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ABSTRACT OF THE DISSERTATION 

 

Cell mechanotype in cancer progression and metastasis 

 

by 

 

Navjot Kaur Gill 

Doctor of Philosophy in Molecular, Cellular and Integrative Physiology 

University of California, Los Angeles, 2018 

Professor Amy Catherine Rowat, Chair 

 

Cell mechanical phenotype or ‘mechanotype’ is a label-free biomarker of cell state in physiological 

and disease contexts ranging from stem cell differentiation to cancer progression. However, to 

harness deformability as a phenotype for drug screening applications requires a method that can 

simultaneously measure hundreds of samples in parallel. Moreover, a systems-level 

understanding of molecular mediators of cellular mechanotype is lacking. In this dissertation, I 

present a simple and scalable technique, called parallel microfiltration (PMF), to measure cell 

deformability of multiple samples in parallel. I also demonstrate the application of PMF to screen 

cancer cells based on their mechanotype across multiple cancer types. This dissertation also 

demonstrates how PMF can interface with existing high throughput facilities. To achieve high 

throughput screening using filtration, I developed high-throughput filtration (HTF), which utilizes a 

customized arrays of individual microfluidic filtration devices in a standard multiwell format to 

enable mechanotype-screening of hundreds of samples in parallel. Additionally, this dissertation 

presents a mechanotype-screen of cisplatin-resistant ovarian cancer cells treated with a library of 

small molecules to identify synergistic anti-cancer drugs. Finally, my thesis also presents an 
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investigation of key cellular and nuclear molecular mediators of altered cell deformability using 

these mechanotyping methods; these findings identify novel molecular mediators of cancer cell 

mechanotype and also provide unique insight into potential mechanisms of a devastating 

neurological movement disorder, dystonia. Taken together, this dissertation presents novel high 

throughput cellular mechanotyping methods that enable measurements of cell deformability with 

unprecedented throughput, which should enable us to harness knowledge of mechanotype to 

identify novel treatment strategies for cancer and other diseases. 
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INTRODUCTION 

Cell mechanical phenotype, or ‘mechanotype’, is altered in various physiological and disease 

contexts, including malignant transformation of cells in cancer1,2. During cancer metastasis, 

primary tumor cells invade adjacent tissues, intravasate into the circulatory system, and colonize 

a secondary site3. Acquisition of invasive cell phenotype in the process of metastasis is marked 

by epithelial-to-mesenchymal transition (EMT)4. During EMT, cells exhibit a progressive loss of 

epithelial signature markers, such as E-cadherin and laminin-1, as well as gain of characteristic 

mesenchymal markers, such as vimentin and N-cadherin4. In addition to phenotypic and gene 

expression changes, alteration of cell mechanical properties is observed during invasion; more 

invasive cancer cells tend to be more compliant than benign tumor cells5-9. While the development 

of treatment strategies targeting hallmark phenotypes of cancer cells10 has led to significant 

progress in improving patient survival and disease outcome11-15, metastasis and recurrence due 

to chemoresistance remain a major clinical challenge16-23. Cell mechanotype could thus be used 

as an additional target phenotype for identification of synergistic cancer therapeutics.  

Parallel microfiltration (PMF) mechanotyping platform 

While cell mechanotype has potential as a label-free biomarker for cancer diagnosis24, to harness 

deformability—or the ability of cells to deform under mechanical stress—as a phenotype for drug 

screening applications requires a method that can simultaneously measure hundreds of samples 

in parallel in a high-throughput manner. Although existing techniques, such as micropipette 

aspiration25,26 and atomic force microscopy8,27, provide detailed insights into viscoelastic behavior 

of cells, these techniques require sequential measurement of samples, resulting in limited 

throughput. By contrast, simultaneous measurements of the deformability of multiple samples 

could enable scale up and application of mechanotyping in drug screening.  



 2 

This dissertation presents a method, called parallel microfiltration (PMF), for parallel 

measurements of cell deformability across multiple samples. An applied pressure is used to drive 

cell suspension through porous membrane of defined pore size; measurements of cell 

deformability are obtained by quantifying the fraction of sample retained above the membrane. 

More deformable cells readily deform through the pores and result in reduced retention volume, 

whereas less deformable cells tend to occlude the pores resulting in higher retention volume. 

Using PMF, human ovarian cancer cells with induced EMT by overexpression of transcription 

factors (Snail, Slug) are found to be more deformable than the epithelial-type cells. Moreover, I 

found that cisplatin-resistant ovarian cancer cells are more deformable compared to drug-

sensitive cells28,29.  

This thesis also presents a high throughput filtration (HTF) method, which enables the parallel 

microfiltration technology to interface with existing high throughput facilities and enable screening 

of cells. The core of HTF is a custom-fabricated array of 96 microfiltration devices; each device 

contains a series of pillars with well-defined micron-scale gaps that are smaller than the diameter 

of single cells. Cells are driven to passively deform through the gaps in response to applied 

pressure. The ability of cells to deform through the gaps determines the fluidic resistance of a 

single device; less deformable cells occlude the gaps and result in less flow through the filtration 

device, and thus a smaller filtrate volume.  Multiwell input and rapid measurements of the output 

filtrate volume using plate reader enable integration of HTF in automated sample handling 

platforms. HTF measurements are validated by filtration of epithelial and mesenchymal-type 

ovarian cancer cells in parallel, malignant versus benign breast cancer cells, prostate cancer cells 

with varying invasive ability, cells treated with common chemotherapy drug, paclitaxel, as well as 

cytoskeletal and nuclear perturbing drugs that modulate cell deformability.  
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High-throughput cell mechanotype screening  

Phenotypic assays provide a promising approach to identify effective drugs30. Typical screens 

based on molecular readouts, such as gene or protein expression31-33, and cellular metrics, such 

as proliferation34,35, apoptosis36,37, or invasion38,39, have successfully identified anti-cancer drugs 

with clinical efficacy40,41. Since the deformability of cancer cells is associated with cellular 

invasion42-45, compounds that make cancer cells stiffer may also decrease their invasion. 

Harnessing the intrinsic deformability of cells as an alternative phenotype for screening thousands 

of compounds in chemical libraries has exciting potential to identify synergistic anti-cancer drugs.  

This dissertation presents the first high throughput cell deformability-based screen. Using the 

PMF mechanotyping platform, cisplatin-resistant human ovarian cancer cells are screened 

against the Library of Pharmacologically Active Compounds (LOPAC), containing 1280 FDA-

approved small molecules; hits are identified as compounds that lead to significant decrease in 

deformability of cells. Follow-up assays confirm the effects of lead compounds on cell 

deformability, viability, cell cycle stage, and invasion. This unprecedented ability to screen cells 

based on their deformability also enables meta-analysis to identify key molecular hubs underlying 

the altered cell mechanotype. 

Molecular mediators of cell mechanotype  

While the role of cytoskeleton components, such as actin, microtubules, and intermediate 

filaments, in regulation of cell mechanotype is well established46-48, the role of nuclear proteins in 

mediating cell mechanotype is not well understood. This work highlights application of PMF 

mechanotyping technology to enable targeted mechanistic studies to investigate key molecular 

mediators that regulate cell deformability. Specifically, I found that mechanical integration of the 

nucleus and cytoskeleton via linkers of nucleoskeleton and cytoskeleton (LINC) complex and 

associated proteins play a critical role in regulating deformability of cells. I found that deletion of 
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or loss-of-function mutation in genes encoding the components of the LINC complex and 

associated proteins, relevant in devastating physiological disorders, such as progeria49 and 

dystonia50, lead to significant changes in cell deformability. I also extended these findings to 

provide insight into DYT1 dystonia, a neurological movement disorder, that is caused by a loss-

of-function mutation in the DYT1/TOR1A gene that encodes torsinA protein50. Fibroblasts isolated 

from DYT1 dystonia patients exhibit increased deformability compared to normal fibroblasts, and 

after exposure to mechanical stretching, DYT1 fibroblasts exhibit nuclei with greater strain and 

decreased cell viability. These findings further establish altered cell mechanotype as a potential 

mechanism driving pathogenesis of diverse diseases, from cancer to dystonia. 
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CHAPTER 1 

Screening Cell Mechanotype by Parallel Microfiltration 

 

Abstract 

Cell mechanical phenotype or ‘mechanotype’ is emerging as a valuable label-free biomarker. For 

example, marked changes in the viscoelastic characteristics of cells occur during malignant 

transformation and cancer progression. Here we describe a simple and scalable technique to 

measure cell mechanotype: this parallel microfiltration assay enables multiple samples to be 

simultaneously measured by driving cell suspensions through porous membranes. To validate 

the method, we compare the filtration of untransformed and HRasV12-transformed murine ovary 

cells and find significantly increased deformability of the transformed cells. Inducing epithelial-to-

mesenchymal transition (EMT) in human ovarian cancer cells by overexpression of key 

transcription factors (Snail, Slug, Zeb1) or by acquiring drug resistance produces a similar 

increase in deformability. Mechanistically, we show that EMT-mediated changes in epithelial (loss 

of E-Cadherin) and mesenchymal markers (vimentin induction) correlate with altered 

mechanotype. Our results demonstrate a method to screen cell mechanotype that has potential 

for broader clinical application. 

 

Introduction 

Cells are viscoelastic materials whose mechanotype is altered in diseases from malaria to 

cancer1,2. For example, malignant cells across different types of cancers are consistently 2-5´ 

softer than benign cells both in vitro and in situ3-6. Cell mechanotype also grades metastatic 

potential: highly invasive human ovarian carcinoma cells are up to 5´ softer than less invasive 

cells3,4. Mechanotyping of patient samples shows potential for clinical diagnoses of cancer7. 

Moreover, the compliance of cancer cells is altered by chemotherapy drugs. For example, 
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leukemia cells exhibit a ~102-fold increase in elastic modulus after being treated with 

dexamethasone and daunorubicin8. While cell mechanotype has potential as a biomarker in 

cancer diagnosis and for identifying effective drug treatments, to efficiently screen cell 

mechanotype for fundamental research and clinical applications requires a simple and scalable 

method. 

 

Various techniques provide quantitative insight into the viscoelastic behavior of cells including 

micropipette aspiration9,10, atomic force microscopy6,11, and cantilever compression12,13. These 

methods enable detailed characterization of the force-deformation response of typically <102 

individual cells, which limit the number of independent samples that can be probed within a 

reasonable timescale. An alternative way to measure cell deformability is to filter cells through 

membranes with micron-scale pores14-16; however, these measurements are performed 

sequentially, which limits scale-up. More recently, microfluidic methods enable more efficient 

measurements of cell mechanotype: real-time deformability cytometry probes the deformation of 

single cells at ~100 cells/s17 and requires over 1 hour to obtain data on a single sample from the 

initial state of cells in culture. Cells can also be deformed by the shear and compressive stresses 

generated as cells flow through micron-scale constrictions18-20, or through opposing fluid 

streams21; while these methods enable measurements at rates of up to ~2,000 cells/sec, the total 

measurement time for a single sample is approximately 1.5 hours as high-speed imaging and 

intensive computational analysis is required; this also challenges the measurement of different 

samples in parallel. If we could rapidly assess the deformability of multiple samples in a single 

measurement, we could harness the intrinsic mechanotype of cells for practical applications.  

 

Here we describe a parallel microfiltration (PMF) method that enables simultaneous 

measurements of cell mechanotype across multiple samples. We use uniform air pressure to 

drive cell suspensions through porous membranes; the relative deformability of a cell sample is 
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quantified by the fraction of sample retained above the membrane. Herein we describe PMF 

design principles and operation parameters. Based on our experimental results and theoretical 

considerations, we develop a simple model that provides a physical explanation of PMF and 

allows us to relate our experimental data to cell deformability. We validate the method by 

mechanotyping a variety of cancer cell types, including epithelial and mesenchymal-type cells, as 

well as cells treated with chemotherapy drugs.  We focus on human promyelocytic leukemia (HL-

60) and ovarian cancer cells, as the mechanotype of these cells has been characterized using 

other complementary techniques3,4,11,22,23. 

 

Results 

Parallel microfiltration concept. The essential components of the PMF device are shown in 

Figure 1a. Polycarbonate membranes are sandwiched between two custom-fabricated 96-well 

plates; using membranes with varying pore sizes can enable filtration through multiple pore sizes 

in a single run. We place cell suspensions in the top wells, and apply a uniform pressure gradient 

across the membrane for a defined period of time. To quantify the filtration of each individual cell 

sample, we measure the fraction of the initial mass of cell suspension that is retained in the top 

well, which is the percentage (%) retention; equivalently, the number of retained cells can also be 

measured (Supplementary Fig. 1).  

 

Modeling membrane filtration. To understand the essential operation parameters and physical 

mechanism underlying PMF, we consider fluid flow through porous media, as described by 

Darcy’s Law, , where Q is the flow rate; V, the flow volume; t, the time; 

∆P, the pressure applied to drive the cell suspension to flow through the micron-scale pores; A, 

the cross-sectional flow area; L, the membrane thickness; µ, the dynamic viscosity of the cell 

medium; and k, the membrane permeability. When a cell is larger than a pore, it is subject to 

external stresses that cause it to deform. Whether or not a cell occludes a pore depends on the 

 

Q = dV /dt = DPAk /Lµ
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driving pressure, cell and pore sizes, surface properties, and the cell’s intrinsic mechanical 

properties9,24.  In each experiment, we maintain constant driving pressure and consistent cell-to-

pore size ratios across different cell samples (Supplementary Fig. 2). Previous observations 

show that the viscoelastic properties of cells, rather than surface interactions, dominate their 

deformation into a micron-scale pore25; we also minimize surface interactions by passivating the 

wells prior to filtration (Methods). We cannot exclude that altered cell surface properties 

contribute to cell filtration behavior, since friction forces between the cell and pore depend on both 

cell surface properties25 and deformability26. Yet cell deformability plays a central role in % 

retention measurements: we observe major decrease in % retention for cells whose F-actin 

structures are disrupted by treatment with cytochalasin D (Supplementary Fig. 3). On the other 

hand, stabilization of F-actin with colchicine treatment results in increased % retention 

(Supplementary Fig. 3a).  These results are consistent with previous reports of how 

pharmacologic and genetic perturbations of cytoskeletal or nuclear structures impact the ability of 

cells to deform through micron-scale pores; these perturbations primarily alter cell deformability, 

rather than cell surface properties18,25. Taken together, these results substantiate that the fraction 

of cells that occlude the pores at a set pressure depends on differences in cell mechanical 

properties8,19 and dictates the total volumetric flow: a larger fraction of occluded pores results in 

less flow through the membrane, and consequently fewer cells will transit through the pores.  

 

To model the filtration process, we consider the time-dependence of membrane occlusion. In a 

given time window, ∆t, a defined number of cells, N, that arrive at the membrane and transit the 

pores is determined by 

𝑁(∆𝑡) ='𝑛)(1 − 𝜒)-
./0

-1)

																																																																																																																					(1) 
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where n0 is the total number of pores in the filtration area, c is the fraction of cells that occlude 

the pores, and j is the total number of iterations. We fit this simple model to the measured filtration 

data by adjusting only one parameter, c, which reflects cell mechanotype. A lower c value 

indicates that a smaller fraction of cells occlude the pores; this is consistent with a sample of 

softer cells, the majority of which readily deform through the micron-scale constrictions in 

response to applied pressure. By contrast, a higher c value indicates that a larger fraction of cells 

occlude the pores on the experimental timescale, reflecting a sample of cells that are on average 

more resistant to deforming through pores of a particular size at a given pressure18,19,24.  

 

Optimizing sample cell density. The cell density is critical for filtration: with a low cell density, 

the number of pores exceeds the number of cells, and there is negligible change in the cell 

suspension flow rate. By contrast, if the cell density is too high, pores are rapidly occluded; similar 

jamming phenomenon is observed for colloidal suspensions27-29. To establish a suitable cell 

density for filtration, we determine the % retention of HL-60 and ovarian cancer cell samples 

across a range of densities from ~105 to 107 cells/ml. With increasing cell density we observe that 

the percentage of sample retained increases monotonically (Fig. 1b). One possible origin of this 

increased retention could be an increased viscosity of the cell suspension due to the higher cell 

density. However, according to Einstein’s equation to describe the effect of particle volume 

fraction, ϕ, on viscosity, η = ηs(1+2.5ϕ), where ηs is the solvent/medium viscosity. By Darcy’s law, 

the increase in viscosity between cell samples with concentrations of 105 versus 107 cells/ml 

would result in less than a 2% variation in suspension flow rate. Thus, the observed ~3-fold 

increase in % retention cannot be attributed to the altered viscosity of the cell suspension but 

rather the progressive occlusion of pores.  
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To evaluate how well our model describes the data, we obtain the best fit of Equation 1 with c as 

the sole fitting parameter (Fig. 1b,c). For filtration through 5 µm pores, c = 0.44, whereas c = 0.05 

for 8 µm pores, reflecting that a smaller fraction of cells occlude the larger pores. Importantly, 

these results guide us to choose an initial density of less than 106 cells/ml, which equates to a 

cell-to-pore number ratio of ~10 and ensures measurable filtration in the regime below which % 

retention saturates with increasing cell density. 

 

Establishing membrane pore size and filtration pressure. When setting up PMF to assay a 

particular cell type, both pore size and applied pressure must be selected to optimize the dynamic 

range of filtration. The cell-to-pore size ratio is typically ~1.2 – 3.1 (Supplementary Fig. 2). The 

optimal driving pressure depends on the fluidic resistance of the membrane, which is determined 

by its physical characteristics, such as the size and density of pores, as well as the physical 

properties of the cells. The applied pressure should be large enough to ensure that cells can 

deform and transit across the membrane, yet not so excessive that all cells transit through, 

precluding any measurement of cell mechanotype. To validate PMF, we use HL-60 cells, whose 

mechanical properties are well characterized11,30.  We establish the driving pressure for filtration 

through 5 µm pore membranes by performing a pressure sweep from 0.7 to 6.2 kPa. Across this 

pressure range, we observe a linear dependence of % retention on pressure (Fig. 1c). We then 

simultaneously filter HL-60 cells and neutrophil-type HL-60 (dHL-60) cells that are differentiated 

using all-trans retinoic acid (ATRA). These two cell types have similar sizes (Supplementary Fig. 

2) but distinct mechanical properties11,30. While the pressure response is linear for both cell types, 

there is a marked difference in slope (Fig. 1c), reflecting the difference in cell mechanotype. Fitting 

our model to this data reveals a larger c parameter for HL-60 cells (c = 0.19, R2 = 0.93) than dHL-

60 cells (c = 0.07, R2 = 0.99), indicating that dHL-60 cells are softer than HL-60 cells. Our results 

are consistent with previous findings that dHL-60 cells are 2-fold more compliant than HL-60 
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cells30, and have a lower Young’s modulus, EdHL-60 ~156 Pa versus EHL-60 cells ~855 Pa11. We also 

analyze the pair of human ovarian cancer cells, OVCA433-GFP (control) and OVCA433 that 

overexpresses SNAI1=Snail (OVCA433-Snail) that has undergone epithelial-to-mesenchymal 

transition (EMT). Previous studies indicate that cancer cell mechanotype is altered with 

EMT22,23,31,32.  We observe that the mesenchymal-like OVCA433-Snail cells are softer than the 

OVCA433-GFP control cells, as shown by the greater reduction in % retention with increasing 

pressure; fitting our model to this data reveals a larger c parameter for the OVCA433-GFP cells 

(c = 0.05, R2 =0.95) compared to the OVCA433-Snail cells (c = 0.01, R2 = 0.69). 
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Figure 1 | Overview of the parallel microfiltration (PMF) platform. (a) Schematic illustration of 
the parallel filtration platform. 1: Pressure gauge; 2: Aluminum plate for assembling; 3: Pressure 
chamber. An air pressure source (Supplementary Fig. 10) connects via the blue tube; 4: Silicone 
sealing pad; 5: 96-well loading plate; 6: Porous membrane; 7: 96-well bottom plate with O-rings 
(black); 8: Aluminum plate for assembling. (b) Dependence of HL-60 cell filtration on cell density 
through membranes of 5, 8, and 10 µm pores. Black circles: 5 µm pore membrane, 3.4 kPa 
applied for 20 s; black squares: 8 µm pore membrane, 0.7 kPa applied for 20 s; black triangles: 
10 µm pore membrane, 0.7 kPa applied for 20 s. Red squares show filtration of ovarian cancer 
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cells (OVCA433-Snail) through 10 µm pore membrane, 2.1 kPa for 50s. Lines represent model 
fitting obtained using the least squares method: solid lines for fitting data shown by black circles 
and red squares; fitting of the black squares is denoted with a dashed line. (c) Pressure 
dependence of HL-60 control (black squares) versus ATRA-treated (dHL-60, black circles) cell 
filtration with 5 µm pore membrane for 20 s. Filtration of ovarian cancer cells OVCA433-GFP 
control (red squares) versus OVCA433-Snail (red circles) with 10 µm pore membrane for 50 s.  
For b and c, filtration and modeling parameters are shown in the insets. Solid lines represent 
model fitting obtained using the least squares method. Each data point represents mean ± S.D. 
 

Predicting epithelial versus mesenchymal-type cells based on mechanotype. To test the 

utility of PMF in screening cancer cell mechanotype, we establish a pore size of 10 µm and driving 

pressure of 2.1 kPa (Fig. 1c) for filtration of representative epithelial and mesenchymal-type 

ovarian cancer cells (Fig. 2d). We first validate how transformation of murine ovarian surface 

epithelial cells (MOSE) by the HRASV12 oncogene33 impacts cell filtration. The mock-transformed 

(pWZL) MOSE cells show 90 ± 1% retention, whereas the HRasV12-expressing MOSE cells show 

32 ± 3% retention, indicating the transformed cells are more deformable (Fig. 2a). The MOSE-

HRasV12 cells also show reduced E-cadherin and elevated vimentin levels, which is consistent 

with mesenchymal phenotype (Fig. 2b). Another hallmark of mesenchymal-type cells is their 

greater propensity for colony formation in soft agar compared to epithelial-type cells34. Indeed, 

the MOSE-HRasV12 cells form a larger number of colonies compared to the mock-transformed 

control (Supplementary Fig. 4). We also tested MOSE cells engineered to overexpress cyclin 

E1, which is encoded by CCNE1, a less potent oncogene in this system. These cells express 

similar levels of E-Cadherin as the MOSE control cells and form only a small number of colonies 

in soft agar (Supplementary Fig. 4). Consistent with their epithelial phenotype, MOSE-Cyclin E1 

cells exhibit similar retention to the MOSE control cells (Fig. 2a). 

HRASV12-mediated transformation is accompanied by EMT (Fig. 2), which has critical implications 

in cancer: cells with mesenchymal phenotype exhibit enhanced motility and increased propensity 

to detach from the primary tumor35. While key changes in protein expression, such as the 

reduction in E-Cadherin and increase in vimentin during EMT are well-studied36,37, the changes 

that occur in mechanotype are not fully understood. Therefore, we next ask if EMT itself leads to 



 19 

increased deformability. To address this question, we probe two individual clones of the human 

ovarian cancer cell line SKOV3 that underwent EMT, acquiring the mesenchymal phenotype in 

the process of becoming drug-resistant. Both SKOV3EMT1 and SKOV3EMT2 clones exhibit a 

reduction in E-cadherin expression (Fig. 2b); they also show a reduced % retention compared to 

the control SKOV3 cells (Fig. 2a).  These results suggest that the process of EMT is accompanied 

by reduced stiffness.   

 

To test this hypothesis directly, we overexpress single genes that are master regulators of EMT 

(SNAI1=Snail, SNAI2=Slug, ZEB1=Zeb1). Here, we use a human ovarian cancer cell line, 

OVCA433, which has high endogenous levels of E-cadherin. We introduce human transgenes for 

Snail, Slug and Zeb1 by lentiviral infection and compare the resulting sublines by filtration. Similar 

to previous results in the SKOV3EMT1/2 cell lines, EMT-altered OVCA433 cells have increased 

deformability, as shown by the lower % retention of the modified cells compared to the non-

modified control (Fig. 1c, Fig. 2a).  

 

Evaluating the % retention across the entire panel of EMT cells reveals that the mean % retention 

of all epithelial-like cells is significantly higher than the mesenchymal-like cells, indicating that 

epithelial-type cells are more resistant to deformation through micron-scale pores than those with 

mesenchymal phenotype (Fig. 2a, Supplementary Fig. 5a). By Western blot analysis, we confirm 

that across our panel of 10 different EMT related cell types, all samples with retention above 80% 

are epithelial-like cells and express (i) increased levels of E-Cadherin and/or (ii) decreased levels 

of vimentin compared to cells with mesenchymal phenotype that show below 65% retention (Fig. 

