
Lawrence Berkeley National Laboratory
LBL Publications

Title
Data Driven Dimensionality Reduction to Improve Modeling Performance✱

Permalink
https://escholarship.org/uc/item/0555v6rb

Authors
Chung, Joshua
De Prado, Marcos Lopez
Simon, Horst
et al.

Publication Date
2023-07-10

DOI
10.1145/3603719.3603744
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0555v6rb
https://escholarship.org/uc/item/0555v6rb#author
https://escholarship.org
http://www.cdlib.org/


March 6, 2024 6:2 ws-book9x6 ws-dr-hpo page 1

Chapter 1

Lessons on Hyperparameter
Optimization from Data Driven

Dimensionality Reduction

Joshua Chung∗, Marcos Lopez de Prado∗†‡, Horst D Simon†,
and Kesheng Wu∗

Machine learning algorithms excel at optimizing model param-
eters for intricate problem-solving. However, they rely on users
to provide hyperparameters, which significantly impact per-
formance. To avoid manual trial-and-error, automatic hyper-
parameter optimization (HPO) methods have been developed.
Our recent exploration in dimensionality reduction reveals that
HPO success depends not only on effective algorithms but also
on a precisely defined objective function and robust paralleliza-
tion strategies. Despite these efforts, capturing the essence of
the application problem in the resultant model remains uncer-
tain. In this paper, we provide a concise review of HPO algo-
rithms and parallelization methods. Additionally, we share in-
sights from our quest to establish a reliable quality measure for
dimensionality reduction. Our findings emphasize the critical
interplay between optimization algorithms, objective functions,
and resource utilization strategies. Furthermore, we highlight
the pressing need for automated detection of potential pitfalls in
models forged through extensive hyperparameter optimization.

1.1 Introduction

Machine learning and data analysis are essentially optimization procedures,

finely tuning model parameters to construct an effective model for spe-

cific problems [Carbonell et al. (1983); Jordan and Mitchell (2015); Mahesh

∗Lawrence Berkeley National Lab, Berkeley CA, USA
†ADIA Lab, Abu Dhabi, UAE
‡ADIA, Abu Dhabi, UAE
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(2020)]. In addition to these model parameters, there are hyperparameters

that define the structure of the model, learning process, analysis algorithm,

an so on [Bischl et al. (2023); Karl et al. (2023); Morales-Hernández et al.

(2023)]. For instance, in training a regression model with a large neural

network, trillions of model parameters might be adjusted to minimize an

objective function like regression accuracy, while the shape of a neural net-

work and the details of the learning process are defined by hyperparameters,

numbering in dozens or more, must be provided. Given their influential role,

selecting these hyperparameters requires meticulous consideration. Hyper-

parameter optimization (HPO), the intricate process of their selection, has

garnered considerable attention [Diaz et al. (2017); Li et al. (2017); Yang

and Shami (2020)]. While existing literature focuses on algorithms and

tools, this work diverges by providing practical insights from our machine

learning and feature extraction experiences [Chung et al. (2023); Lopez de

Prado (2018a); Zhan et al. (2018)]. Our aim is to offer tangible guidance,

highlighting potential pitfalls in real-world HPO applications.

For our discussions to be concrete, we will review the a specific hyper-

parameter optimization exercise to study its pros and cons [Chung et al.

(2023)]. We then broaden the discussion to encompass a broad spectrum of

feature engineering and machine learning tasks. The specific HPO exercise

was to study a dimensionality reduction tasks on a set of obfuscated data

named Numer.ai data [Numerai (2024)]. Dimensionality reduction involves

extracting a limited set of features from high-dimensional data — a cru-

cial step in data preparation for further analyses [Jia et al. (2022); Zebari

et al. (2020)]. Given the array of algorithms and implementations avail-

able, choosing the right algorithm and its parameters poses a considerable

challenge. Even with guidelines, such as those provided by [Nguyen and

Holmes (2019)], the intricate choice often rests with users. Automating this

selection has been very effective in simplifying the hyperparameter selec-

tion, but introduces its own challenges [Cooper et al. (2021); Eggensperger

et al. (2019); Jacobs et al. (2022); Vento and Fanfarillo (2019)].

