UC Berkeley UC Berkeley Previously Published Works

Title

Evidence for quantum spin liquid behaviour in single-layer 1T-TaSe2 from scanning tunnelling microscopy

Permalink https://escholarship.org/uc/item/0571n4tg

Journal Nature Physics, 17(10)

ISSN 1745-2473

Authors

Ruan, Wei Chen, Yi Tang, Shujie <u>et al.</u>

Publication Date

2021-10-01

DOI

10.1038/s41567-021-01321-0

Peer reviewed

1	Evidence for quantum spin liquid behavior in single-layer 1T-TaSe ₂
2	from scanning tunneling microscopy
3	
4	Wei Ruan ^{1,2,†} , Yi Chen ^{1,2,†} , Shujie Tang ^{3,4,5,6,7} , Jinwoong Hwang ^{5,8} , Hsin-Zon Tsai ^{1,10} , Ryan L.
5	Lee ¹ , Meng Wu ^{1,2} , Hyejin Ryu ^{5,9} , Salman Kahn ¹ , Franklin Liou ¹ , Caihong Jia ^{1,2,11} , Andrew
6	Aikawa ¹ , Choongyu Hwang ⁸ , Feng Wang ^{1,2,12} , Yongseong Choi ¹³ , Steven G. Louie ^{1,2} , Patrick
7	A. Lee ¹⁴ , Zhi-Xun Shen ^{3,4} , Sung-Kwan Mo ⁵ , Michael F. Crommie ^{1,2,12,*}
8	
9	¹ Department of Physics, University of California, Berkeley, California 94720, USA
10 11	² Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
12 13	³ Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, California 94025, USA
14 15	⁴ Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University, Stanford, California 94305, USA
16 17	⁵ Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
18 19 20	⁶ CAS Center for Excellence in Superconducting Electronics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
21 22	⁷ School of Physical Science and Technology, Shanghai Tech University, Shanghai 200031, China
23	⁸ Department of Physics, Pusan National University, Busan 46241, Korea
24	⁹ Center for Spintronics, Korea Institute of Science and Technology, Seoul 02792, Korea
25 26 27 28	¹⁰ International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Engineering Technology Research Center for 2D Material Information Function Devices and Systems of Guangdong Province, Shenzhen University, Shenzhen 518060, China
29 30 31	¹¹ Henan Key Laboratory of Photovoltaic Materials and Laboratory of Low-dimensional Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004, China
	1

¹²Kavli Energy Nano Sciences Institute at the University of California Berkeley and the
 Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

¹³Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA

35 ¹⁴Department of Physics, Massachusetts Institute of Technology, Cambridge MA 02139, USA

These authors contributed equally to this work.

37 **e-mail: crommie@berkeley.edu*

38

39 Abstract

40 Two-dimensional triangular-lattice antiferromagnets are predicted under some 41 conditions to exhibit a quantum spin liquid ground state with no energy barrier to creating 42 emergent, fractionalized spinon excitations that carry spin but no charge. Materials that 43 realize this kind of spin liquid are expected to have low-energy behavior described by a 44 spinon Fermi surface. Directly imaging the resulting spinons, however, is difficult due to 45 their chargeless nature. Here we use scanning tunneling spectroscopy to image density waves 46 consistent with predictions of spinon density modulation arising from a spinon Fermi surface 47 instability in single-layer 1T-TaSe₂. We confirm the existence of a triangular lattice of 48 localized spins in this material by contacting it to a metallic 1H-TaSe₂ substrate and 49 measuring the Kondo effect. Spectroscopic imaging of isolated single-layer 1T-TaSe₂ reveals 50 long-wavelength super-modulations at Hubbard band energies, consistent with the predicted 51 behavior of itinerant spinons. These super-modulations allow direct experimental 52 measurement of the spinon Fermi wavevector, in good agreement with theoretical predictions 53 for a two-dimensional quantum spin liquid. 54