2b,c). While epithelial and mesenchymal-type cells show distinct morphologies in culture, the size 

distributions of cells in suspension are similar, and there is a weak correlation of cell-to-pore size 

ratio with % retention, indicating that cell size does not significantly alter % retention 

(Supplementary Fig. 2c, correlation coefficient 0.14). Importantly we observe a single large peak 
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in the cell size distributions, indicating that clustering of epithelial-type cells is not a major 

contributor to pore occlusion. Imaging of membranes after filtration confirms that 93-98% of 

occluded pores are occluded by single cells (Supplementary Fig. 6); these results also show 

that cells do not undergo lysis as they occlude pores. We cannot exclude that altered friction 

between the cell and wall may impact % retention, especially as cell deformability affects the 

normal force exerted on the cell, and thus softer cells may experience reduced friction26.  Indeed, 

cells with increased metastatic potential show reduced surface friction during transit through 

pores38.  However, we do not observe any increase in % retention when mesenchymal-type cells 

are filtered with BSA treatment that blocks cell-surface interactions (Supplementary Fig. 7). We 

also confirm there are no observable differences in non-specific binding across cell lines 

(Supplementary Table 1). In addition, we find a marked >3-fold reduction in % retention when 

epithelial-type OVCA433-GFP cells are treated with cytochalasin D (Supplementary Fig. 3); 

these results substantiate that mechanotype plays a major role in determining % retention. 

 

To determine if PMF could inform the user of cell phenotype based on mechanotype alone, we 

conduct a blind screen across the EMT panel of cell lines, whose identities are not known to the 

user. These results show that PMF can be used to predict whether cells are more likely to be 

mesenchymal- or epithelial-like based on their mechanotype (Supplementary Fig. 5). We confirm 

the EMT phenotype of these samples by immunoblotting (Supplementary Fig. 8). 

 

To gain insight into the molecular origins of the altered mechanotype in EMT, we perform 

immunofluorescence and confocal microscopy to investigate the organization of key structural 

components, such as actin, microtubules, and the nucleus, which are major contributors to 

mechanotype8,18,39,40. We focus our analysis on pairs of cells that exhibit marked differences in 

mechanotype: mesenchymal-type cells (MOSE HRASV12, OVCA433 ZEB1) show an increased 

density of cortical actin compared to the control cells (MOSE pWZL blast, OVCA433-GFP) (Fig. 
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2e,f). There are neither observable differences in microtubule structure nor in cell nucleus 

morphology (Fig. 2e,g).  We also investigate the nuclear-to-cytoplasmic size ratio, which could 

also impact cell filtration rates.  While the reduced nuclear-to-cytoplasmic size ratio of the Zeb1-

expressing cells could help to explain their reduced % retention, the nuclear-to-cytoplasmic size 

ratio is not significantly different between MOSE HRASV12  and the control pWZL blast cells 

(Supplementary Fig. 9). Therefore, a reduced nuclear-to-cytoplasmic size ratio is not sufficient 

to explain the softer mechanotype we observe for all mesenchymal-type cells. 
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Figure 2 | Identifying epithelial versus mesenchymal cells by mechanotype. (a) Mouse 
ovarian surface epithelial (MOSE) and human ovarian cancer cells (SKOV3 and OVCA433) are 
modified to generate a panel of cells that includes epithelial- (black) and mesenchymal-like (red) 
cell types. Percentage retention of a panel of mouse and human cell lines after filtration with 10 
μm pore membrane at 2.1 kPa for 50 s. Each data point represents mean ± S.D. The modified 
cells show reduced % retention as compared to the non-modified control: Snail: 22 ± 4%, Slug: 
33 ± 4%, and Zeb1: 54 ± 5% versus control OVCA433-GFP: 91 ± 2%. SKOV3EMT1: 44 ± 4% and 
SKOV3EMT2: 52 ± 3% while the control SKOV3 cells: 84 ± 3%. Collectively the % retention of all 
epithelial-type cells is higher than cells with mesenchymal phenotype: 88 ± 5% vs. 41 ± 14%, p = 
1.8 ´ 10-15. (b) Western blot characterization of the cell panel probing for protein biomarkers of 
epithelial- and mesenchymal-type cells such as E-cadherin (ECad) and vimentin. (c) 
Quantification of E-cadherin and vimentin protein levels normalized to the loading control, actin. 
Data points represent mean ± S.D. (d) Heat map shows % retention for the EMT panel for both 8 
and 10 µm membranes. The 10 µm pore size shows reduced variability compared to the 8 µm 
pore size; therefore we conduct our screens using 10 µm membranes.  (e) Confocal images of 
immunolabeled cells. Nuclei are stained with DRAQ5. Two representative images are shown for 
each cell type. Scale, 10 µm. (f) Cortical to internal actin ratio of four representative cell lines from 
the panel. (g) Nuclear circularity.  
 

Detecting the effects of drugs on cell mechanotype. A potentially valuable application of PMF 

would be to identify effective anti-cancer compounds by screening cells on the basis of 

mechanotype. An effective chemotherapy strategy is to impair cell division by targeting 

cytoskeletal components that are essential for proliferation, such as microtubules41,42. One 

common drug is paclitaxel, which is used in treatment of ovarian, breast, and non-small cell lung 

cancers. To validate the utility of PMF to detect differences in cell deformability following drug 

response, we treat SKOV3 and OVCA433 cells with paclitaxel at 0.1 to 1000 nM; the IC50 for 

these cells is within this range43. We use a pressure of 2.1 kPa, which results in ~45 to 65% 

retention for the mesenchymal-type cells prior to drug treatment, ensuring a dynamic range for 

detecting softer or stiffer cells when multiple samples are screened in parallel. Over the range of 

paclitaxel concentrations, we observe that increasing doses of paclitaxel cause a significant >30% 

increase in retention (Fig. 3). Even for a physiologically relevant dose of 1 nM43, there is a 

statistically significant increase in retention for mesenchymal-type cells compared to DMSO-

treated control cells. In contrast, epithelial-like cells exhibit a smaller <10% increase in retention. 

For all measurements, we verify that cell viability remains over 94% (average viability 99%, 
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Supplementary Table 2). We also confirm that below 1 nM paclitaxel, there are no significant 

differences in cell size; at higher paclitaxel concentrations, there is a slight increase in cell-to-pore 

size ratio, yet the difference in % retention is typically within measurement error (Supplementary 

Fig. 2).   

 
 

Figure 3 | Effects of paclitaxel on the mechanotype of epithelial versus mesenchymal-type 
cells. Cells are treated with paclitaxel for 24 hrs prior to filtration through a 10 µm membrane. (a) 
Percentage retention of SKOV3 control and modified cells are measured after filtration at 2.1 kPa 
for 50 s. (b) Percentage retention of OVCA433-GFP control and modified cells are measured after 
filtration at 2.8 kPa applied for 40 s. Compared to the DMSO-treated control cells, there is an 
increase in % retention of 1 nM-treated cells: 17% ± 2%, p = 3.1 ´ 10-3 for SKOV3EMT1; 23% ± 6%, 
p = 1.9 ´ 10-5 for SKOV3EMT2; 15% ± 6%, p = 1.4 ´ 10-2 for OVCA433 SNAIL; 10% ± 6%, p = 1.2 
´ 10-2 for OVCA433 SLUG; 23% ± 2%, p = 8.9 ´ 10-5 for OVCA433 ZEB1. We note that with 
higher applied stresses, epithelial-type cells also exhibit a similar increase in retention 
(Supplementary Fig. 14).  Each data point represents mean ± S.D.      
 

Mechanotyping cisplatin-sensitive versus -resistant human ovarian cancer cells. To 

explore EMT in a context relevant to ovarian cancer treatment, we investigate the mechanotype 

of drug-resistant versus -sensitive ovarian cancer cells. A major challenge in treating human 

ovarian cancer is to distinguish cells that develop resistance to common chemotherapy drugs, 
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such as cisplatin, which frequently result in recurrence and poor patient outcome44,45. If we could 

apply PMF to detect ovarian cancer cells that are sensitive to cisplatin (SKOV3, OVCAR5) and 

their drug-resistant counterparts (SKOV3-CisR, OVCAR5-CisR) using cell mechanotype as a 

biomarker, our assay could have potential application in clinical settings.  

 

We generate drug resistant cells by treatment with cisplatin over 12 months23. These cells show 

similar size compared to their drug-sensitive counterparts (Supplementary Fig. 2). PMF reveals 

that both SKOV3-CisR and OVCAR5-CisR samples have lower % retention compared to the 

cisplatin sensitive cells (Fig. 4a), indicating that the drug-resistant cells are more deformable than 

their drug-sensitive counterparts. Since the EMT status of these cells had not previously been 

determined, we perform immunoblotting to verify if these softer, CisR cells also have biochemical 

markers that characterize mesenchymal-type cells. The SKOV3-CisR cells show reduced levels 

of E-Cadherin, a common feature of mesenchymal-type cells (Fig. 4b). While OVCAR5 cells 

inherently have low levels of E-Cadherin, the OVCAR5-CisR cells show a marked increase in 

vimentin levels; this is also a hallmark of cells with mesenchymal phenotype.  

 

To explore the origins of the altered mechanotype in the cisplatin sensitive and resistant cells, we 

investigate the structure of actin, microtubules, and the nucleus by immunofluorescence and 

confocal imaging. While microtubules exhibit similar structure in both cell types, the cisplatin 

sensitive cells have a denser cortical actin network compared to CisR cells (Fig. 4c,d). We also 

observe differences in nuclear morphology: while all cells exhibit nuclei with a variety of 

morphologies including ovoid and kidney-shapes, the circularity index is reduced for CisR cells, 

reflecting that their nuclei exhibit more irregular shapes than the cisplatin sensitive cells (Fig. 

4c,e). Altered physical properties of the nucleus may also contribute to the altered filtration 

behavior of the CisR cells, as the nucleus rate-limits the transit of cells through micron-scale 

pores18.  
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Figure 4 | Cisplatin-sensitive and -resistant human ovarian cancer cells show altered 
mechanotype. (a) Percentage retention of cisplatin sensitive cells, SKOV3 and OVCAR5, versus 
cisplatin resistant (CisR) cells, SKOV3-CisR and OVCAR5-CisR, after filtration with 10 µm pore 
membrane at 2.1 kPa for 50 s. Each data point represents mean ± S.D. (b) Western blot analysis 
and quantification of protein biomarkers for epithelial and mesenchymal-type cells, E-cadherin 
(ECad) and vimentin protein levels normalized to the actin loading control. Data points represent 
mean ± S.D. (c) Confocal images of immunolabeled cells. Nuclei are stained with DRAQ5. Two 
representative images are shown for each cell type. Scale, 10 µm. (d) Cortical to internal actin 
ratio. (e) Nuclear circularity. 
 

Discussion 

Here we show how PMF enables comparative measurements of cell mechanotype simultaneously 

across multiple cell samples. Using PMF, we observe a strong correlation between biochemical 

and mechanical phenotypes of cells through EMT, including when induced by acquisition of drug 

resistance, as well as by overexpression of specific master regulators that are implicated in EMT. 

We find that the mesenchymal phenotype following EMT, which is associated with cancer 

progression and drug resistance, results in increased deformability across the cell panel.  These 

findings were made possible by the ability of PMF to screen a panel of cells simultaneously. 

Moreover, the PMF method is scalable and significantly reduces the time required to analyze 

individual samples of cells; parallel measurements of cell deformability are not possible using 

existing methods.  

 

Our results show a marked difference in the mechanotype of epithelial versus mesenchymal-type 

cells. Studies using conventional techniques have indicated a difference in the mechanotype of 

these cell types22,23,31,32. While we observe that mesenchymal-type cells have a softer 

mechanotype, previous studies revealed that mesenchymal-type cells are stiffer. For example, 

normal murine mammary gland (NMuMG) cells that are induced through EMT by TGF-beta-1 are 

more resistant to deformation31,32. Similarly, CisR ovarian cancer cells have a higher elastic 

modulus compared to the drug-sensitive controls22,23. However, those results are obtained for 

cells adhered to glass substrates (E ~ 70 GPa), which tend to have well-developed actin stress 
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fibers and increased intracellular tension23. By contrast, PMF probes cells in a suspended state, 

where CisR cells have a lower density of cortical actin compared to the cisplatin sensitive cells. 

The mode of deformation between PMF and other techniques such as AFM is also distinct: PMF 

measures the ability of whole cells to deform through micron-scale pores that are ~40-70% of 

their size, whereas AFM indents cells over nm to sub-µm length scales.   

 

While PMF robustly identifies epithelial- versus mesenchymal-type cells, the molecular origins of 

cell mechanotype remain to be fully understood. Dramatic alterations in cytoskeletal architecture 

occur with EMT. For example, cortical actin reorganizes to form stress fibers and structures that 

enable directional motility31; these modified actin structures can contribute to altered cancer cell 

mechanotype4,46. In the mesenchymal-like cisplatin resistant versus sensitive cells, the observed 

decrease in cortical actin provides a plausible mechanism for their softer mechanotype: levels of 

cortical actin regulate % retention, as observed in HL-60 and OVCA433-GFP cells treated with 

cytochalasin D or colchicine to induce either a decrease or increase in F-actin (Supplementary 

Fig. 3). However, in other types of mesenchymal-like cells, we observe an increase in cortical 

actin compared to their epithelial counterparts; this typically causes an increase in cell elastic 

modulus, and thus cannot fully explain the observed softer mechanotype of all mesenchymal-type 

cells. The CisR cells also exhibit irregular nuclear structure. Since we cannot dissect the individual 

contributions of cortical actin and the nucleus, altered % retention could also be caused by altered 

structure of the cell nucleus, which is a major contributor to cell mechanotype and the ability of 

cells to transit and migrate through narrow pores18,47. Numerous other mechanisms could impact 

cell mechanotype. For example, several actin-associated proteins are downregulated by Snail, 

such as CAPG capping protein and gelsolin36. Rho-mediated actin remodeling22 and nuclear 

lamins18 can also alter cell mechanical properties. Other factors such as myosin II regulate 

contractility and motility48; the transcription factors YAP1 and TAZ are also implicated in cell 
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mechanotype49. PMF should enable further studies to elucidate the molecular mechanisms of 

mechanotype, for example by screening cells treated with siRNA or CRISPR libraries.  

 

Our label-free mechanotyping assay also has potential for clinical applications, for example, to 

screen established cell lines and patient samples for prognosis and drug screening. This robust 

and high throughput method allows rapid analysis of ~105-106 cells per sample, which is important 

due to the cellular heterogeneity within a tumor. While we have investigated here cell samples 

with relatively uniform cell-to-pore size ratios, PMF screening using a range of pore sizes could 

enable screening clinical samples that may contain mixed populations of cells with different size 

distributions. PMF could thus complement and enhance existing methods for evaluating cancer 

cells and their response to drugs. Considering that key steps in metastasis require large 

deformations of cells, such as intravasation and extravasation, this simple assay could provide 

physiologically relevant insights into the behavior of cancer cells. More broadly, PMF could be 

valuable for identifying compounds that are relevant to other disorders that are characterized by 

altered cell mechanotype, from malaria to diabetes. 

 

Methods 

Cell culture. Human promyelocytic leukemia (HL-60) cells are cultured (5% CO2, 37oC) in RPMI-

1640 media with L-Glutamine (Invitrogen) supplemented with 10% fetal bovine serum (FBS) and 

1% penicillin-streptomycin (PenStrep, Gemini BioProducts, Calabasas, USA). To avoid 

spontaneous differentiation that can arise due to increased HL-60 cell density, we maintain these 

cells at a density below ~8 ´ 105 cells/ml. Neutrophil-type cells (dHL-60) are generated by treating 

HL-60 cells with 5 µM all-trans retinoic acid (ATRA) (1 mM stock in ethanol, Sigma-Aldrich) for 5 

days. Human ovarian cancer (SKOV3 and OVCA433) cells are cultured in DMEM (+L-Glutamine, 

+Glucose, +Sodium Pyruvate) supplemented with 10% FBS, 1% Anti-anti (Gibco), and 2.5 µg/ml 

Plasmocin Prophylactic (Invivogen).  For OVCA433 cells and derivatives (Snail, Slug, Zeb1) as 
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well as MOSE pWZL blast, we use the same media with the addition of blasticidin S HCl (5 µg/ml, 

Corning Cellgro); for the MOSE HRASV12 cells, we add hygromycin (4 µl/ml, Corning Cellgro); and 

for the MOSE CCNE1 cells, puromycin (5 µg/ml, Corning Cellgro). To culture the pairs of cisplatin-

sensitive and -resistant cells, SKOV3/SKOV3-CisR and OVCAR5/OVCAR5-CisR, we use DMEM 

with 10% FBS, 1% Penicilin-Streptomycin, and 10 µM cisplatin (Sigma-Aldrich) for the resistant 

cells. Adherent cells are harvested by washing with 1× Phosphate-Buffered Saline (PBS, DNase-

, RNase- & Protease- free, Mediatech, Manassas, USA), treating with trypsin, and resuspending 

in fresh medium. To minimize clusters of cells, cell suspensions are passed through a 35 µm filter 

(BD Falcon) prior to each measurement. The identity of each cell line was confirmed by short 

tandem repeats (STR) profiling (Laragen Inc).  

EMT Transformation. To generate EMT gene expression clones, SNAI1, SNAI2, and ZEB1 

cDNA (Open Biosystems) are individually inserted into the pLenti6.3/V5-DEST vector (Invitrogen; 

ZEB1 and SNAI2) or pLenti4/V5-DEST vector (Invitrogen; SNAI1) by the Gateway cloning system 

(Invitrogen). OVCA433 cells are transduced with lentiviral expression plasmids harboring SNAI1, 

SNAI2, and ZEB1 or GFP (control) and selected with 5 μg/mL blasticidin (InvivoGen) for 6 d prior 

to use. SKOV3EMT cells are established by chronic exposure to a combination of 0.2 μM 

PD0332991 and 0.2 μM SNS032 for over 12 months (Taylor-Harding et al 2014, Submitted). 

SKOV3-CisR and OVCAR5-CisR cells are generated by culturing with 10 µM cisplatin over 12 

months23. 

Drug treatment. A stock solution of paclitaxel (25-950-CQC, Corning Cellgro) is prepared in 

DMSO to 1 mM. Cells are treated with the desired concentration of drug for 24 hrs prior to 

measurements.  

Parallel microfiltration. The PMF device is assembled using polycarbonate membranes 

(Isopore, Millipore) of 5, 8, and/or 10 µm pore diameter. Wells are loaded with 1% w/w bovine 
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serum albumin (BSA) solution (Fisher) for 1 hr at 37oC, and then emptied and air dried at least 1 

hr before each experiment. Cell suspension at a concentration of 0.5 � 106 cells/ml (ovarian 

cancer cells) and 1.0 � 106 cells/ml (HL-60 cells) is loaded into each well. Well-defined air 

pressures from 0.7 to 7 kPa are applied using a custom-built manometer (Supplementary Fig. 

10) and monitored using a pressure gauge (Noshok Inc., Berea, OH, USA). We determine % 

retention by collecting the sample suspension remaining in the top well and measuring the mass 

using a precision balance (Northeast Scale Inc., Hookset, NH, USA). To measure cell number 

and size distributions, we use an automated cell counter (TC20, BioRad). We also verify that cells 

in suspension do not cluster over our experimental time scale of ~15 minutes (Supplementary 

Fig. 11). 

Immunofluorescence staining and image analysis. Cell suspensions are placed in chambers 

of Millicell EZ slides (Millipore) for ~1.5 hours at 37oC before fixation with paraformaldehyde (4% 

in PBS) for 20 minutes at room temperature. Cells are then permeabilized with 0.2 % Triton X-

100 for 10 minutes and blocked with 3% BSA in PBS for 2 hours. To stain cytoskeletal 

components, primary and secondary antibodies (Sigma-Aldrich) are sequentially applied to cells 

for 1 hour: Anti-Actin (CAT#: A2066); Anti-Rabbit IgG F(ab′)2 fragment - Atto 488 (CAT#: 36098; 

λex-500 nm; λem-522 nm); Monoclonal Anti-α-Tubulin (CAT#: T5168); Anti-Mouse IgG−Atto 550 

(CAT#: 43394; λex-550 nm; λem-576 nm). To label the cell nucleus, we use the DNA-intercalating 

dye, DRAQ5 (Fisher Scientific). Imaging is performed using a confocal microscope (LSM 5 

EXCITER, Laser Scanning Microscope, Zeiss) equipped with a 63´ objective (63x/1.2 W Korr UV-

VIS-IR, C-APOCHROMAT, Zeiss). To measure actin signal, an Argon laser (488 nm) and BP505-

530 filter are used; to measure microtubule signal, a Helium-Neon laser (543 nm) and BP560-615 

filter are used; to measure nuclear signal, a Helium-Neon laser (633 nm) and LP650 filter are 

used. Midplane confocal images are analyzed using ImageJ. For analysis of cortical-to-internal 

actin ratio, we measure the integrated signal of immunostained actin in the whole cell and an 
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internal region that is 1 µm from the boundary of the cell; actin intensity in the cortical region is 

determined by subtracting the intensity of the internal region from the total actin intensity in the 

whole cell. Circularity is calculated as 4πA/P2, where A and P are the area and perimeter of 

individual nuclei; for a perfect circle, the circularity value is one.  

Western blots. Whole cell protein extracts are separated by SDS-PAGE and transferred onto 

PVDF membranes using semi-dry transfer (BioRad). After incubation with 5% milk in PBST (10 

nM Tris, pH 7.4, 150 nM NaCl, 0.1% Tween 20) for one hour, the membrane is probed with 

antibodies against proteins of interest including E-cadherin (CAT#: 610181, BD Biosciences), 

vimentin (CAT#: MS-129-PO, Thermo Scientific), and actin (CAT#: MA5-15739, Thermo 

Scientific) as a loading control. Antibodies are incubated at 4 °C for 12 h followed by three washes 

of 10 minutes each in PBST. Proteins are then detected with fluorescent-conjugated antibodies, 

Goat anti-Mouse IgG IRDye 680LT (CAT#: 827-11080) and Goat anti-Rabbit IgG IRDye 680RD 

(CAT#: 926-68170). Immunoblots are visualized using a Li-Cor Odyssey Infra-red imaging 

system. 

Soft agar assay. Anchorage-independent growth of MOSE epithelial and mesenchymal-type 

cells is tested by colony formation in soft agar. We plate 1-ml of DMEM (+L-Glutamine, +Glucose, 

+Sodium Pyruvate) supplemented with 10% FBS and 1% Anti-anti (Gibco) containing 1.2% agar 

into each well of a 6-well plate; ~104 cells are then suspended in 1% agarose containing culture 

medium. After 2-3 weeks, colonies are stained with 0.5 mg/ml iodonitrotetrazolium chloride and 

the number of colonies is determined across triplicate wells for each cell line. 

Statistical methods. We perform PMF using 4 wells for a single sample in parallel multiple 

sample measurements. All data is obtained from at least 3 independent measurements and is 

expressed as mean ± S.D. We use the Student’s t-test method to analyze the results and to obtain 

p-values.  
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Numerical modeling. The flow rate is proportional to the number of available pores, Q(t)=qn(t), 

where q is the flow rate through a single pore and n(t) is the number of open pores at time, t. 

While q is set by the applied pressure and pore dimensions and thus remains constant throughout 

a single experiment, the total flow rate, Q(t), changes over time as it is determined by the number 

of available pores. We model the filtration process using successive iterations over time: in a 

given time interval, τ, each available pore can be encountered by a single cell. To model filtration 

for a given set of conditions, we determine τ by (qc)-1, which is the time for the fluid volume per 

cell, 1/c, to pass through a single pore. Here, c is the density of the cell suspension, which remains 

relatively constant before and after the filtration measurement (Supplementary Fig. 12). In a 

given time window, ∆t, the total number of iterations is J=∆t/ τ. We use the least squares method 

to fit our experimental results, where the only adjustable parameter is c , the fraction of cells that 

occlude the filtration pores. Other parameters in the model are known: the initial number of pores 

in the filtration area is obtained by measuring the membrane pore density and total filtration area 

in a single well (Supplementary Fig. 13); the medium flow rate through single pores is calculated 

using Poiseuille’s law and is in agreement with the experimentally measured values. By 

considering the fraction of cells that occlude the pores within each time interval, we can 

recapitulate the decreasing permeability of the membrane: as filtration proceeds, an increasing 

volume of cell suspension and thus, number of cells, arrive at the pores; the fraction of occluded 

pores increases; the total flow rate subsequently decreases; and progressively fewer cells are 

brought to the membrane. A similar time-dependent increase in fluidic resistance is considered in 

crossflow membrane filtration of colloidal suspensions50,51.  

 

Supplementary notes 

1. Parallel filtration device and measurement. To obtain a pressure-tight seal between the 

pressure chamber and the top plate, we place a silicone seal (McMaster Carr, USA) in between 

the top plate and the pressure chamber. Two aluminum plates affixed to the top and bottom of 
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the ‘sandwich’ are used to clamp the entire setup together (Fig. 1). To facilitate flow of cell 

suspensions through the porous membrane, we drill 1 mm holes into the bottom of each well of 

the bottom plate (Supplementary Fig. 15). Cross-sample contamination and leakage across 

individual sample wells are prevented by sealing each well with an O-ring; a silicone mat 

punctuated with holes that correspond to the array of wells can alternatively be used to isolate 

the contents of individual wells.  

