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ABSTRACT OF THE DISSERTATION

Optimization Based Machine Learning Methods

for Business Analytics

by

Emine Irem Akcakus

Doctor of Philosophy in Management

University of California, Los Angeles, 2023

Professor Velibor Mǐsić, Chair

The growing availability of data and recent developments in optimization methods and

machine learning have led to a revolution in modern business analytics. In this Ph.D.

dissertation, we propose two frameworks based on mixed-integer optimization that advance

business analytics in the context of two important problems: product design with market

share maximization and learning optimal decision trees.

In the first problem, we aim to find a product, as defined by its attributes, that maximizes

market share, which is a weighted sum of logistic probabilities when we assume each customer

segment follows a logit choice model to make a purchase. At first glance, this problem appears

hopeless: one must optimize an objective function that is neither convex nor concave over an

exponentially-sized discrete set of attribute combinations. Surprisingly, we show that this

problem can be reformulated as a mixed-integer convex program by exploiting an economic

model. We further propose an exact methodology for solving this problem based on modern

integer, convex, and conic optimization techniques. Using synthetic problem instances and

instances derived from real conjoint data sets, we show that our methodology can solve large

ii



problem instances to provable optimality or near-optimality within operationally feasible

time frames.

In the second problem, we propose a mixed-integer program that learns optimal decision

trees from data. While decision trees are among the most widely-used machine learning meth-

ods, their learning algorithms are usually based on top-down heuristics and cannot incorpo-

rate side constraints arising from real-world business operations. We show that our proposed

mixed-integer formulation is theoretically stronger than other formulations in the literature

by exploring its relaxation properties. We also develop a large-scale solution method based

on constraint generation. Based on computational studies on real-world data sets, we show

that our proposed model is significantly more tractable than alternative mixed-integer op-

timization models and our large-scale method based on constraint generation can further

improve the solution time in several data sets.

Overall, we contribute to business analytics by proposing exact solution methods based

on optimization to two significant but computationally challenging problems and developing

efficient algorithms that make them more practical to use.
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CHAPTER 1

Introduction

Over the past decade, businesses went through a digital transformation which moved many

of their operations online. The emerge of digital channels and processes made a large volume

of data available. This led to the replacement of traditional business models, which relied on

deriving insights from simplified presentations of real-life practices, by modern data-driven

analysis. For example, traditionally, product development leaned on the firms’ experience

and customer insight from market research. However, the abundance of data created the

need for methods that can analyze and use the data to make decisions efficiently. This

resulted in the development of business analytics, which focuses on how to use data and

mathematical models to make better-informed business decisions.

Machine learning and optimization has been at the heart of data-driven approaches to

address the question of how to transform the data into effective decisions. As a result, the

research in operations management in recent years focused heavily on employing machine

learning methods to address problems in business analytics. Examples include data-driven

inventory optimization through empirical risk minimization and kernel regression [11], pre-

diction of consumer choice based on a decision-tree representation of customer segments

[7], recommendation of personalized drug treatment regimens to diabetic patients by the

K-nearest neighbors algorithm [18], and product personalization through matrix completion

algorithms that learn from customer-product interactions [38].

While machine learning methods have become very popular data-driven approaches, they

have several shortcomings. First, they mostly use suboptimal training algorithms, which
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implies that such algorithms do not guarantee the best performance. Moreover, most of

these training algorithms cannot incorporate additional constraints that arise from real-

world scenarios. This necessitates the development of data-driven methods that are (i)

provably-optimal and (ii) capable of handling side constraints.

In this dissertation, we address problems in business analytics and propose data-driven

machine learning methods based on optimization, which produces provably-optimal solutions

and can handle side constraints easily. In Part I, we study a product design problem, and

develop solution approaches based on modern integer, convex and conic optimization. We

show that our methods can scale well to larger instances of data using real-life conjoint

data sets. In Part II, we develop a new mixed-integer optimization model for the design of

binary decision trees, which are commonly used machine learning models in a wide range of

application areas. We further provide theoretical results on the structure of the model and

propose large-scale solution approaches. Finally, we show that our model outperforms the

existing exact models in the literature in terms of computation time.

In the remainder of this section, we provide a high level discussion of our contributions

in each chapter.

1.1 Exact Logit-Based Product Design

In this chapter1, we consider a firm which has to design a product that maximizes the

market share, i.e., number of customers that will buy the product. We define a product

as a combination of its attributes, such as color and price, and we refer product design as

choosing each product attribute from a finite set of options. The firm will offer its product

to a collection of customers, and each customer decides to purchase the product or not

according to her/his utility. This problem of finding a product that maximizes market share

is referred to as the share-of-choice product design (SOCPD) problem, and has received a

1This chapter is based on my doctoral research work “Exact Logit-Based Product Design” [3].
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significant amount of attention in the marketing science research literature.

The share-of-choice product design (SOCPD) problem is challenging for several reasons.

First, the number of candidate products scales exponentially with the number of attributes,

since we need to consider all the attribute combinations. Therefore, even for problems with a

small number attributes, the number of candidate products can be very large. Second, if we

follow the common approach in the literature and assume that each customer follows a logit

choice model to make decisions, i.e., the choice probability of the product is a logit function

of the utility, then we obtain an expression for the market share that is neither convex, nor

concave, which is computationally hard to optimize. Third, the firm may have additional

constraints, such as a budget constraint, that need to be incorporated when designing the

product. Therefore, the method we will adopt should be able to handle these kinds of

constraints.

In this chapter, we develop an exact methodology for solving this problem based on

modern integer, convex and conic optimization. Our key result is showing that the logit-

based SOCPD problem can be exactly reformulated as a mixed-integer convex program.

This allows us to use cutting-edge commercial solvers to solve this problem. Using both

synthetic problem instances and instances derived from real conjoint data sets, we show that

our methodology can solve large instances to provable or near optimality in operationally

feasible time frames. To the best of our knowledge, this is the first exact solution methodology

for the logit-based SOCPD problem.

1.2 An Integer Programming Approach to Binary Decision Trees

Decision trees are graphs with a tree-like structure which map the input data to a leaf node

that predicts the label of the output data. In a decision tree, for each observation, starting

from the root, we proceed to the right or left node depending on the binary test applied in

the current node. The label of the leaf node we reach following this process then becomes
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the prediction for the corresponding observation.

Decision trees are widely used in predictive and prescriptive modeling in statistics and

machine learning. The main advantage of decision trees is their interpretable nature, which

allows the user to observe and evaluate the process leading to a decision. The main ap-

plication areas of decision trees are classification and policy learning. For example, in the

classification setting, one can use decision trees to identify high risk patient after a heart

attack based on the initial 24-hour data [27]. In the policy learning setting, which describes

learning the rule of decision making that matches an individual to a treatment based on the

characteristics of the individual, decision trees can select offers, prices, advertisements, or

emails to send to consumers, as well as in the problem of determining which medication to

prescribe to a patient [89].

Despite the simplicity and popularity of decision trees, learning an optimal decision tree

that maximizes the number of correctly predicted observations or other objectives from data

is a notoriously difficult problem and has been proven to be NP-hard. The predominant

approach for building such trees is greedy top-down induction, where one starts with a

single leaf node, and iteratively adds splits to the tree. While such approaches are simple to

implement, they are not able to guarantee that the resulting tree is optimal. Following recent

advances in computing technology and solution software, there has been increasing interest

from the operations research community in applying mixed-integer optimization techniques

to decision tree learning problem.

In this chapter, we develop a new mixed-integer optimization model for the design of

binary decision trees. We provide theoretical results on the structure of the model and show

that the formulation is stronger than alternative formulations that have been previously

proposed. To evaluate the performance of our model, we conduct computational experiments

on real-life data sets from the UCI Machine Learning Repository. We present a comparison of

our model and other methods in the literature in terms of out-of-sample prediction accuracy

and solution time, and show that (1) our model is signicantly more tractable than alternate

4



mixed-integer optimization approaches and (2) our model produces trees that improve on

trees obtained by top-down induction in out-of-sample predictive performance.
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CHAPTER 2

Exact Logit-Based Product Design

Consider the following canonical marketing problem. A firm has to design a product, which

has a collection of attributes, and each attribute can be set to one of a finite set of levels.

The product will be offered to a collection of customers, which differ in their preferences

and specifically, in the utility that they obtain from different levels of different attributes.

What product should the firm offer – that is, to what level should each attribute be set – so

as to maximize the share of customers who choose to purchase the product? This problem

is referred to as the share-of-choice product design (SOCPD) problem, and has received a

significant amount of attention in the marketing science research literature.

The SOCPD problem is a challenging problem for several reasons. First, since a product

corresponds to a combination of attribute levels, the number of candidate products scales

exponentially with the number of attributes, and can be enormous for even a modest number

of attributes. This, in turn, renders solution approaches based on brute force enumeration

computationally cumbersome. Second, it is common to represent customers using discrete

choice models that are built on the multinomial logit model. Under this assumption of

customer behavior, the problem becomes more complex, because the purchase probability

under a logit choice model is a nonlinear function of the product design’s utility that is

neither convex nor concave. Finally, product design problems in real life settings may also

often involve constraints, arising from engineering or other considerations, which can further

constrain the set of candidate products.

In this chapter, we consider the logit-based SOCPD problem. In this problem, the firm
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must design a product that maximizes the expected number of customers who choose to

purchase a product, where customers are assumed to follow logit models of choice, and

the probability of a customer purchasing a product is given by a logistic response function

(i.e., the function f(u) = eu/(1 + eu)). We propose an exact solution methodology for this

problem that is based on modern integer, convex and conic optimization. To the best of our

knowledge, this is the first exact solution methodology for the logit-based SOCPD problem.

We make the following specific contributions:

1. We formally define the logit-based SOCPD problem and characterize the complexity

of it. Specifically, we show that we can reduce the maximum independent set problem

into the logit-based SOCPD problem, which implies that the latter problem is NP-

Hard to approximate. We further show that the problem is NP-Hard even when there

are only two customer segments.

2. Surprisingly, we prove that this problem can be exactly reformulated as a mixed-integer

convex programming (MICONVP) problem. Our reformulation here relies on a useful

characterization of logit probabilities as being the optimal solutions to a representative

agent problem, in which an agent chooses the probability of selecting two alternatives

so as to maximize a regularized expected utility.

3. We propose two specialized solution methods for this problem. The first approach

involves further reformulating our MICONVP using conic constraints, leading to a

mixed-integer conic programming problem that can be solved using cutting-edge solvers

for such problems (such as Mosek). The second approach is a constraint generation

procedure that adds constraints corresponding to gradient-based linear approximations

of the principal nonlinear convex constraint in our MICONVP problem, thereby allow-

ing the problem to be solved as a mixed-integer linear program using well-established

commercial solvers such as Gurobi and CPLEX.
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4. We consider two extensions of our base problem. In the first extension, we show

how our optimization model can be readily modified for the optimization of expected

profit when the profit of a product is a linear function of its attributes. In the second

extension, we consider the problem of optimizing the geometric mean of the purchase

probability across the customer types. For this latter extension, we prove that the

relative performance gap between the resulting solution and the optimal solution of

our original problem can be bounded in terms of the probability distribution of the

customer types and the ratio between the lowest and highest purchase probabilities

attainable by any product design over all of the customer types. We additionally show

how the geometric mean maximization problem can also be formulated as a MICONVP

problem, via a logarithmic transformation.

5. We demonstrate the practical tractability of our approach using synthetic problem

instances, as well as a set of problem instances derived from real conjoint data sets.

The rest of this chapter is organized as follows. Section 2.1 provides a review of the related

literature. Section 2.2 provides a formal definition of the logit-based SOCPD problem, and

our exact reformulation of the problem as a MICONVP problem. Section 2.3 presents

our two solution approaches based on mixed-integer conic programming and gradient-based

constraint generation. Section 2.5 presents the results of our numerical experiments. Lastly,

in Section 2.6, we conclude. All proofs are relegated to Appendix A.1.

2.1 Literature Review

We divide our literature review according to four subsets: the single product design literature;

the product line design literature; the representative agent model literature; and lastly, the

broader optimization literature.
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Single product design: Product design has received significant attention in the marketing

science community; we refer readers to [76] and [43] for overviews of this topic. The majority

of papers on the SOCPD problem assume that customers follow a deterministic, first-choice

model, i.e., they purchase the product if the utility exceeds a “hurdle” utility, and do not

purchase it otherwise. Many papers have proposed heuristic approaches for this problem;

examples include [55, 56] and [10]. Other papers have also considered exact approaches based

on branch-and-bound [28] and nested partitions [78].

The main difference between our work and the majority of the prior work on the product

design problem is the use of a logit-based share-of-choice objective function. As stated earlier,

when the share-of-choice is defined as the sum of logit probabilities, the SOCPD problem

becomes a discrete nonlinear optimization problem, and becomes significantly more difficult

than the SOCPD problem when customers follow first-choice/max-utility models. To the

best of our knowledge, our approach is the first approach for obtaining provably optimal

solutions to the SOCPD problem when customers follow a logit model.

Product line design/assortment optimization: Besides the product design problem,

a more general problem is the product line design (PLD) problem, where one must select

several products so as to either maximize the share-of-choice, the expected profit or some

other criterion. A number of papers have considered the PLD problem under a first-choice

model of customer behavior, where customers deterministically select the product with the

highest utility; examples of such papers include [63], [57], [88], [13] and [21]. Besides the

first-choice model, several papers have also considered the PLD problem under the (single-

class) multinomial logit model [29, 77]. Other work has also considered objective functions

corresponding to a worst-case expectation over a family of choice models [20].

Outside of the marketing literature, the PLD problem is closely related to the problem

of assortment optimization which appears in the operations management literature. In this

problem, one must select a set of products from a larger universe of products so as to max-
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imize expected revenue. The difference between PLD and assortment optimization arises

from where the choice model comes: in PLD, the choice model usually comes from conjoint

survey data and the task is to select a set of new products, whereas in assortment optimiza-

tion, typically the set of candidate products consists of products that have been offered in the

past, and the choice model is estimated from historical transactions. There is an extensive

literature on solving this problem under a variety of choice models, such as the single class

MNL model [79], the nested logit model [34] and the Markov chain choice model [39]; we

refer readers to [42] for an recent overview of the literature.

Our paper differs from the product line and assortment optimization literatures in that

we focus on the selection of a single product, and the decision variables of our optimiza-

tion problem are the attributes of the product. In contrast, virtually all mathematical

programming-based approaches to PLD/assortment optimization require one to input a set

of candidate products, and the main decision variable is a set of products from the overall

set of candidate products. The attributes of the products are only relevant in specifying

problem data (e.g., in an MNL assortment problem, one would determine the utilities of the

candidate products from their attributes), but do not directly appear as decision variables.

Representative agent model: Our MICONVP formulation is based on a characteriza-

tion of logit probabilities as solutions of a concave maximization problem where the decision

variables correspond to the choice probabilities and the objective function is the entropy-

regularized expected utility. This concave maximization problem is an example of a repre-

sentative agent model, and has been studied in a number of papers in the economics and

operations management literatures [6, 47, 40]. The goal of our paper is not to contribute

directly to this literature, but rather to leverage one such result so as to obtain an exact and

computationally tractable reformulation of the logit-based SOCPD problem. To the best of

our knowledge, the representative agent-based characterization of logit probabilities has not

been previously used in optimization models arising in marketing or operations; we believe
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that this characterization could potentially be useful in other contexts outside of product

design.

Optimization literature: Lastly, we comment on the relation of our paper to the general

optimization literature. Our paper contributes to the growing literature on mixed-integer

convex and mixed-integer conic programming. In the optimization community, there has

been an increasing interest in developing general solution methods for this class of problems

(see, for example, [61, 33]) as well as understanding what types of optimization problems

can and cannot be modeled as mixed-integer convex programs [60]. At the same time,

mixed-integer convex and mixed-integer conic programming have been used in a variety

of applications, such as power flow optimization [59], robotics [58], portfolio optimization

[15], joint inventory-location problems [9] and designing battery swap networks for electric

vehicles [62]. One of our solution approaches (see Section 2.3.1) specifically relies on the

exponential cone; our paper contributes to a growing set of applications of exponential cone

programming, which include scheduling charging of electric vehicles [30], robust optimization

with uncertainty sets motivated by estimation objectives [90] and manpower planning [51].

Outside of this literature, we note that a couple of prior papers have considered the

problem of designing a product to maximize the share-of-choice under a mixture of logit

models. The first is the paper of [83] that considers the sum of sigmoids optimization

problem, which is an optimization problem where the objective function is a sum of sigmoid

(S-shaped) functions; the logistic response function f(u) = eu/(1 + eu) is a specific type of

sigmoid function. The paper of [83] develops a general purpose branch-and-bound algorithm

for solving this problem when the decision variables are continuous. Our paper differs from

that of [83] in that our paper is focused specifically on an objective that corresponds to a

sum of logistic response functions, and the main decision variables of our formulation are

binary variables, indicating the presence or absence of certain attributes. In addition, our

formulation is an exact reformulation of the problem into a mixed-integer convex problem,
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which can then be solved directly using a commercial mixed-integer conic solver (such as

Mosek) or can be solved with a cutting plane approach implemented with an ordinary mixed-

integer linear programming solver (such as Gurobi). In contrast, the approach of [83] requires

one to solve the problem using a custom branch-and-bound algorithm.

The second is the paper of [48], which develops a mixed-integer linear programming for-

mulation for general nonconvex piecewise linear functions. As an example of the application

of the framework, the paper applies the framework to the problem of deciding on continu-

ous product attributes to maximize a logit-based share-of-choice objective, which involves

approximating the logistic response function f(u) = eu/(1 + eu) using a piecewise linear

function. As with our discussion of [83], our formulation differs in that it is exact, and that

the attributes are discrete rather than continuous.

Besides [83] and [48], our paper is also related to the recent paper of [54], which considers

the problem of estimating lexicographic rules from choice data. The paper formulates this

problem as a nonlinear optimization problem, where one models the utility of each attribute

as a random variable and chooses deterministic components of these random utilities so as

to maximize the expected number of nonreversals (comparisons that are consistent with

the choice data). While this is a nonconvex optimization problem, the paper shows that

one can obtain a tractable approximate formulation by maximizing the geometric mean of

the probability of a nonreversal, and develops a bound on the performance of this solution

with respect to the original expected value objective. Our consideration of the geometric

mean-based product design problem in Section 2.4.2 draws inspiration from [54]. However,

aside from this high-level similarity, the formulations we present are different from those

in [54]. In addition, the performance guarantee that we establish (Theorem 4) differs from

the guarantee presented in [54]; the guarantee in [54] is a post-hoc bound, which requires

one to know the optimal solution of the geometric mean problem in order to compute the

approximation factor. In contrast, our guarantee in Theorem 4 is an a priori guarantee that

can be calculated before one solves the geometric mean product design problem, and requires
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a different proof technique.

Lastly, we note that our paper also contributes to a growing literature on optimization

models where the objective function to be optimized is obtained from a predictive model or

a machine learning model. Some examples include work on optimizing objective functions

obtained from tree ensemble models (such as random forests; see [41], [64]) and neural

networks [5].

2.2 Model

We begin by formally defining our model in Section 2.2.1, and then presenting our transfor-

mation of the problem into a mixed-integer convex program in Section 2.2.2.

2.2.1 Problem definition

We assume that there are n binary attributes. We assume the product design is described

by a binary vector a = (a1, . . . , an), where ai denotes the presence of attribute i. While

we formulate the problem in terms of binary attributes, we note that this is without loss of

generality, as we can formulate an attribute with M levels into M − 1 binary attributes. We

let A ⊆ {0, 1}n denote the set of feasible attribute vectors.

We assume that there are K different segments or customer types. Each customer type

is associated with a nonnegative weight λk, which is the fraction of customers who be-

long to that type/segment, or alternatively the probability that a customer belongs to that

type/segment; note that we always have that
∑K

k=1 λk = 1. Each customer type is also

associated with a partworth vector βk = (βk,1, . . . , βk,n) ∈ Rn, where βk,i is the partworth of

attribute i. In addition, we let βk,0 ∈ R denote the constant part of the customer’s utility.

Given a candidate design a ∈ A, the customer’s utility for the product is given by

uk(a) = βk,0 +
n∑
i=1

βk,iai.
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We assume that each customer type is choosing between our product design corresponding

to the vector a, and an outside/no-purchase option. Without loss of generality, we fix the

utility of the outside option to zero. This assumption is not restrictive, as choice probabilities

under the logit model are unaffected when all of the utilities are adjusted by a constant. In

particular, an equivalent representation (one that would lead to the same choice probabilities)

is to specify the utility of the product as
∑n

i=1 βk,iai and the utility of the no-purchase option

as −βk,0. As a result, the constant term βk,0 effectively captures the utility of the no-purchase

option.

We assume that each customer type chooses to buy or not buy the product according

to a multinomial logit model. Thus, given a ∈ A, the customer chooses to purchase the

product with probability exp(uk(a))/(1 + exp(uk(a))) and chooses the outside option with

probability 1/(1 + exp(uk(a))).

With these definitions, the logit-based share-of-choice product design problem can then

be defined as

maximize
a∈A

K∑
k=1

λk ·
exp(uk(a))

1 + exp(uk(a))
. (2.1)

The objective function of this problem can be thought of as the share or fraction of all

customers who choose to purchase the product, or the (unconditional) probability that a

random customer chooses to purchase the product.

Our first major theoretical result is that problem (2.1) is theoretically intractable.

Theorem 1 The problem of approximating Problem (2.1) within a factor O(n1−ε) for any

fixed ε > 0 is NP-Hard.

This result (see Section A.1.1 for the proof) follows by reducing the maximum inde-

pendent set problem, a well-known NP-Complete problem, to problem (2.1). This theorem

implies that Problem (2.1) is NP-Hard and even the problem of approximating Problem (2.1)

is extremely challenging. Our next result further illustrates the difficulty of Problem (2.1)
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by proving that Problem (2.1) is NP-Hard even when the number of customer segments is

two.

Theorem 2 Problem (2.1) is NP-Hard even if K = 2.

We prove this result (see Appendix A.1.2 for the proof) by showing that we can reduce the

partition problem, a well-known NP-Complete problem, to problem (2.1). Notwithstanding

Theorem 1 and 2, it is unreasonable to expect problem (2.1) to be easy: it is an optimization

problem over a discrete feasible region, with a nonlinear objective function that is neither

convex nor concave. In the next section, we turn our attention to solving this problem using

mathematical programming. Finally, we remark that Theorem 1 and 2 can be linked to

the two complexity results in the assortment optimization literature. Specifically, it has

been shown that the assortment optimization problem under the ranking-based model is

inapproximable by reducing the maximum independent set problem [8] and the assortment

optimization under the latent-class MNL is NP-hard even when there are only two customer

types [74]. Our results here differ from the literature by focusing on the product design

problem.

2.2.2 Mixed-Integer Convex Programming Formulation

As discussed in Section 2.2.1, problem (2.1) is a challenging optimization problem. Sur-

prisingly, it turns out that this problem can be reformulated as a mixed-integer convex

programming (MICP) problem; that is, a problem of the form

minimize
x

cTx (2.2a)

subject to x ∈ X , (2.2b)

xi ∈ Z, li ≤ xi ≤ ui, ∀i ∈ I, (2.2c)

where x ∈ Rn is the decision variable, X ⊆ Rn is a closed convex set, I ⊆ {1, . . . , n} is

the subset of the decision variables restricted to take integer values, and li and ui are lower
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and upper bounds on each integer variable. In what follows, we show how to obtain this

formulation.

We begin by first presenting some related background on the representative agent model.

In the representative agent model, an agent is faced with M alternatives. Each alternative

m ∈ {1, . . . ,M} is associated with a utility πm. The agent must choose the probability

xm with which each alternative will be selected; we let x = (x1, . . . , xM) be the probability

distribution over the M alternatives. The agent seeks to maximize his adjusted expected

utility, where the adjustment is achieved through a convex regularization function V (x). The

representative agent model is then the following optimization problem:

maximize
x

M∑
i=1

πmxm − V (x) (2.3a)

subject to
M∑
m=1

xm = 1, (2.3b)

xm ≥ 0, ∀ m ∈ {1, . . . ,M}. (2.3c)

Since the function V (·) is a convex function, the above problem is a concave maximization

problem. By carefully choosing the function V , the optimal solution of this problem – the

probability distribution x – can be made to coincide with choice probabilities under different

choice models. In particular, it is known that the function V (x) =
∑M

i=1 xi log(xi) gives

choice probabilities corresponding to a multinomial logit model [6]. We refer the reader to

the excellent paper of [40] for a complete characterization of which discrete choice models

can be captured by the representative agent model.

For our problem, the specific instantiation of the representative agent model that we

are interested in is one corresponding to the choice of the kth customer type between our

product and the no-purchase option. We let xk,1 denote the probability of choosing our

product with attribute vector a, and xk,0 denote the probability of choosing the no-purchase

option. Recall that the utility of our product is uk(a), and the utility of the no-purchase

option is 0. The representative agent model for this customer type can thus be formulated
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as

maximize
xk,0,xk,1

uk(a) · xk,1 + 0 · xk,0 − xk,1 log(xk,1)− xk,0 log(xk,0) (2.4a)

subject to xk,1 + xk,0 = 1, (2.4b)

xk,1, xk,0 ≥ 0. (2.4c)

We now show two key properties of this problem. First, we show that the unique optimal

solution (x∗k,1, x
∗
k,0) is exactly the logit choice probabilities for the two alternatives. Second,

we show that the optimal objective value can be found in closed form.

