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Energy-Efficient Deployment in Static and

Mobile Heterogeneous Multi-Hop Wireless

Sensor Networks

Saeed Karimi-Bidhendi, Jun Guo, and Hamid Jafarkhani

Abstract

We study a heterogeneous wireless sensor network (WSN) where N heterogeneous access points

(APs) gather data from densely deployed sensors and transmit their sensed information to M het-

erogeneous fusion centers (FCs) via multi-hop wireless communication. The heterogeneous optimal

deployment of APs and FCs is modeled as an optimization problem with total wireless communication

power consumption of the network as its objective function. We consider both static WSNs, where APs

and FCs retain their deployed position, and mobile WSNs where APs and FCs can move from their

initial deployment to their optimal locations. Based on the derived necessary conditions for the optimal

deployment in static WSNs, we propose an iterative algorithm to deploy APs and FCs. In addition, we

study the necessary conditions of the optimal movement-efficient deployment in mobile WSNs with

constrained movement energy and present iterative algorithms to find such deployments, accordingly.

Simulation results show that our proposed deployment algorithms outperform the existing methods in

the literature, and achieve a lower total wireless communication power in both static and mobile WSNs.

Index Terms

Deployment, heterogeneous multi-hop networks, wireless sensor networks, power optimization.

I. INTRODUCTION

Wireless sensor networks (WSNs) consist of small and low-cost sensor devices used to monitor

the environment and transfer the sensed information through wireless channels to dedicated fusion

centers. WSNs can be classified into either homogeneous WSNs [1]–[4], in which network nodes

Authors are with the Center for Pervasive Communications & Computing, University of California, Irvine, Irvine CA, 92697
USA (e-mail: {skarimib, guoj4, hamidj}@uci.edu). This work was presented in part at the 2020 IEEE International Conference
on Communications [1]. This work was supported in part by the NSF Award CCF-1815339.
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share the same characteristics such as storage, antennas, sensitivity etc., or heterogeneous WSNs

where network nodes have different characteristics [5]–[10]. Based on the network architecture,

WSNs can be divided into either hierarchical WSNs, where network nodes are often grouped

into clusters with some of them chosen to be cluster heads, or non-hierarchical WSNs where

sensors have identical functionality and multi-hop wireless communication is used to maintain

the connectivity of the network. Wireless sensor nodes can also be classified as either static [7],

[10], in which each network node remains at its deployed position, or mobile where network

nodes can move to their optimal locations to improve the energy efficiency and sensing quality

of WSNs [11]–[14]. In general, there are three fundamental elements to specify for a WSN: (i)

node deployment, i.e., the location of network nodes; (ii) cell partitioning, i.e., the region that

each network node monitors; and (iii) data routing, i.e., the path that each sensory data takes

to reach fusion centers. Not only should a proper network design algorithm jointly optimize

over node deployment, cell partitioning, and data routing, but also it should be applicable to

heterogeneous WSNs and be extendable to both static and mobile network nodes.

In [1], [2], we studied the optimal deployment in homogeneous WSNs; however, the homoge-

neous setting does not address many challenges that are inherent in heterogeneous WSNs, e.g.,

unlike regular Voronoi diagrams in homogeneous WSNs, the optimal cells in heterogeneous

WSNs may be non-convex, not star-shaped, or even disconnected and the cell boundaries may

not be hyperplanes. In [5], [7], [9]–[11], we studied the energy-efficient deployment for het-

erogeneous WSNs; however, the network is restricted to a one-tiered or two-tiered architecture

while an efficient data routing through multi-hop communication can substantially improve the

total energy consumption. Thus, our prior studies along with the majority of the work in the

literature, as we will explore in the next section, fall short on one or more of the desired properties

discussed above; namely, they may not consider the heterogeneous nature of network nodes, lack

a rigorous radio energy model for the communication energy consumption, assume a specific

network architecture, and consider only a static or mobile setting.

The primary motivation and key characteristic of this work over the existing literature is that

not only do we incorporate the heterogeneity of network nodes into our system model and make

no assumption about the network’s architecture, but also we consider a radio energy model,

where the electromagnetic wave propagation dampens as a power law function of the distance

between the transmitter and receiver, and develop deployment algorithms that are applicable to

both static and mobile WSNs. In particular, we study the optimal deployment in heterogeneous
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multi-hop WSNs consisting of homogeneous densely deployed sensors, heterogeneous APs,

and heterogeneous FCs, to minimize the wireless communication power consumption with and

without movement energy constraints. Our contributions in this paper are multifold:

• considering a radio energy model based on large scale fading and line-of-sight path loss

signal attenuation that incorporates the heterogeneous characteristics of network nodes;

• making no a priori assumptions about the network’s architecture, location of nodes, etc;

• studying the properties of an optimal network design for both static and mobile WSNs: the-

oretical necessary conditions for an optimal deployment, cell partitioning, and data routing

are dervied such that the network’s communication power consumption is minimized;

• designing energy-efficient deployment algorithms for both static and mobile WSNs accord-

ing to the necessary conditions of optimality in which node deployment, cell partitioning,

and data routing are jointly optimized;

• proving the convergence of the proposed deployment algorithms;

The rest of the paper is organized as follows: In Section II, we present an overview of the

existing literature on WSN deployment. In Section III, we provide the system model. In Section

IV, we study the optimal deployment in static heterogeneous multi-hop WSNs and propose an

iterative algorithm based on the derived necessary conditions. The analysis of optimal deployment

with network’s total movement energy constraint is provided in Section V. In Section VI, we

study an energy-efficient deployment that guarantees a given network’s lifetime in mobile WSNs.

Experimental results are provided in Section VII and Section VIII concludes the paper.

II. RELATED WORK

Energy efficiency is a key determinant in longevity of the WSNs since sensors have limited

energy resources and it is difficult or infeasible to recharge the batteries of densely deployed

sensors. In general, many factors contribute to the energy consumption of the WSNs, e.g.,

communication energy, movement energy, sensing energy, and computation energy [15], [16].

Empirical measurements have shown that the data processing and computation energy as well

as sensing energy for passive sensors are negligible compared to communication energy [17].

Thus, wireless communication dominates the energy consumption in static sensors in practice

while movement energy dominates the energy consumption in mobile wireless sensor networks

[7], [18].
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Several methods have been proposed in the literature to reduce the energy consumption of

wireless communication in WSNs. Examples include methods that circumvent the excess energy

consumption by appropriately switching sensors between awake and asleep states [19], calibrating

the transmission power of sensors while a reliable communication is maintained [20], and finding

optimal paths to transfer data from sensors to fusion centers [4]. The common drawback of

these approaches is that the deployment is assumed to be known and fixed; however, because the

required transmission power is polynomially proportional to the distance between the transmitter

and the receiver, a proper deployment can significantly affect the energy consumption of WSNs.

There are two types of deployment techniques proposed in the literature to optimize the energy

consumption of WSNs: random deployment and deterministic deployment. Random deployment

is often used in harsh or inaccessible environments where deterministic deployment is not

feasible. Examples include Constant Diffusion [21], Hybrid Diffusion [22], and Discontinuous

Diffusion [23] in which network nodes are scattered in the target region according to a given

probability density function. Since network nodes are not usually placed at their optimal locations

due to the stochastic nature of these methods, the performance of random-based deployment falls

short compared to the deterministic deployment. Deterministic deployment approaches aim to

calculate the optimal location of network nodes that achieves a desired objective. These methods

can be classified into four different categories, as we have summarized below:

1) Grid-based methods: Examples include [24], [25] in which the locations of network nodes

are determined based on a grid shape such as triangular, rectangular, or hexagonal grid

pattern. These methods are favorable due to their simplicity; however, they consider a

homogeneous setting and do not account for the heterogeneity of network nodes; thus,

they perform poorly when the WSN is comprised of nodes with different characteristics.

In addition, they do not account for connectivity and are only applicable to static nodes.

2) Force-based methods: Examples include [26], [27] in which a set of attractive, repulsive

or null virtual forces act on network nodes based on their distance from each other. These

methods offer adequate coverage and are applicable to mobile nodes; however, they suffer

from high computational complexity and do not scale well with the number of nodes.

Moreover, they yield undesirable performance for heterogeneous WSNs since virtual forces

do not consider the heterogeneity of nodes.

3) Geometry-based methods: Examples include Voronoi-based algorithms such as [28]–[30] in

which the target region is partitioned into a set of unique polygons, one for each network
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node, such that each point within a polygon is closest to that network node compared

to any other node residing in other polygons. While the intuition of closeness in the

sense of Euclidean distance makes sense for homogeneous nodes, it has been shown to

fail for heterogeneous WSNs in which the best partitioning heavily depends on nodes’

characteristics [7].

4) Meta-heuristic methods: Examples include particle swarm optimization [31], genetic algo-

rithm [32], and simulated annealing [33] in which various optimization tools are used to

find nodes’ locations. These methods are designed to achieve high coverage rates, but they

are sensitive to node failure and suffer from high power consumption, high computational

complexity, and low convergence rate. Additionally, fine-tuning the hyperparameters for

these algorithms is very challenging since a slight variation can result in different network

behavior.

To the best of our knowledge, the energy-efficient deployment in heterogeneous multi-hop WSNs

is still an open problem. In the remainder of this paper, we study such networks in details.