 

2. Protocol for PMF assay. (1) Place silicone mat on bottom plate, or O-rings in each well of the 

bottom plate (Fig. 1). (2) Position porous membranes on top of the bottom plate and sealant. (3) 

Place the top plate on the membrane/O-rings, using the steel bolts at the edge of the plates to 

guide the alignment of the top and bottom wells (Supplementary Fig. 15); thereafter clamp both 

plates using the edge steel bolts. (4) To minimize cell-device surface interactions, pretreat the 

device by placing 800 µl of fresh bovine serum albumin (BSA) solution (1% w/w in de-ionized 

water, filtered through 0.2 µm Surfactant-Free Cellulose Acetate (SFCA) membrane filter unit 

(Nalgene, Thermo Scientific) in each top well before use. Incubate the setup at 37oC for one hour. 

Thereafter, remove the BSA solution from the wells and air dry the device. (5) Place the parallel 

filtration device in a shallow ~ 7 mm water bath; this prevents sample drainage due to gravity. (6) 

Measure the density of the cell suspension using a particle/cell analyzer (e.g. BioRad TC20 Cell 

Counter or Coulter Counter) and then place 750 µl of cell suspension with a concentration of 106 

cells/ml into each well. (7) Position the pressure chamber and tighten the entire device together 

to achieve an airtight seal. (8) Apply a well-defined pressure for 20 – 50 s. (9) Remove the 

pressure chamber and collect the samples retained in the top wells for measurement of retained 

volume and/or cell number.  

 

3. Pore size dependence of filtration. To determine the pore size dependence of filtration, we 

use three types of polycarbonate membranes (Isopore, Millipore, USA) with pore sizes of 5, 8, 
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and 10 µm. Since membrane porosity is essential for filtration, we characterize the membranes 

using confocal microscopy, taking advantage of the zero-reflection of the hollow area of pores. 

We observe that some pores are connected together, and define these as pore clusters 

(Supplementary Fig. 14). To obtain the porosity for each membrane, we perform quantitative 

image analysis using ImageJ to determine the ratio of pore or cluster area to total membrane 

area, as shown in Supplementary Table 3. 

 

Supplementary Figures 

 

Supplementary Figure 1. Quantification of cell filtration by % retention. Filled squares 
represent cell number % retention; open symbols show fluid mass % retention; both parameters 
can be used equivalently to quantify filtration. 
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Supplementary Figure 2. Size distribution and filtration of cells. Percentage retention versus 
cell-to-pore size ratios for: (a) HL-60 and dHL-60 cells; (b) cisplatin-sensitive (CisS) and cisplatin-
resistant (CisR) cells; (c) epithelial and mesenchymal-type cells in the cell panel; and (d) cells 
treated with paclitaxel and carrier DMSO control. 
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Supplementary Figure 3. Effect of F-actin on filtration. (a) HL-60 cells treated with 
cytochalasin D (Cyto D) or colchicine (Colc) to induce either a decrease or increase in F-actin. 
Measurement conditions: 8 µm pore membrane; 0.7 kPa applied for 20 s. (b) OVCA433-GFP cells 
treated with Cyto D. Mean (Horizontal line) ± S.D. (vertical line). P-values reflect statistical 
significance determined by Student’s t-test.     

 

 

Supplementary Figure 4. Mesenchymal-type cells form colonies in soft agar assay. MOSE 
control (pWZL blast) cells, MOSE CCNE1, and MOSE HRASV12 cells are embedded in soft agar. 
(a) Images of cell colonies labeled with 0.5 mg/ml iodonitrotetrazolium chloride after 21 days. 
Brightness and contrast of the grayscale images is adjusted (to 122 brightness; 40 contrast) for 
visualization of MOSE pWZL blast and MOSE HRASV12 samples. Scale, 5 mm. (b) Quantitative 
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analysis of colony number reveals that MOSE HRASV12 cells form a greater number of colonies 
compared to the CCNE1-modified and non-modified control cells. Bar graphs show mean values 
obtained over 2 independent experiments; vertical lines denote ± S.D.  

 

 

Supplementary Figure 5. Predicting epithelial and mesenchymal-type cells across the EMT 
cell panel. (a) Probability distributions of % retention for cells across the EMT cell panel. Raw 
data is obtained from panel reference measurements, as shown in Fig. 2a, and fitting is performed 
using a single peak Gaussian function. Peak center positions are 39.6 ± 46.1 for mesenchymal 
cells and 90.6 ± 2.5 for epithelial cells. (b) Blind mechanotyping assay performed with the same 
panel of cell lines using the same measurement conditions as in Fig. 2a.  
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Supplementary Figure 6. Images of membranes after filtration. Fluorescence images reveal 
cells that are labeled with Cell Tracker dye.  Percentage of pores that are occluded by single cells/ 
cell clusters that are larger than 18 µm are displayed in the right column. Scale, 100 µm. 
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Supplementary Figure 7. Effects of BSA in % retention. Filtration of the panel of ovarian 
cancer cells is performed with varying concentrations of bovine serum albumin (BSA).  

 

Supplementary Figure 8. Western blot confirmation of epithelial and mesenchymal-type 
samples run in the blind assay.  Black denotes epithelial-type cell samples, while samples of 
mesenchymal-type cells are shown in red. 
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Supplementary Figure 9. Nuclear-to-cytoplasmic ratio of representative epithelial and 
mesenchymal-type cell lines.  

 

 

Supplementary Figure 10. Schematic illustration of a manometer. To build desired pressure 
(0-7 kPa) in the air pressure reservoir: close right tap, open left tap, blow in air from the air source 
(for example, manometer), and then close left tap. The pressure is indicated as the water pressure 
height. After a well-defined pressure is established, the right tap is opened to introduce air 
pressure to the pressure chamber of the parallel microfiltration platform.  
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Supplementary Figure 11. Images of cell suspensions before and after PMF.  Scale, 100 
µm. 
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Supplementary Figure 12. Cell density before and after filtration. HL-60 cells are filtered 
through 8 µm pore membranes at 0.7 kPa for 20 s. After filtration, the cell density is measured 
from samples retained in top wells. Each data point represents mean ± S.D. Solid line represents 
linear fit to the data. 

 

Supplementary Figure 13. Characterization of the porous membranes. (a-c) Representative 
images of porous membranes with 5, 8, and 10 µm pores. For each membrane, five confocal 
images are analyzed using ImageJ to obtain the pore (/cluster) histograms. We define clusters as 
any porous region that has an area greater than 1.5 pores. Further quantification of membrane 
porosity is provided in Supplementary Table 3. Scale bar, 20 µm.  
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Supplementary Figure 14. Effects of paclitaxel on the filtration behavior of epithelial-like 
cells. SKOV3 cells are drug-treated 24 hrs prior to being filtered through 10 µm pore membranes 
at 2.8 kPa for 50 s. Each data point represents mean ± S.D.   

 

 

Supplementary Figure 15. Schematic illustration showing design of the 96-well plate. Left: 
top view of the 96-well plate. Thick circles around the perimeter of the plate represent holes for 
PMF assembly using steel bolts. Thin circles represent loading wells that each has a diameter of 
0.64 cm (¼˝) and depth of 2.54 cm (1˝). Right: side view of a single well of the bottom plate. The 
bevelled structure at the top of the well is designed to hold an O-ring. Alternatively, a PDMS 
sealing mat can be used to achieve an air-tight seal. The bottom 1 mm hole facilitates filtration. 
Plates are machined out of Perspex (poly(methyl methacrylate) or PMMA). Drawing is not to 
scale. 
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Supplementary Tables 

Supplementary Table 1. Investigating cell-surface interactions in % retention. Quantification 
of the number of cells recovered from wells after a filtration experimentation of ~15 min. Cell 
suspensions were then collected and cell densities were measured.  Observed error for cell 
density measurements is ± 4 x 104. 

 
 
 
 
 
 
 
 
 
 
 

Sample Cell density of sample 
before PMF 

Cell density of retained fluid 
after PMF 

MOSE pWZL Blast 4.6 x 105 4.0 x 105 

MOSE CCNE1 6.0 x 105 5.9 x 105 

MOSE HRASv12 4.2 x 105 4.2 x 105 

SKOV3 5.6 x 105 5.3 x 105 

SKOV3EMT1 5.9 x 105 5.4 x 105 

SKOV3EMT2 5.7 x 105 5.6 x 105 

OVCA433-GFP 5.1 x 105 5.0 x 105 

OVCA433 SNAIL 5.2 x 105 5.0 x 105 

OVCA433 SLUG 4.7 x 105 4.2 x 105 

OVCA433 ZEB1 5.1 x 105 5.2 x 105 
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Supplementary Table 2. Effect of paclitaxel (TAX) treatment on cell viability. Observed error 
for cell viability measurements is ± 2%. 
 
 

Sample/ 
Conditions 

SKOV3 SKOV3EMT1 SKOV3EMT2 
OVCA433- 

GFP 

OVCA433 

SNAIL 

OVCA433 

SLUG 

OVCA433 

ZEB1 

No treatment 98% 98% 100% 98% 99% 99% 97% 

0.1% DMSO 
(control) 

98% 98% 96% 95% 97% 97% 96% 

0.1 nM TAX 98% 98% 98% 94% 98% 95% 98% 

0.5 nM TAX 99% 99% 99% 94% 99% 99% 99% 

1 nM TAX 96% 96% 98% 95% 99% 99% 96% 

10 nM TAX 97% 96% 96% 95% 98% 98% 98% 

100 nM TAX 98% 96% 96% 96% 96% 99% 98% 

1000 nM TAX 96% 98% 95% 95% 98% 100% 97% 

 
 
Supplementary Table 3. Characterization of membrane porosity.  
 

Membrane Total porosity (%) 
of single pores 

Total porosity (%) 
of pore clusters 

Total porosity (%) 

5 µm 6.8 ± 0.7 2.5 ± 1.4 9.3 ± 2.0 

8 µm 4.0 ± 0.3 0.7 ± 0.1 4.8 ± 0.4 

10 µm 6.0 ± 0.3 1.4 ± 0.2 7.3 ± 0.4 
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CHAPTER 2 

A scalable filtration method for high throughput screening based on cell deformability 

 

Abstract 

Cell deformability is a label-free biomarker of cell state in physiological and disease contexts 

ranging from stem cell differentiation to cancer progression. Harnessing deformability as a 

phenotype for screening applications requires a method that can simultaneously measure the 

deformability of hundreds of cell samples and can interface with existing high throughput facilities. 

Here we present a scalable cell filtration device, which relies on the pressure-driven deformation 

of cells through a series of pillars that are separated by micron-scale gaps on the timescale of 

seconds: less deformable cells occlude the gaps more readily than more deformable cells, 

resulting in decreased filtrate volume which is measured using a plate reader. The key innovation 

in this method is that we design customized arrays of individual filtration devices in a standard 96-

well format using soft lithography, which enables multiwell input samples and filtrate outputs to be 

processed with higher throughput using automated pipette arrays and plate readers. To validate 

high throughput filtration to detect changes in cell deformability, we show the differential filtration 

of human ovarian cancer cells that have acquired cisplatin-resistance, which is corroborated with 

cell stiffness measurements using quantitative deformability cytometry. We also demonstrate 

differences in the filtration of human cancer cell lines, including ovarian cancer cells that 

overexpress transcription factors (Snail, Slug), which are implicated in epithelial-to-mesenchymal 

transition; breast cancer cells (malignant versus benign); and prostate cancer cells (highly versus 

weekly metastatic). We additionally show how the filtration of ovarian cancer cells is affected by 

treatment with drugs known to perturb the cytoskeleton and the nucleus. Our results across 

multiple cancer cell types with both genetic and pharmacologic manipulations demonstrate the 

potential of this scalable filtration device to screen cells based on their deformability. 
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Graphical abstract 

   

 

Introduction 

High throughput (HT) assays enable screening of cells against thousands of compounds in 

chemical libraries1-4. Typical screens are based on molecular readouts such as gene or protein 

expression5-7, or cellular behaviors such as proliferation8,9, apoptosis10,11, or invasion12,13. Screens 

based on such molecular and cellular metrics have enabled the identification of drugs with clinical 

efficacy14,15. For example, the commonly used anti-cancer agent, paclitaxel, was discovered in a 

high throughput screen based on its ability to stop cell proliferation16. While the development of 

treatment strategies using existing drugs has led to significant progress in improving patient 

survival and disease outcome17-21, the majority of deaths occur due to metastasis and 
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recurrence22-24. Thus, there is an urgent need to identify novel therapeutic agents. A promising 

strategy to discover new compounds is by assaying alternative cellular phenotypes that are 

implicated in cancer progression and metastasis25, such as cellular metabolism26, adhesion13,27, 

or deformability28-31.  

Screening for chemotherapeutics based on the intrinsic deformability of cells has exciting 

potential. A variety of clinically used chemotherapy agents, such as daunorubicin and paclitaxel, 

increase the stiffness of cancer cells28,32-34; this induced stiffening may result from cell death32 

and/or stabilization of microtubules to cause cell cycle arrest and stop proliferation28,35. Other 

desirable targets for cancer therapies include Rho GTPase36 and Rho-associated protein kinase37, 

which regulate actin structure, dynamics, and cell motility; these are also major regulators of 

cellular deformability36,38,39. Since the deformability of cancer cells is associated with cellular 

invasion29,40-42, compounds that make cancer cells stiffer may also decrease their invasion. 

Consistent with this idea, we previously found that ovarian cancer cells (OVCA433) with induced 

expression of transcription factors implicated in epithelial-to-mesenchymal transition are more 

deformable than epithelial-like cells28; EMT is also accompanied by increased cell invasion43. Our 

previous work also shows that ovarian cancer cells with acquired resistance to the common 

chemotherapy agent cisplatin have mesenchymal-type features and are more deformable than 

cisplatin-sensitive cells28. Thus, identifying small molecules based on their ability to revert the 

deformability of cancer cells—especially mesenchymal-like, drug-resistant cells—to levels of less 

invasive and/or normal cells could provide a route to identify complementary compounds that 

inhibit cancer cell behaviors such as proliferation and motility. 

While cancer cell deformability as a phenotype has potential for drug discovery, there are 

thousands of drugs in typical libraries for high throughput screening. However, existing 

mechanotyping methods rely on sequential measurements of individual cell samples. Methods to 

measure cell mechanical properties, such as atomic force microscopy or magnetic twisting 

cytometry, achieve measurements of elastic modulus through detailed force-deformation profiling 
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on single cells, but have limited throughput44-47. Microfluidic-based methods enable rapid 

measurements of the deformability of single cell populations48-50, but rely on customized image 

analysis of individual cells and samples sequentially, which is a computationally expensive 

bottleneck. Such methods are thus challenging to integrate into high throughput facilities that rely 

on treating and processing hundreds of samples in multiwell plates simultaneously. If a method 

to measure cell deformability could be integrated into existing high throughput sample handling 

platforms that use multiwell inputs and readouts, this would facilitate deformability to be used as 

a phenotype for drug discovery. 

 To enable simultaneous measurements of cell deformability, we recently developed the 

parallel microfiltration method28,51. Parallel microfiltration relies on the filtration of a cell suspension 

across a polycarbonate membrane with micron-scale pores; stiffer cells are more likely to occlude 

pores compared to more deformable cells. The concept of filtration for measuring cell 

deformability has been established for different red and white blood cell types52-54, as well as 

cancer cells28,41,42. While we previously established proof-of-concept measurements of cell 

deformability using a prototype parallel microfiltration device, there are numerous challenges to 

scaling up this method. The prototype device requires measuring the retained sample volumes 

across the plate, which involves additional steps of liquid handling. Moreover, manual assembly 

is required to set up the device: commercially available polycarbonate membranes are manually 

placed in the prototype device, which is tightened to achieve a pressure-tight seal28. Such manual 

processing introduces user variation, and thus measurement variability. All of these challenges 

hinder the scale-up of parallel microfiltration for robust, HT assays. 

 Here we present a scalable high throughput filtration (HTF) method that enables multiple 

samples to be measured simultaneously. Inspired by strategies to scale-up microfluidic devices 

for HT applications55-59, the core of HTF is a custom-fabricated array of 96 microfiltration devices; 

each device contains a series of pillars with well-defined micron-scale gaps from 6 to 14 µm that 

are smaller than the diameter of single cells. Cells are driven to passively deform through the 
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gaps on the timescale of seconds to minutes in response to applied pressure. The ability of cells 

to deform through the gaps determines the fluidic resistance of a single device: a larger number 

of cells that occlude gaps results in a higher fluidic resistance, less flow through the filtration 

device, and thus a smaller filtrate volume. Importantly, the volume of collected filtrate can be 

rapidly measured in multiwell format using a plate reader, thereby enabling automation of cell 

filtration measurements. To characterize the HTF method and operational parameters, we 

measure the filtration of cisplatin-sensitive (OVCAR5 Cis-S) versus -resistant human ovarian 

cancer (OVCAR5 Cis-R) cells, which we independently confirm have distinct elastic moduli using 

quantitative deformability cytometry60. To validate the HTF method to distinguish cell samples, we 

screen human ovarian cancer (OVCA433 GFP, Snail and Slug) cells with induced EMT by 

overexpression of transcription factors (Snail, Slug), and treat these cells with a panel of 

cytoskeletal and nuclear perturbing drugs that modulate cell deformability. To demonstrate 

broader applicability of HTF for screening cells based on cell deformability, we filter malignant 

human breast cancer cells (MDA-MB-468, MDA-MB-231) versus non-tumorigenic breast 

epithelial (MCF10A) cells, and weakly metastatic prostate cancer (DU145) cells versus DU145 

cells transformed with knock down of nuclear envelope protein, emerin (DU145 Emerin KD), 

which are highly metastatic. Taken together, our results demonstrate the potential of HTF as a 

scalable platform for screening based on cell deformability. 

 

Methods 

Cell culture: Human ovarian cancer (OVCA433), breast cancer (triple negative MDA-MB-468 

and MDA-MB-231), and prostate cancer (DU145) cells are cultured in DMEM (+L-Glutamine, 

+Glucose, +Sodium Pyruvate) supplemented with 10% FBS, 1% Anti-anti (Gibco). For OVCA433 

GFP (control), SNAI1-overexpressing cells (OVCA433 Snail), and SNAI2-overexpressing cells 

(OVCA433 Slug)28  we use the same media with the addition of blasticidin S HCl (5 µg/ml, Corning 

Cellgro). To culture the cisplatin-sensitive and -resistant cells, OVCAR5 Cis-S/OVCAR5 Cis-R, 
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we use Dulbecco’s Modified Eagle Medium (DMEM) with 10% FBS, 1% Penicillin-Streptomycin, 

and 10 µM cisplatin (Sigma-Aldrich) for the resistant cells. To culture immortalized non-

tumorigenic breast epithelial (MCF10A) cells, we use Mammary Epithelial Cell Growth Basal 

Medium (MEBM) (Lonza) supplemented with bovine pituitary extract (52 μg/mL), hydrocortisone 

(0.5 μg/mL), human EGF (10 ng/mL), and insulin (5 μg/mL) (MEGM Bullet Kit, Lonza) as well as 

100 ng/mL cholera toxin (Sigma Aldrich). DU145 Emerin KD cells are cultured in DMEM with 10% 

FBS, 1% Penicillin-Streptomycin, and 2 µg/mL puromycin (Thermo Fisher Scientific). Prior to 

filtration measurements, cells are washed with 1x Phosphate-Buffered Saline (PBS, DNase-, 

RNase- & Protease- free, Mediatech, Manassas, USA), treated with trypsin, and resuspended in 

fresh medium to a density of 0.5 x 106 cells/mL. To minimize clusters of cells, cell suspensions 

are passed through a 35 µm cell strainer (BD Falcon) prior to each filtration measurement.  

 

Drug treatments: Stock solutions of paclitaxel (451656, Corning Cellgro), cytochalasin-D 

(C8273, Sigma-Aldrich), colchicine (C9754, Sigma-Aldrich), paclitaxel (T7402, Sigma-Aldrich), 

blebbistatin (ab120425, Abcam), SB43154 (1614, Tocris), verteporfin (5305, Tocris), and 

trichostatin-A (1406, Tocris) are prepared according to manufacturer instructions. Cells are 

treated with 0.1 to 10 µM of drugs as indicated for 24 h prior to measurements.  

 

Device fabrication: To fabricate the HTF microfluidic device array, two polydimethylsiloxane 

(PDMS, Sylgard 184 silicone elastomer, Dow Corning) layers are individually fabricated and then 

covalently bonded together. To produce the first layer that contains the 10 µm-height filtration 

devices, we spin coat SU-8 3005 photoresist (Microchem) at spin speed of 100 rpm to a thickness 

of 10 µm on a 6” silicon wafer (Silicon Valley microelectronics). The thickness of the photoresist 

is confirmed to be 9.7 ± 0.1 µm using a Dektak 150 Surface Profilometer (Veeco). A 10:1 w/w 

base to crosslinker ratio of PDMS is poured onto the master wafer, degassed using a desiccator 

vacuum for 20 minutes, and cured at 65 °C for 2 h. We use the same protocol to mold the second 
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layer that contains outlets that are cast using a 96 x 250 µL array of pipette tips. The surfaces of 

the two layers to be bonded are then exposed to UV light in the presence of ozone61 for 5 minutes 

using a UVO cleaner 42 (Jetlight). Outlets in the second PDMS layer are aligned with the inlet 

regions of the filtration devices in the first PDMS layer and pressed gently to bond. Filtration 

measurements are performed 24 h after bonding to ensure consistent surface properties across 

experiments62.  

 

HT-cell filtration: Cell suspension (350 µL) at 0.5 x 106 cells/mL or otherwise shown cell 

concentration is loaded into each well of the 96-well loading plate. We adapt a plasmid filtration 

plate (HyperSep filter plate, Thermo Fisher) with filters removed as the loading plate. To measure 

cell number, we use an automated cell counter (TC20, BioRad); these measurements also yield 

cell size distributions. Defined air pressure is applied using pressurized air and monitored using 

a pressure gauge (0 - 100 kPa, Noshok Inc., Berea, OH, USA). To measure the filtrate volume, 

we determine the absorbance of the filtrate volume using plate reader. To rapidly optimize 

parameters for a particular cell type, we temporarily seal unused sections of the filtration device 

array by taping wells in the loading plate using laboratory paper tape (VWR). 

 

Absorbance measurements: To quantify filtrate volumes, we measure the absorbance of the 

resultant cell suspensions in the 96-well collection plate. Since the cell medium contains phenol 

red, we measure absorbance at 560 nm using a plate reader (Infinite M1000, Tecan).  

 

Cellular imaging: To image the cells that occlude the interpillar gaps during filtration, cells are 

labeled with Calcein-AM (5 µM, Invitrogen) prior to filtering through devices that are bonded to a 

glass coverslip. Images are acquired using a fluorescence microscope (Zeiss Observer A.1 Axio) 

equipped with a 10x objective (10x/EC Plan-Neofluar, 0.3 Ph1 M27, Zeiss), a light source (HBO 
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103W/2 mercury vapor short-arc lamp), and filter set 13 (Zeiss). To quantify % occluded gaps, we 

count the total number of gaps and occluded gaps. 

 

Cell cycle analysis: To perform cell cycle analysis, adhered cells are harvested and resuspended 

in fresh medium to a density of 2 x 106 cells/mL. Cells are washed once in PBS containing 1% 

FBS (Gibco) by centrifugation and resuspended in 70% ethanol (Fisher Scientific) solution made 

in PBS. Cells are fixed in the ethanol solution overnight at -20 °C. Cells are washed once in PBS 

by centrifugation and stained with propidium iodide (PI) staining solution at a density of 2 x 106 

cells/mL for 30 minutes at 37 °C. PI staining solution contains 50 ug/mL PI (Thermo Fisher 

Scientific), 2.5 mg/mL RNase solution (Invitrogen) in PBS. To minimize clusters of cells, cell 

suspensions are passed through cell strainer with 35 µm mesh size (BD Falcon) prior to analysis 

using flow cytometry (LSRFortessa cell analyzer, BD Falcon). 

 

q-DC: Quantitative deformability cytometry (q-DC) is a microfluidic method that enables single-

cell measurements of apparent elastic modulus, fluidity, and transit time through micron-scale 

constrictions60. To fabricate devices using soft lithography, a 10:1 w/w base to crosslinker ratio of 

polydimethylsiloxane (PDMS) is poured onto a master wafer. The device is subsequently bonded 

to a glass coverslip (1.5 thickness) using plasma treatment. Within 24 h of device fabrication, cell 

suspensions of 2 × 106 cells/mL are driven through constrictions of 9 μm (width) x 10 μm (height) 

by applying 55 kPa of air pressure. We capture images of cellular deformations on the millisecond 

timescale using a high-speed CMOS camera with a capture rate of 1600 frames/s (Vision 

Research, Wayne, New Jersey) that is mounted on an inverted microscope (Zeiss, Oberkochen, 

Germany) equipped with a 20x/0.40NA objective (Zeiss). We use a customized MATLAB code to 

analyse the time-dependent strain of individual cells. To determine the applied stress, we use 

agarose calibration particles that we fabricate using oil-in-water emulsions60. Stress-strain curves 
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are obtained for single cells and a power-law rheology model is fitted to compute cellular elastic 

modulus and fluidity60. 

