existing filtering
pipelines for studies of monogenic traits can be significantly improved
by incorporating ancestry while accounting for statistical noise in the
filtering step. Interestingly, utilizing sub-continental population refer-
ence panels overcomes the reduction in performance due to higher
statistical noise from the smaller panels.

MATERIALS AND METHODS

Data sets
The 1000 Genomes Project28 has produced a public catalog of human genetic
variation through sequencing from several populations: Han Chinese in Beijing
(CHB), Japanese in Tokyo (JPT), Southern Han Chinese (CHS), Utah
Residents with Northern and Western European ancestry (CEU), Toscani in
Italia (TSI), Finnish in Finland (FIN), British in England and Scotland (GBR),
Iberian population in Spain (IBS), Yoruba in Ibadan (YRI), Luhya in Webuye
(LWK), Americans of African Ancestry in SW USA (ASW), Mexican ancestry
from Los Angeles (MXL), Puerto Ricans from Puerto Rico (PUR) and
Colombians from Medellin (CLM). We use the 1000 Genomes data (with
the exception of IBS individuals, only 14 in total) to evaluate the effectiveness of
various filtering approaches. As the vast majority of causal variants for
monogenic traits are located in the exome,39 we restrict our analysis to coding
regions of autosomal chromosomes. For admixed individuals we downloaded
and used the 1000 Genomes Project local ancestry calls (the consensus calls
from four inference methods40–43). Damaging scores for each single-nucleotide
variant were estimated using KGGSeq with default parameters11 that combines
the functional scores from dbNSFP44 v2.0.
The EVS has released allele counts from 4300 European-Americans and 2203

African Americans20 along with PolyPhen2 scores for missense variants and we
used those in our analyses. A set of 1395 pathogenic variants (as reported by
multiple submitters) was obtained from the ClinVar database38 (accessed 4
December 2014).

To compare simulations to real data, we used exomes of 101 individuals with
self-reported countries of origin including Turkey, Jordan, Tunisia, Egypt,
Israel, Iran, Syria and Palestine. We grouped these individuals into a single
supplemental population for estimating best matching allele frequencies. Of the
101 individuals, 9 were known to harbor heterozygous variants in genes causing
autosomal dominant disorders, 10 had homozygous variants and 1 had
compound heterozygous variants in a gene causing an autosomal recessive
disorder (see Supplementary Information and Supplementary Tables S1 and S2).

FNR estimation
We estimate the probability of filtering out a true causal variant (FNR) at
a given frequency threshold as a function of a reference panel and the
maximum true allele frequency of the causal variant. The filtering threshold can
be adjusted to provide a desired FNR. Let t be the nominal frequency threshold
that is used for filtering. We define the corresponding FNR at this threshold as:

FNRðtÞ ¼
Rmaxðf cÞ
0 f Pðf ref ;N > tjf ÞPðf Þdf

Rmaxðf cÞ
0 f Pðf Þdf

where f is the frequency of the variant in the population, max(fc) is the
maximum assumed frequency of the causal variant in the population, P(f) is the
proportion of variants with frequency f in the population and P(fref,N 4t|f) is
the probability that a variant with frequency f is observed at a frequency greater
than t in the reference panel of N individuals randomly drawn from the
population.
The FNR computation requires knowledge about the distribution of variants

across all frequencies in the population; this can be estimated from population
genetic theory under various demographic assumptions29,45–49 or empirically
from the data. In this work, we estimate the distribution P(f) from reference
panel allele counts and perform the above integration across the observed site
frequency spectrum as follows:

FNRðtÞ ¼
P

f irmaxðf cÞf iPðf ref ;N > tjf iÞP0ðf iÞP
f irmaxðf cÞf iP

0ðf iÞ
Here fi represents each of the unique allele frequencies observed in the reference
panel of N individuals and P`(fi) represents the proportion of variants in the
reference panel that have estimated frequency fi. P(fref,N4t|fi) is modeled as
a binomial draw with the frequency of success equal to fi and the number of
draws equal to the number of allele counts (2N). As the integration is over
a discrete space we calculate the probability that the number of success is
greater than the threshold times 2N. We propose to filter variants using
the minimum frequency threshold t such that FNR(t)o0.05. If multiple
populations are used in filtering (ie, removing variants that are common in
any population, see below), we employ a Bonferroni correction for the
threshold; that is, we require FNR(t) o0.05/K in each of the K considered
populations.

