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Abstract

A Stability Problem Involving Approximate Identities, Discrete Convolution

Operators, Singular Integral Operators, and Finite Sections

by

Ryan Pugh

Let n ∈ N tend towards infinity and r ∈ [0, 1) tend towards 1 with the condition

that n(1 − r) → λ for some fixed λ ∈ (0,∞). A sequence (Fn,r) of bounded

linear operators on a Hilbert space is called λ−stable if for all sufficiently large

n and all r sufficiently close to 1 such that n(1 − r) is sufficiently close to λ,

each Fn,r is invertible and these inverses are uniformly bounded. We consider the

λ−stability problem for sequences arising from a C∗−algebra containing discrete

convolution operators, singular integral operators, and their finite sections. Our

main result is that a sequence in a certain C∗− algebra is λ−stable if and only

if a certain collection of operators given by strong limits is invertible. As an

application, we relate this result to approximate identities and discuss several

concrete examples such as finite sections of Toeplitz operators (Tn(kωa)) whose

symbols are approximate identities applied to piecewise continuous functions and

finite sections of singular integral operators.
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Chapter 1

Introduction

Let X be a Hilbert space and let A be a bounded linear operator on X. In

order to approximate the solution to the equation

Ax = y (1.1)

for x, y ∈ X, we normally follow the following procedure: first, we choose a

sequence of projections Rn ∈ L(X) which converges strongly to the identity op-

erator I as n → ∞. We also choose an approximating sequence of operators

An ∈ L(Im Rn) that converges strongly to A. Rather than considering the equa-

tion in (1.1) directly, we consider the sequence of equations

Anxn = Rny (1.2)

where xn ∈ Im Rn and ask the question of whether or not solutions to this se-

quence can tell us information about the solution to (1.1). This relates directly

to the notion of whether or not an approximation method is “applicable.” Indeed,

we say that the approximation method in (1.2) is applicable to the operator A (or
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that (An) is an appropriate approximating sequence for A) if there is an n0 ∈ N

such that An is invertible for all n ≥ n0 and if the sequence of (unique) solutions

(xn)n≥n0 converges in norm to a solution x of (1.1). This is closely related to the

notion of stability for the sequence (An). We call a sequence (An) stable if there

exists an n0 such that An is invertible for all n ≥ n0 and the inverses are uniformly

bounded; i.e.,

sup
n≥n0

∥A−1
n ∥ < ∞.

The following proposition demonstrates the relationship between the notion of

appropriate approximating sequences and stability. For a proof, see [8], Section

1.1.3 and Proposition 1.1.

Proposition 1.0.1. Let (An) converge strongly to A. Then (An) is an appropriate

approximating sequence for A if and only if A is invertible and the sequence (An)

is stable.

In this thesis we consider sequences of operators depending on two parameters,

one parameter n going to infinity and the other parameter r going to 1 with the

relationship n(1 − r) → λ for some fixed λ ∈ (0,∞). An example of such a

sequence is the sequence of finite sections of the Toeplitz operator with symbol

ar defined by ar(t) = (1 − r
t
)−β(1 − tr)β, i.e., the sequence (An,r) = (Tn(ar));

however, in this thesis we consider even more sequences arising from an algebra

generated by a variety of different sequences of operators. In Chapter 3 we will

extend the notion of stability of sequences depending on one parameter to what

we call “λ-stability” for sequences of two parameters. Our ultimate goal is to find

λ−stability criteria for a particular algebra of sequences of operators, showing

that a sequence is λ−stable if and only if a certain collection of operators given

by strong limits is invertible.

2



This thesis is structured as follows. In Chapter 2 we establish some preliminar-

ies. In Chapter 3 we introduce the notion of λ-stability and introduce the algebra

F∗ for which we seek λ-stability criteria. The section ends by reducing λ-stability

in the algebra F∗ to a question of invertibility in another algebra. In Chapter 4 we

introduce several new algebras and develop stability criteria for them. In Chapter

5 we use the theory developed in Chapter 4 to revisit the invertibility question

posed at the end of Chapter 3, concluding the chapter by proving our main re-

sult. The thesis concludes by connecting this problem to approximate identities

and applying our main results to concrete examples. In several places throughout

this thesis we use Fredholm Theory for the algebra generated by Fourier convolu-

tions and multiplication operators which is treated in detail in Appendix A. For

convenience, Appendix B provides a list of notation used throughout the thesis.

3



Chapter 2

Preliminaries

2.1 Laurent, Toeplitz, and Hankel Operators

For a symbol a ∈ L∞(S1), the Laurent operator L(a) is the doubly-infinite

matrix

L(a) = (aj−k), j, k ∈ Z

acting on ℓ2(Z) with aj−k being the (j − k)th Fourier coefficient of a; i.e.,

aj−k =
1

2π

∫ π

−π

a(eiθ)e−i(j−k)θdθ.

The Laurent operator L(a) can be thought of as a multiplication operator

M(a) : L2(S1) → L2(S1) defined by M(a)f = af. If we denote by Ξ the operator

from L2(S1) into ℓ2(Z) sending a function f to its sequence of Fourier coefficients,

we have the relationship

L(a) = ΞM(a)Ξ−1

4



which yields the identities L(ab) = L(a)L(b) and

∥L(a)∥ = ∥a∥∞ (2.1)

where the lefthandside is the operator norm and the righthandside is the L∞ norm.

One can also see that L(a∗) = L(a)∗, a property that we will make use of later.

In our considerations of Laurent operators, we will often take the viewpoint of

multiplication operators even if we do not explicitly say so.

Consider the following bounded linear operators on ℓ2(Z) 1:

P : (xn)n∈Z 7→ (yn)n∈Z with yn =


xn if n ≥ 0

0 if n < 0

(2.2)

J : (xn)n∈Z 7→ (x−1−n)n∈Z. (2.3)

Let I denote the identity on ℓ2(Z) and set Q := I − P . For the operators

P,Q, and J , the following properties hold: P ∗ = P = P 2, J = J∗, J2 = I, and

JPJ = Q. The operators P and Q are related to the singular integral operator

on the unit circle SS1 via the relationship P =
1 + SS1

2
and Q =

1− SS1

2
. Later

we will consider the singular integral operator on the real and positive real line.

For a ∈ L∞, the Toeplitz operator T (a) is defined by T (a) = PL(a)P and the

Hankel operator H(a) is defined by H(a) = PL(a)JP . If we identify the image of

P with ℓ2(N), we can think of Toeplitz and Hankel operators as operators acting

on ℓ2(N). For a ∈ L∞, let ã denote the function defined by ã(t) = a(1/t) for t ∈ S1.

1We note that while these are considered as acting on ℓ2(Z), there is the natural identification
ℓ2(Z) ∼= L2(S1) which we will freely go between in all of our considerations.
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Then JL(a)J = L(ã) and we have

T (ab) = T (a)T (b) +H(a)H(b̃).

A well-known fact that will be of use to us is that Hankel operators with continuous

symbol are compact (see [2], Section 1.6 for example).

Finally, for n ∈ N, define the following operators on ℓ2(Z):

Pn : (xk)k∈Z 7→ (yk)k∈Z, yk =


xk if − n ≤ k < n

0 if k < −n or k ≥ n

(2.4)

Un : (xk)k∈Z 7→ (xk−n)k∈Z (2.5)

U−n : (xk)k∈Z 7→ (xk+n)k∈Z (2.6)

P+
n := U−nPUn (2.7)

Q−
n := UnQU−n (2.8)

The operators Un and U−n are shift operators that converge weakly to zero.

We also have the relationship P+
n Q−

n = Q−
nP

+
n = Pn.

2.2 Composition Operators

Let PC±1 denote the set of all piecewise continuous functions that are contin-

uous on S1 \ {−1, 1}, let PC0
±1 denote the set of all functions f ∈ PC±1 such that

f(−1 ± 0) = 0, and let PC0
−1 denote the set of piecewise continuous functions f

with f(−1) = 0. Given a continuous bijective function σ : S1 → S1, we define the

composition operator generated by σ to be

6



C(σ) : f 7→ f ◦ σ (2.9)

where (f ◦σ)(t) = f(σ(t)). In our work that follows, composition operators will be

considered as operators defined on L∞ or L2. For τ ∈ S1, we define the composition

operator Yτ by

Yτ = C(στ ) with στ (t) = τt (2.10)

and its inverse Y −1
τ by

Y −1
τ = C(σ̂τ ) with σ̂τ (t) = t/τ. (2.11)

This operator Yτ can be thought of as an operator that takes a function and

rotates it on the unit circle. For r ∈ [0, 1), we define the operator Cr by

Cr = C(σr) with σr(t) =
t+ r

1 + rt
(2.12)

and its inverse by

C−1
r = C(σ̂r) with σ̂r(t) =

t− r

1− rt
. (2.13)

Notice that the operator Cr is essentially stretching a function at 1 and squeez-

ing it at −1. From this perspective it is not so hard to see that the characteristic

functions χ+ and χ− on the upper and lower half plane of the unit circle respec-

tively are invariant under this operator; that is,

Crχ+ = χ+ and Crχ− = χ−. (2.14)

7



Finally, for ease of notation, define

Gr,τ = CrYτ (2.15)

and

G−1
r,τ = Y −1

τ C−1
r . (2.16)

Lemma 2.2.1. For each τ ∈ S1, the operator Yτ : L2 → L2 is unitary. Moreover,

YτPY ∗
τ = P, YτQY ∗

τ = Q, and YτL(a)Y
∗
τ = L(Yτa) where a ∈ L∞.

Proof. We refer the reader to [6], Lemma 5.1.

The operators Cr are not isometries on L2 in general. This fact motivates us

to introduce the modified operators Rr : L
2 → L2 for r ∈ [0, 1) defined by

(Rrf)(t) :=

√
1− r2

1 + rt
f

(
t+ r

1 + rt

)
. (2.17)

The following lemma will be useful in our considerations in this thesis. For a

proof see [6], Lemma 5.2.

Lemma 2.2.2. For each r ∈ [0, 1), the operator Rr : L
2 → L2 is unitary. More-

over, RrPR∗
r = P,RrQR∗

r = Q, and RrL(a)R
∗
r = L(Cra) when a ∈ L∞.

Let (Ar) be a sequence of operators acting on a Hilbert space X. We say that

(Ar) converges strongly to A as r → 1 if ∥Arx − Ax∥ → 0 for all x ∈ X. We say

that (Ar) converges weakly to A if ⟨x,Ary⟩ → ⟨x,Ay⟩ as r → 1 for all x, y ∈ X.

Lemma 2.2.3. The sequences of operators (Rr) and (R∗
r) converge weakly to zero.

Proof. Due to the uniform boundedness of (Rr) and (R∗
r), it is enough to prove

weak convergence on a dense subset of L2(S1). To this end, let f be a function

8



vanishing identically in a neighborhood of 1 ∈ S1 and let g be a function vanishing

identically in a neighborhood of −1 ∈ S1. For weak convergence of (Rr) we are

tasked with showing ⟨g,Rrf⟩ converges to 0, but this is clear by definition - the

inner product is identically 0 for r sufficiently close to 1. Similarly we have that

⟨f,R∗
rg⟩ converges to zero.

We now recall the notion of convergence in measure. Let {fr}r∈[0,1) be a

sequence of uniformly bounded functions in L∞. We say that fr converges to f in

measure as r → 1 if for each fixed ϵ > 0, the Lebesgue measure µ
(
Kϵ,r

)
of the set

Kϵ,r := {t ∈ S1 :
∣∣fr(t)− f(t)

∣∣ ≥ ϵ}

tends to 0 as r goes to 1. When this is the case, we write f = µ− limr→1 fr.

Lemma 2.2.4. Let {fr}r∈[0,1) be a sequence of functions in L∞ and let f ∈ L∞.

Then L(fr) → L(f) strongly on L2 as r → 1 if and only if {fr}r∈[0,1) is uniformly

bounded and fr → f in measure.

Proof. Suppose L(fr) → L(f) strongly. By the Uniform Boundedness Principle,

we have that

sup
r∈[0,1)

∥L(fr)∥ < ∞.

Then since ∥L(fr)∥ = ∥fr∥∞ , it follows that {fr}r∈[0,1) is uniformly bounded.

Even further, it follows that fr converges in L2−norm to f. Then

∥fr − f∥2L2 ≥
1

2π

∫
Kϵ,r

|fr(t)− f(t)|2dt ≥ µ
(
Kϵ,r

) ϵ2

2π
,

which implies that µ
(
Kϵ,r

)
→ 0 as r → 1 for each fixed ϵ > 0. Thus fr converges

to f in measure.

9



Now suppose that {fr}r∈[0,1) is uniformly bounded and fr → f in measure.

We aim to prove that L(fr) converges strongly to L(f). Because of the uniform

boundedness of {fr}r∈[0,1) and hence (L(fr))r∈[0,1), an approximation argument

may be used. In particular, we will show that for each trigonometric polynomial

p, frp → fp in L2−norm. Set M = sup
r∈[0,1)

∥fr − f∥∞ < ∞ and observe that

∥fr − f∥2L2 =
1

2π

∫
Kϵ,r

|fr(t)− f(t)|2dt+ 1

2π

∫
S1\Kϵ,r

|fr(t)− f(t)|2dt

≤ µ
(
Kϵ,r

)M2

2π
+ ϵ2.

Since we may choose ϵ as small as desired, it follows that fr converges to f in L2

and so frp converges to fp in L2−norm for trigonometric polynomials p. Thus

the claim is proven.

2.3 The Fourier Transform

Let F denote the Fourier transform acting on the Schwartz space S(R) of

rapidly decaying C∞ functions f via

(Ff)(x) =

∫
R
e−2πixzf(z)dz, x ∈ R, (2.18)

and let F−1 denote the inverse Fourier transform

(F−1f)(z) =

∫
R
e2πixzf(x)dx, z ∈ R. (2.19)

The Fourier transform extends by continuity to a unitary operator on L2(R);

10



we denote this extension also by F . For p > 1 and b a bounded function, the op-

erator F−1bF is well-defined on Lp(R) ∩ L2(R). If this operator can be extended

boundedly onto all of Lp(R), then we call this extension a Fourier convolution op-

erator and denote it by W 0(b). In this case, the function b is called an Lp−Fourier

multiplier. In this thesis we are concerned only with p = 2; in this situation the

set of L2−multipliers is exactly the algebra L∞(R) of essentially bounded and

measurable functions and we have ∥W 0(b)∥L(L2(R)) = ∥b∥∞.

11



Chapter 3

The Stability Problem

In this section we introduce the notions of λ−convergence and λ−stability and

introduce the algebra F∗ for which we seek λ−stability criteria. Just as stability of

sequences depending only on n is equivalent to invertibility modulo zero sequences,

we show that this still holds true for λ−stability. By introducing certain strong

limits, we prove a lifting theorem in order to say even more about when a sequence

is λ−stable. We then apply a technique called localization, ending by reducing

λ−stability in the algebra F∗ to a question of invertibility in a smaller quotient

algebra.

3.1 The Algebras F and F∗

Throughout this thesis we let n ∈ N tend towards infinity and r ∈ [0, 1) tend

towards 1 with the condition that n(1−r) → λ for some fixed λ ∈ (0,∞). Let σn,r

be a sequence of real numbers. We define λ−convergence of σn,r to σ as follows:

we say

lim
(n,r)

λ−→(+∞,1)

σn,r = σ

12



if for all open sets U containing σ there exist n0 ∈ N, r0 ∈ [0, 1), and δ > 0 such

that if n ≥ n0, r0 ≤ r < 1, and |(1 − r)n − λ| < δ, then σn,r ∈ U. With this in

mind, we define convergence in norm of a sequence of operators (An,r) to zero: we

say (An,r) converges in norm to zero if for all ϵ > 0 there exist n0 ∈ N, r0 ∈ [0, 1),

and δ > 0 such that if n ≥ n0, r0 ≤ r < 1, and |(1− r)n−λ| < δ, then ∥An,r∥ < ϵ.

The definition of strong convergence follows; we say a sequence of operators (An,r)

converges strongly to an operator A if for all elements x of the domain we have

∥An,rx− Ax∥ → 0.

In this situation we write

s-lim
n→∞
r→1

An,r = A.

In this notation the dependence on λ is not explicitly stated; however, we will

always be assuming this.

Equivalently, when discussing λ−convergence of a sequence σn,r, we may pass

to subsequences: we say

lim
(n,r)

λ−→(+∞,1)

σn,r = σ

if for ni → ∞, ri → 1, and ni(1− ri) → λ, limi→∞ σni,ri = σ.

Let n(1 − r) → λ. We call a sequence (Fn,r) λ−stable if there exist n0 ∈ N,

r0 ∈ [0, 1), and δ > 0 such that if n ≥ n0, r ∈ [r0, 1), and |n(1− r)− λ| < δ, then

(Fn,r) is invertible and the inverses are uniformly bounded; i.e,

sup
n≥n0

r∈[r0,1)

∥F−1
n,r∥ < ∞.

Let F denote the space of sequences of bounded linear operators {An,r} acting

13



on L2(S1) for which

∥{An,r}∥F = sup
n∈N

r∈[0,1)

∥An,r∥L(L2(S1)) < ∞.

The space F is actually a C∗-algebra with norm given by the previous supremum

and algebraic operations given by

{An,r}+ {Bn,r} := {An,r +Bn,r}, z{An,r} := {zAn,r},
{An,r}{Bn,r} := {An,rBn,r}, {An,r}∗ := {A∗

n,r}.

We denote by N the ∗-ideal of F consisting of all sequences {Cn,r} ∈ F for

which ∥{Cn,r}∥F → 0 as n → ∞ , r → 1, and n(1 − r) → λ. In this thesis we

are interested in stability of sequences belonging to a subalgebra of F generated

by certain sequences and containing N . Before introducing the subalgebra of

interest, we start with the following useful theorem.

Theorem 3.1.1. A sequence (Fn,r) ∈ F is λ-stable if and only if the coset (Fn,r)+

N is invertible in F/N .

Proof. Suppose (Fn,r) ∈ F is λ-stable. Then there exist n0 ∈ N and r0 ∈ [0, 1)

such that Fn,r is invertible for all n ≥ n0 and r ∈ [r0, 1). Define (An,r) to be the

sequence that is equal to F−1
n,r if n ≥ n0 and r ∈ [r0, 1) and 0 otherwise. This

sequence is in F due to the uniform boundedness of the inverses and we have

(An,rFn,r)− (I) and (Fn,rAn,r)− (I) belong to N .

Now suppose (Fn,r) + N is invertible in F/N . Then there exists (An,r) ∈ F

such that An,rFn,r = I + Cn,r with ∥Cn,r∥ → 0. By definition, there exist n0 ∈

N, r0 ∈ [0, 1), and δ > 0 such that ∥Cn,r∥ < 1/2 for all n ≥ n0, r ∈ [r0, 1), and

|n(1 − r) − λ| < δ. Now, if ∥Cn,r∥ < 1/2, we have I + Cn,r is invertible and

14



(I + Cn,r)
−1An,r is the (left) inverse of Fn,r. Notice that

∥(I + Cn,r)
−1An,r∥ ≤ ∥(I + Cn,r)

−1∥ · ∥An,r∥ ≤ (1− ∥Cn,r∥)−1∥An,r∥ ≤ 2∥An,r∥.

Then since (An,r) ∈ F , it follows that this inverse is uniformly bounded. The

argument for a right inverse is analagous; we just might have a different zero

sequence C ′
n,r, but this will be equal to Cn,r modulo N . Hence (Fn,r) is λ-stable.

In this thesis, we explore stability criteria for sequences of operators in the

algebra

F∗ := algL(L2(S1)){(P ), (P+
n ), (Q−

n ), (L(a)), (L(G
−1
r,τf)), (K), (Y ∗

τ R
∗
rKτRrYτ ),N}

with a ∈ PC, f ∈ PC,K,Kτ ∈ K(L2(S1)), and τ ∈ S1. We remark that it would

be equivalent to replace the condition f ∈ PC with the condition that f ∈ PC0
−1.

Indeed, for a general f ∈ PC we may use the representation

f = f(−1 + 0)χ+ + f(−1− 0)χ− + d

where d ∈ PC0
−1. Then L(G−1

r,τf) is

L(G−1
r,τf) = f(−1 + 0)L(Y ∗

τ χ+) + f(−1− 0)L(Y ∗
τ χ−) + L(G−1

r,τd).

Then since L(Y ∗
τ χ+) and L(Y ∗

τ χ−) are already generated by L(a), our remark

follows. In some cases it will be convenient for us to use the condition f ∈ PC0
−1;

when this occurs we will explicitly say we are using this property.

For a sequence (Fn,r) ∈ F∗, we define the following three strong limit operators
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as follows:

Φ0(Fn,r) := s-lim
n→∞
r→1

Fn,r (3.1)

Φ1(Fn,r) := s-lim
n→∞
r→1

U−nFn,rUn (3.2)

Φ−1(Fn,r) := s-lim
n→∞
r→1

UnFn,rU−n (3.3)

Notice that by the uniform boundedness of (Un) and (U−n), we have N ⊆ ker Φi

for i = 0, 1,−1. The following three propositions show how each of the Φi acts on

the generators of F∗ for i = 0, 1,−1.

Proposition 3.1.2. The strong limit Φ0(Fn,r) exists for all (Fn,r) ∈ F∗. In par-

ticular, the generators are mapped as follows:

(P ) 7→ P (P+
n ) 7→ I (Q−

n ) 7→ I (Y ∗
τ R

∗
rKτRrYτ ) 7→ 0

(L(a)) 7→ L(a) (L(G−1
r,τf)) 7→ 0 (K) 7→ K

where a ∈ PC and f ∈ PC0
−1.

Proof. This statement is clear for (P ), (P+
n ), (Q−

n ), (K), and (L(a)). For (L(G−1
r,τf)),

we note that

(G−1
r,τf)(t) = f

(
t/τ − r

1− rt/τ

)
which converges locally uniformly to f(−1) on S1 \ {τ} and hence (L(G−1

r,τf))

converges strongly to f(−1)I. Then since we have f ∈ PC0
−1, this is equal to 0.

To deal with (Y ∗
τ R

∗
rKτRrYτ ), we will use the fact that every compact operator

Kτ on ℓp(Z) can be approximated as closely as desired by an operator whose

matrix representation (ajk) has only finitely many non-vanishing entries, allowing

us to write

Kτ =
∑
j,k∈Z

ajkU−j(PU1 − U1P )Uk+1
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where Um = L(tm) is the shift operator. Then to prove that the strong limit of

(Y ∗
τ R

∗
rKτRrYτ ) is zero, it is enough to show that (Y ∗

τ R
∗
r(PL(t)−L(t)P )RrYτ ) con-

verges strongly to zero and that (Y ∗
τ R

∗
rL(t

j)RrYτ ) converges strongly to something

for any j ∈ Z. For starters, we will show (Y ∗
τ R

∗
r(PL(t)− L(t)P )RrYτ ) converges

strongly to zero. To achieve this we will show that (Y ∗
τ R

∗
rL(t)RrYτ ) converges

strongly to a scalar multiple of the identity (this is enough since P = Y ∗
τ R

∗
rPRrYτ ).

Notice that Y ∗
τ R

∗
rL(t)RrYτ = L

(
Y ∗
τ C

−1
r t
)
. The symbol of this Laurent ma-

trix is

(
t/τ − r

1− rt/τ

)
which converges to −1 locally uniformly on S1 \ {τ}. Thus

L

(
t/τ − r

1− rt/τ

)
converges strongly to −I.

To conclude our proof, we examine the strong limit of (Y ∗
τ R

∗
rL(t

j)RrYτ ) for

fixed j ∈ Z. This sequence is equal to L
(
Y ∗
τ C

−1
r tj

)
. Similar to what we just did,

we see the symbol is

(
t/τ − r

1− rt/τ

)j

which converges locally uniformly to (−1)j and

hence this strong limit exists for any j ∈ Z. Our proof is therefore complete.

Proposition 3.1.3. The strong limit Φ1(Fn,r) exists for all (Fn,r) ∈ F∗. In par-

ticular, the generators are mapped as follows:

(P ) 7→ I (P+
n ) 7→ I (Q−

n ) 7→ Q (Y ∗
τ R

∗
rKτRrYτ ) 7→ 0

(L(a)) 7→ L(a) (L(G−1
r,τf)) 7→ 0 (K) 7→ 0

where a ∈ PC and f ∈ PC0
−1.

Proof. This statement is clear for (P ), (P+
n ), and (Q−

n ). Because we may view

the shift operators U±n as Laurent operators L(t±n) and Laurent operators com-

mute with each other, we get the same strong limits for L(a) and (L(G−1
r,τf))

as we did in Proposition 3.1.2. The fact that (K) gets sent to zero is a conse-

quence of the weak convergence of Un and U−n to zero. Thus the only generator

left to check is (Y ∗
τ R

∗
rKτRrYτ ). We are aiming to compute the strong limit of
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U−nY
∗
τ R

∗
rKτRrYτUn. Notice that

U−nY
∗
τ R

∗
rKτRrYτUn = L(t−n)Y ∗

τ R
∗
rKτRrYτL(t

n)

= Y ∗
τ R

∗
rRrYτL(t

−n)Y ∗
τ R

∗
rKτRrYτL(t

n)Y ∗
τ R

∗
rRrYτ

= Y ∗
τ R

∗
rL(CrYτ t

−n)KτL(CrYτ t
n)RrYτ

= Y ∗
τ R

∗
rL

((
τ
t+ r

1 + rt

)−n
)
KτL

((
τ
t+ r

1 + rt

)n
)
RrYτ

= Y ∗
τ R

∗
rL

((
t+ r

1 + rt

)−n
)
KτL

((
t+ r

1 + rt

)n
)
RrYτ

= Y ∗
τ R

∗
rL(Crt

−n)KτL(Crt
n)RrYτ

To finish this proof, we will prove that (L(Crt
n)) and (L(Crt

−n)) converge

strongly. The idea is that if we show that these two operators converge strongly,

then L(Crt
−n)KτL(Crt

n) will converge in norm to some other compact operator

K ′. Then

s-lim
n→∞
r→1

Y ∗
τ R

∗
rL(Crt

−n)KτL(Crt
n)RrYτ = s-lim

n→∞
r→1

Y ∗
τ R

∗
rK

′RrYτ

and so by Proposition 3.1.2 we get that this is equal to zero.

Let’s start with strong convergence of (L(Crt
n)). The strategy will be to prove

local uniform convergence of the symbol on S1\{−1}. This implies convergence in

measure and thus we may conclude that the Laurent operators converge strongly.

Crt
n =

( t+ r

1 + rt

)n
=
(
1 +

t+ r − 1− rt

1 + rt

)n
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=
(
1 +

r − 1 + t(1− r)

1 + rt

)n
=
(
1 +

(1− r)(t− 1)

1 + rt

)n
=
(
1 +

[n(1−r)(t−1)
1+rt

]

n

)n
→ exp

(
λ
t− 1

1 + t

)
on S1 \ {−1}

Thus L(Crt
n) converges strongly to L

(
exp
(
λ
t− 1

1 + t

))
. The argument for

(L(Crt
−n)) is analagous; following the same process as above we get that (L(Crt

−n))

converges strongly to L
(
exp
(
λ
1− t

1 + t

))
.

Proposition 3.1.4. The strong limit Φ−1(Fn,r) exists for all (Fn,r) ∈ F∗. In

particular, the generators are mapped as follows:

(P ) 7→ 0 (P+
n ) 7→ P (Q−

n ) 7→ I (Y ∗
τ R

∗
rKτRrYτ ) 7→ 0

(L(a)) 7→ L(a) (L(G−1
r,τf)) 7→ 0 (K) 7→ 0

where a ∈ PC and f ∈ PC0
−1.

Proof. As in the last proposition, the only generator for which this is not imme-

diately clear is (Y ∗
τ R

∗
rKτRrYτ ). Following the same strategy as in the last proof,

we have

UnY
∗
τ R

∗
rKτRrYτU−n = Y ∗

τ R
∗
rL(Crt

n)KτL(Crt
−n)RrYτ

which again converges strongly to zero for the exact same reasons as

Y ∗
τ R

∗
rL(Crt

−n)K2L(Crt
n)RrYτ did in the last proof.

We will make use of the following lemma, a proof of which can be found in [8],

Proposition 2.9:

Lemma 3.1.5. The Toeplitz algebra generated by Laurent operators with contin-

uous symbols and the projection P contains the compact operators.
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Remark 3.1.6. In light of Lemma 3.1.5, we can conclude that our algebra F∗

automatically contains the compacts; i.e., we didn’t need to explicitly include it

as a generator. Nevertheless, it can be helpful to explicitly mention that these

operators are in the algebra and to examine how they are mapped under all of

our homomorphisms.

Define J := {(Cn,r) + (K1) + (U−nK2Un) + (UnK3U−n) : (Cn,r) ∈ N , Ki ∈

K(L2(S1))}. This actually forms an ideal of F∗:

Proposition 3.1.7. The set J = {(Cn,r) + (K1) + (U−nK2Un) + (UnK3U−n) :

(Cn,r) ∈ N , Ki ∈ K(L2(S1))} forms a closed, two-sided ∗−ideal of F∗.

Proof. We first show that J is contained in F∗. We have (Cn,r) and (K1) are in

F∗ by definition, so we just need to show that for any compact operator K the

sequences (U−nKUn) and (UnKU−n) belong to F∗. For a ∈ C(S1), our algebra

F∗ contains U∓nL(a)U±n. It also contains U∓nPU±n. These two facts together

give us that for any operator A in the Toeplitz algebra, our algebra F∗ contains

U∓nAU±n; in particular, we may take A = K (Lemma 3.1.5).

The fact that J is self-adjoint and linear is clear by definition, so let’s next

prove that J is closed. Let

(An,r) = (Cn,r +K1 + U−nK2Un + UnK3U−n) ∈ J .

Since Un and U−n converge weakly to zero, it follows that for any compact op-

erator L, (U−nLUn) and (UnLU−n) converge strongly to zero. Consequently, (An,r)

converges strongly to K1, (UnAn,rU−n) converges strongly to K2, and (U−nAn,rUn)

converges strongly to K3. Then since ∥U±n∥ = 1 we have by the Uniform Bound-

edness Principle
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∥K1∥ ≤ liminf
n→∞
r→1

∥An,r∥, ∥K2∥ ≤ liminf
n→∞
r→1

∥An,r∥, ∥K3∥ ≤ liminf
n→∞
r→1

∥An,r∥.

Thus, if (A
(j)
n,r) ⊂ J is a Cauchy sequence, then so are (K

(j)
1 ) ⊂ K, (K

(j)
2 ) ⊂ K,

and (K
(j)
3 ) ⊂ K. This means that there are compact operators K1, K2, and K3

such that ∥K(j)
1 −K1∥ → 0, ∥K(j)

2 −K2∥ → 0, and ∥K(j)
3 −K3∥ → 0 as j → ∞.