55	Since the first predictions by Anderson in 1973 ¹ , quantum spin liquids (QSLs) have
56	been intensely investigated ²⁻⁷ as candidates to host exotic quantum phenomena such as
57	fractionalized elementary excitations ²⁻⁴ , topological order ^{4,5} , and unconventional
58	superconductivity ^{6,7} . QSLs are a novel state of matter predicted to arise in quantum
59	antiferromagnets where geometric frustration and quantum fluctuations are strong enough to
60	prevent a magnetically ordered ground state ²⁻⁴ . A key to understanding the QSL state is its
61	low-energy physics, often dominated by emergent fractional fermions (termed spinons) that
62	carry spin-1/2 but no charge ²⁻⁴ . Many QSL models are based on two-dimensional (2D)
63	triangular-lattice Mott insulators ²⁻⁴ , and several material candidates incorporating coupled 2D
64	layers have been found to exhibit behavior consistent with spinon excitations ⁸⁻¹⁰ . It remains
65	debatable whether the spinons in such systems are gapped or not ^{4,8-10} , but increasing
66	evidence ¹⁰ suggests the existence of gapless spinons that exhibit a Fermi surface ^{2-4,8-13} .
67	Imaging the itinerant spinons, however, is challenging due to their fractional and
68	chargeless nature. Some predictions suggest that the spinon Fermi surface should host
69	instabilities leading to spinon spatial patterns ¹³ that can, in principle, be imaged by single-
70	particle scanned probes ¹⁴ . Bulk 1T-TaS ₂ has been suggested as one such QSL candidate ¹⁵⁻²¹ .
71	This layered material is believed to exhibit a Mott insulator ground state that arises
72	cooperatively from a star-of-David charge density wave (CDW) ²²⁻²⁴ . Each star-of-David
73	cluster contributes one localized spin, thus forming a triangular spin lattice. Some evidence
74	for QSL behavior in bulk $1T$ -TaS ₂ has been found, such as the absence of magnetic order
75	down to millikelvin temperature ¹⁷⁻¹⁹ and a linear term in the thermal conductivity ^{20,21} , but
76	QSL physics here is complicated by interlayer coupling. This is because interlayer coupling
77	can lead to spin delocalization and/or interlayer spin-singlet formation, which are detrimental
78	to forming a gapless QSL state ^{15,19,25-27} .

Here we report experimental evidence supporting the existence of a QSL-based

80	spinon Fermi surface in single-layer (SL) 1T-TaSe ₂ through the use of scanning tunneling
81	microscopy/spectroscopy (STM/STS). SL 1T-TaSe ₂ is a newly discovered 2D Mott insulator
82	that exhibits a low-temperature star-of-David CDW phase similar to bulk $1T-TaS_2$ (i.e., the
83	star-of-David cells are centered at Ta atoms - Supplementary Fig. 1), but which does not
84	suffer from the disadvantages of interlayer coupling between 1T layers ^{28,29} . We report two
85	experimental findings that support the presence of a QSL in SL 1T-TaSe ₂ . First we
86	demonstrate the existence of localized spins on a triangular lattice in SL 1T-TaSe ₂ through
87	the observation of a Kondo resonance at the Fermi level (E_F) when SL 1T-TaSe ₂ is placed in
88	contact with metallic 1H-TaSe ₂ . Next we show evidence for a QSL-based spinon Fermi
89	surface subject to a Fermi surface instability in isolated SL 1T-TaSe ₂ through the observation
90	of long-wavelength super-modulations in the electronic local density of states (LDOS) at the
91	Hubbard band energies. Such wave patterns are unexpected in an insulator but occur naturally
92	in the presence of a spinon Fermi surface. The ability to access fractional spinon behavior via
93	a single-particle probe (i.e., STM) arises from the decomposition of injected electrons into
94	spinons (chargeless spin-1/2 fractional particles) and chargons (spinless charged fractional
95	particles) ^{14,30} . By imaging spinon-induced LDOS super-modulations we are able to directly
96	determine the spinon Fermi wavevector ($k_{\rm F}$), in good agreement with theoretical
97	predictions ^{15,16} for a 2D QSL.

98 Kondo resonance in a 1T/1H TaSe₂ vertical heterostructure

SL TaSe₂ films were grown on epitaxial bilayer graphene (BLG) terminated 6HSiC(0001) substrates and also on cleaved graphite surfaces via molecular beam epitaxy
(MBE)^{29,31}. A single layer of TaSe₂ contains one Ta atomic layer sandwiched between a pair
of Se atomic layers, with each Ta atom coordinated by six Se atoms (Fig. 1a). The Se cage
forms an octahedron in the metastable 1T-phase and a trigonal prism in the stable 1H-phase.
Coexisting 1T and 1H phases were grown via MBE in the SL limit under controlled growth