Taking the cost of evaluating the learning procedure in the above re-

gression example as a unit of computational cost and call it an evaluation

(or a full evaluation for emphasis), a brute-force evaluation of millions of

different hyperparameter combinations (also known as hyperparameter con-

figurations, or simply configurations) would require millions of evaluations,

which would be very time-consuming. A state-of-the-art HPO procedure

could examine millions configurations with the cost equivalent to several

full evaluations, which makes HPO procedures high useful for large-scale



March 6, 2024 6:2 ws-book9x6 ws-dr-hpo page 3

Lessons on Hyperparameter Optimization from Data Driven Dimensionality Reduction3

data analysis tasks [Brandt et al. (2024); Falkner et al. (2018)]. However,

the research community has also noticed serious pitfalls in these automat-

ically optimized models [Cooper et al. (2021); Eggensperger et al. (2019);

Jacobs et al. (2022); Vento and Fanfarillo (2019)]. Inspired by works like

Nguyen and Holmes [Nguyen and Holmes (2019)], we share insights from

our experiences with hyperparameter optimization [Chung et al. (2023);

Lopez de Prado (2018b); Jacquier et al. (2022)]. The following is a quick

summary of top two lessons.

Our first crucial observation emphasizes the importance of understand-

ing the data thoroughly. This aligns with Tips 2, 3, 4, and 9 from [Nguyen

and Holmes (2019)]. Knowing the data involves more than just handling

different value types; it requires nuanced considerations, such as treat-

ing seemingly numeric values as categorical in specific contexts [Guo and

Berkhahn (2016); Seger (2018)]. For scientific applications, incorporat-

ing known physics governing feature relationships can significantly enhance

modeling efforts [Cuomo et al. (2022); Karniadakis et al. (2021); Meng et al.

(2022)]. Proceeding to automated parameter tuning should follow a careful

consideration of domain-specific information. Even though the automated

HPO procedures are powerful optimization tools, selecting the right objec-

tive function for the optimizer is closely linked to the understanding of the

data and context of the analysis task.

Another key observation is to test the analysis results for common pit-

falls. Given the complexity of the potential traps and pitfalls, many of

them could not be easily identified by typical user, therefore, it is neces-

sary to engage automated tools [Jacobs et al. (2022); Park and Ho (2021);

Webster et al. (2019); Werpachowski et al. (2019)]. There is no guarantee

that these tools will capture all hidden problems, nevertheless, we strongly

believe these tools are effective in identifying many problems involving over-

fitting [Webster et al. (2019); Werpachowski et al. (2019)] and underspeci-

fication [Jacobs et al. (2022)].

1.2 Review of Dimensionality Reduction (DR)

This section provides a short review of the dimensionality reduction algo-

rithms and our experience of optimizing hyperparameters with two sets of

different types of data [Chung et al. (2023)].
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Feature Extraction

Principal Component Analysis (PCA)

[Maćkiewicz and Ratajczak (1993)]

Sci-kit Learn

Kernel PCA (KPCA) [Scholkopf et al.

(1997)]

Sci-kit Learn

Locally

Linear Embedding (LLE) [Roweis and

Saul (2000)]

Sci-kit Learn

Isomap [Tenenbaum et al. (2000)] Sci-kit Learn

UMAP [McInnes and Healy (2020)] UMAP Learn

Feature Selection

Mean Decrease Accuracy (MDA) [Han

et al. (2016)]

Custom Code inspired by

MLFin Lab

Shaply Values (SHAP) [Lundberg and

Lee (2017)]

SHAP Values

Feature Clustering

Variation of Information [Lopez de

Prado (2020)]

MLFin Lab + Custom Code

Maximal Correlation [Lopez de Prado

(2020)]

MLFin Lab + Custom Code

Distance Correlation [Lopez de Prado

(2020)]

MLFin Lab + Custom Code

1.2.1 DR Algorithms and the Need for Hyperparameter Op-

timization

Table 1.1 shows three classes of dimensionality reduction algorithms ex-

amined by [Chung et al. (2023)]. Among the three classes, the first two,

feature selection and feature extraction are well established in the literature

[Anowar et al. (2021); Ayesha et al. (2020); Maaten et al. (2009); Reddy

et al. (2020)]. [Chung et al. (2023)] introduced the third class named Fea-

ture Clustering to combined key features from the previous two classes.

Feature Clustering techniques could be thought of as a generalization of a

method known as Clustered MDA [Lopez de Prado (2020, 2018b)]. The

class extends Clustered MDA in three ways: (1) any clustering method

could be used for the clustering step, (2) any procedure to determine feature

importance could be used to replace MDA, and (3) many feature extraction

methods could be used to reduce the clusters into a lower-dimensional rep-

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.KernelPCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.LocallyLinearEmbedding.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.Isomap.html
https://umap-learn.readthedocs.io/en/latest/
https://github.com/hudson-and-thames/mlfinlab
https://github.com/slundberg/shap
https://github.com/hudson-and-thames/mlfinlab
https://github.com/hudson-and-thames/mlfinlab
https://github.com/hudson-and-thames/mlfinlab
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resentation. In particular, the last extension allows this type of method to

switch between feature selection and feature extraction seamlessly, which

is the main motivation to give them a new name.