This implies that there is a sequence (An,r) ∈ J such that ∥(A(j)
n,r)− (An,r)∥ → 0

as j → ∞. Thus J is closed.

We now prove that J has the absorption property of ideals. Again, let

(An,r) = (Cn,r +K1 + U−nK2Un + UnK3U−n) ∈ J

and now let (Bn,r) be any sequence in F∗. Then

Bn,rAn,r = Bn,r(Cn,r +K1 + U−nK2Un + UnK3U−n)

= Bn,rCn,r + (Bn,r − Φ0(Bn,r))K1 + Φ0(Bn,r)K1

+ U−n(UnBn,rU−n − Φ−1(Bn,r))K2Un

+ U−nΦ−1(Bn,r)K2Un + Un(U−nBn,rUn − Φ1(Bn,r))K3U−n

+ UnΦ1(Bn,r)K3U−n

Notice that (Bn,rCn,r) ∈ N since (Bn,r) is uniformly bounded and Φ0(Bn,r)K1 ∈ K

since the compacts form an ideal. We have also (by definition) that (Bn,r −

Φ0(Bn,r)), (UnBn,rU−n−Φ−1(Bn,r)), and (U−nBn,rUn−Φ1(Bn,r)) converge strongly

to zero, and hence (Bn,r−Φ0(Bn,r))K1, (UnBn,rU−n−Φ−1(Bn,r))K2, and (U−nBn,rUn−

Φ1(Bn,r))K3 converge in norm to zero. Finally, since Φ−1(Bn,r)K2 and Φ1(Bn,r)K3

are compact the terms U−nΦ−1(Bn,r)K2Un and UnΦ1(Bn,r)K3U−n belong to J .

Thus (Bn,rAn,r) ∈ J . Passing to adjoints proves that (An,rBn,r) ∈ J .
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The relevance of this ideal J is captured in the following Lifting Theorem:

Theorem 3.1.8. (Lifting Theorem for F∗) Let (Fn,r) ∈ F∗. The following are

equivalent:

(a) (Fn,r) is λ-stable

(b) (Fn,r) +N is invertible in F∗/N

(c) The operators Φ0(Fn,r),Φ1(Fn,r), and Φ−1(Fn,r) are invertible in L(L2(S1))

and the coset (Fn,r) + J is invertible in F∗/J .

Proof. The equivalence of (a) and (b) follows from the fact that stability in F is

equivalent to invertibility in F/N (Theorem 3.1.1). This is enough since F∗/N

is a ∗−subalgebra of F/N and C∗−algebras are inverse closed.

To show that (b) implies (c), suppose that (Fn,r) +N is invertible in F∗/N .

Then there exists a sequence (Bn,r) ∈ F∗ such that (Fn,rBn,r) = (I)+(Cn,r) where

(Cn,r) ∈ N . Now, since N ⊆ ker Φj for j = 0, 1,−1, we have

Φj(Fn,r)Φj(Bn,r) = Φj(Fn,rBn,r)

= Φj(I + Cn,r)

= Φj(I)

= I

which shows that Φj(Fn,r) has a right inverse. The existence of a left inverse can

be shown similarly. To show that (Fn,r) is invertible in F∗/J we can replicate the

above argument, replacing the Φj with the canonical projection map πJ : F∗ →

F∗/J and using the fact N ⊆ J .
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Finally, let’s show that (c) implies (b). Suppose (Bn,r) + J is the left inverse

of (Fn,r) + J in F∗/J . Then

Bn,rFn,r = I + Cn,r +K1 + U−nK2Un + UnK3U−n

where Cn,r ∈ N and K1, K2, K3 ∈ K. Define a new sequence (B′
n,r) by

B′
n,r := Bn,r −K1Φ0(Fn,r)

−1 − U−nK2Φ−1(Fn,r)
−1Un − UnK3Φ1(Fn,r)

−1U−n.

We obtain that B′
n,rFn,r is equal to

B′
n,rFn,r = I + Cn,r +K1 + U−nK2Un + UnK3U−n −K1Φ0(Fn,r)

−1Fn,r

− U−nK2Φ−1(Fn,r)
−1UnFn,r − UnK3Φ1(Fn,r)

−1U−nFn,r

which is equal to

I + Cn,r + C(1)
n,r + U−nC

(2)
n,rUn + UnC

(3)
n,rU−n

where the three sequences

C(1)
n,r = K1Φ0(Fn,r)

−1(Φ0(Fn,r)− UnFn,rU−n)

C(2)
n,r = K2Φ−1(Fn,r)

−1(Φ−1(Fn,r)− Fn,r)

C(3)
n,r = K3Φ1(Fn,r)

−1(Φ1(Fn,r)− U−nFn,rUn)

converge in norm to zero. Thus (B′
n,r) + N is the left inverse of (Fn,r) + N in

F∗/N . The right invertibility can be shown analogously.
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3.2 Localization

Theorem 3.1.8 raises the question of when an element (Fn,r) +J is invertible.

We will tackle this question via “Local Principle” by Allan and Douglas, a proof

of which can be found in [4].

Theorem 3.2.1. (Local Principle by Allan/Douglas) Let A be a C∗−algebra with

identity element e and let Z be a closed subalgebra of the center of A which contains

e (this means that every element of Z commutes with every element of A). Denote

the maximal ideal space of Z by Ω and for each maximal ideal ω ∈ Ω let Jω be the

smallest closed two-sided ideal of A which contains the set ω. Then an element

a ∈ A is invertible in A if and only if the coset a + Jω is invertible in A/Jω for

every ω ∈ Ω.

To see how we can apply this to our situation, we need the following lemma.

Lemma 3.2.2. The set D1 = {(L(f))+J : f ∈ C(S1)} is a ∗-subalgebra contained

in the center of F∗/J . Moreover, D1 is ∗-isomorphic to C(S1).

Proof. We will show that (L(f)) + J commutes with each generator of F∗/J

when f ∈ C(S1). We start by noting that since Laurent operators commute with

eachother, we have that (L(f)) + J commutes with (L(a)) + J for a ∈ PC and

(L(G−1
r,τg)) + J for g ∈ PC automatically. We also have that (L(f)) commutes

with compact operators modulo J for free, since the compacts form an ideal.

Let’s check the other generators now. Notice that

PL(f)− L(f)P = PL(f)Q−QL(f)P

= PL(f)JPJ − JPJL(f)P

= PL(f)JPJ − JPL(f̃)JP
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= H(f)J − JH(f̃) ∈ K

where the final expression is compact since Hankel operators with continuous

symbol are compact. Thus (L(f)) commutes with (P ) modulo J .

For (P+
n ) + J , we have

P+
n L(f)− L(f)P+

n = U−nPUnL(f)− L(f)U−nPUn

= U−nPL(f)Un − U−nL(f)PUn

= U−n(PL(f)− L(f)P )Un

= U−nKUn ∈ J

where we used the identification U±n = L(t±n) to justify commuting in the sec-

ond equality and our previous work with P for the final equality. An analogous

argument can be used to show that

Q−
nL(f)− L(f)Q−

n = UnKU−n ∈ J .

Let’s turn our attention now to (Y ∗
τ R

∗
rKRrYτ ) + J . We have that

Y ∗
τ R

∗
rKRrYτL(f)− L(f)Y ∗

τ R
∗
rKRrYτ = Y ∗

τ R
∗
rKRrYτL(f)Y

∗
τ R

∗
rRrYτ

− Y ∗
τ R

∗
rRrYτL(f)Y

∗
τ R

∗
rKRrYτ

= Y ∗
τ R

∗
rKL(CrYτf)RrYτ

− Y ∗
τ R

∗
rL(CrYτf)KRrYτ

= Y ∗
τ R

∗
r(KL(CrYτf)− L(CrYτf)K)RrYτ
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We have that (CrYτf)(t) = f(τ t+r
1+rt

) converges locally uniformly to f(τ) and

so L(CrYτf) converges strongly to f(τ)I. Thus KL(Crf) and L(Crf)K converge

in norm to f(τ)K. Combined with the fact that the RrY
∗
τ and Y ∗

τ R
∗
r are uniformly

bounded, this implies that Y ∗
τ R

∗
r(KL(Crf) − L(Crf)K)RrYτ = 0 modulo J , as

desired. Since the generators of F∗/J commute with the set D1, we have proven

that D1 is a central subalgebra.

We now prove that D1 is ∗-isomorphic to C(S1). We will do so by proving

that the map Λ : C(S1) → D1 defined by Λ(f) = (L(f)) + J is a ∗-isomorphism.

Most of the requirements of a ∗-isomorphism are clear based on properties of

Laurent operators, such as L(ab) = L(a)L(b), L(a+b) = L(a)+L(b), and L(a∗) =

L(a)∗. Surjectivity is also clear by definition. The only properties left to check

are injectivity and continuity. For injectivity, let f ∈ ker Λ. Then (L(f)) ∈ J ,

meaning (L(f)) = (Cn,r)+(K1)+(U−nK2Un)+(UnK3U−n) where (Cn,r) ∈ N , Ki ∈

K(L2(S1)). Then

L(f) = s-lim
n→∞
r→1

L(f) = s-lim
n→∞
r→1

(Cn,r +K1 + U−nK2Un + UnK3U−n) = K1

This implies f = 0 since a multiplication operator cannot be compact unless it

vanishes. Thus Λ is injective. Now, since injective ∗-homomorphisms preserve

spectra and are hence an isometry, we get also that Λ is continuous and we have

proven it is a ∗-isomorphism.

One can show that for a compact set K, the maximal ideal space M(C(K)) is

homeomorphic to K itself (this is done showing the map Γ : K → M(C(K)) that

sends a point k ∈ K to the functional ϕk ∈ M(C(K)) defined by ϕk(f) = f(k)

is a homeomorphism). In our case, we have that the maximal ideal space of D1

is homeomorphic to S1. For t0 ∈ S1, we denote by Jt0 the smallest closed ideal of
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F∗/J containing (L(c)) + J where c ∈ C(S1) vanishes at t0; i.e.,

Jt0 = clos idF∗/J {(L(c)) + J : c ∈ C(S1), c(t0) = 0}.

Corollary 3.2.3. Let (Fn,r) ∈ F∗. Then (Fn,r) + J is invertible in F∗/J if and

only if ((Fn,r) + J ) + Jt0 is invertible in (F∗/J )/Jt0 for all t0 ∈ S1.

Proof. On account of Lemma 3.2.2, we can employ Theorem 3.2.1 in the setting

A = F∗/J and Z = D1. As we have mentioned before, since D1
∼= C(S1), their

maximal ideal spaces are homeomorphic − that is, the maximal ideal space of D1

is homemorphic to S1. Putting all of this together gives the claim.

The algebras (F∗/J )/Jt0 which arise from localization are called local algebras

(at t0). Our goal now is to understand invertibility in each of these local algebras.

We start by stating the generators of each local algebra.

Proposition 3.2.4. The local algebra (F∗/J )/Jt0 is generated by the following

elements: (
{P}+ J

)
+ Jt0,

({
P+
n

}
+ J

)
+ Jt0,({

Q−
n

}
+ J

)
+ Jt0,

({
L(χ+)

}
+ J

)
+ Jt0,({

L(G−1
r,t0f)

}
+ J

)
+ Jt0,

({
Y ∗
t0
R∗

rKt0RrYt0

}
+ J

)
+ Jt0

where f ∈ PC and Kt0 is compact.

Proof. With the definition of F∗ and J , one can see that F∗/J is generated by

cosets with the following representatives:

(i) {P}, {P+
n }, {Q−

n },

(ii) {L(a)} with a ∈ PC and
{
L(G−1

r,τf)
}
for each τ ∈ S1, and
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(iii) {Y ∗
τ R

∗
rKτRrYτ} for each τ ∈ S1 and Kτ compact.

We are left with showing that modulo Jt0 (and N ), the elements in (i)-(iii) reduce

to the corresponding elements in the statement of the proposition. The items in

(i) are clear, so we begin with (ii).

The generator (L(G−1
r,τf)) for f ∈ PC can be reduced to (L(G−1

r,t0f)) since we

have (L(G−1
r,τf)) = 0 modulo Jt0 when τ ̸= t0. For the element (L(a)) with a ∈ PC

we may use the fact that any a ∈ PC can be expressed as a linear combination

of χ+, χ−, and a function continuous and vanishing at t0 (and hence belonging

to Jt0). Thus (L(a)) can be reduced to (L(χ+)) and (L(χ−)); however, since our

algebra is unital (take f = 1 for L(G−1
r,τf)) we may choose just (L(χ+)).

Finally, (Y ∗
τ R

∗
rKτRrYτ ) can be simplified to (Y ∗

t0
R∗

rKτRrYt0). To see this, for

τ ̸= t0 we let g be a continuous function with g(t0) = 1 and vanishing in a

neighborhood of τ . Then mod Jt0 we have

Y ∗
τ R

∗
rKτRrYτ = Y ∗

τ R
∗
rKτRrYτL(g)

= Y ∗
τ R

∗
rKτRrYτL(g)Y

∗
τ R

∗
rRrYτ

= Y ∗
τ R

∗
rKτL(CrYτg)RrYτ .

Now, L(CrYτg) converges strongly to g(τ)I = 0. Thus KτL(CrYτg) converges

in norm to zero and hence for τ ̸= t0 the element (Y ∗
τ R

∗
rKτRrYτ ) is zero mod J

and Jt0 .

Recall that we aim to understand invertibility in each local algebra. Fortu-

nately, our considerations can be reduced to a single local algebra:

Proposition 3.2.5. For each t0 ∈ S1, the local algebra (F∗/J )/Jt0 is isomorphic

to (F∗/J )/J1.
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Proof. For t0 ∈ S1, define the map Λt0 : F∗ → (F∗/J )/Jt0 by

(Fn,r) 7→ (Y −1
t0

Fn,rYt0 + J ) + Jt0

Under this map, the sequences (P ), (P+
n ), and (Q−

n ) are sent to the cosets

with themselves as representatives. The sequence (L(a)) is sent to the coset

with representative (L(at0)) where at0(t) = a(t/t0). Next, notice that (L(G−1
r,τf))

is mapped to the coset with representative (L(G−1
r,t0τf)) and (Y ∗

τ R
∗
rKτRrYτ ) is

mapped to the coset with representative (Y ∗
t0τ

R∗
rKτRrYt0τ ).

Continuing, we see that under this map (K) is sent to (Y −1
t0 KYt0+J )+Jt0 = 0

since Y −1
t0 KYt0 is a (different) compact operator, zero sequences are sent to zero

sequences, and (U±nKU∓n) is mapped to (U±nK
′U∓n+J )+Jt0 for some different

compact operator K ′. For continuous f vanishing at 1, we have Λt0(L(f)) =

(L(ft0) + J ) + Jt0 where ft0(t) = f(t/t0) vanishes at t = t0 (i.e., J1 is mapped

into Jt0). Thus the map Λt0 factors through the quotient (F∗/J )/J1 and we have

a map Λ̂t0 : (F∗/J )/J1 → (F∗/J )/Jt0 .

This map is clearly a ∗−homomorphism, and similar arguments that we have

just made show that the map

Γt0 : (F∗/J )/Jt0 → (F∗/J )/J1

which sends (Fn,r+J )+J1 to (Yt0Fn,rY
−1
t0 +J )+Jt0 is well-defined and the inverse

of Λ̂t0 . Thus the map Λ̂t0 is a bijective ∗−homomorphism and so (F∗/J )/Jt0 is

isomorphic to (F∗/J )/J1.

Thus, to fully understand stability in our algebra F∗, the question of invertibil-

29



ity in (F∗/J )/J1 remains. In order to develop invertibility criteria, we introduce

and study two new algebras which serves as the starting point of the next chap-

ter.
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Chapter 4

Some New Algebras: Laying the

Groundwork

Our goal now is to figure out when an element (Fn,r + J ) + J1 is invertible.

To do so, we seek to “identify” the local algebra (F∗/J )/J1; that is, we want to

find an algebra of operators that (F∗/J )/J1 is isomorphic to so that invertibility

in (F∗/J )/J1 can be reduced to invertibility of an operator. In order to identify

the algebra (F∗/J )/J1, we proceed as follows: first we define a new algebra B

and develop stability criteria for this algebra, identifying B/N as a direct sum

of two different algebras. One of these direct summands will be directly related

to (F∗/J )/J1 in the sense we will have a surjective map from (F∗/J )/J1 into it

1. To understand the other direct summand we will introduce two new algebras:

and algebra C which is a subalgebra of F∗ and an associated larger algebra Ĉ

containing C. With the help of Fredholm Theory, we will use information about

all of these algebras to identify (F∗/J )/J1 with an algebra of operators given by

a certain strong limit.

1Actually we will see that (F∗/J )/J1 is isomorphic to this direct summand!
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4.1 Stability in the Algebra B

Define the algebra B to be the algebra of sequences of operators acting on

L2(S1) generated by the following elements:

B := algL(L2(S1))
{
(P ), (P+

n ), (Q−
n ), (L(χ+)), (L(C

−1
r f)),(

R∗
rKRr), (Y−1R

∗
rK

′RrY−1),N
}

where f ∈ PC, K,K ′ ∈ K(L2(S1)).

As we remarked in the definition of F∗, we again could take f ∈ PC0
−1 rather

than general PC. This viewpoint will prove useful when we perform computations

of strong limits.

By construction, there is a surjective map τ : B/N → (F∗/J )/J1 defined by

τ(Bn,r + N ) = (Bn,r + J ) + J1 (to see this, compare the generators of B/N to

those of (F∗/J )/J1 which were established in Proposition 3.2.4 and note that in

the proof there we show that (Y−1R
∗
rK

′RrY−1) = 0 modulo J and J1). In an

effort to establish stability criteria for B, we start by showing that a particular

strong limit exists for all elements of B. To help us, we start with the following

lemma:

Lemma 4.1.1. The sequence of operators (RrY−1R
∗
r) converges weakly to zero.

Proof. One can check that Y−1R
∗
r = RrY−1 so that RrY−1R

∗
r = RrRrY−1. Now, by

following the definition, we see that RrRr = Rs for s = 2r
1+r2

. Then RsY−1 con-

verges weakly to zero for the same reason that Rr does; the proof is nearly identical

except when considering the inner product ⟨RsY−1f, g⟩ we take f vanishing in a
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neighborhood of −1.

Proposition 4.1.2. For each (Bn,r) ∈ B, the strong limit s-lim
n→∞
r→1

RrBn,rR
∗
r exists.

In particular, under this map the generators are mapped as follows:

(P ) 7→P (L(χ+)) 7→L(χ+)

(L(t−n)PL(tn)) 7→L
(
exp

(
λ
1− t

1 + t

))
PL
(
exp

(
λ
t− 1

1 + t

))
(L(C−1

r f)) 7→L(f)

(L(tn)QL(t−n) 7→L
(
exp

(
λ
t− 1

1 + t

))
QL
(
exp

(
λ
1− t

1 + t

))
(R∗

rKRr) 7→K

(Y−1R
∗
rK

′RrY−1) 7→0

Proof. We prove this by checking that this strong limit exists for each generator.

Most of the strong limits are clear; for (P ), (L(χ+)), (R
∗
rKRr), and (L(C−1

r f))

the strong limits are P,L(χ+), K, and L(f) respectively. The fact that the ele-

ment (Y−1R
∗
rK

′RrY−1) is sent to zero is a consequence of the weak convergence

of RrY−1R
∗
r to zero (Lemma 4.1.1). The only ones that require a bit of work are

(L(t−n)PL(tn)) and (L(tn)QL(t−n)). Notice that

RrL(t
−n)PL(tn)R∗

r = L(Crt
−n)PL(Crt

n)

and

RrL(t
n)QL(t−n)R∗

r = L(Crt
n)QL(Crt

−n).

We saw in the proof of Proposition 3.1.3 that L(Crt
n) converges strongly to

L
(
exp

(
λ
t− 1

1 + t

))
and (L(Crt

−n)) converges strongly to L
(
exp

(
λ
1− t

1 + t

))
. Thus,

putting all of this together, we see that (L(Crt
−n)PL(Crt

n)) converges strongly

to

L
(
exp

(
λ
1− t

1 + t

))
PL
(
exp

(
λ
t− 1

1 + t

))
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and (L(Crt
n)QL(Crt

−n) converges strongly to

L
(
exp

(
λ
t− 1

1 + t

))
QL
(
exp

(
λ
1− t

1 + t

))

as desired.

We will denote the map that sends each element (Bn,r) ∈ B to the strong

limit s-lim
n→∞
r→1

RrBn,rR
∗
r by ϵ and we will denote the algebra of operators ϵ(B) by

A. Because of the uniform boundedness of Rr and R∗
r , this map actually factors

through B/N ; we will denote this map also by ϵ. It is important to note that we

can construct a map δ from our local algebra (F∗/J )/J1 into this algebra A; in

fact, this map will play a crucial role in the future.

Proposition 4.1.3. The map δ : (F∗/J )/J1 → A defined by δ((Fn,r+J )+J1) =

s-lim
n→∞
r→1

RrFn,rR
∗
r is well-defined and has the property that ϵ = δ ◦ τ.

Proof. The fact that ϵ = δ◦τ is true by construction. The only thing that needs to

be done is to verify that δ is well-defined; that is, we must show that J and J1 are

in the kernel of δ. In particular, we need to show that N ,K, U−nK1Un, UnK2U−n

and L(f) for continuous functions f on the unit circle vanishing at 1 get sent to

zero under δ where K1, K2 ∈ K. The fact that N and K are in the kernel of δ

is a consequence of the fact that Rr converges weakly to zero (Lemma 2.2.3) and

Rr and R∗
r are uniformly bounded. For L(f), we have that RrL(f)R

∗
r = L(Crf)

and Crf = f
(

t+r
1+rt

)
which converges to f(1) = 0 locally uniformly on S1 \ {−1}.

Hence Crf converges to 0 in measure and thus L(Crf) converges strongly to 0.

To complete this proof, we consider the strong limits s-lim
n→∞
r→1

RrU±nKU∓nR
∗
r for
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K compact. Since

RrU±nKU∓nR
∗
r = RrU±nR

∗
rRrKR∗

rRrU∓nR
∗
r

it suffices to show that RrU±nR
∗
r and RrKR∗

r converge strongly. We have already

seen in this proof that RrKR∗
r converges strongly to zero, and we have already

shown in the proof of Proposition 4.1.2 that RrUnR
∗
r = (L(Crt

n)) and RrU−nR
∗
r =

(L(Crt
−n)) converge strongly to some operators. Thus s-lim

n→∞
r→1

RrU±nKU∓nR
∗
r = 0

and so J ⊆ ker δ.

Altogether, we have have shown the existence of certain homomorphisms such

that the following diagram commutes:

(F∗/J )/J1 B/N

A
δ

τ

ϵ

As we continue on our journey to identify (F∗/J )/J1, we will expand on this

diagram. Define

I := {(Cn,r) + (R∗
rKRr) : (Cn,r) ∈ N , K ∈ K}.

This forms an ideal of B and we have the following Lifting Theorem:

Theorem 4.1.4. (Lifting Theorem for B) Let (Bn,r) ∈ B. The following are

equivalent:

(a) (Bn,r) is λ-stable

(b) (Bn,r) +N is invertible in B/N
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(c) ϵ(Bn,r) = s-lim
n→∞
r→1

RrBn,rR
∗
r is invertible in L(L2(S1)) and (Bn,r)+I is invert-

ible in B/I

Proof. This can be proven in much the same way as Theorem 3.1.8.

As we did with our algebra F∗/J , we will apply Theorem 3.2.1 to our algebra

B/I in order to deduce when an element is invertible in B/I. To this end, we need

a central subalgebra of B/I.

Lemma 4.1.5. The set D2 = {(L(C−1
r f)) + I : f ∈ C(S1)} is a ∗-subalgebra

contained in the center of B/I. Moreover, D2 is ∗-isomorphic to C(S1).

Proof. We first prove that (L(C−1
r f)) commutes with each generator of B modulo

I when f ∈ C(S1). Because Laurent operators commute with each other, we

only need to check this for (P ), (P+
n ), (Q−

n ), (R
∗
rKRr) and (Y−1R

∗
rKRrY−1). The

element (R∗
rKRr) is automatic since these sequences are already in the ideal I

and ideals have the absorption property.

Let’s handle (Y−1R
∗
rK

′RrY−1) next. We have

Y−1R
∗
rK

′RrY−1L(C
−1
r f)− L(C−1

r f)Y−1R
∗
rK

′RrY−1

is equal to

Y−1R
∗
rK

′RrY−1L(C
−1
r f)Y−1R

∗
rRrY−1 − Y−1R

∗
rRrY−1L(C

−1
r f)Y−1R

∗
rK

′RrY−1

which is equal to

Y−1R
∗
rK

′L(CrY−1C
−1
r f)RrY−1 − Y−1R

∗
rL(CrY−1C

−1
r f)K ′RrY−1
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which finally can be expressed as

Y−1R
∗
r(K

′L(CrY−1C
−1
r f)− L(CrY−1C

−1
r f)K ′)RrY−1.

This term belongs toN . Indeed, notice that since (CrY−1C
−1
r f)(t) = f

(
− t+2r+r2t

1+2rt+r2

)
we have CrY−1C

−1
r f converges locally uniformly to f(−1) on S1 \ {−1}. Thus

L(CrY−1C
−1
r f) converges strongly to f(−1)I and hence the term

KL(CrY−1C
−1
r f)− L(CrY−1C

−1
r f)K

converges in norm to 0. The uniform boundedness of Y−1R
∗
r and RrY−1 finishes

the argument.

Let’s now settle (P ). Observe that

PL(C−1
r f)− L(C−1

r f)P = PR∗
rL(f)Rr −R∗

rL(f)RrP

= R∗
rPL(f)Rr −R∗

rL(f)PRr

= R∗
r(PL(f)− L(f)P )Rr

which belongs to I since PL(f) − L(f)P is compact (see the proof of Lemma

3.2.2).

Let’s now turn to (P+
n ) and (Q−

n ). For (P
+
n ), we have

P+
n L(C−1

r f)− L(C−1
r f)P+

n = L(t−n)PL(tn)L(C−1
r f)− L(C−1

r f)L(t−n)PL(tn)

= L(t−n)PL(C−1
r f)L(tn)− L(t−n)L(C−1

r f)PL(tn)

= L(t−n)PR∗
rL(f)RrL(t

n)− L(t−n)R∗
rL(f)RrPL(tn)

= R∗
rL(Crt

−n)(PL(f)− L(f)P )L(Crt
n)Rr
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From previous considerations, PL(f)−L(f)P is compact and since L(Crt
−n)

and L(Crt
n) converge strongly we have L(Crt

−n)(PL(f) − L(f)P )L(Crt
n) con-

verges in norm to a compact operator K. Thus, mod N , we have that the above

difference is of the form R∗
rKRr ∈ I. The argument for (Q−

n ) is analagous.

We now prove that D2 is ∗-isomorphic to C(S1). We will show that the map

Γ : C(S1) → D2

defined by Γ(f) = (L(C−1
r f)) + I is a ∗-isomorphism. As we saw in the proof

of Lemma 3.2.2, most of the properties of a ∗-isomorphism are clear; we just

need to check injectivty and continuity. To this end, suppose f ∈ ker Γ. Then

(L(C−1
r f)) ∈ I, meaning (L(C−1

r f)) = (Cn,r + R∗
rKRr) where (Cn,r) ∈ N and K

is compact. Thus

L(f) = s-lim
n→∞
r→1

RrL(C
−1
r f)R∗

r = s-lim
n→∞
r→1

Rr(Cn,r +R∗
rKRr)R

∗
r = K.

Since the only compact multiplication operator is zero, this implies f = 0 and so

Γ is injective. Because we are working with C∗-algebras, this also implies that Γ

is an isometry and is thus continuous.

For t0 ∈ S1, we denote by It0 the smallest closed ideal of B/I containing

(L(C−1
r g)) + I where g ∈ C(S1) vanishes at t0; i.e.,

It0 = clos idB/I{(L(C−1
r g)) + I : g ∈ C(S1), g(t0) = 0}.

Corollary 4.1.6. Let (Bn,r) ∈ B. Then (Bn,r)+I is invertible in B/I if and only
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if (Bn,r + I) + It0 is invertible in (B/I)/It0 for all t0 ∈ S1.

Proof. On account of Lemma 4.1.5, we can employ Theorem 3.2.1 in the setting

A = B/I and Z = D2. As we have seen before, since D2
∼= C(S1), their maxi-

mal ideal spaces are homeomorphic − that is, the maximal ideal space of D2 is

homemorphic to S1. Putting all of this together gives the claim.

When combined with Corollary 4.1.6, Theorem 4.1.4 tells us that an element

(Bn,r) +N is invertible in B/N if and only if ϵ(Bn,r +N ) ∈ A is invertible and

(Bn,r + I) + It0 is invertible in (B/I)/It0 for all t0 ∈ S1. Said differently, since we

are working with C∗− algebras, we have that B/N is isomorphic to a subalgebra

of the direct sum of A and each of the (B/I)/It0 . We can actually reduce this to

a direct sum of fewer algebras; this fact is a result of the following proposition.

Proposition 4.1.7. Fix t0 ∈ S1 \ {−1} and let (Bn,r) ∈ B. If ϵ(Bn,r + N ) is

invertible in A, then (Bn,r + I) + It0 is invertible in (B/I)/It0.

Proof. We will prove this statement by constructing for each t0 ∈ S1 \ {−1} maps

Λt0 and Γt0 such that the following diagram commutes:

B/N

A Λt0(A) (B/I)/It0

ϵ πt0

Λt0 Γt0

where πt0 is the canonical projection map.

Let’s start by noting where the generators of B/N get sent to under πt0 . The

fact that (P ) + N gets sent to ({P} + I) + It0 and (R∗
rKRr) + N gets sent to

0 is clear. The element (Y−1R
∗
rKRrY−1) is also zero in the local algebra when

t0 ̸= −1. To see this, let g be continuous and vanishing in a neighborhood of −1
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and equal to 1 at 1. Then mod I and It0 we have

Y−1R
∗
rK

′RrY−1 = Y−1R
∗
rK

′RrY−1L(C
−1
r g)

= Y−1R
∗
rK

′RrY−1L(C
−1
r g)Y−1R

∗
rRrY−1

= Y−1R
∗
rK

′L(CrY−1C
−1
r g)RrY−1.

We have already seen in the proof of Lemma 4.1.5 that KL(CrY−1C
−1
r g) converges

in norm to g(−1)K = 0 and hence Y−1R
∗
rKRrY−1 equals zero in the local algebra.

Let’s analyze (L(t−n)PL(tn)) + N and (L(tn)QL(t−n) + N next. Let g be a

continuous function that is zero in a neighborhood of −1 and 1 in a neighborhood

of t0. Notice that since L(C−1
r g) = I modulo It0 , we have (still mod It0)

L(tn) = L(C−1
r g)L(tn) = R∗

rL(g)RrL(t
n)R∗

rRr = R∗
rL(gCrt

n)Rr

and similarly

L(t−n) = R∗
rL(gCrt

−n)Rr.