105	conditions, as shown by our STM images (Fig. 1b). Atomically-flat 1T and 1H SL islands can
106	easily be distinguished as seen by close-up images of both phases in the insets to Fig. 1b
107	which exhibit a triangular $\sqrt{13} \times \sqrt{13}$ star-of-David CDW pattern for the 1T-phase ²⁹ and a 3
108	\times 3 CDW pattern for the 1H-phase ³¹ . Vertical heterostructures composed of a single 1T layer
109	on top of a single 1H layer (1T/1H) are observed to display the star-of-David CDW pattern in
110	the top layer and the 3×3 CDW in the bottom layer (Fig. 1b and Supplementary Fig. 2b).
111	We verified the electronic structure of the different TaSe ₂ phases by measuring STM
112	differential conductance (dI/dV) (which reflects surface electronic LDOS) as a function of
113	sample bias voltage (V_b). dI/dV spectra acquired on metallic SL 1H-TaSe ₂ islands show finite
114	LDOS at $E_{\rm F}$ accompanied by a slight suppression due to CDW formation (Fig. 2a green
115	curves), consistent with previous measurements ³¹ . dI/dV spectra acquired on insulating SL
116	1T-TaSe ₂ islands on BLG/SiC, on the other hand, show a Mott gap (Fig. 2a red curves), also
117	consistent with previous measurements ²⁹ . Here the LDOS peak near $V_{\rm b}$ = -0.3 V is identified
118	as the lower Hubbard band (LHB) and the upper Hubbard band (UHB) corresponds to the
119	peaks near $V_b = 0.2 \text{ V} (\text{UHB}_1)$ and $V_b = 0.6 \text{ V} (\text{UHB}_2)$ (these are split due to reduced
120	screening in 2D ²⁹). The electronic structure of both SL 1T and 1H phases was also identified
121	using angle-resolved photoemission spectroscopy (ARPES) (Supplementary Fig. 3b),
122	confirming the coexistence of both phases.
123	dI/dV spectra acquired on 1T/1H vertical heterostructures are very different from
124	either of the bare SL spectra at the Hubbard band energy scale. The heterostructure spectra
125	reveal a pronounced zero bias peak (ZBP) that is absent from single layers (Fig. 2a blue
126	curves) and which cannot be explained by doping ³²⁻³⁵ or strain (Supplementary Note 2.1).
127	The ZBP was found to persist in every star-of-David cell (Supplementary Fig. 2). We identify
128	the ZBP as a Kondo resonance ^{36,37} , which is expected to arise when a local spin (from the 1T
129	layer) couples to itinerant electrons in a metal (from the 1H layer) ³⁸ (the absence of a Kondo

130 resonance for SL 1T-TaSe₂ on BLG is due to BLG's low carrier density and poor coupling to 131 the 1T layer (Supplementary Note 2.2)). To test the Kondo hypothesis we examined the ZBP 132 feature over the temperature range 5 K $\leq T \leq$ 70 K, as plotted in Fig. 2b. The ZBP gradually 133 broadens with increased temperature by an amount that cannot be accounted for by pure 134 thermal broadening, but is well-fit by a thermally-convolved Fano line shape (Supplementary 135 Note 2.3 and Supplementary Fig. 2d, e) with an intrinsic temperature-dependent width $\Gamma(T)$. 136 The intrinsic resonance width as a function of temperature (T) is observed to follow the wellknown Kondo expression³⁷ 137

138
$$\Gamma(T) = \sqrt{(\pi k_{\rm B} T)^2 + 2(k_{\rm B} T_{\rm K})^2} \#(1)$$

where $k_{\rm B}$ is the Boltzmann constant, yielding an estimated Kondo temperature of $T_{\rm K} = 57 \pm 3$ 139 140 K (Fig. 2c, red dashed line) and a resultant Kondo-coupling of $J_{\rm K} \approx 0.2$ eV (Supplementary 141 Note 2.4). The observation of the Kondo resonance peak in every star-of-David CDW cell 142 suggests the existence of localized spins in isolated SL 1T-TaSe₂ that are arranged in a 143 triangular lattice (Fig. 1c) (this behavior is consistent with the typical lateral extension of Kondo peaks (which is on the order of 1 nm^{39}), as well as with the coherence temperature of 144 145 the 1T/1H Kondo lattice being lower than the STM base temperature of 5 K (Supplementary 146 Note 2.4)). Measuring magnetism in single-layer materials via more direct methods is 147 challenging. For example, we attempted to probe magnetism in SL 1T-TaSe₂ using X-ray 148 magnetic circular dichroism but this yielded no observable magnetization beyond the noise 149 level (Supplementary Fig. 4).

150 Super-modulations in single-layer 1T-TaSe₂

151 We explored possible QSL behavior in isolated single layers of 1T-TaSe₂ (i.e., that

are supported by BLG/SiC rather than the metallic 1H-TaSe₂ phase) by characterizing long-

153 wavelength super-modulations in the real-space electronic structure of this triangular spin

154 lattice (the Kondo effect plays no significant role for this material combination

