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Abstract

Prediction models of post-liver transplant mortality are crucial so that donor organs are not 

allocated to recipients with unreasonably high probabilities of mortality. Machine learning 

algorithms, particularly deep neural networks (DNNs), can often achieve higher predictive 

performance than conventional models. In this study, we trained a DNN to predict 90-day post-

transplant mortality using preoperative variables and compared the performance to that of the 

Survival Outcomes Following Liver Transplantation (SOFT) and Balance of Risk (BAR) scores, 

using United Network of Organ Sharing data on adult patients who received a deceased donor liver 

transplant between 2005 and 2015 (n = 57,544). The DNN was trained using 202 features, and the 

best DNN’s architecture consisted of 5 hidden layers with 110 neurons each. The area under the 

receiver operating characteristics curve (AUC) of the best DNN model was 0.703 (95% CI: 

0.682-0.726) as compared to 0.655 (95% CI: 0.633-0.678) and 0.688 (95% CI: 0.667-0.711) for 

the BAR score and SOFT score, respectively. In conclusion, despite the complexity of DNN, it did 

not achieve a significantly higher discriminative performance than the SOFT score. Future risk 

models will likely benefit from the inclusion of other data sources, including high-resolution 

clinical features for which DNNs are particularly apt to outperform conventional statistical 

methods.

LIVER transplantation is the definitive treatment for irreversible liver failure, with thousands 

of lives saved each year in the Unites States through deceased donor organ donation. 
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Unfortunately, with the demand for donor organs far exceeding the supply, thousands of 

patients die waiting for this life saving procedure [1]. As such, the development of predictive 

models of post-transplant mortality is crucial to avoid transplanting an individual with an 

unacceptably low probability of post-transplant survival. As the severity of recipient medical 

comorbidities has grown, there is concern that an increasing number of patients are 

becoming too sick to transplant [2,3]. While the prediction of preoperative mortality among 

those waiting for an organ has been quite successful with the adoption of the Model for End-

Stage Liver Disease (MELD) score to prioritize organ allocation [3-6], the accurate 

prediction of post-transplant mortality has been difficult and less successful [7].

Several predictive models have been developed using preoperative recipient and organ donor 

factors from either registry- or institution-level data. These have been developed with the 

aim of avoiding futile transplantation, assisting with donor-recipient matching, and for 

comparing outcomes across different institutions. Two of the most commonly cited risk 

models are the Balance of Risk (BAR) score [8] and the Survival Outcomes Following Liver 

Transplantation (SOFT) score [9], both of which predict 90-day post-liver transplant 

mortality using United Network of Organ Sharing (UNOS) registry data. The SOFT score 

incorporated a combination of 18 recipient and donor variables and achieved a c-statistic of 

0.7, and the BAR score achieved a C-statistic of 0.7 using a combination of just 6 recipient 

and donor variables. Despite the popularity of these models in academic circles, their 

clinical use has been limited due to their modest discriminative performance with decision 

making left to the judgment of the selection committee and transplant clinicians.

Risk models in medicine have traditionally been based on regression models whereby the 

outcome variable is modeled as a linear combination of predictor variables and thereby have 

been limited in their ability to model high-order interactions and nonlinear functions of the 

features. Machine learning algorithms, which allow for more flexible modeling of the data, 

can often achieve higher predictive performance than more conventional statistical models. 

One class of machine learning algorithms, deep neural networks (DNNs), also known as 

deep learning, has become popular in recent years because of its success in solving a variety 

of problems from computer vision [10-15], high energy physics [16,17], chemistry [18-20], 

and biology [21-23]. In clinical medicine, predictive modeling using machine learning has 

been applied to the prediction of cardiorespiratory instability [24,25], 30-day readmission, 

[26,27], and in-hospital postoperative mortality [28].

The use of DNNs in liver transplantation has been relatively limited. To date, DNNs have 

been largely unexplored in the prediction of post-liver transplant mortality using UNOS 

data. In this manuscript, we present the development and validation of a DNN model using 

preoperative variables from the UNOS registry to predict 90-day post-liver transplant 

mortality. We compare the discriminative ability of the DNN model to that of the BAR and 

SOFT score models.

