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Abstract

Prediction models of post-liver transplant mortality are crucial so that donor organs are not
allocated to recipients with unreasonably high probabilities of mortality. Machine learning
algorithms, particularly deep neural networks (DNNs), can often achieve higher predictive
performance than conventional models. In this study, we trained a DNN to predict 90-day post-
transplant mortality using preoperative variables and compared the performance to that of the
Survival Outcomes Following Liver Transplantation (SOFT) and Balance of Risk (BAR) scores,
using United Network of Organ Sharing data on adult patients who received a deceased donor liver
transplant between 2005 and 2015 (n = 57,544). The DNN was trained using 202 features, and the
best DNN’s architecture consisted of 5 hidden layers with 110 neurons each. The area under the
receiver operating characteristics curve (AUC) of the best DNN model was 0.703 (95% CI:
0.682-0.726) as compared to 0.655 (95% CI: 0.633-0.678) and 0.688 (95% Cl: 0.667-0.711) for
the BAR score and SOFT score, respectively. In conclusion, despite the complexity of DNN, it did
not achieve a significantly higher discriminative performance than the SOFT score. Future risk
models will likely benefit from the inclusion of other data sources, including high-resolution
clinical features for which DNNSs are particularly apt to outperform conventional statistical
methods.

LIVER transplantation is the definitive treatment for irreversible liver failure, with thousands
of lives saved each year in the Unites States through deceased donor organ donation.

"Address correspondence to Brent Ershoff, 757 Westwood Plaza Suite 3325, Los Angeles, CA 90095. Tel: 310-267-8678; Fax:
i10—367—3899. bershoff@mednet.ucla.edu.
These authors contributed equally to this work.
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Unfortunately, with the demand for donor organs far exceeding the supply, thousands of
patients die waiting for this life saving procedure [1]. As such, the development of predictive
models of post-transplant mortality is crucial to avoid transplanting an individual with an
unacceptably low probability of post-transplant survival. As the severity of recipient medical
comorbidities has grown, there is concern that an increasing number of patients are
becoming too sick to transplant [2,3]. While the prediction of preoperative mortality among
those waiting for an organ has been quite successful with the adoption of the Model for End-
Stage Liver Disease (MELD) score to prioritize organ allocation [3-6], the accurate
prediction of post-transplant mortality has been difficult and less successful [7].

Several predictive models have been developed using preoperative recipient and organ donor
factors from either registry- or institution-level data. These have been developed with the
aim of avoiding futile transplantation, assisting with donor-recipient matching, and for
comparing outcomes across different institutions. Two of the most commonly cited risk
models are the Balance of Risk (BAR) score [8] and the Survival Outcomes Following Liver
Transplantation (SOFT) score [9], both of which predict 90-day post-liver transplant
mortality using United Network of Organ Sharing (UNOS) registry data. The SOFT score
incorporated a combination of 18 recipient and donor variables and achieved a c-statistic of
0.7, and the BAR score achieved a C-statistic of 0.7 using a combination of just 6 recipient
and donor variables. Despite the popularity of these models in academic circles, their
clinical use has been limited due to their modest discriminative performance with decision
making left to the judgment of the selection committee and transplant clinicians.

Risk models in medicine have traditionally been based on regression models whereby the
outcome variable is modeled as a linear combination of predictor variables and thereby have
been limited in their ability to model high-order interactions and nonlinear functions of the
features. Machine learning algorithms, which allow for more flexible modeling of the data,
can often achieve higher predictive performance than more conventional statistical models.
One class of machine learning algorithms, deep neural networks (DNNSs), also known as
deep learning, has become popular in recent years because of its success in solving a variety
of problems from computer vision [10-15], high energy physics [16,17], chemistry [18-20],
and biology [21-23]. In clinical medicine, predictive modeling using machine learning has
been applied to the prediction of cardiorespiratory instability [24,25], 30-day readmission,
[26,27], and in-hospital postoperative mortality [28].

The use of DNNs in liver transplantation has been relatively limited. To date, DNNs have
been largely unexplored in the prediction of post-liver transplant mortality using UNOS
data. In this manuscript, we present the development and validation of a DNN model using
preoperative variables from the UNQOS registry to predict 90-day post-liver transplant
mortality. We compare the discriminative ability of the DNN model to that of the BAR and
SOFT score models.