155	(Supplementary Note 2.2)). Measurements were performed on SL 1T-TaSe ₂ islands like the
156	one shown in Fig. 3a which exhibit dI/dV spectra characteristic of a Mott insulator (Fig. 3b).
157	Fig. 3c-g shows constant-height dI/dV maps acquired at different energies in the area outlined
158	by a yellow dashed square in Fig. 3a, while Fig. 3h-l reveals the corresponding Fourier
159	transform (FT) of each dI/dV map (see Supplementary Fig. 5 for FT images without labels).
160	The star-of-David CDW pattern dominates the empty-state LDOS for energies above the
161	UHB ²⁹ as seen by the dI/dV map at $V_b = 1.0$ V in Fig. 3c and its FT in Fig. 3h. Here the CDW
162	triangular lattice yields 6-fold symmetric FT peaks marked by red circles and labeled as the
163	primary reciprocal lattice vectors \mathbf{b}_i ($1 \le i \le 6$). These define the first Brillouin zone of the
164	star-of-David CDW (red hexagon). No other periodicities are seen at this energy.
165	New longer-wavelength super-modulations emerge at lower energies closer to the
166	Hubbard band energies (i.e., UHB ₂ , UHB ₁ , and LHB). At energies near UHB ₂ ($V_b = 0.62$ V),
167	for example, a new super-modulation is clearly seen in the real-space image of Fig. 3d as
168	bright patches of enhanced LDOS (see also Supplementary Fig. 6d). This structure
169	corresponds to a triangular grid rotated by 30° from the CDW lattice with an incommensurate
170	lattice constant slightly larger than $\sqrt{3}a$ (Supplementary Fig. 6) where <i>a</i> is the CDW lattice
171	constant. This incommensurate super-modulation (ICS) is best seen in Fig. 3i (the FT of Fig.
172	3d) which shows new peaks marked by blue circles along the Γ -K directions inside the CDW
173	Brillouin zone. The ICS wavevector, \mathbf{q}_{ICS} , can be written in terms of the CDW reciprocal
174	lattice vectors as $\mathbf{q}_{\text{ICS}} = q_{\text{ICS}}(\mathbf{b}_1 + \mathbf{b}_2)$ where $q_{\text{ICS}} = 0.241 \pm 0.009 (q_{\text{ICS}}$ is obtained from
175	Gaussian fits of FTs acquired on 10 different islands with 5 different tips - Supplementary
176	Fig. 7).
177	The ICS pattern is also observed when energy is lowered further to UHB ₁ , as seen by

the d*I*/d*V* map at $V_b = 0.2$ V (Fig. 3e) and corresponding FT (Fig. 3j). The ICS is often

179	obscured in real space images due to mixing with the CDW pattern (Supplementary Note 1),
180	but its FT peaks are easily resolved from the CDW wavevectors (Fig. 3j). The ICS persists as
181	energy is lowered to the LHB as seen in the dI/dV map at $V_b = -0.18$ V (Fig. 3f) which yields
182	FT peaks at \mathbf{q}_{ICS} (Fig. 3k). The filled-state LHB measurement, however, differs from the
183	empty-state UHB measurements in that it also exhibits a short-range commensurate super-
184	modulation (CS) of wavelength $\sqrt{3}a$ that yields broad FT peaks at the K-points of the CDW
185	Brillouin zone (green circles in Fig. 3k - see also Supplementary Fig. 8). Both the ICS and CS
186	disappear at energies below the LHB where only the star-of-David CDW remains as shown
187	by the dI/dV map at $V_b = -0.8$ V (Fig. 3g) and its corresponding FT (Fig. 3l).
188	The complete energy dependence of the super-modulations over the energy range -1V
189	$< V_{\rm b} < 1.5$ V is shown in Fig. 4a and b (Supplementary Figs. 9 and 10 show additional data at
190	selected energies). Here the energy-dependent FT amplitude along the Γ -K direction (black
191	dashed line in the inset to Fig. 4a) as a function of wavevector $\mathbf{q} = q(\mathbf{b}_1 + \mathbf{b}_2)$ shows three
192	main features: (i) the CDW reciprocal lattice vector $\mathbf{b}_1 + \mathbf{b}_2$ ($q = 1$) over a wide energy range
193	(black dashed ovals), (ii) the CS ($q = 1/3$) in the filled-state LHB (green dashed oval), and (iii)
194	the ICS ($q = q_{ICS} \approx 1/4$) in both the LHB and UHB regimes (blue dashed ovals). We observe
195	that the ICS wavevector is independent of energy, but its amplitude is not. To better visualize
196	the energy dependence of the ICS amplitude, its strength is defined as the ICS FT peak
197	amplitude $\rho(E, \mathbf{q}_{\text{ICS}})$ normalized by the FT peak amplitude $\rho(E, \mathbf{q} = 0)$ (equivalent to the
198	spatially averaged surface LDOS). Fig. 4b shows that this ratio, $ \rho(E, \mathbf{q}_{\text{ICS}})/\rho(E, \mathbf{q} = 0) $ (blue
199	dots), is small at all energies except for the LHB and UHB regimes (a SL 1T-TaSe ₂ dI/dV
200	spectrum is plotted for reference (black line)). The temperature dependence of the ICS
201	amplitude (Supplementary Fig. 11) shows that it decreases as temperature is raised and
202	completely vanishes by $T = 77$ K, whereas the star-of-David CDW remains even up to room

203 temperature.