Leveraging population structure for improved filtering
We simulate individuals with monogenic disorder by drawing two individuals
from a specific 1000 Genomes population and then simulating an offspring
assuming Mendelian inheritance and independence between SNPs. We
compare three possible disease scenarios (Case-Only, Trio-Dominant and
Trio-Recessive) using 40 simulated individuals per scenario and population.
The Case-Only scenario assumes there is no information on parental genotypes.
The Trio-Dominant scenario assumes that both parental exomes are sequenced
and the offspring and one of the parents has the disorder. The Trio-Recessive
scenario assumes that both parents are exome sequenced and heterozygous for
the causal allele and that the offspring has two copies of the causal allele. Prior
to frequency filtering, we remove all variants that do not result in an amino-
acid change or do not create or remove a stop codon. In addition, we remove
variants inconsistent with the disease scenario.
We consider multiple frequency-filtering approaches. The NoAncestry,

f41% and NoAncestry, FNRo5% approaches estimate allele frequencies and
FNRs across all 1000 Genomes individuals. The key intuition here is that
statistical noise is decreased with large reference panels but at the cost of
ignoring population structure. NoAncestry, f41% filters out variants with allele

Figure 1 Geographic distribution of rs17046386 across the Human Genome
Diversity Panel CEPH data. The minor allele is rare in non-African
populations, but not rare in African populations.
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frequency41% without regard for the FNR; NoAncestry, FNRo5% filters out
variants above a threshold determined to ensure a 5% FNR. The PopMatched,
FNRo5% approach uses only the reference individuals from the sub-
continental population (country-level, see 1000 Genomes28) of the simulated
individual. The AllPop, FNR o5% approach filters out variants observed in
any population above a conservative Bonferroni-corrected FNR o5% thresh-
old. We assume that populations are independent and set the desired FNR for
each population to 0.05 divided by the number of populations used in filtering
(eg, 14 for simulation results). MaxPopFreq filters variants if observed above
1% allele frequency in any 1000 Genomes continental population and is similar
to a strategy implemented by ANNOVAR50 that filters variants if observed
above 1% in any 1000 Genomes continental population or the EVS European
or African-American populations.
For admixed populations we only simulated the Case-Only scenario by using

the genotypes of real admixed individuals from 1000 Genomes as case
individuals. In addition to methods above, we considered a method that
utilizes local ancestry calls (PopMatched-LA, FNRo5%). In each individual at
loci that are homozygous for African, European or Native American ancestry,
we used the corresponding continental allele frequency estimates obtained by
averaging across all 1000 Genomes individuals from a given continent. In local
ancestry heterozygous regions we used a 50–50 weighting of the matching
continental frequencies. We use the maximum continental FNR-based fre-
quency threshold from the African, European and Asian continents as the
filtering threshold.

RESULTS

Modeling statistical uncertainty increases filtering efficacy
We use simulations from the European-American EVS20 data set to
assess filtering based on an FNR as compared with the standard
approach of ignoring statistical noise in the allele frequency estimates.
We use simulations of various reference panel sizes created with
binomial sampling from the frequencies estimated across all the
European (or African-American) EVS data. As expected, the frequency
threshold that maintains a 5% FNR increases as reference panel size
decreases (see Figure 2a). As the maximum frequency of the true
causal variant (max(fc)) decreases the number of variants for follow-up
per individual also decreases thus increasing filtering performance
(see Figure 2b). Overall, we find a diminishing return in performance
for reference panels larger than 500 individuals.
Next, we investigated the FNR attained by the standard approach

that ignores statistical noise and filters based on the mean frequency
estimate. At small reference panels the standard approach is miscali-
brated attaining an FNR close to 25% thus removing causal variants
from consideration (see Table 1). In contrast, the approach that
maintains an FNRo5% significantly increases the number of variants
for follow-up from 298 to 724 on average; this is necessary as it
reduces the FNR to the desired 5% (see Table 1). With large reference
panels the frequency-based approach is conservative (FNR ~0%)
yielding twice as many variants for follow-up than the FNR-based
approach if the maximum causal frequency is 0.1%. Qualitatively
similar results were observed for simulations from the EVS African-
American data (see Supplementary Figure 2).