Proposition 1 The unique optimal solution (x∗k,1, x
∗
k,0) of problem (2.4) is given by

x∗k,1 =
exp(uk(a))

1 + exp(uk(a))
,

x∗k,0 =
1

1 + exp(uk(a))
.

In addition, the optimal objective value is log(1 + exp(uk(a))).

The proof of this proposition is provided in Appendix A.1.3. Using this result, we can

now proceed with the formulation of our SOCPD problem. We first make the following

assumption on the structure of the set A.

Assumption 1 The set A can be written as A = {a ∈ {0, 1}n | Ca ≤ d} for some choice

of C ∈ Rm×n and d ∈ Rm, where m ∈ Z+.

Assumption 1 just requires that the set of candidate products A can be represented as

the set of binary vectors satisfying a finite collection of linear inequality constraints. This

assumption is necessary in order to ensure that our problem can be formulated as a mixed-

integer convex program of finite size. We note that this assumption is not too restrictive, as

many natural constraints can be expressed in this way. We provide some examples at the

end of this section.
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With a slight abuse of notation, let uk be a decision variable that denotes the utility

of the candidate product a for customer type k. As before, let xk,1 and xk,0 denote the

probability of customer type k purchasing and not purchasing the product, respectively.

Then, the optimization problem can be formulated as

maximize
a,u,x

K∑
k=1

λk · xk,1 (2.5a)

subject to xk,1 + xk,0 = 1, ∀k ∈ {1, . . . , K}, (2.5b)

ukxk,1 − xk,1 log(xk,1)− xk,0 log(xk,0) ≥ log(1 + exp(uk)), ∀k ∈ {1, . . . , K},

(2.5c)

uk = βk,0 +
n∑
i=1

βk,iai, ∀k ∈ {1, . . . , K}, (2.5d)

Ca ≤ d, (2.5e)

ai ∈ {0, 1}, ∀i ∈ {1, . . . , n}, (2.5f)

xk,1, xk,0 ≥ 0, ∀k ∈ {1, . . . , K}. (2.5g)

We now prove the validity of this formulation.

Theorem 3 Problem (2.5) is equivalent to problem (2.1).

Theorem 3 (see Appendix A.1.4 for the proof) establishes that problem (2.5) is equivalent

to the original SOCPD problem (2.1). The key feature of this formulation is that it no longer

explicitly involves the logit choice probabilities, which are a nonconvex function of uk. We

note that this problem is almost a mixed-integer convex program. In the main nonlinear

constraint (2.5c), the functions −xk,1 log(xk,1) and −xk,0 log(xk,0) appearing on the left hand

side are instances of the entropy function −x log(x) [25] and are concave in xk,1 and xk,0.

Similarly, the function log(1 + exp(uk)) appearing on the right hand side, which is known

as the softplus function [65], is a convex function of uk. Thus, this constraint can almost be

written in the form F (uk,xk) ≤ 0, where F is a convex function. The main obstacle that
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prevents us from doing this is the bilinear term ukxk,1, which is the product of two decision

variables and is not jointly concave in uk and xk,1.

Fortunately, we can use the fact that uk = βk,0 +
∑n

i=1 βk,iai to re-write this bilinear term

as

ukxk,1 = (βk,0 +
n∑
i=1

βk,iai)xk,1

= βk,0xk,1 +
n∑
i=1

βk,i · aixk,1.

Using the fact that each ai ∈ {0, 1} and that 0 ≤ xk,1 ≤ 1, we can now linearize the bilinear

terms aixk,1 using a standard modeling technique from integer programming. In particular,

we introduce a continuous decision variable yk,i for each k and i which corresponds to the

product aixk,1, and a continuous decision variable wk which corresponds to the product

ukxk,1. This leads to the following equivalent formulation:

maximize
a,u,w,x,y

K∑
k=1

λk · xk,1 (2.6a)

subject to xk,1 + xk,0 = 1, ∀k ∈ {1, . . . , K}, (2.6b)

wk − xk,1 log(xk,1)− xk,0 log(xk,0) ≥ log(1 + exp(uk)), ∀k ∈ {1, . . . , K},

(2.6c)

uk = βk,0 +
n∑
i=1

βk,iai, ∀k ∈ {1, . . . , K}, (2.6d)

wk = βk,0xk,1 +
n∑
i=1

βk,iyk,i, ∀k ∈ {1, . . . , K}, (2.6e)

yk,i ≤ xk,1, ∀k ∈ {1, . . . , K}, i ∈ {1, . . . , n}, (2.6f)

yk,i ≤ ai, ∀k ∈ {1, . . . , K}, i ∈ {1, . . . , n}, (2.6g)

yk,i ≥ ai − 1 + xk,1, ∀k ∈ {1, . . . , K}, i ∈ {1, . . . , n}, (2.6h)

yk,i ≥ 0, ∀k ∈ {1, . . . , K}, i ∈ {1, . . . , n}, (2.6i)

Ca ≤ d, (2.6j)
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ai ∈ {0, 1}, ∀i ∈ {1, . . . , n}, (2.6k)

xk,1, xk,0 ≥ 0, ∀k ∈ {1, . . . , K}. (2.6l)

Note that in the formulation above, when a ∈ A, yk,i is forced to take the value of ai · xk,1,

and wk takes the value of uk ·xk,1. Problem (2.6) is a mixed-integer convex program, and can

be tackled through a number of solution approaches, which we discuss next (Section 2.3).

Before continuing, we briefly discuss the modeling capability of the constraint Ca ≤ d

arising from Assumption 1. The constraint Ca ≤ d can be used to encode a variety of

requirements on the attribute vectors a as linear constraints. For example, if the product

has two attributes, where the first attribute has three levels and the second attribute has

four levels, then one can model the product through the vector a = (a1, a2, a3, a4, a5), where

a1 and a2 are dummy variables to represent two out of the three levels of the first attribute

and a3, a4, a5 are dummy variables to represent three out of the four levels of the second

attribute. One would then need to enforce the constraints

a1 + a2 ≤ 1, (2.7)

a3 + a4 + a5 ≤ 1 (2.8)

to ensure that at most one out of the variables a1, a2 is set to 1 and at most one variable out

of a3, a4, a5 is set to 1. This can be achieved by specifying C and d as

C =

 1 1 0 0 0

0 0 1 1 1

 , d =

 1

1


Beside the ability to represent multi-level attributes, one can use the constraint Ca ≤ d

to represent design requirements such as weight and cost; for example, one may be interested

in imposing the constraint

b0 +
n∑
i=1

biai ≤ B,

where b0 is the base weight of the product, bi is the incremental weight added to the product

from attribute i and B is a limit on the overall weight of the product. This constraint can
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be modeled by specifying C and d as

C =
[
b1 b2 · · · bn

]
, d = [B − b0] .

2.3 Solution Approaches

In this section, we present two different approaches for solving problem (2.6). In Section 2.3.1,

we present a solution approach based on transforming the mixed-integer convex program (2.6)

into a mixed-integer conic program, thereby allowing for the problem to be solved by mixed-

integer conic solvers such as Mosek. In Section 2.3.2, we present a solution approach based

on generating constraints corresponding to the linear underapproximations of the convex

functions appearing in constraint (2.6c), effectively allowing the problem to be solved by

mixed-integer linear solvers such as Gurobi and CPLEX.

2.3.1 Solution Approach #1: Representation as Mixed-Integer Conic Program

The first approach that we describe for solving problem (2.6) involves further reformulating

the problem into a mixed-integer conic programming (MICP) problem. We begin by pro-

viding a brief overview of mixed-integer conic optimization problems, and then present our

formulation.

A mixed-integer conic programming problem has the following general form:

minimize
x∈Rn

cTx (2.9a)

subject to Ax− b ∈ K, (2.9b)

xi ∈ Z, ∀ i ∈ {1, . . . , I}, (2.9c)

where n is the dimension of the decision variable, c is an n-dimensional vector, b is an m-

dimensional vector, A is an m-by-n matrix, I ≤ n is the number of integer variables in the

problem and finally, K is a closed convex cone. A closed convex cone K is a closed subset
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of Rn that contains all nonnegative combinations of its elements, i.e., a set K satisfying the

following property:

y1,y2 ∈ K ⇒ α1y1 + α2y2 ∈ K for any α1, α2 ≥ 0. (2.10)

While the cone K can in theory be specified as any set that satisfies (2.10), in practice, it is

common to model K as a Cartesian product of a collection of cones drawn from the set of

standard cones. An example of a standard cone is the the cone K≥ = {y ∈ Rm | y ≥ 0},

where 0 is an m-dimensional vector of zeros. This cone is known as the nonnegative cone, as

it corresponds to the nonnegative orthant of Rn. The constraint Ax− b ∈ K≥ is equivalent

to the constraint Ax ≥ b, which is just a linear constraint. Other standard cones include the

zero cone, the second order cone, the exponential cone and the positive semidefinite cone;

we refer readers to [65] for an overview of other standard cones.

Having described mixed-integer conic programming in generality, we now elaborate on

why this representation is valuable. Many mixed-integer convex programs involve compli-

cated nonlinear functions. Until recently, the method of choice for tackling such problems

has been to use mixed-integer nonlinear programming solvers, which treat these nonlinear

functions in a “black-box” fashion and rely on evaluating these functions and their deriva-

tives to solve the problem. Often, it turns out that constraints involving these nonlinear

functions can be re-written through additional variables and additional conic constraints

involving standard cones. 1 In so doing, one obtains a mixed-integer conic program, which

is then amenable to solution methods for such problems. This is important because conic

programs – problems of the same form as (2.9), without the integrality constraint (2.9c) –

are considered to be among the easiest continuous nonlinear programs to solve: the theory of

numerical algorithms for solving these problems is quite developed, there are numerous soft-

ware packages for solving these problems at practical scale, and there continues to be active

1A notable recent example of this is the paper of [61], which found that all 194 mixed-integer convex
programming problems in the MINLPLIB2 (http://www.gamsworld.org/minlp/minlplib2/html/) bench-
mark library could be represented as mixed-integer conic programs using standard cones.
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development both in the theory and in software implementations. Solution algorithms for

mixed-integer conic programs are built on top of algorithms for (continuous) conic programs

and can exploit the conic structure. By re-writing our mixed-integer convex program (2.6)

as a mixed-integer conic program, one is able to use state-of-the-art commercial solvers such

as Mosek [66], as well as new open-source solvers such as Pajarito [33] to solve the problem.

Thus motivated, we proceed with our reformulation of (2.6) as a MICP problem. To do

so, we will make use of a standard cone known as the exponential cone, which is defined as

Kexp = {(r, 0, t) ∈ R3 | r ≥ 0, t ≤ 0} ∪ {(r, s, t) ∈ R3 | s > 0, r ≥ s exp(t/s)}. (2.11)

The exponential cone is useful precisely because it can be used to represent the entropy

function x log(x) and the softplus function log(1+ex) which appear in our formulation (2.6).

For the former, the constraint

t ≤ −x log(x) (2.12)

can be written as the conic constraint

(1, x, t) ∈ Kexp.

For the latter, the constraint

t ≥ log(1 + exp(x)) (2.13)

can be written by introducing auxiliary variables v1, v2 and then using the following set of

conic constraints:

v1 + v2 ≤ 1,

(v1, 1, x− t) ∈ Kexp,

(v2, 1,−t) ∈ Kexp.

Armed with these two properties, we recall constraint (2.6c) for a fixed k:

wk − xk,1 log(xk,1)− xk,0 log(xk,0) ≥ log(1 + exp(uk))
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We now introduce the auxiliary variables θk,1, θk,0 and φk, and reformulate this as the fol-

lowing equivalent set of constraints:

wk + θk,1 + θk,0 ≥ φk,

θk,1 ≤ −xk,1 log(xk,1),

θk,0 ≤ −xk,0 log(xk,0),

φk ≥ log(1 + exp(uk)).

We next introduce the auxiliary variables vk,0 and vk,1 to represent the softplus function,

and re-write the above four constraints as the following family of conic constraints:

wk + θk,1 + θk,0 ≥ φk,

(1, xk,1, θk,1) ∈ Kexp,

(1, xk,0, θk,0) ∈ Kexp,

vk,0 + vk,1 ≤ 1,

(vk,1, 1, uk − φk) ∈ Kexp,

(vk,0, 1,−φk) ∈ Kexp.

This leads to the following mixed-integer conic programming formulation of our original

problem:

maximize
a,u,v,w,x,y,θ,φ

K∑
k=1

λk · xk,1 (2.14a)

subject to xk,1 + xk,0 = 1, ∀k ∈ {1, . . . , K}, (2.14b)

wk + θk,1 + θk,0 ≥ φk, ∀k ∈ {1, . . . , K}, (2.14c)

(1, xk,1, θk,1) ∈ Kexp, ∀k ∈ {1, . . . , K}, (2.14d)

(1, xk,0, θk,0) ∈ Kexp, ∀k ∈ {1, . . . , K}, (2.14e)

vk,0 + vk,1 ≤ 1, ∀k ∈ {1, . . . , K}, (2.14f)

(vk,1, 1, uk − φk) ∈ Kexp, ∀k ∈ {1, . . . , K}, (2.14g)
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(vk,0, 1,−φk) ∈ Kexp, ∀k ∈ {1, . . . , K}, (2.14h)

uk = βk,0 +
n∑
i=1

βk,iai, ∀k ∈ {1, . . . , K}, (2.14i)

wk = βk,0xk,1 +
n∑
i=1

βk,iyk,i, ∀k ∈ {1, . . . , K}, (2.14j)

yk,i ≤ xk,1, ∀k ∈ {1, . . . , K}, i ∈ {1, . . . , n}, (2.14k)

yk,i ≤ ai, ∀k ∈ {1, . . . , K}, i ∈ {1, . . . , n}, (2.14l)

yk,i ≥ ai − 1 + xk,1, ∀k ∈ {1, . . . , K}, i ∈ {1, . . . , n}, (2.14m)

yk,i ≥ 0, ∀k ∈ {1, . . . , K}, i ∈ {1, . . . , n}, (2.14n)

Ca ≤ d, (2.14o)

ai ∈ {0, 1}, ∀i ∈ {1, . . . , n}, (2.14p)

xk,1, xk,0 ≥ 0, ∀k ∈ {1, . . . , K}. (2.14q)

Formulation (2.14) is attractive because, as mentioned earlier, it is in a form where it can

be solved by mixed-integer conic programming solvers. In our numerical experiments in

Section 2.5, we use one such solver, Mosek, which as of 2019 supports the exponential cone

and mixed-integer problems involving the exponential cone.

2.3.2 Solution Approach #2: Gradient-Based Constraint Generation

Our second approach for solving this problem is gradient-based constraint generation. The

idea of this approach is to sequentially approximate the nonlinear convex functions in the

formulation (2.6) using their linear approximations.

To motivate this approach, we recall a standard property of convex functions. For any

differentiable convex function f : Rn → R and any point x̄ ∈ Rn, the function f is lower-

bounded by the first-order approximation of f at x̄:

f(x) ≥ f(x̄) +∇f(x̄)T (x− x̄). (2.15)
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A consequence of this property is that the function f can be written as the pointwise

maximum of a family of linear functions, where each linear function in the family corresponds

to the above first-order approximation:

f(x) = max
x̄∈Rn

{
f(x̄) +∇f(x̄)T (x− x̄)

}
(2.16)

Thus, a convex constraint of the form

f(x) ≤ 0 (2.17)

can be written as the constraint

max
x̄∈Rn

{
f(x̄) +∇f(x̄)T (x− x̄)

}
≤ 0, (2.18)

or equivalently, as

f(x̄) +∇f(x̄)T (x− x̄) ≤ 0, ∀ x̄ ∈ Rn. (2.19)

In formulation (2.6), the principal constraint which involves a convex, differentiable func-

tion is constraint (2.6c). We can re-write this constraint as

F (wk, xk,1, xk,0, uk) ≤ 0 (2.20)

where

F (wk, xk,1, xk,0, uk) = −wk + xk,1 log xk,1 + xk,0 log xk,0 + log(1 + exp(uk)), (2.21)

and the domain of F is

Vk = {(wk, xk,1, xk,0, uk) ∈ R4 | xk,1 > 0, xk,0 > 0}. (2.22)

The gradient of F is

∇F =


−1

log xk,1 + 1

log xk,0 + 1

exp(uk)
1+exp(uk)

 . (2.23)
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The constraint F (wk, xk,1, xk,0, uk) ≤ 0 can therefore be equivalently re-written as the fol-

lowing family of linear constraints:

F (w̄k, x̄k,1, x̄k,0, ūk) + (−1)(wk − w̄k) + (log x̄k,1 + 1)(xk,1 − x̄k,1)

+(log x̄k,0 + 1)(xk,0 − x̄k,0) +
exp(ūk)

1 + exp(ūk)
· (uk − ūk) ≤ 0,

∀ (w̄k, x̄k,1, x̄k,0, ūk) ∈ Vk. (2.24)

We therefore obtain the following formulation which is equivalent to formulation (2.6):

maximize
a,u,w,x,y

K∑
k=1

λk · xk,1 (2.25a)

subject to xk,1 + xk,0 = 1, ∀k ∈ {1, . . . , K}, (2.25b)

F (w̄k, x̄k,1, x̄k,0, ūk) + (−1)(wk − w̄k) + (log x̄k,1 + 1)(xk,1 − x̄k,1)

+ (log x̄k,0 + 1)(xk,0 − x̄k,0) +
exp(ūk)

1 + exp(ūk)
· (uk − ūk) ≤ 0,

∀ (w̄k, x̄k,1, x̄k,0, ūk) ∈ Vk, k ∈ {1, . . . , K}, (2.25c)

uk = βk,0 +
n∑
i=1

βk,iai, ∀k ∈ {1, . . . , K}, (2.25d)

wk = βk,0xk,1 +
n∑
i=1

βk,iyk,i, ∀k ∈ {1, . . . , K}, (2.25e)

yk,i ≤ xk,1, ∀k ∈ {1, . . . , K}, i ∈ {1, . . . , n}, (2.25f)

yk,i ≤ ai, ∀k ∈ {1, . . . , K}, i ∈ {1, . . . , n}, (2.25g)

yk,i ≥ ai − 1 + xk,1, ∀k ∈ {1, . . . , K}, i ∈ {1, . . . , n}, (2.25h)

yk,i ≥ 0, ∀k ∈ {1, . . . , K}, i ∈ {1, . . . , n}, (2.25i)

Ca ≤ d, (2.25j)

ai ∈ {0, 1}, ∀i ∈ {1, . . . , n}, (2.25k)

xk,1, xk,0 ≥ 0, ∀k ∈ {1, . . . , K}. (2.25l)

The difference between the new formulation (2.25) and the original formulation (2.6) is that

the convex constraint (2.6c) has been replaced by an infinite family of linear constraints.
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Although the new formulation remains difficult to solve, the key advantage of this formulation

is that it is in a form that is suited to constraint generation. The idea of constraint generation

is to solve problem (2.25) with constraint (2.25c) enforced only at a finite set of points

V̄k ⊂ Vk, to obtain a candidate solution (ā, ū, w̄, x̄, ȳ). We then test whether this candidate

solution satisfies constraint (2.25c) for each k; by the equivalence (2.16), it is sufficient to

simply evaluate F (wk, xk,1, xk,0, uk) and check whether it is less than or equal to zero. If it

is, we conclude that (ā, ū, w̄, x̄, ȳ) satisfies constraint (2.25c) for customer type k. If not,

then we add the (w̄k, x̄k,1, x̄k,0, ūk) to the set V̄k and solve the problem again. In this process,

if a solution (ā, ū, w̄, x̄, ȳ) satisfies constraint (2.25c) for all customer types k, we conclude

that it is the optimal one.

We comment on two important aspects of this approach. First, this approach is attrac-

tive because it represents the convex constraint F (wk, xk,1, xk,0, uk) ≤ 0 for each k through

a family of linear constraints, quantified over the finite set V̄k. Thus, the problem is a

mixed-integer linear program. Such a problem can be solved using commercial solvers for

such problems like Gurobi or CPLEX. Second, in implementing a constraint generation pro-

cedure for solving problem (2.25), one can use lazy constraint generation. In traditional

constraint generation, one re-solves problem (2.25) from scratch using branch-and-bound

whenever one discovers a violated instance of constraint (2.25c). In lazy constraint gener-

ation, one solves problem (2.25) using a single branch-and-bound tree, and checks whether

constraint (2.25c) is satisfied for each integer solution that is encountered; if a violated

instance of constraint (2.25c) is found, it can then be added to the current node in the

branch-and-bound tree. This type of approach is potentially more efficient as one does not

re-solve the problem from scratch each time that a violated constraint is added.
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2.4 Extensions

In this section, we discuss how to extend our base model, which considers the share-of-

choice objective, to two different objective functions: the expected per-customer profit (Sec-

tion 2.4.1) and the geometric mean of the customer purchase probability (Section 2.4.2).

2.4.1 Extension to Expected Profit Maximization

While our final mixed-integer convex program (2.6) corresponds to the share-of-choice ob-

jective, it turns out that it is straightforward to generalize the model so as to optimize a

profit-based objective. In particular, suppose that the marginal profit of a design a is given

by a function R(a) defined as

R(a) = r0 +
n∑
i=1

riai.

In other words, the profit R(a) is a linear function of the binary attributes. One can model

various types of profit structures with this assumption. For example, if all of the attributes

correspond to non-price features that affect the cost of the product, then one can set r0 to

be the price of the product (a positive quantity), and each ri to be the marginal incremental

cost of attribute i (a negative quantity).

With this assumption, the logit-based expected profit product design problem can be

written as

maximize
a∈A

R(a) ·

[
K∑
k=1

λk ·
exp(uk(a))

1 + exp(uk(a))

]
. (2.26)

Using similar steps as for the SOCPD problem, one can derive the following bilinear formu-

lation with a bilinear objective function:

maximize
a,u,x

R(a) ·

[
K∑
k=1

λk · xk,1

]
(2.27a)

subject to constraints (2.5b) - (2.5g). (2.27b)
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For the objective function, observe that we can re-write it as

R(a) ·

[
K∑
k=1

λk · xk,1

]
=

(
r0 +

n∑
i=1

riai

)
·

[
K∑
k=1

λk · xk,1

]

=
K∑
k=1

λk ·

[
r0xk,1 +

n∑
i=1

ri · aixk,1

]
.

Notice that this last expression includes terms of the form aixk,1, which we can already rep-

resent through the variables yk,i introduced for problem (2.6). Problem (2.26) can therefore

be exactly reformulated as the following mixed-integer convex program:

maximize
a,u,w,x,y

K∑
k=1

λk ·

[
r0xk,1 +

n∑
i=1

ri · yk,i

]
(2.28a)

subject to constraints (2.6b) - (2.6l). (2.28b)

Thus, the expected profit product design problem can be handled through the same formu-

lation as problem (2.6), only with a modified objective function.

2.4.2 Extension to Geometric Mean Maximization

To motivate this approach, recall that the logit-based SOCPD problem (2.1) involves maxi-

mizing the fraction of customers who purchase a product. This objective function is formu-

lated as the weighted sum of the logit probabilities of each customer purchasing the product.

An alternate way of understanding this objective is that it is the weighted arithmetic mean

of the logit probabilities of the customer types.

Instead of formulating the objective of our product design problem as an arithmetic mean,

we will instead consider formulating the problem using the geometric mean. This leads to

the following optimization problem:

maximize
a∈A

K∏
k=1

[
exp(uk(a))

1 + exp(uk(a))

]λk
. (2.29)

In other words, rather than trying to optimize the weighted arithmetic mean of the purchase

probabilities, this problem seeks to optimize the weighted geometric mean of the purchase

30



probabilities, where the weights indicate the relative proportion of each customer type in the

population.

This formulation is interesting to consider because it provides a lower bound on the

optimal value of problem (2.1).

Proposition 2 Let Z∗AM and Z∗GM be the optimal objective values of problems (2.1) and

(2.29), respectively. Then Z∗AM ≥ Z∗GM .

Proposition 2 (see Appendix A.1.5 for the proof) implies that, by solving problem (2.29),

we obtain a lower bound on problem (2.1); by evaluating the objective value of the optimal

solution of (2.29) within problem (2.1), we obtain an even stronger lower bound. The

solution of the geometric mean problem (2.29) can be used as an approximate solution of

the arithmetic mean problem (2.1).

We can further analyze the approximation quality of the solution of problem (2.29) with

regard to the original problem. With a slight abuse of notation, let us use x = (x1, . . . , xK)

to denote the vector of purchase probabilities for the K different customer types, and let us

use x(a) to denote the vector of purchase probabilities for a given product a ∈ A:

x(a) = (x1(a), . . . , xK(a)) =

(
exp(u1(a))

1 + exp(u1(a))
, . . . ,

exp(uK(a))

1 + exp(uK(a))

)
.

Let us also use X be the set of achievable customer choice probabilities, given by

X =

{
x ∈ [0, 1]K | xk =

exp(uk(a))

1 + exp(uk(a))
for some a ∈ A

}
. (2.30)

Given a vector of choice probabilities x, we use the function f : X → R to denote the

weighted arithmetic mean of x, with the weights λ = (λ1, . . . , λK):

f(x) =
K∑
k=1

λkxk. (2.31)

Similarly, we use g : X → R to denote the weighted geometric mean of x:

g(x) =
K∏
k=1

xλkk . (2.32)
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Thus, in terms of these two functions, the original logit-based SOCPD problem can be

written as maxa∈A f(x(a)), while the geometric mean problem (2.29) can be written as

maxa∈A g(x(a)). We then have the following guarantee on the performance of any solution

of the geometric mean problem (2.29) with respect to the objective of the original logit-based

SOCPD problem (2.1).