MATERIALS AND METHODS

This manuscript follows the “Guidelines for Developing and Reporting Machine Learning 

Predictive Models in Biomedical Research: A Multidisciplinary View” [29].
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UNOS Data Extraction

All data for this study were extracted from the standard transplant analysis and research 

(STAR) dataset, which contains patient-level data for all transplants in the Unites States 

reported to the Organ Procurement and Transplantation Network (OPTN) since October 1, 

1989. The database has been used in numerous important studies of transplantation [30] and 

contains data on pretransplant variables pertaining to the recipient, donor variables reported 

from the organ procurement organization, as well as post-transplantation outcome data. The 

OPTN mortality data are linked by UNOS to the Social Security Death Master file to 

improve ascertainment of recipient death data [30]. In accordance with the OPTN Final 

Rule, 42 CFR Part 121, the UNOS provided the author (B.E.) with the patient-level, 

nonidentifiable data extracted from the STAR database maintained by UNOS for the purpose 

of conducting this research. Access to this data was approved through a data-use agreement 

with UNOS.

Study Sample

The study sample included adult deceased donor liver transplants performed from 2005 to 

2015. Transplants performed from 2016 onward were not included in this analysis to ensure 

adequate time for ascertainment of outcome data, and transplants performed prior to 2005 

were excluded because 1. transplants before 2002 were performed prior to implementation 

of the MELD score allocation system and 2. data on several predictor variables were either 

not reported or were inconsistently recorded prior to that time. Exclusion criteria included 

age less than 18 years, living donor transplantation (n = 2347), multiple-organ 

transplantation (n = 5267), as well as those lost to follow-up within 90 days post-

transplantation (n = 70) as these cases were excluded in the development of the SOFT score 

and BAR score (Fig 1). For patients who underwent more than 1 liver transplantation (n = 

3503), we included each of the transplantations in the analysis, as did other comparable 

prediction models. The study sample included split liver as well as donation after cardiac 

death donors. In sum, we analyzed 57,544 recipients.

Model Endpoint Definition

The occurrence of death within 90 days from transplantation was extracted as a binary event 

(0, 1). An event occurred if the value of the variable “pstatus” from the STAR dataset was 

equal to “1”, and the variable “prime” was less than or equal to 90. The variable “pstatus” 

indicates whether the recipient had died post-transplant, and the variable “ptime” indicates 

the time from transplantation to either death or censoring. These variables are based on the 

combination of mortality data from OPTN database as well as verified external sources of 

death (described above) and not based on the variable “PX_STAT,” which only accounts for 

death as documented by the OPTN alone.

Model Input Features

The original STAR dataset contained 395 variables, many of which were not considered for 

inclusion in the model. Variables that were excluded from model development included 

those pertaining to post-transplant data, living donor transplants, multiorgan transplants, and 

identifier code variables. Variables with zero or near zero variances, high levels of missing 
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data (> 98%) or those that were highly correlated to other variables (r > 0.99) were removed. 

A few variables with > 50% missing data combined with low clinical significance based on 

domain experts (B.E. and C.W.) were not analyzed. This resulted in 202 features, including 

132 recipient variables and 70 donor-related variables (Table 1). To further reduce the 

feature set, variables with greater than 50% missing data or those containing greater than 

95% zero values were removed, and the remaining variables comprised a reduced feature set 

(RFS).

While most of the categorical features had a simple binary encoding (Table 1), categorical 

features identified by domain expert (B.E. and C.W.) that required more complex encoding 

were encoded based on clinician judgment. For example, the variable “DIAG,” which 

indicates a recipient’s primary liver disease diagnosis at transplantation, contains 70 possible 

unique diagnosis codes. Rather than creating 70 new binary categorical features, groups of 

diagnosis codes were used to collapse the 70 unique codes into 11 new categorical features.

BAR Score and SOFT Score

The BAR score and SOFT score are 2 models used to predict 90-day post-liver transplant 

survival using UNOS data. To compare the discriminative ability of the DNN to that of these 

models, the BAR score and SOFT score were calculated for recipients in this dataset. The 

formula for calculating the BAR score and SOFT score are provided in Fig 2 [8,9]. Data on 

cold ischemia time was missing for 2.8% of recipients; therefore, the BAR score could not 

be calculated for these subjects. The amount of missing data for other variables was < 0.1%, 

and these cases were removed from the calculation of the BAR score’s area under the 

receiver operating characteristics curve (AUC). Missing data for the SOFT score was 

handled by assigning the missing value to the reference group category, as indicated by the 

scoring methodology. One of the 18 variables that comprises the original SOFT score is the 

presence of a portal bleed within 48 hours of transplantation. This variable was not available 

in the STAR dataset and therefore was not included in the calculated SOFT score. In the 

original development of the SOFT score model, only 3% of patients had a portal bleed, and 

data for this variable were missing for 50% of recipients [9]. In our analysis, we calculated 

the SOFT score using the remaining 17 components.