In general, a dimensionality reduction algorithm has far fewer hyperpa-

rameters than a deep learning method [Bischl et al. (2023); Brigato et al.

(2021); Yang and Shami (2020)]. However, there might still be too many

parameter combinations to explore by hand. An example involving Ker-

nel PCA might has a half a dozen hyperparameters, but since several of

the hyperparameters could take on any arbitrary integers, the total number

number of parameter combinations could be easily reach thousands. [Chung

et al. (2023)] showed that the different parameter combinations give rise to

results with very different quality measures, therefore, it is critical to care-

fully explore the hyperparameter choices. Since a deep learning method

typically has a lot more hyperparameters, with even more combinations

to consider, it is even more necessary to carefully tune the hyperparame-

ters [Akiba et al. (2019); Brigato et al. (2021); Waring et al. (2020)].

1.2.2 Hyperparameter Optimization Algorithms

One key challenge in hyperparameter optimization is that the relationship

between a hyperparameter and the ultimate quality metric for the solution

is often very complex, for example, how the number layers of a neural

network affects a loss function is not clearly understood [Kingma and Ba

(2017); Yang and Shami (2020); Yu and Zhu (2020)]. The hyperparameter

optimization problem for a dimensionality reduction task could be simpler

in some sense, but it is similarly complex. This complexity typically include:

(1) the relationship between the features (i.e., the hyperparameters) to be

optimized and the ultimate objective function is complex, generally, not-

differentiable and not continuous; (2) some of the hyperparameters are

non-numerical values; (3) the hyperparameters might be highly correlated;

(4) the hyperparameter choices might be subject to many constraints. The

commonly used optimization procedure is based on the multi-armed bandit

approach with variations in several aspects, which we will touch on the

top three [Diaz et al. (2017); Li et al. (2017); Kandasamy et al. (2017);

Karl et al. (2023)]. (1) How to generate the hyperparameter combinations

to examine, which commonly described as exploration-exploitation trade-

off [Jamieson and Talwalkar (2016); Karnin et al. (2013)]. (2) How to

reduce the cost of evaluating non-promising cases [Li et al. (2017, 2020)].

And, (3) how to parallelize the execution to make the best uses of the
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available parallel computing systems [Li et al. (2020); Meister et al. (2020);

Gonzalez and Zavala (2023)]

There are a number of software tools for optimization hyperparameters

of neural networks [Akiba et al. (2019); Feurer et al. (2015); He et al. (2021);

Lindauer et al. (2022)]. In [Chung et al. (2023)], the Latin hypercube sam-

pleing was used to generate hyperparameter combinations [Deutsch and

Deutsch (2012)], a custom version of hyperband was developed in python [Li

et al. (2017)], and Dask was used for parallelizing the evaluation of each

hyperparameter combinations [Rocklin (2015)]. This approach has a rela-

tively static set of hyperparameter configurations to examine at each stage

of the optimization algorithm, which simplify the selection of which config-

urations to go into the next stage where more computational resources will

be devoted to examining each configuration. For moderate-sized test cases,

this is an effective approach. For larger problems, there are approaches

that are more appropriate for making use of a large number of CPUs and

CPUs with more asynchronous selection approaches [Bottou et al. (2018);

Li et al. (2020); Meister et al. (2020)] and more sophisticated estimation of

the quality of each configuration [Karl et al. (2023); Wu et al. (2019); Yang

and Shami (2020)].

1.2.3 Model Selection, Metrics, and Evaluation

A dimensionality reduction task is usually used as a pre-processing step

for another data analysis step, for example, a regression model [Mease and

Wyner (2008)] or a classification model [Yu et al. (2023); Yoon (2021)].

For simple DR models, we might be able to rely on residual and related

error measures to directly measure the effectiveness of the reduced mod-

els [Maćkiewicz and Ratajczak (1993); Scholkopf et al. (1997)], however,

for more complex techniques, such error measures are no long appropri-

ate [Anowar et al. (2021); Jia et al. (2022); Ray et al. (2021); Zebari et al.