Theorem 4 Let L and U be nonnegative numbers satisfying L ≤ xk(a) ≤ U for all k ∈

{1, . . . , K} and a ∈ A. Let a∗ ∈ arg maxa∈A f(x(a)) be a solution of the arithmetic mean

problem, and â ∈ arg maxa∈A g(x(a)) be a solution of the geometric mean problem. Then the

geometric mean solution â satisfies

f(x(â)) ≥ 1∑K
k=1 λk

(
U
L

)1−λk
· f(x(a∗)).

The proof of Theorem 4 (see Section A.1.6 of the ecompanion) follows by finding constants

α and α such that αf(x) ≤ g(x) ≤ αg(x) for any vector of probabilities x, and then showing

that a solution â that maximizes g(x(·)) must be within a factor α/α of the optimal objective

of the arithmetic mean problem. Theorem 4 is valuable because it provides some intuition

for when a solution â obtained by solving the geometric mean problem (2.29) will be close

in performance to the optimal solution of the original (arithmetic mean) problem (2.1). In

particular, the factor Γ defined as

Γ = α /α =
1∑K

k=1 λk
(
U
L

)1−λk

is decreasing in the ratio U/L. Recall that U is an upper bound on the highest purchase

probability that can be achieved for any customer type, while L is similarly a lower bound

on the lowest purchase probability that can be achieved for any customer type. When the

ratio U/L is large, it implies that there is a large range of choice probabilities spanned by the

set of product designs A. On the other hand, when U/L is small, then the range of choice
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Figure 2.1: Plot of the approximation factor Γ as a function of the ratio U/L, for different

values of K, with uniformly-distributed λ.

probabilities is smaller. Thus, the smaller the range of choice probabilities spanned by the

set A is small, the closer we should expect the geometric mean solution to be in performance

to the optimal solution of the arithmetic mean problem. Figure 2.1 visualizes the dependence

of the factor Γ on U/L when λ is assumed to be the discrete uniform distribution and K is

varied.

In addition to the ratio U/L, the factor Γ is also affected by λ. It can be verified

that the factor Γ is minimized when the customer type distribution is uniform, i.e., λ =

(1/K, . . . , 1/K). In addition, it can also be verified that when λ is such that λk = 1 for a

single customer type (and λk′ = 0 for all others), the factor Γ becomes 1. Thus, the more

“unbalanced” the customer type distribution λ is, the closer the geometric mean solution

should be in performance to the optimal solution of the arithmetic mean problem.

We will see in our numerical experiments that the solution of problem (2.29) is often

significantly better than the lower bound of Theorem 4.

33



Lastly, with regard to the bounds U and L, we note that these can be found easily. In

particular, for each customer type k, one can compute uk,max = maxa∈A uk(a) and uk,min =

mina∈A uk(a), which are the highest and lowest utilities that one can attain for customer

type k; for many common choices of A this should be an easy problem. (For example, if A

is simply {0, 1}n, we can find uk,max by setting to 1 those attributes for which βk,i > 0 and

setting to 0 all other attributes; uk,min can be found in a similar manner). One can then

compute L and U as

U = max
k=1,...,K

exp(uk,max)

1 + exp(uk,max)
,

L = min
k=1,...,K

exp(uk,min)

1 + exp(uk,min)
.

We now turn our attention to how one can solve problem (2.29). While problem (2.29)

is still a challenging nonconvex problem, it is possible to transform it into a mixed-integer

convex problem. To do so, we consider taking the logarithm of the objective function of

(2.29):

log
K∏
k=1

[
exp(uk(a))

1 + exp(uk(a))

]λk
=

K∑
k=1

λk log

(
exp(uk(a))

1 + exp(uk(a))

)

=
K∑
k=1

λk · (uk(a)− log(1 + exp(uk(a)))) .

This transformation is useful because the logarithm function is monotonic, so any solution

that maximizes the logarithm of the objective function maximizes the objective function

itself. This leads to the following mixed-integer convex program:

maximize
a,u

K∑
k=1

λk · (uk − log(1 + exp(uk))) (2.33a)

subject to uk = βk,0 +
n∑
i=1

βk,iai, ∀ k ∈ {1, . . . , K}, (2.33b)

Ca ≤ d, (2.33c)

ai ∈ {0, 1}, ∀i ∈ {1, . . . , n}. (2.33d)
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This problem can be solved using a similar gradient-based constraint generation approach as

the one described in Section 2.3.2. Alternatively, as in Section 2.3.1, one can also translate

this problem into a mixed-integer conic program using the exponential cone, leading to the

following formulation:

maximize
a,u,v,t,φ

K∑
k=1

λk · tk (2.34a)

subject to uk = βk,0 +
n∑
i=1

βk,iai, ∀ k ∈ {1, . . . , K}, (2.34b)

tk + φk ≤ uk, ∀ k ∈ {1, . . . , K}, (2.34c)

vk,1 + vk,0 ≤ 1, ∀ k ∈ {1, . . . , K}, (2.34d)

(vk,1, 1, uk − φk) ∈ Kexp, ∀ k ∈ {1, . . . , K}, (2.34e)

(vk,0, 1,−φk) ∈ Kexp, ∀ k ∈ {1, . . . , K}, (2.34f)

Ca ≤ d, (2.34g)

ai ∈ {0, 1}, ∀i ∈ {1, . . . , n}. (2.34h)

While problem (2.33) and problem (2.34) bear some resemblance to their counterparts (2.6)

and (2.14), they differ in that the choice probabilities xk,1 and xk,0 do not explicitly appear.

More importantly, they do not involve any linearization of bilinear terms of the form xk,1 ·ai.

These differences are important because they make problems (2.33) and (2.34) much easier

to solve than (2.6) and (2.14).

2.5 Numerical Experiments

In this section, we present the results of our numerical experiments. Section 2.5.1 presents the

results of our experiments with synthetically generated problem instances, while Section 2.5.2

presents the results of our experiments with instances derived from real conjoint datasets.

All of our numerical experiments are implemented in the Julia technical computing language,

version 1.5 [23] using the JuMP package (Julia for Mathematical Programming; see [36]),

35



and executed on a 2017 Apple MacBook Pro with a 3.1GHz Intel i7 quad core CPU and

16GB of memory.

2.5.1 Experiments with synthetic instances

In our first set of numerical experiments, we test our approaches on synthetically generated

problem instances. We generate these instances as follows. For a fixed number of binary

attributes n and number of customer types K, we randomly generate the partworth βk,i by

drawing an independent uniformly distributed random number in the interval [−10,+10]

for each customer type k and attribute i. For the intercept βk,0 of the utility function, we

assume that there are three competitive offerings a′, a′′, a′′′ which are drawn independently

and uniformly at random from {0, 1}n, and thus the value of βk,0 is computed as

βk,0 = − log (exp(uk(a
′)) + exp(uk(a

′′)) + exp(uk(a
′′′)) . (2.35)

We assume that the probability λk of each customer type k is set to 1/K. We vary n ∈

{10, 20, 30} and K ∈ {10, 20, 30, 40}. For each combination of n and K, we generate 5

replications. We do not impose any additional constraints on the set of feasible product

vectors, i.e., we omit the constraint Ca ≤ d from the formulations. We compare the mixed-

integer conic program (2.14) solved via Mosek (indicated by MICP), the gradient-based

constraint generation method (formulation (2.25)) implemented in Gurobi (indicated by

GCG) and the geometric mean problem (2.34) solved via Mosek (indicated by GM). For

MICP and GCG, we impose a 1 hour computation time limit.

Table 2.1 shows the results. The first three columns report the objective value of the three

methods, with respect to the logit-based share-of-choice objective. The next two columns

report the optimality gap, which is the relative difference (UB − LB)/UB, where UB is

the best upper bound found by Mosek/Gurobi, while LB is the objective value of the best

product vector found by Mosek/Gurobi) for the MICP and GCG methods. The subsequent

column reports the achieved approximation gap of the GM solution, which is the ratio of the
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Objective Value Gap (%) Computation Time (s)

n K GCG MICP GM GCG MICP GM GCG MICP GM

10 10 0.591 0.591 0.422 0.0 0.0 31.9 1.1 1.0 3.0

10 20 0.478 0.478 0.282 0.0 0.0 39.8 0.6 2.4 0.1

10 30 0.456 0.456 0.314 0.0 0.0 32.0 0.9 4.3 0.2

10 40 0.391 0.391 0.233 0.0 0.0 40.3 1.4 6.3 0.2

20 10 0.752 0.752 0.501 0.0 0.0 34.0 5.3 12.8 0.1

20 20 0.682 0.682 0.509 0.0 0.0 27.1 32.4 70.1 0.2

20 30 0.529 0.529 0.341 0.0 0.0 36.0 149.3 360.1 0.3

20 40 0.477 0.477 0.295 0.0 0.0 38.0 504.8 636.5 0.3

30 10 0.916 0.916 0.827 0.0 0.0 10.0 30.3 104.0 0.1

30 20 0.761 0.761 0.586 0.0 6.6 24.5 1524.4 2992.3 0.3

30 30 0.668 0.681 0.445 15.8 17.2 36.2 3600.0 3600.7 0.3

30 40 0.538 0.536 0.325 30.3 31.9 40.5 3600.0 3600.6 0.4

Table 2.1: Results for numerical experiment with synthetic data.

difference between the objective of the GM solution and the best objective of any of the three

solution methods, and the best objective over the three methods. The last three columns

report the computation time required of each of the three methods. Each row corresponds to

a combination of n and K, and all performance metrics are averaged over the 5 replications.

From Table 2.1, we can see that for n ≤ 20, most of the instances can be solved to

complete optimality by MICP or GCG within the 1 hour time limit. For n = 30, the

instances become more challenging, and their difficulty increases as K increases; for K = 10

and K = 20, GCG and MICP are in general able to solve the problems to optimality within

the one hour time limit, while for K = 30 and K = 40, both methods terminate with a
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suboptimal solution, with an average optimality gap of roughly 15-17% (for K = 30) and an

average optimality gap of roughly 30-32% (for K = 40). For the GM method, we can see

that it obtains solutions of modest quality with an approximation gap ranging between 10

and 40%. For these instances, the factor of Γ (cf. Theorem 4) is in general extremely small

(less than 10−11, which would correspond to an approximation gap of close to 100%) because

for each customer type it is possible to achieve utilities that are significantly smaller and

greater than zero; our results thus show that the GM method is able to achieve significantly

better solutions. In addition, the computation time required for GM is a fraction of the time

required by the other methods.

2.5.2 Experiments with instances based on real conjoint datasets

In our second set of numerical experiments, we test our approaches using instances built

with logit models estimated from real conjoint datasets. We use four different data sets:

timbuk2, a dataset on preferences for laptop bags produced by Timbuk2 from [81] (see also

[13], [20, 21], which also use this data set for profit-based product line design); bank, a

dataset on preferences for credit cards from [4] (accessed through the bayesm package for

R; see [73]); candidate, a dataset on preferences for a hypothetical presidential candidate

from [45]; immigrant, a dataset on preferences for a hypothetical immigrant from [45]. The

high-level characteristics of each dataset are summarized in Table 2.2 below.

We note that for some of these datasets, the product design problem is of a more hypo-

thetical nature. For example, for candidate, the problem is to “design” a political candidate

maximizing the share of voters who would vote for that candidate. Similarly, for immigrant,

the problem is to “design” an ideal immigrant that would maximize the fraction of people

who would support granting admission to such an immigrant. Clearly, it is not possible to

“create” a political candidate or immigrant with certain characteristics. Despite this, we

believe that identifying what an optimal “product” would be for these data sets, and what

share-of-choice such a product would achieve, would still be insightful. Notwithstanding
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Dataset Respondents Attributes Attribute Levels n

bank 946 7 4× 4× 3× 3× 3× 2× 2 14

candidate 311 8 6× 2× 6× 6× 6× 6× 6× 2 32

immigrant 1396 9 7× 2× 10× 3× 11× 4× 4× 5× 4 41

timbuk2 330 10 7× 2× 2× 2× 2× 2× 2× 2× 2× 2 15

Table 2.2: Summary of real conjoint datasets used in Section 2.5.2.

these concerns, these datasets are still valuable from the perspective of verifying that our

optimization methodology can solve problem instances derived from real data.

For each data set, we develop two different types of logit models, which we summarize

below.

1. Latent-class logit : For each dataset, we estimate a latent-class (LC) multinomial logit

with a finite number of classes K. We estimate each model using a custom implemen-

tation of the expectation-maximization (EM) algorithm [82]. For each dataset, we run

the EM algorithm from five randomly chosen starting points, and retain the model

with the lowest log likelihood. To ensure numerical stability, we impose the constraint

−10 ≤ βk,i ≤ 10 for each i in the M step of the algorithm. We vary the number

of classes K in the set {5, 10, 15, 20, 30, 40, 50}. Thus, in the associated logit-based

SOCPD instance, each customer class corresponds to one of the customer types and

the customer type probability λk is the class k probability estimated via EM.

2. Hierarchical Bayes : For each dataset, we estimate a mixture multinomial logit (MMNL)

model with a multivariate normal mixture distribution using the hierarchical Bayesian

(HB) approach; we use a standard specification with normal-inverse Wishart second

stage priors (see Section A.2.2 of the ecompanion for more details). We estimate this

model using Markov chain Monte Carlo (MCMC) via the bayesm package in R [73].

We simulate 50,000 draws from the posterior distribution of (βr,1, . . . , βr,n) for each re-
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spondent r, and thin the draws to retain every 100th draw. Of those draws, we retain

the last J = 100 draws, which we denote as (βjr,1, . . . , β
j
r,n), where j ∈ {1, . . . , J}, and

we compute the average partworth vector (βk,1, . . . , βk,n) as

(βr,1, . . . , βr,n) = (
1

J

J∑
j=1

βjr,1, . . . ,
1

J

J∑
j=1

βjr,n). (2.36)

This approach leads to an estimate of the partworths for each of the respondents.

In the corresponding logit-based SOCPD instance, the number of customer types K

corresponds to the number of respondents, and the probability of each customer type

k is 1/K.

Before continuing, we note that there may be other approaches for defining a mixture

of logits model. (For example, given an estimate of the mean and covariance matrix of a

normal mixture distribution defining a mixture logit model, one could sample a set of K

partworth vectors and use those as the set of customer types, with each λk = 1/K.) We

emphasize that our goal is not to advocate for one approach over another. The estimation

approaches described here are simply for the purpose of obtaining problem instances that

are of a realistic scale and correspond to real data. We note that our optimization approach

is agnostic to how the customer choice model is constructed and is compatible with any

estimation approach, so long as it results in a finite set of customer types that each follow a

logit model of choice.

For each dataset, we define the set A to be the set of all binary vectors of size n that

respect the attribute structure of the dataset; in particular, for attributes that are not binary,

we introduce constraints of the form
∑

i∈S ai ≤ 1 as appropriate (cf. constraints (2.7)

and (2.8) in Section 2.2.2). For immigrant, we also follow [45] in not allowing certain

combinations of attributes (for example, it is not possible for a hypothetical immigrant to

be a doctor and have only a high school education). We briefly describe the constraints for

immigrant in Section A.2.3 of the ecompanion.
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With regard to the no-purchase option, recall from Section 2.2.1 that the constant part

of each customer’s utility function, βk,0, can be thought of as the negative of the utility

of the no-purchase option. We assume that in each problem instance, each customer can

choose from three different competitive offerings which are defined using the same attributes

as the product that is to be designed. This is a standard assumption in the product design

and product line design literature [13, 20, 21]. For each dataset, we provide the details of

the competitive offerings in Section A.2.4 of the ecompanion. The parameter βk,0 is then

calculated in the same way as for the synthetic instances (see equation (2.35)).

Table 2.3 shows the computation time and the objective value of all of the different

models for all four datasets; the columns containing the results follow the same structure as

Table 2.1. From this table, we can see that all of the LC (latent class logit) instances can be

solved to complete optimality within roughly 3 minutes. For the HB instances, MICP and

GCG are able to solve the instances for bank, candidate and timbuk2 within approximately

25 minutes. With regard to the geometric mean approach, we find that Mosek is able to

solve all of the instances very quickly (within 20 seconds in all cases). In contrast to the

synthetic instances, the geometric mean solution also tends to perform well, achieving a

share-of-choice that is on average only about 14% below the best solution across all of the

instances.

Of the instances in Table 2.3, the immigrant HB instance appears to be the most chal-

lenging. While Mosek is able to solve the MICP formulation to optimality within 2 hours,

GCG exhausts the 2 hour time limit and returns a suboptimal solution with an optimality

gap of about 12.6%. This performance is likely because the GCG method needs to add a

very large number of constraints due to the large number of customer types. Moreover, the

structure of the partworths appears to pose some numerical difficulty, as it appears that

solutions that are near-optimal are such that the purchase probabilities are extremely close

to 1 or 0 for a large number of customer types. This can be problematic because the con-

straints that GCG adds include terms of the form log(xk,1) + 1 and log(xk,0) + 1 (derivatives
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Objective Value Computation Time (s)

Dataset Model K GCG MICP GM GCG MICP GM

bank LC 5 0.742 0.742 0.675 4.3 0.8 14.4

LC 10 0.749 0.749 0.685 0.3 1.0 0.0

LC 15 0.752 0.752 0.682 0.5 1.0 0.1

LC 20 0.719 0.719 0.687 0.5 1.6 0.1

LC 30 0.764 0.764 0.637 1.0 2.8 0.1

LC 40 0.757 0.757 0.665 1.3 3.6 0.1

LC 50 0.749 0.749 0.642 2.0 5.8 0.2

HB 946 0.817 0.817 0.812 380.6 373.1 2.2

candidate LC 5 0.626 0.626 0.509 1.4 4.8 0.0

LC 10 0.694 0.694 0.637 2.9 9.6 0.1

LC 15 0.670 0.670 0.651 4.5 13.2 0.1

LC 20 0.705 0.705 0.574 8.2 16.3 0.1

LC 30 0.627 0.627 0.534 29.0 53.2 0.1

LC 40 0.671 0.671 0.537 31.4 89.6 0.3

LC 50 0.710 0.710 0.680 192.0 102.5 0.4

HB 311 0.852 0.852 0.851 1581.5 452.6 0.9

immigrant LC 5 0.689 0.689 0.687 10.1 12.3 0.0

LC 10 0.738 0.738 0.688 5.6 14.0 0.1

LC 15 0.726 0.726 0.393 9.4 19.5 0.1

LC 20 0.756 0.756 0.552 6.4 32.7 0.2

LC 30 0.675 0.675 0.467 14.9 52.5 0.2

LC 40 0.724 0.724 0.344 14.6 75.7 0.2

LC 50 0.731 0.731 0.628 31.8 147.5 0.3

HB 1396 0.836 0.865 0.846 7201.3 7053.0 4.7

timbuk2 LC 5 0.519 0.519 0.510 0.2 0.9 0.0

LC 10 0.543 0.543 0.536 0.4 1.7 0.1

LC 15 0.567 0.567 0.430 0.6 2.1 0.1

LC 20 0.557 0.557 0.556 1.0 2.7 0.1

LC 30 0.620 0.620 0.436 1.0 3.6 0.1

LC 40 0.579 0.579 0.560 2.1 5.9 0.1

LC 50 0.628 0.628 0.446 2.0 6.2 0.2

HB 330 0.644 0.644 0.644 40.6 85.2 0.8

Table 2.3: Results for numerical experiment with real data.
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of xk,1 log(xk,1) and xk,0 log(xk,0)), which respectively blow up as xk,1 and xk,0 approach 0.

In addition to the performance of the different methods, it is also interesting to ex-

amine the optimal solutions. Table 2.4 visualizes the optimal solution for the candidate

dataset for the LC model with K = 20 segments. The table also shows the three outside

options/competitive offerings that were defined for this dataset. In addition, the table also

shows the structure of a heuristic solution, which is obtained by finding the vector a in A

that maximizes the average utility, i.e., that maximizes
∑K

k=1 λkuk(a).

From this table, we can see that the optimal solution matches some of the outside options

on certain attributes (such as income and profession), but differs on some (for example, age).

In addition, while the optimal solution does match the heuristic on many attributes, it differs

on a couple of key attributes, namely race/ethnicity (the optimal candidate is Black, while

the heuristic candidate is Asian American) and gender (the optimal candidate is male, while

the heuristic candidate is female). While this may appear to be a minor difference, it results

in a substantial difference in market share: the heuristic candidate attracts a share of 0.563,

while the optimal candidate attracts a share of 0.705, which is an improvement of 25%.

This illustrates that intuitive solutions to the logit-based product design problem can be

suboptimal, and demonstrates the value of a principled optimization-based approach to this

problem.

2.6 Conclusions

In this paper, we have studied the logit-based share-of-choice product design problem. While

this problem is theoretically intractable, we show how it is possible to transform this problem

into a mixed-integer convex optimization problem. Our transformation leverages an alternate

characterization of logit choice probabilities arising from the representative agent model,

which may be of utility in other optimization models involving logit models. We propose two

practically viable approaches for solving this problem: one based on further reformulating
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Attribute Outside Outside Outside Optimal Heuristic

Option 1 Option 2 Option 3 Solution Solution

Age: 36

Age: 45

Age: 52

Age: 60

Age: 68

Age: 75

Military Service: Did not serve

Military Service: Served

Religion: None

Religion: Jewish

Religion: Catholic

Religion: Mainline protestant

Religion: Evangelical protestant

Religion Mormon

College: No BA

College: Baptist college

College: Community college

College: State university

College: Small college

College: Ivy League university

Income: 32K

Income: 54K

Income: 65K

Income: 92K

Income: 210K

Income 5.1M

Profession: Business owner

Profession: Lawyer

Profession: Doctor

Profession: High school teacher

Profession: Farmer

Profession: Car dealer

Race/Ethnicity: White

Race/Ethnicity: Native American

Race/Ethnicity: Black

Race/Ethnicity: Hispanic

Race/Ethnicity: Caucasian

Race/Ethnicity: Asian American

Gender: Male

Gender: Female

Table 2.4: Attributes of outside options, optimal solution and heuristic solution for

candidate LC-MNL model with K = 20 segments.
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the problem as a mixed-integer conic program involving the exponential cone, which can be

directly solved by cutting edge solvers; and the other based on gradient-based constraint

generation, which allows the problem to be solved as a mixed-integer linear program. We

also show how our methodology can be extended to handle expected profit rather than share-

of-choice, and how our methodology can also be used to optimize the geometric mean of the

purchase probabilities, leading to an approximation algorithm for the original share-of-choice

problem. Lastly, our numerics show how our approach can obtain high quality solutions to

large instances, whether generated synthetically or from real conjoint data, within reasonable

time limits. To the best of our knowledge, this is the first methodology for solving the logit-

based share-of-choice product design problem to provable optimality.
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CHAPTER 3

An Integer Programming Approach to Binary Decision

Trees

Decision trees are graphs with a tree-like structure which map the input data to a leaf node

that predicts the label of the output data. In a decision tree, for each observation, starting

from the root, we proceed to the right or left node depending on the binary test applied in

the current node. The label of the leaf node we reach following this process then becomes

the prediction for the corresponding observation.

The main application area of decision trees is classification problems. By asking a set

of questions, observations are partitioned and the leaves in the decision tree represent each

one of these partitions. Decision trees are used in predicting the classes of observations by

assigning labels to leaves. For example, Figure 3.1 illustrates a decision tree produced to

identify high risk patients (R denotes high risk, N denotes not high risk) after a heart attack

based on the initial 24-hour data [27]. Decision trees are also commonly used in policy

learning which describes learning the rule of decision making that matches an individual to

a treatment based on the characteristics of the individual. The treatment in policy learning

can refer to a wide range of actions such as selecting offers, prices, advertisements, or emails

to send to consumers, as well as the problem of determining which medication to prescribe

to a patient [53, 89].

Decision trees have been widely used as predictive models, because of their simplicity

and ability to model nonlinear relationships between the input data and the output data.

They divide a complicated decision making problem into a collection of smaller problems
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Blood Pressure > 90?

Age > 62.5?

Sinus Tachycardia?

R N

N

R

yes

yes

yes no

no

no

Figure 3.1: A decision tree example which classifies heart attack patients as under high risk

(R) or not under high risk (N).

[75]; thus, they are especially appealing in healthcare, where interpretable decision making

mechanisms are preferred. For example, decision trees can be used to design a risk calculator

for emergency surgery [17]. Other application areas of decision trees include optimal stopping

problems (e.g. when to start a price promotion in marketing, whether a patient should accept

an available organ or wait for the next one in healthcare, etc.) [32], choice modeling [31, 7],

rationalizing optimal policies to stochastic dynamic programs [26] and model extraction

for interpreting complex, blackbox machine learning models [12]. Moreover, decision trees

can deal with both categorical and real-valued variables; thus, they have a high modeling

capability.

While decision trees are attractive due to their simplicity, interpretability and ability to

model complex relationships between the dependent and independent variables, constructing

decision trees from data is challenging. Although the idea behind constructing a decision

tree is simple, the problem of finding the optimal binary tree is shown to be NP-hard [50].

As a result, given a training set, constructing a decision tree that represents it the best has

been studied for years. The predominant approaches to learning decision trees are heuristic
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in nature and most of them uses top-down induction, which builds the decision tree starting

from the root node in a recursive manner. Although numerous heuristics have been developed

to construct decision trees throughout the years, they have several disadvantages. First, these

approaches lack optimality guarantees and usually, it is not even possible to tell how close the

heuristic solution is to the optimal. Moreover, in many application areas, the decision maker

may want to impose side constraints while learning a classification model or a policy, which

need to be incorporated in the method used to construct the decision tree. Examples of such

constraints can be preventing unfair discrimination based on protected characteristics [1] or

limiting the number of people assigned to a policy out of budget concerns [89]. Adding these

restrictions increases the computational complexity and the heuristics are usually unable to

handle such side constraints.