We have seen in the proof of Proposition 4.1.2 that Crt
n and Crt

−n converge locally

uniformly on S1 \ {−1}; denote these limits by gλ and g−1
λ respectively. Even

further, since g vanishes in a neighborhood of −1, we have uniform convergence

of gCrt
n to ggλ and gCrt

−n to gg−1
λ . Hence, modulo N , we have the equalities

L(gCrt
n) = L(ggλ) and L(gCrt

−n) = L(gg−1
λ ). The functions ggλ and gg−1

λ are

continuous, so modulo It0 we have L(ggλ) = g(t0)gλ(t0)I = gλ(t0)I and similarly

L(gg−1
λ ) = g−1

λ (t0)I. Direct computation shows that gλ(t0)g
−1
λ (t0) = 1. Putting all

of this together gives us that under πt0 the generator (L(t
−n)PL(tn))+N gets sent

to ({P}+I)+It0and the generator (L(tn)QL(t−n)+N gets sent to ({Q}+I)+It0

for t0 ̸= −1.
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Let’s now turn to (L(C−1
r f))+N for f ∈ PC. Here we use the representation

f = f(t0 + 0)Y ∗
t0
χ+ + f(t0 − 0)Y ∗

t0
χ− + a

where a is continuous and vanishing at t0. Then in the local algebra we have

L(C−1
r f) = f(t0 + 0)L(C−1

r Y ∗
t0
χ+) + f(t0 − 0)L(C−1

r Y ∗
t0
χ−).

To summarize, we have that under πt0 for t0 ̸= −1 the generators of B/N are

mapped as follows:

Generator in B/N Image in (B/I)/It0 , t0 ̸= −1
(P ) +N ({P}+ I) + It0

(R∗
rKRr) +N ({0}+ I) + It0

(Y−1R
∗
rK

′RrY−1) +N ({0}+ I) + It0

(L(t−n)PL(tn)) +N {(P}+ I) + It0

(L(tn)QL(t−n) +N ({Q}+ I) + It0

(L(C−1
r f)) +N , f ∈ PC ({f(t0 + 0)L(C−1

r Y ∗
t0
χ+) + f(t0 − 0)L(C−1

r Y ∗
t0
χ−)}

+I) + It0

Table 4.1: Images of Generators of B in the Local Algebras

We now define the maps Λt0 and Γt0 that make the diagram at the beginning of

the proof commute. Define Λt0 : A → Λt0(A) by

Λt0(A) = s-lim
s→1

RsYt0AY
∗
t0
R∗

s

and define Γt0 : Λt0(A) → (B/I)/It0 by

Γt0(A) = (R∗
rY

∗
t0
AYt0Rr + I) + It0
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so that the composition sends an operator A ∈ A to the element

(R∗
rY

∗
t0
(s-lim

s→1
RsYt0AY

∗
t0
R∗

s)Yt0Rr + I) + It0 ∈ (B/I)/It0 .

Recall from Proposition 4.1.2 the images of each element of B in A are as follows:

(P ) 7→P (L(χ+)) 7→L(χ+)

(L(t−n)PL(tn)) 7→L
(
exp

(
λ
1− t

1 + t

))
PL
(
exp

(
λ
t− 1

1 + t

))
(L(C−1

r f)) 7→L(f)

(L(tn)QL(t−n) 7→L
(
exp

(
λ
t− 1

1 + t

))
QL
(
exp

(
λ
1− t

1 + t

))
(R∗

rKRr) 7→K

(Y−1R
∗
rK

′RrY−1) 7→0

We proceed from this starting point and show that under our new composi-

tion map the images agree with the images in πt0 . Since RsYt0PY ∗
t0
R∗

s = P and

R∗
rY

∗
t0
PYt0Rr = P , it follows that P does in fact get sent to (P + I) + It0 . Due

to the weak convergence of Rs and R∗
s to zero, we have also that K is mapped to

zero under the composition.

Let’s now consider the elements L
(
exp

(
λ
1− t

1 + t

))
PL
(
exp

(
λ
t− 1

1 + t

))
and

L
(
exp

(
λ
t− 1

1 + t

))
QL
(
exp

(
λ
1− t

1 + t

))
.

Under the map Λt0 , we have that L
(
exp

(
λ
t− 1

1 + t

))
is sent to

L
(
exp

(
λ
(t0 − 1)

(t0 + 1)

))
=: L(gλ)

and L
(
exp

(
λ
1− t

1 + t

))
is sent to

L
(
exp

(
− λ

(t0 − 1)

(t0 + 1)

))
=: L(g−λ).
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As before, if we take g to be a continuous function vanishing in a neighborhood

of −1 and equal to 1 in a neighborhood of t0, in It0 we have

L(gλ) = L(C−1
r g)L(gλ) = R∗

rL(gCrgλ)Rr = Crgλ(t0)I

and similarly

L(g−λ) = Crg−λ(t0)I.

Then since Crgλ(t0)Crg−λ(t0) = 1, we have that the generators

L
(
exp

(
λ
1− t

1 + t

))
PL
(
exp

(
λ
t− 1

1 + t

))
and L

(
exp

(
λ
t− 1

1 + t

))
QL
(
exp

(
λ
1− t

1 + t

))
are mapped to (P+I)+It0 and (Q+I)+It0 respectively. Then sinceR∗

rY
∗
t0
PYt0Rr =

P and R∗
rY

∗
t0
QYt0Rr = Q we have that under Γt0 these elements get sent to exactly

where we need them to be sent.

Finally, we look at L(f) for f ∈ PC. We know that s-lim
s→1

RsYt0L(f)Y
∗
t0
R∗

s =

s-lim
s→1

L(CsYt0f). We can write

Yt0f = f(t0 + 0)χ+ + f(t0 − 0)χ− + g

where g(1± 0) = 0. We then obtain

CsYt0f = f(t0 + 0)χ+ + f(t0 − 0)χ− + Csg.

Now, Csg converges to zero locally uniformly on S1 \ {−1} (since g(1 ± 0) = 0)

and hence CsYt0f converges to f(t0 + 0)χ+ + f(t0 − 0)χ− in measure. Thus L(f)

gets mapped to f(t0 + 0)L(χ+) + f(t0 − 0)L(χ−) under Λt0 . Then under Γt0 we

have that this is sent to f(t0+0)L(C−1
r Y ∗

t0
χ+)+ f(t0− 0)L(C−1

r Y ∗
t0
χ−) as desired.

Having checked each generator, we have that the diagram at the beginning of
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our proof commutes and so our work is done.

Corollary 4.1.8. The C∗−algebra B/N is isomorphic to a ∗−subalgebra of the

direct sum A
⊕

(B/I)/I−1.

Proof. Theorem 4.1.4 and Proposition 4.1.7 together tell us that an element

(Bn,r)+N ∈ B/N is invertible if and only if its images ϵ(Bn,r) and ({Bn,r}+I)+

I−1 are invertible in A and (B/I)/I−1 respectively. In other words, the map that

sends (Bn,r) + N ∈ B/N to the element
(
ϵ(Bn,r), π−1(Bn,r)

)
∈ A

⊕
(B/I)/I−1

preserves spectra. Being a ∗−homomorphism, this means that this mapping is

necessarily an isometry and hence injective. Thus we have an isomorphism onto

the image.

As of right now, our picture looks like this:

(F∗/J )/J1 B/N

A (B/I)/I−1

τ

ϵ
δ π−1

In what follows, we will examine the algebras A and (B/I)/I−1, further iden-

tifying them as different algebras of operators and expanding on this picture. We

will use this more complete picture to help answer our question of invertibility in

(F∗/J )/J1.

4.2 The Algebra A

For a subset D of the real axis, we denote by χD the characteristic function

of D. This can be regarded as a multiplication operator which we will sometimes
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write as M(χD) (other times context will clarify what is meant). For n ≥ 1, we

define the bounded linear operators En and E−n by

En : ℓ2(Z) → L2(R), (xi)i∈Z 7→
√
n

∞∑
i=−∞

xiχ[ i
n
, i+1

n
] (4.1)

E−n : L2(R) → ℓ2(Z), f 7→
(√

n

∫ ∞

−∞
f(x)χ[ i

n
, i+1

n
](x)dx

)∞

i=−∞
(4.2)

We have that E∗
−n = En and E−nEn = I. The operator Ln := EnE−n on

L2(R) converges strongly on L2(R) to the identity operator I as n → ∞ (for more

information and proof, one can check [8], Sections 2.2.1 and 2.2.3 and Proposition

2.3).

Let SR be the singular integral operator on the real axis ; i.e., the operator

defined by

(SRf)(x) =
1

πi

∫
R

f(y)

y − x
dy. (4.3)

The operator SR is bounded on L2(R), is its own inverse, and is in fact a

Fourier convolution operator with generating function a(z) = sgn(z); i.e.,

SR = F−1M (a)F (4.4)

(see [8] Section 2.1.1).

Keeping a(z) = sgn(z), we have that

PR =
1 + SR

2
= F−1M

(
1 + a

2

)
F (4.5)

which will be a useful representation when it comes to computations.
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Let σ denote the function

σ(e2πiϕ) = −sin2(πϕ)

π2

∑
m∈Z

sgn(m+ 1
2
)

(ϕ+m)2
, ϕ ∈ (0, 1). (4.6)

This function σ is continuous on S1 \ {1} and has a jump discontinuity at 1

with one-sided limits σ(1+ 0) = −1 and σ(1− 0) = 1. Moreover, for all n ≥ 1, we

have

L(σ) = E−nSREn. (4.7)

We can now define the operator Ψ1 : (F∗/J )/J1 → Ψ1((F∗/J )/J1) by

Ψ1(Fn,r) := s-lim
n→∞
r→1

EnFn,rE−n (4.8)

The algebra Ψ1((F∗/J )/J1) is an algebra of operators on L2(R) and we will

prove that it is in fact isomorphic to the algebra A. Before we do this, we first

must prove that this map is well-defined and compute where each generator is

mapped to. To this end, we need some auxiliary results.

For s, t ∈ R and τ > 0, define the following kinds of shift operators on L2(R):

Ms : L
2(R) → L2(R), (Msf)(x) = e2πixsf(x) (4.9)

Ut : L
2(R) → L2(R), (Utf)(x) = f(x− t) (4.10)

Zτ : L2(R+) → L2(R+), (Zτf)(x) = τ
1
2f(τx) (4.11)

These operators will play an important role both in this section and in the
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Fredholm theory established in Appendix A. There is a nice relationship between

the first two operators and the Fourier transform:

Proposition 4.2.1. MtF−1 = F−1Ut and FM−t = U−tF .

Proof. We will prove MtF−1 = F−1Ut since the other relation will follow from the

uniqueness of inverses. Let f ∈ L2(R). By definition,

(MtF−1f)(x) =

∫ ∞

−∞
e2πixte2πixzf(z)dz

=

∫ ∞

−∞
e2πixt+2πixzf(z)dz

=

∫ ∞

−∞
e2πix(t+z)f(z)dz

=

∫ ∞

−∞
e2πixyf(y − t)dy (by setting y = t+ z)

= (F−1Utf)(x)

as desired.

Lemma 4.2.2. For any k ∈ Z, EnL(t
k)E−n = LnFM(e2πix

k
n )F−1.

Proof. By Proposition 4.2.1, we have M(e2πix
k
n )F−1 = F−1U k

n
, so we must show

that EnL(t
k)E−n = LnU k

n
. That is, for f ∈ L2(R)), we aim to prove

EnL(t
k)E−nf = LnU k

n
f.

Direct computation gives that the lefthand side is

EnL(t
k)E−nf = n

∑
i∈Z

(∫ ∞

−∞
f(x)χ[ i−k

n
, i−k+1

n
](x)dx

)
χ[ i

n
, i+1

n
]
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The righthand side is

LnU k
n
f = n

∑
i∈Z

(∫ i+1
n

i
n

f
(
x− k

n

)
dx
)
χ[ i

n
, i+1

n
]

= n
∑
i∈Z

(∫ i−k+1
n

i−k
n

f(y)dy
)
χ[ i

n
, i+1

n
]

Since the lefthand side is equal to the righthand side, our work is done.

Lemma 4.2.3. Let K be a compact operator on L2(S1). Then

(a) (K) ∈ ker Ψ1

(b) (U−nKUn) ∈ ker Ψ1

(c) (UnKU−n) ∈ ker Ψ1

(d) Ψ1(L(f)) = f(1)I if f is a continuous function. In particular, (L(f)) ∈

ker Ψ1 if f is continuous and f(1) = 0.

Proof. Assertion (a) follows from the weak convergence of En and uniform bound-

edness of E−n. Assertions (b) and (c) will follow from (a) if we can prove that

Ψ1(Un) and Ψ1(U−n) exist. Writing U±n = L(t±n) and using Lemma 4.2.2, we

have

EnU±nE−n = LnFM(e±2πix)F−1.

By Proposition 4.2.1,

LnFM(e±2πix)F−1 = LnU±1

where we remark for the sake of clarity that U±1 is the operator acting on L2(R)

defined in Equation 4.10. This converges strongly to U±1 and hence (b) and (c)

hold.
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To prove (d), it suffices to show that Ψ1(L(t)) = I. Again using Lemma 4.2.2

and Proposition 4.2.1, we have EnL(t)E−n = LnU 1
n
which converges strongly to

the identity.

The next two theorems highlight a relationship between the operators En, E−n,

Rr, and R∗
r , namely that EnR

∗
r and RrE−n converge strongly. The fact that these

converge strongly will be a useful tool for us in our considerations and proofs.

Theorem 4.2.4. The sequence of operators EnR
∗
r : L2(S1) → L2(R) converges

strongly to the operator A given by (Af)(y) =
√
2λ
2π

∫∞
−∞

f( 1+ix
1−ix

)

1−ix
e−iλyxdx.

Proof. Because the sequence (EnR
∗
r) is uniformly bounded, we may prove strong

convergence on a dense subset. In other words, we are seeking to find an operator

A such that ∥EnR
∗
rf −Af∥L2(R) can be made as small as desired where f is taken

from a dense subset of L2(S1). To this end, we take f to be a function vanishing

identically in a neighborhood of −1 in S1. By definition, (R∗
rf)(t) =

√
1−r2

1−rt
f( t−r

1−rt
).

The mth Fourier coefficient is then given by

1

2π

∫ π

−π

√
1− r2

1− reiθ
f(

eiθ − r

1− reiθ
)e−imθdθ.

Thus we have

EnR
∗
rf =

∑
m∈Z

√
n(1− r2)

2π

(∫ π

−π

f( eiθ−r
1−reiθ

)

1− reiθ
e−imθdθ

)
χ[m

n
,m+1

n
]

For convergence of this sequence in L2(R) we will employ the Dominated Con-

vergence Theorem; we will find its pointwise limit and then find a dominating

function. Let’s first take a look at the pointwise limit; fix y ∈ R. Then there

exists an M = ⌊ny⌋ such that y ∈ [M
n
, M+1

n
]. This means
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(EnR
∗
rf)(y) =

√
n(1− r2)

2π

∫ π

−π

f( eiθ−r
1−reiθ

)

1− reiθ
e−i⌊ny⌋θdθ

It will be convenient to transform this to an integral of a function on the real

line; to this end, we set
eiθ − r

1− reiθ
=

1 + ix

1− ix
and obtain that θ = 2arctan(ϵx) with

ϵ = 1−r
1+r

. We can then rewrite our previous expression for (EnR
∗
rf)(y) as

√
n(1− r2)

2π

∫ ∞

−∞

f(1+ix
1−ix

)

1− re2i arctan(ϵx)
e−2i⌊ny⌋ arctan(ϵx) · 2ϵ

1 + (ϵx)2
dx

Define g(x) := f(1+ix
1−ix

). Then since f is vanishing identically in a neighborhood

of −1 on the unit circle, we have that there exists some L ∈ R such that supp(g)

⊆ [−L,L]. We have

(EnR
∗
rf)(y) =

√
n(1− r2)

2π

∫ ∞

−∞

g(x)

1− re2i arctan(ϵx)
e−2i⌊ny⌋ arctan(ϵx) · 2ϵ

1 + (ϵx)2
dx

The first thing to explore is the limit of the integrand. One can see via the squeeze

theorem that the limit of e−2i⌊ny⌋ arctan(ϵx) is the same as the limit of e−2iny arctan(ϵx).

By looking at Taylor series, we see that −2iny arctan(ϵx) = −2inyϵx + terms that

converge to zero. This then converges to −iλxy and so e−2i⌊ny⌋ arctan(ϵx) converges

to e−iλxy.

For the limit of g(x)

1−re2i arctan(ϵx)
· 2ϵ
1+(ϵx)2

we will make use of the identity

e2iθ =
1 + i tan θ

1− i tan θ

with θ = arctan(ϵx). In particular, we have e2i arctan(ϵx) = 1+iϵx
1−iϵx

which when
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combined with the fact that r = 1−ϵ
1+ϵ

yields that

1

1− re2i arctan(ϵx)
=

(1 + ϵ)(1− iϵx)

2ϵ(1− ix)
.

Thus

g(x)

1− re2i arctan(ϵx)
· 2ϵ

1 + (ϵx)2
=

g(x)(1 + ϵ)(1− iϵx)

2ϵ(1− ix)
· 2ϵ

1 + (ϵx)2

=
g(x)(1 + ϵ)(1− iϵx)

(1− ix)(1 + (ϵx)2)

which converges to
g(x)

1− ix
. Altogether, we have shown that

∫ ∞

−∞
lim
n→∞
r→1

√
n(1− r2)

2π

g(x)

1− re2i arctan(ϵx)
e−2i⌊ny⌋ arctan(ϵx) 2ϵ

1 + (ϵx)2
dx

is equal to ∫ ∞

−∞

√
2λ

2π

g(x)

1− ix
e−iλyxdx.

To complete the proof, we must find functions h1 and h2 in L2(R) such that

∣∣∣∣ g(x)

1− re2i arctan(ϵx)
e−2i⌊ny⌋ arctan(ϵx) · 2ϵ

1 + (ϵx)2

∣∣∣∣ ≤ h1(x)

and

|(EnR
∗
rf)(y)| ≤ h2(y)

since the Dominated Convergence Theorem will then be in action. Finding h1 is

51



not too bad; from our previous work we have that

∣∣∣∣ g(x)

1− re2i arctan(ϵx)
e−2i⌊ny⌋ arctan(ϵx) · 2ϵ

1 + (ϵx)2

∣∣∣∣ = ∣∣∣∣g(x)(1 + ϵ)(1− iϵx)

(1− ix)(1 + (ϵx)2)

∣∣∣∣
and since x will be coming from a bounded domain

∣∣∣∣ (1 + ϵ)(1− iϵx)

(1− ix)(1 + (ϵx)2)

∣∣∣∣ is bounded,
say by M1. Then we can take h1(x) = M1|g(x)|.

Finding h2 will require a little more work, but is also not too bad. We will first

integrate the expression for (EnR
∗
rf)(y) by parts, taking u =

g(x)

1− re2i arctan(ϵx)
and

dv =
2ϵe−2i⌊ny⌋ arctan(ϵx)

1 + (ϵx)2
. Then (EnR

∗
rf)(y) is equal to

ig(x)e−2i⌊ny⌋ arctan(ϵx)

1− re2i arctan(ϵx)⌊ny⌋

∣∣∣∣∣
∞

−∞

minus the integral

∫ ∞

−∞

(1− re2i arctan(ϵx))g′(x) + 2iϵrg(x)e2i arctan(ϵx)

1+(ϵx)2

(1− re2i arctan(ϵx))2
ie−2i⌊ny⌋ arctan(ϵx)

⌊ny⌋
dx.

This term

ig(x)e−2i⌊ny⌋ arctan(ϵx)

1− re2i arctan(ϵx)⌊ny⌋

∣∣∣∣∣
∞

−∞

is zero since supp(g) ⊆ [−L,L]. We therefore focus on bounding the norm of the

remaining integral. We start by noting that

|(EnR
∗
rf)(y)| ≤

∫ ∞

−∞

∣∣∣∣∣∣∣∣∣
(1− re2i arctan(ϵx))g′(x) +

2iϵrg(x)e2i arctan(ϵx)

1 + (ϵx)2

(1− re2i arctan(ϵx))2n(y − 1)

∣∣∣∣∣∣∣∣∣ dx
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which is less than or equal to

∫ ∞

−∞

∣∣∣∣∣∣∣∣∣
( 2ϵ(1− ix)g′(x)

(1 + ϵ)(1− iϵx)
+

2iϵrg(x)

1 + (ϵx)2
2ϵ(1− ix)

(1 + ϵ)(1− iϵx)

)
(1 + ϵ)2(1− iϵx)2

(2ϵ(1− ix))2n(y − 1)

∣∣∣∣∣∣∣∣∣ dx.

Finally, this is less than or equal to

1

y − 1

∫ ∞

−∞

∣∣∣∣∣∣∣∣∣
( 2(1− ix)g′(x)

(1 + ϵ)(1− iϵx)
+

2irg(x)

1 + (ϵx)2
2ϵ(1− ix)

(1 + ϵ)(1− iϵx)

)
(1 + ϵ)2(1− iϵx)2

4ϵn(1− ix)2

∣∣∣∣∣∣∣∣∣ dx.

This final integral is bounded by some M2 since x is coming from a bounded

domain, and hence we may choose the function h2(y) =
M2

y − 1
∈ L2(R) and our

proof is complete.

Theorem 4.2.5. The sequence of operators RrE−n : L2(R) → L2(S1) converges

strongly to the operator T given by (Tχ[a,b])(t) =

√
2

λ

eaλ
t−1
1+t − ebλ

t−1
1+t

1− t
.

Proof. Due to the uniform boundedness of (RrE−n), to prove strong convergence

it is enough to show that ∥RrE−nf − Tf∥L2(S1) → 0 as n → ∞, r → 1 for f from

a dense subset of L2(R). We thus take f to be a characteristic function, f = χ[a,b].

By definition,

E−nf = (
√
n

∫ ∞

−∞
χ[a,b](x)χ[ k

n
, k+1

n
](x)dx)k∈Z = (yk)k∈Z
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where

yk =



√
n

n
if ⌊na⌋+ 1 ≤ k ≤ ⌊bn⌋ − 1(

b− ⌊bn⌋
n

)
√
n if k = ⌊bn⌋(

⌊na⌋+ 1

n
− a

)
√
n if k = ⌊na⌋

0 otherwise

Identifying ℓ2(Z) with L2(S1), we have E−nf =
∑

k∈Z ykt
k. Then

RrE−nf =

√
1− r2

1 + rt

∑
k∈Z

yk

(
t+ r

1 + rt

)k

=

√
1− r2

1 + rt

(
b− ⌊bn⌋

n

)√
n

(
t+ r

1 + rt

)⌊bn⌋

+

√
1− r2

1 + rt

(
⌊na⌋+ 1

n
− a

)√
n

(
t+ r

1 + rt

)⌊na⌋

+

√
1− r2

1 + rt

1√
n

⌊bn⌋−1∑
k=⌊na⌋+1

(
t+ r

1 + rt

)k

To prove that ∥RrE−nf−Tf∥L2(S1) → 0, we will use the L2− Dominated Con-

vergence Theorem; that is, we will show that the sequence {RrE−nf} converges to

Tf pointwise almost everywhere and that ∃g ∈ L2(S1) such that |(RrE−nf)(t)| ≤

g(t) for all n ∈ N, r ∈ [0, 1), and almost every t ∈ S1. Let’s start the journey with

pointwise almost everywhere convergence, specifically pointwise convergence on

S1 \ {±1}.

Pointwise convergence on S1 \{±1}. First notice that the first term in the

sum above goes to zero. Indeed, for fixed t ∈ S1 \ {−1} we have

∣∣∣√1− r2

1 + rt

(
b− ⌊bn⌋

n

)√
n

(
t+ r

1 + rt

)⌊bn⌋ ∣∣∣ = ∣∣∣√(1− r)n
√
1 + r

1 + rt

∣∣∣∣∣∣bn− ⌊bn⌋
n

∣∣∣
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≤
∣∣∣√(1− r)n

√
1 + r

1 + rt

∣∣∣ · 1
n

The first term converges locally uniformly to

√
2λ

1 + t
on S1 \ {−1} and hence∣∣∣√(1− r)n

√
1 + r

1 + rt

∣∣∣ · 1
n

will converge to zero. Notice that even for t approaching

−1 we do not have any blow up happening; here we have

∣∣∣√1− r2

1 + rt
(b− ⌊bn⌋

n
)
√
n(

t+ r

1 + rt
)⌊bn⌋

∣∣∣ ≈ ∣∣∣ 1

n(1 + rt)

∣∣∣ ≤ 1

n(1− r)
→ 1

λ

A nearly identical argument will work to prove that the term

√
1− r2

1 + rt
(
⌊na⌋+ 1

n
− a)

√
n(

t+ r

1 + rt
)⌊na⌋

converges pointwise to zero on S1 \ {−1}.

Let’s now turn our attention to the final term in the sum expression for E−nRrf :

√
1− r2

1 + rt

1√
n

⌊bn⌋−1∑
⌊na⌋+1

(
t+ r

1 + rt
)k =

√
1− r2

(1 + rt)
√
n

−( t+r
1+rt

)⌊bn⌋−1 + ( t+r
1+rt

)⌊an⌋

1− ( t+r
1+rt

)

=

√
1− r2

n

−( t+r
1+rt

)⌊bn⌋−1 + ( t+r
1+rt

)⌊an⌋

1 + rt− t− r

=

√
1− r2

n

−( t+r
1+rt

)⌊bn⌋−1 + ( t+r
1+rt

)⌊an⌋

(1− t)(1− r)

=

√
1− r2

n(1− r)2
−( t+r

1+rt
)⌊bn⌋−1 + ( t+r

1+rt
)⌊an⌋

(1− t)

=

√
1 + r

n(1− r)

−( t+r
1+rt

)⌊bn⌋−1 + ( t+r
1+rt

)⌊an⌋

(1− t)

55



Notice that we must avoid t = 1. Now,

√
1 + r

n(1− r)
→
√

2

λ
. We also have that

( t+ r

1 + rt

)an
=
(
1 +

t+ r − 1− rt

1 + rt

)na
=
(
1 +

(1− r)(t− 1)

1 + rt

)na
=
(
1 + n(1− r) · (t− 1)

n(1 + rt)

)na
→ eλa(

t−1
1+t

)

where convergence is locally uniform on S1 \ {−1}. To relate this fact to the

convergence of ( t+r
1+rt

)⌊an⌋, we note that

( t+ r

1 + rt

)⌊an⌋
=
( t+ r

1 + rt

)an
·
( t+ r

1 + rt

)⌊an⌋−an

=
( t+ r

1 + rt

)an
·
(1 + rt

t+ r

)an−⌊an⌋

Observe that
(

1+rt
t+r

)an−⌊an⌋
→ 1. Indeed, if we choose r sufficiently close to 1 we

will have that
(

1+rt
t+r

)an−⌊an⌋
stays away from −1 since

1 + rt

t+ r
→ 1 as r → 1 and

na− ⌊na⌋ ∈ [0, 1). We can then take the principle branch of log with branch cut

(−∞, 0] and look at log
((1 + rt

t+ r

)an−⌊an⌋)
. Because na−⌊na⌋ ∈ [0, 1) we see that

log
((1 + rt

t+ r

)an−⌊an⌋)
= (na− ⌊na⌋)log

(1 + rt

t+ r

)
. Thus

∣∣∣log((1 + rt

t+ r

)an−⌊an⌋)∣∣∣ = ∣∣∣na− ⌊na⌋
∣∣∣ · ∣∣∣log(1 + rt

t+ r

)∣∣∣
≤
∣∣∣log(1 + rt

t+ r

)∣∣∣ < ϵ

where the final estimate comes from the facts that
1 + rt

t+ r
→ 1 locally uni-

formly on S1 \ {−1} and log is continuous on its principle branch. We have

thus shown that log
((

1+rt
t+r

)an−⌊an⌋)
converges to 0, i.e.,

(
1+rt
t+r

)an−⌊an⌋
converges

to 1. Hence ( t+r
1+rt

)⌊an⌋ and ( t+r
1+rt

)an have the same limit. The same argument works

for ( t+r
1+rt

)⌊bn⌋−1. We have thus shown that {RrE−nf} converges to {Tf} pointwise
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on S1 \ {±1}, i.e., that we have pointwise convergence almost everywhere.

Finding a dominating function. The first 2 terms we dealt with converged

to zero as long as we avoided t = −1 and hence are bounded by some M. We

also showed that as we approach −1 there is no blowup and thus we still have

boundedness. The last term that we dealt with is also bounded − this is clear for

t ̸= 1 since there we have uniform convergence. Thus to finish up the proof we

need only show that there are no issues at t = 1 for this last term. Let’s do it:

|(RrE−nf)(1)| =
∣∣∣√1− r2

1 + r

1√
n

⌊bn⌋−1∑
⌊na⌋+1

(1 + r

1 + r

)k∣∣∣
=
∣∣∣√1− r2

1 + r

1√
n
(⌊bn⌋ − 1− ⌊na⌋)

∣∣∣
≤
∣∣∣√1− r2

1 + r

1√
n
(bn− 1− (na− 1))

∣∣∣
=
∣∣∣√1− r2

1 + r

1√
n
(bn− na)

∣∣∣
=
∣∣∣√1− r2

1 + r

√
n(b− a)

∣∣∣
=
∣∣∣√1 + r

1 + r

√
(1− r)n(b− a)

∣∣∣ < c

We have now shown that each piece is bounded for every t ∈ S1 and thus we can

bound the entire sum. The dominating function will then be a constant, which is

integrable since S1 is a finite measure space and our proof is complete.

Theorem 4.2.6. The operator Ψ1 : (F∗/J )/J1 → Ψ1((F∗/J )/J1) is a well-

defined mapping and the generators of (F∗/J )/J1 are mapped as follows:

(P ) 7→ χ[0,∞) (P+
n ) 7→ χ[−1,∞) (Q−

n ) 7→ χ(−∞,1]

(L(χ+)) 7→ QR (L(C−1
r f)) 7→ W 0

(
f
(

λ−2πix
λ+2πix

))
(R∗

rKRr) 7→ K ′

where f ∈ PC0
−1 and K,K ′ ∈ K(L2(S1)).
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Proof. The fact that this mapping is well-defined is a consequence of Lemma

4.2.3. We now show the images of each generator under this map. The fact

that (R∗
rKRr) is mapped to another compact operator is a result of the strong

convergence of EnR
∗
r and RrE−n (Theorems 4.2.4 and 4.2.5). The images of

(P ), (P+
n ), and (Q−

n ) are a result of the facts that Ln converges strongly to the

identity and P = E−nχ[0,∞)En, P
+
n = E−nχ[−1,∞)En, and Q−

n = E−nχ(−∞,1]En.