MATERIALS AND METHODS

This manuscript follows the “Guidelines for Developing and Reporting Machine Learning
Predictive Models in Biomedical Research: A Multidisciplinary View” [29].

Transplant Proc. Author manuscript; available in PMC 2020 September 29.
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UNOS Data Extraction

All data for this study were extracted from the standard transplant analysis and research
(STAR) dataset, which contains patient-level data for all transplants in the Unites States
reported to the Organ Procurement and Transplantation Network (OPTN) since October 1,
1989. The database has been used in numerous important studies of transplantation [30] and
contains data on pretransplant variables pertaining to the recipient, donor variables reported
from the organ procurement organization, as well as post-transplantation outcome data. The
OPTN mortality data are linked by UNOS to the Social Security Death Master file to
improve ascertainment of recipient death data [30]. In accordance with the OPTN Final
Rule, 42 CFR Part 121, the UNOS provided the author (B.E.) with the patient-level,
nonidentifiable data extracted from the STAR database maintained by UNOS for the purpose
of conducting this research. Access to this data was approved through a data-use agreement
with UNOS.

Study Sample

The study sample included adult deceased donor liver transplants performed from 2005 to
2015. Transplants performed from 2016 onward were not included in this analysis to ensure
adequate time for ascertainment of outcome data, and transplants performed prior to 2005
were excluded because 1. transplants before 2002 were performed prior to implementation
of the MELD score allocation system and 2. data on several predictor variables were either
not reported or were inconsistently recorded prior to that time. Exclusion criteria included
age less than 18 years, living donor transplantation (n = 2347), multiple-organ
transplantation (n = 5267), as well as those lost to follow-up within 90 days post-
transplantation (n = 70) as these cases were excluded in the development of the SOFT score
and BAR score (Fig 1). For patients who underwent more than 1 liver transplantation (n =
3503), we included each of the transplantations in the analysis, as did other comparable
prediction models. The study sample included split liver as well as donation after cardiac
death donors. In sum, we analyzed 57,544 recipients.

Model Endpoint Definition

The occurrence of death within 90 days from transplantation was extracted as a binary event
(0, 1). An event occurred if the value of the variable “pstatus” from the STAR dataset was
equal to “1”, and the variable “prime” was less than or equal to 90. The variable “pstatus”
indicates whether the recipient had died post-transplant, and the variable “ptime” indicates
the time from transplantation to either death or censoring. These variables are based on the
combination of mortality data from OPTN database as well as verified external sources of
death (described above) and not based on the variable “PX_STAT,” which only accounts for
death as documented by the OPTN alone.

Model Input Features

The original STAR dataset contained 395 variables, many of which were not considered for
inclusion in the model. Variables that were excluded from model development included
those pertaining to post-transplant data, living donor transplants, multiorgan transplants, and
identifier code variables. Variables with zero or near zero variances, high levels of missing
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data (> 98%) or those that were highly correlated to other variables (> 0.99) were removed.
A few variables with > 50% missing data combined with low clinical significance based on
domain experts (B.E. and C.W.) were not analyzed. This resulted in 202 features, including
132 recipient variables and 70 donor-related variables (Table 1). To further reduce the
feature set, variables with greater than 50% missing data or those containing greater than
95% zero values were removed, and the remaining variables comprised a reduced feature set
(RFS).

While most of the categorical features had a simple binary encoding (Table 1), categorical
features identified by domain expert (B.E. and C.W.) that required more complex encoding
were encoded based on clinician judgment. For example, the variable “DIAG,” which
indicates a recipient’s primary liver disease diagnosis at transplantation, contains 70 possible
unique diagnosis codes. Rather than creating 70 new binary categorical features, groups of
diagnosis codes were used to collapse the 70 unique codes into 11 new categorical features.

BAR Score and SOFT Score

The BAR score and SOFT score are 2 models used to predict 90-day post-liver transplant
survival using UNOS data. To compare the discriminative ability of the DNN to that of these
models, the BAR score and SOFT score were calculated for recipients in this dataset. The
formula for calculating the BAR score and SOFT score are provided in Fig 2 [8,9]. Data on
cold ischemia time was missing for 2.8% of recipients; therefore, the BAR score could not
be calculated for these subjects. The amount of missing data for other variables was < 0.1%,
and these cases were removed from the calculation of the BAR score’s area under the
receiver operating characteristics curve (AUC). Missing data for the SOFT score was
handled by assigning the missing value to the reference group category, as indicated by the
scoring methodology. One of the 18 variables that comprises the original SOFT score is the
presence of a portal bleed within 48 hours of transplantation. This variable was not available
in the STAR dataset and therefore was not included in the calculated SOFT score. In the
original development of the SOFT score model, only 3% of patients had a portal bleed, and
data for this variable were missing for 50% of recipients [9]. In our analysis, we calculated
the SOFT score using the remaining 17 components.