III. SYSTEM MODEL

In this section, we study the system model of heterogeneous multi-hop WSNs, as shown in

Fig. 1, consisting of three types of network nodes: homogeneous sensors, heterogeneous APs,

and heterogeneous FCs. Given the target region Ω ⊆ R2 which is a convex polygon including its

interior, N APs and M FCs are deployed to collect information from densely deployed sensors.

Let IA = {1, · · · , N} and IF = {N + 1, · · · , N +M} denote the set of node indices for APs

and FCs, respectively. Here, we refer to each access point or fusion center node as a point in

the network, i.e., if n ∈ IA, point n refers to AP n; however, when n ∈ IF , point n refers to

FC (n−N). The location of point n is denoted by pn ∈ Ω and collectively the deployment of

APs and FCs is denoted by P = (p1, · · · , pN , pN+1, · · · , pN+M) ∈ R(N+M)×2. Throughout this

paper, we assume that each sensor only sends data to one AP; therefore, for each n ∈ IA, AP n

gathers data from sensors within the region Wn ⊆ Ω and W = (W1, · · · ,WN) ⊆ ΩN provides

a set partitioning of the target region, i.e., we have
⋃
n∈IA Wn = Ω and Wi ∩Wj = ∅ for all

i, j ∈ IA where i ̸= j. The density of sensors is denoted via a continuous and differentiable

function f : Ω −→ R+, i.e., the number of densely deployed sensors within region Wn is equal

to
∫
Wn

f(ω)dω. The total amount of data collected from sensors within the region Wn in one time

unit is Rb

∫
Wn

f(ω)dω, where the bit-rate Rb is a constant due to the homogeneity of sensors [2].
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For each n ∈ IA, the volume and centroid of the region Wn is defined as v(Wn) ≜
∫
Wn

f(ω)dω

and c(Wn) ≜
∫
Wn

ωf(ω)dω∫
Wn

f(ω)dω
, respectively. The data gathered from each sensor is forwarded to other

APs or FCs in the network until it eventually reaches to one or more FCs.

Fig. 1: An exemplary system model consisting of three APs and one FC. Homogeneous sensors are denoted via
mobile icons while heterogeneous APs are denoted via different drone symbols. All network nodes corresponding
to the same region are shown using the same color. Each sensor sends its collected data to its corresponding AP, as
depicted via short dot lines. Each AP in turn transmits the gathered information to other APs or the FC, as shown
via blue arrows, until all data eventually reach the deployed FC.

As shown in Fig. 1, the network can be regarded as a directed acyclic graph G(IA
⋃
IF , E)

where APs and FCs are source and sink nodes, respectively, and E is the set of directed edges

(i, j) such that i ∈ IA and j ∈ IA
⋃

IF [34]. Note that any cycle in the network’s graph can be

removed by reducing the flow of data along the cycle without changing the in-flow and out-flow

links to that cycle. Let F = [Fi,j]N×(N+M) be the flow matrix, where Fi,j is the amount of data

transmitted through the link (i, j) in one time unit. Since the in-flow to each AP, say i, should

be equal to the out-flow, we have
∑N

j=1 Fj,i + Rb

∫
Wi
f(ω)dω =

∑N+M
j=1 Fi,j . For i ∈ IA, we

define Fi ≜
∑N+M

j=1 Fi,j to be the total flow originated from AP i. Note that instead of directly

specifying Fi,j , i.e., the amount of data transmitted from AP i to point j in one time unit, we

can state the ratio of the total flow originated from AP i that goes to point j. In particular, let

S = [si,j]N×(N+M) be the normalized flow matrix, where si,j ≜ Fi,j∑N+M
j=1 Fi,j

is the ratio of the

in-flow data to AP i that is transmitted to point j. The normalized flow matrix S satisfies the
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following properties: (a) si,j ∈ [0, 1];1 (b)
∑N+M

j=1 si,j = 1 because the in-flow to AP i should be

equal to the out-flow, ∀i ∈ IA; (c) No cycle: if there exists a path in the network’s graph such

as l0 → l1 → · · · → lK , i.e.,
∏K

k=1 slk−1,lk > 0, then we have slK ,l0 = 0. In particular, we have

si.i = 0, ∀i ∈ IA. Since the flow matrix F can be uniquely determined by the set partitioning W

and the normalized flow matrix S, in the remaining of this paper, we use the notation F (W,S)

instead of F. The example below describes how to calculate F (W,S) in terms of W and S.

Example 1. We consider the exemplary WSN depicted in Fig. 1 that consists of N = 3

APs and M = 1 FC. Given the bit-rate Rb = 10bps, the cell partitioning W with cell volumes

v (W1) = 2, v (W2) = 4, v (W3) = 3 and the normalized flow matrix S =

[
0 0.4 0.6 0
0 0 0.25 0.75
0 0 0 1

]
, the

amount of data generated from sensors within each cell can be calculated as:

Γ(W1)=Rbv (W1)=20bps, Γ(W2)=Rbv (W2)=40bps, Γ(W3)=Rbv (W3)=30bps. (1)

By definition, we have Fi (W,S) = Γ (Wi) +
∑N

j=1 Fj,i (W,S) and Fi,j (W,S) = Fi (W,S)×

si,j . Thus, it can be shown that F = [Fi,j]1≤i≤3
1≤j≤4

=

[
0 8 12 0
0 0 12 36
0 0 0 54

]
since we have:

F1,2 (W,S) = F1 (W,S)× s1,2 = Γ (W1)× s1,2 = 8bps, (2)

F2,3 (W,S) = F2 (W,S)× s2,3 = [Γ (W2) + F1,2 (W,S)]× s2,3 = 12bps, (3)

F2,4 (W,S) = F2 (W,S)× s2,4 = [Γ (W2) + F1,2 (W,S)]× s2,4 = 36bps, (4)

and the remaining elements of the flow matrix F can be calculated similarly.

In what follows, we formulate the wireless communication power consumption of the network.

Also, we focus on the power consumption of sensors and APs, since FCs are usually supplied

with reliable energy sources and their power consumption is not the main concern. We break

down the network’s power consumption into three components and elucidate them in depth: (i)

Sensors’ transmission power; (ii) APs’ transmission power; and (iii) APs’ receiver power. First,

we focus on the sensor’s power consumption. According to [2], due to the path-loss, the instant

transmission power is equal to the square of the distance between the transmitter and the receiver

multiplied by a constant that depends on their characteristics, i.e., η × ∥pn − ω∥2 for a sensor

1For time-invariant routing algorithms, such as Bellman-Ford Algorithm [35], the flows construct a tree-structured graph in
which each network node has only one successor. Under such circumstances, the normalized flow from point i to point j is
either 0 or 1, i.e., si,j ∈ {0, 1}. However, the time-variant routing algorithms, such as Flow Augmentation Algorithm [34],
generate different flows during different time periods. As a result, the overall normalized flow from point i to point j can be a
real number between 0 and 1, i.e., si,j ∈ [0, 1].
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positioned at ω that transmits its data to AP n, n ∈ IA. As shown in [16], the power weight

η is given by η = Pth(4π)
2

RbGtGrλ2c
, where Pth is the minimum receiver power threshold for successful

reception, Rb is the bit-rate, Gt and Gr are the antenna gains of the transmitter and the receiver,

respectively, and λc is the carrier signal wavelength. In the homogeneous setting, all nodes have

the same characteristics; thus, the parameter η is the same and will not affect the optimization.

However, in a heterogeneous multi-hop WSN, APs can have different antenna gains and SNR

thresholds; hence, the parameter η will be a function of the AP’s index. Therefore, the sensors’

transmission power consumption can be written as

PT

S (P,W) =
N∑
n=1

∫
Wn

ηn∥pn − ω∥2Rbf(ω)dω. (5)

Similarly, the instant transmission power from point i to point j can be written as β×∥pi−pj∥2

where the power weight β depends on the antenna gain and SNR threshold of point j and the

antenna gain of point i [16]. Therefore, it is the same for the homogeneous setting and will

not affect the optimization. However, in a heterogeneous multi-hop WSN, the heterogeneity of

the APs and FCs causes the parameter β to be a function of their indices. Hence, the average

transmission power through link (i, j) is equal to βi,j∥pi − pj∥2Fi,j(W,S) and the APs’ total

transmission power consumption can be written as

PT

A (P,W,S) =
N∑
i=1

N+M∑
j=1

βi,j∥pi − pj∥2Fi,j (W,S) . (6)

According to [6], power at the receiver of AP n can be modeled as
∑N

i=1 ρnFi,n(W,S) +

ρnRb

∫
Wn

f(ω)dω, where ρn is the power consumption coefficient for receiving data at AP n,

and depends on digital coding, modulation, and filtering of the signal before transmission [16].

Therefore, the APs’ total receiver power consumption can be written as:

PR

A (W,S) =
N∑
n=1

ρn

[
N∑
i=1

Fi,n (W,S) +Rb

∫
Wn

f(ω)dω

]
. (7)

Thus, the total communication power consumption of the multi-hop WSN can be written as:

D (P,W,S) = PT

S (P,W) + λ
[
PT

A (P,W,S) + PR

A (W,S)
]
, (8)

where the Lagrangian multiplier λ ≥ 0 provides a trade-off between the sensor and AP power
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consumption. Our main objective in this paper is to minimize the multi-hop weighted com-

munication power consumption defined in (8) over the deployment P, cell partitioning W,

and the normalized flow matrix S, which equivalently minimizes the weighted communication

energy consumption of the network. Based on the system model and components of the objective

function presented in this section, three specific problems are formulated in Sections IV, V, and

VI below. Important notations used throughout this paper are summarized in Table I.