To deal with (L(χ+)), we use the fact that any piecewise continuous function g

has the representation

g = g(1 + 0)
1− σ

2
+ g(1− 0)

1 + σ

2
+ d (4.12)

where σ is the function defined in (4.6) and d is a function on S1 which is

continuous at 1 and vanishes there. Taking g = χ+, we get that

L(χ+) = L
(1− σ

2

)
+ L(d)

= E−n

(1− SR

2

)
En + L(d)

and so EnL(χ+)E−n = Ln

(1− SR

2

)
Ln +EnL(d)E−n which converges strongly to

1− SR

2
.

Finally we approach L(C−1
r f) for f ∈ PC0

±1. Recall that (C
−1
r f)(t) = f( t−r

1−rt
).

Using a geometric series, we can write

t− r

1− rt
= (t− r)

∞∑
k=0

(rt)k
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and thus we can use Lemma 4.2.2 to write

EnL(C
−1
r f)E−n = LnFM

(
f
( e2πi xn − r

1− re2πi
x
n

))
F−1.

Focusing on the argument of f and using a Taylor series expansion, we have

e2πi
x
n − r

1− re2πi
x
n

=
−r + 1 + 2πix

n
+ · · ·

1− r(1 + 2πix
n

+ · · · )

=
n(1− r) + 2πix+ · · ·
n(1− r)− r2πix− · · ·

→ λ+ 2πix

λ− 2πix

Thus EnL(C
−1
r f)E−n → FM

(
f
(λ+ 2πix

λ− 2πix

))
F−1 = W 0

(
f
(λ− 2πix

λ+ 2πix

))
, as

desired.

We are still aiming to prove that A is ∗-isomorphic to Ψ1((F∗/J )/J1). To do

so, we will first prove a few more things regarding the Fourier transform that will

aid us in computations when we define the isomorphism.

Lemma 4.2.7. Let b be a Fourier-multiplier and let J be the operator defined by

(Jb)(x) = b(−x) =: b̃(x).

Then

1. FM(b) = F−1JM(b) and

2. M(b)F−1 = JM(b̃)F .
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Proof. For (1), let f ∈ L2(R). Then

(F−1JM(b)f)(x) =

∫
R
e2πixzb(−z)f(−z)dz

= −
∫ −∞

∞
e−2πixyb(y)f(y)dy

=

∫
R
e−2πixyb(y)f(y)dy

= (FM(b)f)(x)

Assertion (2) can be proven analagously.

Corollary 4.2.8. Let b be a Fourier-multiplier. Then FM(b)F−1 = W 0(b̃).

Proof. For a Fourier-multiplier b, we have

FM(b)F−1 = F−1JM(b)F−1

= F−1JJM(b̃)F

= F−1M(b̃)F = W 0(b̃)

where the first equality is using (1) from Lemma 4.2.7 and the second equality is

using (2) from this lemma.

Lemma 4.2.9. Let b be a Fourier multiplier. Then

ZtF−1M(b)FZ−1
t = F−1M (̂b)F

where b̂(x) := b

(
x

t

)
.

Proof. We will prove this by showing the following:
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1. ZtF−1 = F−1Z−1
t

2. FZ−1
t = ZtF

This will prove the lemma since Z−1
t M(b)Zt = M (̂b) with b̂ defined in the lemma

statement. We will only prove (1) since the second is analagous. For a function

f , we have

(ZtF−1f)(x) =
√
t(F−1f)(tx)

=
√
t

∫
R
e2πitxzf(z)dz

=
√
t

∫
R
e2πiyxf

(
y

t

)
dy

t

=
1√
t

∫
R
e2πiyxf

(
y

t

)
dy

= (F−1Z−1
t f)(x)

Theorem 4.2.10. The algebra A is ∗-isomorphic to Ψ1((F∗/J )/J1).

Proof. We will prove this by mapping the generators of A to the generators of

Ψ1((F∗/J )/J1) via a series of unitary transformations (which we will denote by

Γ) and such that the following diagram commutes:

(F∗/J )/J1

A Ψ1((F∗/J )/J1)

δ Ψ1

Γ

Recall that under δ, the generators of (F∗/J )/J1 are mapped as follows:
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(P ) 7→ P (L(C−1
r f)) 7→ L(f)

(Q−
n ) 7→ L

(
exp

(
λ
t− 1

1 + t

))
QL
(
exp

(
λ
1− t

1 + t

))
(L(χ+)) 7→ L(χ+)

(P+
n ) 7→ L

(
exp

(
λ
1− t

1 + t

))
PL
(
exp

(
λ
t− 1

1 + t

))
(R∗

rKRr) 7→ K

Define F : L2(S1) → L2(R) to be the operator taking a ∈ L2(S1) and sending it

to the function b ∈ L2(R) defined by b(x) = 1
1−ix

a(1+ix
1−ix

). We then have a mapping

∆ : L(L2(S1)) → L(L2(R)) (4.13)

A → FAF−1

This acts on the algebra A as follows: PS1 gets sent to PR, L(χ+) gets sent to

χ[0,∞), L(f) gets sent to M(g) for g(x) = f
(
1+ix
1−ix

)
, L
(
exp

(
λ
t− 1

1 + t

))
gets sent to

M(e−λix), and L
(
exp

(
λ
1− t

1 + t

))
gets sent to M(eλix).

Next for each of the resulting operators A, we transform it via FAF−1. Here

we have

FPRF−1 = F 1 + SR

2
F−1

=
1 + sgn(x)

2

= χ[0,∞)

where we are using the representation in (4.5) in these equalities. For M(χ[0,∞))

we get

FM(χ[0,∞))F−1 = F−1M(χ(−∞,0))F
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= QR

where the first equality is making use of Corollary 4.2.8. This corollary also gives

us that FM(g)F−1 = W 0(g̃) where g̃(x) = g(−x) = f(1−ix
1+ix

).

Now, FM(e−λix)F−1 and FM(eλix)F−1 are actually shift operators; using

Lemma 4.2.1 gives that they are equal to U− λ
2π

and U λ
2π

respectively. Thus

M(e−λix)PM(eλix) gets sent to U− λ
2π
χ[0,∞)U λ

2π
= χ[− λ

2π
,∞) and similarly the term

M(eλix)QM(e−λix) gets sent to χ(−∞, λ
2π

].

Finally, for the resulting operator A we transform it into the operator Z λ
2π
AZ−1

λ
2π

where Z λ
2π

refers to the shift operator Zt defined in Equation (4.11) for t = λ
2π
.

Under this map, we have that χ[0,∞) is left unchanged, χ[− λ
2π

,∞) is sent to χ[−1,∞),

and χ(−∞, λ
2π

] is sent to χ(−∞,1].

The operator QR is left unchanged under this map as well: indeed, using its

representation as a Fourier convolution and Lemma 4.2.9 we have

Z λ
2π
QRZ

−1
λ
2π

= Z λ
2π
F−11− sgn(x)

2
FZ−1

λ
2π

= F−11− sgn(2π
λ
x)

2
F

= F−11− sgn(x)

2
F

= QR.

Next, again using Lemma 4.2.9, we get that the Fourier convolution W 0(g̃) is

mapped to W 0(ĝ) where ĝ(x) = g̃(2π
λ
x) = g(−2π

λ
x) = f(

1−i 2π
λ
x

1+i 2π
λ
x
) = f

(
λ−2πix
λ+2πix

)
.

Lastly, we will consider the image of compacts under this sequence of trans-

formations. To summarize, we have defined Γ from the start of the proof to be

the map that sends A to Z λ
2π
FFAF−1F−1Z−1

λ
2π

. We are left with showing that for
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a compact operator K,

Z λ
2π
FFKF−1F−1Z−1

λ
2π

= s-lim
n→∞
r→1

EnR
∗
rKRrE−n.

We do this by proving

Z λ
2π
FF =

√
πs-lim

n→∞
r→1

EnR
∗
r

and

F−1F−1Z−1
λ
2π

=
1√
π
s-lim
n→∞
r→1

RrE−n.

To start, let f ∈ L2(S1). Then

(Z λ
2π
FFf)(x) =

√
λ

2π
(FFf)

(
λ

2π
x

)
=

√
λ

2π

∫ ∞

−∞
e−2πi λ

2π
xz(Ff)(z)dz

=

√
2λ

2
√
π

∫ ∞

−∞

e−iλxzf(1+iz
1−iz

)

1− iz
dz

=
√
π((s-lim

n→∞
r→1

EnR
∗
r)f)(x)

(to see the final equality, compare the expression to that in the statement of

Theorem 4.2.4). To finish up, consider an arbitrary characteristic function χ[a,b].

We have

(F−1F−1Z−1
λ
2π

χ[a,b])(t) =
2

1 + t
(F−1Z−1

λ
2π

χ[a,b])

(
t− 1

i(t+ 1)

)
=

2

1 + t

∫ ∞

−∞
e2πi

t−1
i(t+1)

z(Z−1
λ
2π

χ[a,b])(z)dz

=
2

1 + t

∫ ∞

−∞
e2π

t−1
t+1

z

√
2π√
λ
χ[a,b]

(
2πz

λ

)
dz
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=

√
2π√
λ

2

1 + t

∫ λb
2π

λa
2π

e2π
t−1
t+1

zdz

=
1√
π

eλa
t−1
t+1 − eλb

t−1
t+1

1− t

=
1√
π
((s-lim

n→∞
r→1

RrE−n)χ[a,b])(t)

and thus our proof is complete.

Remark 4.2.11. In the preceding proof, for each A ∈ A we computed by hand the

image Z λ
2π
FFAF−1F−1Z−1

λ
2π

. This allowed us to directly see that A is isomorphic

to Ψ1((F∗/J )/J1). There is another way for us to see that the diagram

(F∗/J )/J1

A Ψ1((F∗/J )/J1)

δ Ψ1

Γ

commutes using the strong convergence of EnR
∗
r and RrE−n. Indeed, for (Fn,r) ∈

(F∗/J )/J1 we have

s-lim
n→∞
r→1

EnFn,rE−n = s-lim
n→∞
r→1

EnR
∗
rRrFn,rR

∗
rRrE−n

which can be written as

s-lim
n→∞
r→1

EnR
∗
r

(
s-lim
n→∞
r→1

RrFn,rR
∗
r

)
s-lim
n→∞
r→1

RrE−n.

In the previous proof we showed that

Z λ
2π
FF =

√
πs-lim

n→∞
r→1

EnR
∗
r
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and

F−1F−1Z−1
λ
2π

=
1√
π
s-lim
n→∞
r→1

RrE−n.

Thus

s-lim
n→∞
r→1

EnFn,rE−n = Z λ
2π
FF

(
s-lim
n→∞
r→1

RrFn,rR
∗
r

)
F−1F−1Z−1

λ
2π

which is precisely what we saw. Even further, this tells us that the existence of

the strong limit s-lim
n→∞
r→1

RrFn,rR
∗
r automatically implies the existence of the strong

limit s-lim
n→∞
r→1

EnFn,rE−n.

Remark 4.2.12. Recall the diagram

(F∗/J )/J1 B/N

A

τ

ϵ
δ

from before. The work from this section and Theorem 4.2.10 permit us to draw

(F∗/J )/J1 B/N

A

Ψ1((F∗/J )/J1)

τ

ϵ
δ

∼=

Since we have commutativity in the above diagram, we can define the map

Ψ̂1 : B/N → Ψ1((F∗/J )/J1) so that the following diagram commutes:

(F∗/J )/J1 B/N

Ψ1((F∗/J )/J1)

τ

Ψ̂1
Ψ1
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4.3 Two New Algebras C and Ĉ

As we did with our algebra A, we will show that the local algebra (B/I)/I−1

is also isomorphic to an algebra of operators on L2(R). In order to do this, we

will need to introduce a new algebra C and a larger algebra Ĉ containing C. Let

C denote the algebra generated by the following elements:

C := algL(L2(S1))
{
(P ), (P+

n ), (Q−
n ), (L(χ+)), (L(χ−)),(

E−nK1En), (Y−1E−nK2EnY−1),N
}

where K1, K2 ∈ K(L2(R)).

The algebra C/N is a subalgebra of F∗/N and hence the map Ψ1 is also

defined on this algebra. We have by construction a surjective map ι from C/N

into (B/I)/I−1 that sends a sequence (Cn)+N to the sequence ({Cn}+I)+I−1.

We remark that here we are using the generator (L(C−1
r f)) with f ∈ PC0

−1 to get

that in ((B/I)/I−1)/It0 this term goes to zero.

Define the operator Ψ−1 : C → Ψ−1(C) by

Ψ−1(Cn) := s-lim
n→∞

EnY−1CnY−1E−n (4.14)

This map can also be defined on our algebra (B/I)/I−1; we will denote this

by Ψ̂−1. Explicitly,

Ψ̂−1(Bn,r) := s-lim
n→∞
r→1

EnY−1Bn,rY−1E−n (4.15)
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In order to prove that this map is well-defined, we will make use of the following

lemma.

Lemma 4.3.1. The sequence of operators EnY−1E−n : L2(R) → L2(R) converges

weakly to zero.

Proof. Since the sequence EnY−1E−n is uniformly bounded, it is enough to prove

weak convergence on a dense subset. To this end, we prove ⟨EnY−1E−nf, g⟩L2(R) →

0 for characteristic functions f = χ[a,b] and g = χ[c,d]. By definition,

EnY−1E−nf = n
∑
k∈Z

[(−1)k
∫
R
f(x)χ[ k

n
, k+1

n
](x)dx]χ[ k

n
, k+1

n
].

Thus ⟨EnY−1E−nχ[a,b], χ[c,d]⟩ is equal to

∫
R
n
∑
k∈Z

[(−1)k
∫
R
χ[a,b](x)χ[ k

n
, k+1

n
](x)dx]χ[ k

n
, k+1

n
](y)χ[c,d](y)dy

which is equal to

∫ d

c

n
∑
k∈Z

[(−1)k
∫ b

a

χ[ k
n
, k+1

n
](x)dx]χ[ k

n
, k+1

n
](y)dy.

This is precisely

n

∫ d

c

⌊bn⌋−1∑
k=⌊na⌋+1

[(−1)k
1

n
]χ[ k

n
, k+1

n
](y)dy

+ n

∫ d

c

(
⌊na⌋+ 1

n
− a

)
(−1)⌊na⌋χ

[
⌊na⌋
n

,
⌊na⌋+1

n
]
(y)dy

+ n

∫ d

c

(
b− ⌊nb⌋

n

)
(−1)⌊nb⌋χ

[
⌊nb⌋
n

,
⌊nb⌋+1

n
]
(y)dy.

68



For the second term, we have

∣∣∣∣∣n
∫ d

c

(
⌊na⌋+ 1

n
− a)(−1)⌊na⌋χ

[
⌊na⌋
n

,
⌊na⌋+1

n
]
(y)dy

∣∣∣∣∣ ≤ n

(
⌊na⌋+ 1

n
− a

)
1

n

=
⌊na⌋+ 1

n
− a

=
⌊na⌋ − na+ 1

n

≤ 2

n

which goes to zero as n goes towards infinity. For the third term, we have

∣∣∣∣∣n
∫ d

c

(
b− ⌊nb⌋

n

)
(−1)⌊nb⌋χ

[
⌊nb⌋
n

,
⌊nb⌋+1

n
]
(y)dy

∣∣∣∣∣ ≤ n

(
b− ⌊nb⌋

n

)
1

n

=
bn− ⌊nb⌋

n

≤ 1

n

which also tends to zero as n goes to infinity.

Finally we consider

n

∫ d

c

⌊bn⌋−1∑
k=⌊na⌋+1

[(−1)k
1

n
]χ[ k

n
, k+1

n
](y)dy.

In this case, we are essentially left with considering the convergence of a series of

the form
⌊bn⌋−1∑

k=⌊na⌋+1

(−1)k

n
.

Actually, to be precise, one may consider separate cases based on how the interval

[c, d] intersects

[
⌊na⌋+ 1

n
,
⌊nb⌋
n

]
similar to as we have done before. We can then

treat the edge cases as we did before and then the main sum will be like that
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written above with possibly different starting and ending values for k. But this

sum converges to zero as n goes to infinity; indeed, we have the bound

− 2

n
≤

⌊bn⌋−1∑
k=⌊na⌋+1

(−1)k

n
≤ 2

n

and so by the Squeeze Theorem this goes to zero as n goes to infinity.

Theorem 4.3.2. The map Ψ̂−1 is a well-defined map on (B/I)/I−1. Moreover,

the following diagram commutes:

(B/I)/I−1

C/N Ψ−1(C)

Ψ̂−1
ι

Ψ−1

and the generators of C are mapped under Ψ−1 as follows:

(P ) 7→ χ[0,∞) (P+
n ) 7→ χ[−1,∞) (Q−

n ) 7→ χ(−∞,1]

(L(χ+)) 7→ PR (E−nK1En) 7→ 0 (Y−1E−nK2EnY−1) 7→ K2

Proof. We start by showing that this map is well-defined. The fact that N is in

the kernel follows from the uniform boundedness of EnY−1 and Y−1E−n. For (L(f))

with f continuous on S1 and vanishing at −1, we can use the representation in

Equation (4.12) with g = Y−1f to write

Y−1f = f(−1)
1− σ

2
+ f(−1)

1 + σ

2
+ d = d

where d is a function on S1 that is continuous and vanishing at 1. Thus

EnY−1L(f)Y−1E−n = EnL(d)E−n
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which converges strongly to zero. The last thing to check is that the term

EnY−1R
∗
rKRrY−1E−n converges strongly to zero forK compact. Due to the strong

convergence of EnR
∗
r and RrE−n, it follows that EnR

∗
rKRrE−n converges in norm

to some other compact operator K ′. Writing

EnY−1R
∗
rKRrY−1E−n = EnY−1E−nEnR

∗
rKRrE−nEnY−1E−n

we get that mod N

EnY−1R
∗
rKRrY−1E−n = EnY−1E−nK

′EnY−1E−n.

Now since N is in the kernel of Ψ̂−1 and EnY−1E−n converges weakly to zero

(Lemma 4.3.1), it follows that this element converges strongly to zero.

The fact that the diagram commutes is clear; it follows directly from the fact

that the map ι is essentially an inclusion and that I and I−1 are in the kernel of

Ψ̂−1.

To round out the proof, we will compute the images of Ψ−1 when acting on C.

Notice that since Y−1PY−1 = P , the image of (P ) under Ψ−1 is the same as its

image under Ψ1. For (P
+
n ), we have

Y−1P
+
n Y−1 = Y−1L(t

−n)PL(tn)Y−1 = L((−t)−n)PL((−t)n) = L(t−n)PL(tn) = P+
n

and so the image of (P+
n ) under Ψ−1 is also the same as its image under Ψ1.

Similarly, (Q−
n ) has the same image under Ψ1 and Ψ−1.

For (L(χ+)), we have Y−1L(χ+)Y−1 = L(Y−1χ+). We can use the representa-
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tion in Equation (4.12) with g = Y−1χ+ to write

Y−1χ+ = χ+(−1 + 0)
1− σ

2
+ χ+(−1− 0)

1 + σ

2
+ d

where σ is the function defined in (4.6) and d is a function on S1 that is continuous

and vanishing at 1. Thus

Y−1L(χ+)Y−1 = L

(
1 + σ

2

)
+ L(d)

and so EnY−1L(χ+)Y−1E−n = Ln

(
1 + SR

2

)
Ln + EnL(d)E−n which converges

strongly to
1 + SR

2
= PR.

Next we consider the image of (E−nK1En) under Ψ−1. For this, we aim to

consider the strong limit EnY−1E−nK1EnY−1E−n but as we have already seen in

this proof, this converges strongly to zero by Lemma 4.3.1.

Finally, for (Y−1E−nK2EnY−1) = A, we have EnY−1AY−1E−n = LnK2Ln which

converges strongly to K2.

We will see that (B/I)/I−1 is actually ∗-isomorphic to Ψ−1(C) via the mapping

Ψ̂−1. Surjectivity is clear, but to prove injectivity we will first need to identify the

kernel of Ψ−1 when acting on C/N . In order to do this, we will need to develop

stability criteria for C.

We define C(Ṙ) to be the Banach algebra of all continuous functions f on the

real line R possessing finite limits f(+∞) and f(−∞) such that f(+∞) = f(−∞).

Let Ĉ denote the algebra generated by the following elements:
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Ĉ := algL(L2(S1))
{
(P ), (P+

n ), (Q−
n ), (L(χ+)), (L(f)), (E−nK1En),(

Y−1E−nK2EnY−1), (E−nM(g)En), (I)
}

where K1, K2 are compact, f ∈ PC0
±1, and g ∈ C(Ṙ). It can be straightforwardly

checked that our operators Ψ1 and Ψ−1 can be extended to all of Ĉ; one need

only verify that they are defined for the element (E−nM(g)En) for g ∈ C(Ṙ).

Notice that our algebra C is a subalgebra of Ĉ, meaning that we can specialize the

stability criteria for Ĉ to C. Define the set J ′ by

J ′ = {(Cn + E−nK1En + Y−1E−nK2EnY−1) : Cn ∈ N , K1, K2 ∈ K}

This forms an ideal of Ĉ and we have the following lifting theorem:

Theorem 4.3.3. (Lifting Theorem for Ĉ) Let (Cn) ∈ Ĉ. The following are equiv-

alent:

(a) (Cn) is stable

(b) (Cn) +N is invertible in Ĉ/N

(c) Ψ1(Cn) and Ψ−1(Cn) are invertible in L(L2(R)) and (Cn) + J ′ is invertible

in Ĉ/J ′.

Proof. This can be proven in the same way as Theorem 3.1.8.

As we have done many times before, we will now localize over a central subal-

gebra of Ĉ/J ′. To help us prove a particular set is a central subalgebra, we start

with the following lemma. An alternative proof can be found in [9], Lemma 3.2.
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Lemma 4.3.4. Let g ∈ C(Ṙ). Then LnM(g)Ln −M(g)Ln ∈ N .

Proof. By the uniform boundedness of Ln, we can use an approximation argument.

Let g be a smooth, compactly supported function and let f ∈ L2(R). By definition,

LnM(g)Lnf = n2

∞∑
k=−∞

[∫ k+1
n

k
n

g(y)dy

∫ k+1
n

k
n

f(x)dx

]
χ[ k

n
, k+1

n
].

By the Mean Value Theorem for integrals, for each k ∈ Z there exists a point

xk ∈ [ k
n
, k+1

n
] such that g(xk) = n

∫ k+1
n

k
n

g(y)dy. Thus

LnM(g)Lnf = n2

∞∑
k=−∞

[
1

n
g(xk)

∫ k+1
n

k
n

f(x)dx

]
χ[ k

n
, k+1

n
].

Also by definition, we have

M(g)Lnf = gn
∞∑

k=−∞

(∫ k+1
n

k
n

f(x)dx

)
χ[ k

n
, k+1

n
].

Then

LnM(g)Lnf −M(g)Lnf = n
∞∑

k=−∞

[
(g(xk)− g)

∫ k+1
n

k
n

f(x)dx

]
χ[ k

n
, k+1

n
].

Thus, setting (⋆) = LnM(g)Lnf −M(g)Lnf, we have

∥(⋆)∥2 =
∫
R

n
∞∑

k=−∞

[
(g(xk)− g)

∫ k+1
n

k
n

f(x)dx

]
χ[ k

n
, k+1

n
](y)

2

dy

=

∫
R
n2
∑
k∈Z

|g − g(xk)|2
∣∣∣∣∣
∫ k+1

n

k
n

f(x)dx

∣∣∣∣∣
2

χ[ k
n
, k+1

n
](y)dy
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= n2
∑
k∈Z

∫ k+1
n

k
n

|g − g(xk)|2
∣∣∣∣∣
∫ k+1

n

k
n

f(x)dx

∣∣∣∣∣
2

dy

= n
∑
k∈Z

|g − g(xk)|2
∣∣∣∣∣
∫ k+1

n

k
n

f(x)dx

∣∣∣∣∣
2

.

Notice that

∣∣∣∣∣
∫ k+1

n

k
n

f(x)dx

∣∣∣∣∣
2

≤

(∫ k+1
n

k
n

∣∣f(x)∣∣ dx)2

=

(∫
R

∣∣∣f(x)χ[ k
n
, k+1

n
](x)
∣∣∣ dx)2

≤ ∥f∥22∥χ[ k
n
, k+1

n
]∥

2
2

=
1

n2
∥f∥22

where we have made use of Hölder’s inequality for the second inequality. Thus

∥LnM(g)Lnf −M(g)Lnf∥2 = n
∑
k∈Z

|g − g(xk)|2
∣∣∣∣∣
∫ k+1

n

k
n

f(x)dx

∣∣∣∣∣
2

≤ 1

n
∥f∥22

∑
k∈Z

|g − g(xk)|2

≤ 1

n
∥f∥22

∑
k∈Z

(
1

n

)2

≤ 1

n2
∥f∥22

where the second to last inequality is making use of the smoothness of g to get a

uniform bound on |g − g(xk)|2 and the final inequality is making use of the fact

g is compactly supported. Since this final expression goes to zero as n goes to

infinity, our proof is complete.
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Lemma 4.3.5. The set D3 := {(E−nM(g)En) + J ′ : g ∈ C(Ṙ)} is a central

subalgebra of Ĉ/J ′. Moreover, D3 is isomorphic to C(Ṙ).

Proof. We start by proving that this is a central subalgebra. We first show that

(E−nM(g)En) commutes with (P ), (P+
n ), and (Q−

n ) mod J ′. We will make use

of the equalities EnPE−n = Lnχ[0,∞), EnP
+
n E−n = Lnχ[−1,∞), and EnQ

−
nE−n =

Lnχ(−∞,1]. Let’s start with (P ). Observe that

PE−nM(g)En − E−nM(g)EnP = E−nEnPE−nM(g)En − E−nM(g)EnPE−nEn

= E−nLnχ[0,∞)M(g)En − E−nM(g)Lnχ[0,∞)En

= E−nLnM(g)χ[0,∞)En − E−nM(g)χ[0,∞)LnEn

= E−nM(g)χ[0,∞)En − E−nM(g)χ[0,∞)En

= 0.

This same argument holds for (P+
n ) and (Q−

n ); we just change χ[0,∞) to χ[−1,∞)

and χ(−∞,1] respectively.

Next we prove that (E−nM(g)En) commutes with L(t), which will imply that

it commutes with Laurent operators with continuous symbols. We will then use

this to show that it commutes with L(f) for f ∈ PC±1. Consider

L(t)E−nM(g)EnL(t
−1)− E−nM(g)En.

To show that this is inN , it will be convenient to think of the operator E−nM(g)En
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as a diagonal matrix (gij) whose entries are

gij =


0 if i ̸= j

n
∫ j+1

n
j
n

g(x)dx if i = j

(to see this, we let E−nM(g)En act on the basis element ej whose jth entry is 1

and has zeros everywhere else). Then as a matrix, L(t)E−nM(g)EnL(t
−1) is also

diagonal but with the entries shifted; i.e., if L(t)E−nM(g)EnL(t
−1) = (aij) then

aij = g(i−1)(j−1). The difference L(t)E−nM(g)EnL(t
−1) − E−nM(g)En is then a

diagonal matrix with diagonal entries given by

n

∫ j
n

j−1
n

g(x)dx− n

∫ j+1
n

j
n

g(x)dx = n

∫ j+1
n

j
n

g

(
x− 1

n

)
− g(x)dx.

But this goes uniformly to zero due to the uniform continuity of g and so

L(t)E−nM(g)EnL(t
−1)− E−nM(g)En ∈ N .

Next we show that (E−nM(g)En) commutes with L(f) for f ∈ PC±1. For such

f we have the representation

f = ασ + βY−1σ + d

where σ is given in Equation 4.6 and α and β are chosen so that the function

d is continuous on all of S1 (they will depend on the values of f(1 ± 0) and

f(−1± 0)). Thus, since we have already handled the continuous symbol case, our

consideration of

L(f)E−nM(g)En − E−nM(g)EnL(f)
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can be reduced to examining

L(σ)E−nM(g)En − E−nM(g)EnL(σ).

Notice that since L(σ) = E−nSREn, we have the term

L(σ)E−nM(g)En − E−nM(g)EnL(σ)

is equal to

E−nLnSRLnM(g)En − E−nM(g)LnSRLnEn.

We have also, mod N , the equality

E−nLnSRLnM(g)En − E−nM(g)LnSRLnEn = E−nSRM(g)En − E−nM(g)SREn

due to Lemma 4.3.4. This in turn is equal to E−n(SRM(g)−M(g)SR)En. Thus if

we can show SRM(g)−M(g)SR is compact our work will be done since E−nKEn ∈

J ′. That SRM(g) −M(g)SR is compact can be seen in several ways; one way is

to note that under each of the homomorphisms given by the Fredholm Theory in

Appendix A.1, Equations A.1, A.2, and A.3, M(g) is sent to a scalar multiple of

the identity since g ∈ C(Ṙ) and so SRM(g)−M(g)SR is sent to zero under all of

these homomorphisms and hence is compact.

The final thing to check is that for f, g ∈ C(Ṙ), the term E−nM(g)En com-

mutes mod J ′ with E−nM(f)En. For this we have

E−nM(g)EnE−nM(f)En = E−nM(g)LnM(f)En

= E−nM(g)LnM(f)LnEn
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= E−nM(g)M(f)LnEn

= E−nM(f)M(g)LnEn

= E−nM(f)LnM(g)LnEn

= E−nM(f)EnE−nM(g)En

where these equalities are holding mod N by Lemma 4.3.4. Thus E−nM(g)En

commutes mod J ′ with E−nM(f)En.

We now prove that D3 is ∗-isomorphic to C(Ṙ). We will show that the map

Γ : C(Ṙ) → D3

defined by Γ(f) = (E−nM(f)En) + J ′ is a ∗-isomorphism.

We first check the properties of a ∗-isomorphism. For additivity, we have

E−nM(f + g)En = E−n(M(f) +M(g))En = E−nM(f)En + E−nM(g)En

as needed. We also have M(f ∗) = M(f)∗, which when paired with the fact

(E−n)
∗ = En and (En)

∗ = E−n gives Γ(f ∗) = Γ(f)∗. For multiplicativity, we want

to show that Γ(fg)−Γ(f)Γ(g) ∈ J ′. But we have already seen this when we were

showing E−nM(g)En commutes mod J ′ with E−nM(f)En.

All that remains is checking injectivty and continuity. To this end, suppose

f ∈ ker Γ. Then (M(f)) ∈ J ′, meaning

(E−nM(f)En) = (Cn + E−nK1En + Y−1E−nK2EnY−1)
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where Cn ∈ N , K1, K2 ∈ K . Then

M(f) = s-lim
n→∞

EnE−nM(f)EnE−n

= s-lim
n→∞

En(Cn + E−nK1En + Y−1E−nK2EnY−1)E−n

= K1.