Leveraging ancestry to increase filtering performance
Next, we assessed the performance of filtering with or without
accounting for the highly structured nature of rare variants.27–29,51

Using simulated exome data we investigated the efficacy of filtering
across a wide range of methods and sequencing studies. When
comparing the methods that do not leverage ancestry, we observe
that the NoAncestry, FNR o5% approach leads to a slightly increased
number of variants that need to be functionally followed up over the
NoAncestry, f41% approach (Table 2). The increased number of
variants is necessary to attain a correct 5% FNR rate (NoAncestry,

f41% attains an FNR of 6%). The MaxPopFreq approach yields the
fewest number of variants by filtering at 1% frequency in any
continental population, but has a 50% probability of filtering out
the true causal variant (FNR= 50%) (see Table 2).
Among all methods that maintain an FNR o5% and use ancestry

information, we observe that the method that incorporates data across
all populations (AllPop, FNRo5%) attains the best performance
across all simulated scenarios (an average 16% reduction across all
populations from the NoAncestry, FNRo5% method in the Case-
Only scenario, see Table 2). The improvement is likely due to variants
common in at least one population that are filtered out as unlikely to
be pathogenic. This benefit from assaying variants across many
populations comes even at the expense of multiple testing correction
(a Bonferroni adjustment is made to the FNR required in each
individual population resulting in an average filtering threshold of
3.2%). This demonstrates that the benefit of better population
matching outweighs the cost of higher statistical noise from the small
reference panels. The greatest improvement from population matching
comes with the African populations where there is a 26% decrease in
the number of variants remaining for follow-up (see Table 3).
We also investigated other types of clinical scenarios. As expected,

the Trio-Dominant scenario has approximately half as many variants
for follow-up as the Case-Only scenario (see Table 2). The Trio-
Recessive scenario, simulated without inbreeding, shows less than six
variants remaining for all scenarios and methods (see Table 2). Finally,
we observe a similar pattern of improved performance when also
filtering non-damaging variants as predicted by KGGSeq (Table 2).
Therefore, improvements of ancestry-aware filtering do not come
preferentially from variants with non-damaging predictions.

Ancestry-aware filtering in admixed individuals
We extend our approach to admixed individuals (eg, African Amer-
icans) with genetic ancestry from multiple continents. We incorporate
the local ancestry structure in the filtering step with the PopMatched-
LA, FNR o5% approach that matches reference panels according to
the ancestry at each site in an individual’s genome. This significantly
lowers the number of variants for follow-up in the admixed popula-
tions as compared with the standard local ancestry naive method
(PopMatched, FNR o5%) (see Figure 3). For example, in African-
American individuals we observe a reduction from 664 to 487 variants
from just matching the local ancestry to continental populations as
compared with using all 1000 Genomes data with an FNR o5%.
When using information from all populations in the 1000 Genomes
data set, there is improvement for all admixed populations over the
method that ignores ancestry (NoAncestry, FNRo5%) (see Figure 3).

Ancestry-aware filtering in ClinVar data
In the simulations above, we have made the assumption that the
frequency distribution of causal variants is well approximated using
the rare variants in our data, which may not hold in practice.
To investigate deviations from this assumption, we filter the set of
ClinVar pathogenic SNPs according to our methods. We find that the
AllPop, FNRo5%, PopMatched, FNRo5% and NoAncestry, f41%
approaches filtered out 42 (3.0% FNR), 18 (1.3% FNR) and 38 (2.7%
FNR) of the 1395 variants, respectively. This shows that all approaches
are conservative with respect to FNR and suggests that by approx-
imating the distribution of frequencies at causal variants from real data
we do not artificially increase the FNR in empirical data.
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Figure 2 Reference panel size impacts the efficacy of filtering in exome sequencing in European simulations from the EVS data. We simulated reference
panels at various sizes using a binomial sampling from the EVS frequencies. (a) Shows the threshold on the variant frequency needed to achieve a 5% FNR
for various assumptions about the maximum frequency of the causal variant in the population (from 0.001 to 0.01). (b) Displays the number of variants that
remain to be followed up post-filtering at a 5% FNR rate. As expected with larger reference panel sizes, the estimated frequencies from the reference panel
become more accurate making the 5% FNR threshold converge to the maximum assumed frequency of the causal variant (fM), which in turn increases the
efficacy of filtering. We observe limited gains in accuracy for reference panels over 500 individuals. Similar results are obtained for simulations of African
Americans (see Supplementary Figure 2).