204	In order to investigate possible substrate effects on the behavior of the observed
205	super-modulation, SL 1T-TaSe $_2$ was also grown on cleaved graphite (HOPG) via MBE and
206	characterized by STM/STS. These samples also exhibit star-of-David CDW order and Mott
207	insulating behavior similar to films grown on BLG/SiC as shown by the STM images and
208	dI/dV spectra of Supplementary Fig. 12. STM images acquired in the LHB of SL 1T-
209	TaSe ₂ /HOPG and their FTs show the same ICS pattern as seen for SL 1T-TaSe ₂ /BLG/SiC
210	(Supplementary Fig. 12d and e). However, an additional 2×2 super-modulation (with
211	respect to the CDW lattice) is sometimes seen for SL 1T-TaSe ₂ /HOPG in the LHB that has
212	FT peaks near the M points (Fig. 5d and Supplementary Fig. 12f-k) (this was seen for 2 out of
213	11 islands). We refer to this new super-modulation wavevector as \mathbf{q}_{M} . \mathbf{q}_{ICS} and \mathbf{q}_{M} were never
214	simultaneously observed on the same SL 1T-TaSe ₂ /HOPG island.
215	Relationship between super-modulations and QSL behavior
216	Our experimental results support the hypothesis that SL 1T-TaSe ₂ is a 2D QSL. The

217 first piece of evidence is that SL 1T-TaSe₂ contains a triangular lattice of localized spins, an 218 essential ingredient for a QSL. This evidence is provided by our observation of the Kondo 219 effect in 1T-layers supported by a 1H-layer, which implies that each star-of-David in isolated 220 SL 1T-TaSe₂ contains a single quantum spin (such Kondo screening does not occur when 1T-221 layers are supported by graphene (Supplementary Note 2.2)). The second piece of evidence is 222 the long-wavelength super-modulations that we observe in SL 1T-TaSe₂ (when it is supported 223 by graphene) via STS imaging. These periodicities lie at the precise energies and wavevectors 224 expected for a QSL, as discussed below.

225 Before describing how these super-modulations are explained by QSL considerations, 226 however, we first rule out possible alternative explanations. The first alternative possibility is 227 electronic quasiparticle interference (QPI). Our observed ICS pattern is inconsistent with QPI

228	because its wavelength is energy independent over the Hubbard bandwidths. There are also
229	no significant electronic structure features at the Hubbard band edges that might induce a QPI
230	signal at \mathbf{q}_{ICS} (Supplementary Fig. 13). The second alternative possibility is a structural
231	distortion such as a moiré pattern and/or a surface reconstruction. This explanation is unlikely
232	because the observed super-modulations exist only over very specific energy ranges
233	involving the Hubbard bands, suggesting that they are electronic and/or spin-based
234	phenomena. To further exclude moiré patterns involving complex BLG/SiC reconstructions
235	we point to the fact that SL 1T-TaSe ₂ /HOPG exhibits the same ICS modulation as SL 1T-
236	TaSe ₂ /BLG/SiC (Supplementary Fig. 12). This is significant because HOPG has no
237	reconstruction and cannot combine with 1T-TaSe ₂ to yield an ICS moiré pattern. We
238	additionally see no evidence of the super-modulation in low-energy electron diffraction
239	(LEED) patterns ²⁹ , and no evidence that it is a strain effect (Supplementary Note 3.1).
240	Reconstruction of the star-of-David CDW (i.e., subharmonic phonon softening) is also
241	unlikely since the star-of-David CDW is accounted for by <i>ab initio</i> calculations that show no
242	ICS distortion ⁴⁰ , and the temperature dependences of the ICS and the CDW are very different
243	(Supplementary Fig. 11). The last alternative possibility we will mention is Peierls-type or
244	correlation-driven charge order. The former typically requires an electron Fermi surface
245	while the latter usually appears at much lower energy scales than the Hubbard bands ³² . Such
246	behavior is inconsistent with the ICS observed in our system and has no reasonable
247	connection to the new periodicities seen here (i.e., \mathbf{q}_{ICS} and \mathbf{q}_{M}).
248	The presence of a QSL-based spinon Fermi surface, on the other hand, very naturally
249	explains both the energy-dependence and wavevectors of the \mathbf{q}_{ICS} and \mathbf{q}_{M} super-modulations
250	that we observe in SL 1T-TaSe ₂ . The starting point here is that our system hosts a QSL state

251 with a half-filled spinon band. This idea is supported by density matrix renormalization group