Recently, spurred by advances in computing and solution capabilities of commercial

mixed-integer optimization solvers [24, 19], the operations research community has proposed

approaches to decision tree learning based on mixed-integer optimization (MIO). Such ap-

proaches are attractive, because they directly address the weaknesses of heuristic methods:

MIO formulations not only produce solutions that are provably optimal, but allow the mod-

eler to easily incorporate side constraints using additional constraints and variables in the

formulations. Although a number of MIO formulations for the problem of decision tree

learning formulations exist, these formulations are still not scalable to very large data sets.

These formulations model splits in a continuous manner leading to formulations involving

big-M constraints. Such constraints are known to result in formulations that are loose and

may be challenging to solve provable optimality at a large scale.

In this paper, we propose a new MIO formulation of the decision tree learning problem.

Our modeling framework is general in that it allows one to learn a decision tree that maps

input data to one of a finite set of decisions; thus, our model can be used for binary and multi-

class classification, as well as more complicated applications such as static policy learning.

A critical aspect of our formulation is that it does not explicitly represent the split points of
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the tree, since only the ordering of observations in terms of the variables is necessary while

constructing the decision tree. This allows us to avoid big-M constraints for split conditions

and obtain a stronger formulation compared to many previous models in the literature.

We make the following specific contributions:

1. We develop a new MIO formulation of the decision tree learning problem. Our formula-

tion naturally extends to generalizations of decision trees beyond binary classification,

such as multiclass classification and policy learning. Unlike the existing models in the

literature, our formulation does not include big-M type of constraints and is stronger

2. We show theoretically that our formulation is stronger than the precedent MIO formu-

lation that has been proposed in [16]. We also show that, in the special case of a single

data point, our formulation is integral (i.e., all extreme points are integer), whereas

the formulation in [16], in general, is not.

3. We propose a solution approach for scaling our formulation based on iteratively gener-

ating the constraints that link the splits of the tree to the assignment of observations

to leaves; we show that it is possible to efficiently separate those constraints.

4. We demonstrate through numeric experiments that our formulation outperforms the

precedent formulation in [16] in terms of computation time. Moreover, we show that

our proposed large scale solution method improves the performance of the model in

terms of solution time in several data sets.

The rest of the paper is structured as follows. In Section 3.1, we provide a review of the

related literature. In Section 3.2, we propose a mixed-integer optimization model for decision

tree learning, provide theoretical results and analyze the strength of our formulation. We

propose a solution method to scale our formulation to larger data sets in Section 3.4. In

Section 3.5, we present numerical experiments, which compares our model to the precedent
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formulation in [16] and tests the performance of our proposed large scale method. Finally,

in Section 3.6, we conclude.

3.1 Literature Review

Decision tree models are widely used in several disciplines such as machine learning and

statistics for predictive and prescriptive modeling [27]. As the problem of finding the optimal

binary tree is shown to be NP-hard [50], given a training set, constructing a decision tree that

represents it the best has been a challenging problem for years and numerous heuristics have

been developed to build a decision tree. For a review of the heuristics, we refer the reader to

[72]. Moreover, with the increase in the computational power of mixed integer optimization

(MIO) models and commercial MIO solvers in the recent years, several integer programming

formulations of the decision tree problems have been developed. In Section 3.1.1, we go

over the heuristics in the machine learning literature to construct decision trees and in

Section 3.1.2, we present a review of integer programming approach to decision trees.

3.1.1 Top-down Approach and Other Heuristics

The most common heuristic approach to decision tree learning is top-down induction. The

top-down induction approach involves starting with an initial tree, which is typically The

seminal work of [27] which proposed classification and regression tree (CART) algorithm is

one of the main examples of top-down approach. Other notable heuristics that use top-down

approach include C4.5 [70] and ID3 [69]. Top-down approach has a greedy nature and usually

includes two steps: growing the tree and pruning to control the size of the tree and avoid

overfitting [72]. The main disadvantage of the top-down approach is that when growing

the tree, it considers each split in isolation and makes the best decision for that split only.

However, it is possible to obtain a better split by choosing a worse classifier in a previous

split. Top-down approach fails to capture a tradeoff like this and does not result in globally
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optimal trees [14]. Moreover, in top-down approach, usually an impurity measure, which

takes several factors into consideration, is used to grow the tree, whereas misclassification

rate is used as the criterion for pruning [27]. Therefore, misclassification rate, which is more

consistent with the objective of the problem, is not used when the split decisions are made.

A weakness of the top-down induction approach is that each split is chosen without con-

sideration of future splits that may be chosen for the leaves that result from that split. As

a result, there has been research that has considered lookahead techniques, which attempt

to improve the top-down approach by predicting the effect of a split decision on the descen-

dant nodes. Several lookahead heuristics that have been proposed in the machine learning

literature are IDX [68], LSID3 and ID3-k [37]. Lookahead heuristics are reported to have

mixed performance results, where they outperform greedy heuristics in some data sets [68]

and produce larger and less accurate trees in others [67].

3.1.2 Mixed Integer Formulations

In contrast to heuristic approaches, there has been a significant and growing interest in

the operations research community in the last five years in the application of mixed-integer

programming models to the problem of learning a binary decision tree. In this body of

literature, the landmark paper of [16] was the first to study the problem of learning a

classification tree using mixed-integer optimization. This paper formulates the problem of

learning a decision tree as an integer program and aim to achieve global optimality and

eliminate the need for pruning by solving the model in one step. Our work relates to this

paper in attempting to construct an optimal binary decision tree in a single step using an

integer program. However, our model is differentiated from the model of Bertsimas and

Dunn [16] in two significant dimensions. First, that model incorporates decision variables

that determine whether to branch in a node or not; thus, the size of the tree and the tree

topology is determined by their model. In addition, the objective function of the Bertsimas

and Dunn [16] model is motivated by the objective used in CART: in particular, to capture
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the tradeoff between the complexity of the tree and accuracy, the model add a penalty to the

objective function using the complexity parameter. Our model differs from the Bertsimas and

Dunn [16] model by assuming the tree topology is given and using the misclassification rate

as the objective function. Second, Bertsimas and Dunn [16] formulation uses a continuous

decision variable to represent each split’s value, which leads to big-M constraints; thus, the

formulation can potentially have a weak relaxation and be difficult to scale [85]. Since the

actual values of the independent variables never appear in our formulation, we avoid big-M

constraints and propose a stronger formulation than Bertsimas and Dunn [16]. As we will

see later in Section 3.5, our formulation can be solved to a lower optimality gap than the

formulation of Bertsimas and Dunn [16] within a fixed computational time limit. Since the

paper of [16], [53] and [89] developed similar MIO formulations for policy learning problems

and [1] developed a similar MIO formulation for designing a decision tree with concerns over

fairness in decision making.

Since the paper of Bertsimas and Dunn [16], a number of other papers have considered

alternate formulations for the problem of learning a binary decision tree. [84] develop a MIO

formulation which aims to reduce the number of binary variables compared to the formulation

of Bertsimas and Dunn [16]. They use binary encoding to model the split conditions and

propose a formulation where the number of decision variables depends on the maximum

amount of unique values among all features, instead of the number of observations in the

data. Although their formulation has a smaller number of binary variables, the constraints

that establish the split conditions still rely on big-M constants.

[44] develop a MIO formulation specifically tailored for binary classification when all

the independent variables are categorical variables. They represent the categorical data as

a binary vector and each split checks whether the assigned features in the binary vector

belonging to an observation is 0 or 1. The decision mechanism in each split in [44] is

different than our formulation, where each split classifies an observation based on whether

the assigned feature’s value is greater or less than the split point. Since the binary test
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in each split in [44] can be reversed without affecting the optimal solution, this decision

mechanism allows them to exploit the symmetry in decision tree and preassign the labels

to leaves before solving the optimization model in binary classification case. Our modeling

framework is similar to [44] in assuming the tree topology is given. However, a key difference

is that our formulation accommodates both real-valued numeric variables and categorical

variables (through one-hot encoding). Also, while their formulation is restricted to binary

classification, we develop a more general model which can handle multi-class classification

as well as policy learning problems with more than two treatments.

In a concurrent and independent work, [2] develop a MIO formulation to construct op-

timal decision trees for binary valued data sets. They use a flow-based approach by trans-

forming a decision tree into an acyclic directed graph with a single source and sink node. If

we use a one-hot encoding approach to transform non-binary valued data into binary valued

data, i.e., for each non-binary value in a column, if we create a new column which has the

value of 1 for the corresponding value and 0 for all others, their formulation is equivalent

to ours. The paper additionally proposes a Benders decomposition algorithm which exploits

the max-flow structure in the subproblem and provides polyhedral results on the convex hull

of the feasible region of decision trees. Our work differ from theirs in developing a constraint

generation based large scale method and proposes additional structural results.

3.2 Model

In this section, we develop a new MIO to construct decision trees and prove several properties

of it. The remainder of this section is organized as follows. In Section 3.2.1, we define the

parameters used in MIO. Then, we provide the formulation in Section 3.2 and show some

structural properties of the model in Section 3.2.3.
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3.2.1 Problem Definition

We begin by first defining the data, and then defining the decision tree. To represent

the data, let X = (X1, . . . , Xd) be the vector of independent variables that comprise an

observation. We assume that each independent variable X1, . . . , Xd is continuous/numeric,

i.e., X1, . . . , Xd ∈ R. Let n be the number of observations in the data, and X1, . . . ,Xn

denote the independent variable vectors for the n observations. For a particular independent

variable i, X1
i , . . . , X

n
i are the values of that independent variable in the data.

We now define the components of the decision tree. We denote the set of leaf nodes

and the set of split nodes in the tree by leaves and splits, respectively. For a given split

s ∈ splits, we define the functions leftchild : splits → splits ∪ leaves and rightchild :

splits→ splits ∪ leaves as the mappings of each split node to its left child node and right

child node, respectively; given a split node s, leftchild(s) is the left child node of s, and

rightchild(s) is the right child node of s. We let the tuple T = (leaves, splits, leftchild,

rightchild) denote the topology of the tree. We assume that the topology T is given and

fixed.

We use v(s) to denote the split variable index of split s ∈ splits, and v = (v(s))s∈splits

denote the vector of split point indices. We also θ(s) to denote the split point in split

s ∈ splits, and θ = (θ(s))s∈splits to denote the vector of split points. Given an observation

that arrives at split s, a query in the form “Is Xv(s) ≤ θ(s)?” is applied to the observation.

If the query is true, the observation is mapped to leftchild(s); otherwise, the observation is

mapped to rightchild(s).

Given a tree defined by T , v and θ, the decision tree maps the observation to a leaf by

the following process. Starting at the root node, we check if the node is a leaf. If it is a

leaf node, we terminate and we output that node. Otherwise, the node is a split node s,

and we check the split’s query Xv(s) ≤ θ(s), and based on the outcome of the query, we

proceed to the left or the right node. This process then repeats at the new node, until a
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leaf is reached. Given a topology T , split variable indices v and split point vector θ, we use

`(X; T ,v,θ) to denote the leaf to which an observation with feature vector X is mapped to.

We let a(`) denote the action that corresponds to leaf `, which is chosen from a finite action

space A; once an observation reaches a leaf `, the decision tree outputs the action a(`). We

let a = (a(`))`∈leaves denote the vector of leaf-to-action assignments.

Example 1 Figure 3.2 provides an example of a decision tree. In this example, each ob-

servation consists of two features, i.e., X = (X1, X2), and the action set consists of three

actions, A = {α, β, γ}.The left-hand side of the figure displays the topology T of a tree, with

the nodes indexed from 1 to 6; here, leaves = {3, 5, 6, 7} and splits = {1, 2, 4}, and we have

leftchild(1) = 2, leftchild(2) = 3, leftchild(4) = 5, rightchild(1) = 7, rightchild(2) =

4, rightchild(4) = 6. The right-hand side figure displays the decision tree, which displays

the query for each split, and the action of each leaf; in this example, the split variable indices

are v(1) = 1, v(2) = 2, v(4) = 2, the split points are θ(1) = 1.6, θ(2) = 1.9, θ(4) = 4.9, and

the leaf actions are a(3) = α, a(5) = β, a(6) = γ, a(7) = γ.

To illustrate how the tree maps an observation to a leaf and returns an action, suppose

that X = (X1, X2) = (1.6, 5.1). The red path shown in the right-hand side figure of Figure 3.2

illustrates how this observation is mapped to leaf 6. The action that is returned by the tree

is then the action a(6), which is γ.

Having defined the essential components of a decision tree, we now define the decision

tree learning problem. We assume that each assignment of an observation to an action

carries a reward. We let cm,a denote the reward of taking action a for observation m, which

we assume is fixed and known to us. For a fixed topology T , we define the decision tree

learning problem as the problem of finding the split variables v, the split points θ and the

leaf actions a so as to maximize the sum of the rewards garnered from the observations; we

formally define this problem as

maximize
v,θ,a

n∑
m=1

cm,a(`(Xm;T ,v,θ)) (3.1)
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(a) Example of tree topology T .
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(b) Example of a complete binary deci-

sion tree.

Figure 3.2: Example of a tree topology T (left-hand subfigure) and a complete decision tree

(right-hand subfigure).

3.2.2 Mixed-Integer Optimization Formulation

Problem (3.1) is a complicated combinatorial optimization problem. To solve it, we will

model it as a mixed-integer optimization (MIO) problem. We begin by defining a set of

parameters that are needed to construct our formulation. We define the parameter ωij as

the jth lowest unique value of variable i in the training set X1, . . . ,Xn. Let Ji be the number

of unique values of the ith independent variable, so that, j ranges from 1 to Ji. We thus

have:

ωi,1 < ωi,2 < · · · < ωi,Ji−1 < ωi,Ji .

For convenience, we also define ωi,0 = −∞.

Let τi,m be the value of j ∈ {1, . . . , Ji} such that Xm
i = ωi,τi,m ; i.e., for observation m,

it tells us where that observation’s value of feature i is in the overall ranking of all unique

values of that feature.

We now define the decision variables of the problem. For each split s, feature i and index

j, we let λs,i,j be a binary decision variable that is 1 if split s uses feature i and the split
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point θs = ωi,j and 0 otherwise. To track the leaf an observation is mapped into, for each

observation m and leaf ` we let ym,` be a binary decision variable that is 1 if the tree maps

observation m to leaf `, and 0 otherwise. We let π`,a be a binary decision variable that is 1

if leaf ` prescribes action a, and 0 otherwise. Finally, we define the binary decision variable

wm,`,a as 1 if observation m is mapped to leaf ` and action a is assigned to leaf `, and 0

otherwise.

With these definitions, we define our formulation below.

maximize
y,λ,w,π

n∑
m=1

∑
`∈leaves

∑
a∈A

cm,awm,`,a (3.2a)

subject to
∑

`∈leaves

ym,` = 1, ∀m ∈ [n], (3.2b)

d∑
i=1

Ji∑
j=1

λs,i,j = 1, ∀s ∈ splits, (3.2c)

d∑
i=1

∑
j:j<τi,m

λs,i,j ≤ 1−
∑

`∈left(s)

ym,` ∀s ∈ splits, m ∈ [n], (3.2d)

d∑
i=1

∑
j:j≥τi,m

λs,i,j ≤ 1−
∑

`∈right(s)

ym,` ∀s ∈ splits, m ∈ [n], (3.2e)

∑
a∈A

π`,a = 1, ∀` ∈ leaves, (3.2f)

ym,` =
∑
a∈A

wm,`,a, ∀m ∈ [n], ` ∈ leaves, (3.2g)

wm,`,a ≤ π`,a, ∀m ∈ [n], ` ∈ leaves, a ∈ A, (3.2h)

ym,` ∈ {0, 1}, ∀m ∈ [n], ` ∈ leaves, (3.2i)

π`,a ≥ 0, ∀` ∈ leaves, a ∈ A, (3.2j)

wm,`,a ≥ 0, ∀m ∈ [n], ` ∈ leaves, a ∈ A (3.2k)

λs,i,j ≥ 0, ∀s ∈ splits, i ∈ [d], j ∈ {0, . . . , Ji}. (3.2l)

The constraints of this formulation have the following meaning. Constraint (3.2c) ensures

that exactly one variable and exactly one split point is assigned to each split s. Con-
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straint (3.2b) ensures each observation is mapped to exactly one leaf. To understand con-

straint (3.2d), observe that the left-hand side is 1 if and only if we choose a split variable

i for split s and a split point θs that is greater than ωi,τi,m = Xm
i , while the right hand

side is 1 if and only if the observation m is not mapped to a leaf to the left of split s.

Thus, the constraint states that if we choose split variable i for split s and we choose a

split point θs < ωi,τi,m , then observation m cannot be mapped to any leaf to the left of split

s. Constraint (3.2e) can be interpreted in a similar way, requiring that if we choose a split

variable i for split s and we choose a split point θs ≤ ωi,τi,m , then observation m cannot be

mapped to any leaf to the right of split s. Constraint (3.2f) ensures that exactly one action

is assigned to each leaf. Constraints (3.2g) and (3.2h) ensure that the wm,`,a variables are

correctly defined, that is, wm,`,a = 1 if and only if ym,` = 1 and π`,a = 1. Finally, constraints

(3.2i)-(3.2l) define decision variables to be binary and continuous. The objective function

of the model is the sum of the rewards obtained from the actions that are assigned to the

observations.

We pause here to comment on a few important characteristics of our model. First, we

note that our formulation as we have defined it above restricts the split point of each split to

be one of the unique values of one of the d features, i.e., ωi,j for some choice of feature i and

some j ∈ [Ji]. We note that this is without loss of generality, because there are finitely many

observations, and for any feature, there is an interval of split points that are equivalent in

how they map each observation to the left or to the right. In particular, observe that a split

of the form Xi ≤ θ has exactly the same behavior for any choice of θ ∈ [ωi,j, ωi,j+1). Thus,

we do not lose anything by restricting the choice of split point for a split on feature i to the

values ωi,0, . . . , ωi,Ji .

Building on the previous point, this brings us to the second important characteristic of

our model. In our formulation, we do not need to explicitly model the values of the features

of the observations and the value of the split point. Instead, we use the fact that only the

relative ordering of the observations in terms of the features is important in determining the
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behavior of a decision tree. Our formulation takes advantage of this and does not require

the raw data to enter the constraints. This modeling approach provides two advantages over

the existing formulations in the literature. First, many prior formulations (in particular, [16]

and [84]), rely on big-M constraints to model how an observation gets mapped to the left or

to the right of a split; as a result, these formulations can be difficult to solve at large scales.

Unlike these prior formulations, our model that can handle real-valued variables without

big-M constraints.

The third important characteristic of our model is that several binary decision variables

can actually be relaxed to be continuous; in particular, note that variables λ, π and w are

defined as continuous variables. In the next section, we will show that defining y to be

binary suffices to maintain the validity of the formulation and that the λ, π and w variables

will take their correct values when y is binary, allowing us to safely relax these variables.

Finally, we note that constraints (3.2d) and (3.2e) can be written in the independent

branching form [87, 49]. Independent branching scheme is a modeling approach for disjunc-

tive constraints based on a representation of these constraints as a series of choices between

several alternatives. This way of modeling disjunctive constraints result in small and strong

formulations. In particular, the formulation of a pairwise independent branching is known

to be ideal [86, 87]. In problem (3.2), the split conditions for each split can be expressed

using the independent branching scheme in the following way. Let ỹLs,m and ỹRs,m be de-

cision variables which take the value 1 if observation m goes to left and right from split

s, respectively, and 0 otherwise. We also define a decision variable ỹNs,m which takes the

value 1 if observation m does not arrive split s, and 0 otherwise. Observe that, this implies

ỹLs,m =
∑

`∈left(s) ym,` and ỹRs,m =
∑

`∈right(s) ym,`. We can now add constraints that define the

new decision variables and rewrite constraints (3.2d) and (3.2e) for each split in the following
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way:

d∑
i=1

∑
j:j<τi,m

λs,i,j ≤ 1− ỹLs,m, ∀m ∈ [n], (3.3a)

d∑
i=1

∑
j:j≥τi,m

λs,i,j ≤ 1− ỹRs,m, ∀m ∈ [n], (3.3b)

ỹLs,m + ỹRs,m + ỹNs,m = 1, ∀m ∈ [n], (3.3c)

ỹLs,m, ỹ
R
s,m, ỹ

N
s,m ∈ {0, 1}, ∀m ∈ [n]. (3.3d)

If the split conditions are established as we described above, constraint system (3.3) along

with constraint (3.2c) are in the form of an independent branching scheme for each split.

Specifically, the constraints construct a pairwise independent branching scheme for the root

split and 3-way independent branching scheme for the following splits. The advantage of

independent branching scheme is that it is able to fix a set of components of λ to zero

independent of the previous branching decisions and may simplify branching rules in the

branch-and-bound tree [49]. It therefore has the potential to improve the performance of

MIP solvers. However, despite its computational advantages, a formulation with constraints

(3.3) has more decision variables than formulation (3.2). We thus retain formulation (3.2)

in the remaining of the paper.

3.2.3 Structural Properties

In this section, we discuss several structural properties of formulation (3.2). In particular,

formulation (3.2) has a number of decision variables that are originally defined as binary

variables, but actually can be safely relaxed. Our first result establishes that this relaxation

is without any loss of validity to the formulation.

Proposition 3 There exists an optimal solution (y,λ,w,π) of problem (3.2) such that λ,

w and π are all binary.

The proof (see Section B.1.1 of the ecompanion) is divided in two parts. In the first part,
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we show that there exists an optimal solution with w and π being binary, which uses the fact

that when y is fixed, problem (3.2) can be divided into |leaves| independent optimization

problems over w` and π` for which an optimal solution involves setting exactly one π`,a to

1 and the rest to zero, which forces wm,`,a to be either 0 or 1. In the second part of the

proof, we show that when y is fixed, the set of feasible λ is a polyhedron defined by a totally

unimodular constraint matrix. Thus, when y is binary, there exists a feasible λ that is an

extreme point and therefore also binary.

We note here that our formulation enforces y to be binary and allows λ to be continuous.

Alternatively, one can consider allowing y to be continuous and λ to be binary. Our next

result, Proposition 4, establishes that whenever λ is binary, the constraints of the formulation

force the y variables to their correct binary values.

Proposition 4 Let λ ∈ {0, 1}splits×[d]×{0,...,Ji} be a binary vector that satisfies constraint (3.2c).

Consider the split variable index vector v and the split point vector θ defined as

v(s) =
d∑
i=1

i ·

[
Ji∑
j=0

λs,i,j

]
, ∀s ∈ splits,

θ(s) =
d∑
i=1

Ji∑
j=0

ωi,jλs,i,j, ∀s ∈ splits.

Let `∗m = `(Xm; T ,v,θ) be the leaf that observation m is mapped to according to (T ,v,θ).

Let y be defined as

ym,` =


1 if ` = `∗m,

0 otherwise.

Then, y is the only solution that satisfies constraints (3.2b), (3.2d) and (3.2e).

The proof of Proposition 4 follows similarly to the proof of Proposition 4 of [64]. An imme-

diate consequence of Proposition 4 is the following corollary.
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Corollary 1 Consider the following alternate form of problem (3.2) where λ is constrained

to be binary, and y is relaxed:

maximize
y,λ,w,π

n∑
m=1

∑
`∈leaves

∑
a∈A

cm,awm,`,a (3.4a)

subject to (3.2b)− (3.2h)

ym,` ≥ 0, ∀m ∈ [n], ` ∈ leaves, (3.4b)

π`,a ≥ 0, ∀` ∈ leaves, a ∈ A, (3.4c)

wm,`,a ≥ 0, ∀m ∈ [n], ` ∈ leaves, a ∈ A (3.4d)

λs,i,j ∈ {0, 1}, ∀s ∈ splits, i ∈ [d], j ∈ {0, . . . , Ji}. (3.4e)

There exists an optimal solution (y,λ,w,π) of problem (3.4) such that y, λ, w and π are

all binary.

The value of this corollary is that it furnishes us with two different ways of relaxing our

optimization problem. The first approach is to relax all of the variables except for y, as done

in problem (3.2). The second approach is to relax all of the variables except for λ, as done in

problem (3.4). These two approaches can be advantageous in different settings. For example,

for data sets where there is a large number of observations but the number of unique split

points across all of the features is small, it may be advantageous to use problem (3.4) as

there will be fewer λs,i,j variables than ym,` variables to branch on when solving the problem

using branch-and-bound. Similarly, when there is a small number of observations but a large

number of features, it is more advantageous to use problem (3.2) as there will be fewer ym,`

variables than λs,i,j variables.

3.3 Comparison to Bertsimas and Dunn [16] Formulation

In this section, we compare our formulation to the precedent formulation for decision tree in

[16].
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3.3.1 Bertsimas and Dunn [16] Formulation

We begin by defining the Bertsimas and Dunn [16] formulation. Let leaves and splits be

defined in the same way as in our formulation and A be the finite set of actions. For a node

t ∈ leaves∪splits, let p(t) denote the parent node of node t. Let AL(t) and AR(t) denote the

set of ancestors of t whose left and right branches have been followed on the path from the

root node to node t, respectively. We define Nmin as the minimum number of observations

that should be mapped to any leaf. To penalize the incorrect classifications, for all m ∈ [n]

and a ∈ A, the parameter Ȳm,a is defined as follows:

Ȳm,a =


+1 if Y m = a,

−1 otherwise.