(2020)]. For example, for the Numer.ai contest, the preferred quality mea-

sure is the Spearman Rank Correlation (SRC), which is completely different

from any Euclidean distance measure [Numerai (2024); Zar (1972)]. In tests

conducted by [Chung et al. (2023)], a random forest based regression model

is built as an example data analysis task for the dimensionality reduction

results. This choice was made because a random forest is a relatively in-

expensive procedure to build a useful model for original task motivated

the study. Since this regression model building procedure also has its own

hyperparameters, it only make sense for the overall hyperparameter opti-
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mization process to consider these hyperparameters in addition to the ones

for DR algorithms.

Random Forests Regressors Next, we expand the discussion on choos-

ing the regression model for data analysis task.

The original study [Chung et al. (2023)] was motivated by Numer.ai

contest [Numerai (2024)], where each feature of the raw data given is quan-

tized to five levels only. Such coarse quantization was partly to preserve

the privacy of the data involved and partly to remove known dynamics

from the contest data [Khanan et al. (2019); Narayanan and Shmatikov

(2006); Price and Cohen (2019)]. Given the five levels are represented as

floating-point values between 0 and 1, we could treat the overall modeling

problem as either regression problem or a classification problem. The Nu-

mer.ai team stated that although both regression and classification have

their merits when approaching this problem, however in their own research

they have found that modeling through regression leads to less over-fitting

of historical data and thereby reducing variance of the models. In a number

of tests we found that classification models were not noticeably better than

random guesses.

To build a regression model, [Chung et al. (2023)] chose to use a Random

Forest Regressor. This choice was made for several reasons. First, the

Numer.ai team noted that ensemble and gradient-boosted models tend to

work the best with their data and meta-model. There are several different

choices possibilities given this general advice, for example, Random Forests

and Gradient-boosted Decision trees (GBDTs) are known to be effective,

however Random Forest could be built far more effectively on a parallel

computer as all ensemble members could be trained at the same time,

rather than sequentially like GBDTs. In short, the random forest approach

was chosen for it computational efficiency.

K-fold Cross-Validation Given that the process of hyperparameter op-

timization requires the evaluation of many hyperparameter combinations

(or configurations), a key strategy to reduce the cost of these evaluations is

to shortcut the evaluation process[Eggensperger et al. (2019); Hospedales

et al. (2022); Yu and Zhu (2020)]. A concrete strategy for implement-

ing this shortcut idea is known as successive halving, which known to be

more easily parallelized for taking advantage of massive computer clus-

ters [Li et al. (2020); Meister et al. (2020)]. A more dynamic alternative is

the multi-armed bandit algorithm [Jamieson and Talwalkar (2016); Karnin
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et al. (2013); Lattimore and Szepesvári (2020)]. The common theme among

these approaches is to control the budget allocated to early stages – pre-

sumably when most of the configurations evaluated are not very promising,

so that these evaluations would not cost more than later evaluations. The

budget could be described in different ways, [Chung et al. (2023)] decided

to use the number of data records as a specific measure for computational

budget. This is an approach used by many hyperparameter optimization

tools [Kingma and Ba (2017); Zhou et al. (2023)].

Given that most of the evaluations in the HPO procedure will be only

operate on a small fraction of the data, there is a concern about overfit-

ting [Bailey et al. (2014); Park and Ho (2021); Wu et al. (2015)]. A common

approach for addressing this concern is through cross validation [Ng et al.

(1997); Stephen Bates and Tibshirani (2023)]. We are aware of reports

that cross validation might not be sufficient in some cases [Keevers (2019)],

however, we don’t have a generic strategy that could replace it.

In [Chung et al. (2023)], a 5-fold cross validation is used throughout

the configuration evaluation process. Empirical results showed that this

approach was able to provide more consistent outcome for the hyperparam-

eter optimization task. In earlier tests, we also saw that the k-fold cross

validation was effective in many different application scenarios [Lopez de

Prado (2018b)].

1.2.4 Hyperparameter Configurations and Parallelization

Earlier, we mentioned that the actual hyperparameter optimization process

experimented by [Chung et al. (2023)] not only include parameters for di-

mensional reduction algorithms, but also those of a random forest algorithm

used for evaluating the quality of the DR output. Next, we briefly review

the sampling procedure for generating the hyperparameter configurations

and the parallelization approach to manage the computation time.

Latin Hypercube Sampling The software implementation of the Ran-

dom Forest algorithm used by [Chung et al. (2023)] has eight hyperpa-

rameters. The implementations of the dimensionality reduction algorithms

mentioned in Table 1.1 has about three to 20 additional hyperparameters.