Data Preprocessing

Prior to model development, missing values were imputed with the mean value for
continuous variables and with O for categorical variables. The data were then randomly
divided into training (80%) and test (20%) data sets. The training data was rescaled to have a
mean of 0 and standard deviation of 1 per feature. The test data was rescaled to the training
mean and standard deviation.

“Soft” Binning Features

Besides following the standard approach of normalizing individual input features, we also
experimented with a novel idea that we will refer to as “soft binning.” Similar to standard/
“hard” binning, the data representation of any feature is replaced by a fixed number of bins,
containing numbers between 0 and 1. Ordinary binning discretizes a feature by representing
itasasingle “1” in 1 bin and zeroes in all other bins, potentially resulting in loss of
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information and making the classification task harder. “Soft” binning is the most
straightforward generalization of binning without loss of information, where 2 bins are
assigned values in the range of 0 to 1, which sum to 1. These values encode the fraction to
which the feature’s value falls into the given bins. For example, if in standard binning a
value would fall exactly on the boundary between 2 bins, then it would instead be
represented as 2 neighboring entries of “0.5” in the neighboring bins in “soft” binning. Our
motivation for creating “soft” binning was that binning alleviates the burden for the neural
network to learn individual features thresholds (ie, “high,” “average,” or “low”) and thus
improves classification accuracy.

Development of the Model

The primary aim of the study was to classify recipients with 90-day post-liver transplant
mortality using DNNSs, also referred to as deep learning. During development of DNNs,
there are many unknown model parameters that need to be optimized during training. These
model parameters are first initialized and then optimized to decrease the error of the model’s
output to correctly classify mortality. The type of DNN used in this study was a feedforward
network with fully connected layers and a logistic output. “Fully connected” refers to the
fact that all neurons between 2 adjacent layers are fully pairwise connected. A logistic
output was chosen so that the output of the model could be interpreted as probability of
mortality (0-1). We used stochastic gradient descent with momentum (0.2, 0.5, 0.9) and
initial learning rates (0.01, 0.001, 0.1) and a batch size of 500. We also assessed DNN
architectures of 1 to 5 hidden layers with (10, 50, 100, 110, 115, 120, 130, 140, 150) neurons
per layer and rectified linear unit activation functions. The loss function was cross entropy.
To minimize overfitting, we used 3 methods: 1. early stopping with a patience of 10 epochs,
2. L2 weight decay, and 3. dropout [31,32]. We assessed L2 weight penalties of (0.01, 0.001,
0.0001), and dropout was applied to all layers with a probability of (0,0.2, 0.5, 0.9). We used
5-fold cross validation with the training set (80%) to select the best hyperparameters and
architecture based on mean cross-validation performance. These best hyperparameters and
architecture were then used to train a model on the entire training set (80%) prior to testing
final model performance on the separate test set (20%).

Model Performance

All model performances were assessed on 20% of the data held out from training as a test
set. Model performance was assessed using AUC and was compared to the BAR score and
the SOFT score.

Choosing a Threshold

The F1 score, sensitivity, and specificity were calculated for different thresholds for the

DNN, as well as for the BAR score and SOFT score models. The F1 score is a measure of

precision * recall
precision + recall

Thresholds that optimized the F1 score were then chosen for each model/score. The
minimum thresholds to achieve a sensitivity or specificity of 90% for each model/score were
also calculated. Ninety-five percent confidence intervals were calculated for all performance
metrics using bootstrapping with 1000 samples.

precision and recall, ranging from 0 to 1. It is calculated as 1 =2 =

Transplant Proc. Author manuscript; available in PMC 2020 September 29.
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All DNN models were developed and applied using Keras [33]. All performance metrics
were calculated using scikit-learn [34]. Code is available upon reasonable request.