We have the following decision variables. Let ds be a binary decision variable, which is

1 if node s applies a split and 0 otherwise. Let α` be a binary decision variable, which is 1

if leaf ` contains any points and 0 otherwise. Let fs,i be a binary decision variable, which

is 1 if feature i is assigned to split s and 0 otherwise. Let bs be the decision variable that

denotes the value of the split variable assigned to split s. We define Na,` as the number of

points with action a in leaf ` and N̄` as the total number of points assigned to leaf `. Let

M` denote the number of points misclassified. The binary decision variables ym,` and π`,a

are defined in the same way as our formulation.

Note that, the split rule in Bertsimas and Dunn [16] formulation is of the form Xi < θs,

where i is the variable assigned to split s, whereas in our formulation, the split rule is of

the form Xi ≤ θs. Since the difference in the definitions does not affect the way models

work, we modify the Bertsimas and Dunn [16] model to conform with the split rule in our

formulation, in order to facilitate the comparison between the models. In addition, the paper

of Bertsimas and Dunn [16] assumes that all of the features are normalized to lie between 0

and 1; we shall make the same assumption.
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The MIO formulation is as follows:

minimize
y,π,M,N̄,N,f,b

∑
`∈leaves

M` (3.5a)

subject to M` ≥ N̄` −Na,` − n(1− π`,a), ∀a ∈ A, ` ∈ leaves, (3.5b)

M` ≤ N̄` −Na,` + nπ`,a, ∀a ∈ A, ` ∈ leaves, (3.5c)

M` ≥ 0, ∀` ∈ leaves, (3.5d)

Na,` =
1

2

n∑
m=1

(1 + Ȳm,a)ym,`, ∀a ∈ A, ` ∈ leaves, (3.5e)

N̄` =
n∑

m=1

ym,`, ∀` ∈ leaves, (3.5f)

d∑
i=1

fs,iX
m
i ≥ bs − 1 + (1 + ε)ym,`, ∀m ∈ [n], ` ∈ leaves, s ∈ AR(`), (3.5g)

d∑
i=1

fs,iX
m
i ≤ bs + 1− ym,`, ∀m ∈ [n], ` ∈ leaves, s ∈ AL(`), (3.5h)

∑
`∈leaves

ym,` = 1, ∀m ∈ [n], (3.5i)

d∑
i=1

fs,i = 1, ∀s ∈ splits (3.5j)

0 ≤ bs ≤ 1, ∀s ∈ splits, (3.5k)

fs,i ∈ {0, 1}, ∀s ∈ splits, i ∈ [d], (3.5l)

ym,` ∈ {0, 1}, ∀m ∈ [n], ` ∈ leaves, (3.5m)

π`,a ∈ {0, 1}, ∀` ∈ leaves, a ∈ A. (3.5n)

In this formulation, constraints (3.5b)-(3.5d) characterizes the number of observations

misclassified in each leaf. Constraint (3.5e) finds the number of number of points with ac-

tion a in leaf ` for all a ∈ A and ` ∈ leaves. Constraint (3.5f) finds the total number of

observations assigned to each leaf. Constraints (3.5g) and (3.5h) establish the split condi-

tions. Constraint (3.5i) ensures each observation is mapped to exactly one leaf. Constraint

(3.5j) ensures exactly one variable is assigned to a split. Constraint (3.5k) ensures that split
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value for a node is 0 if that node does not apply a split. Constraints (3.5l)-(3.5n) defines the

binary decision variables.

A few comments are in order. First, the key difference between formulation (3.5) and

our formulation (3.2) is how the splits are modeled. In particular, in problem (3.5), the

splits are modeled using continuous variables to represent the continuous split point and

big-M constraints (see constraints (3.5g) and (3.5h)). This is strikingly different to our for-

mulation (3.2), which models split points in a discrete fashion. This modeling choice can

potentially lead to a weaker formulation; as we will show in Section 3.3.2, our formula-

tion (3.2) is at least as strong as formulation (3.5). Having said this, formulation (3.5) has

the advantage that it is a smaller formulation than ours: in our formulation, the number of

λs,i,j variables needed to model the choice of split point for split s effectively grows with the

number of observations, whereas in formulation (3.5), there is only one continuous variable

bs needed to model the choice of split point. For some instances, it is possible that the

reduced size of the formulation compensates for the loss of tightness by allowing the nodes

in the branch-and-bound tree to be solved more quickly, and in such cases, it is possible

that formulation (3.5) can be solved more quickly than formulation (3.2). In our numeri-

cal experiments with real classification data sets in Section 3.5, we will see that in general,

our formulation (3.2) performs better in terms of solution time and optimality gap than

formulation (3.5). Besides the advantage of a smaller formulation, formulation (3.5) also

has the advantage that it can be modified relatively easily to allow for oblique/hyperplane

splits of the form “Is gTX ≤ θ?”, where g ∈ Rd, which are more general than the univari-

ate/rectilinear splits of the form “Is Xi ≤ θ?” used by our formulation. It does not appear

to be straightforward to adapt our formulation (3.2) to allow for oblique splits.

Second, as noted above, the formulation (3.5) differs from the precise formulation given

in [16] slightly. There are three points of difference:

1. Optimization over the tree topology. The first difference is that the formulation

of Bertsimas and Dunn [16] incorporates an additional collection of decision variables
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which model whether or not a split node is included in the tree topology or not.

Formally, this is modeled by adding a binary decision variable ds which is 1 if split s is

used in the tree and 0 if not, and replacing constraints (3.5j)-(3.5k) with the following

three constraints:

p∑
i=1

fs,i = ds, ∀s ∈ splits (3.6)

0 ≤ bs ≤ ds, ∀s ∈ splits, (3.7)

ds ≤ dp(s), ∀s ∈ splits \ {1}, (3.8)

In addition, the original formulation of Bertsimas and Dunn [16] also includes a term

in the objective function to penalize the number of splits used in the tree, in the spirit

of complexity control in the original CART algorithm [27].

We omit these variables and the associated constraints to align the formulation with

our decision tree problem (3.1) and our MIO formulation (3.2). It is straightforward

to extend our formulation (3.2) to that setting by adding the binary decision variable

ds for each s ∈ splits, replacing constraint (3.2c) with

d∑
i=1

Ji∑
j=1

λs,i,j = ds, ∀ s ∈ splits,

and adding the constraint (3.8).

2. Minimum number of observations required in a leaf. The second difference is

that the Bertsimas and Dunn [16] formulation includes an additional constraint that

requires that the number of observations mapped to a leaf, if it is included in the

topology, must be at least some number Nmin. Formally, this is modeled by adding a

binary decision variable α` which is 1 if leaf ` has at least Nmin observations mapped

to it and 0 if there are no observations mapped to it, and then adding the following
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family of constraints:

ym,` ≤ α`, ∀ ` ∈ leaves, m ∈ [n], (3.9)

n∑
m=1

ym,` ≥ Nminα`, ∀ ` ∈ leaves (3.10)

As with the variables and constraints for modeling the choice of topology, we omit

these variables and constraints to keep the formulation consistent with our problem.

Third, as noted above, the Bertsimas and Dunn [16] formulation, and our alternate

version of this formulation (problem (3.5)) apply to binary and multiclass classification

problems where all misclassifications are weighted the same. In this setting, the set of

actions A corresponds to a set of labels or classes, and the weights cm,a in problem (3.1) are

defined as

cm,a =


1 if Y m

a = a,

0 otherwise.

(3.11)

Formulation (3.5) and the original formulation of Bertsimas and Dunn [16] does not apply

directly to more general choices of c = (cm,a)m∈[n],a∈A. In our theoretical comparison of

formulation (3.5), we thus focus on the case when c corresponds to a multiclass classification

problem.

3.3.2 Theoretical Comparison of Formulations

We now theoretically compare our formulation with the formulation of Bertsimas and Dunn

[16]. For our formulation, we let FAM denote the feasible region of the LP relaxation of prob-

lem (3.2). Similarly, we let FBD denote the feasible regions of LP relaxations of Bertsimas

and Dunn [16].

A challenge that arises when trying to compare the polyhedra FAM and FBD is that these

polyhedra are not defined in terms of a common set of decision variables; for example, while

both our formulation and the Bertsimas and Dunn [16] formulation include the variables y
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(assignment of observations to leaves) and π (assignment of actions to leaves), the Bertsimas

and Dunn [16] formulation includes the variable b (a real valued vector that represents the

collection of chosen split points) which does not appear in our formulation, whereas our

formulation includes the variable λ which does not appear in the Bertsimas and Dunn [16]

formulation. To circumvent this difficulty, we will consider several auxiliary polyhedra that

embed each solution in FAM in a higher dimensional space that includes the variables of

each of the other polyhedra that are absent in our formulation.

For the Bertsimas and Dunn [16] formulation, we define the polyhedron F ′AM as follows:

F ′AM =


(λ,y,w,π,M, N̄,N, f,b)

(λ,y,w,π) ∈ FAM ;

(M, N̄) ∈M(y,π);

N ∈ N (y);

f ∈ F(λ);

b ∈ B(λ)


,

where

M(y,π) =

{
(M, N̄) ∈ R|leaves|+ × R|leaves|+ |

N̄` =
n∑

m=1

ym,`,M` = N̄` −
n∑

m=1

∑
a∈A

cm,a min{ym,`, π`,a}, ` ∈ leaves

}
,

N (y) =

{
N ∈ R|A|×|leaves|+ | Na,` =

1

2

n∑
m=1

(1 + Ȳm,a)ym,`, a ∈ A, ` ∈ leaves

}
,

F(λ) =

f ∈ [0, 1]|splits|×d | fs,i =
∑
j∈J [i]

λs,i,j, i ∈ [d], s ∈ splits

 ,

B(λ) =

b ∈ R|splits|+ | bs = min
m∈[n]

∑
i∈[d]

∑
j∈J [i]

λs,i,jX
m
i −

∑
i∈[d]

∑
j:j<τi,m

λs,i,j

+ 1

 , s ∈ splits

 ,

are the feasible sets of variables M, N̄,N,α, f and b, respectively. Note that for the poly-

hedron F ′AM , it is straightforward to see that projecting it on the original variables of

our formulation recovers the feasible region of the relaxation of our formulation, that is,

proj(y,λ,π,w)(F ′AM) = FAM .
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Our first main result is that our formulation is at least as strong as formulation (3.5).

Theorem 5 proj(M,N̄,N,f,b,π,y)F ′AM ⊆ FBD.

In addition to Theorem 5 (see Appendix B.1.2 for the proof), we can further compare our

formulation with formulation (3.5) in two special cases. The first special case that we will

consider is the case when there is only one observation, that is, n = 1. The following propo-

sition (see Section B.1.3 of the ecompanion for the proof) asserts that our formulation (3.2)

is integral in this case.

Proposition 5 When n = 1, FAM is integral, that is, every extreme point (y,λ,π,w) of

FAM satisfies y ∈ {0, 1}[n]×leaves.

In contrast, this property does not hold for the Bertsimas and Dunn [16] formulations.

Proposition 6 When n = 1, FBD is not integral in general.

We establish Proposition 6 by providing an example of a specific instance with a single

observation where the Bertsimas and Dunn [16] formulation has a non-integral extreme

point.

The second special case that we consider is when |splits| = 1 (i.e., the decision tree

consists of a single split) and the assignment of actions to leaves π is fixed a priori. For this

special case, we define the following restricted versions of FAM and FBD where π̄ is a fixed

assignment of actions to leaves (a binary vector satisfying
∑

a∈A π̄`,a = 1):

FAM(π̄) = {(y,λ,π,w) ∈ FAM | π = π̄}, (3.12)

FBD(π̄) = {(M, N̄,N, f,b,π,y) ∈ FBD | π = π̄}. (3.13)

In this special case, we show that for any π̄, the restricted polyhedron FAM(π̄) is integral

whenever there is a single split, for any number of observations.
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Proposition 7 Suppose that the tree is such that |splits| = 1 and let π̄ be such that π̄`,a ∈

{0, 1} for all ` and a, and
∑

a∈A π̄`,a = 1. Then FAM(π̄) is integral.

The proof of Theorem 7 follows from the pairwise independent branching property of

the root split (see Section B.1.5 of the ecompanion). In contrast to our formulation, this

property does not apply to the Bertsimas and Dunn [16] formulation.

Proposition 8 Suppose that the tree is such that |splits| = 1 and let π̄ be such that π̄`,a ∈

{0, 1} for all ` and a, and
∑

a∈A π̄`,a = 1. Then FBD(π̄) is not integral in general.

3.4 Constraint Generation-Based Solution Method

In this section, we propose an exact solution method for formulation (3.2) based on constraint

generation.

Recall from Section 3.2.3 that the role of continuous λ variables in formulation (3.2) is

to enforce feasibility conditions on the y variables, and thus on the w variables, to ensure

the split rules in the decision tree are satisfied. Moreover, the λ variables do not appear

in the objective function and only become relevant when the ym,` variable for the leaf ` to

which observation m is mapped to takes the value of 1. To demonstrate this, consider a

given vector y such that ym,` = 1 for some m ∈ [n] and leaf ` ∈ leaves. For a split s

that is not an ancestor of `, constraints (3.2d) and (3.2e) will be vacuous, since they give∑d
i=1

∑
j:j<τi,m

λs,i,j ≤ 1 and
∑d

i=1

∑
j:j≥τi,m λs,i,j ≤ 1, respectively, which are already implied

by constraint (3.2c). Similarly, for the splits which are ancestors of leaf `, if we define left

ancestors as splits which direct observation m to the left and right ancestors as splits which

direct observation m to the right, constraints (3.2d) are not needed for right ancestors and

constraints (3.2e) are not needed for left ancestors. This suggests that as one solves problem

(3.2) using branch-and-bound, one will be encumbered by many vacuous constraints.

The purpose of our constraint generation approach is to avoid adding constraints (3.2d)
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and (3.2e) to the model unless they are needed. For this reason, instead of solving formulation

(3.2) with constraints (3.2d) and (3.2e) for all splits s ∈ splits and observations m ∈ [n],

we solve a relaxation of it by adding constraints (3.2d) and (3.2e) for a subset of splits

and observations. This gives us an upper bound which may not be feasible to the original

problem. We then introduce constraints (3.2d) and (3.2e) for splits and observations that

violate them in the current solution and repeat this procedure until we find a solution which

satisfies all the excluded constraints (3.2d) and (3.2e). By iteratively solving a relaxation of

formulation (3.2) and only adding violated constraints, we circumvent including constraints

which are not necessary to find the optimal solution.

The procedure we described above requires finding violated constraints for a given y in

each step of the algorithm and adding them into the model. One way of doing this is to

check whether a given solution satisfies constraints (3.2d) and (3.2e) for all s ∈ splits and

m ∈ [n] and whenever a violated constraint is found, include it to the formulation and solve

it again. While this is straightforward, this approach does not work efficiently in constraint

generation for the following reason. Let (λ′,y′) be a candidate solution to formulation

(3.2) that satisfies constraints (3.2b), (3.2c) and constraints (3.2f)-(3.2l). According to the

scheme we just described, assume that we check the feasibility of each split and observation

and find constraint (3.2d) is violated for some s′ ∈ splits and m′ ∈ [n] without loss of

generality. We then add constraint (3.2d) to the formulation for split s′ and observation

m′ and solve it again. This may result in a candidate solution (λ′′,y′′) such that y′ = y′′

and
∑

j∈J [i′] |λ′s,i′,j − λ′′s,i′,j| = 2 for some i′ ∈ [d]. In words, this implies that new candidate

solution differs from the previous one only in the split value assigned to split s in feature i′

so that the assignment of observations to leaves found in the previous iteration, y′, is still

feasible. Alternatively, to avoid this issue, we can find all violated constraints for a candidate

solution and solve the formulation after including all of them. Observe that, in either case,

moving to another candidate solution (λ′′,y′′) such that y′′ 6= y′ may require adding a large

number of constraints with this approach.
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Algorithm 1 provides the pseudocode of a more efficient procedure. Since constraints

(3.2d) and (3.2e) are written for each split, we can verify the feasibility of each split inde-

pendently. For a given split s, we find the feature that has the highest value of
∑

j∈J [i] λs,i,j

and order the observations that are assigned to the left and to the right of that split in

their values in the chosen feature. We then compare the highest value on the left (τi,m1) and

lowest value on the right (τi,m2). If the highest value on the left is greater than or equal to

the lowest value on the right (τi,m1 ≥ τi,m2), the current solution is infeasible and we need

to add the violated constraints into the model for observations m1 and m2 for split s. The

violation of the split rule can occur in two ways: Either observation m1 violates constraint

(3.2d) or observation m2 violates constraint (3.2e) which will force it to the left of split s.

Therefore, for split s, we include constraint (3.2d) for observation m1, constraint (3.2e) for

observation m2 and solve the formulation again. We repeat this procedure until we reach

a candidate solution that satisfies constraints (3.2d) and (3.2e) for all splits. The following

proposition demonstrates why this constraint generation scheme is more efficient than the

one discussed before.

Proposition 9 Let (λ,y) be a candidate solution to formulation (3.2) which satisfies con-

straints (3.2b), (3.2c) and constraints (3.2f)-(3.2l). For a split s, assume Algorithm 1 returns

constraint (3.2d) for an observation m1 and constraint (3.2e) for an observation m2. Solving

the formulation with these constraints added results in a candidate solution (λ′,y′) such that

at least one of the following holds.

(a) y′ 6= y,

(b) The feature assigned to split s is different, i.e.,
∑

j∈J [i′] |λs,i′,j − λ′s,i′,j| = 1 for some

i′ ∈ [d].

Proposition 9 (see Section B.1.7 in the ecompanion for proof) guarantees that adding

constraints according to the procedure described in Algorithm 1 produces a new candidate
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solution that differ from the previous one either in the assignment of observations to the

leaves found in the previous iteration, y, or in the feature assigned to split s. This implies

that in a data set that contains large number of unique values, a constraint generation

procedure based on Algorithm 1 can find the optimal solution faster than the approach

discussed before, since it avoids considering solutions that only differ in split value.

Algorithm 1 Constraint generation approach

Require: Candidate solution (λ,y) satisfying constraints (3.2b), (3.2c), (3.2f)-(3.2k), a split

s ∈ splits

Initialize V ← ∅

Set i← arg maxi∈[d]

∑
j∈J [i] λs,i,j

Set NL ← {m ∈ [n] | ym,` = 1 for ` ∈ left(s)}

Set NR ← {m ∈ [n] | ym,` = 1 for ` ∈ right(s)}

Set m1 ← arg maxm∈NL
τi,m

Set m2 ← arg minm∈NR
τi,m

if τi,m1 ≥ τi,m2 then

Update V ← V ∪ {Constraint (3.2d) for observation m1 and split s}

Update V ← V ∪ {Constraint (3.2e) for observation m2 and split s}

return V

3.5 Computational Experiments

In this section, we provide a comparison between the solution times of MIO and the cos-

traint generation-based solution method we proposed. To test the solution methods, we use

a collection of data sets chosen from the UCI machine learning repository [35]. All of our

numerical experiments are implemented in the Julia technical computing language, version

1.5 [23] using the JuMP package (Julia for Mathematical Programming; see [36]), and exe-

cuted on a 2017 Apple MacBook Pro with a 3.1GHz Intel i7 quad core CPU and 16GB of
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memory.

In decision tree problem, the data sets with larger number of unique values in each feature

is harder to solve rather than binary-valued data sets with large number of observations.

Therefore, we perform our experiments on data sets which mostly consist of continuous

values and have large number of unique numbers in each feature. Table 3.1 provides a

summary of the data sets used in this experiment and their characteristics.

For each data set, we generate a collection of problem instances as follows. We run CART

as implemented in the rpart [80] package in R [71] on the complete data set, using default

parameters. We then truncate the tree topology to a depth D and solve problem 3.1 with

the truncated topology, where we set the rewards cm,a to correspond to binary or multiclass

classification (i.e., for each observation m, if the true label is a′, then we set cm,a = 0 if a 6= a′

and we set cm,a′ = 1). Thus, the decision tree learning problem corresponds to maximizing

the number of correctly classified observations. This resulted in a collection of 75 problem

instances.

For each problem instance, we test five different approaches: BD, which is the (modified)

Bertsimas and Dunn [16] model (formulation (3.5)); AM, which is our basic formulation (3.2);

AM+CG, which is our basic formulation (3.2) combined with our constraint generation proce-

dure (Algorithm 1) in Section 3.4; AM2, which is our incremental encoding formulation 3.4;

and AM2+CG, which is our incremental encoding formulation combined with our constraint

generation procedure (Algorithm 1). We execute each approach with a time limit of one

hour. For each approach, we measure the solution time in seconds, as well as the optimal-

ity gap of the solution returned by the formulation. The optimality gap G is defined as

G = 100%× (ZUB − ZLB)/ZUB, where ZUB is the tightest upper bound available at termi-

nation, while ZLB is the tightest lower bound available at termination (which corresponds

to an integer solution).

Tables 3.2 and 3.3 report the solution times of the five approaches across the different

problem instances, while Tables 3.4 and 3.5 report the optimality gaps of the five approaches
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Data set n d |A|
∑d

i=1 Ji/d maxi Ji

Acute-inflammations-1 120 6 2 9.0 44

Acute-inflammations-2 120 6 2 9.0 44

Banknote-authentication 1372 4 2 1255.0 1338

Blood-transfusion 748 4 2 43.8 78

Breast-cancer-coimbra 116 9 2 100.0 116

Breast-cancer-original 683 9 2 9.9 10

Climate-model-crashes 540 18 2 540.0 540

Connectionist-bench-sonar 208 60 2 187.6 208

Contraceptive-method-choice 1473 12 3 6.2 34

Dermatology 358 34 6 5.6 60

Echocardiogram 62 6 2 35.2 56

Ecoli 336 7 8 51.9 82

Haberman-survival 306 3 2 30.7 49

HCV-data 589 12 5 232.0 409

Hepatitis 79 19 2 14.3 59

Indian-liver-patient 579 10 2 102.5 262

Iris 150 4 3 30.8 43

Mammographic-mass 830 12 2 8.3 72

Parkinsons 195 22 2 106.9 194

Seeds 210 7 3 182.3 207

SPECTF 267 44 2 42.9 61

Statlog-Australian-credit 690 14 2 83.4 350

Statlog-German-credit 1000 24 2 11.4 125

Statlog-heart 270 20 2 19.7 144

Thyroid-disease-ann-thyroid 3772 21 3 56.3 324

Thyroid-disease-new-thyroid 215 5 3 66.8 100

Vertebral-column-2C 310 6 2 291.2 305

Vertebral-column-3C 310 6 3 291.2 305

Wall-following-robot-2 5456 2 4 1262.0 1687

Wall-following-robot-4 5456 4 4 1503.0 1779

Wine 178 13 3 98.2 133

Yeast 1484 8 10 51.5 81

Table 3.1: Summary of data sets used in the numerical experiments.
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across the problem instances.

From these tables, we obtain several insights into the behavior of the different approaches.

First, our approaches compare quite favorably to BD. In those problem instances where BD

terminates with an optimal solution in under one hour, our approaches tend to do so as well,

but in less time. For example, for the Dermatology data set with D = 3, BD requires over

2200 seconds (almost 40 minutes), while our approaches require between roughly two and

four minutes. In those instances when BD exhaust the time limit, the optimality gap of the

resulting solution is comparable to those obtained by our approaches. In some cases, the

optimality gap can be appreciably lower; for example, for Blood-transfusion with D = 4,

the optimality gap of BD is 21.3%, whereas for our approaches it can be as low as 7.1% (

AM2).

Second, comparing our incremental encoding formulation AM2 to our basic formulation

AM, we can see these two approaches are comparable. On average, the basic formula-

tion AM obtains a lower average optimality gap over the 75 problem instances than AM2

(17.6% vs. 19.9%). In some instances, AM2 solves more quickly than AM (for example,

Indian-liver-patient with D = 2), whereas in others, AM solves more quickly (for exam-

ple, SPECTF with D = 2).

Lastly, comparing our AM and AM2 to their counterparts AM+CG and AM2+CG that use our

constraint generation procedure from Section 3.4, we can see that Algorithm 1 in general

helps to reduce the solution time of the formulations.

3.6 Conclusion

In this paper, we develop a new mixed-integer optimization model for decision tree learning.