TABLE I: Important notations

Symbol Description Symbol Description
P Location of APs and FCs gn AP n’s power coefficient
W Target region partitioning ζn Moving cost parameter
S Normalized flow matrix λ Lagrangian multiplier
F Flow matrix γ Maximum movement energy
D Communication power consumption γn Individual movement energy
PT

S Sensor transmission power ηn Power weight for AP n

PT

A AP transmission power βi,j Power weight for points i, j
PR

A AP receiver power ρn Receiver power coefficient

IV. OPTIMAL DEPLOYMENT IN STATIC HETEROGENEOUS MULTI-HOP WSNS

As shown in (8), the total power consumption depends on three variables P, W, and S that

conceptually represent locations, target region partitioning, and routing of data, respectively.

Thus, our goal is to find the optimal AP and FC deployments, cell partitioning, and normalized

flow matrix, denoted by P∗ =
(
p∗1, · · · , p∗N , p∗N+1, · · · , p∗N+M

)
, W∗ = (W ∗

1 , · · · ,W ∗
N), and S∗ =[

s∗i,j
]
N×(N+M)

, respectively, that minimizes the multi-hop power consumption. Note that not only

the variables P, W, and S are interdependent, i.e., the optimal value for each of them depends

on the value of the other two variables, but also this optimization problem is NP-hard. Our aim is

to derive the necessary conditions for optimal deployment and design an algorithm that iterates

between three steps where in each step the value of one variable is optimized while the other

two variables are held fixed.

Step 1 [optimizing W while P and S are fixed]: First we need to introduce a few concepts.

In order to determine the energy required by each AP to transmit its data to FCs, without loss of

generality, we assume that AP n’s gathered data goes through Kn paths in the network’s graph

before it reaches to one or more fusion centers. We denote these paths by
{
L
(n)
k (S)

}
k∈{1,··· ,Kn}

,

where L(n)
k (S) = l

(n)
k,0 → l

(n)
k,1 → · · · → l

(n)

k,J
(n)
k

, l(n)k,0 = n, l(n)k,i ∈ IA for i ∈ {0, · · · , J (n)
k − 1},
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l
(n)

k,J
(n)
k

∈ IF and J
(n)
k is the number of hops on the k-th path. The portion of the total flow

originated from AP n that goes through the k-th path can then be calculated as

µ
(n)
k (W,S) = Fn (W,S)

J
(n)
k∏
i=1

s
l
(n)
k,i−1,l

(n)
k,i
. (9)

In particular, we have
∑Kn

k=1 µ
(n)
k (W,S) = Fn (W,S) that indicates the data from AP n

eventually reaches to one or more FCs. Next, for each link (i, j) in the network’s graph, we

define the energy cost (Joules/bit) to be:

ei,j (P) ≜

βi,j∥pi − pj∥2 + ρj, if j ∈ IA

βi,j∥pi − pj∥2, if j ∈ IF .
(10)

Hence, we define the path cost corresponding to the k-th path from AP n to FCs as:

e
(n)
k (P,S) =

J
(n)
k∑
i=1

e
l
(n)
k,i−1,l

(n)
k,i

(P) . (11)

Note that µ(n)
k (W,S) is the portion of data collected by AP n that goes through the k−th path

until reaching fusion centers and µ
(n)
k (W,S) e

(n)
k (P,S) is the required power for this portion

of data to travel through the k−th path. Now, AP n’s power coefficient, denoted by gn (P,S) is

defined to be the energy consumption (Joules/bit) for transmitting 1 bit data from AP n to the

FCs, i.e., we have:

gn (P,S) =

∑Kn
k=1 µ

(n)
k (W,S) e

(n)
k (P,S)

Fn (W,S)
(12)

=
Kn∑
k=1

J(n)
k∏
i=1

s
l
(n)
k,i−1,l

(n)
k,i

J
(n)
k∑
j=1

β
l
(n)
k,j−1,l

(n)
k,j

∣∣∣∣∣∣p
l
(n)
k,j−1

− p
l
(n)
k,j

∣∣∣∣∣∣2 + J
(n)
k −1∑
j=1

ρ
l
(n)
k,j

 . (13)

Note that the term Fn (W,S) is canceled in (12), implying that power coefficient gn (P,S) is

independent of W. The following example shows how to calculate the AP power coefficients.

Example 2. Consider the WSN described in Example 1 and let P = ((0, 0), (0, 1), (1, 0), (1, 1)),

βi,j =1, and ρi=1 for all i ∈ IA and j ∈ IA
⋃
IF . We aim to find AP 1’s power coefficient

g1(P,S). The link energy costs for this network can be calculated as e1,2(P) = e1,3(P) = 2,

e2,3(P)=3, and e2,4(P)=e3,4(P)=1. Note that AP 1’s data goes through the following 3 paths:

L
(1)
1 (S)=1→2→4, L(1)

2 (S)=1→3→4, and L(1)
3 (S)=1→2→3→4. The data rate through the
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above paths are, respectively, µ(1)
1 (W,S)=F1(W,S)×s1,2×s2,4=0.3F1(W,S), µ(1)

2 (W,S)=

F1(W,S)×s1,3×s3,4=0.6F1(W,S), and µ(1)
3 (W,S)=F1(W,S)×s1,2×s2,3×s3,4=0.1F1(W,S).

Moreover, we can calculate the path costs using (11) as follows: e(1)1 (P) = e1,2(P)+e2,4(P) = 3,

e
(1)
2 (P) = e1,3(P) + e3,4(P) = 3, and e

(1)
3 (P) = e1,2(P) + e2,3(P) + e3,4(P) = 6. Then, AP 1’s

power coefficient is g1(P,S) = 0.3× 3 + 0.6× 3 + 0.1× 6 = 3.3.

To derive the necessary condition for an optimal cell partitioning, first, we need to rewrite the

objective function in (8).

Lemma 1: For the AP power coefficient defined in (12), we have:

N∑
n=1

gn (P,S)Rb

∫
Wn

f(ω)dω =
N∑
i=1

[
N+M∑
j=1

βi,j∥pi − pj∥2Fi,j (W,S) +
N∑
j=1

ρjFi,j (W,S)

]
.

(14)

The proof is provided in Appendix A. Using Lemma 1, the objective function is:

D (P,W,S) =
N∑
n=1

∫
Wn

(
ηn∥pn − ω∥2Rb + λgn (P,S)Rb + λρnRb

)
f(ω)dω. (15)

Now, we study the properties of the optimal cell partitioning. For each n ∈ IA, the Voronoi cell

Vn for a deployment P and normalized flow matrix S is defined to be:

Vn(P,S)≜
{
ω :ηn∥pn−ω∥2+λgn(P,S)+λρn ≤ ηk∥pk−ω∥2+λgk(P,S)+λρk,∀k ̸= n

}
. (16)

Ties are broken in the favor of the smaller index to ensure that each Voronoi cell Vn is a Borel

set. For brevity, we write Vn instead of Vn (P,S) when it is clear from the context. The collection

V (P,S) = (V1,V2, · · · ,VN) (17)

is referred to as the generalized Voronoi diagram [7]. Note that in contrast to the regular

Voronoi diagrams, the Voronoi cells defined in (16) can be non-convex, not star-shaped, and even

disconnected. The following proposition indicates that given a deployment P and normalized

flow matrix S, the generalized Voronoi diagram provides the optimal cell partitioning.

Proposition 1: For any deployment P, cell partitioning W, and normalized flow matrix S, we

have:

D (P,W,S) ≥ D (P,V (P,S) ,S) . (18)

The proof is provided in Appendix B.
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Step 2 [optimizing S while P and W are fixed]: Now, given the link costs {ei,j (P)}s and

generated sensing data rate from each cell partition, the total multi-hop power consumption can

be minimized by Bellman-Ford Algorithm [35]. For convenience, we show the functionality

of Bellman-Ford Algorithm by S = R (P,W), i.e., R (P,W) = argminS

[
PT

A (P,W,S) +

PR

A (W,S)
]
. Since the sensors’ power consumption is independent of S, we have:

R(P,W) = argmin
S

PT

S (P,W) + λ
[
PT

A(P,W,S) + PR

A(W,S)
]
= argmin

S
D(P,W,S) .

(19)

Hence, the optimal flow matrix for a given P and W is F (W,R (P,W)).

Step 3 [optimizing P while W and S are fixed]: For notational brevity, we define the point

zi (P,W,S), or zi for short, to be:

zi =
ηiRbvici + λ

(∑N+M
j=1 βi,jFi,jpj +

∑N
j=1 βj,iFj,ipj

)
ηiRbvi + λ

(∑N+M
j=1 βi,jFi,j +

∑N
j=1 βj,iFj,i

) , ∀i ∈ IA (20)

zi =

∑N
j=1 βj,iFj,ipj∑N
j=1 βj,iFj,i

. ∀i ∈ IF (21)

The following theorem provides the necessary conditions for the optimal deployment.