Table 1 Method comparisons for different reference panel sizes and maximum causal allele frequencies

100 reference individuals 2500 reference individuals

Max true

frequency Method Threshold

Number of variants for

follow-up

Probability of filtering true

causal Threshold

Number of variants for

follow-up

Probability of filtering true

causal

1.00% f41% 1.0% 298.0 25.4% 1.0% 310.9 2.2%

FNRo5% 6.5% 724.1 4.6% 0.9% 298.3 4.8%

0.10% f41% 1.0% 298.0 12.1% 1.0% 310.9 0.0%

FNRo5% 1.5% 356.0 4.3% 0.1% 149.8 3.6%

0.05% f41% 1.0% 298.0 8.0% 1.0% 310.9 0.0%

FNRo5% 1.5% 356.0 1.9% 0.1% 141.2 2.3%

We compare two methods. The first is a method (f41%) that filters out any variants at an observed frequency 41% ignoring the statistical noise on the frequency estimates (and thus the FNR).
The second is a method (FNRo5%) that filters out variants if observed above a threshold frequency guaranteed to provide less than a 5% chance of filtering out the true causal variant. At small
reference panel sizes it is critical to incorporate statistical noise from the reference panel to not over-filter the true causal variants. Conversely, with large reference panels, a hard 1% frequency filter
is too conservative and significantly increases the number of variants remaining for follow-up analysis.

Table 2 Average number of variants that remain for follow-up post-filtering in simulations of non-admixed individuals

Number of variants for follow-up Number of variants for follow-up, with KGGSeq variants

Case-Only Trio-Dom Trio-Rec Case-Only Trio-Dom Trio-Rec

NoAncestry, f41% 679.3 330.5 5.2 410.5 200.4 2.8

NoAncestry, FNRo5% 702.1 346.4 5.9 422.5 208.8 3.1

MaxPopFreq 358.3 176.6 1.0 235.4 115.9 1.0

PopMatched, FNRo5% 675.4 332.2 4.2 400.4 196.8 2.2

AllPop, FNR o5% 570.1 279.2 3.1 353.7 173.6 1.7

All FNR approaches assume the maximal causal variant frequency of 1%. NoAncestry, f41% and MaxPopFreq have increased FNRs of 6% and 50% respectively. The AllPop, FNRo5% approach
outperforms all other FNR-based approaches. The PopMatched, FNRo5% approach is the second best performing FNR-based approach demonstrating that the improvements from better population
matching outweigh the effects of increased statistical noise from smaller reference panels.
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Analysis of 20 exomes of individuals with monogenic traits
To examine the performance of the different filtering strategies when
applied to actual data, we used the data from 20 of the 101 real exome
sequenced individuals who had monogenic disorders where the causal
variants have been previously identified. We assumed a maximum
causal allele frequency of 1% for all cases because there was no
prevalence data.2 For all modes of inheritance, the number of variants
in an individual for follow-up after filtering was lower when filtering
with the PopMatched, FNR o5% and AllPop, FNR o5% approaches
as opposed to the NoAncestry, f41% approach that does not account
for the FNR (See Supplementary Table 1). We filtered out all variants
except those with damaging annotations: splice acceptors, stop gains,
frame shifts, stop losses, initiator codon changes, inframe insertions,
inframe deletions, missense variants, splice region variants and
KGGSeq predicted damaging variants. The 101 individuals form
a supplemental population with the test individual held out.
We included these individuals when estimating average frequencies
across all populations in the 1000 Genomes Project for the real data.
Using our AllPop, FNR o5% approach only 468 variants need to be
followed up for dominant disorders as compared with 750 for the
NoAncestry, f41% approach (see Table 4). The true causal variant
identified in these individuals was never filtered out. This demon-
strates that using multiple population frequency estimates significantly
reduces the number of variants remaining for follow-up analysis, while
still maintaining an appropriate FNR. In Supplementary Table 1 we
report the variants remaining in each individual along with country
data, presumed inheritance pattern, the zygosity of the causal variant
and disease. Removing outliers based on PCA from the 101 self-
reported Middle Eastern individuals makes no significant difference in
the number of variants remaining for follow-up (see Supplementary
Figure S3 and Supplementary Table S3).