RESULTS

Patient Characteristics

The data consisted of 57,544 liver transplant recipients. These data were split into training (n
= 46,035) and test (n = 11,509). The 90-day post-liver transplant mortality in the training
and test sets were 5.4% (n = 2483) and 5.6% (n = 640), respectively.

Development of the Model

The best DNN model used the 202 original feature set (OFS) with “softbin” preprocessing
of input features (DNN with OFS + softbin). The model consisted of 5 hidden layers of 110
neurons per layer with rectified linear unit activations and a logistic output and was trained
with no dropout, an L2 weight decay of 0.001, a learning rate of 0.01, and a momentum of
0.5 (Table 2).

Model Performance

All performance metrics reported below refer to the test dataset.

Area Under the Receiver Operating Characteristics Curves

Receiver operating characteristics curves and AUC results are shown in Fig 3 and Table 3.
The best DNN model (DNN with OFS + softhin) had a higher AUC (0.703 [95% ClI:
0.682-0.726]) compared to that for the BAR score and SOFT score models (0.655 [95% CI:
0.633-0.678]; 0.688 [95% CI: 0.667-0.711]), respectively, on the 11,207 patients with
available BAR scores. In addition, softbin preprocessing of input features improved
performance of both the OFS and RFS models. While the best DNN had a significantly
higher AUC than the BAR score, the DNN did not achieve a significantly higher AUC than
the SOFT score. The DNN with the reduced feature set and softbin preprocessing (DNN
with RFS + softbin) performed comparably (AUC 0.702 [95% CI: 0.68-0.725]) to the DNN
with OFS + softbin.

Choosing a Threshold

For comparison of F1 scores, sensitivity, and specificity at different thresholds, the DNN
models were compared to the BAR score and SOFT score models (Table 4). Additionally,
for each of the thresholds, the number of correctly and incorrectly classified patients is
displayed for all test set patients. As the BAR score could not be calculated on 302 patients
in the test set due to missing data, Table 4 provides metrics applied to test sets that contain
all patients with available data for the model, as well as to the set of patients for which the
BAR scores could be calculated.

By choosing a threshold that optimizes the F1 score, the SOFT score achieved the highest F1
score (0.215 [95% CI: 0.191-0.238]) at a threshold of 20, with sensitivity and specificity of
0.375 (95% CI: 0.336-0.416) and 0.881 (95% ClI: 0.875-0.888), respectively, for the 11,207
patients with available BAR scores. This score was not significantly different from the

Transplant Proc. Author manuscript; available in PMC 2020 September 29.
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highest F1 score among the DNN models, which was achieved by DNN with RFS + softbin
(0.21 [95% CI: 0.187-0.236]) at a threshold of 0.106, with sensitivity and specificity of
0.331 (95% CI: 0.296-0.369) and 0.898 (95% CI: 0.892-0.904), respectively. At this
threshold, the SOFT score had slightly more true positives compared to the DNN model
(223 vs 199) as a result of the higher sensitivity but with more false positives (1194 vs 1099)
as a result of the lower specificity. The best DNN model based on AUC, namely DNN with
OFS + softhin, had a comparable F1 score 0.209 (95% ClI: 0.184-0.234) at a threshold of
0.113.

Adjusting the thresholds of the risk models will increase either the sensitivity or specificity
with a consequent decrease in the complementary measure. By choosing the minimal
threshold to achieve a sensitivity of at least 90%, the BAR score achieved a sensitivity of
93.8 at a threshold of 3, whereas the DNN w/OFS+ softbin achieved a sensitivity of 0.91 at a
threshold of 0.025. However, the specificity of the BAR score was substantially lower at
0.15 versus 0.26 for the DNN model. For the SOFT score, a sensitivity of 0.92 was achieved
at a threshold of 5, with a corresponding specificity of 0.23, which is lower than that for the
DNN. By choosing the threshold to achieve a minimum specificity of 90%, the SOFT score
achieved a specificity of 0.91 at a threshold of 22, whereas the DNN w/RFS + softhin
achieved a specificity of 0.9 at a threshold of 0.107. At these thresholds, the sensitivity of the
SOFT score was 0.30 versus 0.33 for the DNN model.