Proposition 2: The necessary conditions for the optimal deployments in heterogeneous multi-

hop WSNs with communication power consumption defined in (8) are

p∗i = z∗i , ∀i ∈ IA
⋃

IF (22)

W∗ = V (P∗,S∗) , (23)

S∗ = R (P∗,W∗) , (24)

where z∗i = zi (P
∗,W∗,S∗) is given by Eqs. (20) and (21).

The proof of Proposition 2 is provided in Appendix C. In what follows, first, we quickly review

the conventional Lloyd Algorithm [36]. Lloyd Algorithm iterates between two steps: (i) Voronoi

partitioning and (ii) Moving each node to the geometric centroid of its corresponding Voronoi

region. Although the conventional Lloyd Algorithm can be used for one-tier quantizers or one-tier

deployment tasks [10], it cannot be applied to WSNs with multi-hop wireless communications.

Based on the properties explored in this section, we propose a Routing-aware Lloyd (RL)
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Algorithm, as outlined in Algorithm 1, to optimize the deployment in static heterogeneous multi-

hop WSNs and minimize the objective function in (8). The proof of convergence for the RL

algorithm is similar to that of other Lloyd-like algorithms [37].

Algorithm 1: Routing-aware Lloyd Algorithm
Result: Optimal deployment P, cell partitioning W, and normalized flow matrix S.
Input: Convergence error threshold ϵ ∈ R+;
do

– Calculate the objective function Dold = D (P,W,S);
1. Update the cell partitioning W according to Eq. (23);
2. Update the normalized flow matrix S using to the Bellman-Ford algorithm;
3. Update the deployment P= (p1, · · · , pN+M) according to Eq. (22);
– Calculate the objective function Dnew = D (P,W,S);

while Dold−Dnew

Dold
≥ ϵ;

Finally, we analyze the time complexity of the RL algorithm. The Bellman-Ford algorithm

runs in τ = O (|IA ∪ IF | × |E|) time for each AP n ∈ {1, · · · , N}, which is also the time needed

to calculate the power coefficient of AP n, i.e., gn. Note that for a fixed number of iterations

and sensor grid size, Eqs. (22), (23), and (24) are dominated by O (Nτ) time complexity; thus,

RL Algorithm runs in O
(
N × (N +M)×

[(
N
2

)
+NM

])
= O (N2(N +M)2) time.

V. OPTIMAL DEPLOYMENT WITH A TOTAL ENERGY CONSTRAINT IN MOBILE WSNS

A. Problem formulation

In Section IV, we considered the scenario in which APs and FCs can be directly placed at the

optimal locations calculated via RL Algorithm. However, here we study mobile heterogeneous

multi-hop WSNs in which each node moves from its initial position to its optimal location

that minimizes the communication power consumption in (8) while the total movement energy

consumption of the network is constrained. More precisely, given the linear model for movement

energy consumption [38], for n ∈ IA
⋃
IF , point n’s movement energy can be modeled as:

En (P) = ζn∥pn − p̃n∥, (25)

where the moving cost parameter ζn depends on point n’s energy efficiency, pn and p̃n are its

destination and initial locations, respectively. Therefore, the total movement energy consumption

of the network is

E (P) =
N+M∑
n=1

En (P) =
N+M∑
n=1

ζn∥pn − p̃n∥. (26)
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Our main objective in this section is to find the optimal node deployment, cell partitioning, and

normalized flow matrix that minimizes the communication power consumption in Eq. (8) while

the total movement energy is limited, i.e., the constrained optimization problem is defined as

minimize
P,W,S

D (P,W,S) , (27)

s.t. E (P) ≤ γ (28)

where γ ≥ 0 is the maximum movement energy consumption of the network.

B. Optimal Deployment

The movement energy in (28) is independent of the cell partitioning and normalized flow

matrix; therefore, the generalized Voronoi diagram and Bellman-Ford Algorithm, represented

in Eqs. (17) and (19), respectively, still provide the optimal cell partitioning and normalized

flow matrix. Therefore, we only need to discuss the optimal deployment for the constrained

optimization problem in Eqs. (27) and (28).

Lemma 2: Let P∗, W∗, and S∗ be the optimal deployment, cell partitioning, and normalized

flow matrix for the constrained optimization problem in Eqs. (27) and (28). We have:

p∗i = δip̃i + (1− δi)× z∗i , ∀i ∈ IA
⋃

IF (29)

where δi ∈ [0, 1] and p̃i is the initial location of point i.

The proof is provided in Appendix D. Lemma 2 states that the optimal location for point i is

on the line connecting its initial position to the point z∗i = zi (P
∗,W∗,S∗). Note that this is

in contrast to the optimal deployment without movement energy constraint in Section IV, i.e.,

p∗i = z∗i , as shown in Proposition 2. The difference is because of the constraint in Eq. (28).

Intuitively, for γ = 0, we have δi = 1 for all i ∈ IA
⋃
IF , i.e., each AP or FC will remain at

its initial position since there is zero total available movement energy. However, for sufficiently

large enough γ, we have δi = 0, i.e., p∗i = z∗i for all i ∈ IA
⋃
IF . In general, APs and FCs can be

classified into two groups based on whether they have positive moving distance or they stand still.

Let Id = {n | ∥pn − p̃n∥ > 0,∀n ∈ IA
⋃
IF} and Is = {n | ∥pn − p̃n∥ = 0,∀n ∈ IA

⋃
IF} be

the set of dynamic and static points, respectively. Below we provide the necessary condition for

the optimal deployment in multi-hop WSNs with total movement energy constraint:
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Proposition 3: Let P∗,W∗, and S∗ be the optimal deployment, cell partitioning, and normal-

ized flow matrix for the constrained optimization problem in Eqs. (27) and (28). Then:

χ∗
n = χ∗

m ≥ χ∗
k, ∀n,m ∈ Id, k ∈ Is (30)

p∗n = p̃n + Γ∗
n × r∗n, ∀n ∈ Id (31)

where r∗n = 1−
max(0,

∑
i∈Id

ζi∥Γ∗
i ∥−γ)

∥Γ∗
n∥×

ψ∗
n
ζn

×
∑
i∈Id

ζ2
i
ψ∗
i

, Γ∗
n = z∗n − p̃n, and ψ∗

n is defined to be

ψ∗
n ≜

ηnRbv
∗
n + λ

[∑N+M
k=1 βn,kF

∗
n,k +

∑N
k=1 βk,nF

∗
k,n

]
, if n ∈ IA

λ
∑N

k=1 βk,nF
∗
k,n, if n ∈ IF

(32)

and the moving efficiency χ∗
n is defined as

χ∗
n =

ψ∗
n∥p∗n − z∗n∥2

ζn∥p∗n − z∗n∥
=
ψ∗
n

ζn
∥p∗n − z∗n∥, ∀n ∈ IA

⋃
IF (33)

to reflect point n’s ability to reduce the communication power consumption by movement.

The proof is provided in Appendix E. Proposition 3 captures the intuition in Lemma 2 that in

an optimal deployment, point n is located on the line connecting its initial position p̃n to the

point z∗n, for all n ∈ IA
⋃

IF . Furthermore, for a sufficiently large enough available movement

energy γ, say γ ≥
∑

i∈Id ζi∥Γ
∗
i ∥, we have p∗n = z∗n for all n ∈ Id which reduces Proposition 3 to

the necessary condition given by Eq. (22) for static WSNs. Based on the necessary conditions

in Proposition 3, we propose a Movement-Efficient Routing-aware Lloyd (MERL) Algorithm,

as outlined in Algorithm 2, to optimize the deployment in heterogeneous multi-hop WSNs with

constrained movement energy and minimize the objective function in Eqs. (27) and (28). The

proof of convergence for the MERL algorithm is similar to that of the RL algorithm [37].

VI. OPTIMAL DEPLOYMENT WITH A NETWORK LIFETIME CONSTRAINT IN MOBILE WSNS

A. Problem formulation

In Section V, we considered the deployment problem with a total movement energy constraint,

which can be seen as a resource allocation problem. In this section, we focus on minimizing

the communication power consumption given a constraint on the network lifetime. Let νn be

the total energy of AP n or FC n and αn be the communication power consumption of point
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Algorithm 2: Movement-Efficient Routing-aware Lloyd Algorithm
Result: Optimal deployment P, cell partitioning W, and normalized flow matrix S.
Input: Initial deployment P̃, convergence error threshold ϵ ∈ R+ ;
do

– Calculate the objective function Dold = D (P,W,S);
1. Update the cell partitioning W according to Eq. (23);
2. Update the normalized flow matrix S using the Bellman-Ford algorithm;
3. Set Id = {1, · · · , N +M} and calculate rn for all n ∈ Id;
4. while ∃n ∈ Id such that rn ≤ 0 do

4.1. Update Id = Id −
⋃
rn≤0 n;

4.2. Update {rn}n∈Id;
end
5. Update pn for all n ∈ Id using Eq. (31);
– Calculate the objective function Dnew = D (P,W,S);

while Dold−Dnew

Dold
≥ ϵ;

n after relocation. To ensure a network lifetime of T after relocation, we should keep at least

αnT energy for communication. As a result, the following condition has to be satisfied:

νn − En (P) ≥ αnT, ∀n ∈ IA
⋃

IF . (34)

Hence, the network lifetime of T can be achieved by setting a maximum individual move-

ment energy consumption for each AP or FC. Here, our main objective is to find the optimal

deployment for the following constrained optimization problem:

minimize
P,W,S

D (P,W,S) (35)

s.t. En (P) ≤ γn, ∀n ∈ IA
⋃

IF (36)

where γn = νn − αnT is the maximum individual movement energy consumption of point n.