The proposed model is general in the sense that it can be used for both classification and

policy learning purposes. Unlike the existing models in the literature, our formulation does

not involve big-M constraints, and thus is more efficient for solvers. We provide several
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———– Solution time (s) ———

Data set D |leaves| BD AM AM-CG AM2 AM2+CG

Acute-inflammations-1 2 3 1.1 1.0 3.4 0.6 2.1

Acute-inflammations-1 3 4 0.5 0.3 2.7 0.2 2.5

Acute-inflammations-2 2 3 0.3 0.1 2.7 0.0 1.9

Banknote-authentication 2 4 3600.1 3600.8 3600.6 3600.0 2781.0

Banknote-authentication 3 7 3600.4 3600.9 3600.4 3600.0 3600.1

Banknote-authentication 4 8 3600.0 3600.8 3600.6 3600.0 3600.0

Blood-transfusion 2 3 22.1 47.8 157.2 40.0 19.0

Blood-transfusion 3 4 2455.2 215.7 1106.0 164.4 294.4

Blood-transfusion 4 6 3600.0 3600.0 3600.0 3600.0 3600.0

Breast-cancer-coimbra 2 4 814.0 138.2 514.7 239.0 411.4

Breast-cancer-coimbra 3 6 3600.0 1749.1 3600.0 3600.0 3600.0

Breast-cancer-original 2 4 571.0 89.8 320.6 84.1 116.7

Breast-cancer-original 3 6 3600.0 867.2 3600.0 1129.7 3600.0

Breast-cancer-original 4 7 3600.0 2387.0 3600.0 3600.0 3600.0

Climate-model-crashes 2 4 3600.0 3600.5 3600.9 3600.0 3600.0

Climate-model-crashes 3 6 3600.0 3600.7 3601.7 3600.0 3600.0

Climate-model-crashes 4 7 3600.1 3600.9 3600.8 3600.0 3600.0

Connectionist-bench-sonar 2 4 3600.0 3600.3 3600.9 3600.0 3600.5

Connectionist-bench-sonar 3 7 3600.0 3600.4 3600.1 3600.0 3601.2

Contraceptive-method-choice 2 3 2156.2 532.4 2231.5 300.8 180.1

Contraceptive-method-choice 3 5 3600.1 3600.6 3600.0 3600.5 3600.0

Contraceptive-method-choice 4 7 3600.0 3600.1 3600.0 3600.0 3600.1

Dermatology 2 3 207.4 41.6 39.3 40.3 33.7

Dermatology 3 4 2219.0 119.5 234.5 154.6 126.6

Dermatology 4 5 3600.0 265.0 3600.0 380.5 966.7

Echocardiogram 2 3 4.7 1.1 4.1 0.9 2.8

Ecoli 2 4 2358.1 78.4 194.1 91.9 32.6

Ecoli 3 6 3600.0 1085.1 3600.0 2394.7 1342.8

Ecoli 4 7 3600.0 3600.0 3600.0 3600.0 3600.0

Haberman-survival 2 4 247.9 90.6 73.5 22.5 55.1

Haberman-survival 3 6 3600.0 1392.7 3600.0 1586.8 1263.3

Haberman-survival 4 8 3600.0 3600.0 3600.0 3600.0 3600.0

HCV-data 2 4 3600.0 1911.0 2306.9 2434.7 3600.0

HCV-data 3 6 3600.1 3607.1 3600.0 3600.0 3600.0

Hepatitis 2 3 21.8 2.7 6.2 3.5 7.4

Indian-liver-patient 2 3 3198.8 718.9 1385.7 477.3 562.8

Indian-liver-patient 3 5 3600.1 3600.3 3600.3 3600.0 3600.0

Indian-liver-patient 4 6 3600.0 3600.1 3600.3 3600.0 3600.0

Iris 2 3 12.4 2.8 3.3 0.9 2.6

Table 3.2: Solution time results for UCI data set (part 1 of 2).
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———– Solution time (s) ———

Data set D |leaves| BD AM AM-CG AM2 AM2+CG

Mammographic-mass 2 3 209.8 35.9 196.3 50.4 25.1

Mammographic-mass 3 4 3600.0 134.2 944.4 109.0 722.7

Parkinsons 2 4 3600.0 824.7 2496.1 2683.1 3600.0

Parkinsons 3 5 3600.0 1669.4 3600.0 3600.0 3600.2

Seeds 2 3 26.1 14.8 8.8 16.3 11.5

Seeds 3 4 414.3 166.2 477.0 105.0 109.1

SPECTF 2 3 3600.0 337.7 2515.7 1014.3 1983.6

SPECTF 3 5 3600.0 3600.0 3600.2 3600.0 3600.0

SPECTF 4 6 3600.0 3600.0 3600.1 3600.1 3600.0

Statlog-Australian-credit 2 3 1466.2 412.1 1389.8 371.4 116.4

Statlog-Australian-credit 3 4 3600.0 2193.9 3600.2 2262.3 3600.1

Statlog-Australian-credit 4 5 3600.0 3600.1 3600.7 3600.0 3600.0

Statlog-German-credit 2 3 3600.0 1050.4 2048.7 605.7 408.3

Statlog-German-credit 3 5 3600.0 3600.0 3600.1 3600.0 3600.0

Statlog-German-credit 4 7 3600.1 3600.0 3600.1 3600.0 3600.0

Statlog-heart 2 4 3600.0 237.9 752.6 368.4 865.7

Statlog-heart 3 6 3600.0 3600.1 3600.0 3600.0 3600.0

Statlog-heart 4 7 3600.0 3600.0 3600.0 3600.0 3600.0

Thyroid-disease-ann-thyroid 2 3 3600.0 3600.1 1503.9 3600.1 1096.7

Thyroid-disease-ann-thyroid 3 4 3600.1 3600.2 3675.4 3600.0 3600.0

Thyroid-disease-ann-thyroid 4 5 3600.0 3600.5 3600.2 3600.0 3600.2

Thyroid-disease-new-thyroid 2 3 19.0 8.3 6.6 7.8 4.1

Vertebral-column-2C 2 3 151.5 173.2 156.4 82.1 55.5

Vertebral-column-2C 3 4 3600.0 3600.9 2666.9 3600.0 720.1

Vertebral-column-2C 4 5 3600.0 3600.3 3600.1 3600.0 3600.4

Vertebral-column-3C 2 3 125.9 154.3 127.7 70.8 38.2

Vertebral-column-3C 3 4 2763.8 379.2 920.5 361.2 239.2

Vertebral-column-3C 4 5 3600.0 1348.3 3600.0 3600.0 2713.6

Wall-following-robot-2 2 3 847.7 1038.4 51.1 888.4 129.8

Wall-following-robot-2 3 4 857.8 835.7 61.6 3600.0 121.9

Wine 2 4 793.4 90.6 300.9 247.7 128.2

Wine 3 5 2626.0 492.3 1783.2 1739.9 2421.4

Yeast 2 4 3600.0 3600.1 3600.1 3600.0 3600.4

Yeast 3 7 3600.0 3600.1 3600.0 3600.0 3600.1

Yeast 4 8 3600.1 3600.2 3600.0 3600.0 3600.1

Table 3.3: Solution time results for UCI data set (part 2 of 2).
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————– Gap (%) ————

Data set D |leaves| BD AM AM-CG AM2 AM2+CG

Acute-inflammations-1 2 3 0.0 0.0 0.0 0.0 0.0

Acute-inflammations-1 3 4 0.0 0.0 0.0 0.0 0.0

Acute-inflammations-2 2 3 0.0 0.0 0.0 0.0 0.0

Banknote-authentication 2 4 7.3 16.5 – 7.3 0.0

Banknote-authentication 3 7 6.9 35.5 – 39.2 5.8

Banknote-authentication 4 8 6.9 27.8 – 26.1 15.5

Blood-transfusion 2 3 0.0 0.0 0.0 0.0 0.0

Blood-transfusion 3 4 0.0 0.0 0.0 0.0 0.0

Blood-transfusion 4 6 21.3 12.7 17.8 7.1 11.2

Breast-cancer-coimbra 2 4 0.0 0.0 0.0 0.0 0.0

Breast-cancer-coimbra 3 6 14.7 0.0 9.6 9.7 12.1

Breast-cancer-original 2 4 0.0 0.0 0.0 0.0 0.0

Breast-cancer-original 3 6 2.3 0.0 0.7 0.0 1.0

Breast-cancer-original 4 7 2.9 0.0 2.9 2.2 2.3

Climate-model-crashes 2 4 6.3 6.9 – 8.3 6.3

Climate-model-crashes 3 6 6.1 8.3 – 8.0 7.2

Climate-model-crashes 4 7 6.7 10.2 – 8.0 8.1

Connectionist-bench-sonar 2 4 17.8 13.7 – 24.0 22.1

Connectionist-bench-sonar 3 7 15.4 18.7 – 37.0 26.0

Contraceptive-method-choice 2 3 0.0 0.0 0.0 0.0 0.0

Contraceptive-method-choice 3 5 47.0 50.3 – 43.9 39.9

Contraceptive-method-choice 4 7 50.4 49.6 – 50.0 47.9

Dermatology 2 3 0.0 0.0 0.0 0.0 0.0

Dermatology 3 4 0.0 0.0 0.0 0.0 0.0

Dermatology 4 5 15.4 0.0 1.0 0.0 0.0

Echocardiogram 2 3 0.0 0.0 0.0 0.0 0.0

Ecoli 2 4 0.0 0.0 0.0 0.0 0.0

Ecoli 3 6 17.9 0.0 5.3 0.0 0.0

Ecoli 4 7 16.4 7.3 10.4 13.7 3.0

Haberman-survival 2 4 0.0 0.0 0.0 0.0 0.0

Haberman-survival 3 6 17.6 0.0 6.2 0.0 0.0

Haberman-survival 4 8 19.9 18.1 17.4 14.4 14.6

HCV-data 2 4 5.8 0.0 0.0 0.0 1.8

HCV-data 3 6 6.6 6.3 4.8 5.8 7.8

Hepatitis 2 3 0.0 0.0 0.0 0.0 0.0

Indian-liver-patient 2 3 0.0 0.0 0.0 0.0 0.0

Indian-liver-patient 3 5 25.4 25.9 – 25.6 25.6

Indian-liver-patient 4 6 24.9 25.7 – 25.7 25.7

Iris 2 3 0.0 0.0 0.0 0.0 0.0

Table 3.4: Optimality gap results for UCI data set (part 1 of 2).
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————– Gap (%) ————

Data set D |leaves| BD AM AM-CG AM2 AM2+CG

Mammographic-mass 2 3 0.0 0.0 0.0 0.0 0.0

Mammographic-mass 3 4 14.8 0.0 0.0 0.0 0.0

Parkinsons 2 4 7.7 0.0 0.0 0.0 8.2

Parkinsons 3 5 6.2 0.0 6.9 6.2 6.2

Seeds 2 3 0.0 0.0 0.0 0.0 0.0

Seeds 3 4 0.0 0.0 0.0 0.0 0.0

SPECTF 2 3 15.5 0.0 0.0 0.0 0.0

SPECTF 3 5 14.2 14.6 – 16.9 13.5

SPECTF 4 6 18.0 14.6 – 16.5 17.6

Statlog-Australian-credit 2 3 0.0 0.0 0.0 0.0 0.0

Statlog-Australian-credit 3 4 12.5 0.0 9.6 0.0 1.5

Statlog-Australian-credit 4 5 13.6 13.4 14.3 13.6 12.3

Statlog-German-credit 2 3 26.8 0.0 0.0 0.0 0.0

Statlog-German-credit 3 5 25.2 26.4 – 25.8 24.0

Statlog-German-credit 4 7 26.3 26.5 – 26.2 25.9

Statlog-heart 2 4 19.8 0.0 0.0 0.0 0.0

Statlog-heart 3 6 16.7 10.8 18.4 13.5 14.4

Statlog-heart 4 7 17.4 15.3 17.8 16.3 13.7

Thyroid-disease-ann-thyroid 2 3 2.1 6.9 0.0 0.9 0.0

Thyroid-disease-ann-thyroid 3 4 2.0 2.0 7.5 3.9 2.1

Thyroid-disease-ann-thyroid 4 5 1.7 3.7 7.5 5.6 7.5

Thyroid-disease-new-thyroid 2 3 0.0 0.0 0.0 0.0 0.0

Vertebral-column-2C 2 3 0.0 0.0 0.0 0.0 0.0

Vertebral-column-2C 3 4 12.4 12.5 0.0 13.5 0.0

Vertebral-column-2C 4 5 12.3 12.0 12.0 13.2 4.7

Vertebral-column-3C 2 3 0.0 0.0 0.0 0.0 0.0

Vertebral-column-3C 3 4 0.0 0.0 0.0 0.0 0.0

Vertebral-column-3C 4 5 12.6 0.0 7.3 8.4 0.0

Wall-following-robot-2 2 3 0.0 0.0 0.0 0.0 0.0

Wall-following-robot-2 3 4 0.0 0.0 0.0 6.0 0.0

Wine 2 4 0.0 0.0 0.0 0.0 0.0

Wine 3 5 0.0 0.0 0.0 0.0 0.0

Yeast 2 4 51.0 37.5 – 60.4 40.7

Yeast 3 7 57.6 65.0 – 57.9 –

Yeast 4 8 58.6 63.2 – 78.1 –

Table 3.5: Optimality gap results for UCI data set (part 2 of 2).
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theoretical results on the structure of the formulation and propose relaxation schemes for

binary variables that preserve optimality. Theoretically, we establish that our model is a

stronger formulation than the existing formulations in the literature. We further propose a

constraint generation-based large scale solution method to solve the harder instances of the

problem. We evaluate the performance of our formulation and the large scale solution method

in comparison to the Bertsimas and Dunn [16] formulation through numeric experiments

and show that our formulation outperforms the former formulation significantly in terms of

computation time. We also show that in some data sets our proposed solution method can

improve the solution time.
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CHAPTER 4

Conclusion

In this thesis we have studied how to develop machine learning methods based on optimiza-

tion for problems in business analytics. We briefly summarize our key contributions in each

chapter below.

In Chapter 2, we studied a share-of-choice product design problem which focused on

finding the product, defined by its attributes, that maximizes the market share under the

assumption that customers follow a logit model of choice. We characterized the complexity

of the logit-based share-of-choice problem by showing that even approximating this problem

is NP-Hard. We further showed that this problem is NP-Hard even in the special case with

two customer segments. Although the logit-based SOCPD has a very challenging nature

to solve, we showed that we can obtain an exact solution method by reformulating the

problem as a mixed-integer convex program. We further proposed two solution methods for

this problem. The first one is based on further reformulating the problem into a mixed-

integer conic program, which has a very developed theory of numerical algorithms to solve.

The second solution approach is a gradient-based constraint generation algorithm which

sequentially approximates the nonlinear functions in the convex formulation using their linear

approximations. The second approach transforms the problem into a mixed-integer linear

program, which we can solve by using commercial solvers available and constraint generation.

In addition to the solution approaches, we proposed some extensions and through numeric

experiments, we show how our approaches can obtain high quality solutions to large data

instances.
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In Chapter 3, we focused on decision trees, which are widely used methods in machine

learning and statistics. Decision trees have a wide range of application areas in Business

Analytics. Despite the popularity of decision trees, the predominant approach in literature

to construct a decision tree is based on heuristics. In this chapter, we proposed a mixed-

integer program which can construct optimal decision trees. We provided theoretical results

on the structure of the model and showed that it is stronger than precedent formulations

in the literature. We further developed a solution method based on constraint generation

to scale our formulation to larger problem instances. Finally, we tested our model and

large scale method on real life data instances and showed that it is more efficient than the

precedent exact methods.
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APPENDIX A

Appendix to Chapter 2

A.1 Omitted proofs

A.1.1 Proof of Theorem 1

To prove this result, we will construct a reduction from the maximum independent set

(MAX-IS) problem. In the MAX-IS problem, we are given an undirected graph G = (V,E),

where V is the set of vertices and E is the set of edges. An independent set U ⊆ V is a

set of vertices such that for any pair of vertices v, v′ ∈ U , v 6= v′, there does not exist an

edge between them, that is, (v, v′) /∈ E. The goal in the MAX-IS problem is to find an

independent set whose size is maximal. The MAX-IS problem is known to be NP-Hard to

approximate to within a factor O(n1−ε) for any ε > 0 (see [46]).

In what follows we will construct an approximation-preserving reduction that maps an

instance of the MAX-IS problem to an instance of the unconstrained logit-based SOCPD

problem. Given a graph G = (V,E), let the number of attributes n = |V |, the number of

segments K = n, and let V = {v1, . . . , vn} be an enumeration of the vertices in V . Define

the parameters pL and pU as

pL =
1

100n
,

pU = 1− 1

100
.

Observe that both pL and pU can be regarded as probabilities. Using pL, pU , define the
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parameters qL and qU as the logits corresponding to these probabilities:

qL = log
pL

1− pL
qU = log

pU
1− pU

Let the utility parameters βi,j for i ∈ [n], j ∈ {0} ∪ [n] be defined as follows:

βi,j =



qL if j = 0,

qU − qL if j = i,

qL − qU if j < i and (vi, vj) ∈ E,

0 otherwise,

Note that by construction, the highest possible value that σ(ui(a)) can attain is pU , which

occurs if ai′ = 0 and ai = 1. Otherwise, for any other a, ui(a) satisfies ui(a) ≤ qL, and so

σ(ui(a)) ≤ pL = 1/(100n).

Let the weight λk of each segment k be set to 1/n. Finally, let F : A → [0, 1] be defined

as the share of choice objective function:

F (a) ≡ 1

n

n∑
i=1

σ(ui(a)).

To establish the result we need to verify two claims.

1. Claim 1. For any independent set U ⊆ V , there exists a product a such that F (a) ≥
99

100n
|U |.

2. Claim 2. For any product a with share-of-choice given by F (a), there exists an

independent set U ⊆ V such that |U | ≥ b100n
99
F (a)c.

Proof of Claim 1. Let U ⊆ V be an independent set. Consider the product vector a =
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(a1, . . . , an) where ai = I{vi ∈ U}. For each i such that vi ∈ U , we have:

ui(a) = βi,0 +
n∑
j=1

βi,jaj

= qL +
i−1∑
j=1:

(vi,vj)∈E

(qL − qU)aj + (qU − qL)ai

= qL + 0 + (qU − qL) · 1

= qU

where the second equality follows by how the attribute utilities βi,j are defined; the third

equality follows because U is an independent set, so aj = 0 for all attributes j such that

there exists an edge between vi and vj; the fourth follows by algebra. Thus, we have:

F (a) =
1

n

n∑
i=1

exp(ui(a))

1 + exp(ui(a))

≥ 1

n
·
∑
i:vi∈U

exp(ui(a))

1 + exp(ui(a))

=
1

n
·
∑
i:vi∈U

exp(qU)

1 + exp(qU)

=
1

n
· |U | · pU

=
99

100n
· |U |.

Proof of Claim 2. Let a be an attribute vector. Let us define the set U as follows:

U = {vi ∈ V | σ(ui(a)) ≥ pU}.

In other words, we retrieve those vertices for which the corresponding segment’s purchase

probability is at least pU .

We argue that this set U is an independent set. To see this, let us suppose for the sake

of a contradiction that it is not. Then there exist two distinct vertices vi, vi′ ∈ U such that

(vi, vi′) ∈ E. Without loss of generality, let us assume that i < i′. Observe that if we
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calculate the logit of segment i′, we have

ui′(a) = βi′,0 +
n∑
j=1

βi′,jaj

= qL +
i′−1∑
j=1:

(vj ,vi′∈E

(qL − qU)aj + (qU − qL)ai′

≤ qL + (qL − qU)ai + (qU − qL)ai′

= qL + (qL − qU) · 1 + (qU − qL) · 1

= qL,

where the inequality follows because qL − qU < 0. This implies that

exp(ui′(a))

1 + exp(ui′(a))
≤ pL < pU .

This, however, leads to a contradiction, because vi′ was assumed to be in U , which would im-

ply that the corresponding purchase probability of segment i′ was higher than pU . Therefore,

it must be the case that U is an independent set.

Now, we derive the desired bound on |U |. We have:⌊
100n

99
F (a)

⌋
=

⌊
100n

99
· 1

n

n∑
i=1

σ(ui(a))

⌋

=

100

99
·
∑
i:vi∈U

σ(ui(a)) +
100

99
·
∑
i:vi /∈U

σ(ui(a))


≤
⌊

100

99
· |U | · 99

100
+

100

99
· (n− |U |) 1

100n

⌋
≤
⌊
|U |+ 100

99
· n · 1

100n

⌋
=

⌊
|U |+ 1

99

⌋
= |U |

where the first step follows by definition of F ; the second step follows by algebra; the third

step follows because the floor function is monotonic, and because by definition of the utility
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parameters {βi,j}, σ(ui(a)) ≤ pU = 99/100 for all i, while for i such that vi /∈ U , it is the

case that σ(ui(a)) ≤ pL = 1/(100n); the fourth step again follows by monotonicity of the

floor function and the fact that (n− |U |) ≤ n; the fifth step follows by algebra; and the last

step follows by the fact that |U | is an integer while 1/99 is strictly less than 1. �

A.1.2 Proof of Theorem 2

To show this result, we will show that the partition problem, a well-known NP-complete

problem [52], can be reduced to the decision form of the logit-based SOCPD problem. The

partition problem can be stated as follows:

Partition:

Inputs:

• Integer n;

• integers c1, . . . , cn.

Question: Does there exist a set S ⊆ [n] such that
∑

i∈S ci =
∑

i/∈S ci?

The decision form of the logit-based SOCPD problem can be stated as follows:
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Logit-based SOCPD problem with K = 2 (decision form):

Inputs:

• Integer n;

• utility parameters β1,0, . . . , β1,n, β2,0, . . . , β2,n;

• customer type probabilities λ1, λ2 ≥ 0 such that λ1 + λ2 = 1;

• feasible set A ⊆ {0, 1}n;

• target share-of-choice value θ.

Question: Does there exist an a ∈ A such that

λ1σ(u1(a)) + λ2σ(u2(a)) ≥ θ

is satisfied?

Given an instance of the partition problem, we construct an instance of the decision form

of the logit-based SOCPD problem such that the answer to the partition problem is yes if

and only if the answer to the decision form of the logit-based SOCPD problem is yes.

Let c1, . . . , cn be the sizes of the n items in the partition problem. Let T =
∑n

i=1 ci be

the total of all of the sizes. Note that the equality
∑

i∈S ci =
∑

i/∈S ci implies∑
i∈S

ci =
∑
i/∈S

ci

⇒
∑
i∈S

ci +
∑
i∈S

ci =
∑
i∈S

ci +
∑
i/∈S

ci

⇒ 2
∑
i∈S

ci = T

⇒
∑
i∈S

ci = T/2.

Thus, a set S answers the partition problem in the affirmative if and only if
∑

i∈S ci = T/2

if and only if
∑

i/∈S ci = T/2.
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Consider an instance of the decision form of the logit-based SOCPD problem defined

as follows. Let λ1 = λ2 = 0.5. Let the number of attributes be the same as the number

of items n, and let A = {0, 1}n. Let pU = 0.9 and pL = 0.1, and define qU = log pU
1−pU

and qL = log pL
1−pL

as the logits corresponding to pU and pL respectively. Define the utility

parameters as follows:

β1,0 = qL + (1− T/2) · (qU − qL),

β1,i = (qU − qL) · ci, ∀ i ∈ [n],

β2,0 = qL + (T/2 + 1) · (qU − qL),

β2,i = −(qU − qL) · ci, ∀ i ∈ [n].

The utility functions u1, u2 : A → R are then

u1(a) = β1,0 +
n∑
i=1

β1,iai

= qL + (1− T/2) · (qU − qL) +
n∑
i=1

(qU − qL) · ci · ai

= qL + (qU − qL) ·

[
n∑
i=1

ciai − T/2 + 1

]
,

u2(a) = β2,0 +
n∑
i=1

β2,iai

= qL + (T/2 + 1) · (qU − qL) +
n∑
i=1

−(qU − qL) · ci · ai

= qL + (qU − qL) ·

[
n∑
i=1

−ciai + T/2 + 1

]
.

Finally, let θ = pU = 0.9.

We now show that the answer to the partition problem is yes if and only if the answer

to the logit-based SOCPD problem with K = 2 is yes.

Partition is yes⇒ Logit-based SOCPD is yes. To prove this direction of the equivalence, let S

be the set for which
∑

i∈S ci =
∑

i/∈S ci. As discussed earlier, this implies that
∑

i∈S ci = T/2
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and
∑

i/∈S ci = T/2. Let the product vector a = (a1, . . . , an) be defined as

ai = I{i ∈ S}.

Observe now that:

u1(a) = qL + (qU − qL) ·

[
n∑
i=1

ciai − T/2 + 1

]

= qL + (qU − qL) ·

[∑
i∈S

ci − T/2 + 1

]
= qL + (qU − qL) · [T/2− T/2 + 1]

= qL + (qU − qL) · 1

= qU ,

u2(a) = qL + (qU − qL) ·

[
n∑
i=1

−ciai + T/2 + 1

]

= qL + (qU − qL) ·

[∑
i∈S

−ci + T/2 + 1

]
= qL + (qU − qL) · [−T/2 + T/2 + 1]

= qL + (qU − qL)

= qU .

This implies that the objective value of a is

λ1σ(u1(a)) + λ2σ(u2(a))

= 0.5 · σ(qU) + 0.5 · σ(qU)

= (0.5)(0.9) + (0.5)(0.9)

= 0.9,

which implies that the answer to the decision form of the logit-based SOCPD problem is

yes, as required.
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Partition is no⇒ Logit-based SOCPD is no. To prove the other direction of the equivalence,

let a be any product attribute vector. We need to show that the objective value of a in the

logit-based SOCPD problem is strictly less than 0.9. To see this, observe that if we define

S = {i ∈ [n] | ai = 1}, we obtain a subset of [n]. Since the answer to the partition problem

is no, we know that
∑

i∈S ci 6=
∑

i/∈S ci. This is equivalent to
∑

i∈S ci 6= T/2.

There are now two possible cases to consider for where
∑

i∈S ci is in relation to T/2. If∑
i∈S ci > T/2, then because the ci’s are integers, this means that

∑
i∈S ci ≥ T/2 + 1. This

implies that the utility of segment 2 for product vector a can be upper bounded as follows:

u2(a) = qL + (qU − qL) ·

[
n∑
i=1

−ciai + T/2 + 1

]

= qL + (qU − qL) ·

[∑
i∈S

−ci + T/2 + 1

]
≤ qL + (qU − qL) · [−T/2− 1 + T/2 + 1]

= qL + (qU − qL) · 0

= qL

which implies that the objective value of a is bounded from above as

λ1σ(u1(a)) + λ2σ(u2(a))

≤ 0.5 · 1 + 0.5 · σ(qL)

= 0.5 + (0.5)(pL)

= 0.55

< 0.9.