Even if we only choose to search through 3 different options per hyper-

parameter, an extremely modest amount, this would give 311 ∼ 177, 000

configurations if we chose to use a simple grid search. Given that the Nu-

mer.ai dataset has millions of row and over 300 features, the computational
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cost would be enormous. A simple strategy to limit the amount of configu-

ration examined would be to perform a multi-dimensional random sample,

a more systematic approach is Latin Hypercube Sampling [Deutsch and

Deutsch (2012)].

In general, a multi-dimensional Latin Hypercube Sampling (LHS) is

more efficient version of Random Sampling for hyperparameter selection

[Deutsch and Deutsch (2012)]. LHS searches through a wider scope of

configurations of hyperparameters by randomly sampling through separate

strata of the combinatorial grid of hyperparameters, avoiding combinations

where are similar to each other, which would repeat needless computation.

Utilizing Dask Parallel Computation Given the number of configu-

rations to explore and the computationally intensity of DR algorithms’ and

Random Forest model’s training, we need to utilize parallel computation.

The work of [Chung et al. (2023)] utilize python as Jupyter notebooks.

Jupyter notebooks are fast becoming a standard for data scientists as their

flexibility for performing analysis and tuning models are far more suited for

common data science tasks [Perez and Granger (2007)]. Within this ecosys-

tem, Dask is an effective software package that can connect local or remote

compute clusters as an Python object which can be used interactively in

Jupyter notebooks [Rocklin (2015)]. Dask is partuclarly easy to use for data

parallel tasks such as independent evaluations of different hyperparameter

configurations from a HPO procedure. Dask also builds DAGs for parallel

operations which require computation done in a particular order as well,

allowing for further flexibility if necessary.

1.2.5 Use Building Monitoring Data to Understand Nu-

mer.ai Data

Since the Numer.ai data is obfuscated, we are attempting to understand it

by drawing analogy with another one that has some similarity. For this pur-

pose, [Chung et al. (2023)] used a set of building monitoring data [Luo et al.

(2022)]. The building monitoring data includes weather station recording

of outdoor weather conditions and many details of the building’s Heating,

Ventilation, and Air Conditioning (HVAC) system as well as the electricity

usage. In particular, the tests from [Chung et al. (2023)] used the weather

conditions to build a model to predict the total daily electricity usage.
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How Building Monitoring Data Might Be Useful The building

monitoring dataset is useful for two main reasons. The relationship be-

tween outdoor weather condition and electricity usage of a building is well

understood, therefore the dimensionality reduction results could be veri-

fied easily. The building monitoring data is relatively small, and therefore

it takes less time to perform hyperparameter optimization. In the daily

record form, the building monitoring data has 529 rows and 192 columns.

Though the number of columns is comparable with Numer.ai data (310

columns), the number of rows is much smaller.

Turning Building Monitoring Dataset into Daily Records Both

the building monitoring data and the Numer.ai data are time series. A key

observation about the Numer.ai data is that it has more than 300 columns,

while the outdoor weather condition given by the weather station has only

four variables: air temperature, Dew point, relative humidity, and solar

radiation. The building monitoring data is recorded every half-an-hour.

For each day, there are 48 values for each of the four variables. For a whole

day, there are 192 different values associated with the four variables. By

folding all 192 values into a single daily record, a new daily time series

would have 192 features for each total daily electricity usage (the target

variable of the regssion). This process creates a data table with nearly as

many columns as Numer.ai data.

After turning the building monitoring data into a wider table, we also

apply a quantization process similar to that used to generated the Numer.ai

data. A simple description of this quantization is that each column (and

each epoch) is processed separately; for a five-level quantization, the top

fifth of the values are converted to 1, the fifth to 0.75, and so on. The details

of this quantization process could be found in [Chung et al. (2023)]. This

quantization process preserves some correlation between columns, however,

from Figure 1.1 we see that it changes correlations quite noticeably.

Due to the data construction process, the building monitoring dataset

shows high multicollinearity. Columns from the same weather feature show

high correlation as apparent in Figure 1.1(a). Similarly, there are significant

correlation among the columns of the Numerai data. Both of them could

benefit from dimensionality reduction before model building [Mansfield and

Helms (1982); Thompson et al. (2017)].