DISCUSSION

In this work, we introduce approaches that account for the finite
sample size of the existing reference panels used in filtering while
leveraging sub-continental ancestry to improve the filtering step in
monogenic disease studies. Both the real data analysis of 20 exomes of
individuals with known monogenic disorders and the simulations
show that our approaches reduce the number of variants that need to
be further investigated, thus increasing the effectiveness of identifying
causal variants using exome sequencing of unrelated individuals.
This work demonstrates that in a clinical setting, even a small
reference panel of 100 individuals from a well-matched population
can have significant impact on the filtering efficacy.
Our methods are limited in that they do not account for the cases

where a second genetic or environmental factor is required for the
phenotype to appear and this increases the risk of filtering the true
causal if the second factor is rare in some populations. Errors in
variant calling in reference populations may also falsely elevate the

Table 3 Different levels of genetic diversity across populations induce

a variation in the average number of variants remaining for follow-up

in an individual

1000 genomes population

(number of individuals)

NoAncestry,

FNR o5%, (SD)

PopMatched,

FNR o5%, (SD)

AllPop,

FNRo5%, (SD)

ASWa (61) 645 (78) 487 (33) 514 (53)

CEU (85) 311 (38) 393 (43) 302 (40)

CHB (97) 321 (33) 323 (35) 282 (32)

CHS (100) 322 (16) 317 (17) 282 (16)

CLMa (60) 335 (44) 377 (32) 309 (29)

FIN (93) 289 (19) 312 (28) 264 (18)

GBR (89) 293 (29) 355 (40) 286 (30)

JPT (89) 344 (25) 341 (34) 295 (26)

LWK (97) 833 (32) 610 (31) 605 (29)

MXLa (66) 312 (27) 392 (34) 308 (24)

PURa (55) 353 (52) 369 (37) 321 (39)

TSI (98) 326 (27) 386 (31) 321 (27)

YRI (88) 765 (26) 566 (23) 547 (23)

The highest number of variants remaining for follow-up is seen in African populations (YRI and
LWK) as well as African Americans (ASW); this is consistent with these populations have the
greatest amount of genetic diversity. These populations also show the greatest benefit from
better population matching and from applying the AllPop, FNRo5% approach.
aDenotes admixed populations where results from the PopMatched-LA, FNRo5% approach are
reported.

Figure 3 Population matching using local ancestry information improves
performance over local ancestry naive population matching in admixed
populations. The PopMatched, FNRo5% approach performs poorly because
the admixed reference panel sizes are much smaller than non-admixed
reference panels leading to increased filtering thresholds. The AllPop,
FNRo5% outperforms all other FNR-based approaches.

Table 4 Average number of variants that remain for follow-up post-filtering in real exome studies of 20 individuals with monogenic disorders

Method Recessive (#cases=10) Dominant (#cases=9) Compound heterozygous (#cases=1)

NoAncestry, f41% 57.7 (34.8) 749.7 (91.0) 604

PopMatched, FNRo5% 40.1 (32.5) 604.8 (107.1) 426

AllPop, FNR o5% 29.2 (21.4) 467.7 (61.5) 370

None of the filtering approaches removed the true casual variants from consideration. Across all disorder architectures, we observe a significant decrease in the number of variants that need to be
followed up if ancestry is incorporated in the filtering step. Parentheses denote SDs. Variants were eliminated from consideration as potentially true causal variants if they are not annotated as
damaging (see Methods) and if they are not observed twice if the disorder is assumed to be autosomal recessive or at least once if it is assumed to be dominant (heterozygous) or compound
heterozygous.
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frequency of a true causal variant and so using multiple technologies
for estimating allele frequencies would be a best practice. While our
work is presented for use with exome-sequencing studies, its central
idea will be extendable to whole genome sequencing, as rare variation
both in and out of the exome will show population clustering.
The current bottleneck in using population structure to help

identify rare variants is the limited size of the reference panels for
narrowly defined sub-continental populations. Large databases such as
the EVS could increase their impact if they could report sub-
continental allele frequencies in addition to just European and
African-American allele frequencies. Recent projects such as the
UK10K52 will be extremely valuable as it is a large reference panel
of a specific population. The ALFRED database53 will also be a very
valuable resource for cross-population work with monogenic diseases
when it can provide sequencing level data. Founder populations
(eg, Amish or Iceland) where some non-causal variants are pulled to
high frequency may be powerful in eliminating non-causal variants if
the disease is rare or not present in the founder population.54,55 Tools
such as Kaviar56 will allow researchers to quickly search these
emerging sources of population frequency data. Finally, a Bayesian
approach to integrate cross-population prevalence, allele frequencies,
annotation and functional data in a filter-free probabilistic manner is
possible but left to explore in future work.
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