Since the only compact multiplication operator is zero, this implies f = 0 and

so Γ is injective. Because we are working with C∗-algebras, this also implies that

Γ is an isometry and is thus continuous.

For x ∈ Ṙ, we denote by J ′
x the smallest closed ideal of Ĉ/J ′ containing

(E−nM(g)En) + J ′ where g ∈ C(Ṙ) vanishes at x; i.e.,

J ′
x = clos idĈ/J ′{(E−nM(g)En) + J ′ : g ∈ C(Ṙ), g(x) = 0}.

Corollary 4.3.6. Let (Cn) ∈ Ĉ. Then (Cn) +J ′ is invertible in Ĉ/J ′ if and only

if (Cn + J ′) + J ′
x is invertible in (Ĉ/J ′)/J ′

x for all x ∈ Ṙ.

Proof. On account of Lemma 4.3.5, we can employ Theorem 3.2.1 in the setting

A = Ĉ/J ′ and Z = D3. As we have seen before, since D3
∼= C(Ṙ), their max-

imal ideal spaces are homeomorphic − that is, the maximal ideal space of D3 is

homemorphic to Ṙ. Putting all of this together gives the claim.

Altogether, we have shown that an element (Cn) ∈ Ĉ is stable if and only if

its images under Ψ1 and Ψ−1 are invertible and its cosets (Cn + J ′) + J ′
x are

invertible in (Ĉ/J ′)/J ′
x for all x ∈ Ṙ. But we are really only interested in stability

for the algebra C, so we proceed as follows: since C is a ∗-subalgebra of Ĉ and
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C∗−algebras are inverse closed, we can apply the stability criteria for Ĉ to C. We

will see that for elements in C, invertibility of their images in each of the local

algebras (Ĉ/J ′)/J ′
x is implied by invertibility of their image under Ψ1 and Ψ−1,

thus reducing stability in C to invertibility of two operators.

Theorem 4.3.7. Let (Cn) ∈ C. Then invertibility of Ψ1(Cn) and invertibility of

Ψ−1(Cn) imply invertibility of the coset (Cn + J ′) + J ′
x for all x ∈ Ṙ.

Proof. To prove this statement, for each x ∈ Ṙ we will construct a homomorphism

Γx from either Ψ1(C) or Ψ−1(C) into (Ĉ/J ′)/J ′
x such that the following diagram

commutes:

C/N

Ψ1(C) or Ψ−1(C) (Ĉ/J ′)/J ′
x

Ψ1 or Ψ−1

Γx

πx

So that it is clear what we need these homomorphisms to do, the image of

each generator of C/N in Ψ−1(C) and each of the (Ĉ/J ′)/J ′
x are summarized in

the following table.

(Ĉ/J ′)/J ′
x

C/N Ψ−1 x < −1 x = −1 −1 < x < 0 x = 0
(P ) χ[0,∞) (0) (0) (0) (P )
(P+

n ) χ[−1,∞) (0) (P+
n ) (I) (I)

(Q−
n ) χ(−∞,1] (I) (I) (I) (I)

(L(χ+)) PR (L(χ+)) (L(χ+)) (L(χ+)) (L(χ+))
(E−nK1En) 0 (0) (0) (0) (0)

(Y−1E−nK2EnY−1) K2 (0) (0) (0) (0)

Table 4.2: Images of Generators of C in the Local Algebras for x ≤ 0
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(Ĉ/J ′)/J ′
x

C/N Ψ−1 0 < x < 1 x = 1 x > 1 x = ∞
(P ) χ[0,∞) (I) (I) (I) (P )
(P+

n ) χ[−1,∞) (I) (I) (I) (P )
(Q−

n ) χ(−∞,1] (I) (Q−
n ) (0) (Q)

(L(χ+)) PR (L(χ+)) (L(χ+)) (L(χ+)) (L(χ+))
(E−nK1En) 0 (0) (0) (0) (0)

(Y−1E−nK2EnY−1) K2 (0) (0) (0) (0)

Table 4.3: Images of Generators of C in the Local Algebras for x > 0

Note that the only difference for Ψ1 is (L(χ+)) is mapped to QR, (E−nK1En)

is mapped to K1, and (Y−1E−nK2EnY−1) is mapped to zero. Thus when we

construct the maps Γx, all requirements will be the same except we have the

choice of whether we wish to work with PR or QR. It will be made explicit which

we are using in each case. Throughout our constructions, we will make use of

the shift operators Ut and Zτ defined in equations (4.10) and (4.11) for particular

values of t.

Case 1: x < −1.

In this case we work with Ψ−1 and are looking for a map that does the following:

χ[0,∞) 7→ (0), χ[−1,∞) 7→ (0), χ(−∞,1] 7→ (I), PR 7→ (L(χ+)), K 7→ (0).

This will be easier if we transform the sequences on L(L2(S1)) to be sequences

on L(L2(R)) via the transformation ∆ defined in (4.13). From this point of view

we now need to map PR to M(χ[0,∞)). We start by taking an operator A and

sending it to the sequence (s-lim
τ→∞

Z−1
τ U2AU−2Zτ ). Under this, we have

χ[0,∞) 7→ (0), χ[−1,∞) 7→ (0), χ(−∞,1] 7→ (I), PR 7→ (PR), K 7→ (0)

and so now we just need a map that send PR to M(χ[0,∞)). But we can do this
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using the Fourier transform; indeed, recall the representation

PR = F−11 + sgn(x)

2
F

given in (4.5). By sending a sequence (A) to (FAF−1), this sends (PR) to

M

((
1 + sgn(x)

2

))
= (M(χ[0,∞))) and so our job is done. All in all, the map Γx

is the map defined by

Γx : A 7→

(∆−1F
(
s-lim
τ→∞

Z−1
τ U2AU−2Zτ

)
F−1

)
+ J ′

+ J ′
x.

Case 2: x = −1.

In this case we work with Ψ1 and are looking for a map that does the following:

χ[0,∞) 7→ (0), χ[−1,∞) 7→ (P+
n ), χ(−∞,1] 7→ (I), QR 7→ (L(χ+)), K 7→ (0)

We start by sending an operator A to the sequence

(
s-lim
τ→∞

Z−1
τ U1AU−1Zτ

)
.

Under this, we have

χ[0,∞) 7→ (0), χ[−1,∞) 7→ (χ[0,∞)), χ(−∞,1] 7→ (I), QR 7→ (QR), K 7→ (0)

Next we take the resulting sequence (A) and map it to
(
F−1AF

)
. Here we

automatically have (χ[0,∞)) being mapped to (PR) since

PR = F−11 + sgn(x)

2
F .

We also have

F−1QRF = F−1F−11− sgn(x)

2
FF
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= F−1F−1χ(−∞,0]FF

= F−1Fχ[0,∞)F−1F

= χ[0,∞)

where we made use of Corolllary 4.2.8 in the second to last equality. Finally,

we take these sequences of operators in L(L2(R)) and send them to sequences of

operators in L(L2(S1)) via the map ∆−1 as we did in Case 1. This sends (PR) to

(PS1) and (M(χ[0,∞))) to (L(χ+)). To finish up, we take the sequence of operators

(A) and send them to (U−nAUn) which sends (P ) to (P+
n ) and leaves (L(χ+))

invariant.

Case 3: −1 < x < 0.

In this case we work with Ψ−1 and are looking for a map that does the following:

χ[0,∞) 7→ (0), χ[−1,∞) 7→ (I), χ(−∞,1] 7→ (I), PR 7→ (L(χ+)), K 7→ (0)

For this we can define the map

Γx : A 7→

(∆−1F
(
s-lim
τ→∞

Z−1
τ U 1

2
AU− 1

2
Zτ

)
F−1

)
+ J ′

+ J ′
x

(the reasoning is nearly identical to that of Case 1).

Case 4: x = 0.

In this case we work with Ψ1 and are looking for a map that does the following:

χ[0,∞) 7→ (P ), χ[−1,∞) 7→ (I), χ(−∞,1] 7→ (I), QR 7→ (L(χ+)), K 7→ (0)

We start by sending an operator A to the sequence

(
s-lim
τ→∞

Z−1
τ AZτ

)
. Under

this, we have

χ[0,∞) 7→ (χ[0,∞)), χ[−1,∞) 7→ (I), χ(−∞,1] 7→ (I), QR 7→ (QR), K 7→ (0)
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Next we take the resulting sequence (A) and map it to
(
F−1AF

)
. As we saw

in Case 2, this sends (χ[0,∞)) to (PR) and (QR) to
(
χ[0,∞)

)
. Taking these sequences

of operators in L(L2(R)) and sending them to sequences of operators in L(L2(S1))

via the map ∆−1 as we did in Case 1 finishes the job.

Case 5: 0 < x < 1.

In this case we work with Ψ−1 and are looking for a map that does the following:

χ[0,∞) 7→ (I), χ[−1,∞) 7→ (I), χ(−∞,1] 7→ (I), PR 7→ (L(χ+)), K 7→ (0)

For this we can define the map

Γx : A 7→

(∆−1F
(
s-lim
τ→∞

Z−1
τ U− 1

2
AU+ 1

2
Zτ

)
F−1

)
+ J ′

+ J ′
x

(the reasoning is nearly identical to that of Case 1).

Case 6: x = 1.

In this case we work with Ψ1 and are looking for a map that does the following:

χ[0,∞) 7→ (I), χ[−1,∞) 7→ (I), χ(−∞,1] 7→ (Q−
n ), QR 7→ (L(χ+)), K 7→ (0)

We start by sending an operator A to the sequence

(
s-lim
τ→∞

Z−1
τ U−1AU1Zτ

)
.

Under this, we have

χ[0,∞) 7→ (I), χ[−1,∞) 7→ (I), χ(−∞,1] 7→ (χ(−∞,0]), QR 7→ (QR), K 7→ (0)

Next we take the resulting sequence (A) and map it to
(
F−1AF

)
. This sends

(χ(−∞,0]) to (QR) and (QR) to
(
χ[0,∞)

)
. Taking these sequences of operators in

L(L2(R)) and sending them to sequences of operators in L(L2(S1)) via the map

∆−1 as we did in Case 1 sends (QR) to (QS1) and
(
χ[0,∞)

)
to (L(χ+)). Finally we

take the sequence (A) and map it to (UnAU−n) to complete this case.

Case 7: x > 1.
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In this case we work with Ψ−1 and are looking for a map that does the following:

χ[0,∞) 7→ (I), χ[−1,∞) 7→ (I), χ(−∞,1] 7→ (0), PR 7→ (L(χ+)), K 7→ (0)

For this we can define the map

Γx : A 7→

(∆−1F
(
s-lim
τ→∞

Z−1
τ U−2AU2Zτ

)
F−1

)
+ J ′

+ J ′
x

(the reasoning is nearly identical to that of Case 1).

Case 8: x = ∞.

In this case we work with Ψ1 and are looking for a map that does the following:

χ[0,∞) 7→ (P ), χ[−1,∞) 7→ (P ), χ(−∞,1] 7→ (Q), QR 7→ (L(χ+)), K 7→ (0)

We start by sending an operator A to the sequence (s-lim
τ→∞

ZτAZ
−1
τ ). Due to

the weak convergence of Zτ , compact operators are sent to zero here. The other

operators are mapped as follows:

χ[0,∞) 7→ (χ[0,∞)), χ[−1,∞) 7→ (χ[0,∞)), χ(−∞,1] 7→ (χ(−∞,0]), QR 7→ (QR)

Next we take the resulting sequence (A) and map it to
(
F−1AF

)
. This sends

(χ[0,∞)) to (PR), (χ(−∞,0]) to (QR), and (QR) to
(
χ[0,∞)

)
. Taking these sequences of

operators in L(L2(R)) and sending them to sequences of operators in L(L2(S1))

via the map ∆−1 as we did in Case 1 sends (PR) to (PS1), (QR) to (QS1), and(
χ[0,∞)

)
to (L(χ+)), as required.

The previous theorem, when combined with the Lifting Theorem for Ĉ, tells

us that invertibility of an element (Cn) + N ∈ C/N is dependent only upon
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invertibility of Ψ1(Cn) and Ψ−1(Cn). Thus, since we are in a C∗−algebra situa-

tion, we actually have that C/N is isomorphic to a subalgebra of the direct sum

Ψ1(C)
⊕

Ψ−1(C):

Corollary 4.3.8. The C∗−algebra C/N is isomorphic to a ∗−subalgebra of the

direct sum Ψ1(C)
⊕

Ψ−1(C).

Proof. Theorems 4.3.3 and 4.3.7 yield that an element (Cn) + N ∈ C/N is in-

vertible if and only if Ψ1(Cn) and Ψ−1(Cn) are invertible. Said differently, the

mapping from C/N into Ψ1(C)
⊕

Ψ−1(C) preserves spectra. Since we are in the

C∗−algebra setting, this mapping is an isometry and hence injective. We thus

have an isomorphism onto its image in the direct sum.

4.4 Identifying (B/I)/I−1

In this section we will finally identify (B/I)/I−1 with the algebra of operators

Ψ−1(C); Corollary 4.3.8 will prove to be a key ingredient on our way to proving

this. Recall the following commutative diagram given in the statement of Theorem

4.3.2:

(B/I)/I−1

C/N Ψ−1(C)

Ψ̂−1
ι

Ψ−1

From this point of view, in order to prove that (B/I)/I−1 is isomorphic to

Ψ−1(C) we need only show that Ψ̂−1 is injective. The strategy is as follows: using

Corollary 4.3.8 and Fredholm Theory, we will identify the kernel of Ψ−1. We will

then use the surjectivity of ι in order make a conclusion about the kernel of Ψ̂−1.

In our efforts to identify the kernel of Ψ−1, the algebra algL(L2(R)){χ[0,∞), SR} will
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make an appearance. We will first study this algebra, realizing it as a matrix

algebra. This viewpoint will be advantageous in our analysis of the kernel of Ψ−1.

In what follows we will be using some notation and following the work done

in [5], Section 8. We denote by η the isometry from L2(R) → L2(R+)
⊕

L2(R+)

that sends f to (f1, f2)
T with f1(x) = f(x) and f2(x) = f(−x) ∀x ∈ R+. We can

now define the ∗−isomorphism Φη defined by

Φη : A 7→ ηAη−1 (4.16)

that maps L(L2((R)) onto L(L2((R+))2×2. We now introduce two operators on

L(L2((R)) onto L(L2((R+)): let S = SR+ be the singular integral operator on the

positive real line and let N be the Hankel operator :

(Sf)(x) =
1

πi

∫ ∞

0

f(y)

y − x
dy, x ∈ R+ (4.17)

(Nf)(x) =
1

πi

∫ ∞

0

f(y)

y + x
dy, x ∈ R+ (4.18)

Then we have

Φη(χ[0,∞)) =

I 0

0 0

 , Φη(SR) =

S −N

N −S

 (4.19)

where I refers to the identity operator on L2(R+).

We define the C∗−algebra Σ0
2 by

Σ0
2 := algL(L2((R+))2×2


I 0

0 0

 ,

S −N

N −S


 . (4.20)
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From our discussion, we have the following corollary:

Corollary 4.4.1. The ∗−isomorphism Φη maps algL(L2(R)){χ[0,∞), SR} onto Σ0
2.

Thus, our study of algL(L2(R)){χ[0,∞), SR} can be transformed into the study of

Σ0
2. Recall the Mellin transform M : L2(R+) → L2(R) is given by

(Mf)(z) =

∫ ∞

0

x−iz− 1
2f(x)dx, z ∈ R (4.21)

and its inverse M−1 : L2(R) → L2(R+) is given by

(M−1f)(x) =
1

2π

∫ ∞

−∞
xiz− 1

2f(z)dz, x ∈ R+ (4.22)

For a multiplication operator b ∈ L∞(R), we denote by M0(b) the Mellin

convolution operator

M0(b) := M−1bM : L2(R+) → L2(R+). (4.23)

One can show various properties, such as ∥M0(b)∥ = ∥b∥,M0(b)∗ = M0(b∗), and

M0(b1b2) = M0(b1)M
0(b2). These properties together yield that the mapping

b 7→ M0(b) is a ∗-isomorphism. In [8], Section 2.1.2, Equations 4 and 5, they

show that our operators S and N are actually Mellin convolution operators:

S = M0(s), s(z) = coth

(
πz +

πi

2

)
(z ∈ R), (4.24)

N = M0(n), n(z) = −i(cosh(πz))−1 (z ∈ R). (4.25)
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From this point of view, we have (since s2 − n2 = 1)

SN = NS and S2 −N2 = 1. (4.26)

Let PC∞(R) denote the set of all continuous functions f on R for which the

limits at infinity and negative infinity exist and are finite, and let C0
∞(R) denote

the set of all continuous functions f on R for which limx→±∞ f(x) = 0. The set

PC∞(R) is the smallest closed subalgebra of L∞(R) which contains the function

s and C0
∞(R) is the smallest closed ideal of PC∞(R) which contains the function

n.

In order to describe Σ0
2, we introduce the following sets:

Σ1 := {αI + βS +M0(b) : α, β ∈ C, b ∈ C0
∞(R)} (4.27)

Σ0
1 := {M0(b) : b ∈ C0

∞(R)} (4.28)

Proposition 4.4.2.

(a) Σ1 is a C∗-algebra and Σ0
1 is a ∗-ideal of Σ1.

(b) Σ0
2 =


A B

C D

 : A,D ∈ Σ1, B, C ∈ Σ0
1

 .

Proof. A proof can be found in [5], Proposition 8.2.

Proposition 4.4.3. The kernel of Ψ−1 is equal to {Cn+E−nKEn : Cn ∈ N , K ∈

K}.
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Proof. We will use the following scheme for our proof:

C/N

Ψ1(C) Ψ−1(C)

Ψ1(C)/K Ψ−1(C)/K

From the Fredholm Theory outlined in Appendix A.1 and A.2, the algebras

Ψ1(C)/K and Ψ−1(C)/K can be further decomposed into a direct sum of alge-

bras given by their images under various homomorphisms. Now, we can con-

struct maps from each component of the direct sum that Ψ1(C)/K is isomorphic

to into the components of the direct sum for Ψ−1(C)/K. Indeed, the identity

mapping sends H+−(Ψ1(C)) into H++(Ψ−1(C)), H++(Ψ1(C)) into H+−(Ψ−1(C)),

H−+(Ψ1(C)) into H−−(Ψ−1(C)), and H−−(Ψ1(C)) into H−+(Ψ−1(C)). For map-

ping Hs,∞(Ψ1(C)) into Hs,∞(Ψ−1(C)) and H∞,0(Ψ1(C)) into H∞,0(Ψ−1(C)), it suf-

fices to find a multiplicative map that keeps the characteristic functions invari-

ant and that sends QR to PR. For this, it is more convenient to view the alge-

bras Hs,∞(Ψ1(C)), Hs,∞(Ψ−1(C)), H∞,t(Ψ1(C)), and H∞,t(Ψ−1(C)) (which are all

algL(L2(R)){χ[0,∞), SR}) as the matrix algebra Σ0
2. From this perspective, the map

that leaves the characteristic functions invariant and sends QR to PR is not so

hard to see: we simply send a matrix

M0(a1) M0(a2)

M0(a3) M0(a4)

 to the matrix

1 0

0 −1


M0(ã1) M0(ã2)

M0(ã3) M0(ã4)


1 0

0 −1


where ã(x) = a(−x). This map works since s(−x) = −s(x) and n(−x) = n(x).
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Thus we actually have the following scheme:

C/N

Ψ1(C) Ψ−1(C)

Ψ1(C)/K Ψ−1(C)/K

Now let (Cn) ∈ ker Ψ−1. Then tracking (Cn) down the righthandside of the

scheme and into Ψ1(C)/K, we have that (Cn) is 0 in Ψ1(C)/K; i.e., Ψ1(Cn) := K

is compact. Consider the element (Cn − E−nKEn) ∈ C/N . Under Ψ1 this gets

sent to zero and under Ψ−1 this is also sent to 0. In other words, since C/N

is isomorphic to a subalgebra of the direct sum Ψ1(C)
⊕

Ψ−1(C), this element is

identically 0. Thus (Cn) = (E−nKEn) and our proof is complete.

Theorem 4.4.4. The local algebra (B/I)/I−1 is ∗-isomorphic to Ψ−1(C).

Proof. Recall the following diagram:

(B/I)/I−1

C/N Ψ−1(C)

Ψ̂−1
ι

Ψ−1

We need to prove that Ψ̂−1 is injective, so let (Bn,r + I) + I−1 ∈ ker Ψ̂−1. By

surjectivity of ι, there exists a sequence (Cn) such that ι(Cn) = (Bn,r + I) + I−1.

But since Ψ−1 = Ψ̂−1 ◦ ι, this means that (Cn) ∈ ker Ψ−1. Using Proposition

4.4.3, we can conclude that (Cn) = (Dn + E−nKEn) where Dn ∈ N and K is

compact. Thus (Bn,r) = (Dn + E−nKEn). Since N ⊆ I, Dn ∈ I. It remains to
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show that (E−nKEn) is zero in the local algebra. But this is not so bad, since

E−nKEn = R∗
rRrE−nKEnR

∗
rRr = R∗

rK
′Rr ∈ I

where the last equality only holds mod N due to the strong convergence of RrE−n

and EnR
∗
r . Therefore Ψ̂−1 is injective and thus is actually a ∗-isomorphism and

our proof is complete.

Corollary 4.4.5. The C∗−algebra B/N is isomorphic to a ∗−subalgebra of the

direct sum Ψ1((F∗/J )/J1)
⊕

Ψ−1(C).

Proof. This is a direct result of Corollary 4.1.8 and Theorems 4.2.10 and 4.4.4.

Let’s take a moment to reflect on what we have accomplished thus far. We

started this section with the goal of identifying (F∗/J )/J1 with an algebra of

operators. In order to work towards this goal, we introduced several new algebras

and identified these new algebras with algebras of operators. The work that we

have done can be summarized in the following scheme:

(F/J )/J1 B/N

A (B/I)/I−1

Ψ1((F∗/J )/J1) Ψ−1(C)

Ψ1((F∗/J )/J1)/K Ψ−1(C)/K

τ

∼=∼=

δ̂ π−1
ϵ

We will make full use of the isomorphisms we demonstrated and actually work

with the following diagram:
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(F∗/J )/J1 B/N

Ψ1((F∗/J )/J1) Ψ−1(C)

Ψ1((F∗/J )/J1)/K Ψ−1(C)/K

τ

Ψ̂1
Ψ1 Ψ̂−1◦π−1

In the next chapter we will use this scheme in order to identify the kernel of

the map τ and to ultimately achieve our goal of identifying (F∗/J )/J1 with an

algebra of operators.
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Chapter 5

The Algebra (F∗/J )/J1

The goal of this chapter is to finally identify the local algebra (F∗/J )/J1 with

an algebra of operators. In the first section we find and prove that a concrete

element belongs to the kernel of the map τ. In the second section we use this

element to prove that the kernel of Ψ̂1 is equal to the kernel of τ . In the final

section we summarize our findings and present our main result. Throughout this

chapter we make use of the Fredholm theory presented in Appendix A.

5.1 Exploring the Kernel of τ

In this section, we seek to find an element that belongs to the kernel of τ .

We proceed as follows: first we find an element (Bn,r) ∈ B/N that gets sent to a

compact operator K under Ψ1◦τ but that does not get sent to a compact operator

in Ψ−1(C). We then consider the difference of the image of this element under τ

with the preimage of K under Ψ1 in (F∗/J )/J1. We denote this new element

by (Fn,r). We first concretely identify what the compact operator K looks like,

and then we fully describe what (Fn,r) looks like by expressing it as a matrix and
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providing a formula for its entries. Finally, by choosing a specific function with

desired properties, we exhibit an element belonging to the kernel of τ .

For this first step, we will use the following diagram:

(F∗/J )/J1 B/N

Ψ1((F∗/J )/J1) Ψ−1(C)

Ψ1

τ

Ψ̂1
Ψ̂−1◦π−1

Define χ := χ+ − χ− and let f be a continuous function on the unit circle with

f(1) = 1 and f(−1) = 0. Consider the element

(Bn,r) := (I − P+
n )(I − L(C−1

r f))(L(χ))(I −Q−
n ) +N ∈ B/N .

Direct computations show that

(Ψ1 ◦ τ)(Bn,r) = χ(−∞,−1)W
0
(
1− f

(λ− 2πix

λ+ 2πix

))
(QR − PR)χ(1,∞)

gets sent to zero by each of the homomorphisms given from the Fredholm theory

discussed in Appendix A. We can thus conclude that this element is in fact

compact in Ψ1((F∗/J )/J1); let’s call this compact K. In B/N we then consider

the element the element

((I − P+
n )(I − L(C−1

r f))(L(χ))(I −Q−
n ))− (E−nKEn) +N .

Notice that this element is nonzero; one way to notice this is by observing that it

is sent to (((I−P+
n )(L(χ))(I−Q−

n ))− (E−nKEn)+I)+I−1 in (B/I)/I−1 which,

when identified with Ψ−1(C), is not zero. This is seen, for example, by observing

that it gets mapped to −χ(−∞,0]SRχ[0,∞) ̸= 0 under H∞,0. Its image in (F∗/J )/J1
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is the element

(Fn,r) := ((τ(Bn,r)− EnKEn) + J ) + J1

= ((I − P+
n )(I − L(C−1

r f))(L(χ))(I −Q−
n )− (E−nKEn) + J ) + J1.

In order to better understand (Fn,r) we will first seek to describe K more

concretely. From what we have already seen, K is the operator

χ(−∞,−1)W
0
(
1− ĝ

)
(QR − PR)χ(1,∞)

where ĝ(x) = f(λ−2πix
λ+2πix

). This can be rewritten as

χ(−∞,−1)(QR − PR)χ(1,∞) − χ(−∞,−1)W
0(ĝ)(QR − PR)χ(1,∞).

Now, since QR − PR = −SR, we can conclude that

K = −χ(−∞,−1)SRχ(1,∞) + χ(−∞,−1)W
0(ĝ)SRχ(1,∞).

Let’s now use our newfound knowledge to give our element (Fn,r) a bit of a

makeover:

(Fn,r) = (I − P+
n )(I − L(C−1

r f))(L(χ))(I −Q−
n )− (E−nKEn)

= (I − P+
n )(I − L(C−1

r f))(L(χ))(I −Q−
n )

− (E−n(−χ(−∞,−1)SRχ(1,∞) + χ(−∞,−1)W
0(ĝ)SRχ(1,∞))En)

= (I − P+
n )(L(χ))(I −Q−

n ) + (E−nχ(−∞,−1)SRχ(1,∞)En) (5.1)
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− (I − P+
n )(L(C−1

r fχ))(I −Q−
n ) + (E−nχ(−∞,−1)W

0(ĝ)W 0(sgn(x))χ(1,∞)En)

(5.2)

Let’s tackle (5.1) first. Recall the function σ which is continuous on S1 \ {1}

with one sided limits σ(1 + 0) = −1 and σ(1 − 0) = 1 and for which we have

the relation L(σ) = E−nSREn for all n ≥ 1. With this in mind, we can write the

second term of (5.1) as

E−nχ(−∞,−1)SRχ(1,∞)En = E−nχ(−∞,−1)EnE−nSREnE−nχ(1,∞)En

= (I − P+
n )(L(σ))(I −Q−

n )

where the first equality holds because of the fact that Ln commutes with char-

acteristic functions with integer endpoints. We then have that (5.1) is equal to

(I − P+
n )(L(χ + σ))(I −Q−

n ) and since χ(1 + 0) = 1 and χ(1− 0) = −1 we have

that this belongs to J1. Thus the whole expression (5.1) is in J1 and hence zero

in (F∗/J )/J1. We can thus conclude that in our local algebra (F∗/J )/J1, we

have

(Fn,r) = −(I−P+
n )(L(C−1

r fχ))(I−Q−
n )+(E−nχ(−∞,−1)W

0(ĝ)W 0(sgn(x))χ(1,∞)En).

(5.3)

This remaining expression will require a bit more work. Define h := fχ. Then

W 0(ĝsgn(x)) = −W 0
(
h
(λ− 2πix

λ+ 2πix

))

Then for ĥ(x) = h
(λ− 2πix

λ+ 2πix

)
, we rewrite (5.3) as

(Fn,r) = −(I − P+
n )(L(C−1

r h) + E−nW
0(ĥ)En)(I −Q−

n ).
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Proposition 5.1.1. Let f be a continuous function on the unit circle with f(1) =

1 and f(−1) = 0, set h := fχ, and define ĥ(x) = h
(λ− 2πix

λ+ 2πix

)
. Let (Fn,r) be the

element defined by

(Fn,r) = −(I − P+
n )(L(C−1

r h) + E−nW
0(ĥ)En)(I −Q−

n ).

Then the mth = (l − j)th entry of its matrix representation is given by

1

n

∫ 1

0

∫ 1

0

∫
R
e2πi(

s−t+m
n

)xĥ(x)dxdtds− 2ϵr
λ

∫
R
ĥ(x)

e−2im arctan(−2πϵr
λ

x)

1 + (−2πϵr
λ

x)2
dx

when m < −2n and 0 otherwise.

Proof. We will tackle this expression by first exploring what E−nW
0(ĥ)En looks

like as a matrix and then looking at what L(C−1
r h) looks like as a matrix. W 0(ĥ)

is an integral operator with kernel k(x− y) = (F−1ĥ)(x− y). From this point of

view, we can see that E−nW
0(ĥ)En is in fact a Laurent operator. Indeed, let ej

be the vector with 1 in the jth position and zeros everywhere else. Then

(E−nW
0(ĥ)En)(ej) = (E−nW

0(ĥ))(
√
nχ[ j

n
, j+1

n
])

= E−n(
√
n

∫
R
k(x− y)χ[ j

n
, j+1

n
](y)dy)

=

(
n

∫
R

[∫
R
k(x− y)χ[ j

n
, j+1

n
](y)dy

]
χ[ l

n
, l+1

n
](x)dx

)
l∈Z

So the ljth entry of the matrix is

n

∫
R

[∫
R
k(x− y)χ[ j

n
, j+1

n
](y)dy

]
χ[ l

n
, l+1

n
](x)dx = n

∫ l+1
n

l
n

∫ j+1
n

j
n

k(x− y)dydx
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Letting x =
s+ l

n
and y =

t+ j

n
, we have that this equals

1

n

∫ 1

0

∫ 1

0

k
(s− t+ l − j

n

)
dtds

which depends only on l − j and is hence a Laurent operator. Recalling that

k(x − y) = (F−1ĥ)(x − y), we can actually write this double integral as a triple

integral:

1

n

∫ 1

0

∫ 1

0

k
(s− t+ l − j

n

)
dtds =

1

n

∫ 1

0

∫ 1

0

∫
R
e2πi(

s−t+l−j
n

)xĥ(x)dxdtds.