For the regression model, the weather features are used to predict the

electricity usage that is dominated by the building’s HVAC system. Due to

strong variations within a day, the HVAC electricity usage does not follow



March 6, 2024 6:2 ws-book9x6 ws-dr-hpo page 11

Lessons on Hyperparameter Optimization from Data Driven Dimensionality Reduction11

Air 
Temperature

Dew Point

Relative 
Humidity

Solar 
Radiation

1

0

-1

Real Valued Data

Air 
Temperature

Dew Point

Relative 
Humidity

Solar 
Radiation

1

0

-1

5-level Quantized Data

Fig. 1.1 Correlation heatmaps of both real-valued and quantized building monitoring

data

the outdoor temperature or other weather features precisely, however, the

overall electricity usage per day is primarily determined by the heat gain

from outdoor weather. For this reason, the overall relationship between

the weather condition and electricity usage per day could relatively easily

modeled [Kim et al. (2018)]. In short, there is a reasonable expectation that

the regression model for building monitoring data have a good solution,

while the regression model for the Numer.ai data has no such expectation.
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The best hyperparameter combination leads to a mean Spearman Rank

Correlation of about 0.57 for the building monitoring data, while the same

value remains below 0.05 for the Numer.ai data [Chung et al. (2023)].

1.3 Lessons from DR Study

After review the hyperparameter optimization for dimensionality reduction

task in the previous section, next we outline the key lessons to take from

the exercise.

1.3.1 Understanding the Numer.ai data

In the work by [Chung et al. (2023)], the authors attempted to understand

the Numer.ai data by folding a building monitoring data set into daily

records, which created a data set that resembles the Numer.ai one, but

with known properties for the columns of the data table. Section 1.2.5

summarizes the similarities between the two data sets. Next, we describe

the key differences.

After quantizing the building monitoring data, the regression model

generated with the random forest is able to capture significant amount of

information about the electricity usage as measured by the Spearman Rank

Correlation [Chung et al. (2023)]. In contrast the regression model pro-

duced by the random forest from the Numer.ai data was only very weakly

correlated with the target variable, where the observed mean SRC is less

than 0.05. Extracting weak signal from data is an interesting challenge on

its own. One opportunity we see in studying how the obfuscation process

impacted the signal extraction. In particular, we see from Figure 1.1 that

quantization noticeably affected the correlation among the columns of the

feature table. Quantifying this impact could be a useful exercise for further

understanding the Numer.ai data.

1.3.2 Selecting the right objective function for HPO

The dimensionality reduction task is typically a part of the feature engi-

neering process for data analysis and machine learning [Mierswa (2016)].

As such, the quality of DR task might be better measured together with the

down-stream analysis operations. Thus the hyperparameter optimization

should use these measures that include the analysis tasks. In fact, several

pitfalls associated with hyperparameter tuning are related to ineffectual

target being used for optimization [Eggensperger et al. (2019); Vento and
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Fanfarillo (2019)]. In [Chung et al. (2023)], a regression model was selected

as the downstream task for dimensionality reduction.

Based on the discussion earlier, the regression model is well-suited for

building monitoring use case, and the hyperparameter optimization was

able to noticeably improve the Spearman Rank Correlation used to measure

the quality of the regression models. However, for the Numer.ai test case,

the situation is not as clear because the Spearman Rank Correlation values

are always in a few percent (∼ 0.05) and the dimensionality reduction

techniques were not able to improve the results of regression according to

the SRC measures. So far, the tests could not differentiate among the

following possible causes: (1) SRC is not a good measure of quality, (2)

regression models generated by the random forest approach are not effective

for the use case – either the random forest approach is not able to build a

good regression model or the regression model is not a suitable modeling;

(3) the features contained in the Numer.ai data set are not capturing the

relationship with the target variable.

In Section 1.2.3, an argument was made for performing k-fold validation

to minimize the potential bias introduced by working with a small number

of data records during the early rounds of the HPO process. This use of

a smaller number of data records during HPO is generally described as

early stopping in literature [Falkner et al. (2018); Karnin et al. (2013)] and

is a critical to the overall effectiveness of HPO algorithms. In general,

using less budget during the early rounds of an HPO process introduces

higher uncertainty to the quality metric used. A systematic approach to

addressing this issue is to estimate the confidence interval of the quality

metric and only eliminate hyperparameter configurations that are sure to

be not competitive [Jamieson and Talwalkar (2016); Karnin et al. (2013)].

1.3.3 Efficient HPO algorithm makes a difference

From the experience of optimizing the hyperparameters for dimensional-

ity reduction [Chung et al. (2023)], we see that an effective optimization

algorithm makes a big difference. This could be considered as a confirma-

tion of the vast quantity of published work on hyperparameter optimization

(HPO) [Bischl et al. (2023); Morales-Hernández et al. (2023); Karl et al.