 
Statistical methods: HTF results are expressed as mean ± SD. We use the Student’s t-test 

method to analyze significance and obtain p-values. For the non-parametric distributions of 

apparent elastic modulus, fluidity, transit time and cell size, we use the Mann-Whitney U test to 

determine statistical significance. 

 

HTF device concept 

Theoretical framework. To drive the flow of cell suspension through individual filtration devices 

(Fig 1A), we apply air pressure uniformly across the array of devices. Each device contains rows 

of pillars spaced with an interpillar gap size that is ~2x smaller than the median cell diameter; 

thus, while cell medium flows freely through the gaps, cells that transit through gaps are required 

to deform with ~40 to 60% strains60. If a cell does not transit, it occludes the gap (Fig 1B). The 

probability of occlusion depends on the driving pressure, filtration time, cell-to-gap size ratio, and 

cell deformability28,41,42,60. For suspensions of cells that have a similar size distribution and are 

filtered at a fixed driving pressure, cell deformability is a major contributor to filtration28,41,42,63,64: 

stiffer cells with higher elastic moduli tend to occlude narrow gaps more frequently than more 

compliant cells with lower elastic moduli28,65,66. While cells are in contact with the pillar surface as 

they transit through narrow gaps, transit is dominated by the ability of cells to deform and change 

shape60,64,67,68. 

To understand the physical mechanism of HT filtration, we investigate how key 

experimental parameters—filtration time, cell density, and driving pressure—affect the filtration of 

a suspension of human ovarian cancer (OVCAR5 Cis-R) cells. We first investigate the time-

dependence of filtration by imaging the pillar array over the filtration time period. At timescales of 
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30 to 120 s, we observe a monotonic increase in the number of occlusions as an increasing 

number of cells block the interpillar gaps (Fig 1C, D).  

To further understand the changes in fluidic resistance that occur with filtration, we perform 

Monte Carlo simulations to predict filtrate volume over time. We consider the filtration device as 

an electric circuit69 (Fig 1A), where R is the fluidic resistance, Pinlet is the driving pressure, Patm is 

atmospheric pressure, and Q is the resultant fluid flow: 

𝑃-4567 − 𝑃879 = 𝑄𝑅. 

As we observe experimentally that the number of occluded gaps increases linearly as a function 

of time (Fig 1D), we model the change in fluidic resistance as a function of the number of occluded 

gaps, 

𝑅(𝑡)	~	
𝑅-4-7-85

>1	 −	𝑁?@@5AB6B𝑁7?785
C
	, 

where Rintial is the initial fluidic resistance, Noccluded is the number of occluded gaps at a given time 

(t), and Ntotal is the total number of gaps. The Monte Carlo simulation determines the filtrate volume 

per time by iterating through time steps of 1 ms (Fig 1E). As cells occlude gaps, the fluidic 

resistance increases, which is consistent with a modified Darcy’s Law28. Experimental 

measurements of filtrate volume obtained by filtration of OVCAR5 cisplatin-resistant (Cis-R) cells 

are in agreement with the simulations (Fig 1E), which validates this model describing the filtration 

process.  
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Figure 1. Defining the physical mechanism of HT filtration. (A) To simulate the filtration 
process, we consider the filtration device as an electric circuit, where R is the fluidic resistance, 
Q is the flow, Pinlet is the driving pressure, and Patm is atmospheric pressure. (B) Schematic 
illustration showing simulation setup whereby fluidic resistance is determined by the number of 
occluded (O) versus open gaps. (C) Images of the pillar array over the filtration time. Brightfield 
images are overlaid with fluorescence to show OVCAR5 Cis-R cells (labeled with Calcein-AM) 
trapped in the array of pillars. Scale, 100 µm. (D) Quantification of occluded 10 µm gaps in HTF 
devices over the filtration time course for OVCAR5 Cis-R cells filtered at a driving pressure of 28 
kPa and 0.5 x 106 cells/mL. Each data point represents mean ± SD from two independent 
experiments. (E) The percentage of the initial loaded volume collected as filtrate is defined as % 
Filtrate. Plot shows % Filtrate as a function of time. Triangles show experimental data obtained 
for OVCAR5 Cis-R cells filtered through 10 µm gaps at a driving pressure of 28 kPa for 90 s with 
0.5 x 106 cells/mL. Each data point represents mean ± standard deviation (SD) over three 
independent experiments. Dashed line shows results of Monte Carlo (MC) simulations. 
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HTF device fabrication & operation  

Device fabrication. To scale up the filtration assay so that multiple cell samples can be measured 

simultaneously, we fabricate an array of 96 microfluidic filtration devices using soft lithography. 

The HTF device array consists of two polydimethylsiloxane (PDMS) layers, which are each 

fabricated separately and then bonded together (Fig 2A). One PDMS layer contains the individual 

filtration devices that are fabricated using standard photolithography methods to have a 

customized array of micron-scale gaps (Fig 2B-D) and a height of 10 µm70. To produce inlets that 

align with 96-well plates, we use an array of 96 x 250 µL pipette tips as a mold (Fig 2A). The 

other layer contains the outlets and is fabricated by pouring PDMS onto a plain silicon wafer and 

casting holes using the same array of 96 pipette tips; the resultant holes are then aligned with the 

outlets of the devices in the upper layer. The two layers are covalently bonded together by 

exposing to UV light in the presence of ozone61,71. To enable insertion of tubing simultaneously 

across 96 wells, we custom-fabricate a spacer plate out of polylactic acid using 3D printing (Fig 

2E10), and affix outlet tubing that inserts into the molded outlets of the second PDMS layer. To 

load samples into the devices, we fabricate a loading plate that consists of a 96-well plate with 

protrusions at the bottom of each well (Fig 2E6), which insert directly into the inlet holes of the 

top PDMS layer (Fig 2E9). The assembled two-layer HTF device array with the attached loading 

and spacer plates is inserted into a custom-built plate holder (Fig 2E8), which is placed on top of 

a standard 96-well plate (Fig 2E11) in which the filtrate is collected. While we demonstrate here 

fabrication of a 96-array device, the procedure is scalable and could be modified to generate 

arrays of devices that interface with a range of plate sizes from 24 to 384-wells. Importantly, the 

customizable architecture of the HTF device enables fabrication of device arrays that have a 

range of gap sizes, which can enable rapid determination of the optimal gap size for filtration in a 

single experiment. 
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Device operation. To load the device, suspensions of cells in media are transferred into the 

loading plate using a 96-pin multichannel head. To apply uniform air pressure to drive cell 

suspensions through the filtration devices uniformly across the device array, we secure a pressure 

chamber (Fig 2E2) on top of the plate holder using clamps (Fig 2E5); placement of a rubber 

sealing pad (Fig 2E4) between the holder and the pressure chamber ensures air-tight sealing. To 

apply a well-defined magnitude of positive air pressure we use compressed air (via Fig 2E3), 

which is monitored using a pressure gauge (Fig 2E1), as displayed in Fig 2F. Upon applying air 

pressure, the cell suspensions are driven to enter into each device; the resultant filtrate containing 

cells and media that have filtered through the device is measured by determining the absorbance 

of phenol red (560 nm), which is contained in the cell media, as an indicator of filtrate volume; 

such measurements can be obtained using a plate reader in a multiwell plate format. To equate 

absorbance and filtrate volume, we generate a standard curve and confirm that the presence of 

cells in the media has no effect on absorbance (Supp Fig 1A), substantiating that absorbance 

measurements can be used to reliably report filtration volume. 
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Figure 2. Architecture of the HTF system. (A) Schematic showing fabrication of the two-layer 
PDMS array of devices that is fabricated by bonding together top and bottom PDMS layers. Inlets 
and outlets are molded using a standard 96-array of pipette tips. (B) Plan view of array of 96 
filtration devices. Inset shows: (C) single filtration device. Arrow indicates direction of fluid flow 
from inlet (I) to outlet (O). Scale, 1 mm. Inset shows: (D) array of pillars with defined interpillar 
gap size through which cells are filtered. Scale, 100 µm. (E) Schematic of HTF system: 1. 
Pressure gauge; 2. Pressure chamber; 3. Connection to pressure source; 4. Rubber sealing pad; 
5. Clamps; 6. Loading plate; 7. Rubber sealing pad; 8. Custom fabricated plate holder; 9. PDMS 
array of devices; 10. Spacer plate with affixed tubing; and 11. Standard 96 well filtrate collection 
plate. (F) Photo of the HTF system.  
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Results and Discussion 

Optimizing conditions for the HTF assay 

 We first demonstrate the process of optimizing HTF for a single cell type using OVCAR5 

Cis-R cells for proof-of-concept. A key parameter for cell filtration is the gap size. The magnitude 

of filtration at a given pressure and time depends on the probability that cells will occlude the 

gaps, which is determined by cell deformability and cell size relative to the gap size62,65. When the 

gap size is larger than the cell diameter, no deformation is required for cells to flow through the 

gaps. When the gap size is smaller than the cell size, cells are required to deform through the 

gap. With increasingly smaller gaps there is increasing probability of occlusion. We previously 

established filtration conditions for OVCAR5 Cis-R cells with 10 µm pore membranes that yield a 

filtrate volume of ~40-60%28; this is optimal to simultaneously detect samples with both increased 

or decreased filtration in a parallel assay. Therefore, we use HTF devices with 10 µm gap size to 

optimize cell density and filtration pressure for these OVCAR5 Cis-R cells. 

Since the number of cells flowing through the pillars per volume per time sets the rate of 

occlusion, filtration measurements are sensitive to cell density28. With a low cell density there are 

fewer occlusions and thus minimal changes to fluidic resistance, which precludes differential 

measurements between samples. By contrast, with higher cell densities, cells may cluster at the 

interpillar gaps, which can be observed over longer filtration times (Fig 1C); such clustering can 

result in decreased filtrate volume but may be sensitive to cell-cell interactions rather than single 

cell deformability. To determine the optimal cell density for filtration of human ovarian cancer cells, 

we assess the filtration of OVCAR5 Cis-R cells over a range of cell densities from 0.1 x 106 to 3.0 

x 106 cells/mL at a fixed filtration pressure and time (28 kPa, 90 s). With increasing cell density, 

we observe a reduction in absorbance indicating decreased filtrate volume (Supp Fig 1B); this is 

consistent with the higher probability of occlusion and subsequent increased fluidic resistance. 

With cell densities > 1.5 x 106 cells/mL, we find there are no further observable changes in 

filtration, reflecting significant occlusion of interpillar gaps. At densities < 0.3 x 106 cells/mL, we 
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observe 88.5 ± 4.9% filtrate; since the dead volume of the device is ~44 µL, this is the maximum 

measurable filtrate. Based on these findings, we determine the optimal cell density for filtration of 

human ovarian cancer cells is 0.5 x 106 cells/mL; at this density a sufficient number of occlusions 

occurs to yield a measurable filtrate while requiring the minimal number of cells.  

 Another essential parameter in filtration is the driving pressure, which drives fluid flow and 

thus impacts the number of cells that arrive at the pillars per unit time. The driving pressure must 

be sufficient to generate flow of cell suspension through the array of pillars, yet not excessive to 

completely filter the sample volume, which would preclude differential filtration measurements. To 

define the optimal driving pressure for OVCAR5 Cis-R cells, we conduct a pressure sweep from 

14 kPa to 35 kPa. With increasing driving pressure, we observe increased filtration, with % filtrate 

values that range from 41.4 to 88.5% (Supp Fig 1C). The driving pressure for a particular 

experiment should be set according to the goals of the screen. For example, to design a screen 

where desired hits increase cell deformability, a control filtrate value around ~20% will ensure 

detection of compounds that result in the largest increase in % filtrate; to identify compounds that 

decrease cell deformability and thereby lower % filtrate, the control % filtrate should be ~80%. It 

is important to note that to rapidly optimize pressure, time, and gap size for a particular cell type, 

sections of the customized 96-device array can be used by temporarily sealing unused wells in 

the loading plate using laboratory paper tape. Moreover, while we only show optimization of HTF 

parameters for OVCAR5 Cis-R cells, the settings can be readily applied to other cancer cell types 

with similar cell size distributions (cell to gap size ratio from ~1.3 to 1.8).  

 We next demonstrate the optimization of HTF to maximize the difference in readouts 

between 2 cell samples. As proof-of-concept, we establish conditions for HTF to distinguish 

between the OVCAR5 Cis-R and OVCAR5 Cis-S cells, which we previously found have distinct 

filtration properties using the parallel microfiltration prototype device28. We first optimize driving 

pressure to maximize the difference in % filtrate between OVCAR5 Cis-S and Cis-R cells. The 

optimal driving pressure should maximize the difference in filtration between cell types within the 
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range of ~7 to 88% filtrate, which is the dynamic range of filtrate measurements. To establish the 

optimal driving pressure for OVCAR5 Cis-S and Cis-R cells, we perform a pressure sweep from 

14 kPa to 35 kPa at a fixed filtration time of 90 s (Supp Fig 1C). We find the Cis-R cells have 

higher % filtrate than Cis-S cells, consistent with our previous observations of the increased 

filtration of Cis-R versus Cis-S cells through the 10 µm-pores of a polycarbonate membrane28. As 

we observe the maximum difference in filtrate between OVCAR5 Cis-S and Cis-R at 28 kPa, we 

select this driving pressure for subsequent experiments. The observed differential filtration of 

OVCAR5 Cis-S versus Cis-R cells reflects a difference in how these cells deform through narrow 

gaps (Fig 3A). A difference in cell size could impact filtration, however, comparisons of cell size 

distributions between Cis-S and Cis-R cells reveal no significant differences (Supp Fig 2A), 

indicating that cell size alone cannot explain the differential filtration. Cell physical properties also 

vary with stages of the cell cycle48,72, however, we find no significant differences in cell cycle stage 

between Cis-R and Cis-S cells (Supp Fig 2B).  

 

HTF is sensitive to cell deformability 

  To test the effects of cell deformability on filtration of OVCAR5 Cis-R and Cis-S cells, we 

pharmacologically perturb the cytoskeleton by treating cells with paclitaxel, which stabilizes 

microtubules and causes cells to be stiffer28,34,35. We find that treatment of OVCAR5 Cis-R cells 

with 0.1 µM paclitaxel results in a reduction of % filtrate to 23.5 ± 9.7% compared to vehicle control 

of 87.6 ± 4.9% (p = 5.3 x 10-4) (Fig 3B); this is consistent with increased cell stiffness following 

paclitaxel treatment. We also observe a smaller but significant reduction in filtrate of paclitaxel-

treated OVCAR5 Cis-S cells from 34.1 ± 15.4% to 15.8 ± 5.8% (p = 9.0 x 10-4); this smaller effect 

may be attributed to the narrow range for decrease in filtrate absorbance in the lower end of the 

dynamic range. We verify that paclitaxel treatment does not have a significant effect on size of 

the Cis-R and Cis-S cells, indicating that differential filtration of these paclitaxel-treated cells 

reflects changes in cell deformability (Supp Fig 2C).  
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 To confirm the distinct mechanical properties of the OVCAR5 Cis-R and Cis-S cells using 

an independent method, we measure the apparent elastic modulus (Ea), fluidity (β), and transit 

time (TT) of these cells through micron-scale constrictions of a microfluidic device using 

quantitative deformability cytometry (q-DC)60. We find that Cis-R cells have a ~21.9% lower Ea 

(Fig 3C, D) and ~10.0% increased β compared to Cis-S cells (Fig 3E, F), indicating they are more 

compliant (median Ea_Cis-R = 1.32 kPa versus Ea_Cis-S = 1.69 kPa , p = 1.4 x 10-8; median βCis-R = 

0.33 versus βCis-S = 0.30, p = 3.9 x 10-6). Cis-R cells also exhibit a faster transit time through 

micron-scale constrictions compared to Cis-S cells (median TTCis-R = 15.0 ms versus TTCis-S = 

34.8 ms, p = 3.9 x 10-33) (Fig 3G, H). Since measurements of Ea and β using q-DC are sensitive 

to the magnitude of deformation60, and the constriction size is fixed, these measurements could 

also be sensitive to cell size; however, we find no significant correlation between the measured 

cell diameters (d) and q-DC measurements (Pearson’s r: (Ea vs d)Cis-R_ = 0.0, (Ea vs d)Cis-S = 0.0; 

(β vs d)Cis-R = -0.1, (β vs d)Cis-S = 0.0; (TT vs d)Cis-R = 0.0, (TT vs d)Cis-S = 0.1). Taken together, 

these findings substantiate that differences in cell deformability can be detected by differences in 

% filtrate using HTF. 
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Figure 3. HTF is sensitive to cell deformability. Differential filtration of (A) human ovarian 
cancer OVCAR5 Cis-R and Cis-S cells and (B) OVCAR5 Cis-R and Cis-S cells treated with 0.1 
µM of the microtubule-stabilizing drug paclitaxel for 24 h prior to filtration through 10 µm gaps at 
28 kPa, 90 s, and 0.5 x 106 cells/mL. Data points in A and B represent mean ± SD from three 
independent experiments. Statistical significance is determined using student’s t-test. (C) Density 
scatter plots for measurements of apparent cell elastic modulus (Ea) using quantitative 
deformability cytometry (q-DC). Each dot represents a single cell. N > 700 per sample. (D) Box 
plots showing Ea measurements. (E) Density scatter plots for measurements of cell fluidity (β) 
using q-DC. Each dot represents a single cell. N > 700 per sample. (F) Box plots showing β 
measurements. (G) Density scatter plots for measurements of cell transit time (TT) using q-DC. 
Each dot represents a single cell. N > 1300 per sample. (H) Box plots showing TT measurements. 
Box plots show the 25th and 75th percentiles; whiskers denote 10th and 90th percentiles; and line 
is the median. Statistical significance is determined using the Mann Whitney U test. *** p < 0.001; 
** p < 0.01; * p < 0.05.  
 
Resolving cell types based on differential filtration 

 To validate ability of HTF to measure differences in filtration based on cell deformability, 

we investigate a set of three cell lines that represent both epithelial- and mesenchymal-like 
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phenotypes. EMT is implicated in cancer progression and metastasis, as mesenchymal-type cells 

tend to be more motile and invasive43. We and others previously showed that mesenchymal-type 

cells are more deformable than epithelial-type cells28,73. To investigate the filtration of epithelial- 

and mesenchymal-type cells using HTF, we compare human ovarian cancer (OVCA433) cells 

that are epithelial-type (OVCA433 GFP) and mesenchymal-type by transforming cells to 

overexpress genes (SNAI1, SNAI2) that are master regulators of EMT (OVCA433 Snail, 

OVCA433 Slug)28. 

 To determine HTF conditions that maximize the difference in filtrate between epithelial-

type control (OVCA433 GFP) cells and mesenchymal-type (OVCA433 Snail, OVCA433 Slug) 

cells, we first confirm the optimal interpillar gap size. Given the median cell size of 15 µm for 

OVCAR433 GFP, OVCAR433 Slug, and OVCAR433 Snail cells (Supp Fig 2D), we investigate 

filtration through devices with varying interpillar gap sizes from 6 to 14 µm within a single 

‘calibration’ experiment (Fig 4A). Our findings confirm that a gap size of 10 µm achieves the 

largest difference in filtrate volume between epithelial and mesenchymal-type cells at a fixed 

driving pressure of 28 kPa and 60 s filtration time (pSnail = 9.6 x 10-4, pSlug = 3.0 x 10-3) (Fig 4B). 

We observe no significant differences in cell size distributions for these cells (Supp Fig 2D), 

thereby excluding differences in size as a cause of the differential filtration. We find no significant 

differences in cell cycle stage among these cell lines (Supp Fig 2E), which could also impact cell 

deformability48,72. We also observe no differences in filtration of these cells with or without 

surfactant (Pluronics F-127) (Supp Fig 2F), which minimizes cell-PDMS interactions62. These 

findings are consistent with previous observations that the ability of cells to transit through micron-

scale pores is largely determined by cell deformability rather than surface effects on these ~90 s 

timescales60,64,67,68. Another possible origin of the decreased filtrate of the epithelial-type cells may 

be increased cell-cell interactions. However, we previously found that despite the higher E-

cadherin expression of OVCA433 GFP cells compared to OVCA433 Snail and Slug, there were 

no significant differences in cell clustering on the timescales of these filtration measurements28. 
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Taken together, these observations suggest the increased filtration of the mesenchymal-type cells 

reflects their increased deformability. More broadly, this process of optimizing gap size to 

maximize resolution between samples within a single calibration experiment provides a 

framework for adapting HTF to new cell types and screening applications.  

To further investigate the applicability of HTF to other cell types, we conduct filtration 

experiments with human breast cancer cells including malignant triple negative (MDA-MB-468 

and MDA-MB-231) as well as immortalized breast epithelial (MCF10A) cells74. Given the similar 

size distributions of the breast and ovarian cell lines (Supp Fig 2A, D, G), we first tested the same 

HTF conditions as optimized for the ovarian cancer cell lines (10 µm gap, 28 kPa for 60 s). With 

these conditions, we observe a significant ~10.4 to 33.5% increased filtrate for malignant breast 

cancer cells compared to the benign cells (pMDA-MB-468 = 1.3 x 10-2; pMDA-MB-231 = 1.7 x 10-5) indicating 

that the malignant cells are more deformable than the benign cells (Fig 4C). These observations 

are consistent with previous reports that malignant human cell lines40,75,76 and cells from patient 

pleural effusions46 have a reduced elastic modulus compared to benign cells. We also confirm the 

effect of pharmacological perturbation of the cytoskeleton by treatment of malignant MDA-MB-

231 cells with 0.1 µM paclitaxel, which results in a reduction of % filtrate to 39.3 ± 10.3% compared 

to vehicle control of 66.4 ± 3.2% (p = 1.4 x 10-3) (Fig 4D); this is in line with the effect of paclitaxel 

on filtration of OVCAR5 Cis-R and Cis-S cells. We verify that the observed reduction in filtrate is 

not due to the effect of paclitaxel on the size of MDA-MB-231 cells, indicating that differential 

filtration of paclitaxel-treated cells reflects changes in cell deformability (Supp Fig 2H). 

We additionally filter weakly metastatic prostate cancer (DU145) cells in parallel with 

highly metastatic cells that we generated by knockdown of the nuclear envelope protein, emerin 

(DU145 Emerin KD)77. As these prostate cancer cells have a similar size distribution as the other 

cell types (Supp Fig 2A, D, I), we also tested the same filtration settings as for the ovarian cancer 

cells. We find that the highly metastatic cells with emerin KD have increased % filtrate (61.1 ± 

13.9%) compared to the untransformed, weakly metastatic cells (17.0 ± 11.1%) (pDU145 Emerin KD= 
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1.4 x 10-6) (Fig 4E). These observations using HTF are consistent with previous findings of altered 

nuclear mechanical stability with reduced levels of emerin78,79, including our previous study using 

the prototype PMF device77. Notably, downregulation of emerin promotes malignant 

transformation of cancer cells77. Taken together, these observations confirm the application of 

HTF for screening cells that derive from distinct tissues.  

 

Figure 4. Using HTF to distinguish cell types. (A) Heat map of % filtrate for epithelial- (GFP) 
versus mesenchymal-type (Snail, Slug) human ovarian cancer (OVCA433) cells with different 
interpillar gap sizes in parallel. (B) % Filtrate versus gap size for OVCA433 cells. (C) Differential 
filtration of human breast cancer cells (MDA-MB-468, MDA-MB-231) and normal breast epithelial 
(MCF10A) cells. (D) MDA-MB-231 cells treated with 0.1 µM of paclitaxel for 24 h prior to filtration. 
(E) Differential filtration of human prostate cancer cells that are weakly metastatic (DU145) and 
transformed by knockdown77 of emerin to be highly metastatic (DU145 Emerin KD). Filtration 
through 10 µm gaps at 28 kPa, 60 s, and 0.5 x 106 cells/mL for all cell types. Data points represent 
mean ± SD from three independent experiments and statistical significance is determined using 
student’s t-test. *** p < 0.001; ** p < 0.01; * p < 0.05. 
 

6 µm

8 µm

10 µm

12 µm

14 µm

OVCA433 
GFP

OVCA433 
Snail

OVCA433 
Slug

%
 F

ilt
ra

te

100

80

60

40

20

0

BA

C D

0

20

40

60

80

100

%
 F

ilt
ra

te

DU14
5

Emeri
n K

D
DU14

5

***

0

20

40

60

80

100

**

%
 F

ilt
ra

te

Pac
lita

xe
l

DMSO

0

20

40

60

80

100

*

***

MDA-M
B

-23
1

%
 F

ilt
ra

te

MDA-M
B

-46
8

MCF10
A

E



 73 

Cell filtration is sensitive to cytoskeletal and nuclear perturbations 

 To establish the role of molecular mediators of cellular deformability in regulating filtration, 

we treat the EMT panel of human ovarian cancer (OVCA433 GFP, OVCA433 Snail, and 

OVCA433 Slug) cells with compounds that are well established to alter cell and nuclear 

mechanical properties and/or mechanosignaling pathways (Fig 5). Such pharmacological 

perturbations are commonly used to validate that a new mechanotyping technology is sensitive 

to changes in cell physical properties28,50,80. To perturb the cytoskeleton, we treat cells with 

compounds to inhibit actin polymerization (cytochalasin D), activate actin polymerization 

(colchicine), stabilize microtubules (paclitaxel), and inhibit myosin II activity (blebbistatin). We also 

treat cells with additional compounds that are known to alter cell mechanotype through signaling 

pathways that result in cytoskeletal changes including inhibitors of transforming growth factor 

(TGF)-β (SB43154) and the yes-associated-protein (YAP) transcription factor (verteporfin), which 

is implicated in cellular mechanosensing at the scale of tissues and organs81,82. To further 

investigate the effects of nuclear physical properties on cell filtration, we treat cells with the histone 

deacetylase inhibitor (trichostatin-A), which is established to make cell nuclei more deformable83.  