B. Optimal Deployment

Here, our goal is to find the optimal deployment P∗, cell partitioning W∗, and normalized

flow matrix S∗ that minimizes the multi-hop communication power consumption while each

individual movement energy consumption is constrained. The following theorem provides the

necessary condition for optimal deployment in the constrained optimization problem in Eqs. (35)

and (36).
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Proposition 4: Let P∗, W∗, and S∗ be the optimal deployment, cell partitioning, and normal-

ized flow matrix for the constrained optimization problem in Eqs. (35) and (36). Then,

p∗n = p̃n + Γ∗
n ×min

(
1,

γn
ζn∥Γ∗

n∥

)
, ∀n ∈ IA

⋃
IF (37)

where Γ∗
n = z∗n − p̃n.

The proof of Proposition 4 is provided in Appendix F. Based on the optimal condition in

Proposition 4, we design the Lifetime-Optimized Routing-aware Lloyd (LORL) Algorithm to

optimize the deployment in heterogeneous multi-hop WSNs with network lifetime constraint.

Given an initial deployment P̃, LORL Algorithm iterates between three steps: (i) update the cell

partitioning W according to Eq. (23); (ii) update the normalized flow matrix S using Bellman-

Ford Algorithm; and (iii) update the deployment P according to Eq. (37). The algorithm continues

until the stop criterion Dold−Dnew
Dold

≥ ϵ is satisfied, where Dold and Dnew are the cost functions in the

previous and current iterations, respectively. The proof of convergence for the LORL algorithm

is similar to that of other Lloyd-like algorithms [37].

VII. EXPERIMENTS

Simulations are carried out for a heterogeneous wireless sensor network consisting of 30 APs

and 3 FCs. We consider a square field of size 10km × 10km, i.e., Ω = [0, 10000]2. Simulations are

performed for two different sensor density functions, a uniform distribution f (ω) = 1∫
Ω dω

= 10−8

and a mixture of Gaussian where sensors are distributed according to:

f(ω)=
1

2
×N

µ(1)
1

µ
(1)
2

,
Σ(1)

1,1 0

0 Σ
(1)
2,2

+1

4
×N

µ(2)
1

µ
(2)
2

,
Σ(2)

1,1 0

0 Σ
(2)
2,2

+1

4
×N

µ(3)
1

µ
(3)
2

,
Σ(3)

1,1 0

0 Σ
(3)
2,2

 ,

where µ(1)
1 = 3, 000, µ(1)

2 = 3, 000, Σ(1)
1,1 = 1.5×106, Σ(1)

2,2 = 1.5×106, µ(2)
1 = 6, 000, µ(2)

2 = 7, 000,

Σ
(2)
1,1 = 2 × 106, Σ

(2)
2,2 = 2 × 106, µ(3)

1 = 7, 500, µ(3)
2 = 2, 500, Σ

(3)
1,1 = 106, Σ

(3)
2,2 = 106. All

homogeneous densely deployed sensors share the transmitter antenna gain of Gtsensor = 1. We

consider a radio bit-rate of Rb = 1Mbps and assume that the wavelength of the carrier signal is

λc = 0.3m. In order for APs and FCs to receive the signal without error, the received power at

each point n ∈ IA
⋃

IF should be greater than some threshold Pthn . Moreover, the transceiver

electronics in each AP n consumes ρn J/bit for digital coding, modulation, and filtering before

signal transmission. Table II summarizes the values of Pthn and ρn for all APs and FCs [16].
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TABLE II: Simulation parameters

minimum received power (nW) electronics energy dissipation (nJ/bit)
Pth1:15 Pth16:30 Pth31 Pth32:33 ρ1:7 ρ8:16 ρ17:30
10 6 6 10 40 50 60

Let us denote the transmitter antenna gain of AP n by Gtn . In addition, for each point n ∈

IA
⋃

IF , let Grn be its receiver antenna gain. Table III summarizes the values of the transmitter

and receiver antenna gains for all nodes [16].

TABLE III: Transmitter and receiver antenna gains

transmitter antenna gain receiver antenna gain
Gt1:7,15:22 Gt8:14,23:30 Gr1:3,8:11,15:18,23:26,31:32 Gr4:7,12:14,19:22,27:30,33

1 2 1 2

Note that parameters ηi and βi,j , for all i ∈ IA and j ∈ IA
⋃
IF , can be calculated using

the explained experimental setup. For example, we have η7 =
Pth7×(4π)2

RbGtsensorGr7λ
2
c
= 10−8×(4π)2

106×1×2×(0.3)2
=

8.77 pJ/bit/m2 and β10,20 =
Pth20×(4π)2

RbGt10Gr20λ
2
c
= 6×10−9×(4π)2

106×2×2×(0.3)2
= 2.63 pJ/bit/m2. For performance

evaluation, 10 initial AP and FC deployments are generated randomly on Ω, i.e., the location

of each node is generated according to a uniform distribution on Ω. The maximum number of

iterations for all algorithms is set to 200 and the Lagrangian multiplier is set to λ = 0.25.

A. Static Heterogeneous Multi-Hop WSNs

We compare the total weighted communication power consumption of our proposed RL

Algorithm with Cluster-Formation (CF) Algorithm [39], Global Algorithm [40], Gradient-SA

(GSA) Algorithm [33], HTTL Algorithm [7], MWCDS Algorithm [41], PSO Algorithm [42],

Rhombus Algorithm [24], and SHMS Algorithm [43]. To reduce the number of hops that data

packets have to travel to reach the fusion centers, the Cluster-Formation algorithm employs

a graph theoretic approach to optimize both the number of clusters and their corresponding

diameters. The Global algorithm deploys network nodes such that the average Euclidean distance

between access points and their corresponding fusion centers is minimized. Starting with a dense

triangular grid deployment, the GSA algorithm first removes those nodes with least coverage;

then, it moves the boundary nodes toward the gradient direction that maximizes the covered

area. For a two-tier hierarchy of APs and FCs, the HTTL algorithm iteratively updates the

deployment, cell partitioning, and connections between APs and FCs while the flow of data
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from each sensor to its corresponding FC is mediated by exactly one access point. MWCDS

Algorithm aims to deploy the minimum number of network nodes such that the resulting network

is both connected and energy efficient. PSO is a population-based iterative algorithm for finding

the optimal deployment and minimizing the non-linear objective function. Rhmobus Algorithm

uses a rhombus-based grid search for an energy-aware deployment that maximizes the coverage

as well. For a given deployment, the SHMS algorithm determines the connections between APs

and FCs such that the maximum energy consumed by each network node is minimized.

The weighted power consumption of Cluster-Formation, Global, GSA, HTTL, MWCDS, PSO,

Rhombus, SHMS, and RL algorithms for the uniform sensor density function are summarized

in Table IV. The RL algorithm outperforms other algorithms and achieves a lower weighted

communication power consumption. Note that although the HTTL algorithm proposed in [7]

deploys nodes based on the necessary conditions of optimality, the network architecture is

restricted to a two-tier hierarchy while the RL algorithm simultaneously optimizes over the

deployment and data routing. As a result, the deployment based on the RL algorithm results in

a WSN that saves about 21% of the energy compared to that of the HTTL Algorithm.

TABLE IV: Weighted power comparison for the uniform sensor density function

CF Global GSA HTTL MWCDS PSO Rhombus SHMS RL
15.49 14.98 17.28 12.80 17.12 19.98 16.21 22.39 10.12

Table V summarizes the weighted communication power consumption of Cluster-Formation,

Global, GSA, HTTL, MWCDS, PSO, Rhombus, SHMS, and RL algorithms for the mixture of

Gaussian sensor density function. The RL algorithm results in a power consumption of 5.58 Watts

and outperforms other methods. Furthermore, the RL algorithm leads to a network architecture

that exhaust its available communication energy in a time period that is longer by about 10% of

that of HTTL Algorithm, the second best algorithm.

TABLE V: Weighted power comparison for the mixture of Gaussian sensor density function

CF Global GSA HTTL MWCDS PSO Rhombus SHMS RL
7.07 6.81 9.49 6.23 9.38 9.97 14.65 16.62 5.58

B. Mobile Heterogeneous Multi-Hop WSNs with a Total Movement Energy Constraint

The underlying assumption in all deployment strategies studied in Section VII-A is that the

optimal locations are calculated offline and then APs and FCs are placed at the corresponding
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positions. However, in many applications, e.g., when the target region is a hostile environment,

static deployment is not feasible. Instead, network nodes are initially deployed in the target

region, e.g., by airdropping them using drones or manual placement in an accessible sub-region

of the field and then each AP or FC moves to its optimal location based on the initial deployment

and available movement energy. When the total available movement energy is limited, which is

the focus of this section, the optimization problem is translated into a resource allocation problem

where the optimal energy supply for each AP or FC is determined such that the resulting total

communication power consumption after optimal deployment is minimized. In Section VII-C,

we study the performance evaluation when the available movement energy is predetermined and

the optimization problem is translated to that of enhancing the network lifetime.