Data Preprocessing

Prior to model development, missing values were imputed with the mean value for 

continuous variables and with 0 for categorical variables. The data were then randomly 

divided into training (80%) and test (20%) data sets. The training data was rescaled to have a 

mean of 0 and standard deviation of 1 per feature. The test data was rescaled to the training 

mean and standard deviation.

“Soft” Binning Features

Besides following the standard approach of normalizing individual input features, we also 

experimented with a novel idea that we will refer to as “soft binning.” Similar to standard/

“hard” binning, the data representation of any feature is replaced by a fixed number of bins, 

containing numbers between 0 and 1. Ordinary binning discretizes a feature by representing 

it as a single “1” in 1 bin and zeroes in all other bins, potentially resulting in loss of 
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information and making the classification task harder. “Soft” binning is the most 

straightforward generalization of binning without loss of information, where 2 bins are 

assigned values in the range of 0 to 1, which sum to 1. These values encode the fraction to 

which the feature’s value falls into the given bins. For example, if in standard binning a 

value would fall exactly on the boundary between 2 bins, then it would instead be 

represented as 2 neighboring entries of “0.5” in the neighboring bins in “soft” binning. Our 

motivation for creating “soft” binning was that binning alleviates the burden for the neural 

network to learn individual features thresholds (ie, “high,” “average,” or “low”) and thus 

improves classification accuracy.

Development of the Model

The primary aim of the study was to classify recipients with 90-day post-liver transplant 

mortality using DNNs, also referred to as deep learning. During development of DNNs, 

there are many unknown model parameters that need to be optimized during training. These 

model parameters are first initialized and then optimized to decrease the error of the model’s 

output to correctly classify mortality. The type of DNN used in this study was a feedforward 

network with fully connected layers and a logistic output. “Fully connected” refers to the 

fact that all neurons between 2 adjacent layers are fully pairwise connected. A logistic 

output was chosen so that the output of the model could be interpreted as probability of 

mortality (0-1). We used stochastic gradient descent with momentum (0.2, 0.5, 0.9) and 

initial learning rates (0.01, 0.001, 0.1) and a batch size of 500. We also assessed DNN 

architectures of 1 to 5 hidden layers with (10, 50, 100, 110, 115, 120, 130, 140, 150) neurons 

per layer and rectified linear unit activation functions. The loss function was cross entropy. 

To minimize overfitting, we used 3 methods: 1. early stopping with a patience of 10 epochs, 

2. L2 weight decay, and 3. dropout [31,32]. We assessed L2 weight penalties of (0.01, 0.001, 

0.0001), and dropout was applied to all layers with a probability of (0,0.2, 0.5, 0.9). We used 

5-fold cross validation with the training set (80%) to select the best hyperparameters and 

architecture based on mean cross-validation performance. These best hyperparameters and 

architecture were then used to train a model on the entire training set (80%) prior to testing 

final model performance on the separate test set (20%).

Model Performance

All model performances were assessed on 20% of the data held out from training as a test 

set. Model performance was assessed using AUC and was compared to the BAR score and 

the SOFT score.

Choosing a Threshold

The F1 score, sensitivity, and specificity were calculated for different thresholds for the 

DNN, as well as for the BAR score and SOFT score models. The F1 score is a measure of 

precision and recall, ranging from 0 to 1. It is calculated as 1 = 2 ∗ precision ∗ recall
precision + recall

Thresholds that optimized the F1 score were then chosen for each model/score. The 

minimum thresholds to achieve a sensitivity or specificity of 90% for each model/score were 

also calculated. Ninety-five percent confidence intervals were calculated for all performance 

metrics using bootstrapping with 1000 samples.
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All DNN models were developed and applied using Keras [33]. All performance metrics 

were calculated using scikit-learn [34]. Code is available upon reasonable request.

RESULTS

Patient Characteristics

The data consisted of 57,544 liver transplant recipients. These data were split into training (n 

= 46,035) and test (n = 11,509). The 90-day post-liver transplant mortality in the training 

and test sets were 5.4% (n = 2483) and 5.6% (n = 640), respectively.