DISCUSSION

The results demonstrate that a DNN can be used to predict 90-day post-liver transplant
mortality using UNOS registry data. While the AUC for the best performing DNN (DNN
with OFS + softbin) was the highest among the tested models, significantly outperforming
the BAR score, it did not achieve significantly higher performance compared to the SOFT
score. Similarly, the DNN’s maximal F1 measure, which reflects a balanced valuation of
sensitivity and specificity, was not significantly different from that of the SOFT score. At the
thresholds that maximized the F1 measures for the DNN with OFS + softbin and SOFT
score, the DNN model had significantly higher specificity with fewer false positive (990 vs
1258). However, the SOFT score had more true positives (223 vs 185), reflecting the higher
sensitivity of the SOFT score. It is important to note that by adjusting the threshold value,
arbitrarily high sensitivities or specificities can be achieved for both models with a
consequent decrease in the complimentary metric. While the F1 measure values sensitivity
and specificity equally, the relative costs of a false positive (i.e., failing to transplant a
patient who otherwise would live) versus the cost of a false negative (transplanting a patient
who will die) is a decision that must be made by the transplant community. Rana et al argue
that a SOFT score greater than or equal to 40 may indicate futile transplantation [9].
However, in our cohort, a threshold of 40 for the SOFT score carried a sensitivity of only
0.025 (95% ClI: 0.014-0.038), raising questions about its clinical utility.

While several predictive models exist, we chose to compare the DNN to the BAR score and
SOFT score as they were both derived from UNOS registry data and have the highest AUC
in predicting 90-day post-transplant mortality. While both models report an AUC of 0.7, in
our study the calculated AUC were slightly lower at 0.66 and 0.69 for the BAR score and

Transplant Proc. Author manuscript; available in PMC 2020 September 29.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Ershoff et al.

Page 8

SOFT score, respectively. These differences may be explained by differing exclusion criteria
with the dataset used to derive the BAR score excluding split livers and donation after
cardiac death donors. The SOFT score in our dataset was based on 17 of the original 18
features, as the variable indicating portal bleed within 48 hours of transplantation was not
available in the UNOS dataset.

Given the scarcity of organ donors, when adverse outcomes occur, the logical question is
whether the organ would have been better served by being allocated to another recipient. As
such, many have questioned whether to transplant a patient based solely on need or whether
to do so based on expected outcomes [2]. The concept of futile transplantation is not new,
and defining futility is difficult [35]. An underlying theme, however, points to the need to
estimate postoperative mortality and not solely focus on preoperative survival. Authors have
suggested models that account for both waitlist mortality and the probability of post-
transplant survival [36], and some have called for novel liver allocation models that achieve
collective survival benefits [37]. Given the success that DNNSs have had in various
classification tasks, we tested the hypothesis of whether they could perform superiorly in
this classification problem and therefore be an important step to ultimately achieving better
allocation models.

Machine learning algorithms can model more complex interactions and nonlinearities
among the input features and often achieve higher predictive performance than conventional
statistical models. To date, though, few groups have explored these methods to predict post-
liver transplant morbidity and mortality. Lau et al recently used a random forest to classify
graft failure within 30 days following liver transplantation using a study sample of 180
recipients from institution-level data and achieved an AUC of 0.818, although performance
was significantly diminished when applying the model to the validation set. [38]. While
some have explored using neural networks to predict liver transplant mortality, most were
based on a small number of patients at individual institutions [39-41]. Raji et al applied a
neural network using UNOS level data to predict post-transplantation graft failure, but the
authors only included a few hundred patients in the model [42].

While DNN have achieved improved performance in various classification tasks, there are
several possible reasons why the DNN failed to significantly outperform a logistic regression
model in this study. There are likely features that are predictive of post-transplant mortality
that were not included in this risk model. Multiple cardiac risk factors, for example, have
been found to be associated with adverse events including survival, and several studies have
shown that cardiac morbidity is 1 of the leading causes of post-transplant mortality [43].
Single-center studies have identified cardiovascular risk [37], preoperative troponin levels
[44], coronary artery disease [45], and echocardiographic measures [46,47] as predictors of
survival. As these data are not included in the UNOS database, we were unable to account
for this variability in the outcome. It is possible that other machine learning algorithms,
either alone or in combination with a DNN, may be able to achieve superior performance
given the same training data. While a DNN can, in theory, approximate any complex
function that maps the predictors to the response variable, given limited training data this
may not be achieved, and other machine learning algorithms may achieve better
discriminative performance.