Now let’s think about L(C−1
r h). The mth Fourier coefficient of C−1

r h is

1

2π

∫ π

−π

h
( eiθ − r

1− reiθ

)
e−imθdθ.

Let’s rewrite this so that we get it in terms of ĥ. To do this, we set

eiθ − r

1− reiθ
=

λ− 2πix

λ+ 2πix
= t

and seek to write θ in terms of x. By performing algebra, we end up with

x =
−λ(1 + r)

2π(1− r)
tan( θ

2
) and so θ = 2arctan

(−2πx(1− r)

λ(1 + r)

)
. Letting ϵr =

1− r

1 + r
,

we have that θ = 2arctan(
−2πϵr

λ
x) and thus have that the mth Fourier coefficient

of C−1
r h is

1

2π

∫ π

−π

h
( eiθ − r

1− reiθ

)
e−imθdθ =

1

2π

∫
R
ĥ(x)e−im2 arctan(−2πϵr

λ
x)(2 arctan(

−2πϵr
λ

x))′dx

=
−2ϵr
λ

∫
R
ĥ(x)

e−2im arctan(−2πϵr
λ

x)

1 + (−2πϵr
λ

x)2
dx.
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Recall that we are trying to figure out what

−(I − P+
n )(L(C−1

r h) + E−nW
0(ĥ)En)(I −Q−

n )

looks like. From the work we just did, we know what the entries of the matrix

representation for the middle piece is, namely the mth = (l − j)th entry is given

by

1

n

∫ 1

0

∫ 1

0

∫
R
e2πi(

s−t+m
n

)xĥ(x)dxdtds− 2ϵr
λ

∫
R
ĥ(x)

e−2im arctan(−2πϵr
λ

x)

1 + (−2πϵr
λ

x)2
dx.

Multiplying on the left by (I−P+
n ) and on the right by (I−Q−

n ) makes the entries

below the −nth row and to the left of the nth column zero, and hence we are left

with a Hankel matrix. In terms of the entries of the matrix expression we found,

this corresponds to the requirement m < −2n.

We now turn to exhibiting a specific element in the kernel of τ by picking a

particular function f . Take the function f defined by f(eiθ) = 1− |θ|
π
. Define

(F̂n,r) := (I − P+
n )(I − L(C−1

r f))(L(χ))(I −Q−
n )− (E−nKEn) ∈ (F∗/J )/J1

for this specific f and let (B̂n,r) be the element in B/N that gets mapped to (F̂n,r)

under τ . Explicitly,

(B̂n,r) := (I − P+
n )(I − L(C−1

r f))(L(χ))(I −Q−
n )− (E−nKEn) +N (5.4)

with f(eiθ) = 1− |θ|
π
. We have the following:
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Theorem 5.1.2. Let f(eiθ) = 1− |θ|
π

and let K be the compact operator

K = −χ(−∞,−1)SRχ(1,∞) + χ(−∞,−1)W
0(ĝ)SRχ(1,∞).

Then the element (B̂n,r) defined by

(B̂n,r) := (I − P+
n )(I − L(C−1

r f))(L(χ))(I −Q−
n )− (E−nKEn) +N

belongs to the kernel of τ .

Proof. For the function f(eiθ) = 1− |θ|
π
, we have

ĥ(x) =


−1 +

2

π
arctan(2π

λ
x) if x > 0

1 +
2

π
arctan(2π

λ
x) if x < 0

Based on our previous proposition and discussion, to complete this proof we

need only show that the Laurent matrix whose mth = (l − j)th entry is 0 when

m ≥ −2n and given by

1

n

∫ 1

0

∫ 1

0

∫
R
e2πi(

s−t+m
n

)xĥ(x)dxdtds− 2ϵr
λ

∫
R
ĥ(x)

e−2im arctan(−2πϵr
λ

x)

1 + (−2πϵr
λ

x)2
dx

when m < −2n and ϵr =
1−r
1+r

belongs to N . Let’s start with the second integral:

−2ϵr
λ

∫
R
ĥ(x)

e−2im arctan(−2πϵr
λ

x)

1 + (−2πϵr
λ

x)2
dx

= −2ϵr
λ

∫ ∞

0

(
− 1 +

2

π
arctan(

2π

λ
x)
)e−2im arctan(−2πϵr

λ
x)

1 + (−2πϵr
λ

x)2
dx
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− 2ϵr
λ

∫ 0

−∞

(
1 +

2

π
arctan(

2π

λ
x)
)e−2im arctan(−2πϵr

λ
x)

1 + (−2πϵr
λ

x)2
dx

=
2ϵr
λ

∫ ∞

0

e−2im arctan(−2πϵr
λ

x)

1 + (−2πϵr
λ

x)2
dx− 2ϵr

λ

∫ 0

−∞

e−2im arctan(−2πϵr
λ

x)

1 + (−2πϵr
λ

x)2
dx (5.5)

− 2ϵr
λ

∫
R

2

π
arctan(

2π

λ
x)

e−2im arctan(−2πϵr
λ

x)

1 + (−2πϵr
λ

x)2
dx (5.6)

The integrals in (5.5) yield (by setting x 7→ −x into the second one)

2ϵr
λ

∫ ∞

0

e−2im arctan(−2πϵr
λ

x)

1 + (−2πϵr
λ

x)2
dx− 2ϵr

λ

∫ ∞

0

e−2im arctan( 2πϵr
λ

x)

1 + (2πϵr
λ

x)2
dx

=
2ϵr
λ

∫ ∞

0

2i sin
(
2m arctan(2πϵr

λ
x)
)

1 + (2πϵr
λ

x)2
dx.

Let u = arctan(2πϵr
λ

x). We then have

2ϵr
λ

∫ ∞

0

2i sin
(
2m arctan(2πϵr

λ
x)
)

1 + (2πϵr
λ

x)2
dx =

2ϵr
λ

λ

2πϵr

∫ π/2

0

2i sin(2mu)du

=
2i

π

∫ π/2

0

sin(2mu)du

=
−i cos(mπ)

mπ
+

i

mπ
.

Now let’s return to (5.6). By again splitting this integral into two integrals

(one over the positive real axis and one over the negative real axis) and applying

x 7→ −x so that we have both integrals over the positive real line, we obtain

−2ϵr
λ

∫
R

2

π
arctan

(2π
λ
x
)e−2im arctan(−2πϵr

λ
x)

1 + (−2πϵr
λ

x)2
dx

= −8iϵr
λπ

∫ ∞

0

arctan
(2π
λ
x
)sin(2m arctan(2πϵr

λ
x)
)

1 + (2πϵr
λ

x)2
dx.

103



Let u = arctan(2πϵr
λ

x). Our integral then becomes

− 4i

π2

∫ π/2

0

arctan
(tan(u)

ϵr

)
sin(2mu)du.

By performing integration by parts with µ = arctan
(tan(u)

ϵr

)
and dv = sin(2mu),

we see that this integral becomes

4i

π2

arctan
(tan(u)

ϵr

)
cos(2mu)

2m

∣∣∣∣∣
π/2

0

− 4i

π2

∫ π/2

0

cos(2mu) sec2(u)

1 +
(

tan(u)
ϵr

)2 1

2mϵr
du

which is equal to

4i

π2

π

2

cos(mπ)

2m
− 2i

mϵrπ2

∫ π/2

0

cos(2mu) sec2(u)

1 +
(

tan(u)
ϵr

)2 du

=
i cos(mπ)

mπ
− 2i

mϵrπ2

∫ π/2

0

cos(2mu) sec2(u)

1 +
(

tan(u)
ϵr

)2 du

and so we really just need to consider the integral that remains in the expression.

By first rewriting sec2(u) =
1

cos2(u)
and multiplying the top and bottom by ϵ2r,

we get the integral is equal to

−2i

mϵrπ2

∫ π/2

0

ϵ2r cos(2mu)

ϵ2r cos
2 u+ sin2 u

du.

Notice that the integrand is an even function, and so our integral can be expressed

as

−i

mϵrπ2

∫ π/2

−π/2

ϵ2r cos(2mu)

ϵ2r cos
2 u+ sin2 u

du.

Let γ denote the unit circle. We do a substitution z = e2iu to transform our
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integral to one over the unit circle:

−i

mϵrπ2

∫
γ

ϵ2r
1
2
(zm + z−m)

ϵ2r(
√
z + 1√

z
)2(1

2
)2 + ( 1

2i
)2(

√
z − 1√

z
)2

1

2iz
dz

=
−1

4mϵrπ2

∫
γ

ϵ2r(z
m + z−m)

ϵ2rz(
√
z + 1√

z
)2 1

4
− 1

4
z(
√
z − 1√

z
)2
dz

=
−ϵ2r

mϵrπ2

∫
γ

(zm + z−m)

(ϵrz + ϵr + z − 1)(ϵrz + ϵr − z + 1)
dz

=
−ϵr
mπ2

∫
γ

(zm + z−m)

(z + ϵr−1
ϵr+1

)(z + ϵr+1
ϵr−1

)(ϵr + 1)(ϵr − 1)
dz.

Recall that we have ϵr =
1− r

1 + r
. This means that

ϵr − 1

ϵr + 1
= −r and similarly

ϵr + 1

ϵr − 1
= −1

r
and so our integral becomes

−ϵr
mπ2(ϵ2r − 1)

∫
γ

(zm + z−m)

(z − r)(z − 1
r
)
dz

=
−ϵr

mπ2(ϵ2r − 1)

[ ∫
γ

zm

(z − r)(z − 1
r
)
dz +

∫
γ

z−m

(z − r)(z − 1
r
)
dz
]
.

Now, since m < 0 and r < 1, we have (via residue theory)

∫
γ

z−m

(z − r)(z − 1
r
)
dz = 2πi

r−m

r − 1
r

.

For
∫
γ

zm

(z−r)(z− 1
r
)
dz we will employ partial fractions. We write

1

z−m(z − r)(z − 1
r
)
=

A1

z
+

A2

z2
+ · · ·+ A−m

z−m
+

B

z − r
+

C

z − 1
r

.

Solving this, we get that B =
rm

r − 1
r

and A1 = −rm − r−m

r − 1
r

. We need not worry

about Ai for i > 1 since in these cases
Ai

zi
will integrate to zero over the unit
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circle. Similarly, we don’t need to worry about C since
1

r
lives outside of the unit

circle (although it was necessary to compute in order to find A1). Thus, we have

∫
γ

zm

(z − r)(z − 1
r
)
dz = 2πi

(r−m − rm

r − 1
r

+
rm

r − 1
r

)
.

Altogether,

−ϵr
mπ2(ϵ2r − 1)

[ ∫
γ

zm

(z − r)(z − 1
r
)
dz +

∫
γ

z−m

(z − r)(z − 1
r
)
dz
]

=
−2πiϵr

mπ2(ϵ2r − 1)

(r−m − rm

r − 1
r

+
rm

r − 1
r

+
r−m

r − 1
r

)
=

−2iϵr
mπ(ϵ2r − 1)

(2r−m

r − 1
r

)
=

−i

mπrm

where this final equality is coming again from our definition of ϵr.

We’ve made some good progress: so far we have shown that for our particular

choice of function f (and thus particular choice of ĥ), the resulting integral

−2ϵr
λ

∫
R
ĥ(x)

e−2im arctan(−2πϵr
λ

x)

1 + (−2πϵr
λ

x)2
dx

is equal to

−i cos(mπ)

mπ
+

i

mπ
+

i cos(mπ)

mπ
− i

mπrm
=

i

mπ
− i

mπrm
.

Next, we examine

I :=
1

n

∫ 1

0

∫ 1

0

∫
R
e2πi(

s−t+m
n

)xĥ(x)dxdtds.
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Once we have this, we will be able to explicitly describe the entries of the matrix

that we are seeking to prove belongs to N . For our choice of ĥ, we have that the

above triple integral is equal to

I =
1

n

∫ 1

0

∫ 1

0

∫ ∞

0

e2πi(
s−t+m

n
)x
(
− 1 +

2

π
arctan(

2π

λ
x)
)
dxdtds

+
1

n

∫ 1

0

∫ 1

0

∫ 0

−∞
e2πi(

s−t+m
n

)x
(
1 +

2

π
arctan(

2π

λ
x)
)
dxdtds

= − 1

n

∫ 1

0

∫ 1

0

∫ ∞

0

e2πi(
s−t+m

n
)xdxdtds

+
2

nπ

∫ 1

0

∫ 1

0

∫ ∞

0

e2πi(
s−t+m

n
)x arctan(

2π

λ
x)dxdtds

+
1

n

∫ 1

0

∫ 1

0

∫ 0

−∞
e2πi(

s−t+m
n

)xdxdtds

+
2

nπ

∫ 1

0

∫ 1

0

∫ 0

−∞
e2πi(

s−t+m
n

)x arctan(
2π

λ
x)dxdtds

Similar to before, we can write

− 1

n

∫ 1

0

∫ 1

0

∫ ∞

0

e2πi(
s−t+m

n
)xdxdtds+

1

n

∫ 1

0

∫ 1

0

∫ 0

−∞
e2πi(

s−t+m
n

)xdxdtds

as

−2i

n

∫ 1

0

∫ 1

0

∫ ∞

0

sin
(
2π(

s− t+m

n
)x
)
dxdtds

and we can also write

2

nπ

∫ 1

0

∫ 1

0

∫ ∞

0

e2πi(
s−t+m

n
)x arctan(

2π

λ
x)dxdtds

+
2

nπ

∫ 1

0

∫ 1

0

∫ 0

−∞
e2πi(

s−t+m
n

)x arctan(
2π

λ
x)dxdtds
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as

4i

nπ

∫ 1

0

∫ 1

0

∫ ∞

0

arctan(
2π

λ
x) sin

(
2π(

s− t+m

n
)x
)
dxdtds.

For convenience, let ζ :=
s− t+m

n
. Then we have

I = 2i

∫ 1

0

∫ 1

0

∫ ∞

0

sin(2πζx)
( 2

nπ
arctan(

2π

λ
x)− 1

n

)
dxdtds.

Let’s focus on the innermost integral first and do integration by parts on it

with u =
2

nπ
arctan(2π

λ
x)− 1

n
and dv = sin(2πζx). We then have

− cos(2πζx)
( 2

nπ
arctan(2π

λ
x)− 1

n

)
2πζ

∣∣∣∣∣
∞

0

+
2

nπζλ

∫ ∞

0

cos(2πζx)

1 + (2π
λ
x)2

dx

= − 1

2πζ n
+

2

nπζλ

∫ ∞

0

cos(2πζx)

1 + (2π
λ
x)2

dx.

The integrand of the integral that remains is even, so we have

2

nπζλ

∫ ∞

0

cos(2πζx)

1 + (2π
λ
x)2

dx =
1

nπζλ

∫ ∞

−∞

cos(2πζx)

1 + (2π
λ
x)2

dx.

We will use complex analysis for this integral too. Define

f(z) =
e2πζiz

1 + (2π
λ
z)2

=
λ2e2πζiz

4π2(z − λi
2π
)(z + λi

2π
)

and denote by Γ the closed lower semicircle with radius R traversed counterclock-

wise. Then ∫
Γ

f(z)dz = 2πi · Res(f,− λi

2π
) = −λeζλ

2
.

One can show that the integral over the lower semicircle (excluding the real axis)
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tends to zero as R approaches infinity (which is due to the fact ζ < 0), and so we

have ∫ −∞

∞

cos(2πζx)

1 + (2π
λ
x)2

dx = −λeζλ

2
.

Thus, the original integral I that we were analyzing is equal to

I = 2i

∫ 1

0

∫ 1

0

∫ ∞

0

sin(2πζx)
( 2

nπ
arctan(

2π

λ
x)− 1

n

)
dxdtds

= 2i

∫ 1

0

∫ 1

0

(
− 1

2πζn
+

1

nπζλ

λeζλ

2

)
dtds

= − i

π

∫ 1

0

∫ 1

0

1

ζn
dtds+

i

π

∫ 1

0

∫ 1

0

eζλ

nζ
dtds

= − i

π

∫ 1

0

∫ 1

0

1

s− t+m
dtds+

i

π

∫ 1

0

∫ 1

0

e(
s−t+m

n
)λ

s− t+m
dtds.

We just went through a lot of computation, so let’s take a moment to regain

focus on what we are doing. We have an element (B̂n,r) that we are aiming to

prove belongs to the kernel of τ . We have seen that to prove this, it is enough

to show that the matrix whose mth = (i− j)th entry is given by certain integrals

when m < −2n and 0 everywhere else goes to zero in norm. We’ve now computed

precisely what the entries of this matrix are: they are

i

mπ
− i

mπrm
− i

π

∫ 1

0

∫ 1

0

1

s− t+m
dtds+

i

π

∫ 1

0

∫ 1

0

e(
s−t+m

n
)λ

s− t+m
dtds.

To finish up the proof, we need only show that the Hilbert-Schmidt norm of the

matrix goes to zero.

Recall that the Hilbert-Schmidt norm of a matrix A is given by

∥A∥2HS =
∑
i,j

|aij|2.
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The matrix we are considering is of the form



...
...

... . .
.

a−2n−3 a−2n−4 a−2n−5 · · ·

a−2n−2 a−2n−3 a−2n−4 · · ·

a−2n−1 a−2n−2 a−2n−3 · · ·


The Hilbert-Schmidt norm of this is

∞∑
k=1

k(a−2n−k)
2

and so we proceed by proving this sum will converge to zero for the known values of

a−2n−k we have computed. We will start by dealing with i
mπ

− i
π

∫ 1

0

∫ 1

0
1

s−t+m
dtds.

Notice that

∣∣∣ i

mπ
− i

π

∫ 1

0

∫ 1

0

1

s− t+m
dtds

∣∣∣ = ∣∣∣ i
π

∫ 1

0

∫ 1

0

1

m
− 1

s− t+m
dtds

∣∣∣
=
∣∣∣ i
π

∫ 1

0

∫ 1

0

s− t

m(s− t+m)
dtds

∣∣∣
≤ 1

π

∫ 1

0

∫ 1

0

|s− t|
|m∥s− t+m|

dtds

≤
∫ 1

0

∫ 1

0

1

|m∥1 +m|
dtds

=
1

m(m+ 1)

Going back to the Hilbert-Schmidt norm for these 2 pieces, we thus have

∣∣∣ ∞∑
k=1

k(c−2n−k)
2
∣∣∣ = ∣∣∣ ∞∑

k=1

k
( i

π

∫ 1

0

∫ 1

0

s− t

(−2n− k)(s− t+ (−2n− k))
dtds

)2∣∣∣
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≤
∞∑
k=1

k

(−2n− k)2(−2n− k + 1)2

and this final sum converges to zero as n approaches∞. All that remains now is to

consider the Hilbert-Schmidt norm for the entries − i
mπrm

+ i
π

∫ 1

0

∫ 1

0
e(

s−t+m
n )λ

s−t+m
dtds.

We have

i

π

∫ 1

0

∫ 1

0

e(
s−t+m

n
)λ

s− t+m
dtds− i

mπrm
=

i

π

∫ 1

0

∫ 1

0

e(
s−t+m

n
)λ

s− t+m
−e

m
n
λ

m
dtds+

i

π

e
m
n
λ

m
− i

mπrm

Now,

∣∣∣ e( s−t+m
n

)λ

s− t+m
− e

m
n
λ

m

∣∣∣ = ∣∣em
n
λ
∣∣∣∣∣ e(

s−t
n

)λ

s− t+m
− 1

m

∣∣∣
=
∣∣em

n
λ
∣∣∣∣∣me(

s−t
n

)λ − s+ t−m

m(s− t+m)

∣∣∣
≤
∣∣em

n
λ
∣∣ |m∥e( s−t

n
)λ − 1|+ |s− t|

|m∥s− t+m|

≤
∣∣em

n
λ
∣∣ |m∥e( s−t

n
)λ − 1|+ 1

|m∥s− t+m|

=

∣∣em
n
λ
∥∥e( s−t

n
)λ − 1|

|s− t+m|
+

∣∣em
n
λ
∣∣

|m∥s− t+m|

≤
2λ
n
e

m
n
λ

|m+ 1|
+

∣∣em
n
λ
∣∣

|m+ 1|2

where in the final inequality we are using the fact that |ex−1| ≤ 2|x| when |x| ≤ 1.

All is well when considering the Hilbert-Schmidt norm with

∣∣em
n
λ
∣∣

|m+ 1|2
since

here we will have an infinite sum with a power of 3 in the denominator, so let’s

focus our attention on
2λ
n
e

m
n
λ

|m+ 1|
. Here we will use the fact that we can bound
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k

(−2n− k + 1)2
by some M . The sum of interest is

∞∑
k=1

k(c−2n−k)
2 =

∞∑
k=1

k
(2λ
n
e−

2n+k
n

λ)2

(−2n− k + 1)2

≤ 4λ2M

n2

∞∑
k=1

e−
2λk
n e−2λ

=
4λ2Me−2λ

n2

e−
2λ
n

1− e−
2λ
n

.

This final expression converges to zero; one can see this by noting that the

numerator is bounded and that in the denominator one n from the n2 can be used

to deal with the 1 − e−
2λ
n term (maybe more easily seen if we expand using a

Taylor series) and the other n will give the convergence to zero.

The last thing to do is to deal with the terms
i

π

e
m
n
λ

m
− i

mπrm
. Here we are

aiming to show

− 1

π2

∞∑
k=1

k

(2n+ k)2

(
(e−

λ
n )2n+k − r2n+k

)2
converges to zero. We will consider the sum without the − 1

π2
.

First we rewrite it as

∞∑
k=1

1

n

k

n

1

(2 + k
n
)2

(
e−λ(2+ k

n
) − en(2+

k
n
)ln(r)

)2
Define λn,r := −nln(r). Then λn,r → λ and so for sufficiently large n and r

sufficiently close to 1 we have
λ

2
< λn,r <

3λ

2
. With this notation, the sum we are

looking at is
∞∑
k=1

1

n

k

n

1

(2 + k
n
)2

(
e−λ(2+ k

n
) − e−λn,r(2+

k
n
)
)2
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For starters, we know that
k/n

(2 + k
n
)
≤ 1 and so our sum can be bounded above by

∞∑
k=1

1

n

1

(2 + k
n
)

(
e−λ(2+ k

n
) − e−λn,r(2+

k
n
)
)2
.

We have also that for sufficiently large n and r sufficiently close to 1 the bound

λ

2
< λn,r <

3λ

2
which will imply

∣∣∣e−λ(2+ k
n
) − e−λn,r(2+

k
n
)
∣∣∣ ≤ 1, giving us

∞∑
k=1

1

n

1

(2 + k
n
)

(
e−λ(2+ k

n
) − e−λn,r(2+

k
n
)
)2

≤
∞∑
k=1

1

n

1

(2 + k
n
)

∣∣∣e−λ(2+ k
n
) − e−λn,r(2+

k
n
)
∣∣∣.

Observe that

∣∣∣e−λ(2+ k
n
) − e−λn,r(2+

k
n
)
∣∣∣ = ∣∣∣ ∫ λn,r

λ

e−x(2+ k
n
)
(
2 +

k

n

)
dx
∣∣∣

≤ |λ− λn,r|
(
2 +

k

n

)
e−

λ
2
(2+ k

n
)

where the last inequality is also making use of the fact that for the x in the

integral,
λ

2
< x <

3λ

2
. We thus have that

∞∑
k=1

1

n

1

(2 + k
n
)

∣∣∣e−λ(2+ k
n
) − e−λn,r(2+

k
n
)
∣∣∣ ≤ ∞∑

k=1

1

n

1

(2 + k
n
)
|λ− λn,r|

(
2 +

k

n

)
e−

λ
2
(2+ k

n
)

= e−λ

∞∑
k=1

1

n
|λ− λn,r|e−

λ
2

k
n

=
e−λ

n
|λ− λn,r|

∞∑
k=1

(e−
λ
2n )k

≤ e−λ

n
|λ− λn,r|

∞∑
k=0

(e−
λ
2n )k

=
e−λ

n
|λ− λn,r|

1

1− e−
λ
2n

.
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We know that
1

n(1− e−
λ
2n )

converges to
2

λ
and since λn,r converges to λ we

have
e−λ

n
|λ−λn,r|

1

1− e−
λ
2n

converges to zero, as desired. Thus the Hilbert-Schmidt

norm of the matrix we are considering converges to zero and so our element (B̂n,r)

is in the kernel of τ .

5.2 Identifying (F∗/J )/J1

Recall the following scheme:

(F∗/J )/J1 B/N

Ψ1((F∗/J )/J1) Ψ−1(C)

Ψ1((F∗/J )/J1)/K Ψ−1(C)/K

τ

Ψ̂1
Ψ1 Ψ̂−1◦π−1

πKπK

We just proved that (B̂n,r) ∈ ker τ and so clos idB/N{(B̂n,r)} ⊆ ker τ . Our next

goal will be to show that ker Ψ̂1 = ker τ. Since Ψ̂1 = Ψ1 ◦ τ, we automatically have

ker τ ⊆ ker Ψ̂1. Our goal, then, is to show that ker Ψ̂1 ⊆ ker τ. We start with the

following proposition. Recall that the maps H±±, Hs,∞, and H∞,0 are defined in

Appendix A.

Proposition 5.2.1. Let (Bn,r) ∈ ker Ψ̂1. Then

(a) πK(Ψ̂−1(π−1(Bn,r))) is mapped to zero under H±±

(b) πK(Ψ̂−1(π−1(Bn,r))) is mapped to zero under Hs,∞ for all s ∈ R

(c) The element H∞,0(πK(Ψ̂−1(π−1(Bn,r)))) is contained in the closed ideal gen-

erated by H∞,0(πK(Ψ̂−1(π−1(B̂n,r)))).
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In order to prove this proposition, it will be beneficial to view the algebra

H∞,0(Ψ−1(C)) as the matrix algebra Σ0
2 defined in (4.20). Recall that we have

H∞,0(Ψ−1(C)) = algL(L2(R)){χ[0,∞), SR} ∼= Σ0
2

which has a very nice representation given in Proposition 4.4.2.

We will also need to make use of the following fact, which is stated and proven

in [8], Proposition 2.2.1 (c)(iii).

Proposition 5.2.2. Σ1
0 is the smallest closed subalgebra of Σ1 which contains N2

and SR+N2.

We are now fully equipped to prove Proposition 5.2.1.

Proof of Proposition 5.2.1. Let (Bn,r) ∈ ker Ψ̂1.

(a) and (b): To prove these two claims, we start by observing that the algebras

H±±(Ψ1((F∗/J )/J1)) are exactly the same as H±±(Ψ1(C)) and similarly the alge-

bras Hs,∞(Ψ1((F∗/J )/J1)) are the same as Hs,∞(Ψ1(C)). Then since an element

in the kernel of Ψ̂1 is zero in H±±(Ψ1((F∗/J )/J1)) and Hs,∞(Ψ1((F∗/J )/J1)), it

suffices to show that there are injective maps from H±±(Ψ1(C)) into H±±(Ψ−1(C))

and Hs,∞(Ψ1(C)) into Hs,∞(Ψ−1(C)). But we have already constructed such maps

in the proof of Proposition 4.4.3 and so our work is done.

(c): To prove H∞,0(πK(Ψ̂−1(π−1(Bn,r)))) is contained in the closed ideal gen-

erated by H∞,0(πK(Ψ̂−1(π−1(B̂n,r)))), it is equivalent to show this claim for their

images under Φη. The image of H∞,0(πK(Ψ̂−1(π−1(B̂n,r)))) under Φη is

 0 0

N 0

 .
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We know by Proposition 4.4.2 (b) that

Φη(H∞,0(πK(Ψ̂−1(π−1(Bn,r))))) =

αAI + βAS +M0(b1) M0(b2)

M0(b3) αDI + βDS +M0(b4)


= M0(B) +M0(C)

where B =

αA1 + βAs 0

0 αD1 + βDs

 and C =

b1 b2

b3 b4

 ∈ (C0
∞(R))2×2.

Define the map M±∞ by

M±∞ : Σ0
2 → C4

M0(B) +M0(C) 7→ (B(+∞), B(−∞))

Here B(±∞) = (B11(±∞), B22(±∞)) where Bij refers to the function in the ijth

position in the matrix B. Because b(±∞) = 0 for b ∈ C0
∞(R), this map factors

through (C0
∞(R))2×2. Furthermore, since s(+∞) = 1 and s(−∞) = −1, we have

that this map sends M0(B) +M0(C) to (αA + βA, αA − βA, αD + βD, αD − βD).

Following the elements in Ψ−1(C) into H∞,0(Ψ−1(C)), then into Σ0
2 and finally

into C4 via the map we have just defined, we have

χ[0,∞) 7→ (1, 0, 1, 0) χ[−1,∞) 7→ (1, 0, 1, 0)

χ(−∞,1] 7→ (0, 1, 0, 1) PR 7→ (1, 0, 0, 1)

Recall the homomorphisms H±± defined in Appendix A.1, Equation (A.1).

From Proposition A.1.2, these can be viewed as maps into C. We now define the
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map σ on Ψ−1(C)/K that sends an operator A to the 4-tuple

(H++(A), H−−(A), H+−(A), H−+(A)) ∈ C4.

Amazingly, we have that the composition

Ψ−1(C)/K H∞,0(Ψ−1(C)/K) Φη(H∞,0(Ψ−1(C)/K)) C4H∞,0 Φη M±∞

is exactly the same as doing the map

Ψ−1(C) C4σ

But we have proven that for an element (Bn,r) in the kernel of Ψ̂1,

H±±(πK(Ψ̂−1(π−1(Bn,r))) = 0.

Recalling that the image (Bn,r) in Σ0
2 will be of the form

αAI + βAS +M0(b1) M0(b2)

M0(b3) αDI + βDS +M0(b4)

 ,

we can conclude that if (Bn,r) in the kernel of Ψ̂1, then

(αA + βA, αA − βA, αD + βD, αD − βD) = (0, 0, 0, 0).
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In other words, αA = βA = αD = βD = 0. Thus, if (Bn,r) ∈ ker Ψ̂1, we have that

Φη(H∞,0(πK(Ψ̂−1(π−1(Bn,r))))) =

M0(b1) M0(b2)

M0(b3) M0(b4)


with bi ∈ C0

∞. This means that to show H∞,0(πK(Ψ̂−1(π−1(Bn,r)))) is contained in

the closed ideal generated by H∞,0(πK(Ψ̂−1(π−1(B̂n,r)))), it is equivalent to show

that 
M0(b1) M0(b2)

M0(b3) M0(b4)

 : bi ∈ C0
∞

 ⊆ clos idΣ0
2


 0 0

N 0


 =: Σ3.

By Proposition 5.2.2, our work will be done if we prove that the matrices with

N2 in exactly one position and zero everywhere else and the matrices with SN2 in

exactly one position and zero everywhere else belong to Σ3, along with the ability

to multiply the N2 and SN2 on the left and right by arbitrary elements of Σ1.