(2023)]. We see three key factors that are critical to an effective HPO

approach:

• A high quality set of hyperparameter combinations for exploration.

To reduce the complexity of selecting configuration for the next



March 6, 2024 6:2 ws-book9x6 ws-dr-hpo page 14

14

round, highly parallel HPO algorithms often use relatively static set

of hyperparameter combinations. In general, an effective trade-off

between exploration and exploitation is core to an HPO algorithm

and there are extensive study on this topic [De Ath et al. (2021);

Zhou et al. (2023)]. In [Chung et al. (2023)], a static choice is made

with Latin Hypercube Sampling of the hyperparameter space. This

choice is relatively simple to implement and is found to be effective

for making uses of modest number of computing nodes. For an

effective exploration of a large number of computing elements, a

more dynamic approach would be more effective [Li et al. (2017);

Falkner et al. (2018); Meister et al. (2020)].

• The second factor in an effective HPO algorithm is a robust early

stopping strategy for evaluating not-so-promising hyperparameter

configurations [Brandt et al. (2024); Falkner et al. (2018); Karnin

et al. (2013)]. By allocating a small budget to an early round of

evaluations, an HPO procedure could complete the the evaluations

of a large number of test cases in the early rounds with modest

cost and ensure the overall cost of the whole HPO procedure to

be a small multiple of evaluating the full budget instances of the

most promising hyperparameter configurations. In this process,

the right objective function for optimization is critical, and so is

the estimation of the uncertainty of the objective function [Bischl

et al. (2023); Falkner et al. (2018); Karl et al. (2023); Jamieson and

Talwalkar (2016); Karnin et al. (2013)].

• The 3rd factor in an effective HPO algorithm is its ability to take

advantage of the parallel computing resources available. A large

HPO problem might need to examine many thousands of config-

urations that could be evaluated independently [Li et al. (2020);

Meister et al. (2020)]. At the same time, modern computing plat-

forms typically have many computing elements available. [Chung

et al. (2023)] have taken a relatively straightforward approach for

parallelizing each round of an HPO process, while other forms of

parallelization are also available in published tools [Falkner et al.

(2018); Gonzalez and Zavala (2023); Li et al. (2020, 2022); Zhou

et al. (2023)].
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1.4 Observations with Broader Applications

Based on the lessons from the hyperparameter optimization for a set of

dimensionality reduction use cases described earlier, we next draw a few

observations for more general hyperparameter optimization problems. For

those interested in the HPO algorithms and tools, please refer to recent

review articles [Bischl et al. (2023); Karl et al. (2023); Morales-Hernández

et al. (2023)].

Select the right tool In the study by [Chung et al. (2023)], the re-

gression model with weather variables as input to predict electricity usage

happens to work well because the total daily electricity usage is highly de-

pendent on the total amount of heat needs to be moved in order to keep the

indoor temperature constant for human comfort [Kim et al. (2018)]. Had

we directly attempted to use the original time series, the regression model

would work not nearly as well because there is a significant delay between

the rise of the indoor temperature that triggers HVAC operation and the

rise of outdoor air temperature. This delay is hard to capture in any re-

gression model. The lesson here is that a data scientist needs to consider

carefully what modeling tool is suitable for the problem at hand.

Design the objective function for optimization carefully In study-

ing the two test cases in [Chung et al. (2023)], the authors selected to use

a regression model to measure the quality of the dimensionality reduction

task. We say that the regression model was a good fit for the building

monitoring test case because the resulting regression model captures the

relationship between daily weather condition and the total electricity us-

age. In many data analysis use case, there is a downstream task that makes

use of the output of the current analysis results. In which case, it would

make sense to consider the effect of the current task on the downstream

one in constructing the objective of HPO. Some of the pitfalls observed in

the literature are intimately related to optimizing with the wrong objective

function [Eggensperger et al. (2019); Vento and Fanfarillo (2019); Park and

Ho (2021)].

In some algorithms, a confidence interval or a uncertainty might be

available without much extra computation. In such cases, one may insist

on requiring an estimation of uncertainty or confidence interval from the

modeling procedure [Pineda and Serpa (2021); Wang et al. (2023); Yang and

Shami (2020)]. Such confidence information would be helpful in selecting
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the more promising hyperparameter configurations that deserve additional

evaluation during HPO, which would lead to more robust answers from

HPO.

Make effective uses of the parallel computing resources available

Selecting the right HPO tool could make a big difference. There are a

number of recently published reviews that could provide valuable infor-

mation [Bischl et al. (2023); Karl et al. (2023); Morales-Hernández et al.