Using the filtration conditions established to maximize the difference in filtrate volume 

between the epithelial- and mesenchymal-type cells, the OVCA433 Snail and Slug mesenchymal-

type cells exhibit 77.3 ± 5.8% and 80.2 ± 8.0% filtrate whereas the reference filtrate for DMSO 

treated OVCA433 GFP control, epithelial-type cells is 22.6 ± 4.4%. In a screen including these 

three cell types, it is thus possible to identify compounds that increase filtrate volume for the 

epithelial-type OVCA433 GFP cells and decrease filtrate of the mesenchymal-type OVCA433 

cells overexpressing Snail and Slug cells, which have reference filtrates of 77.3% and 80.2% that 

are close to the upper limit of ~88% filtrate. 

As shown in Fig 5, we find that cytoskeletal-perturbing drugs consistently alter cell 

filtration. We first investigate actin, which is a major component of the cytoskeleton; the 

organization and levels of filamentous84 actin are key determinants of cell deformability28,40. To 
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inhibit polymerization of F-actin, we treat cells with cytochalasin D85; this results in a significant 

increase in % filtrate for the OVCA433 GFP cells to 81.6 ± 8.7% (p = 4.4 x 10-4), which is consistent 

with observations that inhibiting actin polymerization makes cells more deformable86,87. We also 

observe slight increases in filtrate for OVCA433 Slug to 86.7 ± 3.6% (p = 5.7 x 10-2) and OVCA433 

Snail cells to 85.3 ± 6.6% (p = 8.3 x 10-2); the reduced effects of cytochalasin D treatment on the 

filtration of mesenchymal-type cells reflect the initial filtrates near the upper limit of 77.3% and 

80.2% for OVCA433 Snail and Slug cells, which precludes measurements of larger increases in 

filtrate. By contrast, activating polymerization of F-actin with 10 µM colchicine88 induces a 

significant decrease in filtrate of mesenchymal-type cells to 37.2 ± 2.9% for Snail and 39.4 ± 3.7% 

to Slug cells (pSnail = 1.5 x 10-3, pSlug = 1.7 x 10-3); these observations are aligned with previous 

findings of decreased cell deformability with this concentration of drug28,35,89. As the reference 

filtrate of OVCA433 GFP cells is 19.7 ± 3.3%, we do not detect any further significant reduction 

in filtration of these cells with colchicine treatment (Fig 5). Together these findings confirm the 

effects of actin cytoskeleton organization on filtration volume, which further validates HTF as a 

method to detect differences in cell deformability. 

Another major cytoskeletal component is microtubules. To stabilize microtubules, we treat 

cells with paclitaxel35,90. Following this treatment, we observe significant reductions in % filtrate 

for OVCA433 EMT-transformed cells to 15.3 ± 6.6% and 17.5 ± 5.8% (pSnail = 1.5 x 10-4, pSlug = 

2.9 x 10-4), compared to vehicle treatment. We also find a smaller but significant decrease in 

filtrate of the OVCA433 GFP cells to 9.5 ± 2.9%, (p = 0.13 x 10-2), which is expected as the initial 

filtrate for these cells is already approaching the lower end of the dynamic range. These findings 

are aligned with previous results that paclitaxel decreases cellular deformability28,34,35. 

Nonmuscle myosin II (NMII) is an important determinant of cell mechanotype as this 

protein crosslinks actin filaments and is implicated in generating physical forces that contribute to 

intracellular tension91-93. To determine the effects of NMII activity on filtration, we treat cells with 

the NMII inhibitor blebbistatin. We observe a slight increase in % filtrate for OVCA433 Snail to 
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86.0 ± 2.2% (pSnail = 7.2 x 10-2) and OVCA433 Slug to 84.5 ± 2.9% (pSlug = 8.6 x 10-2), indicating 

decreased cell deformability; these findings are consistent with previous reports that inhibiting 

NMII activity for cells in a suspended state causes them to be stiffer91, which may be explained 

by the reduction in myosin-mediated actin disassembly and remodeling94. There is no significant 

decrease in filtration of OVCA433 GFP cells with inhibition of NMII activity (p = 7.3 x 10-2), 

suggesting that NMII activity may play a different role in regulating the mechanotype of epithelial-

type cells.  

Two other pathways that regulate actin organization are mediated through TGF-β95,96 and 

YAP97,98. Activation of TGF-β promotes actin stress fiber formation95,99 and EMT100,101. However, 

we find no significant changes in % filtrate of epithelial- and mesenchymal-type OVCA433 cells 

with the TGF-β inhibitor SB431542, indicating that inhibiting endogenous TGF-β activity does not 

affect cell filtration. These findings contrast previous studies that report increased cell 

deformability with activation of TGF-β102,103; however, in those studies, cells were grown in the 

presence of TGF-β supplementation, whereas we assess here effects of the inhibitor without 

additional activation of TGF-β. To investigate the role of YAP activity, we treat cells with the YAP 

inhibitor, verteporfin. Loss of YAP activity leads to stabilization of actin filaments via RhoA 

GTPase97,98. We find that verteporfin treatment reduces the filtration of mesenchymal-type cells 

to 66.3 ± 1.5% for OVCA433 Snail (pSnail = 6.2 x 10-2) and to 63.4 ± 4.4% for OVCA433 Slug (pSlug 

= 2.2 x 10-2), which is consistent with a reduction in cell deformability due to YAP inhibition. We 

find no significant change in filtration for OVCA433 GFP with verteporfin (p = 9.8 x 10-1), which is 

likely due to the lower limit of the dynamic range. While verteporfin may have additional off target 

effects104,105, these observations are consistent with previous reports that loss of YAP activity 

results in cell stiffening through increased F-actin97,98.  

We next investigate the effect of nuclear perturbation on cell filtration. The nucleus is 

typically the stiffest and largest organelle, which rate-limits the deformation of cells through narrow 

gaps106,107. To determine effects of nuclear structure on cell filtration, we treat cells with the histone 
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deacetylase (HDAC) inhibitor, trichostatin A, which causes chromatin decondensation108,109. 

Treatment of cells with trichostatin A leads to increased % filtrate across both epithelial- and 

mesenchymal-type cells compared to vehicle control (pSnail = 9.1 x 10-2, pSlug = 7.2 x 10-2, pGFP = 

3.7 x 10-4), indicating that the structural organization of the nucleus contributes to cell filtration 

(Fig 5). These findings are consistent with a previous report showing enhanced deformability of 

cell nuclei in intact cells with trichostatin A treatment83. Taken together, filtration of cells treated 

with this panel of compounds indicates that HTF is sensitive to perturbations of cytoskeletal and 

nuclear components.  

 

Figure 5. Effects of pharmacologic perturbations to cytoskeleton and nucleus on filtration. 
Treatment of OVCA433 (GFP, Snail, Slug) cells with a panel of drugs: actin polymerization 
inhibitor (cytochalasin D), actin polymerization activator (colchicine), microtubule stabilizer 
(paclitaxel), myosin II activity inhibitor (blebbistatin), TGF-β inhibitor (SB431542), YAP inhibitor 
(verteporfin), and HDAC inhibitor (trichostatin A). All treatments at 10 µM for 24 h prior to filtration. 
Color represents filtrate relative to the DMSO treated cells. Filtration through 10 µm gap size at 
28 kPa for 60 s, and 0.5 x 106 cells/mL. Statistical significance compared to the DMSO treated 
control is determined using student’s t-test. *** p < 0.001; ** p < 0.01; * p < 0.05. 

 

To assess the quality of the HTF assay, we first characterize the variability in % filtrate 

measurements. The variability in % filtrate of media without any cells filtered through HTF device 

arrays is indicated by the SD of ± 6.6% with gap size of 10 µm, for 20 s at 28 kPa (Supp Fig 3A). 

For filtration of human ovarian cancer (OVCA433) cells we observe a SD of ± 10.6% in % filtrate 

across device arrays with a confidence interval of -0.6 to 20.4% using filtration conditions of 10 

µm gap size, 28 kPa for 60 s and 0.5 x 106 cells/mL (Supp Fig 3B).  
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To further assess the quality of the HTF assay for a higher throughput screen, we use the 

filtration results across the panel of cytoskeletal and nuclear perturbing compounds (Fig 5): this 

enables us to evaluate the Z’-factor, which provides a metric for evaluating the statistical 

robustness of filtration measurements based on the difference in maximum and minimum 

readouts110. The Z’-factor reflects the dynamic range of HTF measurements and also accounts 

for data variation as it is determined by the mean and standard deviation of drug treated samples 

with maximum (µc+ ,𝜎c+) and minimum (µc− ,𝜎c−) filtrates for each cell type, 

𝑍G = 1 −	
(3𝜎98I 	+ 	3𝜎9-4)
|𝜇98I	–	𝜇9-4|

. 

A value of Z’ > 0.5 is an indication of high assay quality. As proof-of-concept, we use data 

of OVCA433 GFP cells treated with cytochalasin D that exhibits maximum filtrate and with 

paclitaxel that results in the minimum filtrate. Each of these compounds are established to 

increase and decrease cellular deformability, respectively28; the resultant Z’ = 0.61 for the 

OVCA433 GFP cells. We also determine Z’ values of 0.63 for OVCA433 Snail and 0.61 OVCA433 

Slug cells, reflecting the good quality of the HTF assay. While the Z’-factor provides a metric to 

evaluate assay quality without intervention of test compounds, we further assess the suitability of 

HTF for a higher throughput screen to identify hit compounds that modulate cell deformability by 

evaluating the Z-factor110,       

𝑍	 = 1 −	
(3𝜎N 	+ 	3𝜎@)
|𝜇N 	−	𝜇@|

	, 

where µs, 𝜎s are the sample mean and standard deviation, and µc, 𝜎c are the control 

mean/standard deviation. For an ideal HT assay, Z = 1, while 0.5 < Z < 1 indicates an excellent 

assay with greater likelihood of identifying statistically robust hits; by contrast, Z < 0 indicates that 

the screen will not yield any meaningful results. Envisioning a screen to identify hits that cause 

mesenchymal-type cells to become less invasive, and thereby less deformable, we consider the 

untreated cells as the control and the paclitaxel-treated cells as the sample; this yields Z = 0.34 
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to 0.40. For a screen to identify hits that cause OVCA433 GFP epithelial-type cells to become 

more deformable, we consider untreated OVCA433 GFP as the control and cytochalasin D-

treated cells as the sample, which yields Z = 0.34. While these are relatively low Z-factors for a 

high quality HT screen, values of Z’ and Z > 0 indicate that the assay is functional and further 

optimization is needed to successfully configure HTF for a particular HT screen110.  

One strategy to improve the Z-factor is to reduce filtrate variability between devices; this 

could be achieved by optimizing device geometry to minimize the presence of air bubbles or other 

factors that cause variability in flow during filtration. Another strategy to increase the Z-factor is to 

reduce the dead volume of the HTF setup. This sets the upper limit of measurable filtrate volume 

and thus dynamic range of HTF measurements. Into the future, injection molding111 or 

micromachining56,112 may enable more consistent fabrication of filtration devices that also 

eliminate the need for separate components such as loading and outlet plates. Additional future 

analysis is required to precisely define how sensitive HTF is to small changes in cell elastic 

modulus by filtration of calibration particles or cells treated with a compound that results in known 

changes in cell stiffness; in this way, the sensitivity of filtration volume to changes in elastic 

modulus could be precisely quantified. 

 As with all HT-screening methods, the power of HTF lies in the ability to rapidly screen 

samples using a readout that is quick, user-friendly, and inexpensive to obtain. Top ‘hit’ 

compounds can be identified based on their ability to induce the largest changes in filtrate volume. 

We show here that filtration is modulated by cell deformability. However, other factors, such as 

cell size, cell cycle stage, cell-cell clustering, and density of the cell suspension, also regulate 

filtration. Validation of top hits in greater detail using secondary orthogonal assays can be used 

to select hits for the desired trait(s) that impact filtration.  

With the challenges in identifying effective treatment strategies for cancer, cell filtration 

provides an elegant way to screen cells in a way that complements specific molecular biomarkers,  
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such as E-cadherin and vimentin for EMT-status113, EpCAM and MUC-1 for cancer stem cells114, 

or Ki67 for cell proliferation115. We show here that filtration is sensitive to the altered deformability 

of chemoresistant cancer cells as well as epithelial- versus mesenchymal-type cancer cells, which 

have distinct mechanical properties73. Cancer cell deformability shows strong associations with 

invasion in many contexts29,40,76,116, and may have functional consequences in metastasis where 

cells are required to undergo large deformations25,107. Molecular mediators that regulate 

mechanotype also generate forces required for cell movement and shape changes117. Thus, HTF 

could be a complementary tool for drug discovery that harnesses cell deformability as a surrogate 

phenotype to rapidly evaluate the effects of drugs or novel genes to inhibit invasion. HTF could 

also be used to address basic research questions through a CRISPR/Cas9 or shRNA screen to 

define molecular mediators of cell deformability. While we envision HTF is amenable to screening 

established cell lines and/or patient-derived cells, future efforts to scale down the device volume 

could enable testing of primary patient samples. A distinct advantage of HTF is that the assay 

requires minutes to assess cell deformability using filtration; by contrast, existing methods that 

screen based on cell invasion, motility, or even proliferation, require 10-100 hours per 

assay12,13,118. While HTF offers these unique advantages, complementary assays to measure 

other factors that may contribute to cell invasion/migration, such as adhesion119 and cell-cell 

interactions120,121, could be used to identify synergistic treatments. Future work will define the 

extent to which HTF may identify novel hits in the HT screening space relative to existing methods. 

 

Conclusion 

Here we describe the HTF method, which provides a scalable platform for simultaneous 

measurements of cell filtration. We show that HTF captures differences in the filtration of different 

cell types, including malignant versus benign, cisplatin-resistant versus cisplatin-sensitive cells, 

epithelial-type versus mesenchymal-type cells, as well as the effects of small molecules that alter 

the cytoskeleton and nucleus. As HTF evaluates the ability of single cells to passively deform 
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through narrow gaps on the timescale of seconds to minutes, the method offers unique 

advantages that complement existing cell invasion assays which measure the ability of cells to 

actively migrate through narrow geometries122-124. Importantly, HTF bridges the gap in throughput 

between measurements of cell deformability and HT screening, which opens up opportunities to 

uncover novel molecules or pathways that regulate cell deformability. While we have 

demonstrated here the application of cell filtration to screen cancer cells, changes in cell physical 

properties are implicated in a range of diseases from blood disorders125 to neurodegenerative 

diseases such as Alzheimer’s126. Cell filtration thus has potential to be used as a scalable readout 

for drug discovery in diverse disease contexts.  

  

Supplementary Figures 

 
Supplementary Figure 1. Optimization of HT filtration for sensitive- versus resistant- 
human ovarian cancer (OVCAR5) cells. (A) Absorbance measurements at 560 nm as a function 
of cell medium volume yields a standard curve. Measurements of cell suspension in phenol red 
containing media obtained for OVCAR5-CisR cells at 0.5 x 106 cells/mL. Below media volumes of 
~25 µL, reliable absorbance measurements in a 96-well plate format cannot be obtained, which 
thus sets the lower limit for filtrate to be ~7% of the initial volume loaded. % Filtrate is determined 
by volume of filtrate relative to initial volume of a suspension of human ovarian cancer (OVCAR5) 
cells on: (B) Density of cell suspension. OVCAR5 Cis-R cells are filtered through a device with 
gap size of 10 µm at 28 kPa over 90 s. Cell density is measured to be within ± 0.04 x 106 cells/mL, 
which is smaller than the symbols. (C) Driving pressure to filter the OVCAR5 Cis-S and Cis-R cell 
suspension , 0.5 x 106 cells/mL, through a device with interpillar gap size of 10 µm over 90 s. 
Driving pressure is measured to be within ± 0.14 kPa, which is smaller than the symbols. Each 
data point represents mean ± SD from three independent experiments. 
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Supplementary Figure 2. Characterization of cell size, cell cycle distribution, and effect of 
treatment with surfactant (pluronics F-127) on filtration. (A) Cell size data for human ovarian 
cancer OVCAR5 Cis-S and Cis-R cells. (B) Difference in cell cycle distribution of OVCAR5 Cis-S 
and Cis-R cells is statistically not significant. (C) Cell size data for OVCAR5 Cis-S and Cis-R cells 
treated with 0.1 µM paclitaxel for 24 h prior to size measurements. (D) Cell size data for 
OVCAR433 GFP, Snail and Slug cells. (E) Difference in cell cycle distribution of OVCAR433 GFP, 
Snail and Slug cells is statistically not significant. (F) Treatment with surfactant (pluronics F-127) 
does not have a significant effect on filtration of ovarian cancer (OVCA433) cells. Differential 
filtration of OVCA433 GFP, Snail and Slug cell suspensions with added pluronics F-127 at 0.01% 
w/v through 10 µm gaps at 28 kPa, 60 s, and 0.5 x 106 cells/mL Each data point represents mean 
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± SD from two independent experiments. Cell size data for human breast cancer (G) MCF10A, 
MDA-MB-468 and MDA-MB-231 cells, (H) MDA-MB-231 cells treated with 0.1 µM paclitaxel for 
24 h prior to size measurements, and human prostate cancer (I) DU145 and DU145 Emerin KD 
cells. Cell size box plots show the 25th and 75th percentiles of cell size measurements, whiskers 
denote 10th and 90th percentiles and line is the median cell size. N > 400 cells over three 
independent experiments. Statistical significance determined using Mann Whitney U test. Cell 
cycle data sets represent mean ± SD from two independent experiments. Statistical significance 
determined using student’s t-test. *** p < 0.001; ** p < 0.01; * p < 0.05. 
 

 

Supplementary Figure 3. Quantification of variability in filtration measurements. (A) 
Filtration of media without cells through HTF device arrays with gap size of 10 µm at 38 kPa for 
20 s. Shown here is data from two device arrays. Pooled data indicates the pooled SD in 
measurements. (B) Differential filtration of OVCA433 GFP, Snail and Slug cells using five different 
PDMS device arrays with interpillar gap size of 10 µm at 28 kPa for 60 s and 0.5 x 106 cells/mL. 
Each data point represents mean ± SD. Pooled data indicates the pooled SD in measurements 
of % filtrate using HTF.  
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CHAPTER 3 

High-throughput cell deformability screening to identify novel anti-cancer compounds 

 

ABSTRACT 

Existing approaches to identify anti-cancer treatments target phenotypes such as cell proliferation 

and invasion. Despite advancements in drug development, the recurrence of cancer due to 

chemoresistance remains a major clinical challenge and, there is an urgent need for alternative 

strategies to identify novel anti-cancer therapies. Here we present a complementary approach to 

discover novel therapeutics by targeting the inherent deformability of cells. We previously found 

that cisplatin-resistant (Cis-R) ovarian cancer (OVCAR5) cells are more deformable than the drug-

sensitive counterparts. To screen cells based on their deformability, we developed a live-cell 

filtration assay, high-throughput parallel microfiltration (HT-PMF). Using the HT-PMF screening 

method, we screen cells treated with a library of pharmacologically active compounds 

(LOPAC1280). We identify statistically robust hits from the screen as the compounds that cause 

OVCAR5 Cis-R cells to become less deformable. To confirm the effect of top 6 hits on cell 

deformability and determine sublethal doses, we perform secondary assays. We further 

demonstrate that these compounds cause human ovarian cancer cells to be less invasive. To 

identify shared molecular mediators and pathways that regulate mechanotype, we use 

bioinformatic approaches to analyze the targets and downstream effectors of the top 30 hits from 

the mechanotype screen from publicly available data; this enables us to identify differentially 

expressed genes (DEGs). Furthermore, weighted key driver analysis (wKDA) of DEGs 

determines the important pathway hubs, called key drivers (KDs), which are predicted to drive the 

change in mechanotype of cells. Overall, our findings suggest that deformability-based screening 

can provide a complementary tool to identify novel anti-cancer drugs and deepen our 

understanding of the molecular mediators of altered cell mechanotype. 
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INTRODUCTION 

There is an urgent need for effective cancer therapies. Resistance of human cancers to 

chemotherapy is a major clinical challenge1. While most tumors initially respond to anti-cancer 

therapies, the development of chemoresistance results in poor patient outcome; the majority of 

cancer deaths are due to recurrence or non-responsiveness to treatment2. Novel drug targets and 

therapeutics that complement existing treatments to stop cancer progression and block 

metastasis are urgently needed. Existing anti-cancer approaches have focused on identifying 

cytotoxic compounds that reduce cancer cell proliferation or increase cell death3. If we could 

identify compounds that block the mechanical phenotype of cells, such treatments could directly 

impact how cells deform and generate physical forces, which are required to move from primary 

tumors to form secondary tumors. Identifying treatments based on cellular mechanotype may also 

reveal drugs that have distinct mechanisms of action that complement common 

chemotherapeutics; this would enable the development of more effective, synergistic therapeutic 

strategies. Typical drug development methods include target-based and phenotype-based drug 

discovery4. While molecular targetbased approaches can lead to rapid identification of lead drugs, 

there is higher degree of uncertainty in validation of the hits5. Phenotype-based approaches to 

drug development have led to the identification of drugs that target complex disease physiology6. 

Thus, targeting cell mechanical phenotype as an alternative phenotype for identification of novel 

anti-cancer drugs has exciting potential.  

 

The mechanical phenotype of cancer cells is critical in the metastatic cascade: key components 

of mechanotype include cellular deformability—the ability of cells to deform under mechanical 

stress; and cellular force generation—the magnitude of physical forces cells generate. To 

disseminate from the primary tumor, cancer cells generate contractile and protrusive forces to 

push and pull on the surrounding extracellular matrix and drive their movement7. Once in 

circulation, cells that are stiffer are more resistant to damage by fluid shear stresses8, which are 
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encountered in circulation during metastatic dissemination. To seed metastatic sites, tumor cells 

occlude vascular capillaries. Integrin-mediated adhesion allows attachment of tumor cells to 

endothelium9; to extravasate the vasculature, cells generate forces, deform, and invade to seed 

new metastatic sites. Importantly, many of the same molecules that regulate mechanotype also 

regulate cell motility, as they are also important in cellular force generation. There is evidence 

that cancer cell mechanotype is associated with clinically relevant phenotypes, such as 

invasion10,11—we recently found that trend of reduced deformability of invasive cells holds across 

17 different types of cancer cells with genetic and pharmacologic perturbations10. Emerging 

evidence also suggests that mechanotype is associated with chemoresistance. We previously 

demonstrated that platinum-resistant ovarian cancer cells are more deformable than their drug-

sensitive counterparts12. Moreover, a variety of clinically used chemotherapy agents tend to make 

cancer cells less deformable12-15. Given the integral role of cell deformability in metastasis, cellular 

mechanoregulating pathways constitute promising therapeutic targets and disruption of 

mechanotype at any individual step in this cascade is promising strategy to prevent secondary 

tumor formation.  

 

Existing methods to measure cell mechanical properties rely on sequential measurements of cell 

deformability, which challenges scale-up that is required to interface with high throughput 

screening facilities. Single cell force-probing methods are limited in throughput due to 

measurement rates of <1 cell/min. Methods to probe the mechanical properties of a larger number 

of cells include stretching cells that are adhered to a flexible polymeric substrate16,17, mechanical 

imaging interferometry18,19, and microrheology20-22; yet such methods are difficult to scale up since 

cells must be fixed in position. Exploiting flow to pass cells through micron-scale constrictions 

provides a measure of their deformability using bulk filtration23-26 or microfluidic devices27-31. Flow 

is also used to transport cells through an optical trap that subjects cells to external stresses at 

typical rates of ~1 cell/min32-34. To achieve even higher throughput, cells are subjected to the 
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forces generated by fluid interactions at elevated flow inertia; such hydrodynamic stretching 

devices operate at 104 – 106 cells/min35,36, but require optical detection, and subsequent 

computationally intensive analysis; this is a major limitation in scale-up that is required to achieve 

significant advances in detection frequency across >102 samples, and to interface with existing 

high throughput screening facilities. 