The same experimental setup described at the beginning of Section VII and in Tables II and

III is used for the simulations. Furthermore, Table VI provides the moving cost parameters ζn

for all n ∈ IA
⋃

IF . We consider a total available movement energy of γ = 40, 000 Joules for

the constrained objective function in Eqs. (27) and (28).

TABLE VI: Moving cost parameters (J/m)

ζ1:8 ζ9:22 ζ23:30 ζ31 ζ32 ζ33
2 4 6 4 5 6

We compare the total weighted communication power consumption of our proposed MERL

Algorithm with BCBS Algorithm [44], Lloyd-α Algorithm [12], OMF Algorithm [14], VCOND

Algorithm [28], and VFA Algorithm [13]. BCBS Algorithm augments the iterative procedure of

Lloyd Algorithm to maximize the network’s coverage and minimize network nodes’ movement.

The Lloyd-α algorithm applies a penalty term to the Lloyd algorithm to reduce the movement

steps and save traveling energy while guaranteeing the convergence property. The OMF algorithm

optimizes the movement plan for nodes such that each region in the network has a minimum

number of nodes to relay the data to fusion centers while the sum of network nodes’ traveling

distances is minimized. The VCOND algorithm iteratively partitions the target region according

to the Voronoi diagram and relocates each network node based on the net virtual force coming

from vertices and edges of its corresponding Voronoi cell. The VFA algorithm uses attractive

and repulsive virtual forces on nodes such that not only every two network nodes in the final

deployment maintain a minimum distance from each other, but also the communication distances
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are minimized by avoiding network nodes to be located very far from each other. For a fair

comparison, the same initial deployment is used for all algorithms.

The weighted communication power consumption of BCBS, Lloyd-α, OMF, VCOND, VFA,

and MERL algorithms for the uniform sensor density function are summarized in Table VII.

All algorithms exhausted the available movement energy γ to move the AP and FC nodes from

their initial deployment to their designated optimal locations. The MERL algorithm leads to a

deployment that consumes communication energy in a rate that is almost half of other algorithms.

The superior performance of the MERL algorithm is due to the optimal energy allocation among

APs and FCs, as it is implicit in Eq. (31). Note that if the total movement energy γ is large

enough, e.g., γ ≥
∑N+M

i=1 ζi∥p̃i−z∗i ∥, then the performance of the MERL algorithm will converge

to that of the RL algorithm. However, since the value of γ in our experiments is not large enough,

some APs and FCs will run out of their allocated movement energy and MERL algorithm leads

to a communication power consumption that is larger than that of the RL algorithm in Section

VII-A.

TABLE VII: Weighted power comparison

Sensor Density Function BCBS Lloyd-α OMF VCOND VFA MERL
uniform 24.35 29.12 27.35 27.92 27.85 14.49

mixture of Gaussian 15.94 17.38 17.29 15.32 18.76 7.64

Table VII also summarizes the weighted communication power consumption of BCBS, Lloyd-

α, OMF, VCOND, VFA, and MERL algorithms for the mixture of Gaussian sensor density

function. The MERL algorithm significantly outperforms other methods and leads to a com-

munication power consumption that is less than half of what other algorithms achieve. This is

because the MERL algorithm can optimally adapt to any underlying sensor density function

f(ω) and deploy APs and FCs accordingly, as we studied in Section V.

C. Mobile Heterogeneous Multi-Hop WSNs with a Network Lifetime Constraint

While we studied the performance evaluation of mobile WSNs under a total movement energy

constraint in Section VII-B, here, we focus on enhancing the network lifetime, which necessitates

APs and FCs to have individual movement energy constraints, as formulated in Eqs. (35) and

(36). We use the same experimental setup as described at the beginning of Section VII and in

Tables II, III, and VI for performance evaluation. In addition, Table VIII provides the maximum

individual movement energy consumption γn for all n ∈ IA
⋃

IF .
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TABLE VIII: Movement energy constraints (J)

γ1:8 γ9:22 γ23:30 γ31 γ32 γ33
800 1100 1400 2000 2400 2600

We compare the weighted communication power consumption of our proposed LORL Algo-

rithm with those of BCBS Algorithm, Lloyd-α Algorithm, OMF Algorithm, and VFA Algorithm

described in Section VII-B. For a fair comparison, the same initial deployment as in Section

VII-B is used for all algorithms.

The weighted communication power consumption of BCBS, Lloyd-α, OMF, VCOND, VFA,

and LORL algorithms for the uniform sensor density function are provided in Table IX. The

LORL algorithm outperforms other methods and achieves a significantly lower power consump-

tion. For instance, the LORL algorithm leads to a deployment in which the network consumes

its residual energy with a rate that is less than 70% of that of the VFA algorithm. This in turn

prolongs the network lifetime, which is a prominent factor in wireless sensor networks.

TABLE IX: Weighted power comparison

Sensor Density Function BCBS Lloyd-α OMF VCOND VFA LORL
uniform 28.74 27.64 30.12 29.78 25.24 17.33

mixture of Gaussian 20.21 17.24 20.12 16.55 14.60 9.59

Table IX also summarizes the power consumption of different algorithms for the mixture of

Gaussian sensor density function. LORL Algorithm achieves a power consumption of 9.59 Watts

and outperforms other methods. Fig. 2 shows the final deployment of different algorithms where

APs and FCs are denoted by red squares and black circles, respectively.

The sum of individual movement energies in Table VIII, i.e.
∑N+M

i=1 γi, is equal to the value

of γ in Section VII-B. In other words, Table VIII represents one exemplary distribution of the

total movement energy γ among APs and FCs; however, it is different from the optimal energy

allocation provided by the MERL algorithm in Section VII-B. The results in Tables VII and

IX verify that the MERL algorithm achieves a lower total power consumption compared to the

LORL algorithm although it does not guaranttee any individual power constraint.

VIII. CONCLUSION

In this work, a heterogeneous multi-hop wireless sensor network is discussed where data is

collected from densely deployed sensors and transferred to heterogeneous fusion centers using
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(a) (b) (c) (d) (e) (f)

Fig. 2: Node deployment for different algorithms and the mixture of Gaussian sensor density function. (a) BCBS
(b) Lloyd-α (c) OMF (d) VCOND (e) VFA (f) LORL.

heterogeneous access points as relay nodes. We modeled the minimum communication power

consumption of such networks as an optimization problem and studied the necessary conditions

of optimal deployment under both static and mobile network settings. A novel generalized

Voronoi diagram is proposed to provide the best cell partition for the heterogeneous multi-hop

network. When manual deployment is feasible, the necessary conditions of optimal deployment

are explored under the static network setup and accordingly a Routing-aware Lloyd algorithm

is proposed for deployment. However, when static placement is not possible, the necessary

conditions of the optimal deployment are studied under a mobile network setting where APs

and FCs move from their initial locations to their optimal positions. We consider both total and

individual movement energy constraints and formulate them as resource allocation and lifetime

optimizations, respectively. Based on the derived necessary conditions, we propose Movement-

Efficient Routing-aware Lloyd and Lifetime-Optimized Routing-aware Lloyd algorithms to de-

ploy APs and FCs under total and individual energy constraints, respectively. Simulation results

show that our proposed RL, MERL, and LORL algorithms significantly save communication

power in such networks and provide superior results compared to other methods in the literature.

APPENDIX A

Proof of Lemma 1: The AP power coefficient gn (P,S) defined in Eq. (12) is the power

consumption for transmitting 1 bit data from AP n to the FCs. This includes both the trans-

mission power at each AP, including AP n, on the paths connecting AP n to the FCs, and the

receiver power at each AP, excluding AP n, on the paths connecting AP n to the FCs. Since

Rb

∫
Wn

f(ω)dω is the total amount of data collected by AP n from sensors within the region

Wn in a unit time, the term gn (P,S)Rb

∫
Wn

f(ω)dω is the required communication power for

transmitting the sensory data collected within the region Wn from AP n to the FCs. Hence,

the left-hand-side of Eq. (14) is the required communication power for transmitting the sensory
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data collected within the target region from APs to FCs. This can be decomposed into the

APs’ total transmission power in addition to the required receiver power for the data to reach

FCs from APs. This proves Eq. (14) since the right-hand-side of Eq. (14) can be rewritten as

PT

A +
∑N

i=1

∑N
j=1 ρjFi,j (W,S), i.e., the sum of APs’ total transmission power and the receiver

power for all links (i, j) connecting AP i and AP j. ■

APPENDIX B

Proof of Proposition 1: Using Eq. (15), we have:

D (P,W,S) =
N∑
n=1

∫
Wn

(
ηn∥pn − ω∥2Rb + λgn (P,S)Rb + λρnRb

)
f(ω)dω

≥
N∑
n=1

∫
Wn

min
j

(
ηj∥pj − ω∥2Rb + λgj (P,S)Rb + λρjRb

)
f(ω)dω

=

∫
Ω

min
j

(
ηj∥pj − ω∥2Rb + λgj (P,S)Rb + λρjRb

)
f(ω)dω

=
N∑
n=1

∫
Vn

min
j

(
ηj∥pj − ω∥2Rb + λgj (P,S)Rb + λρjRb

)
f(ω)dω

=
N∑
n=1

∫
Vn

(
ηn∥pn − ω∥2Rb + λgn (P,S)Rb + λρnRb

)
f(ω)dω

= D (P,V (P,S) ,S) . (38)

Hence, the generalized Voronoi diagram provides the optimal cell partitioning for any given

deployment P and normalized flow matrix S. ■

APPENDIX C

Proof of Proposition 2: Eq. (23) is a direct implication of Proposition 1. Eq. (24) is directly

followed from Eq. (19). Here, we prove Eq. (22) for the optimal locations of APs and FCs. First,

we study the shape of the Voronoi regions in (16). Note that the Voronoi regions defined in Eq.