252	(DMRG) calculations based on the triangular-lattice <i>t</i> - <i>J</i> model with a ring exchange term that
253	simulates the Hubbard model near a Mott transition ¹⁶ . In these calculations the spin-
254	correlation peaks in the Γ -M directions are missing ¹⁶ which suggests that a partial gap opens
255	at the spinon Fermi wavevector $k_{\rm F}$ along the Γ -M directions due to a Fermi surface instability
256	(the calculations, however, don't reveal the precise source of the instability - Fig. 5a). The
257	value of the predicted spinon $k_{\rm F}$ comes from the spinon band structure which is modeled
258	using a zero-flux mean-field tight-binding Hamiltonian ¹⁰ with nearest-neighbor spinon
259	hopping. This yields a value of the spinon Fermi wavevector in the Γ -M direction of $k_{\rm F} \approx$
260	0.375 reciprocal lattice units (r.l.u.) (inclusion of next-nearest-neighbor hopping does not
261	significantly alter $k_{\rm F}$ – see Supplementary Note 3.2 and Supplementary Fig. 14).
262	The predicted instability of the spinon Fermi surface implies the existence of primary
263	order wavevectors $\mathbf{P}_i = (1 - 2k_F)\mathbf{b}_i \approx 0.249\mathbf{b}_i$ that couple the gapped spinon Fermi surface
264	regions in an extended zone scheme as shown in Fig. 5 (see red arrows in Fig. 5a and red dots
265	in Fig. 5b). The absence of experimental LDOS super-modulations at these predicted
266	wavevectors (Fig. 5c, d), however, suggests that the spinon Fermi surface instability is not a
267	spinon density wave. Other candidates for the spinon Fermi surface instability, such as a
268	spinon pair density wave ^{13,41-43} or a spinon spin density wave, are more consistent with our
269	experiment since they cannot be imaged directly by conventional STM because they reflect
270	spatial modulations in either the spinon pair channel (in the case of spinon pair density wave)
271	or the pure spin channel (in the case of spinon spin density wave). However, a composite
272	spinon density wave that is observable by conventional STM can be induced at higher
273	harmonics of the primary \mathbf{P}_i 's. This can be rationalized in a straightforward manner from
274	either a scattering picture or a Landau formulation ^{44,45} (Supplementary Notes 3.3, 3.4, and
275	Supplementary Fig. 15).

276 We find that although the primary \mathbf{P}_i 's do not coincide with our observed super-277 modulation wavevectors, their higher harmonics (labeled \mathbf{Q}_i and \mathbf{Q}'_i in Fig. 5b) match our experimental super-modulations quite well. For example, the theoretical harmonics \mathbf{Q}_i = 278 279 $\mathbf{P}_i + \mathbf{P}_{i+1} \approx 0.249 (\mathbf{b}_i + \mathbf{b}_{i+1})$ match our experimentally measured super-modulations at 280 $\mathbf{q}_{\text{ICS}} = (0.241 \pm 0.009)(\mathbf{b}_i + \mathbf{b}_{i+1})$ (Fig. 5c), while the theoretical harmonics $\mathbf{Q}'_i = 2\mathbf{P}_i$ 281 match our experimentally measured super-modulations at \mathbf{q}_{M} (Fig. 5d). Our experimental 282 observation of the predicted harmonics at both Q_i and Q'_i strongly suggests the existence of a 283 hidden primary wavevector \mathbf{P}_i and points to a spinon Fermi surface subject to instability at \mathbf{P}_i 284 in SL 1T-TaSe₂.

285 If we work backwards and compare our measured value of $\mathbf{q}_{\text{ICS}} = q_{\text{ICS}}(\mathbf{b}_1 + \mathbf{b}_2)$ to the theoretically predicted composite spinon density wave vectors $\mathbf{Q}_i = \mathbf{P}_i + \mathbf{P}_{i+1}$ using 286 $\mathbf{P}_i = (1 - 2k_F)\mathbf{b}_i$ then we find that the spinon Fermi wavevector can be written as $k_F =$ 287 288 $(1 - q_{\rm ICS})/2$. This leads to an experimental value of $k_{\rm F} = (0.380 \pm 0.005)$ r.l.u., in good 289 agreement with the theoretically predicted value of $k_{\rm F} = 0.375$ r.l.u. This value of $k_{\rm F}$ is also 290 consistent with our ARPES data which shows enhanced intensity centered at Γ that greatly 291 weakens for in-plane momenta beyond $k_{\rm F}$ (Supplementary Fig. 3). Our observed temperature 292 dependence of the ICS feature is also consistent with this physical picture since it suggests a 293 spinon Fermi surface instability transition at a temperature of $T \sim 60$ K (Supplementary Fig. 294 11).