Alternatively, if
∑

i∈S ci < T/2, then we know that
∑

i∈S ci ≤ T/2− 1. This implies that
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the utility of segment 1 for a can be upper bounded as follows:

u1(a) = qL + (qU − qL) ·

[
n∑
i=1

ciai − T/2 + 1

]

= qL + (qU − qL) ·

[∑
i∈S

ci − T/2 + 1

]
≤ qL + (qU − qL) · [T/2− 1− T/2 + 1]

= qL,

which again implies that the objective value of a is bounded from above as

λ1σ(u1(a)) + λ2σ(u2(a))

≤ λ1σ(qL) + λ2 · 1

= (0.5)(0.1) + (0.5)(1)

= 0.55

< 0.9.

This shows that if the answer to the partition problem is no, then the answer to our

instance of the decision form of the logit-based SOCPD problem is also no.

Since our instance of the logit-based SOCPD problem can be constructed in polynomial

time from the instance of the partition problem, it follows that the logit-based SOCPD

problem is NP-Hard even when the number of segments K is equal to 2. �

A.1.3 Proof of Proposition 1

First, we note that this problem has a unique optimal solution since the objective function

is strictly concave and the feasible region is a convex set.

To find the optimal solution, we formulate the Lagrangean of this problem:

L(xk,1, xk,0, µ) = uk(a)xk,1 + 0xk,0 − xk,1 log(xk,1)− xk,0 log(xk,0) + µ(xk,1 + xk,0 − 1)
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The partial derivatives of L with respect to xk,1, xk,0, µ are

∂

∂xk,1
L(xk,1, xk,0, µ) = uk(a)− log(xk,1)− 1 + µ, (A.1)

∂

∂xk,0
L(xk,1, xk,0, µ) = 0− log(xk,0)− 1 + µ, (A.2)

∂

∂µ
L(xk,1, xk,0, µ) = xk,1 + xk,0 − 1. (A.3)

The first-order conditions that must be satisfied by an optimal solution of this problem

are that all three partial derivatives are equal to zero. Thus, at optimality, the first order

conditions for xk,1 and xk,0 give us that

x∗k,1 = exp(uk(a)) · exp(µ− 1), (A.4)

x∗k,0 = exp(µ− 1). (A.5)

Using the condition that xk,1 + xk,0 − 1 = 0 or equivalently xk,1 + xk,0 = 1, we get

exp(uk(a)) · exp(µ− 1) + exp(µ− 1) = 1

which implies that exp(µ − 1) = 1/(exp(uk(a)) + 1). Substituting this into the expressions

for x∗k,1 and x∗k,0, we obtain that

x∗k,1 =
exp(uk(a))

exp(uk(a)) + 1
,

x∗k,0 =
1

exp(uk(a)) + 1
.

To verify the objective value of this optimal solution, we have

uk(a)x∗k,1 + 0x∗k,0 − x∗k,1 log(x∗k,1)− x∗k,0 log(x∗k,0)

= uk(a)
exp(uk(a))

exp(uk(a)) + 1
− exp(uk(a))

exp(uk(a)) + 1
· log

[
exp(uk(a))

exp(uk(a)) + 1

]
− 1

exp(uk(a)) + 1
· log

[
1

exp(uk(a)) + 1

]
= uk(a)

exp(uk(a))

exp(uk(a)) + 1
− exp(uk(a))

exp(uk(a)) + 1
· uk(a) +

exp(uk(a))

exp(uk(a)) + 1
· log(1 + exp(uk(a)))

+
1

1 + exp(uk(a))
· log(1 + exp(uk(a)))

= log(1 + exp(uk(a))),
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which completes the proof. �

A.1.4 Proof of Theorem 3

To show this equivalence, we will show that for every a ∈ A, the solution (a,u,x) where u

and x are given by

uk = uk(a), ∀ k, (A.6)

xk,1 =
exp(uk(a))

1 + exp(uk(a))
, ∀ k (A.7)

xk,0 =
1

1 + exp(uk(a))
, ∀ k (A.8)

is the only feasible solution of problem (2.5) corresponding to a; stated differently, there is a

one-to-one correspondence between product vectors a and feasible solutions of problem (2.5),

and by finding a solution (a,u,x) of problem (2.5) that maximizes
∑K

k=1 λk ·xk,1 guarantees

that a maximizes
∑K

k=1 λk · exp(uk(a))/(1 + exp(uk(a))).

Observe that by construction, the solution (a,u,x) automatically satisfies constraints (2.5d),

(2.5g) and (2.5b). We thus only need to show that it satisfies constraint (2.5c). Note that

the left-hand side of constraint (2.5c) is the objective function of the representative agent

model (2.4), where the utility of the product is uk(a). By Proposition 1, the optimal ob-

jective value of this representative agent model is log(1 + exp(uk(a))), which is exactly the

right-hand side of constraint (2.5c). Thus, constraint (2.5c) requires that xk,1 and xk,0 must

be chosen to have an objective value at least as great as the optimal objective value; in other

words, (xk,1, xk,0) is enforced to be an optimal solution of problem (2.4). By Proposition 1,

we know that the choice of xk,1 and xk,0 as in (A.7) and (A.8) is an optimal solution of

this representative agent problem, and therefore xk,1, xk,0 and uk set as in (A.6) - (A.8)

satisfy constraint (2.5c). Moreover, since this solution of the representative agent problem

is unique, there can be no other choice of xk,1 and xk,0 that will satisfy this constraint. This

establishes that given a, the solution (a,u,x) with u and x as defined in (A.6) - (A.8) is the

only feasible solution corresponding to a, and thus that the two problems are equivalent. �
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A.1.5 Proof of Proposition 2

Let a be the optimal solution of problem (2.29). We have that

Z∗GM =
K∏
k=1

[
exp(uk(a))

1 + exp(uk(a))

]λk
≤

K∑
k=1

λk ·
exp(uk(a))

1 + exp(uk(a))

≤ Z∗AM ,

where the first step follows by the arithmetic-geometric mean inequality and the second step

by the definition of Z∗AM as the optimal objective value of (2.1). �

A.1.6 Proof of Theorem 4

Let x∗ = x(a∗) and x̂ = x(â). To prove the result we proceed in three steps.

Step 1: The first step in our proof is to show that if there exist nonnegative constants

α and α such that g satisfies

αf(x) ≤ g(x) ≤ αf(x) (A.9)

for all x ∈ X , then x̂ satisfies

f(x̂) ≥ (α/α) · f(x∗). (A.10)
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To establish this, we will first bound the quantity f(x∗)− f(x̂). We have

f(x∗)− f(x̂) = [f(x∗)− g(x∗)] + [g(x∗)− g(x̂)] + [g(x̂)− f(x̂)]

≤ f(x∗)− g(x∗) + g(x̂)− f(x̂)

≤ f(x∗)− αf(x∗) + αf(x̂)− f(x̂)

= (1− α)f(x∗)− (1− α)f(x̂)

= (1− α + α− α)f(x∗)− (1− α)f(x̂)

= (1− α)(f(x∗)− f(x̂)) + (α− α)f(x∗)

where the first step follows by algebra; the second step follows since g(x∗) ≤ g(x̂), which is

true by the definition of x̂ as the vector of choice probabilities for an optimal product â for

the function g(x(a)); the third step follows by (A.9); and the remaining steps by algebra.

Observe that by re-arranging the inequality

f(x∗)− f(x̂) ≤ (1− α)(f(x∗)− f(x̂)) + (α− α)f(x∗) (A.11)

we obtain that

α[f(x∗)− f(x̂)] ≤ (α− α)f(x∗). (A.12)

Since α is nonnegative, dividing through by α we obtain

f(x∗)− f(x̂) ≤ (α− α)

α
f(x∗), (A.13)

and re-arranging, we obtain

f(x̂) ≥
[
1− α− α

α

]
f(x∗)

= (α/α) · f(x∗),

which is the desired result.
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Step 2: We now establish explicit values for the constants α and α. Recall that by the

arithmetic-geometric mean inequality, g(x) ≤ f(x) for all x ∈ X . Therefore, a valid choice

of α is 1.

For α, we proceed as follows. Consider the ratio f(x)/g(x). For any x, we have

f(x)

g(x)
=

∑K
k=1 λkxk∏K
k=1 x

λk
k

=
K∑
k=1

λk · x1−λk
k ·

∏
k′ 6=k

x
−λk′
k′

≤
K∑
k=1

λk · U1−λk ·
∏
k′ 6=k

L−λk′

=
K∑
k=1

λk · U1−λk · L−
∑

k′ 6=k λk′

=
K∑
k=1

λk · U1−λk · Lλk−1

=
K∑
k=1

λk

(
U

L

)1−λk
,

where the first step follows by the definitions of f and g; the second by algebra; the third

by the fact that the function h(x) = x1−λk is increasing in x (since 1 − λk ≥ 0), and that

the function h̄(x) = x−λk′ is decreasing in x (since −λk ≤ 0); the fourth by algebra; the fifth

by recognizing that
∑K

k′=1 λk = 1, which implies that λk − 1 = −
∑

k′ 6=k λk′ ; and the last by

algebra. This implies that a valid choice of α is

α =
1∑K

k=1 λk
(
U
L

)1−λk
. (A.14)

Step 3: We conclude the proof by combining Steps 1 and 2. In particular, by using

α = 1 and α = [
∑K

k=1 λk (U/L)1−λk ]−1, we obtain that

f(x(â)) ≥ 1∑K
k=1 λk

(
U
L

)1−λk
· f(x(a∗)),

as required. �
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A.2 Additional details for numerical experiments

A.2.1 Attributes for real data instances in Section 2.5.2

Tables A.1, A.2, A.3 and A.4 display the attributes and attribute levels for the bank,

candidate, immigrant and timbuk2 datasets, respectively.

Attribute Levels

Interest Rate High Fixed Rate, Medium Fixed Rate,

Low Fixed Rate, Medium Variable Rate

Rewards 1, 2, 3, 4

Annual Fee High, Medium, Low

Bank Bank A, Bank B, Out of State Bank

Rebate Low, Medium, High

Credit Line Low, High

Grace Period Short, Long

Table A.1: Attributes for bank dataset.
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Attribute Levels

Age 36, 45, 52, 60, 68, 75

Military Service Did Not serve, Served

Religion None, Jewish, Catholic, Mainline Protestant,

Evangelical Protestant, Mormon

College No BA, Baptist College, Community College,

State University, Small College,

Ivy League University

Income 32K, 54K, 65K, 92K, 210K, 5.1M

Profession Business Owner, Lawyer, Doctor,

High School Teacher, Farmer, Car Dealer

Race/Ethnicity White, Native American, Black,

Hispanic, Caucasian, Asian American

Gender Male, Female

Table A.2: Attributes for candidate dataset.
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Attribute Levels

Education No Formal, 4th Grade, 8th Grade, High School,

Two-Year College, College Degree, Graduate Degree

Gender Female, Male

Origin Germany, France, Mexico, Philippines, Poland,

India, China, Sudan, Somalia, Iraq

Application Reason Reunite With Family, Seek Better Job, Escape Persecution

Profession Janitor, Waiter, Child Care Provider, Gardener, Financial Analyst,

Construction Worker, Teacher, Computer Programmer,

Nurse, Research Scientist, Doctor

Job Experience None, 1-2 Years, 3-5 Years, 5+ Years

Job Plans Contract With Employer, Interviews With Employer,

Will Look For Work, No Plans To Look For Work

Prior Trips to US Never, Once As Tourist, Many Times As Tourist,

Six Months With Family, Once Without Authorization

Language Fluent English, Broken English,

Tried English But Unable, Used Interpreter

Table A.3: Attributes for immigrant dataset.
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Attribute Levels

Price $70, $75, $80, $85, $90, $95, $100

Size Normal, Large

Color Black, Red

Logo No, Yes

Handle No, Yes

PDA Holder No, Yes

Cellphone Holder No, Yes

Velcro Flap No, Yes

Protective Boot No, Yes

Table A.4: Attributes for timbuk2 dataset.
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A.2.2 Hierarchical Bayesian model specification

For our hierarchical Bayesian model, we assume that each respondent’s partworth vector

β = (β1, . . . , βn) is drawn as

β ∼ N(β̄,Vβ),

where N(µ,Σ) denotes a multivariate normal distribution with mean µ and covariance ma-

trix Σ. The distributions of the mean β̄ and covariance matrix Vβ are then specified as

β̄ ∼ N(0, αVβ),

Vβ ∼ IW (ν,V),

where IW (ν,W) denotes an inverse Wishart distribution with degrees of freedom ν and scale

matrix W. This model specification is implemented in bayesm, using the rhierBinLogit

function. We use bayesm’s defaults for ν, V and α.

A.2.3 Additional constraints for immigrant dataset

As discussed in Section 2.5.2, we defineA with some additional constraints, which we describe

here:

• If the immigrant’s profession attribute is set to “doctor”, “research scientist”, “com-

puter programmer” or “financial analyst”, then the immigrant’s education attribute is

set to “college degree” or “graduate degree”.

• If the immigrant’s profession attribute is set to “teacher” or “nurse”, then the immi-

grant’s education attribute is set to “high school”, “two-year college”, “college degree”

or “graduate degree”.

• If the immigrant’s application reason attribute is set to “escape persecution”, then the

country of origin attribute is set to Sudan, Somalia or Iraq.
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• Either the immigrant’s application reason attribute is set to “seek better job” or the

immigrant’s job plan attribute is set to “no plans to work”, but they cannot both be

set in this way.

A.2.4 Competitive offerings for Section 2.5.2

Tables A.5, A.6, A.7 and A.8 display the attributes of the competitive offerings for the bank,

candidate, immigrant and timbuk2 datasets, respectively. We note that for timbuk2, we

follow the same competitive offerings used in other optimization work that has used this

dataset [13, 20, 21].

Attribute Outside Outside Outside

Option 1 Option 2 Option 3

Interest Rate: High fixed rate

Interest Rate: Medium fixed rate

Interest Rate: Low fixed rate

Interest Rate: Medium variable rate

Rewards: 1

Rewards: 2

Rewards: 3

Rewards: 4

Annual Fee: High

Annual Fee: Medium

Annual Fee: Low

Bank: Bank A

Bank: Bank B

Bank: Out of state bank

Rebate: Low

Rebate: Medium

Rebate: High

Credit Line: Low

Credit Line: High

Grace Period: Short

Grace Period: Long

Table A.5: Outside options for bank dataset problem instances.
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Attribute Outside Outside Outside

Option 1 Option 2 Option 3

Age: 36

Age: 45

Age: 52

Age: 60

Age: 68

Age: 75

Military Service: Did not serve

Military Service: Served

Religion: None

Religion: Jewish

Religion: Catholic

Religion: Mainline protestant

Religion: Evangelical protestant

Religion Mormon

College: No BA

College: Baptist college

College: Community college

College: State university

College: Small college

College: Ivy League university

Income: 32K

Income: 54K

Income: 65K

Income: 92K

Income: 210K

Income 5.1M

Profession: Business owner

Profession: Lawyer

Profession: Doctor

Profession: High school teacher

Profession: Farmer

Profession: Car dealer

Race/Ethnicity: White

Race/Ethnicity: Native American

Race/Ethnicity: Black

Race/Ethnicity: Hispanic

Race/Ethnicity: Caucasian

Race/Ethnicity: Asian American

Gender: Male

Gender: Female

Table A.6: Outside options for candidate dataset problem instances.
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Attribute Outside Outside Outside

Option 1 Option 2 Option 3

Education: No formal

Education: 4th grade

Education: 8th grade

Education: High school

Education: Two-year college

Education: College degree

Education: Graduate degree

Gender: Female

Gender: Male

Origin: Germany

Origin: France

Origin: Mexico

Origin: Philippines

Origin: Poland

Origin: India

Origin: China

Origin: Sudan

Origin: Somalia

Origin: Iraq

Application Reason: Reunite with family

Application Reason: Seek better job

Application Reason: Escape persecution

Profession: Janitor

Profession: Waiter

Profession: Child care provider

Profession: Gardener

Profession: Financial analyst

Profession: Construction worker

Profession: Teacher

Profession: Computer programmer

Profession: Nurse

Profession: Research scientist

Profession: Doctor

Job Experience: None

Job Experience: 1-2 years

Job Experience: 3-5 years

Job Experience: 5+ years

Job Plans: Contract with employer

Job Plans: Interviews with employer

Job Plans: Will look for work

Job Plans: No plans to look for work

Prior Trips to U.S.: Never

Prior Trips to U.S.: Once as tourist

Prior Trips to U.S.: Many times as tourist

Prior Trips to U.S.: Six months with family

Prior Trips to U.S.: Once without authorization

Language: Fluent English

Language: Broken English

Language: Tried English but unable

Language: Used interpreter

Table A.7: Outside options for immigrant dataset problem instances.
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Attribute Outside Outside Outside

Option 1 Option 2 Option 3

Price: $70

Price: $75

Price: $80

Price: $85

Price: $90

Price: $95

Price: $100

Size: Large

Color: Red

Logo: Yes

Handle: Yes

PDA Holder: Yes

Cellphone Holder: Yes

Mesh Pocket: Yes

Velcro Flap: Yes

Protective Boot: Yes

Table A.8: Outside options for timbuk2 dataset problem instances. (For ease of comparison,

only one level of each binary attribute is shown.)
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APPENDIX B

Appendix to Chapter 3

B.1 Omitted Proofs

B.1.1 Proof of Proposition 3

We rewrite the problem as follows:

maximize
∑

`∈leaves

G`(y,λ) (B.1)

subject to constraints (3.2b)− (3.2e), (3.2i), (3.2l),

where G`(y,λ) is defined as the optimal value of the following subproblem:

G`(y,λ) =maximize
M∑
m=1

∑
a∈A

cm,awm,`,a (B.2a)

subject to
∑
a∈A

π`,a = 1, (B.2b)

ym,` =
∑
a∈A

wm,`,a, ∀m ∈ [n], (B.2c)

wm,`,a ≤ π`,a, ∀m ∈ [n], a ∈ A, (B.2d)

π`,a ≥ 0, ∀a ∈ A, (B.2e)

wm,`,a ≥ 0, ∀m ∈ [n], a ∈ A. (B.2f)

We will show that there exists an optimal solution where wm,`,a and π`,a variables have bi-

nary values. Observe that, by constraints (B.2c) and (B.2d), we have wm,`,a ≤ min{π`,a, ym,`}
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for all m ∈ [n] and a ∈ A. Also, by constraint (B.2b), π`,a ≤ 1 for all a ∈ A. Thus, if ym,` = 0,

we have wm,`,a = 0 and if ym,` = 1, we have wm,`,a ≤ π`,a for all a ∈ A. Observe that we can

construct an optimal solution in the following way:

wm,`,a =


π`,a if ym,` = 1,

0 otherwise.

Note that, this is feasible because of constraint (B.2b). Moreover, assume wm′,`,a′ < π`,a′ for

some m′ ∈ [n] and a′ ∈ A where ym′,` = 1. We cannot increase the objective function value

by increasing any other wm,`,a as they are bounded by π`,a and we have
∑

a∈A π`,a = 1 by

constraint (B.2b). Therefore, we can only obtain the maximum objective function value by

having wm′,`,a′ = π`,a′ . Substituting this in the objective function, we obtain

G`(y,λ) =
M∑
m=1

∑
a∈A

cm,awm,`,a

=
M∑

m=1:
ym,`=1

∑
a∈A

cm,aπ`,a

=
∑
a∈A

M∑
m=1:
ym,`=1

cm,aπ`,a

=
∑
a∈A

π`,a

M∑
m=1:
ym,`=1

cm,a.

Let

a′ = arg max
a

M∑
m=1:
ym,`=1

cm,a

and we define π∗ such that

π`,a =


1 if a = a′,

0 otherwise.
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Note that, π∗ is a feasible solution to the subproblem. Since
∑

a∈A π`,a = 1, we also have∑
a∈A

π∗`,a

M∑
m=1:
ym,`=1

cm,a =
M∑

m=1:
ym,`=1

cm,a′ ≥
∑
a∈A

π`,a

M∑
m=1:
ym,`=1

cm,a.

Thus, π∗ is an optimal solution for the problem, which shows that there exists an optimal

solution to the subproblem where w and π are integers.

Next, we show that, when y is binary, decision variables λ also take integer values by

showing that the set of feasible λ is a polyhedron defined by a totally unimodular contraint

matrix.

Let y ∈ {0, 1}. Observe that, the set of constraints on λ variables, constraints (3.2c)-

(3.2e), can be decomposed for each split variable. Thus, for each split variable s ∈ splits we

have the following set of constraints on λ,

d∑
i=1

Ji∑
j=1

λs,i,j ≤ 1, (B.3a)

−
d∑
i=1

Ji∑
j=1

λs,i,j ≤ −1, (B.3b)

−
d∑
i=1

∑
j:j≥τi,m

λs,i,j ≤ −
∑

`∈left(s)

ym,`, ∀m ∈ [n], (B.3c)

d∑
i=1

∑
j:j≥τi,m

λs,i,j ≤ 1−
∑

`∈right(s)

ym,`, ∀m ∈ [n], , (B.3d)

λs,i,j ≥ 0, ∀i ∈ [d], j ∈ J [i]. (B.3e)

where constraint (3.2c) is expressed by constraints (B.3a) and (B.3b) in the inequality form

and constraint (3.2d) is rearranged by subtracting 1 from both sides and substituting 1 −∑d
i=1

∑
j:j<τi,m

λs,i,j =
∑d

i=1

∑
j:j≥τi,m λs,i,j by constraint (3.2c).

We show that, the matrix formed by these constraint is totally unimodular. We use Λi
s

to denote the vector of {λs,i,j}j∈{0}∪[Ji] for i ∈ [d] and s ∈ splits. Let λs be the vector

of {Λi
s}i∈[d] for s ∈ splits. Then, we can rewrite constraints (B.3) in matrix form in the

following way:
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
1 1 . . . 1

−1 −1 . . . −1

C1 C2 . . . Cd

D1 D2 . . . Dd


(
λs

)
≤


Ra

Rb

Rc

Rd

 , (B.4)

λs ≥ 0. (B.5)

where Ci,Di ∈ Rm×(Ji+1) for all i ∈ [d] correspond to the coefficient matrices of the left-

hand sides of constrains (B.3c) and (B.3d). These are defined as follows. Let Cim,j denote

the element in mth row and jth column in matrix Ci for each i ∈ [d]. Then, we have

Cim,j = −I{j≥τi,m}, where I{·} is the indicator function. Similarly, let Dim,j be the element in

mth row and jth column in matrix Di for each i ∈ [d], where Dim,j = I{j≥τi,m}.

Let T denote the coefficient matrix formed by constraints (B.3), that is,

T =


1 1 . . . 1

−1 −1 . . . −1

C1 C2 . . . Cd

D1 D2 . . . Dd

 .

We apply the following row operations to show T is totally unimodular. We add the first

row to the second row and make all elements in the second row zero. Observe that, we have

Ci = −Di for all i ∈ [d]. By adding the rows of Di to Ci, we can transform each Ci into zero

matrices. Let T′ be the new matrix we obtained after performing elementary row operations

on matrix T. For notational convenience, we also interchange the rows so that T′ is given

by

T′ =


D1 D2 . . . Dd

1 1 . . . 1

0 0 . . . 0

0 0 . . . 0

 .

Now, we use the following theorem (see [22]) to show that T′ is totally unimodular.
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Theorem 6 (Theorem 3.2 from [22]). A matrix A is totally unimodular if and only if

each collection J of columns of A can be partitioned into two parts so that the sum of the

columns in one part minus the sum of the columns in the other part is a vector with entries

0, +1, and -1.

To represent the collection of columns, we will assume that we are given a set of columns

which correspond to a subset of columns of matrices Di for each i ∈ [d]:

Si ⊆ {0, . . . , Ji}, ∀i ∈ [d].

Now, we will show that given Si for all i ∈ [d], there exists two disjoint sets Q+ and Q−

such that ∣∣∣∣∣∣
∑
k∈Q+

T′h,k −
∑
k∈Q−

T′h,k

∣∣∣∣∣∣ ≤ 1, for h = 1, . . . ,m+ 1.

Now, we describe how to construct sets Q+ and Q−. Without loss of generality, we

assume that {0} /∈ Si for all i ∈ [d] (otherwise, we can include column 0 to either one of

Q+ or Q−, since column 0 is a zero vector). Let σ(k) be the index j ∈ {1, . . . , Ji} that

column k corresponds to in matrix Di for k = 1, . . . , |Si| for all i ∈ [d]. Moreover, let

kim = min{k ∈ Si | σ(k) ≥ τi,m} for m ∈ [n]. Starting from i = 1, we implement the

following steps.

Step 1. For each k ∈ Si, if k is odd, put kth column of matrix T′ in Q+. Otherwise,

put kth column in Q−. Let S+
i ⊆ ∪ip=1Sp contain columns of ∪ip=1Sp that we put in Q+ and

S−i ⊆ ∪ip=1Sp contain the columns that we put in Q−. Then, for h = 1, . . . ,m + 1, we have

the following cases.

112



• Let |Si| be odd.∑
k∈S+

i

T′h,k −
∑
k∈S−i

T′h,k = 1, ∀h ∈ {m ∈ [n] | k1
m is odd},

∑
k∈S+

i

T′h,k −
∑
k∈S−i

T′h,k = 0, ∀h ∈ {m ∈ [n] | k1
m is even},

∑
k∈S+

i

T′m+1,k −
∑
k∈S−i

T′m+1,k = 1.