This will imply that we can generate M0(b) with b ∈ C0
∞ in any position of the

matrix and so our claim will be proven.

Let’s start with the top left component. Notice that

0 N

0 0

 and

S 0

0 0


are in Σ0

2. Thus 0 N

0 0


 0 0

N 0

 =

N2 0

0 0

 ∈ Σ3

and so

N2 0

0 0


S 0

0 0

 =

SN2 0

0 0

 ∈ Σ3.
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For A,B ∈ Σ1 arbitrary, we can left multiply by the matrix

A 0

0 0

 and right

multiply by the matrix

B 0

0 0

 to get the matrices with AN2B and ASN2B in

the top left entry and zeros everywhere else. Therefore the matrix

M0(b) 0

0 0


with b ∈ C0

∞ belongs to Σ3.

Next we show

 0 0

M0(b) 0

 with b ∈ C0
∞ belongs to Σ3. Notice that

 0 0

N 0


N 0

0 0

 =

 0 0

N2 0

 ∈ Σ3

and so

0 0

0 S


 0 0

N2 0

 =

 0 0

SN2 0

 ∈ Σ3.

For arbitrary A,B ∈ Σ1, we can left multiply by the matrix

0 0

0 A

 and right

multiply by the matrix

B 0

0 0

 to get the matrices with AN2B and ASN2B

in the bottom left entry and zeros everywhere else. Therefore

 0 0

M0(b) 0

 with

b ∈ C0
∞ belongs to Σ3.
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Let’s now settle the bottom right component. Observe that

 0 0

N 0


0 N

0 0

 =

0 0

0 N2

 ∈ Σ3

and so

0 0

0 S


0 0

0 N2

 =

0 0

0 SN2

 ∈ Σ3.

For arbitrary A,B ∈ Σ1, we can left multiply by the matrix

0 0

0 A

 and right

multiply by the matrix

0 0

0 B

 to get the matrices with AN2B and ASN2B in

the bottom right entry and zeros everywhere else. Therefore

 0 0

M0(b) 0

 with

b ∈ C0
∞ belongs to Σ3.

Finally, let’s do the top right component. We have already shown that the

matrix

M0(b) 0

0 0

 with b ∈ C0
∞ belongs to Σ3, so in particular

N 0

0 0

 and

AN 0

0 0

 are in Σ3. Thus

N 0

0 0


0 N

0 0

 =

0 N2

0 0

 ∈ Σ3

and
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SN 0

0 0


0 N

0 0

 =

0 SN2

0 0

 ∈ Σ3.

For arbitrary A,B ∈ Σ1, we can left multiply by the matrix

A 0

0 0

 and right

multiply by the matrix

0 0

0 B

 to get the matrices with AN2B and ASN2B

in the top right entry and zeros everywhere else. Therefore

0 M0(b)

0 0

 with

b ∈ C0
∞ belongs to Σ3 and our proof is complete.

The following lemma will be of great use.

Lemma 5.2.3. Let f : X → Y be an open and continuous map between topological

spaces. Then for any subset V ⊆ Y, f−1(V ) = f−1(V ). Here V refers to the closure

of V in Y and f−1(V ) refers to the closure of f−1(V ) in X.

Proof. Since f is continuous, f−1(V ) is closed. By definition, f−1(V ) is the

smallest closed subset of X containing f−1(V ). Since V ⊆ V , it follows that

f−1(V ) ⊆ f−1(V ) and so f−1(V ) ⊆ f−1(V ).

For the reverse containment, take x ∈ f−1(V ) and let U be an open neigh-

borhood of x. We want to show that (U \ {x}) ∩ f−1(V ) ̸= ∅ (i.e., that x is a

limit point of f−1(V )). Since x ∈ f−1(V ), we know f(x) ∈ V and since x ∈ U

we have also that f(x) ∈ f(U). This means f(x) ∈ V ∩ f(U). The fact that

f(x) ∈ V means that any open neighborhood of f(x) minus the point f(x) when

intersected with V is nonempty. Since f is an open map by assumption, we have
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that f(U) is an open neighborhood of f(x). Thus V ∩ (f(U) \ {f(x)}) ̸= ∅ and

hence (U \ {x}) ∩ f−1(V ) ̸= ∅, as desired.

Corollary 5.2.4. Let (Bn,r) ∈ ker Ψ̂1. Then

πK(Ψ̂−1(π−1(Bn,r))) ∈ clos id Ψ−1(C)/K{πK(Ψ̂−1(π−1(B̂n,r)))}.

Proof. Recall from the Fredholm theory that the algebra Ψ−1(C) is ∗-isomorphic to

a subalgebra of the direct sum of its images under a collection of homomorphisms.

From Proposition 5.2.1, we may actually conclude that for (Bn,r) ∈ ker Ψ̂1, its

image in this subalgebra of the direct sum is contained in the closed ideal generated

by the image of (B̂n,r) in this subalgebra of the direct sum. Now, the preimage

of a principal ideal under an isomorphism is again a principal ideal and so using

Lemma 5.2.3 we arrive at the claim.

Recall the following scheme that we worked hard to build:

(F∗/J )/J1 B/N

Ψ1((F∗/J )/J1) Ψ−1(C)

Ψ1((F∗/J )/J1)/K Ψ−1(C)/K

τ

Ψ̂1
Ψ1 Ψ̂−1

πKπK

Using Lemma 5.2.3 and Corollary 5.2.4 as the starting point, we will work our

way up from the bottom of the scheme back to the top and make a statement

about the kernel of Ψ̂1.

Proposition 5.2.5. Suppose (Bn,r) ∈ B/N has the property that

πK(Ψ̂−1(π−1(Bn,r))) ∈ clos id Ψ−1(C)/K{πK(Ψ̂−1(π−1(B̂n,r)))}.
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Then

Ψ̂−1(π−1(Bn,r)) ∈ clos id Ψ−1(C){Ψ̂−1(π−1(B̂n,r)),K}.

In particular, Ψ̂−1(π−1(Bn,r)) ∈ clos id Ψ−1(C){Ψ̂−1(π−1(B̂n,r)),K} if (Bn,r) ∈ ker Ψ̂1.

Proof. Let J = id Ψ−1(C)/K{πK(Ψ̂−1(π−1(B̂n,r)))} and L = id Ψ−1(C){Ψ̂−1(π−1(B̂n,r)),K}.

We will first show that π−1
K (J) = L. For ease of notation, set y := Ψ̂−1(π−1(B̂n,r)).

We know from algebra that π−1
K (J) is an ideal of Ψ−1(C) containing y and K. Then

since L is the smallest ideal containing y and K, we have L ⊆ π−1
K (J).

For the reverse containment, take x ∈ π−1
K (J). Then πK(x) ∈ J. This means

πK(x) =
∑
i

aiπK(y)bi

with ai, bi ∈ Ψ−1(C)/K. By surjectivity of πK, we have that there exist ci, di ∈

Ψ−1(C) such that ai = πK(ci) and bi = πK(di). Thus

πK(x) =
∑
i

aiπK(y)bi

=
∑
i

πK(ci)πK(y)πK(di)

=
∑
i

πK(ciydi)

This gives

x+K =
∑
i

(ciydi +Ki)

for K,Ki compact and so

x = −K +
∑
i

(ciydi +Ki) ∈ L.
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We have thus proven that π−1
K (J) = L. Notice that πK is an open and contin-

uous map (continuity is clear, and the fact that it is open can be shown directly

or by invoking the Open Mapping Theorem since this is a continuous surjec-

tion between Banach spaces). We can thus invoke Lemma 5.2.3 to complete the

proof.

Proposition 5.2.6. Suppose (Bn,r) ∈ B/N has the property that

Ψ̂−1(π−1(Bn,r)) ∈ clos id Ψ−1(C){Ψ̂−1(π−1(B̂n,r)),K}.

Then

π−1(Bn,r) ∈ clos id (B/I)/I−1{(π−1(B̂n,r)), (Y−1E−nKEnY−1)}.

In particular, π−1(Bn,r) ∈ clos id (B/I)/I−1{(π−1(B̂n,r)), (Y−1E−nKEnY−1)} if

(Bn,r) ∈ ker Ψ̂1.

Proof. Because Ψ̂−1 is an isomorphism, we have

Ψ̂−1
−1(id Ψ−1(C){Ψ̂−1(π−1(B̂n,r)),K}) = id (B/I)/I−1{(π−1(B̂n,r)), (Y−1E−nKEnY−1)}

and since Ψ̂−1 is an open map we again can use Lemma 5.2.3 to get the statement

about closures.

Theorem 5.2.7. The kernel of Ψ̂1 is equal to the kernel of τ.

Proof. Because Ψ̂1 = Ψ1 ◦τ, we have ker τ ⊆ ker Ψ̂1. We therefore only must show

that ker Ψ̂1 ⊆ ker τ , so let (Bn,r) ∈ ker Ψ̂1 be arbitrary.

Recall from Corollary 4.4.5 that B/N is ∗-isomorphic to a subalgebra of the

direct sum Ψ1((F∗/J )/J1)
⊕

Ψ−1(C). For the sake of this proof, we will actually

consider it as a subalgebra of the direct sum Ψ1((F∗/J )/J1)
⊕

(B/I)/I−1, which
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we are permitted to do because of Theorem 4.4.4. Being in the kernel of Ψ̂1 means

that the image in Ψ1((F∗/J )/J1) is 0 and from the work we have done in the

previous propositions, we know that if (Bn,r) ∈ ker Ψ̂1, then

π−1(Bn,r) ∈ clos id (B/I)/I−1{(π−1(B̂n,r)), (Y−1E−nKEnY−1)}.

Recalling the definition of (B̂n,r) in Equation 5.4, we can see directly that

this element is sent to zero in Ψ1((F∗/J )/J1) − in fact, it was constructed this

way. We have also that, for compact K, (Y−1E−nKEnY−1) is mapped to 0 in

Ψ1((F∗/J )/J1) (this is a direct result of Lemma 4.3.1).

Putting all of this together, we have the following: when an element (Bn,r) ∈

ker Ψ̂1 is identified with its image in the subalgebra of the direct sum

Ψ1((F∗/J )/J1)
⊕

(B/I)/I−1, it is seen to belong to the closed ideal generated by

(0, π−1(B̂n,r)) and (0, Y−1E−nKEnY−1). Thus if we show both of these elements

are in the kernel of τ our proof will be complete.

Because of Theorem 5.1.2 we have that (B̂n,r) ∈ ker τ and so (0, π−1(B̂n,r))

is sent to zero under τ. All that remains is proving Y−1E−nKEnY−1 is in the

kernel of τ for K ∈ K. To this end, let f be a continuous function vanishing in a

neighborhood of −1 and equal to 1 at 1. Then mod J and J1 we have

Y−1E−nKEnY−1 = Y−1R
∗
rK

′RrY−1

= Y−1R
∗
rK

′RrY−1L(f)

= Y−1R
∗
rK

′RrY−1L(f)Y−1R
∗
rRrY−1

= Y−1R
∗
rK

′L(CrY−1f)RrY−1.

Notice that (CrY−1f)(t) = f

(
− t+ r

1 + rt

)
and so CrY−1f converges locally uni-
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formly to f(−1)I = 0 on S1 \ {−1}. Thus L(CrY−1f) converges strongly to 0

and hence K ′L(CrY−1f) converges in norm to 0. Then since Y−1R
∗
r and RrY−1

are uniformly bounded, we get that Y−1R
∗
rK

′L(CrY−1f)RrY−1 ∈ N and so the

sequence Y−1E−nKEnY−1 is equal to 0 in (F∗/J )/J1. Thus Y−1E−nKEnY−1 is in

the kernel of τ and we may conclude ker Ψ̂1 ⊆ ker τ . Therefore ker Ψ̂1 = ker τ , as

desired.

Corollary 5.2.8. The local algebra (F∗/J )/J1 is ∗-isomorphic to the algebra of

operators A.

Proof. Recall the following commutative diagram:

(F∗/J )/J1 B/N

Ψ1((F∗/J )/J1)

Ψ1

τ

Ψ̂1

The only property of a ∗−isomorphism that is left for us to show for Ψ1 is in-

jectivity, so let (Fn,r) be in the kernel of Ψ1. By surjectivity of τ , there exists a

(Bn,r) ∈ B/N such that τ(Bn,r) = (Fn,r). Then

Ψ̂1(Bn,r) = Ψ1(τ(Bn,r)) = 0;

i.e., (Bn,r) is in the kernel of Ψ̂1. Thus by Theorem 5.2.7 we have (Bn,r) ∈ ker τ .

This means (Fn,r) = 0 and hence δ is injective. This shows that (F∗/J )/J1

is ∗−isomorphic to Ψ1((F∗/J )/J1), and since we have already proven that is

∗−isomorphic to A in Theorem 4.2.10 the proof is complete.
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5.3 Summary and Main Results

We have just shown that the local algebra (F∗/J )/J1 is ∗-isomorphic to the

algebra of operators A. This tells us that invertibility in (F∗/J )/J1 is equivalent

to invertibility inA. Recall from Proposition 3.2.5 that (F∗/J )/J1 is ∗-isomorphic

to (F∗/J )/Jτ for each τ ∈ S1 via the rotation map which sends (Fn,r + J ) + J1

to (YτFn,rY
−1
τ + J ) + Jτ . For each τ ∈ S1, we define the map Ψτ on (F∗/J )/Jτ

by

Ψτ (Fn,r) := s-lim
n→∞
r→1

EnYτFn,rY
∗
τ E−n. (5.7)

Recall that this strong limit has dependence on λ given by the relationship

n(1 − r) → λ even though our notation does not reflect it. When τ = 1 this

is precisely the map Ψ1 we have already examined when acting on (F∗/J )/J1.

From what we have already discussed, the fact that for each τ ∈ S1 the local

algebra (F∗/J )/Jτ is ∗−isomorphic to the algebra of operators Ψτ

(
(F∗/J )/Jτ

)
will follow once we prove that Ψτ is well-defined.

Lemma 5.3.1. Let τ ∈ S1 be fixed. Then the map

Ψτ : (F∗/J )/Jτ → Ψτ

(
(F∗/J )/Jτ

)
defined by

Ψτ (Fn,r) := s-lim
n→∞
r→1

EnYτFn,rY
∗
τ E−n

is well-defined. Moreover, it acts on each of the generators as follows:
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(P ) 7→χ[0,∞) (Y ∗
τ R

∗
rKτRrYτ ) 7→Z λ

2π
FFKτF

−1F−1Z−1
λ
2π

(P+
n ) 7→χ[−1,∞) (L(G−1

r,τf)) 7→W 0
(
f
(λ− 2πix

λ+ 2πix

))

(Q−
n ) 7→χ(−∞,1] (L(χ+)) 7→



I if τ is on upper half plane

0 if τ is on lower half plane

QR if τ = 1

PR if τ = −1

Proof. We first prove well-definedness. We start by observing that Ψτ (L(t)) = τI;

indeed, we have

EnYτL(t)Y
∗
τ E−n = EnL(τt)E−n = τEnL(t)E−n

which converges strongly to τI by Theorem 4.2.6. This fact automatically yields

that (L(f)) is in the kernel of Ψτ when f is continuous and vanishing at τ (an

approximation argument can be used). To show that (K) is in the kernel for K

compact, we will use the representation

K =
∑
j,k∈Z

ajkU−j(PU1 − U1P )Uk+1

where Um = L(tm) is the shift operator as we have done before. Because of

the fact EnYτPY ∗
τ E−n = EnPE−n converges strongly to χ[0,∞) (which was shown

in Theorem 4.2.6) and U1 = L(t) converges strongly to a scalar multiple of the

identity, if we can show that EnYτL(t
j)Y ∗

τ E−n converges strongly to some limit
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for any fixed j ∈ Z the job will be done. By Lemma 4.2.2, we have

EnYτL(t
j)Y ∗

τ E−n = τ jLnFM(e2πix
j
n )F−1

which converges strongly to τ jI. Thus constant compact sequences are mapped to

zero under Ψτ . Finally, we handle sequences of the form (UnKU−n) and (U−nKUn)

where K is compact. We will show that (UnKU−n) is in the kernel of Ψτ ; the

argument for the other is analogous . Identifying U±n as L(t±n), we have that

EnYτUnKU−nY
∗
τ E−n = EnYτUnY

∗
τ E−nEnYτKY ∗

τ E−nEnYτU−nY
∗
τ E−n

= LnFM(τne2πix)F−1(EnYτKY ∗
τ E−n)LnFM(τ−ne−2πix)F−1

= LnFM(e2πix)F−1(EnYτKY ∗
τ E−n)LnFM(e−2πix)F−1

where in the second equality we are using Lemma 4.2.2. Now using Proposition

4.2.1 we have LnFM(e±2πix)F−1 = LnU±1 where U±1 is the shift operator defined

in Equation 4.10. Since LnU±1 converges strongly and we have already seen that

(EnYτKY ∗
τ E−n) converges strongly to zero, it follows that (UnKU−n) is in the

kernel of Ψτ .

To finish the proof, we compute where each generator is sent. The images of

the sequences (P ), (P+
n ), and (Q−

n ) are clear. For L(χ+), observe that we have

the equality EnYτL(χ+)Y
∗
τ E−n = EnL(Yτχ+)E−n. Recall for f ∈ PC we have the

representation in (4.12). Using this representation with f = Yτχ+ we have

Yτχ+ = χ+(τ + 0)
1− σ

2
+ χ+(τ − 0)

1 + σ

2
+ d
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where d is continuous and vanishing at 1. Thus

Ψτ (L(χ+)) =



I if τ is on upper half plane

0 if τ is on lower half plane

QR if τ = 1

PR if τ = −1

Next let’s handle the element (L(G−1
r,τf)). We have

EnYτ (L(G
−1
r,τf)Y

∗
τ E−n = EnL(C

−1
r f)E−n

which converges strongly to W 0
(
f
(

λ−2πix
λ+2πix

))
as was proven in Theorem 4.2.6.

Finally we deal with (Y ∗
τ R

∗
rKτRrYτ ). Notice that

EnYτY
∗
τ R

∗
rKτRrYτY

∗
τ E−n = EnR

∗
rKτRrE−n

which converges strongly to Z λ
2π
FFKτF

−1F−1Z−1
λ
2π

, a fact we proved in Theorem

4.2.10.

Corollary 5.3.2. For each τ ∈ S1, the local algebra (F∗/J )/Jτ is ∗−isomorphic

to the algebra of operators Ψτ

(
(F∗/J )/Jτ

)
.

Theorem 5.3.3. (Main Result) An element (Fn,r) ∈ F∗ is λ−stable if and only

if its images under Φ0,Φ1,Φ−1, and Ψτ are invertible for each τ ∈ S1. Moreover,

generators of F∗ are mapped as follows by Φ0,Φ1,Φ−1, and Ψτ :
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Generator in F∗ Φ0 Φ1 Φ−1

(P ) P I 0
(P+

n ) I I P
(Q−

n ) I Q I
(L(a)), a ∈ PC L(a) L(a) L(a)

(L(G−1
r,t0f)), f ∈ PC0

−1 0 0 0
(K) K 0 0

(Y ∗
t0
R∗

rKt0RrYt0) 0 0 0

Table 5.1: Images of Generators of F∗ under Φi for i = 0, 1,−1

Generator in F∗ Ψτ

(P ) χ[0,∞)

(P+
n ) χ[−1,∞)

(Q−
n ) χ(−∞,1]

(L(a)), a ∈ PC a(τ + 0)QR + a(τ − 0)PR

(L(G−1
r,t0f)), f ∈ PC0

−1

W 0
(
f
(

λ−2πix
λ+2πix

))
if t0 = τ

0 if t0 ̸= τ

(K) 0

(Y ∗
t0
R∗

rKt0RrYt0)

Z λ
2π
FFKτF

−1F−1Z−1
λ
2π

if t0 = τ

0 if t0 ̸= τ

Table 5.2: Images of Generators of F∗ under Ψτ

Proof. Theorem 3.1.8 tells us that an element (Fn,r) ∈ F∗ is λ−stable if and only

if its images under Φ0,Φ1, and Φ−1 are invertible and the coset (Fn,r) + J is

invertible in F∗/J . Corollary 3.2.3 states that (Fn,r) + J is invertible in F∗/J if

and only if (Fn,r+J )+Jτ is invertible for each τ ∈ S1, and finally Corollary 5.3.2

tells us that (Fn,r +J ) +Jτ is invertible for each τ ∈ S1 if and only if Ψτ (Fn,r) is

invertible for each τ ∈ S1.

The images given in the table were computed and proven in Propositions 3.1.2,

3.1.3, and 3.1.4 and Lemma 5.3.1.
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Chapter 6

Relating to Approximate

Identities

In this chapter we introduce an algebra SΩ(kω, PC) of sequences of operators

that are involving approximate identities. In the first section define approximate

identities, provide examples, and introduce SΩ(kω, PC). In the second section

we establish a relationship between SΩ(kω, PC) and our algebra F∗, concluding

by translating our stability criteria for F∗ into stability criteria for SΩ(kω, PC).

Finally, we apply the result to some concrete examples.

6.1 Approximate Identities and the Algebra

SΩ(kω, PC)

In order to define approximate identities we start with a function K ∈ L1(R)

with the property ∫ ∞

−∞
K(x)dx = 1. (6.1)
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For ω ∈ [0,∞), the bounded linear operator kω : L∞ → L∞ defined by

(kωf)(e
ix) =

∫ ∞

−∞
f(ei(x−y))ωK(ωy)dy

is called the approximate identity with kernel K. It can be shown that the func-

tions kωf are continuous for each ω ∈ [0,∞). Notice that (6.1) is the only re-

quirement we impose on K; sometimes more things like non-negativity and decay

conditions are required (for example, in [3], Section 3.14).

One example of an approximate identity is the Fejér-Cesaro means σn, n ∈ N,

defined in terms of Fourier coefficients by

(σnf)(e
ix) =

n∑
m=−n

(
1− |m|

n+ 1

)
fme

imx.

We also have

(σnf)(e
ix) =

∫ 2π

0

kn(x− t)f(eit)dt

where the Fejér kernel kn is given by

kn(x) =
1

2π(n+ 1)

sin2((n+ 1)x/2)

sin2(x/2)

for x ∈ R.

If we let F denote the periodic extension of f , i.e., F (x) = f(eix) for x ∈ R,

then we have

(σnf)(e
ix) =

∫ ∞

−∞
(n+ 1)K((n+ 1)(x− t))F (t)dt
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with K(x) =
2

π

sin2(x/2)

x2
(if interested, more information can be found in [1],

Section 62).

Another example is the harmonic extension

hµ :
∞∑

m=−∞

eimxam 7→
∞∑

m=−∞

µ|m|eimxam

for 0 ≤ µ < 1. In this example we have hµa = kωa with K(x) = 1/(π(1+x2)) and

ω = −1/ log µ.

Throughout what follows we let Ω ⊆ [0,∞) be an unbounded index set and

kω be an approximate identity. Much of the setup will parallel what we did for

the algebra F ; this is not a coincidence. Let SΩ denote the set of all sequences

{An,ω}n∈N,ω∈Ω of bounded linear operators on L2 for which

∥{An,ω}∥SΩ
:= sup

n∈N
ω∈Ω

∥An,ω∥L(L2(S1)) < ∞. (6.2)

This space becomes a C∗−algebra when equipped with the above supremum

norm and the following algebraic operations:

{An,ω}+ {Bn,ω} := {An,ω +Bn,ω}, z{An,ω} := {zAn,ω},
{An,ω}{Bn,ω} := {An,ωBn,ω}, {An,ω}∗ := {A∗

n,ω}.

We let NΩ denote the ∗-ideal of SΩ consisting of all sequence {An,ω} for

which ∥{An,ω}∥ → 0 as ω → ∞ and let SΩ(kω, PC) denote the smallest closed

∗-subalgebra of SΩ with NΩ ⊆ SΩ(kω, PC) containing the following elements:

(P ), (P+
n ), (Q−

n ), (M(kωa))

with a ∈ PC. In the next section we study stability criteria for this algebra.
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6.2 Stability Criteria for SΩ(kω, PC)

We now proceed to relate the stability problem we solved in this thesis to a

related problem involving approximate identities.

Proposition 6.2.1. Let kω be an approximate identity and a ∈ PC. Then the

sequence {ar}r∈[0,1) defined by ar = kωa with ω = (1 + r)/(2(1 − r)) is contained

in the smallest closed subalgebra of F containing constant sequences of piecewise

continuous functions and sequences {G−1
r,τf} for f ∈ PC0

±1 and τ ∈ S1.

Proof. For a proof we refer the reader to [6], Proposition 4.6. There it is shown

that

kωa = a+ βG−1
r,τ (f − χ+) + Y −1

τ nr (6.3)

where β = a(τ + 0)− a(τ − 0), f is the function defined by

f

(
1 + ix

1− ix

)
=

∫ x

−∞
K(y)dy,

and Y −1
τ nr ∈ NΩ.

We remark that the relationship ω = (1 + r)/(2(1 − r)) also implicitly gives

us a relationship between ω and n; that is, since n(1− r) → λ we have
n

ω
→ λ.

Theorem 6.2.2. Let R = {r ∈ [0, 1) : 1+r
2(1−r)

∈ Ω} and define the map

Ξ : SΩ(kω, PC) → F∗

{An,ω}n∈N,ω∈Ω 7→ {An,r}n∈N,r∈R
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Then a sequence {An,ω}n∈N,ω∈Ω is λ−stable if and only if the corresponding se-

quence {An,r}n∈N,r∈R is. In particular, a sequence {An,ω}n∈N,ω∈Ω is λ−stable if

and only if its images under Φ0 ◦ Ξ,Φ1 ◦ Ξ,Φ−1 ◦ Ξ, and Ψτ ◦ Ξ are all invertible.

Moreover, these maps act on the generators of SΩ(kω, PC) as follows:

Generator in SΩ(kω, PC) Φ0 ◦ Ξ Φ1 ◦ Ξ Φ−1 ◦ Ξ
(P ) P I 0
(P+

n ) I I P
(Q−

n ) I Q I
(M(kωa)), a ∈ PC L(a) L(a) L(a)

Table 6.1: Images of Generators of SΩ(kω, PC) under Φi ◦ Ξ for i = 0, 1,−1

Generator in SΩ(kω, PC) Ψτ ◦ Ξ
(P ) χ[0,∞)

(P+
n ) χ[−1,∞)

(Q−
n ) χ(−∞,1]

(M(kωa)), a ∈ PC a(τ + 0)W 0

(
f
(

λ−2πix
λ+2πix

))
+a(τ − 0)W 0

(
1− f

(
λ−2πix
λ+2πix

))
Table 6.2: Images of Generators of SΩ(kω, PC) under Ψτ ◦ Ξ

Proof. It is readily seen that Ξ is a ∗-homomorphism into F∗; the generators are

mapped to generators. The only one for which this may not be obvious is the

multiplication operators, but this is established from Proposition 6.2.1. We may

compose this map Ξ with each of our maps that give stability criteria for F∗,

resulting in a collection of ∗-homomorphisms from SΩ(kω, PC) into algebras of

operators. The statement about stability follows.

Regarding the table, much of it is the same as our table in the main results

section. For the generator (M(kωa)) with a ∈ PC we are using the representation

given in line (6.3) in the proof of Proposition 6.2.1 in order to arrive at our image

under Ψτ . The function f that appears in the table is also defined there.
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Remark 6.2.3. We remark that the map Ξ is actually a map into a subalgebra

FR of F∗ due to the fact we are using the index set R instead of [0, 1); however, this

is not an issue. In fact, the work done in this section is true for any unbounded

index set Ω ⊆ [0,∞). This can be seen through the viewpoint of something called

fractality. The notion of fractality for usual sequences (An)n∈N is described in [12],

Section 4.2. The idea is as follows: let T be a homomorphism on an algebra of

sequences, let ν : N → N be a monotonically increasing map, and define Φν as the

map that sends a sequence (An) to the subsequence (Aν(n)). We call a homomor-

phism T a fractal homomorphism if for each ν there exists a homomorphism Tν

such that

Tν(Φν(An)) = T (An).

This property is really saying that every subsequence of (An) contains the full

information about the image of the entire sequence under T (this is the motivation

for calling it fractal).

We can adapt this definition to work for our generalized sequences (An,r).

We call a set S ⊆ N × [0, 1) λ−suitable if it has the property that there exist

(ni, ri) ∈ S such that ni(1 − ri) → λ as ri → 1 and ni → ∞ as i → ∞. With

this, we are equipped to define fractality for generalized sequences. Similar to

before, define the map ΦS to be the map that ends a sequence (An,r)n∈N,r∈[0,1) to

the subsequence (An,r)(n,r)∈S. We call T fractal if for all λ−suitable sets S, there

exists a homomorphism TS such that TS ◦ ΦS = T.

Our set R defined in Theorem 6.2.2 has the property that N×R is λ−suitable

by definition for any unbounded index set Ω. Even further, since the operators

Φ−1,Φ0,Φ1, and Ψτ are all strong limit operators, they are defined on the subal-

gebra FR. Moreover, if we let G denote the direct sum of algebras that we have
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shown F∗/N to be isomorphic to, the following diagram commutes (again, we are

using the fact our operators are given by strong limits):

F∗/N FR/N

G

Φν

which is precisely what we need.

6.3 Concrete Examples

Let’s now apply Theorem 6.2.2 to concrete examples, starting with sequences

of finite sections of Toeplitz operators whose symbols are given by approximate

identities applied to piecewise continuous functions. Recall that the function f

appearing in the corollaries is defined by

f

(
1 + ix

1− ix

)
=

∫ x

−∞
K(y)dy

where K is the function coming from the approximate identities.

Corollary 6.3.1. Let a ∈ PC. Then the sequence (Tn(kωa)) := (PnT (kωa)Pn) is

stable if and only if the following operators are invertible:

(i) T (a)

(ii) T (ã)

(iii) a(τ+0)χ[0,1]W
0

(
f
(

λ−2πix
λ+2πix

))
χ[0,1]+a(τ−0)χ[0,1]W

0

(
1− f

(
λ−2πix
λ+2πix

))
χ[0,1]

for each τ ∈ S1
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Proof. This is a direct result of Theorem 6.2.2. The only simplification we have

done is rewriting QL(a)Q = JT (ã)J in order to see that invertibility of QL(a)Q

is equivalent to T (ã) being invertible.

Remark 6.3.2. If we set A := χ[0,1]W
0

(
f
(

λ−2πix
λ+2πix

))
χ[0,1], condition (iii) can be

expressed as requiring the operator

A+
a(τ − 0)

a(τ + 0)− a(τ − 0)
I

be invertible where I = χ[0,1] (we may assume a(τ + 0) − a(τ − 0) ̸= 0 since

otherwise condition (iii) is a scalar multiple of χ[0,1]). This is now a question of

the spectrum of A. By utlizing Fredholm Theory, one can realize that the essential

spectrum of this operator A is

σess(A) = [0, 1].