Development of the Model

The best DNN model used the 202 original feature set (OFS) with “softbin” preprocessing 

of input features (DNN with OFS + softbin). The model consisted of 5 hidden layers of 110 

neurons per layer with rectified linear unit activations and a logistic output and was trained 

with no dropout, an L2 weight decay of 0.001, a learning rate of 0.01, and a momentum of 

0.5 (Table 2).

Model Performance

All performance metrics reported below refer to the test dataset.

Area Under the Receiver Operating Characteristics Curves

Receiver operating characteristics curves and AUC results are shown in Fig 3 and Table 3. 

The best DNN model (DNN with OFS + softbin) had a higher AUC (0.703 [95% CI: 

0.682-0.726]) compared to that for the BAR score and SOFT score models (0.655 [95% CI: 

0.633-0.678]; 0.688 [95% CI: 0.667-0.711]), respectively, on the 11,207 patients with 

available BAR scores. In addition, softbin preprocessing of input features improved 

performance of both the OFS and RFS models. While the best DNN had a significantly 

higher AUC than the BAR score, the DNN did not achieve a significantly higher AUC than 

the SOFT score. The DNN with the reduced feature set and softbin preprocessing (DNN 

with RFS + softbin) performed comparably (AUC 0.702 [95% CI: 0.68-0.725]) to the DNN 

with OFS + softbin.

Choosing a Threshold

For comparison of F1 scores, sensitivity, and specificity at different thresholds, the DNN 

models were compared to the BAR score and SOFT score models (Table 4). Additionally, 

for each of the thresholds, the number of correctly and incorrectly classified patients is 

displayed for all test set patients. As the BAR score could not be calculated on 302 patients 

in the test set due to missing data, Table 4 provides metrics applied to test sets that contain 

all patients with available data for the model, as well as to the set of patients for which the 

BAR scores could be calculated.

By choosing a threshold that optimizes the F1 score, the SOFT score achieved the highest F1 

score (0.215 [95% CI: 0.191-0.238]) at a threshold of 20, with sensitivity and specificity of 

0.375 (95% CI: 0.336-0.416) and 0.881 (95% CI: 0.875-0.888), respectively, for the 11,207 

patients with available BAR scores. This score was not significantly different from the 
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highest F1 score among the DNN models, which was achieved by DNN with RFS + softbin 

(0.21 [95% CI: 0.187-0.236]) at a threshold of 0.106, with sensitivity and specificity of 

0.331 (95% CI: 0.296-0.369) and 0.898 (95% CI: 0.892-0.904), respectively. At this 

threshold, the SOFT score had slightly more true positives compared to the DNN model 

(223 vs 199) as a result of the higher sensitivity but with more false positives (1194 vs 1099) 

as a result of the lower specificity. The best DNN model based on AUC, namely DNN with 

OFS + softbin, had a comparable F1 score 0.209 (95% CI: 0.184-0.234) at a threshold of 

0.113.

Adjusting the thresholds of the risk models will increase either the sensitivity or specificity 

with a consequent decrease in the complementary measure. By choosing the minimal 

threshold to achieve a sensitivity of at least 90%, the BAR score achieved a sensitivity of 

93.8 at a threshold of 3, whereas the DNN w/OFS+ softbin achieved a sensitivity of 0.91 at a 

threshold of 0.025. However, the specificity of the BAR score was substantially lower at 

0.15 versus 0.26 for the DNN model. For the SOFT score, a sensitivity of 0.92 was achieved 

at a threshold of 5, with a corresponding specificity of 0.23, which is lower than that for the 

DNN. By choosing the threshold to achieve a minimum specificity of 90%, the SOFT score 

achieved a specificity of 0.91 at a threshold of 22, whereas the DNN w/RFS + softbin 

achieved a specificity of 0.9 at a threshold of 0.107. At these thresholds, the sensitivity of the 

SOFT score was 0.30 versus 0.33 for the DNN model.