(2023); Moosbauer et al. (2022); Shekhar et al. (2021)]. As observed in the

previous section, the most important features of a HPO algorithm includes:

effective hyperparameter space sampling, reliable early stopping strategy,

and efficient parallel execution strategies. Several HPO tools implement

state of the art options for all these three features [Akiba et al. (2019); Li

et al. (2020); Zhou et al. (2023)].

Most popular machine linear frameworks have their own hyperparam-

eter optimization or neural network architecture optimization tools. For

example, Scikit Learn has Scikit-Optimize∗ and Ray has Ray Tune†. Large

commercial AI frameworks also have their own optimization package, e.g.,

Microsoft has AutoML [He et al. (2021)], Google has Vizer, and Amazon

AWS has Sage Maker.

To optimize in a large hyperparameter space, potentially multiple paral-

lelization strategies might be needed. For example, during the early stages

of HPO, each configuration is evaluated on a relatively small budget that

might fit on a single compute node or a single GPU. However, during the

later stages, each configuration is evaluated with a larger budget and might

benefit from parallelization to reduce the execution time. Additionally,

there are many more configurations to evaluate during the earlier stages

of HPO to make use of a parallel computing environment, while the later

stages might have far fewer configurations to evaluate, where it could be use-

ful to breakup the evaluation of each configuration onto multiple computing

elements to make better use of the computing resources. The existing HPO

tools primarily parallelize the evaluation of multiple configurations, which

might not fully utilize the available computing resources during the later

stages of HPO process.

∗https://scikit-optimize.github.io/stable/auto_examples/
hyperparameter-optimization.html
†https://docs.ray.io/en/master/tune/index.html

https://scikit-optimize.github.io/stable/auto_examples/hyperparameter-optimization.html
https://scikit-optimize.github.io/stable/auto_examples/hyperparameter-optimization.html
https://docs.ray.io/en/master/tune/index.html
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Check for potential shortcomings of the optimized models It is

important to select the right hyperparameters to make an effective use of

an advanced analysis technique, however, it is just as appropriate to avoid

the traps and pitfalls identified in the literature [Eggensperger et al. (2019);

Vento and Fanfarillo (2019)]. A systematic approach for addressing these

problems would be to detect them. As overfitting is often the first con-

cern, there are a number of publications on detecting overfitting in various

contexts [Bailey et al. (2014); Park and Ho (2021); Webster et al. (2019);

Werpachowski et al. (2019)]. Recently, there was a tool developed for de-

tecting a broader class of problems known as underspecification [Jacobs

et al. (2022)]. It has not been a common practice to check for pitfalls in a

data analysis result. We strongly recommend a data scientist to consider

utilizing the automated tools being developed and published.

1.5 Summary and Observations

In this work, we reviewed the experience from optimizing the hyperpa-

rameters with two different dimensionality reduction use cases, a building

monitoring use case and a use case from Numer.ai competition [Chung et al.

(2023)]. Because the Numer.ai data is obfuscated, the authors attempted

to use the building monitoring data to understand the Numer.ai data. Even

though the original study was attempting to optimize the hyperparameters

for the dimensionality reduction, the experiences from this and other re-

lated data analysis work [Lopez de Prado (2018b)] allowed us to draw a few

lessons that are broadly applicable to different hyperparameter optimiza-

tion problems.

In order to automatically optimize the hyperparameter choices, the ap-

propriate optimization function is critical to the usefulness of the result of

optimization. Our general advice is for the user to understand the most

important downstream analysis task and take into account of this task in

constructing the objective function for hyperparameter optimization. In

the study by [Chung et al. (2023)], a regression model is selected as the

downstream analysis for the dimensionality reduction task and the regres-

sion accuracy is used as the objective for minimization. From that study,

we known that the regression model is effective for capturing the relation-

ship between weather conditions and electricity usage of a building, but

the not so for the Numer.ai test case. Further investigation is necessary to

differentiate the different possible reasons for the observation on Numer.ai

data.
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There are a number of publications on various traps and pitfalls about

HPO strategies currently available [Eggensperger et al. (2019); Vento and

Fanfarillo (2019); Webster et al. (2019)]. There are some research tools for

identify common issues such as overfitting [Bailey et al. (2014); Webster

et al. (2019); Werpachowski et al. (2019)] and a broader class known as

underspecification [Jacobs et al. (2022)], For future research, more tools

for detecting a wider class of issues would be needed. In daily practice,

we strong recommend every data scientist to utilize these existing tools to

detect known issues from their analysis results.
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