 

We recently developed a novel and innovative approach to discover effective therapeutics using 

the inherent deformability of cells. The unique feature of the HT-PMF platform is the ability to 

multiplex measurements of cell deformability, which enables HT-PMF to interface with high 

throughput screening facilities. HT-PMF relies on the pressure-driven filtration of cells through a 

membrane with micron-scale pores. Less deformable cells tend to occlude pores more readily 

than cells that are more deformable; a sample of less deformable cells will thus have a smaller 

filtrate volume, which is quantified using a plate reader. In contrast to other methods for measuring 

cell deformability that rely on high speed imaging of cell shape and advanced image analysis, 

filtration results can be easily quantified within minutes using a plate reader to measure the 

volume of cell medium based on absorbance of phenol red (560 nm); this enables the HTF method 

to interface with automated liquid handling platforms to enable high throughput screening37. 

 

Here we present the results of the first high throughput mechanotype screen. We screened 

cisplatin-resistant human ovarian cancer cells (OVCAR5-CisR) against the Library of 

Pharmacologically Active Compounds (LOPAC1280), which contains 1280 FDA-approved 

compounds, and identified 67 top hits (~5% of compounds) that cause a statistically significant 

decrease in the deformability of cisplatin-resistant cells compared to vehicle-treated control. 

Follow-up secondary, orthogonal assays including dose response, invasion, migration assays, 

and cell cycle analysis reveal the top 6 hits do not consistently affect cell cycle, but all top 

candidates decrease cell invasion. These findings suggest that PMF identifies compounds that 
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operate through a distinct mode of action that could be synergistic to existing chemotherapeutics, 

such as cisplatin, which primarily affect cell proliferation and promotes apoptosis. We also perform 

bioinformatic meta-analysis to identify key molecular mediators that lead to altered deformability 

due to treatment with the lead compounds. Furthermore, we identify genes that are predicted to 

be major drivers of cellular mechanotype. These results suggest that PMF can identify novel anti-

cancer drugs, and contribute to a systems-level knowledge of the molecular mediators of cell 

mechanotype.  

 

RESULTS AND DISCUSSION 

Application of HT-PMF assay for HTS 

We interface the parallel microfiltration method with the automated liquid handling platform to 

adapt for high throughput screen37, called high throughput parallel microfiltration (HT-PMF) 

(Figure 1A, Supplementary Figures 1A, B). In HT-PMF, applied air pressure drives the samples 

to filter through the micron-scale pores in the polycarbonate membrane. More deformable cells 

easily deform through the pores resulting in lower % retention measurements, conversely, less 

deformable cells occlude the pores and result in higher % retention (Figure 1B). We also 

incorporate a rapid readout (% retention) measurement method using a plate reader, relying on 

the absorbance of phenol red in cell culture media (560 nm).  

 

These advances in PMF technology12 allow rapid screening of hundreds of samples in parallel 

with unprecedented throughput. To identify anti-cancer compounds, and molecular modulators of 

altered cell mechanotype, we use screening strategy detailed in Figure 1C. To demonstrate 

proof-of-concept, we use here cisplatin-resistant ovarian cancer cells. To ensure we would identify 

Initial	volume
Volume	retained	

=						 x	100%	Retention	
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compounds that could be readily translated, we screen the LOPAC library, which contains 1280 

FDA-approved, pharmacologically active compounds. 
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Figure 1. Schematic of mechanotype screening platform and process flow (A) Schematic of 
the HT-PMF device: 1. Pressure gauge. 2. Clamps. 3. Pressure chamber. 4. Rubber sealing pad. 
5. PMF plate setup (Supplementary Figure 1). 6. Standard 96-well plate. (B) Absorbance of 
resulting retention volume is measured to quantify the volume of cell suspension retained above 
the membrane, % retention. Upon pressure application, less deformable cells result in occlusion 
of the pores in the polycarbonate membrane resulting in higher % retention. (C) Flow chart of HT-
PMF deformability-based screen. 
 

Deformability-based HTS and identification of hits 

To perform the HT-PMF deformability-based screen of cells treated with LOPAC library 

compounds, we treat cells with compounds for 24 h prior to filtration. Hits are identified as 

compounds that result in largest increase in the % retention of the samples; less deformable cells 

cause occlusion of the pores in polycarbonate membrane resulting in increased retention volume. 

Hits are compounds of interest that result in reversal of the more deformable mechanotype of the 

drug-resistant ovarian cancer cells. We rank all the compounds in the library based on the % 

retention measurements and calculate the respective Z-factors (Supplementary Figure 2) as 

. 

Hits are defined as compounds with Z-factor > 0.538 (Figure 2A). Based on this criterion we 

identify 67 drugs as hits, ~5% of the total compounds in the library (Figure 2B). We discover a 

large percentage of ‘Cytoskeletal & ECM’ targeting compounds as lead compounds; compounds 

targeting cytoskeleton as well as ECM are known modulators of cell mechanotype. Additionally, 

~91% of hits identified are in other drug classes such as, ‘neurotransmitters’ and ‘cell cycle’. 

(Supplementary Figure 3). We prioritize the top 0.05% of the total compounds (6) as lead 

compounds for follow up secondary validation assays. 

Z	=	1	− 3	SDSample +	3	SDControl
|MeanSample −	MeanControl|
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Figure 2. HTS and lead compounds identified by the screen (A) % Retention measurements 
obtained using HT-PMF are used to calculate Z-factors for all the compounds in the library. 
Compounds are then ranked based on their Z-factor within their respective drug classes. Drug 
classes are ranked (left to right) based on the highest observed Z-factor in the class. (B) 67 lead 
compounds (Z-factor > 0.5) are identified from the HTS in the indicated drug classes.  
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In vitro validation of identified hits  

We prioritize the top 6 hits (0.5% of compounds) for in vitro validation (Figure 3A). To confirm 

compounds alter cellular mechanotype, we measure the effects of increasing concentrations of 

drug on cellular mechanotype using HT-PMF. This confirms that the identified top 6 hit 

compounds reduce deformability of OVCAR5 Cis-R. We observe similar decreased deformability 

in additional high-grade serous ovarian cancer (HGSOC) cell lines, FUOV1 (Figure 3B). We next 

performed cytotoxicity assays from 1 nM to 10 µM compound concentrations. These cytotoxicity 

data enabled us to determine the sublethal dose in 4 cell lines: human ovarian cancer OVCAR5 

Cis-R (acquired cisplatin-resistance), FUOV1 and UWB.289 BRCA- (inherently chemoresistant), 

and murine ID8 (chemoresistant) cells (Figure 3C).  These findings confirm that the top 6 

compounds are not consistently killing the cells, and thereby making them stiffer. 
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Figure 3. Dose response assays for effect of top hits on cell deformability and cytotoxicity. 
(A) Top 6 lead compounds identified from the HT deformability-based screen. (B) Cells are 
treated with a range of concentrations of lead compounds for 24 h before filtration through 10 µm 
membrane at 2.1 kPa for 50 s. (C) Cells are treated with a range of concentrations of lead 
compounds for 48 h before quantification of the number of viable cells using CellTiterGlo to 
determine sublethal dose. Data obtained from three independent experiments. Each data point 
represents mean ± S.D.  
 

Effect of lead compounds on cellular functions 

To elucidate the effects of the top 6 lead compounds on cellular functions, we perform additional 

secondary orthogonal assays. To assay cell invasion, we measure the number of cells that invade 

through basement membrane extract (BME) matrix in 8 µm pores using a transwell assay; we 

measure cell migration through uncoated transwell membranes. We find that all top 6 drugs 

consistently reduce the cell invasion and migration (Figures 4A, B). These findings are aligned 

with previous reports of how more invasive cancer cells are more deformable10, and reflects how 

cellular deformability and motility are regulated by shared molecular mediators, suggesting that 

deformability can be used as a proxy for functional change for drug screening.  Since cell 

deformability is sensitive to cell cycle stage, we first perform cell cycle analysis. While some 

compounds arrest cells in G2/M phase (vinblastine, vincristine), we find that the lead compounds 

do not consistently lead to change in cell cycle distribution (Figure 4C). We next assay cell 

invasion, which is an important phenotype of cancer cells that reflects their ability to evade the 

basement membrane and colonize. Taken together, our data indicate that deformability-based 

screen can identify drugs that impact cell motility. probe surrogate cell phenotypes, expanding 

the drug discovery base to compounds that act across a distinct feature space.  

 

Cellular mechanotype is also implicated in the delivery of chemotherapies to the tumor. 

Importantly, tumor physical properties also determine response to chemotherapy: recent 

evidence suggests that reducing tumor stiffness can improve treatment response; this can be 

achieved by decreasing the contractile forces exerted by cancer cells and tumor-associated 
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fibroblasts (CAFs) within a solid tumor. These exciting findings highlight the potential of blocking 

cellular mechanotype to increase the penetration of drugs into the tumor core. Moreover, 

comparing our top hits to the results of screens reported on the basis of cell adhesion and invasion 

using the same compound library39, we find no common hits. However, differences in the model 

system used (here we used established ovarian cancer cell lines), as well as the drug library 

screened may contribute to differences. Future studies will define the extent to which 

mechanotype-based screening identifies novel drugs. 
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Figure 4. Functional assays to determine the effect of hits on cell invasion, migration and 
cell cycle. Cells are treated with the indicated sublethal concentrations of drugs for 24 h before 
and 24 h period during the transwell migration of cells through 8 µM transwell (A) coated with 
basement membrane extract (BME) matrix to quantify invasion, and (B) uncoated membrane to 
quantify cell migration. (C) Cell cycle distributions of cells with and without the drug treatments. 
All data obtained from three independent experiments. Each data point represents mean ± S.D.  
 
 

Effect of prioritized hits on patient-derived cells 

To confirm the effect of the top compounds on patient-derived cells we perform dose response 

cell proliferation assay. We prioritize SCH 58261 and bezafibrate for these studies as the effects 

of these compounds have not been studied in the context of ovarian cancer. We find that 

treatment of primary cells derived from ascitic fluid (AF), omentum (OMNT), and primary tumor 

(PT) from patients exhibit a similar dose response as the OVCA cell lines as described in Figure 

3 (Figure 5). Similar dose response to the lead compounds implies shared drugs response 

between established cell lines as well as primary patient cells. Future studies will investigate the 

efficacy of these drugs in animal models.  
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Figure 5. Effect of prioritized hits on growth of patient-derived cells. Cells are treated with a 
range of concentrations of indicated compounds for 48 h before quantification of the number of 
viable cells using CellTiterGlo to determine sublethal dose. Data obtained from three independent 
experiments. Each data point represents mean ± S.D.  
 
 

Identification of differentially expressed gene signatures of candidate drugs based on 

publicly available transcriptome datasets 

To better understand the molecular underpinnings of the 67 candidate drugs that induced the 

stiffness phenotype, we conducted a meta-analysis of existing transcriptomic datasets from 

studies examining various tissues from mammalian species (human, rat, and mouse) with 

exposure to the drugs to identify shared gene signatures and pathways across the candidate 

drugs. We first searched for public microarray and RNA-seq data depositories including NCBI 

Gene Expression Omnibus40,41, Expression Atlas42, drugMatrix43, TG-GATEs44 and identified 

Cytotoxicity
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transcriptomic datasets from 20 out of the 67 drug candidates; some drugs were substituted with 

similar drugs due to the lack of transcriptome datasets of the original candidates. Tissue and 

organ annotations for the transcriptome datasets identified were standardized based on Brenda 

ontology45. We obtain normalized expression data from GEO, Expression Atlas, and DrugMatrix. 

As TG-GATEs does not provide normalized data, we used gcrma46 to normalize array data. 

Normalized expression data was then log-transformed. Due to the heterogeneity of the datasets 

in study design, sample size, and profiling platforms, we used non-parametric rank-based analysis 

to identify treatment induced gene expression changes in each dataset using the GeoDE 

package47. Genes from mouse and rat were converted to human symbols based on ensmbl 

annotation. We then meta-analyzed across datasets using the Robust Rank Aggregation 

method48, a non-parametric statistical method aimed to find highly ranked items across multiple 

ranking studies, to identify differential expressed genes (DEGs) across drugs at false discovery 

rate (FDR) < 0.01. Rank aggregation was performed separately for the up-regulated and down-

regulated genes to obtain DEGs of both directions across the 20 drugs for which existing 

transcriptome data are available.  

 

To identify the major pathway hubs or drivers of the mechanotypic changes due to treatment with 

hits, mechanotype associated with less deformable cells, we mapped the aggregate upregulated 

and downregulated DEGs across the candidate drugs onto the human or mouse gene networks. 

We identify top predicted key drivers (KDs) using the weighted key driver analysis (wKDA) 

approach (Figure 6A, B), and top genes in pathways predicted to regulate cell mechanotype 

using gene set enrichment analysis (GSEA) (Figure 6B). Interestingly, while downregulation of 

many KD genes is linked to less deformable mechanotype of cells treated with the hit compounds, 

upregulation of these genes is extensively associated with hallmark features of cancer (Figure 

6B, described in Supplementary Table 1). Compared to key drivers and pathways identified in 

previous efforts of molecular meta-analysis49,50, some KDs are exclusive to the presented 
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deformability-based screen. These differences in identified KDs could also be attributed to the 

different statistical analysis approaches used49,50. Additionally, we note that the KDs of altered 

deformability of cells are identified upon meta-analysis of 20 drugs with publicly available 

transcriptome data out of all the hits (67) identified.  

To investigate how the expression of the identified hub genes is associated with low-, medium- 

and high-risk ovarian cancer patients, we perform the patient survival risk assessment analysis 

using data from TCGA ovarian cancer consortium groups using SurvExpress51 (Supplementary 

Figure 4).  We find that expression pattern of many KDs, such as JUN, PRC1, DUSP1 and 

COL5A1, is associated with high risk group with high prognostic factor. Taken together, these 

results further highlights the potential of deformability-targeting screen to identify anti-cancer 

compounds alongside providing detailed insight into molecular mechanism underlying altered cell 

mechanotype. Further experimental validation will confirm the role of key drivers in regulation of 

cellular mechanotype. 
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Figure 6. Predicted key drivers of cell mechanotype. Meta-analysis for ranking of the DEGs 
followed by wKDA and GSEA identifies the top predicted key drivers (KDs) of the mechanotypic 
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changes in cells as a result of treatment with the compounds identified as hits. (A) Interaction map 
of DEGs and predicted KDs identified using wKDA. Downregulated genes are indicated in blue, 
upregulated genes in red and KDs in yellow. (B) Role of top predicted KDs using wKDA and genes 
predicted to play a role in mechanotype regulation using GSEA in cancer related phenotypes.  
 

METHODS 

Cell culture. Human cisplatin-resistant ovarian cancer (OVCAR5 Cis-R) cells are cultured in 

DMEM (+L-Glutamine, +Glucose, +Sodium Pyruvate, Gibco) supplemented with 10% fetal bovine 

serum (FBS, Gemini), 1% penicillin-streptomycin (VWR), and 10 µM cisplatin (Sigma-Aldrich). 

For FUOV1 cells we use DMEM/F-12 (Gibco) with 10% FBS and 1% penicillin-streptomycin. For 

UWB.289 BRCA- cells we use 50% DMEM/F-12 (Gibco) and 50% RPMI-1640 (Gibco) with 5% 

FBS, 5% Horse serum and 1% penicillin-streptomycin. ID8 mouse ovarian cancer cells are 

cultured in DMEM supplemented with 4% FBS, 1% penicillin-streptomycin and 1% insulin-

transferrin-selenium (Sigma). Prior to PMF measurements, cells are washed with 1X Phosphate-

Buffered Saline (PBS, DNase-, RNase- & Protease- free, Mediatech, Manassas, USA), treated 

with trypsin, and resuspended in fresh medium.  

Drug treatments. Vinblastine, vincristine, SCH 58261, bezafibrate, ganciclovir, wiskostatin and 

paclitaxel are all obtained from Sigma-Aldrich and reconstituted according to the manufacturer’s 

instruction in dimethyl sulfoxide (DMSO) to prepare stock solutions.  

Parallel microfiltration using HT-PMF device: The HT-PMF is setup as shown in Figure 1 and 

Supplementary Figure 1. Polycarbonate membrane of 10 µm pore size is used for all 

microfiltration experiments. Cell suspension (360 µL) at 5 x 10-5 cell concentration is loaded into 

each well of 96-well plate sample loading plate. Desired air pressure is applied using pressurized 

air tank and monitored using a pressure gauge (Noshok Inc., Berea, OH, USA) to drive the cells 

suspension through the micron-scale pores52,53. We determine absorbance of the retention 

volume using plate reader. To measure cell number and size distributions, we use an automated 

cell counter (TC20, BioRad).  
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Absorbance measurements. To quantify the retained volume from the HT-cell filtration we 

measure absorbance of the volume of cell suspension collected in the 96-well plate. Absorbance 

of phenol red in the retention volume is read at 560 nm using a plate reader (Infinite M1000, 

Tecan).  

Dose response assays. Cells are plated in a 96-well plate (3000 per well) in cell culture media 

and incubated at 37 °C for 48 h to allow for cell growth and division. Cells are then stained with 

CellTiterGlo luminescent cell viability dye (Promega). Luminescence of the live cells is quantified 

at 560 nm wavelength using a (GloMax 20/20 Luminometer, Promega). Viability of drug treated 

cells is calculated compared to the untreated cells. 

In vitro Invasion/migration assay. Cell invasion assay is setup using the Culturex BME cell 

invasion assay kit (R&D systems) and cell migration assay is setup using the Culturex migration 

assay kit (R&D systems). Both the assays are setup according to manufacturer’s instructions.   

Pathway analysis of the drug DEGs. The up-regulated and down-regulated drug DEGs were 

assessed for enrichment of pathways or functional categories using enricher54, a web-based tool 

which conducts gene set enrichment analysis across multiple annotation databases ranging from 

transcription factor targets to biological pathways. Top enriched pathways at FDR < 0.05 were 

reported. 

Weighted Key Driver Analysis (wKDA). To prioritize potential regulators of the drug DEGs, we 

mapped the aggregate upregulated and downregulated DEGs across the candidate drugs onto 

the human or mouse gene networks to identify key drivers (KDs) using the weighted key driver 

analysis (wKDA) implemented in Mergeomics55. wKDA uniquely consider the edge weight 

information in the form of edge consistency score for BNs. Specifically, a network was first 

screened for suitable hub genes whose degree (number of genes connected to the hub) is in the 

top 25% of all network nodes. Once the hubs have been defined, their local one-edge 

neighborhoods, or subnetworks were extracted. The drug DEG genes were overlaid onto the hub 
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subnetworks to see if a particular subnetwork was enriched for the genes from the DEG set. The 

edges that connect a hub to its neighbors are simplified into node strengths (strength = sum of 

adjacent edge weights) within the neighborhood, except for the hub itself. The test statistic for the 

wKDA is:	𝜒 = O/P
√P/R

, where O and E represent the observed and expected ratios of genes from 

DEG sets in a hub subnetwork, and 𝜅 is a stabilizing factor set to 1. In particular, the expected 

ratio	𝐸 = UVUW
U

 is estimated based on the hub degree Nk, DEG gene set size Np and the order of 

the full network N, with the implicit assumption that the weight distribution is isotropic across the 

network. Statistical significance of the disease-enriched hubs, henceforth KDs, is estimated by 

permuting the gene labels in the network for 10000 times and estimating the P-value based on 

the null distribution. To control for multiple testing, stringent Bonferroni adjustment was used to 

focus on the top robust KDs.  

Pathway analysis of drug DEGs 

The up-regulated and down-regulated drug DEGs were assessed for enrichment of pathways or 

functional categories using enricher54, a web-based tool which conducts gene set enrichment 

analysis across multiple annotation databases ranging from transcription factor targets to 

biological pathways. Top enriched pathways at FDR < 0.05 were reported. 

Statistical methods. HTS is performed once and the Z-factor38 is calculated for ranking of all the 

samples. All data is obtained from at least 3 independent measurements and is expressed as 

mean ± S.D. We use the Student’s t-test method to analyze the results and to obtain p-values.  
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SUPPLEMENTARY FIGURES 

 

Supplementary Figure 1. Interface of the PMF device with automated HTS equipment. (A) 
PMF-plate setup. (B) Interface of the PMF device (red arrow) with automated liquid handling 
platform. Robotic arms allow processing of cell samples and transfer to HT-PMF device prior to 
pressure application, and transfer of retention to a standard 96-well plate for absorbance 
measurements. 

 

Supplementary Figure 2. Ranking of the LOPAC compounds to identify hits. % Retention of 
all the compounds in the library is shown. PMF conditions: 0.3 psi applied pressure for 20s, cell 
density 5 x 105 cells well. Each dot represents a drug in the library. Compounds with a Z-factor > 
0.5 are identified as statistically robust hits. Top hits are indicated in dark red color. 
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Supplementary Figure 3. Representation of drug classes in the compounds identified as 
hits. Pie-diagram showing percentage of drugs in each drug class identified as hits. For example, 
38% of the drugs in cytoskeletal and ECM class are identified as hits.  
 

 

Supplementary Figure 4. Patient-risk assessment analysis of the top key driver genes 
identified using meta-analysis. Survival data for patients in the ovarian cancer TCGA database 
is ranked according to the prognostic factor and data collection if divided into low-, medium-, and 
high-risk groups for the indicated key driver genes. Each vertical line indicates a data from a 
patient. Gene expression is color mapped from low (turquoise) to high (magenta). Analysis 
performed using the SurvExpress patient-data analysis tool previously described51.  
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Supplementary Table 1. Description of the key drivers.  

KDs Direction of 
change with hits Description/role in cell function 

MKI67 Downregulated Antigen Ki-67, a nuclear protein, is a cell proliferation marker; 
marker for cancer diagnosis56,57 

DUSP1 NA 
Dual-specificity phosphatase-1 (DUSP1/MKP1) is a 
MAPK/ERK phosphatase; promotes tumorigenesis and 
progression in ovarian cancers58,59 

BIRC5 NA 
Encodes Survivin protein, a multitasking protein that has dual 
roles in promoting cell proliferation and preventing 
apoptosis60,61 

AURKB NA 
Aurora kinase B, overexpression or gene amplification of 
Aurora kinases has been clarified in a number of cancers; 
regulate cytokinesis62,63 

BUB1 Downregulated 
Serine/threonine-protein kinase that performs 2 crucial 
functions during mitosis: spindle-assembly checkpoint 
signaling and chromosome alignment62,64 

CCNA2 Downregulated Encodes Cyclin-2, regulator of cell cycle; is a prognostic 
biomarker for ER+ breast cancer and tamoxifen resistance65 

PRC1 NA 
Protein Regulator of cytokinesis 1, microtubule binding and 
bundling protein essential to maintain the mitotic spindle 
midzone; linked to poor prognosis in breast cancer66,67 

JUN Downregulated 
Proto-oncogene, regulates the expression of multiple genes 
Essential for cell proliferation, differentiation and apoptosis68-

70 

FIGNL1 NA 

Fidgetin Like 1, encodes a member of the AAA ATPase family 
of proteins, recruited to sites of DNA damage where it plays 
a role in DNA double-strand break repair via homologous 
recombination71,72 

SLC25A25 Downregulated Mitochondrial protein transport molecule, Promotes growth of 
tumor cells73 

PTGS2 Downregulated 
Prostaglandin-Endoperoxide Synthase 2 (cyclooxygenase), 
involved in inflammation and mitogenesis, Cancer stem cell 
survival and repopulation of cancer cells during therapy74-77 

COL2A1 Downregulated 
Expression profile of COL2A1 and the pseudogene 
SLC6A10P predicts tumor recurrence in high-grade serous 
ovarian cancer78 

COL4A1 Downregulated 
Remodeling of the extracellular matrix through 
overexpression of collagen VI contributes to cisplatin 
resistance in ovarian cancer cells79 

COL5A1 Downregulated Upregulated in EMT cells80 

COL6A1 Downregulated Upregulated in carboplatin/paclitaxel resistant OVCA81,82 

CCNE2 Downregulated Cyclin E2 (CCNE2) as independent positive prognostic factor 
in advanced stage serous ovarian cancer patients83 
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CHAPTER 4 

DYT1 dystonia patient-derived fibroblasts have increased deformability and 

susceptibility to damage by mechanical forces  

Abstract 

DYT1 dystonia is a neurological movement disorder that is caused by a loss-of-function mutation 

in the DYT1/TOR1A gene, which encodes torsinA, the luminal ATPase-associated (AAA+) 

protein. TorsinA is required for the assembly of functional linker of nucleoskeleton and 

cytoskeleton (LINC) complexes, and consequently the mechanical integration of the nucleus and 

the cytoskeleton. Despite the potential implications of altered mechanobiology in dystonia 

pathogenesis, the role of torsinA in regulating cellular mechanical phenotype, or mechanotype, in 

DYT1 dystonia remains unknown. Here, we define the mechanotype of mouse fibroblasts lacking 

functional torsinA as well as human fibroblasts isolated from DYT1 dystonia patients. We find that 

the deletion of torsinA or the expression of torsinA containing the DYT1 dystonia-causing 

ΔE302/303 (ΔE) mutation results in a more deformable cellular mechanotype. We observe a 

similar increased deformability of mouse fibroblasts that lack lamina-associated polypeptide 1 

(LAP1), which interacts with and stimulates the ATPase activity of torsinA in vitro; as well as with 

depletion of the LINC complex proteins, Sad1/UNC-84 (SUN)1 and SUN2, lamin A/C, or lamin 

B1. Moreover, we report that DYT1 dystonia patient-derived fibroblasts are more compliant than 

fibroblasts isolated from unafflicted individuals. DYT1 fibroblasts also exhibit increased nuclear 

strain and decreased viability following mechanical stretch. Taken together, our results support a 

model where the physical connectivity between the cytoskeleton and nucleus contributes to 

cellular mechanotype. These findings establish the foundation for future mechanistic studies to 

understand how altered cellular mechanotype may contribute to DYT1 dystonia pathogenesis; 

this may be particularly relevant in the context of how neurons sense and respond to mechanical 

forces during traumatic brain injury, which is known to be a major cause of acquired dystonia. 
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1 Introduction 

Dystonia is a debilitating ‘hyperkinetic’ neurological movement disorder, which is the third most 

common movement disorder worldwide behind essential tremor and Parkinson’s disease (Fahn, 

1988; Fahn et al., 1988; Geyer and Bressman, 2006; Defazio et al., 2007). Dystonia is 

characterized by involuntary sustained or intermittent muscle contractions resulting in abnormal 

repetitive movements and/or postures (Fahn, 1988; Albanese et al., 2013). While there are 

multiple treatment options to manage dystonia—such as botulinum toxin injection, oral 

medications, and deep brain stimulation—no curative therapies are available (Albanese et al., 

2013). If we could fully define the mechanisms of disease pathogenesis, this would enable the 

development of effective targeted treatment strategies for dystonia patients. 