While the periodicities of our experimental super-modulations are well-explained by the QSL-based spinon scenario described above, a remaining question is how an STM that works by injecting charged particles (i.e., electrons) into a material can observe particles that have no charge (i.e., spinons). The answer lies in the process of fractionalization, whereby strongly correlated electrons in a QSL are predicted to separate into spinons (which have spin 300 and no charge) and chargons (which have charge and no spin). Due to constraints in the total 301 occupation of spinons and chargons, modulation of the spinon density can induce a small density modulation of physical charge¹⁴. However, an even stronger effect occurs in the 302 303 tunneling process since an electron injected into the QSL UHB (or removed from the LHB) 304 will fractionalize into (or recombine from) a spinon and a chargon (see sketch in Fig. 4c and 305 d). The tunneling probability thus depends on both the spinon wavefunction and the chargon 306 wavefunction, and so the tunneling rate of an electron at a particular energy can be expressed 307 as a convolution of spinons and chargons that sum to the right energy, as done previously to interpret ARPES data^{30,46} (Supplementary Note 3.5). Spatially periodic spinon density due to 308 309 modulations from a spinon Fermi surface instability should thus modulate quasiparticle tunnel rates at the Hubbard band energies^{11-13,16} (Supplementary Note 3.5 and Supplementary 310 311 Fig. 16). Our experimental observation of long-wavelength super-modulations confined to 312 Hubbard band energies (Fig. 4a and b) supports this proposed mechanism whether the super-313 modulations are thought to arise from a composite order picture or from scattering of spinons 314 (both of which are essentially equivalent as described in Supplementary Note 3.3 and 3.4). 315 Despite the agreement of our experimental results with the existence of a QSL spinon 316 Fermi surface, some mysteries remain. For instance, the P_i vectors are also second harmonic 317 wavevectors of themselves (Supplementary Fig. 15b), and so their absence in our experiment 318 must be explained. One possible explanation is that this is a consequence of small structure 319 factors at \mathbf{P}_i (Supplementary Note 3.3). We note that the selective visibility of composite 320 density waves at higher harmonics has also been observed in other materials⁴⁷ and might be 321 affected by detailed defect and domain structure (Supplementary Fig. 12). Another open 322 question is the origin of the experimental CS pattern at the K-point wavevectors. The CS 323 pattern cannot be explained as a consequence of a spinon Fermi surface since K is not a 324 harmonic of the \mathbf{P}_i wavevectors. One possible explanation of the short-range CS is that our

325 QSL phase is close to an antiferromagnetic ordered phase in the phase diagram, thus causing

- 326 the CS to arise from short-range antiferromagnetic⁴⁸ fluctuations that are expected to be
- 327 commensurate with the K-points (Supplementary Note 4).
- 328 In conclusion, our STM measurements provide evidence that single-layer 1T-TaSe₂ is
- a QSL with a spinon Fermi surface. Our observation of the Kondo effect in 1T-TaSe₂/1H-
- 330 TaSe₂ heterostructures implies that SL 1T-TaSe₂ exhibits a triangular spin lattice, and our
- 331 STS maps of 1T-TaSe₂ super-modulations directly reveal the effects of a spinon Fermi
- 332 surface instability in this material. Our experimentally determined value of the spinon Fermi
- 333 wavevector, $k_{\rm F} = 0.380 \pm 0.005$ r.l.u., closely matches the theoretically predicted value of $k_{\rm F} =$
- 334 0.375 r.l.u and supports the existence of a gapless QSL ground state. SL 1T-TaSe₂ thus
- provides a new platform to further investigate QSL phenomena such as the response of 2D
- 336 QSLs to magnetic scatterers 14,49,50 and electrostatic doping 6,7,43 .
- 337 Acknowledgments
- 338 We thank Dung-Hai Lee, Joel E. Moore, and Michael Zaletel for helpful discussions.
- 339 Funding:
- 340 This research was supported by the VdW Heterostructure program (KCWF16)
- 341 (STM/STS measurements) and the Advanced Light Source (sample growth and ARPES)
- 342 funded by the Director, Office of Science, Office of Basic Energy Sciences, Materials
- 343 Sciences and Engineering Division, of the US Department of Energy under Contract No. DE-
- 344 AC02-05CH11231. Support was also provided by National Science Foundation award DMR-
- 345 1807233 (surface treatment and topographic characterization) and DMR-1926004 (theoretical
- 346 QPI analysis). The work at the Stanford Institute for Materials and Energy Sciences and
- 347 Stanford University (ARPES measurements) was supported by the DOE Office of Basic
- 348 Energy Sciences, Division of Material Science. The work at beamline 4-ID-D of the
- 349 Advanced Photon Source, Argonne National Laboratory (X-ray absorption measurements)

- 350 was supported by the DOE, Office of Science, Office of Basic Energy Sciences, under
- 351 Contract No. DEAC02-06CH11357. P.A.L. acknowledges support by DOE Basic Energy
- 352 Science award number DE-FG02-03ER46076 (theoretical QSL analysis). S. T. acknowledges
- 353 the support by CPSF-CAS Joint Foundation for Excellent Postdoctoral Fellows. J.H. and C.H.
- acknowledge fellowship support from the NRF grant funded by the Korea government (MSIT)
- 355 (No. 2021R1A2C1004266). H.-Z.T. acknowledges fellowship support from the Shenzhen
- 356 Peacock Plan (Grant No. 827-000113, KQJSCX20170727100802505,
- 357 KQTD2016053112042971).