(16) have the same formulation as the generalized Voronoi diagram defined in Eq. (7) in [7],

i.e., both of them can be expressed as Vn = {ω|an∥pn−ω∥2 + bn ≤ ak∥pk−ω∥2 + bk,∀k ̸= n},

where the coefficients ai and bi are constants independent of the value of ω. Therefore, the

same reasoning as in Appendix D in [7] shows that Proposition 1 in [10] holds for the Voronoi

cells defined in Eq. (16) as well. Now, using the parallel axis theorem [45], the heterogeneous

multi-hop communication power consumption can be written as:
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D (P,W,S) =
N∑
n=1

∫
Wn

ηn∥cn − ω∥2Rbf(ω)dω +
N∑
n=1

ηn∥pn − cn∥2Rbvn

+ λ
N∑
i=1

N+M∑
j=1

βi,j∥pi − pj∥2Fi,j (W,S) + λ

N∑
n=1

ρn

[
N∑
i=1

Fi,n (W,S) +Rb

∫
Wn

f(ω)dω

]
, (39)

where vn = v (Wn) and cn are the volume and centroid of the region Wn, respectively. Using

Proposition 1 in [10], since the optimal deployment P∗ should have a zero gradient, we take the

partial derivatives of (39) with respect to AP and FC locations. For each i ∈ IA, we have

∂D
∂p∗i

= 2ηi(p
∗
i − c∗i )Rbv

∗
i + 2λ

N+M∑
j=1

βi,j(p
∗
i − p∗j)F

∗
i,j + 2λ

N∑
j=1

βj,i(p
∗
i − p∗j)F

∗
j,i = 0, (40)

and for each i ∈ IF , we have

∂D
∂p∗i

= 2λ
N∑
j=1

βj,i(p
∗
i − p∗j)F

∗
j,i = 0. (41)

By solving Eqs. (40) and (41), we obtain Eq. (22) and the proof is complete. ■

APPENDIX D

Proof of Lemma 2: Before going through the proof, we state the following lemma:

Lemma 3: Given a set of points qi ∈ R2 and non-negative scalar weights ai for i ∈ {1, · · · , K},

and a scalar m, the geometric locus of the point p ∈ R2 such that the equality

K∑
i=1

ai∥p− qi∥2 = m (42)

holds, is either an empty set, a single point, or a circle centered at the point c =
∑K
i=1 aiqi∑K
i=1 ai

.

Proof: Let p = (px, py) and qi = (qi,x, qi,y). Then, we can rewrite Eq. (42) as(
K∑
i=1

ai

)(
p2x + p2y

)
− 2

(
K∑
i=1

aiqi,x

)
px − 2

(
K∑
i=1

aiqi,y

)
py = m−

K∑
i=1

ai∥qi∥2. (43)

By manipulating both sides, we can rewrite Eq. (43) as follows:px −
K∑
i=1

aiqi,x

K∑
i=1

ai


2

+

py −
K∑
i=1

aiqi,y

K∑
i=1

ai


2

=

m−
K∑
i=1

ai∥qi∥2

K∑
i=1

ai

+

(
K∑
i=1

aiqi,x

)2

+

(
K∑
i=1

aiqi,y

)2

(
K∑
i=1

ai

)2 . (44)
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Hence, the geometric locus of the point p = (px, py) is an empty set or a single point if the right-

hand-side of Eq. (44) is negative or zero, respectively; otherwise, the geometric locus is a circle

centered at the point c =
∑K
i=1 aiqi∑K
i=1 ai

with the radius r =

√
m−

∑K
i=1 ai∥qi∥2∑K
i=1 ai

+
(
∑K
i=1 aiqi,x)

2
+(

∑K
i=1 aiqi,y)

2

(
∑K
i=1 ai)

2 ,

and Lemma 3 is proved.

Corollary 1: If the geometric locus in Lemma 3 is a circle centered at c with radius r, then

for any point p within this circle we have
∑K

i=1 ai∥p− qi∥2 < m, i.e., moving the point p inside

this circle reduces the weighted squared sum in Eq. (42).

Now, assume that there exists at least one AP or FC, say n, for which Eq. (29) in Lemma 2

does not hold for an optimal deployment P∗, cell partitioning W∗, and normalized flow matrix

S∗, i.e., p∗n does not lie on the segment z∗np̃n. We aim to find another deployment such as P′,

W′, and S′ so that E (P′) ≤ γ and D (P′,W′,S′) < D (P∗,W∗,S∗); hence, contradicting the

optimality assumption of P∗, W∗, and S∗, and concluding that Eq. (29) holds for all APs and

FCs. For this purpose, let W′ = W∗, S′ = S∗, and p′i = p∗i for all i ∈ IA
⋃
IF\{n}. We aim to

determine the location p′n accordingly. Using the parallel axis theorem [45], we have:

D (P∗,W∗,S∗) =
N∑
i=1

∫
W ∗
i

ηi∥c∗i − ω∥2Rbf(ω)dω +
N∑
i=1

ηiRbv
∗
i ∥p∗i − c∗i ∥2

+ λ
N∑
i=1

N+M∑
j=1

βi,j∥p∗i − p∗j∥2Fi,j (W∗,S∗) + λPR

A (W∗,S∗) , (45)

where v∗i and c∗i are the volume and centroid of the region W ∗
i , respectively. In what follows,

we assume that n ∈ IA, i.e. point n is an AP. Similar proof can be carried out for n ∈ IF . Note

that Eq. (45) can be split as D (P∗,W∗,S∗) = D1 (P
∗,W∗,S∗) +D2 (P

∗,W∗,S∗), where

D1(P
∗,W∗,S∗)=ηnRbv

∗
n∥p∗n−c∗n∥2 +

N+M∑
j=1

λβn,jF
∗
n,j∥p∗n−p∗j∥2 +

N∑
j=1

λβj,nF
∗
j,n∥p∗n−p∗j∥2, (46)

i.e., D1 includes those terms in Eq. (45) that involve p∗n. In particular, regardless of the point n’s

position, we have D2 (P
∗,W∗,S∗) = D2 (P

′,W′,S′). According to Lemma 3, the geometric

locus of points such as p∗n for which the value of D1 (P
∗,W∗,S∗) in Eq. (46) remains the

same is a circle Φ∗
n centered at the point z∗n = zn (P

∗,W∗,S∗) defined in Eq. (20), with radius

r∗n = ∥z∗n − p∗n∥. Note that if ∥z∗n − p̃n∥ < ∥z∗n − p∗n∥, then setting p′n = p̃n not only leads to the

movement energy E (P′) < E (P∗), but also results in D1 (P
′,W′,S′) < D1 (P

∗,W∗,S∗) since

p′n lies inside Φ∗
n. Therefore, we have D (P′,W′,S′) < D (P∗,W∗,S∗) which is in contradiction
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with the optimality of P∗, W∗, and S∗; hence, we have ∥z∗n − p̃n∥ ≥ ∥z∗n − p∗n∥. Let p̂n be the

intersection point of the circle Φ∗
n and segment z∗np̃n. Since ∥p̃n−p̂n∥ < ∥p̃n−p∗n∥, there exists an

ϵn ∈ R+ such that ∥p̃n−p̂n∥+ϵn < ∥p̃n−p∗n∥. If p′n = p̂n+ϵn× z∗n−p̂n
∥z∗n−p̂n∥

, then not only do we have

E (P′) < E (P∗) since E (P∗)−E (P′) > ζnϵn > 0, but also D1 (P
′,W′,S′) < D1 (P

∗,W∗,S∗)

since p′n lies inside the circle Φ∗
n. Therefore, we have D (P′,W′,S′) < D (P∗,W∗,S∗) which

contradicts the optimality of P∗, W∗, and S∗ and concludes the proof. ■

APPENDIX E

Proof of Proposition 3: If p∗i = z∗i for all i ∈ Id, then Eq. (28) implies that E (P∗) =∑
i∈Id ζi∥Γ

∗
i ∥ ≤ γ; hence, Eq. (31) reduces to the trivial statement p∗n = p̃n + Γ∗

n and the proof

is complete. Therefore, we assume that there exists at least one point, say n, for which p∗n ̸= z∗n.