 

Dystonia can be acquired as a result of traumatic brain injury, central nervous system infection, 

or environmental toxins (Albanese et al., 2013; Albanese et al., 2018). This neurological disorder 

can also be inherited: the most prevalent and severe inherited dystonia (Weisheit et al., 2018), 

DYT1 dystonia, is caused by a loss-of-function mutation in the DYT1/TOR1A gene that deletes a 

single glutamic acid residue (ΔE302/303, or ΔE) from the encoded torsinA protein (Ozelius et al., 

1997). TorsinA is a ATPase-associated with various cellular activities (AAA+) protein, which 

resides within the lumen of the endoplasmic reticulum lumen and the contiguous perinuclear 

space of the nuclear envelope (Goodchild and Dauer, 2004; Naismith et al., 2004). AAA+ proteins 

typically function as ATP-dependent molecular chaperones that structurally remodel their protein 

substrates (Hanson and Whiteheart, 2005). While the substrate(s) remodeled by torsinA are 

unknown, torsinA is thought to function within the nuclear envelope where its ATPase activity is 

stimulated by its membrane-spanning co-factors: lamina-associated polypeptide 1 (LAP1) and 
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luminal domain-like LAP1 (LULL1) (Laudermilch and Schlieker, 2016). While the ΔE mutation 

impairs the ability of torsinA to interact with or be stimulated by either LAP1 or LULL1 (Naismith 

et al., 2009; Zhao et al., 2013), a mechanistic understanding of how the ΔE mutation drives DYT1 

dystonia pathogenesis at the cellular level remains unclear. 

 

We recently identified torsinA and LAP1 as mediators of the assembly of functional linker of 

nucleoskeleton and cytoskeleton (LINC complexes) (Saunders and Luxton, 2016; Saunders et 

al., 2017), which are evolutionarily conserved nuclear envelope-spanning molecular bridges that 

mechanically integrate the nucleus and the cytoskeleton (Kaminski et al., 2014; Chang et al., 

2015b). LINC complexes are composed of the outer and inner nuclear membrane nesprin and 

SUN proteins: nesprins interact with the cytoskeleton in the cytoplasm and SUN proteins in the 

perinuclear space, whereas SUN proteins interact with A-type lamins and chromatin-binding 

proteins in the nucleoplasm (Crisp et al., 2006; Wilson and Berk, 2010; Chang et al., 2015a). Our 

previous work demonstrated that torsinA and LAP1 are required for the assembly of 

transmembrane actin-associated nuclear (TAN) lines (Saunders et al., 2017), which are linear 

arrays of LINC complexes containing the actin-binding nesprin-2Giant (nesprin-2G) and SUN2 

that harness the forces generated by the retrograde flow of perinuclear actin cables to move the 

nucleus towards the rear of migrating fibroblasts and myoblasts (Luxton et al., 2010; Luxton et 

al., 2011; Chang et al., 2015a). Consistent with these findings, DYT1 dystonia patient-derived 

fibroblasts and fibroblasts isolated from mouse models of DYT1 dystonia exhibit reduced motility 

in vitro (Nery et al., 2008; Nery et al., 2014). Moreover, the migration of torsinA-null neurons in 

the dorsal forebrain of mouse embryos in vivo show impaired migration (McCarthy et al., 2012; 

Nery et al., 2014). Since intracellular force generation is critical for cell motility, and regulated by 

shared mediators of mechanotype, these results suggest that DYT1 dystonia may be 

characterized by defective mechanobiology. 
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Here we test the hypothesis that torsinA regulates cellular mechanical phenotype, or 

mechanotype, which describes how cells deform in response to mechanical stresses. Cellular 

mechanotype is critical for mechanotransduction, whereby cells translate mechanical stimuli from 

their environment into biochemical signals and altered gene expression (Tyler, 2012; Franze, 

2013). The ability of cells to withstand physical forces is also critical for their survival (Hsieh and 

Nguyen, 2005). For example, the external stresses of traumatic brain injury result in cell death 

(Raghupathi, 2004; Stoica and Faden, 2010; Hiebert et al., 2015; Ganos et al., 2016). Damage to 

cells can also occur during migration through narrow constrictions, including nuclear rupture, DNA 

damage, and ultimately cell death (Harada et al., 2014; Denais et al., 2016; Raab et al., 2016; 

Irianto et al., 2017). The damaging effects of such large cellular deformations depend on levels 

of A-type nuclear lamins, which are critical regulators of nuclear and cellular mechanotype 

(Lammerding et al., 2004; Swift et al., 2013; Stephens et al., 2017). The depletion of other proteins 

that associate with nuclear lamins, such as the inner nuclear membrane protein emerin, also 

result in reduced mechanical stability of the nuclear envelope (Rowat et al., 2006; Reis-Sobreiro 

et al., 2018) and increased nuclear deformability in response to strain (Lammerding et al., 2005). 

The nuclear lamina interacts with chromatin, which can also contribute to nuclear mechanical 

properties (Pajerowski et al., 2007; Chalut et al., 2012; Schreiner et al., 2015; Stephens et al., 

2017). In addition, nuclear lamins associate with the LINC complex, which is an important 

mediator of the transmission of physical forces generated from the cytoskeleton to the nucleus 

(Stewart-Hutchinson et al., 2008; Lombardi et al., 2011; Spagnol and Dahl, 2014). Given that 

torsinA is required for the assembly of functional LINC complexes (Saunders et al., 2017), we 

speculated that DYT1 dystonia cells may exhibit altered mechanotype, which could contribute to 

the pathogenesis of DYT1 dystonia.  

 

Here we show that cellular mechanotype is altered due to the expression of torsinA containing 

the DYT1 dystonia-causing ΔE mutation, the deletion of torsinA, or the disruption of functional 
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LINC complexes. We use fibroblasts as a model system, which have been used successfully to 

model human neurological disorders, including dystonia (Connolly, 1998; Hewett et al., 2006; 

Auburger et al., 2012; Burbulla and Kruger, 2012; Wray et al., 2012; Nery et al., 2014). We find 

that mouse embryonic fibroblasts (MEFs) derived from torsinA- or LAP1-knockout as well as ΔE-

knock-in mice are more deformable than control fibroblasts. We observe a similar, more compliant 

mechanotype in MEFs lacking functional LINC complexes as well as A- or B-type lamins. 

Furthermore, we find that fibroblasts isolated from DYT1 dystonia patients are more deformable 

than normal fibroblasts. Interestingly we observe that DYT1 fibroblasts exhibit nuclei with greater 

strain and decreased cell viability following mechanical stretching. Collectively these findings 

establish altered cellular mechanotype as a potential biomarker of DYT1 dystonia, which will guide 

future studies designed to better understand dystonia pathogenesis and to identify novel 

therapeutic targets for treatment of this debilitating disease. 

2 Materials and methods 

2.1 Cells 

Parental NIH3T3 fibroblasts were cultured in L-glutamine-, glucose-, and sodium pyruvate-

containing Dulbecco’s modified Eagle’s media (DMEM) (ThermoFisher Scientific, Waltham, MA) 

supplemented with 10% bovine calf serum (BCS) (Gemini Bio-Products, West Sacramento, CA). 

NIH3T3 fibroblasts stably expressing wild type (WT), or mutant (E171Q or ΔE) versions of torsinA 

containing EGFP inserted after its signal sequence (SS) were created as follows: the open 

reading frame encoding SS-EGFP-torsinA was amplified by PCR from the previously described 

SS-EGFP-torsinA WT, SS-EGFP-torsinA E171Q and SS-EGFP-torsinA ΔE constructs (Saunders 

et al., 2017) using the primers SS-EGFP-F (5’-GGGCGCCTCGAGATGAAGCTGGGCCGGG-3’) 

and SS-EGFP-torsinA-R (5’-GCGCCCGAATTCTCAATCATCGTAGTAATAATCTAACTTGGTG-

3’), which contain 5’ XhoI and EcoRI cut sites, respectively. The resulting PCR products were 
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each purified using the Wizard SV Gel and PCR Clean-Up System (Promega, Madison, WI) and 

then subcloned into the cytomegalovirus immediate-early expression cassette of the pLPCX 

retroviral vector (Takara Bio USA, Inc., Mountain View, CA). Phusion DNA polymerase and T4 

DNA ligase were purchased from New England Biolabs (Ipswich, MA). Restriction enzymes were 

either purchased from New England Biolabs or Promega. The resultant pLPCX cDNA constructs 

and pVSV-G (Takara Bio USA, Inc.) were purified using the GeneJet Plasmid Midiprep Kit 

(ThermoFisher Scientific) and cotransfected into the gp293 retroviral packaging cell line (Takara 

Bio USA, Inc.); the subsequent isolation of retroviral particles was performed as recommended 

by the manufacturer. NIH3T3 fibroblasts were transduced with the resultant retrovirus and 

selected with 2 µg/mL puromycin (Thermo Fisher Scientific). Individual clones of the resultant cell 

lines were isolated using limiting dilution and maintained with 2 µg/mL of puromycin. Mouse 

embryonic fibroblasts (MEF) lacking Tor1a, Tor1aip1, and SUN1/2 as well as lamin A and B1 

were derived from mice as previously described (Kim et al., 2010; Jung et al., 2014). All mouse 

MEFs used in this study were grown in DMEM with 15% BCS. Human fibroblasts (GM00023, 

GM00024, GM02912, GM02551, GM03208, GM03211, GM03221, and GM02304) were 

purchased from the Coriell Institute and cultured following vendor’s instructions (Camden, NJ): 

GM00023, GM03208, GM03211, GM03221, GM02551 and GM02304 were grown in DMEM 

containing 15% fetal bovine serum (FBS) (Gemini Bio-Products, West Sacramento, CA). 

GM00024 were grown in DMEM supplemented with 10% FBS. GM02912 were grown in 20% 

FBS-containing Ham’s F12 media supplemented with 2 mM L-glutamine (Sigma-Aldrich, St. 

Louis, MO). 

2.2 Parallel microfiltration 

Prior to filtration measurements, cells were washed with 1x DNase-, RNase- & Protease-free 

phosphate-buffered saline purchased from Mediatech (Manassas, VA), treated with trypsin 

(VWR, Visalia, CA), and resuspended in fresh medium to a density of 0.5 x 106 cells/mL. Cell 
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suspensions were then passed through a 35 µm cell strainer (BD Falcon, San Jose, CA) prior to 

each filtration measurement. Next, 350 µL of each cell suspension was loaded into each well of 

a 96-well loading plate (Greiner BioOne, Monroe, NC). The number and size distribution of cells 

in each well was quantified using an automated cell counter (TC20, BioRad Laboratories, 

Hercules, CA). Finally, a defined amount of air pressure, which was monitored using a 0 - 100 

kPa pressure gauge (Noshok Inc., Berea, OH), was applied to the 96-well plate outfitted with a 

custom pressure chamber (Qi et al., 2015; Gill et al., 2017). To quantify retention volumes 

following filtration, we measured the absorbance at 560 nm of the phenol red-containing cell 

medium using a plate reader (Infinite M1000, Tecan Group Ltd., Männedorf, Switzerland). 

2.3 q-DC 

Standard soft lithography methods were used to fabricate the microfluidic devices for q-DC 

experiments. Briefly, a 10:1 w/w base to crosslinker ratio of polydimethylsiloxane (PDMS) was 

poured onto a previously described master wafer (Saunders et al., 2017). The device was 

subsequently bonded to a No. 1.5 glass coverslip (Thermo Fisher) using plasma treatment 

(Plasma Etch, Carson City, NV). Within 24 h of device fabrication, suspensions of 2 × 106 cells/mL 

were driven through constrictions of 9 μm (width) x 10 μm (height) by applying 55 kPa of air 

pressure across the device. We captured images of cell shape during transit through the 9 µm 

gaps on the millisecond timescale using a CMOS camera with a capture rate of 1600 frames/s 

(Vision Research, Wayne, NJ) mounted on an inverted Axiovert microscope (Zeiss, Oberkochen, 

Germany) equipped with a 20x/0.4NA objective (LD Achroplan 20x/0.4NA objective Korr Ph2, 

Zeiss) and light source (Osram Halogen Optic Lamp 100 W, 12 V). We used custom MATLAB 

(MathWorks, Natick, MA) code (https://github.com/knybe/RowatLab-DC-Analysis) to analyse the 

time-dependent shape and position changes of individual cells (Nyberg et al., 2016). To determine 

the mechanical stresses applied to individual cells, we used agarose calibration particles that 

were fabricated using oil-in-water emulsions as previously described (Nyberg et al., 2017). Stress-
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strain curves were obtained for single cells and a power-law rheology model was subsequently 

fitted to the data to compute the elastic modulus and fluidity of the cells. 

2.4 Epifluorescence microscopy 

To image cell and nuclear morphology, cells grown on No. 1.5 coverslips were labeled with 5 µM 

Calcein-AM and 0.2 µg/mL Hoechst 33342 (ThermoFischer Scientific). For cell viability 

measurements, cells were stained with 50 µg/mL propidium iodide (Thermo Fisher Scientific). 

Images of fluorescently-labeled cells were acquired using a Zeiss Axio Observer A.1 microscope 

equipped with a 10x/0.3 NA EC Plan-Neofluar Ph1 M27 objective, 20x/0.8 NA Plan-Apochromat 

M27 objective, HBO 103W/2 mercury vapor short-arc lamp light source, BP 470/20 excitation 

filter, BP 505-530 emission filter, and FT 495 beam splitter. ImageJ (Bethesda, MA) was used to 

quantify cell and nuclear size and shape parameters from the acquired images. 

2.5 Cell stretching 

To subject cells to external mechanical stresses, we used a custom-built cell stretching apparatus 

(Kim et al., 2018). We prepared elastic PDMS membranes as previously described (Kim et al., 

2018). Cells were resuspended in tissue culture media at a concentration of 5 x 105 cells/mL and 

then added to individual PDMS strips and incubated for 24 h at 37 °C in cell culture incubator. To 

quantify nuclear strain, the membranes with cells adhered were stretched by 2 mm (5% of the 

total length of the membrane) while submerged in cell culture media for 5 min prior to imaging. 

To determine effects of repetitive stretch on cell viability and adhesion, membranes were 

stretched by 2 mm at 0.5 Hz for 24 h at 37 °C. After 24 h, membrane-adhered cells were stained 

with fluorescent dyes and imaged as described above. To quantify the number of cells attached 

to the membranes after stretching, we prepared lysates of the adherent cells using a solution of 

0.1 N NaOH (Sigma Aldrich) and measured the total protein content of the lysates using the 

BioRad Laboratories D-C protein assay kit. 
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2.6 Statistical methods  

To determine statistical significance of data that exhibited non-parametric distributions including 

transit time, apparent cell elastic modulus, cell size, cell and nuclear shape, and nuclear strain, 

we used the Mann-Whitney U test. All other results are expressed as mean ± standard deviation 

and Student’s t-test method was used to analyze significance and to obtain p-values. 

3 Results 

3.1 TorsinA and LAP1 contribute to fibroblast mechanotype 

To begin to determine if DYT1 dystonia is associated with altered cellular mechanotype, we 

performed parallel microfiltration (PMF) (Qi et al., 2015; Gill et al., 2017) of NIH3T3 fibroblasts 

that have inhibited function of torsinA. In PMF, cell suspensions are filtered through porous 

membranes by applying air pressure. Cells that occlude the micron-scale pores due to their 

stiffness and/or size block the fluid flow, reducing filtrate volume, and increasing the volume of 

fluid that is retained in the top well, which we report as % retention (Figure 1A). To manipulate 

torsinA function, we generated lentivirus-transduced NIH3T3 fibroblasts that stably express 

previously described cDNA constructs encoding wild type (WT) or mutant (E171Q or ΔE) torsinA 

(Saunders et al., 2017). Since neither SS-EGFP-torsinAE171Q nor SS-EGFP-torsinAΔE were able 

to rescue the rearward nuclear positioning defect in mouse embryonic fibroblasts (MEFs) isolated 

from torsinA-knockout (Tor1a-/-) mice (Goodchild et al., 2005; Saunders et al., 2017), we 

rationalized that these constructs would act as dominant negative inhibitors of torsinA function in 

NIH3T3 fibroblasts. Consistent with this prediction, NIH3T3 fibroblasts expressing either SS-

EGFP-torsinAE171Q or SS-EGFP-torsinAΔE exhibited significantly lower % retention than parental 

non-transduced or SS-EGFP-torsinAWT transduced NIH3T3 fibroblasts (Figure 1B). While cell 

size can impact filtration, we observed no significant differences in size distributions among these 
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cell lines (Figure 1C), suggesting that their altered filtration is due to differences in their cellular 

deformability. These data suggest that torsinA regulates the mechanotype of NIH3T3 fibroblasts.  

 

To further investigate the relationship between torsinA and cellular mechanotype, we next 

performed PMF experiments on previously characterized Tor1a+/+ and Tor1a-/- MEFs (Saunders 

et al., 2017). We found that % retention of the Tor1a+/+ MEFs was significantly larger than the % 

retention of the Tor1a-/- MEFs (Figure 1D). Consistent with these findings, we observed that MEFs 

isolated from heterozygous (Tor1a+/ΔE) or homozygous (Tor1aΔE/ΔE) ΔE-knock-in mice (Goodchild 

et al., 2005) had a significantly lower % retention than Tor1a+/+ MEFs (Figure 1D). Moreover, the 

% retention measured for MEFs derived from LAP1-knockout (Tor1aip1-/-) mice was also 

significantly lower than control Tor1aip1+/+ MEFs (Figure 1F). We confirmed that these observed 

changes in % retention were not due to significant differences in cell size distributions (Figures 

1E, G). Because the interaction between torsinA and the luminal domain of LAP1 stimulates its 

ATPase activity in vitro (Zhao et al., 2013) and the ΔE mutation impairs the ability of torsinA to 

interact with LAP1 (Naismith et al., 2009), these results suggest that the interaction between 

torsinA and LAP1 may contribute to fibroblast mechanotype. In addition, LAP1 is critical for 

nuclear envelope structure (Santos et al., 2015) and interacts with nuclear lamins (Foisner and 

Gerace, 1993; Serrano et al., 2016), which are major determinants of cellular mechanotype 

(Houben et al., 2007). Thus, the loss of interaction between torsinA and LAP1 caused by the ΔE 

mutation may also contribute to the more compliant mechanotype that we observe in LAP1-

knockout fibroblasts. 
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Figure 1. Fibroblasts lacking functional torsinA or LAP1 have increased deformability. (A) 
Schematic illustration of PMF. Less deformable cells tend to occlude pores, which blocks fluid 
flow and results in an increased volume of fluid that is retained above the membrane (% retention). 
(B) PMF measurements of NIH3T3 fibroblasts expressing the indicated SS-EGFP-tagged torsinA 
constructs. (D, F) PMF measurements of the indicated MEF lines. PMF conditions: 10 µm pore 
size, 2.1 kPa for 50 s. Each data point represents mean ± standard deviation (SD). Statistical 
significance was determined using the Student’s t-test. (C, E, G) Cell size measurements. 
Boxplots show 25th and 75th percentiles; line shows median; and whiskers denote 10th and 90th 
percentiles. All data were obtained from three independent experiments. Statistical significance 
was determined using the Mann-Whitney U test. *** p < 0.001; ** p < 0.01; not significant (NS) p 
> 0.05. 
 

3.2 Components of the LINC complex mediate cellular mechanotype  

We previously showed that torsinA and LAP1 are both required for nuclear-cytoskeletal coupling 

through SUN2-containing LINC complexes (Saunders et al., 2017). Thus, we next asked whether 

or not MEFs isolated from SUN2-knockout (SUN2-/-) mice (Lei et al., 2009) exhibit a similar 

decreased filtration as the Tor1a-/- and Tor1aip1-/- MEFs. We found that SUN2-/- MEFs had a 
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reduced % retention relative to control (SUN1/2+/+) MEFs (Figure 2A). Since torsinA has also 

been proposed to interact with and regulate SUN1-containing LINC complexes (Jungwirth et al., 

2011; Pappas et al., 2018), we also performed PMF on MEFs derived from SUN1/2-double 

knockout (SUN1/2-/-) mice (Lei et al., 2009) and found that SUN1/2-/- MEFs had reduced retention 

compared to both SUN2-/- and SUN1/2+/+ MEFs (Figure 2A). We confirmed that these changes 

in % retention were not due to significant differences in cell size distributions (Figure 2B). 

 

We next investigated the effects of A-type lamins on cell filtration, as they are established 

regulators of cellular mechanotype (Lammerding et al., 2004; Swift et al., 2013) and directly 

interact with LAP1 (Foisner and Gerace, 1993; Serrano et al., 2016) and SUN1/2 (Chang et al., 

2015b). We found that MEFs isolated from lamin A/C-knock-out (LMNA-/-) mice exhibited a 

reduced % retention relative to MEFs isolated from control mice (LMNA+/+) (Figure 2C). The 

increased deformability of the LMNA-/- MEFs that we observed is consistent with previous studies 

from our laboratory and others, which show that A-type lamins determine the ability of cells to 

deform through micron-scale pores, both during passive deformation driven by applied pressure 

(timescale ~ seconds) and active migration (timescale ~ hours) (Rowat et al., 2013; Denais et al., 

2016; Irianto et al., 2017). In addition to A-type nuclear lamins, cells express the B-type nuclear 

lamins, lamin B1 and lamin B2 (Dittmer and Misteli, 2011; Reddy and Comai, 2016). Lamin B1 

interacts with SUN1 (Nishioka et al., 2016) and LAP1 (Maison et al., 1997) and is required for 

proper nuclear-cytoskeletal coupling (Ji et al., 2007). We found that MEFs isolated from lamin-

B1-knockout mice (LMNB1-/-) (Vergnes et al., 2004) had reduced % retention compared to MEFs 

isolated from control mice (LMNB1+/+) (Figure 2C), suggesting that lamin B1 also contributes to 

cellular mechanotype. These findings are in agreement with previous findings that lamin B1 is a 

determinant of nuclear shape and stiffness (Coffinier et al., 2011; Ferrera et al., 2014). While we 

observed differences in cell size distributions between LMNA-/- and LMNA+/+ MEFs as well as 

between LMNB1-/-
 and LMNB1+/+ MEFs, we did not observe that cells with larger median cell size 



 138 

had increased % retention (Figures 2C, D). Taken together, these results suggest that nuclear 

lamins, torsinA, LAP1, and LINC complexes are important mediators of cellular mechanotype. 

These results are consistent with a model where cells are more deformable when the mechanical 

integration of the nucleus and the cytoskeleton is perturbed.  

 

 

Figure 2. Fibroblasts lacking LINC complexes, A-type lamins, or lamin B1 have increased 
deformability. PMF measurements of the indicated MEF lines. (A) PMF conditions: 10 µm pore 
membrane, 2.1 kPa for 50 s. (C) PMF conditions: 10 µm pore membrane, 2.1 kPa for 40 s. Each 
data point represents mean ± SD. Statistical significance was determined using the Student’s t-
test. (B, D) Cell size data. Boxplots show 25th and 75th percentiles; line shows median; whiskers 
denote 10th and 90th percentiles. Statistical significance was determined using the Mann-Whitney 
U test. All data were obtained from three independent experiments. *** p < 0.001; ** p < 0.01; not 
significant (NS) p > 0.05. 
 