DISCUSSION

The results demonstrate that a DNN can be used to predict 90-day post-liver transplant 

mortality using UNOS registry data. While the AUC for the best performing DNN (DNN 

with OFS + softbin) was the highest among the tested models, significantly outperforming 

the BAR score, it did not achieve significantly higher performance compared to the SOFT 

score. Similarly, the DNN’s maximal F1 measure, which reflects a balanced valuation of 

sensitivity and specificity, was not significantly different from that of the SOFT score. At the 

thresholds that maximized the F1 measures for the DNN with OFS + softbin and SOFT 

score, the DNN model had significantly higher specificity with fewer false positive (990 vs 

1258). However, the SOFT score had more true positives (223 vs 185), reflecting the higher 

sensitivity of the SOFT score. It is important to note that by adjusting the threshold value, 

arbitrarily high sensitivities or specificities can be achieved for both models with a 

consequent decrease in the complimentary metric. While the F1 measure values sensitivity 

and specificity equally, the relative costs of a false positive (i.e., failing to transplant a 

patient who otherwise would live) versus the cost of a false negative (transplanting a patient 

who will die) is a decision that must be made by the transplant community. Rana et al argue 

that a SOFT score greater than or equal to 40 may indicate futile transplantation [9]. 

However, in our cohort, a threshold of 40 for the SOFT score carried a sensitivity of only 

0.025 (95% CI: 0.014-0.038), raising questions about its clinical utility.

While several predictive models exist, we chose to compare the DNN to the BAR score and 

SOFT score as they were both derived from UNOS registry data and have the highest AUC 

in predicting 90-day post-transplant mortality. While both models report an AUC of 0.7, in 

our study the calculated AUC were slightly lower at 0.66 and 0.69 for the BAR score and 
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SOFT score, respectively. These differences may be explained by differing exclusion criteria 

with the dataset used to derive the BAR score excluding split livers and donation after 

cardiac death donors. The SOFT score in our dataset was based on 17 of the original 18 

features, as the variable indicating portal bleed within 48 hours of transplantation was not 

available in the UNOS dataset.

Given the scarcity of organ donors, when adverse outcomes occur, the logical question is 

whether the organ would have been better served by being allocated to another recipient. As 

such, many have questioned whether to transplant a patient based solely on need or whether 

to do so based on expected outcomes [2]. The concept of futile transplantation is not new, 

and defining futility is difficult [35]. An underlying theme, however, points to the need to 

estimate postoperative mortality and not solely focus on preoperative survival. Authors have 

suggested models that account for both waitlist mortality and the probability of post-

transplant survival [36], and some have called for novel liver allocation models that achieve 

collective survival benefits [37]. Given the success that DNNs have had in various 

classification tasks, we tested the hypothesis of whether they could perform superiorly in 

this classification problem and therefore be an important step to ultimately achieving better 

allocation models.

Machine learning algorithms can model more complex interactions and nonlinearities 

among the input features and often achieve higher predictive performance than conventional 

statistical models. To date, though, few groups have explored these methods to predict post-

liver transplant morbidity and mortality. Lau et al recently used a random forest to classify 

graft failure within 30 days following liver transplantation using a study sample of 180 

recipients from institution-level data and achieved an AUC of 0.818, although performance 

was significantly diminished when applying the model to the validation set. [38]. While 

some have explored using neural networks to predict liver transplant mortality, most were 

based on a small number of patients at individual institutions [39-41]. Raji et al applied a 

neural network using UNOS level data to predict post-transplantation graft failure, but the 

authors only included a few hundred patients in the model [42].

While DNN have achieved improved performance in various classification tasks, there are 

several possible reasons why the DNN failed to significantly outperform a logistic regression 

model in this study. There are likely features that are predictive of post-transplant mortality 

that were not included in this risk model. Multiple cardiac risk factors, for example, have 

been found to be associated with adverse events including survival, and several studies have 

shown that cardiac morbidity is 1 of the leading causes of post-transplant mortality [43]. 

Single-center studies have identified cardiovascular risk [37], preoperative troponin levels 

[44], coronary artery disease [45], and echocardiographic measures [46,47] as predictors of 

survival. As these data are not included in the UNOS database, we were unable to account 

for this variability in the outcome. It is possible that other machine learning algorithms, 

either alone or in combination with a DNN, may be able to achieve superior performance 

given the same training data. While a DNN can, in theory, approximate any complex 

function that maps the predictors to the response variable, given limited training data this 

may not be achieved, and other machine learning algorithms may achieve better 

discriminative performance.
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As researchers are using machine learning more frequently, an emerging theme is how these 

sophisticated algorithms do not always outperform conventional statistical models such as 

regression. In a recent study, our group applied deep learning to the prediction of 

postoperative mortality using institution-level data and found that it did not outperform 

logistic regression [28]. Similarly, machine learning algorithms failed to outperform logistic 

regression in the prediction of heart failure readmission [26]. Machine learning algorithms 

such as DNNs are more likely to excel in the analysis of complex, high granularity data that 

is lacking from the UNOS database. Finally, all machine learning models are limited by 

whether relevant features can be appropriately encoded in such a way that can be included as 

a variable in the model. Several tacit knowledge variables, such as the physical appearance 

of a patient, are difficult to quantify and therefore include in a DNN model. The future may 

allow such variables to be represented in models, but for the foreseeable future, the clinician 

will be involved in risk assessment.