Note that if any residual movement energy is left in the optimal deployment, i.e., E (P∗) < γ,

then there exists an ϵ ∈ R+ such that E (P∗) + ϵ < γ and pn = p∗n + ϵ× z∗n−p∗n
∥z∗n−p∗n∥

lies inside the

circle centered at z∗n and radius ∥z∗n − p∗n∥. Then, according to Lemma 3 and Corollary 1, by

fixing the cell partitioning, normalized flow matrix and the location of all points except point n,

and placing point n at pn we can achieve a lower total multi-hop communication power without

exhausting the available movement energy, which contradicts the optimality of P∗, W∗, and

S∗. Therefore, p∗n ̸= z∗n implies that E (P∗) = γ. Now, given the optimal deployment P∗, W∗,

and S∗, we construct the deployment P′, W′, and S′ as follows. Let W′ = W∗, S′ = S∗, and

p′i = p∗i for all i ∈ IA
⋃

IF\{m,n}. Let ϵm, ϵn ∈ R+ be small values and define

p′m = p∗m − ϵm × z∗m − p̃m
∥z∗m − p̃m∥

, p′n = p∗n + ϵn ×
z∗n − p̃n
∥z∗n − p̃n∥

. (47)

To satisfy the equality E (P′) = γ, we have ζnϵn = ζmϵm. Now, we calculate the change in the

multi-hop communication power, i.e. D (P′,W′,S′)−D (P∗,W∗,S∗). Assume that point m is

fixed at p∗m and we move point n from p∗n to p′n. Note that this movement only changes the term

D1 defined in Eq. (46); thus, according to Lemma 3 and Eq. (44), this change is proportional

to the difference between the squared radii, i.e.,

∆1 =
[
∥p′n − z∗n∥2 − ∥p∗n − z∗n∥2

]
× ψ∗

n, (48)

where ψ∗
n is defined in Eq. (32). Now, with point n placed at p′n, we move point m from p∗m to

p′m. Similar to the above argument, the term ∆2 defined as
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∆2 =
[
∥p′m − z∗m∥2 − ∥p∗m − z∗m∥2

]
× ψ∗

m (49)

captures the change in D with the assumption that point n was located at p∗n. Now, we take into

account that point n was located at p′n instead of p∗n during point m’s movement.

∆3 = λβn,mF
∗
n,m ×

[(
∥p′n − p′m∥2 − ∥p′n − p∗m∥2

)
−
(
∥p∗n − p′m∥2 − ∥p∗n − p∗m∥2

)]
(50)

= λβn,mF
∗
n,m ×

[ (
∥p′n − p∗m∥2 + ϵ2m − 2ϵm∥p′n − p∗m∥ cos∡p′np∗mp′m − ∥p′n − p∗m∥2

)
−
(
∥p∗n − p′m∥2 − ∥p∗n − p′m∥2 − ϵ2m − 2ϵm∥p∗n − p′m∥ cos∡p∗np′mp̃m

) ]
(51)

= λβn,mF
∗
n,m ×

[
2ϵ2m − 2ϵm (ϵm − ϵn cos θ)

]
(52)

= λβn,mF
∗
n,m ×

[
2
ζm
ζn
ϵ2m cos θ

]
, (53)

where s and θ = ∡z∗nsz
∗
m are the intersection point and the angle between the lines z∗np̃n and

z∗mp̃m, respectively. Note that in Eq. (50), without any loss of generality, we have assumed that

the direction of the flow of data, if any, is from point n to point m. Moreover, Eq. (51) follows

from the law of cosines and Eq. (53) follows from the equation ζnϵn = ζmϵm. Hence, we have:

D (P′,W′,S′)−D (P∗,W∗,S∗) = ∆1 +∆2 +∆3 (54)

=

[
ζ2m
ζ2n
ϵ2m − 2

ζm
ζn
ϵm∥p∗n − z∗n∥

]
× ψ∗

n +
[
ϵ2m + 2ϵm∥p∗m − z∗m∥

]
× ψ∗

m + 2λβn,mF
∗
n,m

ζm
ζn
ϵ2m cos θ.

Due to the optimality of P∗, W∗, and S∗, Eq. (54) should be non-negative, or equivalently:

ϵm

(
ζ2m
ζ2n
ψ∗
n + ψ∗

m + 2λβn,mF
∗
n,m

ζm
ζn

cos θ

)
≥ 2

(
ζm
ζn
ψ∗
n∥p∗n − z∗n∥ − ψ∗

m∥p∗m − z∗m∥
)
. (55)

According to Eq. (32), the term λβn,mF
∗
n,m is included in both ψ∗

n and ψ∗
m, i.e. ψ∗

n ≥ λβn,mF
∗
n,m

and ψ∗
m ≥ λβn,mF

∗
n,m; therefore, we have:

ζ2m
ζ2n
ψ∗
n + ψ∗

m + 2λβn,mF
∗
n,m

ζm
ζn

cos θ ≥ ζ2m
ζ2n
λβn,mF

∗
n,m + λβn,mF

∗
n,m + 2λβn,mF

∗
n,m

ζm
ζn

cos θ (56)

≥ λβn,mF
∗
n,m

(
ζm
ζn

− 1

)2

≥ 0, (57)
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thus, the term inside the parentheses on the left hand side of Eq. (55) is always non-negative.

Note that if the right hand side of Eq. (55) is strictly positive, then we can choose a small

enough ϵm such that the inequality in Eq. (55) is contradicted. Hence, we have:

ζmψ
∗
n∥p∗n − z∗n∥ ≤ ζnψ

∗
m∥p∗m − z∗m∥. (58)

By swapping the indices m and n in Eq. (47) and repeating the same argument, we have:

ζmψ
∗
n∥p∗n − z∗n∥ ≥ ζnψ

∗
m∥p∗m − z∗m∥. (59)

Eqs. (58) and (59) imply that:

ζmψ
∗
n∥p∗n − z∗n∥ = ζnψ

∗
m∥p∗m − z∗m∥. (60)

Note that Eq. (47) indicates that Eq. (58) holds for any n but only for a dynamic index m ∈ Id,

and similarly Eq. (59) holds for any m but only for a dynamic index n ∈ Id. Hence, Eqs. (58)

and (60) imply that χ∗
m ≥ χ∗

n if n ∈ Is,m ∈ Id and χ∗
m = χ∗

n if n,m ∈ Id, and Eq. (30) is

proved. Now, by using Eq. (60) and the equality E (P∗) = γ, we can write:∑
i∈Id

ζi∥Γ∗
i ∥ − γ =

∑
i∈Id

ζi∥p∗i − z∗i ∥ =
∑
i∈Id

ζ2i ψ
∗
n

ζnψ∗
i

∥p∗n − z∗n∥ =
ψ∗
n

ζn
∥p∗n − z∗n∥

∑
i∈Id

ζ2i
ψ∗
i

, (61)

or equivalently:

∥p∗n − z∗n∥ =

∑
i∈Id ζi∥Γ

∗
i ∥ − γ

ψ∗
n

ζn

∑
i∈Id

ζ2i
ψ∗
i

. (62)

Hence, we have:

p∗n = p̃n +
Γ∗
n

∥Γ∗
n∥

(∥Γ∗
n∥ − ∥p∗n − z∗n∥) = p̃n + Γ∗

n

1−
∑

i∈Id ζi∥Γ
∗
i ∥ − γ

∥Γ∗
n∥ ×

ψ∗
n

ζn
×
∑

i∈Id
ζ2i
ψ∗
i

 , (63)

and the proof is complete. ■

APPENDIX F

Proof of Proposition 4: If p∗n = z∗n in an optimal deployment P∗, W∗, and S∗, then Eq.

(36) implies that En (P∗) = ζn∥Γ∗
n∥ ≤ γn. Therefore, Eq. (37) reduces to the trivial statement

p∗n = p̃n + Γ∗
n and the proof is complete. Hence, we assume that p∗n ̸= z∗n. Now, if any residual

movement energy is left in point n, i.e. if En (P∗) < γn, then there exists an ϵn ∈ R+ such that
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En (P
∗) + ϵn < γn and the point pn = p∗n + ϵn × z∗n−p∗n

∥z∗n−p∗n∥
lies inside the circle centered at z∗n

with radius ∥z∗n − p∗n∥. Then, according to Lemma 3, by fixing the cell partitioning, normalized

flow matrix and the location of all APs and FCs except point n, and placing point n at pn,

we can achieve a lower total multi-hop communication power without exhausting the available

movement energy in point n, which contradicts the optimality of P∗, W∗, and S∗. Therefore,

p∗n ̸= z∗n implies that En (P∗) = γn, that is

ζn∥p∗n − p̃n∥ = γn. (64)

According to Lemma 2, we have

p∗n = δnp̃n + (1− δn) z
∗
n, (65)

where δn ∈ [0, 1], which indicates that

∥p∗n − p̃n∥ = (1− δn) ∥z∗n − p̃n∥. (66)

Eqs. (64) and (66) imply that δn = 1− γn
ζn∥z∗n−p̃n∥

. Therefore, Eq. (65) can be written as:

p∗n =

(
1− γn

ζn∥z∗n − p̃n∥

)
p̃n +

(
γn

ζn∥z∗n − p̃n∥

)
z∗n = p̃n +

(
γn

ζn∥z∗n − p̃n∥

)
(z∗n − p̃n) (67)

= p̃n +
γn

ζn∥Γ∗
n∥

Γ∗
n. (68)

Eqs. (64) and (65) imply that γn = ζn∥p∗n − p̃n∥ ≤ ζn∥z∗n − p̃n∥ = ζn∥Γ∗
n∥, i.e., γn

ζn∥Γ∗
n∥

≤ 1.

Thus, Eq. (68) can be rewritten as p∗n = p̃n +min
(
1, γn

ζn∥Γ∗
n∥

)
Γ∗
n which concludes the proof. ■
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