Transplant Proc. Author manuscript; available in PMC 2020 September 29.
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As researchers are using machine learning more frequently, an emerging theme is how these
sophisticated algorithms do not always outperform conventional statistical models such as
regression. In a recent study, our group applied deep learning to the prediction of
postoperative mortality using institution-level data and found that it did not outperform
logistic regression [28]. Similarly, machine learning algorithms failed to outperform logistic
regression in the prediction of heart failure readmission [26]. Machine learning algorithms
such as DNNs are more likely to excel in the analysis of complex, high granularity data that
is lacking from the UNOS database. Finally, all machine learning models are limited by
whether relevant features can be appropriately encoded in such a way that can be included as
a variable in the model. Several tacit knowledge variables, such as the physical appearance
of a patient, are difficult to quantify and therefore include in a DNN model. The future may
allow such variables to be represented in models, but for the foreseeable future, the clinician
will be involved in risk assessment.

CONCLUSIONS

To date, there has been a dearth of research using the rich set of complex data within a
patient’s electronic health record to develop more accurate patient-specific estimates of
outcomes following transplantation. To achieve improved discriminative performance, future
studies should incorporate higher-resolution clinical data from a patient’s electronic health
record. The development of more patient-specific estimates of transplant risk can help
achieve improved organ allocation with improvement of outcomes for the recipient and the
transplant community at large.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Flow chart of study cohort. The flow chart illustrates the inclusion and exclusion criteria of
liver transplant recipients included in the study sample. STAR, Standard Transplant Analysis

and Research. *Based on OPTN data as of September 9, 2016.
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Feature Points Allotted
Bar Score
Categories
MELD Score 6-15 0
16-25 5
26-35 10
>35 14
Re-transplantation case 4
Recipient on “Life Support” 3
Recipient age in years =40 0
>40-60 1
>60 3
Cold ischemia time in hours 0-6 0
>6-12 1
>12 2
Donor age in years =40 0
=40 1
Soft Score
Age =60
BMI=35

One previous transplant

Two previous transplants
Previous abdominal surgery
Albumin <2.0 g/dl

Dialysis prior to transplantation
Intensive care unit pre-transplant
Admitted to hospital pre-transplant
MELD score >30

“Life support” pre-transplant
Encephalopathy

Portal vein thrombosis

Ascites pre-transplant

Portal bleed 48h pre-transplant®
Donor age 10-20 years

Donor age=60 years

Donor cause of death from CVA
Donor creatinine =1.5 mg/d|
National allocation

Cold ischemia time (0-6 hours)

GNNRNWLPWONOBWD WM R ON S

BMI = body mass index; CVA = cerebrovascular accident; MELD = Model for end-stage liver disease

*Feature not available in STAR dataset. SOFT score in this manuscript was calculated on the available

17 features.
Fig 2.
Calculation of BAR score and SOFT score. The BAR score and SOFT score are calculated
by adding the points assigned to each attribute. BMI, body mass index; CVA,
cerebrovascular accident; MELD, Model for end-stage liver disease. *Feature not available
in STAR dataset. SOFT score in this manuscript was calculated on the available 17 features.
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Fig 3.

Receiver operating characteristic curves to predict 90-day post-liver transplant mortality. The
figure illustrates the receiver operating characteristic curves for the BAR score, SOFT score,

and each of the DNN models that were developed.
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Table 3.

Page 25

Area Under the ROC Curve Results With 95% Confidence Intervals for the Test Set (n = 11,509) and on the

Test Set With No Null BAR Scores (n = 11,207).

AUC (95% ClI)

n = 11,509 n=11,207"
BAR score 0.655 (0.633-0.678)  0.655 (0.633-0.678)
SOFT score 0.691 (0.671-0.714)  0.688 (0.667-0.711)
DNN w/Original 202 Features Set (OFS)  0.697 (0.678-0.72)  0.695 (0.675-0.717)
DNN W/OFS + softbin 0.708 (0.689-0.73)  0.703 (0.682-0.726)
DNN w/Reduced 140 Features Set (RFS) ~ 0.699 (0.681-0.722)  0.698 (0.679-0.72)
DNN W/RFS + softbin 0.707 (0.688-0.729)  0.702 (0.68-0.725)

*
For the entire test set results, BAR score was calculated on 11,207 test patients.
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