• Let |Si| be even.∑
k∈S+

i

T′h,k −
∑
k∈S−i

T′h,k = 0, ∀h ∈ {m ∈ [n] | k1
m is odd},

∑
k∈S+

i

T′h,k −
∑
k∈S−i

T′h,k = −1, ∀h ∈ {m ∈ [n] | k1
m is even},

∑
k∈S+

i

T′m+1,k −
∑
k∈S−i

T′m+1,k = 0.

Step 2. Assume Si+1 is such that |Si|+ |Si+1| is even. For each k ∈ Si+1, we follow the

opposite of the procedure we applied to partition columns in Si, that is, if the columns with

odd indices are put in Q+ for Si, we put columns with even indices in Q+. Otherwise, vice

versa. Then, we obtain ∑
k∈S+

i

T′m+1,k −
∑
k∈S−i

T′m+1,k = 0.

Assume Si+1 is such that |Si| + |Si+1| is odd. Then, we apply the same procedure we

followed for Si to partition columns into Q+ and Q− for Si+1 and obtain∑
k∈S+

i

T′h,k −
∑
k∈S−i

T′h,k = 1, ∀h ∈ {m ∈ [n] | k1
m is odd},

∑
k∈S+

i

T′h,k −
∑
k∈S−i

T′h,k = −1, ∀h ∈ {m ∈ [n] | k1
m is even},

∑
k∈S+

i

T′m+1,k −
∑
k∈S−i

T′m+1,k = 1.
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Step 3. If |Si|+ |Si+1| is even, go to Step 1 to partition columns in Si+2. Otherwise, for

each k ∈ Si+2, apply the opposite of the procedure we used for Si+1 to partition columns for

Si+2. Then, we analyze the following two cases.

• |Si+2| is odd. ∑
k∈S+

i

T′h,k −
∑
k∈S−i

T′h,k = 0, ∀h ∈ {m ∈ [n] | kim is odd},

∑
k∈S+

i

T′h,k −
∑
k∈S−i

T′h,k = −1, ∀h ∈ {m ∈ [n] | kim is even},

∑
k∈S+

i

T′m+1,k −
∑
k∈S−i

T′m+1,k = 0.

• |Si+2| is even. ∑
k∈S+

i

T′h,k −
∑
k∈S−i

T′h,k = 1, ∀h ∈ {m ∈ [n] | kim is odd},

∑
k∈S+

i

T′h,k −
∑
k∈S−i

T′h,k = 0, ∀h ∈ {m ∈ [n] | kim is even},

∑
k∈S+

i

T′m+1,k −
∑
k∈S−i

T′m+1,k = 1.

Then, we go to Step 2 to partition columns for Si+3.

We terminate this procedure when we partitioned the columns of Si for all i = 1, . . . , d

into Q+ or Q−. Notice that, at the end of each step, we obtain two disjoint sets S+
i and S−i

such that the sum of the columns in one part minus the sum of the columns in the other

part is a vector with entries only in {−1, 0, 1}. Thus, regardless of when we terminate the

procedure, Proposition 6 is satisfied as we have S+
d = Q+ and S−d = Q−. �

B.1.2 Proof of Theorem 5

Let (λ,y,w,π) ∈ FAM be a feasible solution for the LP relaxation of formulation (3.2)

and (M, N̄,N,α, f,b,d) ∈ proj(M,N̄,N,α,f,b,d)(F ′AM). We show that (M, N̄,N,α, f,b,d) is

114



a feasible solution for the LP relaxation of formulation (3.5), i.e., (M, N̄,N,α, f,b,d) ∈ FBD.

To establish that constraint (3.5b) holds, let us fix a ∈ A and ` ∈ leaves. If we substitute

N̄` =
∑n

m=1 ym,`,M` and Na,` = 1
2

∑n
m=1(1 + Ȳm,a)ym,`, we need to prove that

M` = N̄` −
n∑

m=1

∑
a′∈A

cm,a′ min{ym,`, π`,a′} ≥ N̄` −
1

2

n∑
m=1

(1 + Ȳm,a)ym,` − n(1− π`,a),

which is equivalent to

n∑
m=1

∑
a∈A

cm,a min{ym,`, π`,a} ≤
1

2

n∑
m=1

(1 + Ȳm,a)ym,` + n(1− π`,a).

Observe that cm,a =
∑n

m=1(1 + Ȳm,a)/2; thus, we need to show that

n∑
m=1

∑
a′∈A

cm,a′ min{ym,`, π`,a′} ≤
n∑

m=1

cm,aym,` + n(1− π`,a).

We can rewrite this expression as

n∑
m=1

∑
a∈A

cm,a min{ym,`, π`,a} ≤
n∑

m=1

cm,aym,` +
n∑

m=1

(1− π`,a),

which is satisfied, if ∑
a′∈A

cm,a′ min{ym,`, π`,a′} ≤ cm,aym,` + (1− π`,a)

holds for all m ∈ [n]. Note that, to maintain the equivalence of formulation (3.2) and (3.5),

we assume that cm,a = 1 is satisfied by only one a ∈ A for all m ∈ [n]. For an observation

m ∈ [n], let cm,ã = 1 for some ã ∈ A. Then, for observation m ∈ [n], it is sufficient to show

that

min{ym,`, π`,ã} ≤ cm,aym,` + (1− π`,a),

for all a ∈ A and ` ∈ leaves. Then, for all ` ∈ leaves, we analyze the following cases:

• Case 1: a = ã. Since, min{ym,`, π`,ã} ≤ ym,` and 1 − π`,a ≥ 0, min{ym,`, π`,ã} ≤

ym,` + (1− π`,a) holds.
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• Case 2: a 6= ã. Then, cm,a = 0. Observe that

min{ym,`, π`,ã} ≤ π`,ã ≤
∑
a′∈A

π`,a′ − π`,a = 1− π`,a,

by constraint (3.2f) and 1 ≥ π`,a ≥ 0.

Therefore, we conclude that constraint (3.5b) is satisfied.

Constraint (3.5d) is satisfied, since for allm ∈ [n] and ` ∈ leaves, ym,` ≥
∑

a∈A cm,a min{ym,`, π`,a},

which implies N̄` =
∑n

m=1 ym,` ≥
∑n

m=1

∑
a∈A cm,a min{ym,`, π`,a}.

Constraints (3.5e) and (3.5f) are automatically satisfied because of how N̄` and Na,` are

constructed.

To show constraint (3.5g), fix an m ∈ [n], ` ∈ leaves and s ∈ AR(`). Observe that since

s ∈ AR(`), we automatically have that ` ∈ right(s). We now upper bound the right hand
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side of constraint (3.5g):

bs − 1 + (1 + ε)ym,`

=
d∑
i=1

∑
j

ωi,jλs,i,j − 1 + (1 + ε) · ym,`

≤
d∑
i=1

∑
j

ωi,jλs,i,j − 1 + (1 + ε) ·
∑

`′∈right(s)

ym,`′

≤
d∑
i=1

∑
j

ωi,jλs,i,j − 1 + (1 + ε) ·

1−
d∑
i=1

∑
j:j≥ti,m

λs,i,j


=

d∑
i=1

∑
j

ωi,jλs,i,j −
d∑
i=1

∑
j

λs,i,j + (1 + ε)
d∑
i=1

∑
j:j<ti,m

λs,i,j

=
d∑
i=1

∑
j

ωi,jλs,i,j −
d∑
i=1

∑
j

λs,i,j + (1 + ε)
d∑
i=1

∑
j

I{j < τi,m}λs,i,j (B.6)

=
d∑
i=1

∑
j

[ωi,j − 1 + (1 + ε)I{j < τi,m}] · λs,i,j (B.7)

≤
d∑
i=1

∑
j

Xm
j λs,i,j (B.8)

=
d∑
i=1

fs,iX
m
i . (B.9)

In the above sequence, the first equality follows from the definition of bs. The first inequality

follows since ` ∈ right(s) (and thus ym,` ≤
∑

`′∈right(s) ym,`′). The second inequality follows

by re-arranging constraint 3.2e. The second equality follows by using constraint (3.2c). The

third equality follows by the definition of the indicator function I{·}. The fourth equality

follows by algebra. The final inequality follows by observing that each coefficient of λs,i,j is
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bounded by Xm
i ; in particular, when j < τi,m, the definition of τ and ω gives us that

ωi,j − 1 + (1 + ε)I{j < τi,m}

= ωi,j − 1 + (1 + ε)

= ωi,j + ε

≤ ωi,τi,m

= Xm
i ,

and when j ≥ τi,m, we have

ωi,j − 1 + (1 + ε)I{j < τi,m}

= ωi,j − 1

≤ Xm
i ,

which holds because each Xm
i and ωi,j belongs to the interval [0, 1]. (Recall from Section 3.3.1

that the features are assumed to be normalized so that each Xm
i satisfies 0 ≤ Xm

i ≤ 1.) The

last equality (B.9) then simply follows from our construction of the fs,i variables.

To show constraint (3.5h), we proceed in a similar fashion as for constraint (3.5g). Let

m ∈ [n], ` ∈ leaves and s ∈ AL(`). Since s ∈ AL(`), we immediately have that ` ∈ left(s).
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We now lower bound the right hand side of constraint (3.5h):

bs + 1− ym,` (B.10)

=
d∑
i=1

∑
j

ωi,jλs,i,j + 1− ym,` (B.11)

≥
d∑
i=1

∑
j

ωi,jλs,i,j + 1−
∑

`′∈left(s)

ym,`′ (B.12)

≥
d∑
i=1

∑
j

ωi,jλs,i,j +
d∑
i=1

∑
j:j<τi,m

λs,i,j (B.13)

=
d∑
i=1

∑
j

[ωi,j + I{j < τi,m}]λs,i,j (B.14)

≥
d∑
i=1

∑
j

Xm
i λs,i,j (B.15)

=
d∑
i=1

fs,iλs,i,j. (B.16)

The steps above follow along similar lines as constraint (3.5g). The first inequality follows

since ` ∈ left(s); the second inequality follows by constraint (3.2d); and the final inequality

again follows because when j < τi,m, we have

ωi,j + I{j < τi,m} = ωi,j + 1 ≥ Xm
i

(since Xm
i and ωi,j are both in [0, 1]) and when j ≥ τi,m, we have

ωi,j + I{j < τi,m} = ωi,j ≥ Xm
i .

Constraint (3.5i) is the same as constraint (3.2b). Constraint (3.5j) holds by the definition

of fs,i and constraint (3.2c). Constraint (3.5k) holds because of the definition of bs as∑d
i=1

∑
j ωi,jλs,i,j, and the fact that each ωi,j lies in [0, 1]. �
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B.1.3 Proof of Proposition 5

We have shown that given y ∈ {0, 1}, the feasible region remains the same when binary

variables λ are relaxed in Proposition 3. Thus, we first show that all extreme points have

integer y values if we relax all binary variables in the single observation case. This implies

that λ variables must be integers as well by Proposition 3. We then show that w and π also

have integer values.

Assume to the contrary that there exists an extreme point where y` ∈ (0, 1) for some

` ∈ leaves.
∑

`∈leaves y` = 1 implies that we have at least two leaves with fractional y

variables. Let `p, `r ∈ leaves be such that y`p , y`r ∈ (0, 1). We define

y1
`p = y`p + ε,

y1
`r = y`r − ε,

y2
`p = y`p − ε,

y2
`r = y`r + ε,

where ε > 0. Additionally, we define

w1
`p,ap = w`p,ap + ε,

w1
`r,ar = w`r,ar − ε,

w2
`p,ap = w`p,ap − ε,

w2
`r,ar = w`r,ar + ε,

where ap, ar ∈ A satisfy w`p,ap > 0 and w`r,ar > 0, respectively. We construct π1, π2 in the

following way. If w`p,ap < π`p,ap and w`r,ar < π`r,ar , we set

π1 = π2 = π.
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Otherwise, for some a′p 6= ap such that π`p,a′p > 0, we set

π1
`p,ap = π`p,ap + ε,

π1
`p,a′p

= π`p,a′p − ε,

π2
`p,ap = π`p,ap − ε,

π2
`p,a′p

= π`p,a′p + ε.

Similarly, for some a′r 6= ar such that π`r,a′r > 0, we set

π1
`r,ar = π`r,ar − ε,

π1
`r,a′r

= π`r,a′r + ε,

π2
`r,ar = π`r,ar + ε,

π2
`r,a′r

= π`r,a′r − ε.

We now construct λ1 and λ2 for each split s ∈ splits.

Case 1: Assume that `p ∈ left(s) and `r ∈ right(s) for some s ∈ splits. We analyze

the following two cases.

•
∑d

i=1

∑
j:j<τi,m

λs,i,j ≤ 1−
∑

`∈left(s) ym,` and
∑d

i=1

∑
j:j≥τi,m λs,i,j ≤ 1−

∑
`∈right(s) ym,`.

We define

λ1
s,i = λ2

s,i = λs,i, ∀i ∈ [d].

•
∑d

i=1

∑
j:j<τi,m

λs,i,j = 1 −
∑

`∈left(s) ym,` or
∑d

i=1

∑
j:j≥τi,m λs,i,j = 1 −

∑
`∈right(s) ym,`.

Without loss of generality we may assume
∑d

i=1

∑
j:j<τi,m

λs,i,j = 1 −
∑

`∈left(s) ym,`.

For some i′ ∈ [d], j′ ∈ J [i′] such that λs,i′,j′ > 0, we construct

λ1
s,i′,j′ = λs,i′,j′ + ε,

λ2
s,i′,j′ = λs,i′,j′ − ε.

Case 2: Consider s ∈ splits such that y`p , y`r ∈ left(s) or y`p , y`r ∈ right(s). We can

set

λ1
s,i,j = λ2

s,i,j = λs,i,j ∀i ∈ [d], j ∈ J [i].
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Case 3: Consider s ∈ splits such that y`p ∈ left(s) and y`r /∈ left(s), right(s). Note

that we assume for all ` ∈ right(s), we have y` = 0. Otherwise, we could pick `r as the

` ∈ right(s) that satisfies y` ∈ (0, 1) and construct solutions as in Case 1.

•
∑d

i=1

∑
j:j<τi,m

λs,i,j < 1−
∑

`∈left(s) ym,`. We can set

λ1
s,i,j = λ2

s,i,j = λs,i,j, ∀i ∈ [d], j ∈ J [i].

•
∑d

i=1

∑
j:j<τi,m

λs,i,j = 1−
∑

`∈left(s) ym,`. Note that we then have
∑d

i=1

∑
j:j≥τi,m λs,i,j <

1−
∑

`∈right(s) ym,`. For some i′ ∈ [d] and j′ ∈ J [i′] such that λs,i′,j′ > 0, we construct

λ1
s,i′,j′ = λs,i′,j′ + ε,

λ2
s,i′,j′ = λs,i′,j′ − ε.

Case 4: Consider s ∈ splits such that y`p ∈ right(s) and y`r /∈ left(s), right(s). Ob-

serve that this is symmetric with Case 3. Therefore,
∑d

i=1

∑
j:j≥τi,m λs,i,j < 1−

∑
`∈right(s) ym,`

is analogous to
∑d

i=1

∑
j:j<τi,m

λs,i,j < 1−
∑

`∈left(s) ym,` in Case 3. If we have
∑d

i=1

∑
j:j≥τi,m λs,i,j =

1−
∑

`∈right(s) ym,`, For some i′ ∈ [d] and j′ ∈ J [i′] such that λs,i′,j′ > 0, we construct

λ1
s,i′,j′ = λs,i′,j′ − ε,

λ2
s,i′,j′ = λs,i′,j′ + ε.

In all of the cases above, (y,λ,w,π) can be written as a convex combination of (y1,λ1,w1,π1)

and (y2,λ2,w2,π2). Since (y1,λ1,w1,π1) and (y2,λ2,w2,π2) are feasible, this contradicts

with the assumption that (y,λ,w,π) is an extreme point.

Now, we assume that there exists an extreme point (y,λ,w,π) such that w`,a′ ∈ (0, 1)

for a′ ∈ A. Since y` cannot be continuous, there must exist a′′ ∈ A such that w`,a′′ ∈ (0, 1)
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and a′′ 6= a′. Then, we construct (y1,λ1,w1,π1) and (y2,λ2,w2,π2) such that

w1
`,a′ = w`,a′ + ε,

w1
`,a′′ = w`,a′′ − ε,

w2
`,a′ = w`,a′ − ε,

w2
`,a′′ = w`,a′′ + ε,

π1
`,a′ = π`,a′ + ε,

π1
`,a′′ = π`,a′′ − ε,

π2
`,a′ = π`,a′ − ε,

π2
`,a′′ = π`,a′′ + ε.

Observe that (y1,λ1,w1,π1) and (y2,λ2,w2,π2) we constructed are feasible and (y,λ,w,π)

can be written as a convex combination of (y1,λ1,w1,π1) and (y2,λ2,w2,π2).

Finally, we assume that there exists an extreme point (y,λ,w,π) such that π`,a′ ∈ (0, 1)

for a′ ∈ A. By constraint (3.2f), there must exist a′′ ∈ A such that π`,a′′ ∈ (0, 1) and

a′′ 6= a′. Then, we can construct feasible (y1,λ1,w1,π1) and (y2,λ2,w2,π2) as described

above. Thus, this also contradicts with (y,λ,w,π) being an extreme point. �

B.1.4 Proof of Proposition 6

We consider the following observation from Iris data set.

X1
1 = 5.1, X1

2 = 3.5, X1
3 = 1.4, X1

4 = 0.2, Y 1 = 1,

Assume we have a decision tree of depth 2 with two splits. Let splits = {1, 2} and

leaves = {3, 4, 5}. Also, let A = {1, 2, 3}. It can be verified that there exists an extreme
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point to [16] formulation such that

π3,1 = 1/3, π3,2 = 1/3, π3,3 = 1/3,

π4,1 = 1/3, π4,2 = 1/3, π4,3 = 1/3,

π5,1 = 1/2, π5,2 = 0, π5,3 = 1/2.

B.1.5 Proof of Proposition 7

Let π be binary. We show that even if we relax all the other variables, λ, y and w will have

binary values in all extreme points in a depth 1 tree.

Note that, by Proposition 4, it suffices to show that λ is integral. Assume that there

exists an extreme point (λ,y,w,π) such that λs,i′,j′ ∈ (0, 1) for some i′ ∈ [d] and j′ ∈ J [i′].

Then, by constraint (3.2c), there exists i′′ ∈ [d] and j′′ ∈ J [i′′] such that λs,i′′,j′′ ∈ (0, 1). We

construct two feasible solutions (λ1,y1,w1,π1) and (λ2,y2,w2,π2) as follows. For i′, i′′ ∈ [d]

and j′, j′′ ∈ [d] and for a sufficiently small ε such that ε > 0, we set

λ1
s,i′,j′ = λs,i′,j′ + ε,

λ1
s,i′′,j′′ = λs,i′′,j′′ − ε,

λ2
s,i′′,j′′ = λs,i′,j′ − ε,

λ2
s,i′′,j′′ = λs,i′′,j′′ + ε.

For each m ∈ [n], we analyze the following cases.

Case 1:
∑d

i=1

∑
j:j<τi,m

λ1,i,j < 1−
∑

`∈left(1) ym,` and
∑d

i=1

∑
j:j≥τi,m λ1,i,j < 1−

∑
`∈right(1) ym,`.

For ε > 0, we set

y1
m,` = y2

m,` = ym,`, ∀` ∈ leaves,

w1
m,`,a = w2

m,`,a = wm,`,a, ∀` ∈ leaves, a ∈ A.

Case 2:
∑d

i=1

∑
j:j<τi,m

λ1,i,j = 1−
∑

`∈left(1) ym,` or
∑d

i=1

∑
j:j≥τi,m λ1,i,j = 1−

∑
`∈right(1) ym,`.
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Without loss of generality, we assume
∑d

i=1

∑
j:j<τi,m

λ1,i,j = 1 −
∑

`∈left(1) ym,`. Then, we

set consider the following sub-cases.

• j′ < τi′,m and j′′ < τi′′,m. Then, we set

y1
m,` = y2

m,` = ym,`, ∀` ∈ left(1),

w1
m,`,a = w2

m,`,a = wm,`,a, ∀` ∈ left(1), a ∈ A.

• j′ < τi′,m and j′′ ≥ τi′′,m. Choose `′ ∈ left(1) such that ym,`′ > 0 and `′′ ∈ right(1)

such that ym,`′′ > 0. Also, choose a′ and a′′ such that wm,`′,a′ > 0 and wm,`′′,a′′ > 0.

Then, we set

y1
m,`′ = y1

m,`′ + ε,

y1
m,`′′ = y1

m,`′′ − ε,

y2
m,`′ = y2

m,`′ − ε,

y2
m,`′′ = y2

m,`′′ + ε,

w1
m,`′,a′ = w1

m,`′,a′ + ε,

w1
m,`′′,a′′ = w1

m,`′′,a′′ − ε,

w2
m,`′,a′ = w2

m,`′,a′′ − ε,

w2
m,`′′,a′′ = w2

m,`′′,a′′ + ε.

• j′ ≥ τi′,m and j′′ ≥ τi′′,m. This case is symmetric with the first case.

• j′ ≥ τi′,m and j′′ < τi′′,m. This case is symmetric with the second case.

Note that, if we also have
∑d

i=1

∑
j:j≥τi,m λ1,i,j = 1 −

∑
`∈right(1) ym,`, we can construct the

corresponding variables in (λ1,y1,w1,π1) and (λ2,y2,w2,π2) in a similar way.

Notice that, (λ1,y1,w1,π1) and (λ2,y2,w2,π2) are feasible for formulation (3.2) and

(λ,y,w,π) = 1/2(λ1,y1,w1,π1) + 1/2(λ2,y2,w2,π2) for all of the cases above. This con-

tradicts with (λ,y,w,π) being an extreme point. Thus, in all extreme points λ variables
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are integral. By proposition 4, this implies that extreme points are integral in all variables.

�

B.1.6 Proof of Proposition 8

We consider the following subset of Iris data set that consists of n = 5 observations.

X1
1 = 4.4, X1

2 = 2.9, X1
3 = 1.4, X1

4 = 0.2, Y 1 = 1,

X2
1 = 5.5, X2

2 = 2.6, X2
3 = 4.4, X2

4 = 1.2, Y 1 = 2,

X3
1 = 7.7, X3

2 = 3.8, X3
3 = 6.7, X3

4 = 2.2, Y 1 = 3,

X4
1 = 6.6, X4

2 = 2.9, X4
3 = 4.6, X4

4 = 1.3, Y 1 = 2,

X5
1 = 6.0, X5

2 = 3.0, X5
3 = 4.8, X5

4 = 1.8, Y 1 = 3.

It can be verified that in a tree where |splits| = 1, there exists an extreme point for [16]

formulation such that the following holds.

f1,1 = 0.426857, f2,1 = 0.573143,

b1 = 0.142286,

π2,2 = 1, π3,3 = 1.

�

B.1.7 Proof of Proposition 9

Let (λ′,y′) be a feasible to formulation (3.2) which satisfies constraints (3.2b), (3.2c) and con-

straints (3.2f)-(3.2l). For a split s, let i′ = arg maxi∈[d]

∑
j∈J [i] λs,i,j, m1 = arg maxm:

∑
`∈left(s) y

′
m,`=1 τi,m

and m2 = arg minm:
∑

`∈right(s) y
′′
m,`=1 τi,m. Assume τi,m1 ≥ τi,m2 . Then, we add the following

constraints to the formulation according to Algorithm 1.
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d∑
i=1

∑
j:j<τi,m1

λs,i,j ≤ 1−
∑

`∈left(s)

ym1,` ∀s ∈ splits, (B.17)

d∑
i=1

∑
j:j≥τi,m2

λs,i,j ≤ 1−
∑

`∈right(s)

ym2,` ∀s ∈ splits. (B.18)

Let (λ′′,y′′) be the new candidate solution we obtain after adding constraints (B.17) and

(B.18) to the formulation. Assume to the contrary that, (λ′′,y′′) are such that y′ = y′′ and∑
j∈J [i] |λ′s,i,j−λ′′s,i,j| 6= 1 for all i ∈ [d]. Notice that,

∑
j∈J [i] |λ′s,i,j−λ′′s,i,j| = 1 implies that λ′′

differs from λ′ in the feature assigned to split s. Therefore, λ′′ should differ from λ′ in the

split value assigned to split s in feature i′. Without loss of generality, let j′′ ∈ J [i′] be the

split value used in split s according to λ′′, i.e., λ′′s,i′,j′′ > 0. We analyze the following cases.

• j′′ < τi′,m1 : Then, we must have
∑d

i=1

∑
j:j<τi,m1

λ′′s,i,j > 0, which implies
∑

`∈left(s) y
′′
m1,`

=

0 according to constraint (B.17). This gives a contradiction, since we assumed y′′ = y′

and
∑

`∈left(s) y
′
m1,`

= 1.

• j′′ ≥ τi′,m1 : Since τi′,m1 ≥ τi′,m2 , we have
∑d

i=1

∑
j:j≥τi,m2

λ′′s,i,j > 0. Then, constraint

(B.18) implies that
∑

`∈right(s) y
′′
m2,`

= 0. This gives a contradiction, since we assumed

y′′ = y′ and
∑

`∈right(s) y
′
m2,`

= 1.

Therefore, we prove that at least one of the following must hold.

(a) y′′ 6= y′,

(b) The feature assigned to split s is different, i.e.,
∑

j∈J [i] |λ′s,i′,j − λ′′s,i′,j| = 1 for some

i′ ∈ [d].

�
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