In the case where im f ⊆ [0, 1], then we may conclude even further that the

spectrum of A is also equal to [0, 1] (this has to do with positivity in a Hilbert

space). To summarize, we have that condition (iii) is requiring the invertibility of

the operator

A+
a(τ − 0)

a(τ + 0)− a(τ − 0)
I

withA := χ[0,1]W
0

(
f
(

λ−2πix
λ+2πix

))
χ[0,1] which is equivalent to requiring a(τ−0)

a(τ+0)−a(τ−0)

to not be in the spectrum of A. When im f ⊆ [0, 1], this boils down to the con-

dition a(τ−0)
a(τ+0)−a(τ−0)

/∈ [0, 1] which can further be expressed as requiring the line

segment connecting a(τ − 0) and a(τ + 0) not crossing 0.

Next we apply our stability criteria to sequences of finite sections of Toeplitz
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operators with piecewise continuous symbols.

Corollary 6.3.3. Let a ∈ PC. Then the sequence (Tn(a)) := (PnT (a)Pn) is

stable if and only if the following operators are invertible:

(i) T (a)

(ii) T (ã)

(iii) χ[0,1](a(τ + 0)QR + a(τ − 0)PR)χ[0,1] for each τ ∈ S1

We now apply our stability criteria to sequences of Toeplitz operators whose

symbols are given by approximate identities applied to piecewise continuous func-

tions.

Corollary 6.3.4. Let a ∈ PC. Then the sequence (T (kωa)) is stable if and only

if the following operators are invertible:

(i) T (a)

(ii) L(a)

(iii) a(τ+0)χ[0,∞)W
0

(
f
(

λ−2πix
λ+2πix

))
χ[0,∞)+a(τ−0)χ[0,∞)W

0

(
1− f

(
λ−2πix
λ+2πix

))
χ[0,∞)

for each τ ∈ S1

Remark 6.3.5. We remark that the operator in (iii) is a Wiener-Hopf operator

with piecewise continuous symbol. By rewriting it in a similar way to what we

did in Remark 6.3.2, its invertibility can be reduced to a question of spectrum

and one can find it if needed.

Finally, we apply the result to singular integral operators.

Corollary 6.3.6. Let a, b ∈ PC. Then the sequence (M(kωa)P + M(kωb)Q) is

stable if and only if the following operators are invertible:

140



(i) L(a)P + L(b)Q

(ii) L(a)

(iii) L(b)

(iv)

(
a(τ + 0)W 0

(
f
(

λ−2πix
λ+2πix

))
+ a(τ − 0)W 0

(
1− f

(
λ−2πix
λ+2πix

)))
χ[0,∞)

+

(
b(τ + 0)W 0

(
f
(

λ−2πix
λ+2πix

))
+ b(τ − 0)W 0

(
1− f

(
λ−2πix
λ+2πix

)))
χ(−∞,0) for

each τ ∈ S1

Corollary 6.3.7. Let a, b ∈ PC. Then the sequence (Pn(M(kωa)P+M(kωb)Q)Pn)

is stable if and only if the following operators are invertible:

(i) L(a)P + L(b)Q

(ii) T (ã)

(iii) T (b)

(iv) χ[−1,1]

(
a(τ + 0)W 0

(
f
(

λ−2πix
λ+2πix

))
+ a(τ − 0)W 0

(
1− f

(
λ−2πix
λ+2πix

)))
χ[0,1]

+χ[−1,1]

(
b(τ + 0)W 0

(
f
(

λ−2πix
λ+2πix

))
+ b(τ − 0)W 0

(
1− f

(
λ−2πix
λ+2πix

)))
χ[−1,0)

for each τ ∈ S1

Corollary 6.3.8. Let a, b ∈ PC. Then the sequence (Pn(M(a)P +M(b)Q)Pn) is

stable if and only if the following operators are invertible:

(i) L(a)P + L(b)Q

(ii) T (ã)

(iii) T (b)
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(iv) χ[−1,1](a(τ +0)QR+a(τ−0)PR)χ(0,1]+χ[−1,1](b(τ +0)QR+b(τ−0)PR)χ(−1,0)

for each τ ∈ S1
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Appendix A

Fredholm Theory for Algebra of

Fourier Convolutions and

Multiplication Operators

In this appendix we treat the Fredholm Theory for the algebra generated by

Fourier convolution operators with piecewise continuous symbols and multiplica-

tion operators. We start with the general Fredholm Theory for this algebra and

since many of the algebras we consider in this thesis are subalgebras of this, we

discuss its specialization to them in the subsequent subsection.

A.1 The General Theory

For the general Fredholm Theory presented here we follow the work of [10]. In

this discussion, we will specialize to the unweighted L2 spaces. We letA(PC(Ṙ), PC)

denote the smallest closed subalgebra of L(L2(R)) containing all operators aI of

multiplication by a function a ∈ PC(Ṙ) and all Fourier convolutions W 0(b) for
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b ∈ PC. We write AK(PC(Ṙ), PC) to denote the image of this algebra in the

Calkin algebra (i.e., AK(PC(Ṙ), PC) is A(PC(Ṙ), PC) modulo the space of com-

pact operators). Recall for s, t ∈ R and τ > 0, we have defined the following kinds

of shift operators1:

Ms : L
2(R) → L2(R), (Msf)(x) = e2πixsf(x)

Ut : L
2(R) → L2(R), (Utf)(x) = f(x− t)

Zτ : L2(R+) → L2(R+), (Zτf)(x) = τ
1
2f(τx)

With these definitions, we are equipped to define some strong limit operators.

For A ∈ L(L2(R)), let

H±±(A) = s-lim
t→±∞

s-lim
s→±∞

M−tU−sAUsMt (A.1)

Here the first superscript in H±± refers to the strong limit with respect to

s → ±∞ and the second one with respect to t → ±∞ . We also define the

following strong limits for s, t ∈ R:

Hs,∞(A) = s-lim
τ→∞

Z−1
τ U−sAUsZτ (A.2)

H∞,t(A) = s-lim
τ→∞

ZτM−tAMtZ
−1
τ (A.3)

1We remark that if the reader refers to [10], there the notation for these operators is slightly
different: our Ms is the same as their U−s; our Ut is the same as their Vt; and our Zτ is the
same as their Z−1

τ .
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Interestingly, the invertibility of the images of an operator A ∈ A(PC(Ṙ), PC)

under each of these homomorphisms is enough to tell us if A is Fredholm; indeed,

we have the following:

Theorem A.1.1. The algebra AK(PC(Ṙ), PC) is inverse closed in the Calkin

algebra L(L2(R))/K(L2(R)) and an operator A ∈ A(PC(Ṙ), PC) is Fredholm if

and only if Hs,∞(A), H∞,t(A) and H±±(A) are invertible ∀s, t ∈ R.

Proof. For a proof of this statement, we refer the reader to [10], Theorem 5.6.2

and Corollary 5.6.3.

Notice that since being Fredholm is equivalent to being invertible modulo com-

pact operators, we may actually view the Calkin algebra as isomorphic to a subal-

gebra of the direct sum of H±±(A(PC(Ṙ), PC)) with Hs,∞(A(PC(Ṙ), PC)) and

H∞,t(A(PC(Ṙ), PC)) for all s, t ∈ R (here we are making use of the C∗-algebra

properties to make this conclusion). Because these homomorphisms give us the

information we need to understand when an operator is Fredholm in our algebra,

it is worthwhile to see how they act on the elements of the algebra A(PC(Ṙ), PC).

The following three propositions achieve this.

Proposition A.1.2. The strong limits H±± exist for A ∈ A(PC(Ṙ), PC) and

these mappings are algebra homomorphisms onto the algebra CI. In particular,

for a ∈ PC(Ṙ) and b ∈ PC,

H+±(aI) = a(+∞)I, H−±(aI) = a(−∞)I,
H±+(W 0(b)) = b(+∞)I, H±−(W 0(b)) = b(−∞)I,

and H±±(K) = 0 for compact operators K.
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Proof. Let’s first deal with aI for a ∈ PC(Ṙ). We will think of this as a multipli-

cation operator and write it as M(a). Here we have

M−tU−sM(a)UsMt = M−tM(â)Mt = M(â)

where â(x) = a(x + s). Then as s → ∞ M(â), converges strongly to a(+∞)I.

Similarly, as s → −∞ we have M(â), converges strongly to a(−∞)I. Thus we

have proven the claim for aI.

Let’s now discuss W 0(b). We will use Proposition 4.2.1 often in our computa-

tion. Here we have

M−tU−sW
0(b)UsMt = M−tU−sF−1M(b)FUsMt

= M−tF−1M−sM(b)MsFMt

= F−1U−tM−sM(b)MsUtF

= F−1U−tM(b)UtF

= F−1M(b̂)F .

where b̂(x) = b(x+t). Thus as t approaches infinity, F−1M(b̂)F converges strongly

to b(+∞)I. Similarly, as t → −∞ we will have strong convergence to b(−∞)I as

desired.

Proposition A.1.3. Let a ∈ L∞(R), b ∈ PC, and let χ+ (resp. χ−) denote the

characteristic function for the positive (resp. negative) real axis. Then for t ∈ R,

(i) H∞,t(aI) = a(−∞)χ−I + a(+∞)χ+I

(ii) H∞,t(W
0(b)) = b(t−)QR + b(t+)PR

Proof. As before, for a ∈ L∞(R) we think of aI as a multiplication operator M(a).
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We have

ZτM−tM(a)MtZ
−1
τ = ZτM(a)Z−1

τ = M(â)

where â(x) = a(τx). Then if x < 0, we have strong convergence of M(â) to

a(−∞)I as τ → ∞ and similarly if x > 0 we have strong convergence to a(+∞)I

as τ → ∞. Thus, aI is mapped to a(−∞)χ−I + a(+∞)χ+I.

Let’s now consider W 0(b) for b ∈ PC. It is sufficient to prove the claim for

t = 0 (the other cases will follow from this since they correspond to shifting the

symbol b). We may write b as

b(0−)χ− + b(0+)χ+ + c

where c ∈ PC is continuous and vanishing at 0. Using the representation of PR in

(4.5), we see that W 0(b(0−)χ− + b(0+)χ+) = b(0−)QR + b(0+)PR, so our job will

be done if we show ZτW
0(c)Z−1

τ converges strongly to 0 as τ → ∞. But this is

clear, since ZτW
0(c)Z−1

τ = W 0(ĉ) where ĉ(x) = c(x
τ
) and c(0) = 0.

Proposition A.1.4. Let s ∈ R, a ∈ PC, and b be a Fourier multiplier. Then

(i) Hs,∞(aI) = a(s−)χ−I + a(s+)χ+I

(ii) Hs,∞(W 0(b)) = b(−∞)QR + b(+∞)PR

Proof. This can be proven in a similar way to the previous proposition by following

the definitions.

The following tables show the images of the elements belonging to Ψ1((F∗/J )/J1)

and Ψ−1(C) under each of these homomorphisms. In the following sections we will

see that in these cases, only some of these homomorphisms play a role.

147



(F∗/J )/J1 Image under Ψ1 H++ H+− H−− H−+

(P ) χ[0,∞) I I 0 0
(L(χ+)) QR 0 I I 0

(L(t−n)PL(tn)) χ[−1,∞) I I 0 0
(L(tn)QL(t−n)) χ(−∞,1] 0 0 I I

(L(C−1
r f)) W 0(ĝ) 0 0 0 0

f ∈ PC0
−1 ĝ(x) = f(λ−2πix

λ+2πix
)

(R∗
rKRr) K ′ 0 0 0 0

Table A.1: Images of the Generators of (F∗/J )/J1 under H±±

(F∗/J )/J1 Image under Ψ1 Hs,∞ H∞,t

(P ) χ[0,∞)


0 if s < 0

χ[0,∞) if s = 0

I if s > 0

χ[0,∞)

(L(χ+)) QR QR


I if t < 0

QR if t = 0

0 if t > 0

(L(t−n)PL(tn)) χ[−1,∞)


0 if s < −1

χ[0,∞) if s = −1

I if s > −1

χ[0,∞)

(L(tn)QL(t−n)) χ(−∞,1]


I if s < 1

χ(−∞,0) if s = 1

0 if s > 1

χ(−∞,0)

(L(C−1
r f)) W 0(ĝ) 0 ĝ(t−)QR + ĝ(t+)PR

f ∈ PC0
−1 ĝ(x) = f(λ−2πix

λ+2πix
)

(R∗
rKRr) K ′ 0 0

Table A.2: Images of the Generators of (F∗/J )/J1 under Hs,∞ and H∞,t
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Generator in B/N Image in Ψ−1(C) H++ H+− H−− H−+

(P ) χ[0,∞) I I 0 0
(L(χ+)) PR I 0 0 I

(L(t−n)PL(tn)) χ[−1,∞) I I 0 0
(L(tn)QL(t−n)) χ(−∞,1] 0 0 I I

(L(C−1
r f)) 0 0 0 0 0

f ∈ PC0
−1

(R∗
rKRr) 0 0 0 0 0

(Y−1R
∗
rK

′RrY−1) K ′ 0 0 0 0

Table A.3: Images of the Generators of B/N under H±±

Generator in B/N Image in Ψ−1(C) Hs,∞ H∞,t

(P ) χ[0,∞)


0 if s < 0

χ[0,∞) if s = 0

I if s > 0

χ[0,∞)

(L(χ+)) PR PR


0 if t < 0

PR if t = 0

I if t > 0

(L(t−n)PL(tn)) χ[−1,∞)


0 if s < −1

χ[0,∞) if s = −1

I if s > −1

χ[0,∞)

(L(tn)QL(t−n)) χ(−∞,1]


I if s < 1

χ(−∞,0) if s = 1

0 if s > 1

χ(−∞,0)

(L(C−1
r f)) 0 0 0

f ∈ PC0
−1

(R∗
rKRr) 0 0 0

(Y−1R
∗
rK

′RrY−1) K ′ 0 0

Table A.4: Images of the Generators of B/N under Hs,∞ and H∞,t
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A.2 The Fredholm Theory Applied to Ψ1(C), Ψ−1(C),

and Ψ1((F∗/J )/J1)

For the larger algebraA(PC(Ṙ), PC), each of the homomorphismsH±±, Hs,∞,

andH∞,t are important ∀s, t ∈ R; however, for our subalgebras some of these maps

are redundant. We start by examining Hs,∞.

Proposition A.2.1. Let A be an element in Ψ1(C)/K or Ψ−1(C)/K. Then if

Hs,∞(A) is invertible for s = 1,−1, and 0, then Hs,∞(A) is invertible for all s ∈ R.

In other words, the algebras Hs,∞(Ψ1((F∗/J )/J1)/K) and Hs,∞(Ψ−1(C)/K) are

redundant in the Fredholm Theory for s ̸= ±1, 0.

Proof. To prove that invertibility of H−1,∞(A) implies invertibility of Hs,∞(A) for

s < −1 for A ∈ Ψ1(C)/K, we construct a map Λ−1 from H−1,∞(Ψ1(C)/K) into

Hs,∞(Ψ1(C)/K) for s < −1 so that the following diagram commutes:

Ψ1(C)/K

H−1,∞(Ψ1(C)/K) Hs,∞(Ψ1(C)/K)
Λ−1

This boils down to finding a multiplicative map that sends QR to itself and

χ[0,∞) to 0 (one can see this by tracking the generators in Tables A.1 and A.2 ).

The map Λ−1 defined by Λ−1(A) = s-lim
t→∞

Z−1
t U1AU−1Zt does the job. Indeed, for

χ[0,∞) we’ve got

Z−1
t U1χ[0,∞)U−1Zt = χ[t,∞)

which converges strongly to 0 as t goes to infinity. For QR, we have
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Z−1
t U1QRU−1Zt = Z−1

t U1F−11− sgn(x)

2
FU−1Zt

= F−11− sgn(x/t)

2
F

= F−11− sgn(x)

2
F = QR

where in the second equality we are using Proposition 4.2.1 and Lemma 4.2.9.

This same map works for mapping H−1,∞(Ψ−1(C)/K) into Hs,∞(Ψ−1(C)/K) for

s < −1, since the only difference in requirement is leaving PR invariant (which

this map Λ−1 also does).

Next we show that invertibility of H0,∞(A) implies invertibility of Hs,∞(A) for

−1 < s < 0 for A ∈ Ψ1(C)/K. But this reduces to finding a map that sends QR to

itself and χ[0,∞) to 0, which we have already demonstrated. Again, the same map

still works for mapping H0,∞(Ψ−1(C)/K) into Hs,∞(Ψ−1(C)/K) for −1 < s < 0.

To show that invertibility of H1,∞(A) implies invertibility of Hs,∞(A) for 0 <

s < 1 for A ∈ Ψ1(C)/K, we again construct a map Λ such that the following

diagram commutes for 0 < s < 1:

Ψ1(C)/K

H1,∞(Ψ1(C)/K) Hs,∞(Ψ1(C)/K)
Λ

But the map Λ−1 that we have just defined does this job; the computations are

nearly identical to what we have already done. This same mapping works for

sending H1,∞(Ψ−1(C)/K) into Hs,∞(Ψ−1(C)/K) for 0 < s < 1.

Finally we show that invertibility of H1,∞(A) implies invertibility of Hs,∞(A)

for s > 1 for A ∈ Ψ1(C)/K. Similar to before, we construct a map Λ1 from
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H1,∞(Ψ1(C)/K) into Hs,∞(Ψ1(C)/K) for s > 1 so that the following diagram

commutes:

Ψ1(C)/K

H1,∞(Ψ1(C)/K) Hs,∞(Ψ1(C)/K)
Λ1

The map Λ1 defined by Λ1(A) = s-lim
t→∞

Z−1
t U−1AU1Zt achieves this; the computa-

tions to verify this are analagous to what we have already done. Again, this same

map will work for mapping H1,∞(Ψ−1(C)/K) into Hs,∞(Ψ−1(C)/K) for s > 1.

Corollary A.2.2. Let A be an element in Ψ1((F∗/J )/J1)/K. Then if Hs,∞(A)

is invertible for s = 1,−1, and 0, then Hs,∞(A) is invertible for all s ∈ R. In

other words, the algebras Hs,∞(Ψ1((F∗/J )/J1)/K) are redundant in the Fredholm

Theory for s ̸= ±1, 0.

Proof. The algebra Ψ1(C) is a subalgebra of Ψ1((F∗/J )/J1), but their images

under each of the Hs,∞ for s ∈ R are the same. The proof of Proposition A.2.1

can thus carry over to this situation.

Proposition A.2.3. Let A be an element in Ψ1(C)/K or Ψ−1(C)/K. Then if

H∞,t(A) is invertible for t = 0, then H∞,t(A) is invertible for all t ∈ R. In other

words, the algebras H∞,t(Ψ−1(C)/K) are redundant in the Fredholm Theory for

t ̸= 0.

Proof. Let’s first settle this for Ψ−1(C)/K. To prove this statement, we will con-
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struct homomorphisms Λ and Λ′ such that the following diagrams commute:

Ψ−1(C)/K

H∞,0(Ψ−1(C)/K) H∞,t(Ψ−1(C)/K)
Λ

Ψ1(C)/K

H∞,0(Ψ1(C)/K) H∞,t(Ψ1(C)/K)
Λ′

first for t > 0 and then for t < 0. Notice, however, that if we construct one

of the maps the other will be exactly the same. Indeed, the only difference in

requirements between Λ and Λ′ are when one sends PR to I the other must send

QR to 0 and vice versa; however, a homomorphism that sends PR to I must

necessarily send QR to 0. We thus only construct Λ in this proof.

We first construct the map Λ for t > 0. This map must leave characteristic

functions unchanged but send PR to I. The map Λ that sends an operator A

to s-lim
t→∞

M−tAMt achieves this. Indeed, since the characteristic functions can

formally be viewed as multiplication operators they commute with M±t and so

are invariant under this map. For PR we have

M−tPRMt = M−tF−11 + sgn(x)

2
FMt

= F−1U−t
1 + sgn(x)

2
UtF

= F−11 + sgn(x+ t)

2
F

which converges strongly to I as t → ∞.
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For t < 0, we require a map that sends PR to 0 and leaves the character-

istic functions unchanged. Here we define Λ to be the map that sends A to

s-lim
t→∞

MtAM−t.
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Appendix B

List of Notation

B.1 Operators

L(a) Laurent operator with symbol a

M(a) Multiplication operator with symbol a

T (a) Toeplitz operator with symbol a

H(a) Hankel operator with symbol a

P The operator that sends a sequence (xn)n∈Z to (yn)n∈Z with yn = xn

if n ≥ 0 and yn = 0 if n < 0

Q I − P

J The operator that sends a sequence (xn)n∈Z to the sequence (x−1−n)n∈Z

SΓ The singular integral operator on the space Γ

Pn The operator that sends a sequence (xk)k∈Z to the sequence (yk)k∈Z where

yk = xk if − n ≤ k < n and yk = 0 if k < −n or k ≥ n

Un The operator that sends (xk)k∈Z 7→ (xk−n)k∈Z

U−n The operator that sends (xk)k∈Z 7→ (xk+n)k∈Z
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P+
n The operator U−nPUn

Q−
n The operator UnQU−n

Yτ The operator on L2(S1) defined by (Yτf)(t) = f(τt)

Y ∗
τ The operator on L2(S1) defined by (Y ∗

τ f)(t) = f(t/τ)

Cr The operator on L2(S1) defined by (Crf)(t) = f( t+r
1+rt

)

C−1
r The operator on L2(S1) defined by (Crf)(t) = f( t−r

1−rt
)

Gr,τ The operator CrYτ

Rr The operator on L2(S1) defined by (Rrf)(t) =
√
1−r2

1+rt
f
(

t+r
1+rt

)
R∗

r The operator on L2(S1) defined by (R∗
rf)(t) =

√
1−r2

1−rt
f
(

t−r
1−rt

)
F The Fourier Transform

F−1 The inverse Fourier Transform

W 0(b) The Fourier convolution of a symbol b, i.e., F−1bF

Φ0 The strong limit map defined in Equation 3.1

Φ1 The strong limit map defined in Equation 3.2

Φ−1 The strong limit map defined in Equation 3.3

τ The surjective map from B/N into (F∗/J )/J1 defined by

τ(Bn,r +N ) = (Bn,r + J ) + J1

ϵ The strong limit map defined on B/N defined by

ϵ(Bn,r) = s-lim
n→∞
r→1

RrBn,rR
∗
r

δ The surjective map from (F∗/J )/J1 into A defined by

δ((Fn,r + J ) + J1) = s-lim
n→∞
r→1

RrFn,rR
∗
r

En The operator from ℓ2(Z) into L2(R) that maps (xi)i∈Z

to
√
n
∑∞

i=−∞ xiχ[ i
n
, i+1

n
]
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E−n The operator from L2(R) into ℓ2(Z) that sends a function f to(
√
n
∫∞
−∞ f(x)χ[ i

n
, i+1

n
](x)dx

)∞

i=−∞

Ln The operator EnE−n

Ψ1 The operator from (F∗/J )/J1 onto Ψ1((F∗/J )/J1) defined by

Ψ1(Fn,r) = s-lim
n→∞
r→1

EnFn,rE−n

Ψ̂1 The map from B/N → Ψ1((F∗/J )/J1) given by Ψ̂1 = Ψ1 ◦ τ

Ms The operator from L2(R) into L2(R) defined by (Msf)(x) = e2πixsf(x)

for s ∈ R

Ut The operator from L2(R) into L2(R) defined by (Utf)(x) = f(x− t) for

t ∈ R

Zτ The operator from L2(R+) into L2(R+) defined by (Zτf)(x) = τ
1
2f(τx)

for τ > 0

ι The surjective map from C/N into (B/I)/I−1 that sends a sequence

(Cn) +N to the sequence ({Cn}+ I) + I−1

Ψ−1 The operator from C onto Ψ−1(C) defined by

Ψ−1(Cn) = s-lim
n→∞

EnY−1CnY−1E−n

Ψ̂−1 The operator from (B/I)/I−1 onto Ψ−1(C) defined by

Ψ̂−1(Bn,r) := s-lim
n→∞
r→1

EnY−1Bn,rY−1E−n

η The isometry from L2(R) → L2(R+)
⊕

L2(R+) that sends f to (f1, f2)
T

with f1(x) = f(x) and f2(x) = f(−x) ∀x ∈ R+

Φη The ∗−isomorphism defined by Φη : A 7→ ηAη−1 that maps L(L2((R))

onto L(L2((R+))2×2

N The Hankel operator on L(L2((R)) onto L(L2((R+)) defined

by (Nf)(x) =
1

πi

∫∞
0

f(y)

y + x
dy, x ∈ R+
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M The Mellin Transform, i.e., the operator from L2(R+) → L2(R) defined

by (Mf)(z) =
∫∞
0

x−iz− 1
2f(x)dx, z ∈ R

M−1 The inverse Mellin Transform, i.e., the operator from L2(R) → L2(R+)

defined by (M−1f)(x) =
1

2π

∫∞
−∞ xiz− 1

2f(z)dz, x ∈ R+

M0(b) The Mellin convolution operator for a multiplication operator b ∈ L∞(R)

defined by M−1bM : L2(R+) → L2(R+)

Ψτ The map defined on (F∗/J )/Jτ for each τ ∈ S1 defined by

Ψτ (Fn,r) := s-lim
n→∞
r→1

EnYτFn,rY
∗
τ E−n

H±± The strong limit map s-lim
t→±∞

s-lim
s→±∞

M−tU−sAUsMt where the first super-

script in H±± refers to the strong limit with respect to s → ±∞ and the

second one with respect to t → ±∞

Hs,∞ The strong limit map s-lim
τ→∞

Z−1
τ U−sAUsZτ for s ∈ R

H∞,t The strong limit map s-lim
τ→∞

ZτM−tAMtZ
−1
τ for t ∈ R

B.2 Algebras

C(S1) The space of continuous functions on the unit circle

PC The space of piecewise continuous functions on the unit circle

PC±1 The set of all piecewise continuous functions that are continuous on

S1 \ {−1, 1}

PC0
±1 The set of all functions f ∈ PC±1 such that f(−1± 0) = 0

PC0
−1 The set of piecewise continuous functions f with f(−1) = 0

F The space of sequences of uniformly bounded linear operators (An,r)

acting on a Hilbert space

K The ideal of compact operators
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N The ideal of sequences converging in norm to 0

F∗ The algebra generated in L(L2(S1)) by N and the elements (P ), (P+
n ),

(Q−
n ), (L(a)), (L(G

−1
r,τf)), (K), and (Y ∗

τ R
∗
rKτRrYτ ) with a ∈ PC, f ∈

PC,K,Kτ ∈ K(L2(S1)), and τ ∈ S1.

J The ideal {(Cn,r) + (K1) + (U−nK2Un) + (UnK3U−n) : (Cn,r) ∈ N , Ki ∈

K(L2(S1))}

Jt0 clos idF∗/J {(L(c)) + J : c ∈ C(S1), c(t0) = 0} for t0 ∈ S1

(F∗/J )/Jt0 The local algebra at the point t0 ∈ S1 with generators given in Proposi-

tion 3.2.4

B The algebra generated in L(L2(S1)) by N and the elements (P ), (P+
n ),

(Q−
n ), (L(χ+)), (L(C

−1
r f)), (R∗

rKRr), and (Y−1R
∗
rK

′RrY−1) where f ∈

PC, K,K ′ ∈ K(L2(S1))

A The algebra of operators ϵ(B/N )

I The ideal {(Cn,r) + (R∗
rKRr) : (Cn,r) ∈ N , K ∈ K}

It0 clos idB/I{(L(C−1
r g)) + I : g ∈ C(S1), g(t0) = 0} for t0 ∈ S1

(B/I)/It0 The local algebra at the point t0 ∈ S1

C The algebra generated in L(L2(S1)) by N and the elements (P ), (P+
n ),

(Q−
n ), (L(χ+)), (L(χ−)) (E−nK1En), and (Y−1E−nK2EnY−1) where

K1, K2 ∈ K(L2(R))

C(Ṙ) The Banach algebra of all continuous functions f on the real line R

possessing finite limits f(+∞) and f(−∞) such that f(+∞) = f(−∞)

Ĉ The algebra generated in L(L2(S1)) by N and the elements (P ), (P+
n ),

(Q−
n ), (L(χ+)), (L(χ−)), (L(f)), (E−nK1En), (Y−1E−nK2EnY−1), and

(E−nM(g)En) where K1, K2 are compact, f ∈ PC0
±1, and g ∈ C(Ṙ)

J ′ The ideal {(Cn + E−nK1En + Y−1E−nK2EnY−1) : Cn ∈ N , K1, K2 ∈ K}
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J ′
x J ′

x = clos idĈ/J ′{(E−nM(g)En) + J ′ : g ∈ C(Ṙ), g(x) = 0}

(Ĉ/J ′)/J ′
x The local algebra at a point x ∈ Ṙ

PC∞(R) The set of all continuous functions f on R for which the limits at infinity

and negative infinity exist and are finite

C0
∞(R) The set of all continuous functions f on R for which limx→±∞ f(x) = 0

Σ0
2 algL(L2((R+))2×2


I 0

0 0

 ,

S −N

N −S




Σ1 {αI + βS +M0(b) : α, β ∈ C, b ∈ C0
∞(R)}

Σ0
1 {M0(b) : b ∈ C0

∞(R)}

kω The bounded linear operator defined from L∞ → L∞ for defined by

(kωf)(e
ix) =

∫ ∞

−∞
f(ei(x−y))ωK(ωy)dy

for ω ∈ [0,∞); called the approximate identity with kernel K

SΩ The set of all uniformly bounded sequences {An,ω}n∈N,ω∈Ω of bounded

linear operators on L2(S1)

NΩ The ∗-ideal of SΩ consisting of all sequence {An,ω} for which ∥{An,ω}∥ →

0 as ω → ∞

SΩ(kω, PC) The smallest closed ∗-subalgebra of SΩ with NΩ ⊆ SΩ(kω, PC) contain-

ing the elements (P ), (P+
n ), (Q−

n ), and (M(kωa)) with a ∈ PC

B.3 Miscellaneous

S1 The unit circle

χ+ The characteristic function on the upper half plane of the unit circle
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χ− The characteristic function on the lower half plane of the unit circle

χD The characteristic function of a subset D of the real axis

χ The function χ+ − χ−

σ The function defined by σ(e2πiϕ) = −sin2(πϕ)

π2

∑
m∈Z

sgn(m+ 1
2
)

(ϕ+m)2
for

ϕ ∈ (0, 1) with the property that L(σ) = E−nSREn for all n ∈ N
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and Günther Wildenhain, editors, The Maz’ya Anniversary Collection, pages

103–132, Basel, 1999. Birkhäuser Basel.
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