3.3 Dystonia patient-derived fibroblasts are more deformable than controls 

Having established that the DYT1 dystonia-causing ΔE mutation in torsinA makes cells more 

deformable and that torsinA and LINC complex-associated proteins are important determinants 

of cellular mechanotype, we next tested if fibroblasts isolated from DYT1 dystonia patients display 

defects in cellular mechanotype. We performed PMF on a panel of age-matched human 

fibroblasts isolated from normal control (GM00023, GM00024, GM02912) and DYT1 patients 

(GM03211, GM03221, GM02304). We found that DYT1 patient-derived fibroblasts had 

consistently lower % retention compared to fibroblasts isolated from unafflicted controls (Figure 

BA C D
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3A). We did not observe any significant effects of cell size on retention measurements of these 

human fibroblasts. While there were some differences in cell size distributions across DYT1 

fibroblast lines (Figure 3B), we consistently observed decreased % retention of the DYT1 

dystonia patient-derived fibroblasts, even for the GM02304 line that has a larger median cell size 

(Figure 3A). These findings suggest that fibroblasts isolated from DYT1 dystonia patients more 

readily deform through micron-scale pores.  

 

To validate the altered mechanotype of the DYT1 patient-derived fibroblasts (GM02304) versus 

control cells (GM00024), we used quantitative deformability cytometry (q-DC) (Nyberg et al., 

2017). q-DC is a microfluidic method that enables single-cell measurements of transit time (TT), 

which is the time that it takes a cell to transit into the micron-scale constriction of a microfluidic 

device in response to applied pressure, and apparent elastic modulus (Ea). We found that DYT1 

fibroblasts had reduced median TT relative to normal fibroblasts (median TTGM02304 = 16.2 ms 

versus TTGM00024 = 24.4 ms, p = 1.5 x 10-2). Since TT tends to be shorter for more compliant cells 

with reduced elastic modulus (Nyberg et al., 2017), these findings corroborate the increased 

deformability of DYT1 fibroblasts (Figures 3C, D). q-DC measurements can also be impacted by 

cell size, but we found no significant correlations of q-DC measurements with cell diameter (d) by 

linear regression analysis (Pearson’s rGM02304_TT vs d = 0.0, Pearson’s rGM00024_TT vs d = -0.1), 

suggesting that these observations of the altered DYT1 dystonia-derived fibroblast mechanotype 

does not depend on cell size. Using power law rheology to extract measurements of Ea (Nyberg 

et al., 2017), we found that DYT1 patient-derived fibroblasts have reduced median Ea compared 

to controls, although the reduction was not statistically significant (Figures 3E, F). Collectively, 

our PMF and q-DC measurements indicate that DYT1 dystonia patient-derived fibroblasts are 

more deformable than control fibroblasts. 
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Figure 3. Dystonia patient-derived fibroblasts have increased deformability. (A) PMF 
measurements of normal and DYT1 patient-derived fibroblast lines. PMF conditions: 10 µm pore 
membrane, 1.4 kPa for 50 s. Each data point represents mean ± SD. Statistical significance was 
determined using the Student’s t-test. (B) Cell size distributions. Boxplots show 25th and 75th 
percentiles; line shows median; whiskers denote 10th and 90th percentiles. (C, E) Density scatter 
plots for TT and Ea measurements determined by q-DC. Each dot represents a single cell. N > 
190 per sample. (D, F) TT and Ea measurement boxplots show 25th and 75th percentiles; line 
shows median; whiskers denote 10th and 90th percentiles. Statistical significance was determined 
using Mann-Whitney U test. All data were obtained over three independent experiments. *** p < 
0.001; ** p < 0.01; not significant (NS) p > 0.05. 
 

 

Normal DYT1BNormal DYT1A

C D

102

Cell diameter (µm)

104

103

302520

Lo
g 1

0 E
a (

kP
a)

GM00024 (Normal)

15
102

Cell diameter (µm)

104

103

302520

Lo
g 1

0 E
a (

kP
a)

GM02304 (DYT1)

15

102

Cell diameter (µm)

103

101

Lo
g 1

0T
T 

(m
s)

GM00024 (Normal)

100

15 20 25 30

102

Cell diameter (µm)

103

101

Lo
g 1

0T
T 

(m
s)

GM02304 (DYT1)

100

15 20 25 30

GM00024 (Normal) GM02304 (DYT1)

E F



 141 

3.4 DYT1 dystonia patient-derived fibroblasts display altered nuclear morphology  

Cellular and nuclear shape reflect a balance between cell-matrix adhesion, cellular force 

generation, mechanical stability of the cellular cortex and nuclear envelope, as well as nuclear-

cytoskeletal connectivity (Dahl et al., 2004; Dahl et al., 2008; Rowat et al., 2008; Kim et al., 2015; 

Murrell et al., 2015). Since the ΔE mutation in torsin A alters the mechanical integration of the 

nucleus and the cytoskeleton via the LINC complex (Nery et al., 2008; Jungwirth et al., 2011; 

Saunders et al., 2017), and we observed differences in cellular deformability between the DYT1 

dystonia patient-derived fibroblasts and control fibroblasts, we hypothesized that fibroblasts 

isolated from DYT1 dystonia patients may exhibit altered cellular size as well as nuclear size and 

shape. To characterize these features, we performed quantitative image analysis of cells with 

labeled cytoplasm (Calcein AM) and nuclei (Hoechst) using epifluorescence microscopy. We first 

measured the area of adhered cells, which indicates the degree of cell spreading. Based on our 

observations of the more compliant mechanotype of DYT1 dystonia patient-derived fibroblasts 

and a previous report of the altered adhesion of these cells (Hewett et al., 2006), we hypothesized 

that DYT1 fibroblasts may have reduced spread area. However, we found no observable 

differences in cellular area between DYT1 and normal fibroblasts (Supplementary Figure 1A). 

Since intracellular forces pulling on the nucleus can result in an increased nuclear area (Iyer et 

al., 2012), we next measured the projected area of nuclei in these cells, but found no significant 

differences between fibroblasts isolated from DYT1 dystonia patients or controls (Supplementary 

Figure 1B). Cell-to-nuclear size ratio was also similar across cell types, indicating that nuclear 

and cellular size scale similarly in DYT1 dystonia patient-derived fibroblasts and control cells 

(Supplementary Figure 1C). 

  

We next investigated nuclear shape, which is impacted by cytoskeletal-generated forces as well 

as the inherent mechanical stability of the nuclear envelope (Rowat et al., 2008; Makhija et al., 
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2016). Given the altered physical connectivity between cytoskeleton and nucleus in DYT1 

dystonia patient-derived fibroblasts, we reasoned that these cells may exhibit altered nuclear 

morphology. To quantify nuclear shape, we measured common metrics including aspect ratio and 

circularity. We found that nuclei in fibroblasts isolated from DYT1 dystonia patients have a slightly 

larger aspect ratio than normal fibroblast nuclei, reflecting how they are more elongated as 

compared to controls (Figures 4A, B). Consistent with this, we also found DYT1 dystonia patient-

derived fibroblasts have an increased cellular aspect ratio compared to normal control fibroblasts 

(Figures 4A, C). We further investigated nuclear circularity; this shape parameter is sensitive to 

irregular shapes that deviate from a circle, as  

𝐶 = 4p	
Area

Perimeterc
 

and C = 1 for a perfect circle. However, we observed only minor differences in nuclear circularity 

between DYT1 dystonia patient-derived and normal fibroblasts (Figure 4D), which is consistent 

with the slightly elongated nuclear shapes that we observed in the fibroblasts isolated from DYT1 

dystonia patients. Our findings that the DYT1 dystonia-causing ΔE mutation does not have a 

major impact on nuclear shape contrasts the known effects of reductions or mutations in A-type 

lamins (Rowat et al., 2013; Harada et al., 2014; Reis-Sobreiro et al., 2018), which are associated 

with nuclear blebbing, or lobulations, and tend to markedly reduce nuclear circularity (Funkhouser 

et al., 2013; Rowat et al., 2013; Reis-Sobreiro et al., 2018).  
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Figure 4. DYT1 patient-derived fibroblasts and nuclei are more elongated. (A) 
Representative brightfield and epifluorescence images of patient-derived normal and DYT1 
fibroblasts (brightfield) and nuclei (Hoechst). Scale, 20 µm. Inset: Scale, 10 µm. Quantification of 
(B) nuclear aspect ratio, (C) cellular aspect ratio, and (D) nuclear circularity. Each data point 
represents mean ± SD. Data obtained from three independent experiments for N > 30 cells. 
Statistical significance was determined using Mann-Whitney U test. *** p < 0.001; ** p < 0.01; * p 
< 0.05; not significant (NS) p > 0.05 is not indicated on these plots for clarity. 
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et al., 2004; Denais et al., 2016; Raab et al., 2016; Irianto et al., 2017; Chen et al., 2018; Kim et 

al., 2018). Since fibroblasts isolated from DYT1 dystonia patients are more deformable than 

controls, we next tested the hypothesis that DYT1 fibroblasts exhibit increased cell death following 

exposure to mechanical forces. To test this hypothesis, we grew DYT1 dystonia patient-derived 

fibroblasts (GM03211, GM02304) and normal controls (GM00023, GM00024) on an elastic 

collagen-coated PDMS membrane and subjected the resultant membrane with adhered cells to 

uniaxial mechanical stretch (5% strain). To quantify the magnitude of strain experienced by nuclei, 

we acquired images of cells in static and stretched conditions. We found that DYT1 dystonia 

patient-derived fibroblasts cells exhibited larger changes in nuclear area (strain) compared to 

control fibroblasts in response to the same magnitude of strain of the underlying substrate 

(Figures 5A, B). These observations of increased nuclear strain are consistent with the DYT1 

fibroblast nuclei being more deformable than those in control fibroblasts. These findings also 

suggest that DYT1 dystonia fibroblast nuclei are deforming more in response to external 

mechanical stresses than control fibroblast nuclei despite the requirement of torsinA for nuclear-

cytoskeletal coupling via the LINC complex (Saunders et al., 2017).  

 

Since the mechanical stability of the nucleus is critical for cell survival following exposure to 

mechanical stresses (Harada et al., 2014; Denais et al., 2016; Raab et al., 2016; Irianto et al., 

2017), we next determined the viability of DYT1 dystonia patient-derived and control fibroblasts 

after repeated cycles of stretch and relaxation at 5% strain and 0.5 Hz over 24 h. Visual inspection 

of fibroblasts in stretched versus static samples revealed major morphological differences 

between fibroblasts isolated from DYT1 dystonia patients compared to control cells after 24 h. In 

contrast to the aligned morphologies of control fibroblasts, which appear similar in both stretched 

and static samples, the stretched DYT1 fibroblasts were misaligned and exhibited irregular 

shapes (Figure 5C). To evaluate their viability after stretching, we acquired images of these cells 

stained with propidium iodide and used quantitative image analysis to count the number of dead 
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cells in each sample. While normal fibroblasts showed no significant cell death after stretching, 

we observed a marked 57-62% reduction in the viability of DYT1 fibroblasts compared to static 

control, indicating their reduced survival following exposure to mechanical stresses (Figure 5D, 

Supplementary Figure 2). Since the response of cells to stretch depends on cell-substrate 

adhesions, we also assessed the number of cells that remained adhered to the PDMS substrate 

after stretching by quantifying the total protein content of cells lysed from the PDMS membrane. 

We found a significant ~17-58% reduction in protein content for the stretched DYT1 cells relative 

to static control, showing that there was significant detachment of cells from the substrate over 

the 24 h stretching period. By contrast, over 90% of the control cells were adhered to the 

membrane after 24 h (Figure 5E). The increased detachment of DYT1 dystonia patient-derived 

fibroblasts is consistent with a previous report of altered integrin-mediated adhesion in these cells 

(Hewett et al., 2006; Kim et al., 2018). Collectively, these findings indicate a striking difference in 

the response of DYT1 dystonia patient-derived fibroblasts to mechanical stretch, which could be 

attributed to their reduced mechanical stability, altered mechanosensation, and/or impaired 

mechanosignaling. As molecular mediators of mechanotype are generally conserved across cell 

types (Chang et al., 2015a), we anticipate that our observations of altered mechanotype in human 

and mouse fibroblasts may also be observed in neurons, which may have important 

consequences for DYT1 dystonia pathogenesis. 
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Figure 5. DYT1 patient-derived fibroblasts exhibit increased nuclear strain and are more 
susceptible to damage upon mechanical stretch. (A) Representative images of patient-
derived normal and DYT1 fibroblasts stained with the nuclear dye Hoechst. Nuclear morphology 
was examined after cells were exposed to mechanical stretch (5% strain) for 5 min. Images show 
stretched (STRETCH) or non-stretched (STATIC) conditions. White arrow denotes direction of 
uniaxial stretch. (B) Quantification of nuclear strain (change in nuclear area) due to cell stretching. 
N > 15 cells. Statistical significance was determined using Mann-Whitney U test. (C) 
Representative images of patient-derived normal and DYT1 fibroblasts after exposure to 24 h 
cyclical stretch (5% strain) and static conditions. Cells were stained with Hoechst to visualize 
nuclei by fluorescence microscopy. Scale, 20 µm. (D) Cell viability of normal and DYT1 fibroblasts 
after exposure to stretch and static conditions. The viability data of stretched cells is normalized 
to static control for each cell line. N > 500 cells. (E) The percentage of cells that are adhered to 
the PDMS membranes after stretch is quantified by total protein content. Total protein content of 
stretched cells normalized to static control for each cell line. Each data point represents mean ± 
SD. Data obtained from two independent experiments. Scale, 20 µm. Statistical significance was 
determined using Student’s t-test. *** p < 0.001; ** p < 0.01; * p < 0.05; and not significant (NS) p 
> 0.05 is not indicated on these plots for clarity. 
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4 Discussion 

Here we show that DYT1 dystonia is characterized by defective cellular mechanobiology. We find 

that fibroblasts derived from DYT1 dystonia patients have a more compliant mechanotype than 

control fibroblasts. These findings are substantiated by the increased deformability of fibroblasts 

that are torsinA-null; that express torsinA ΔE; or that lack functional LINC complexes. It is 

intriguing to speculate how altered cellular mechanotype may impact DYT1 dystonia 

pathogenesis. Mechanotype is closely linked to cellular functions that involve physical force 

generation, such as motility, and mechanosensing (Anselme et al., 2018; Prahl and Odde, 2018), 

both of which are required during tissue morphogenesis where cells generate physical forces and 

sense mechanical cues (Heisenberg and Bellaiche, 2013; Pizzolo et al., 2017). Previous studies 

showed impaired migration of neurons in the dorsal forebrain of Tor1a-/- mouse embryos in vivo 

(McCarthy et al., 2012) and reduced motility of torsinA-null MEFs and DYT1 dystonia patient-

derived fibroblasts in vitro (Nery et al., 2008; Nery et al., 2014). Our observations of the reduced 

survival of DYT1 dystonia-derived fibroblasts following mechanical stretch may also suggest that 

these cells have impaired mechanosensation. Like all cells, neurons adapt their own 

mechanotype by translating mechanical stimuli from their environment into biochemical signals 

through a process known as mechanotransduction (Tyler, 2012; Franze, 2013). During 

development, the brain exhibits evolving stiffness gradients due to the variations in the 

composition and architecture of the extracellular matrix (Franze, 2013; Barnes et al., 2017), which 

provide mechanical signals that instruct neuronal differentiation, proliferation, and survival 

(Iwashita et al., 2014; Koser et al., 2016). It is interesting to note that the brains of Tor1a-/- mice 

exhibit elevated LINC complex levels in the proliferative zone and an abnormal morphogenesis 

characterized by excess neural tissue (Dominguez Gonzalez et al., 2018). Since the brain 

morphogenesis phenotype observed in the Tor1a-/- mice was rescued by the SUN2-deletion 

(Dominguez Gonzalez et al., 2018), LINC complex regulation of mechanotype may be an 
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important consequence of torsinA activity during brain development in DYT1 dystonia. Taken 

together with the findings presented here, these results support the hypothesis that DYT1 

dystonia may be characterized by defective mechanobiology. 

 

Having established here that torsinA regulates cellular mechanotype and resistance to damage 

caused by mechanical forces, future efforts will focus on defining the underlying molecular 

mechanisms. Our findings are consistent with a model where torsinA, LINC complexes, and LINC 

complex-associated proteins each contribute to cellular mechanotype. Future molecular-level 

mechanotyping or imaging studies will define the extent to which protein-protein interactions 

between these structural components versus the individual proteins contributes to cellular and 

nuclear mechanical stability. Since many nuclear envelope proteins also interact with chromatin 

and regulate genomic organization (Van de Vosse et al., 2011; Zuleger et al., 2011), changes in 

gene expression may further impact mechanotype in DYT1 dystonia. Chromatin organization is 

also a determinant of cellular mechanotype (Pajerowski et al., 2007; Chalut et al., 2012; Schreiner 

et al., 2015; Stephens et al., 2017). Moreover, torsinA is implicated in other fundamental cellular 

functions including lipid metabolism and nuclear-cytoplasmic transport (Saunders and Luxton, 

2016; Cascalho et al., 2017; Chase et al., 2017), which may also contribute to mechanotype. 

Identifying the elusive substrate(s) remodeled by torsinA within the contiguous lumen of the 

endoplasmic reticulum and nuclear envelope should provide further insight into the relative 

contribution of these torsinA-dependent processes to cellular mechanotype.  

 

While torsinA is required for functional LINC complexes, which physically connect the nucleus 

and cytoskeleton (Chang et al., 2015a), it is interesting to note that DYT1 dystonia patient-derived 

fibroblasts exhibit increased nuclear strain following mechanical stretch, suggesting that there are 

still physical forces pulling on the nucleus during stretch of the underlying substrate. The 

increased nuclear strain may be explained by force transmission that is mediated by other protein-
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protein interactions; for example, transmission of external forces to the nucleus could be regulated 

by microtubules (Alam et al., 2014; Chang et al., 2015a) and/or intermediate filaments, although 

the relationship between intermediate filaments and DYT1-causing torsinA mutations remains to 

be fully defined (Hewett et al., 2006; Nery et al., 2014; Saunders et al., 2017). The increased 

nuclear strain observed in DYT1 fibroblasts is consistent with the loss of torsinA function making 

the nuclear envelope more deformable, thus resulting in a larger increase in nuclear area for the 

same magnitude of substrate stretch. We additionally discovered that the altered mechanotype 

of DYT1 patient fibroblasts is associated with decreased survival following mechanical stretch. 

These findings are consistent with previous reports that reduced levels of lamin A/C in fibroblasts 

result in increased cell death following the migration of cells through narrow gaps (Wang et al., 

2018). The decreased viability of DYT1 dystonia patient-derived fibroblasts could also result from 

increased nuclear rupture and double stranded DNA breaks that have been observed in 

fibroblasts as well as cancer and immune cells (Lammerding et al., 2005; Raab et al., 2016; 

Isermann and Lammerding, 2017); this resultant damage from mechanical stresses depends on 

lamin A/C expression levels, suggesting that the mechanical stability of the nuclear envelope is 

critical for cell survival. Our discovery of the reduced viability of DYT1 fibroblasts following 

mechanical stretch could also be explained by the altered apoptotic signaling that is triggered by 

mechanical stimuli (Raab et al., 2016). Future studies will investigate the mechanism of altered 

survival of DYT1 patient fibroblasts in more detail. 

 

Finally, it is intriguing to speculate that defective mechanobiology may be a common cellular 

phenotype across different forms of dystonia. The shared disease mechanisms underlying the 25 

other known inherited forms of dystonias remain poorly understood, but some evidence suggests 

altered mechanobiology may be implicated. For example, DYT2 dystonia is caused by an 

autosomal recessive mutation in the HPCA gene, which encodes the calcium-binding hippocalcin 

protein (Charlesworth et al., 2015) that is implicated in the regulation of the mechanoactive 
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extracellular signal-regulated kinase-mediated signal transduction (Huang and Ingber, 2005; 

Braunewell et al., 2009). Other known mutations that give rise to dystonia occur in proteins known 

to play a role in cellular/tissue mechanotype, including β4-tubulin, collagen-6A3, and sarcoglycan-

ε (Verbeek and Gasser, 2016). For example, mutations in THAP1 (DYT6) and sarcoglycan-ε 

(DYT11) cause DYT6 and DYT11 dystonias; these proteins both interact with torsinA (Ledoux et 

al., 2013). Interestingly, torsinA and sarcoglycan-ε function together to promote proper 

neurological control over movement (Yokoi et al., 2010). Future studies will determine how 

broadly altered cellular mechanotype is conserved across different forms of dystonia. Such 

investigations could also shed light on how TBI can trigger dystonia symptoms, even for 

individuals that do not carry a known genetic mutation but may be predisposed to acquiring TBI-

induced dystonia due to a mutation in another mechanoregulating gene. The motility of neurons 

is especially relevant in dystonia pathogenesis following TBI, where the directed migration of 

neurons and neural stem cells is essential for regeneration and repair (Ibrahim et al., 2016). The 

external mechanical stresses of TBI also result in cell death, which can have consequences for 

dystonia pathogenesis (Silver and Lux, 1994; Raghupathi, 2004). A deeper understanding of the 

mechanobiology of dystonia could further drive the discovery of novel therapeutic targets for 

treatment of this debilitating disease. 

5 Abbreviations 

AAA+: ATPase associated with various cellular activities 

d:   Cell diameter 

Ea:  Apparent cell elastic modulus 

C:  Circularity 

LAP1:  Lamina-associated polypeptide 1 

LULL1:  Luminal domain-like LAP1 

LINC:  Linkers of nucleoskeleton and cytoskeleton 
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MEF:  Mouse embryonic fibroblast 

PMF:  Parallel microfiltration 

q-DC:  Quantitative deformability cytometry 

SUN:  Sad1/UNC-84 

TAN:  Transmembrane actin-associated nuclear 

TT:  Transit time 

WT:  Wild type 

 

6 Supplementary Figures 

 

 

Supplementary Figure 1. Quantification of cell and nuclear area of normal and DYT1 
fibroblasts. (A) Cellular area, (B) nuclear area and, (C) cell-to-nucleus area ratio for indicated 
patient-derived normal and DYT1 fibroblasts. Each data point represents mean ± SD. Data 
obtained from three independent experiments. Statistical significance was determined using 
Mann-Whitney U test and indicated where significant. * p < 0.05. Not significant (NS) p > 0.05 is 
not indicated on these plots for clarity. 

A Normal DYT1 Normal DYT1B CNormal DYT1
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Supplementary Figure 2. DYT1 fibroblasts have reduced viability after mechanical 
stretching compared to normal fibroblasts. Representative images of PI-labeled cells, which 
indicate cell death, after stretching (stretch) compared to without mechanical stretching (static). 
White arrow shows the direction of uniaxial stretch. Scale, 100 µm. 
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PERSPECTIVE 

 

Cellular mechanical stability is inherent property of cells that is implicated in various physiological 

processes as well as disease pathologies1,2. Given the increasing need to develop novel 

therapeutic strategies in various disease contexts, characterizing cells based on the label-free 

biomarker, mechanotype, offers an exciting avenue for scientific research and drug discovery. In 

this dissertation, I present a novel high-throughput mechanotyping platform that is an essential 

step towards harnessing cellular mechanotype for screening applications. I have demonstrated 

how the PMF mechanotyping technology can be applied to various cell types (epithelial, 

mesenchymal, and fibroblasts), different types of cancer cells (ovarian3, breast4,5, and prostate5), 

including both established cell lines as well as patient-derived cells. While this dissertation 

investigates cell mechanotype in the context of cancer and dystonia, the PMF technology has 

promising potential for wider-scale translation to other disease systems (Figure 1).  

 

Figure 1. Altered cell mechanotype is implicated in various physiological processes and 
disease states. 
 

The development of the high-throughput mechanotyping platform also enables investigation of 

molecular mediators of cell mechanotype. By identifying lead compounds from the deformability-

based screen and analyzing molecular targets of the hits, my work contributes to building a 
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systems-wide understanding of molecular mediators of cancer cell mechanotype.  In addition, my 

targeted study of a panel of specific nuclear envelope and LINC complex proteins (Figure 2) lays 

a foundation for future investigations of the role of nuclear-cytoskeletal connectivity in regulating 

cancer cell mechanotype. While that study focused on fibroblast cells in the context of dystonia, 

molecular mediators of mechanotype are generally highly conserved across cell types. An 

important question for future studies is how mechanotype contributes mechanistically to disease 

phenotypes. For example, in dystonia altered nuclear-cytoskeletal connectivity impacts 

mechanosensation, cell adhesion and survival. The requirement of LINC complex proteins for cell 

mechanotype is further substantiated by findings through a collaborative project that disruption of 

the inner nuclear membrane protein, emerin, makes prostate cancer cells more deformable and 

more invasive5. Cancer cells across various types of cancers exhibit altered nuclear structure and 

morphology, in addition to aberrant nuclear envelope protein expression6. Previous studies report 

that cancer cells exhibit increased nuclear rupture when migrating through micro-constrictions7,8. 

Taken together, findings in this dissertation facilitate future investigation into the link between cell 

mechanotype, nuclear-cytoskeletal connectivity, mechanosensation, cell migration, adhesion, 

and survival. 

         

Figure 2. Linkers of nucleoskeleton and cytoskeleton (LINC complex).  
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