CONCLUSIONS

To date, there has been a dearth of research using the rich set of complex data within a 

patient’s electronic health record to develop more accurate patient-specific estimates of 

outcomes following transplantation. To achieve improved discriminative performance, future 

studies should incorporate higher-resolution clinical data from a patient’s electronic health 

record. The development of more patient-specific estimates of transplant risk can help 

achieve improved organ allocation with improvement of outcomes for the recipient and the 

transplant community at large.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS

This work was supported in part by Health Resources and Services Administration contract 234-2005-370011C. 
The content is the responsibility of the authors alone and does not necessarily reflect the views or policies of the 
Department of Health and Human Services nor does it mention of trade names, commercial products, or 
organizations imply endorsement by the US Government. The data reported here have been supplied by the United 
Network for Organ Sharing as the contractor for the Organ Procurement and Transplantation Network. The 
interpretation and reporting of these data are the responsibility of the authors and in no way should be seen as an 
official policy of or an interpretation by the OPTN or the US Government.

This work was supported by the National Institutes of Health (NIH) (R01 HL144692). The Department of 
Anesthesiology and Perioperative Medicine at the University of California, Los Angeles receives funding from the 
NIH (R01GM117622; R01 NR013012; U54HL119893; 1R01HL144692).

Dr. Cannesson is a consultant for Edwards Lifesciences and Masimo Corporation and has funded research from 
Edwards Lifesciences and Masimo Corporation. He is also the founder of Sironis and owns patents and receives 
royalties for closed loop hemodynamic management that is licensed to Edwards Life-sciences. Dr. Cannesson’s 
department receives funding from the National Institutes of Health (NIH) (R01GM117622; R01 NR013012; 
U54HL119893; 1R01HL144692). This work was supported by the NIH (R01 HL144692). Dr. Lee is a salaried 
employee of Edwards Lifesciences, but this research was unrelated her employment and was a part of her PhD 
work. Mr. Urban receives funding from the National Science Foundation (NSF 1633631).

Ershoff et al. Page 9

Transplant Proc. Author manuscript; available in PMC 2020 September 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Data Availability Statement
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Fig 1. 
Flow chart of study cohort. The flow chart illustrates the inclusion and exclusion criteria of 

liver transplant recipients included in the study sample. STAR, Standard Transplant Analysis 

and Research. *Based on OPTN data as of September 9, 2016.
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Fig 2. 
Calculation of BAR score and SOFT score. The BAR score and SOFT score are calculated 

by adding the points assigned to each attribute. BMI, body mass index; CVA, 

cerebrovascular accident; MELD, Model for end-stage liver disease. *Feature not available 

in STAR dataset. SOFT score in this manuscript was calculated on the available 17 features.
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Fig 3. 
Receiver operating characteristic curves to predict 90-day post-liver transplant mortality. The 

figure illustrates the receiver operating characteristic curves for the BAR score, SOFT score, 

and each of the DNN models that were developed.
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Table 3.

Area Under the ROC Curve Results With 95% Confidence Intervals for the Test Set (n = 11,509) and on the 

Test Set With No Null BAR Scores (n = 11,207).

AUC (95% CI)

n = 11,509 n = 11,207*

BAR score* 0.655 (0.633-0.678) 0.655 (0.633-0.678)

SOFT score 0.691 (0.671-0.714) 0.688 (0.667-0.711)

DNN w/Original 202 Features Set (OFS) 0.697 (0.678-0.72) 0.695 (0.675-0.717)

DNN w/OFS + softbin 0.708 (0.689-0.73) 0.703 (0.682-0.726)

DNN w/Reduced 140 Features Set (RFS) 0.699 (0.681-0.722) 0.698 (0.679-0.72)

DNN w/RFS + softbin 0.707 (0.688-0.729) 0.702 (0.68-0.725)

*
For the entire test set results, BAR score was calculated on 11,207 test patients.
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