358 Author Contributions:

- 359 W.R., Y.C., P.A.L., and M.F.C. initiated and conceived this project. W.R., Y.C., R.L.,
- 360 H.-Z.T., S.K., F.L., C.J., and A.A. carried out STM/STS measurements under the supervision
- of M.F.C. W.R., Y.C., F.W., P.A.L., and M.F.C. contributed to microscopy data analysis.
- 362 S.T., J. H., and H.R. performed sample growth and ARPES measurements/analysis under the
- 363 supervision of C.H., Z.-X.S., and S.-K.M. W.R., Y.C., R.L., and S.K. performed XMCD
- 364 measurements with support from Y Choi. M.W. performed DFT+U calculations under the
- 365 supervision of S.G.L. P.A.L. provided theoretical support. W.R., Y.C., and M.F.C. wrote the
- 366 manuscript with the help from all authors. All authors contributed to the scientific discussion.
- **367** Competing interests:
- 368 The

The authors declare no competing interests.

- 369
- 370 Methods
- 371 Sample growth and ARPES measurements
- Both sample growth and ARPES measurements were performed at the HERSendstation of Beamline 10.0.1, Advanced Light Source, Lawrence Berkeley National

Laboratory. Single-layer TaSe₂ films were grown on both BLG/6H-SiC(001) and HOPG

- 375 substrates in an ultrahigh-vacuum (UHV) MBE chamber under similar growth conditions as
- described elsewhere²⁹. The substrate temperature was set at 660 °C, much higher than that for
- the growth of pure 1H-TaSe₂, to allow a simultaneous growth of single-layer 1T-TaSe₂ and
- 378 single-layer 1H-TaSe₂, as well as vertical heterostructures composed of a 1T layer on top of a
- 379 1H layer. After growth, the samples were transferred in-situ into the analysis chamber with a
- base pressure 3×10^{-11} Torr for ARPES measurements at 12 K. The photon energy was set at
- 381 50 eV with energy and angular resolution of 12 meV and 0.1°, respectively. The samples
- were then capped by Se capping layers with ~10 nm thickness for protection during transport
 through air to the UHV STM chamber.
- 384 STM/STS measurements

STM and STS measurements were performed in a low-temperature ultrahigh-vaccum STM system (CreaTec) at T = 5 K (unless specified otherwise). Prior to measurements, the samples were annealed in UHV at ~200 °C for 3 hours to remove the Se capping layers and then immediately transferred in-situ into the STM stage sitting at T = 5 K. Electrochemically etched tungsten tips were calibrated on a Au(111) surface before measurements. dI/dVspectra were collected using standard lock-in techniques (f = 401 Hz). dI/dV mapping was performed in constant-height mode (i.e., with the feedback loop open).

392 XMCD measurements

393XMCD measurements were performed at beamline 4-ID-D, Advanced Photon Source,

394 Argonne National Laboratory. Hard X-ray was used to probe Ta L₂ and L₃ edges at grazing

- incident angles to optimize the signal from single-layer 1T-TaSe₂ relative to background
- 396 noise from the substrate. Absorption spectra were collected in fluorescence yield mode. SL
- 397 1T-TaSe₂/BLG samples were capped with Se layers during transport to the XMCD
- 398 measurement chambers. The samples were mounted with the sample plane in the vertical

- direction. The X-ray beam size was adjusted to be 0.1 mm along the horizontal direction and
- 400 0.3 mm along the vertical direction.

401 **Data availability:**

- 402 The data presented in Figs. 1-5 are available with the paper. All other data that
- 403 support the findings of this study are available from the corresponding authors upon
- 404 reasonable request.

405 **Code availability:**

- 406 The codes used in this study are available from the corresponding author upon
- 407 reasonable request.

408

409 **References**

- Anderson, P. W. Resonating valence bonds: a new kind of insulator? *Mat. Res. Bull.* 8, 153-160 (1973).
- Lee, P. A. An End to the Drought of Quantum Spin Liquids. *Science* 321, 1306-1307 (2008).
- Balents, L. Spin liquids in frustrated magnets. *Nature* **464**, 199-208 (2010).
- 415 4 Zhou, Y., Kanoda, K. & Ng, T.-K. Quantum spin liquid states. *Rev. Mod. Phys.* 89, 025003 (2017).
- Wen, X.-G. Quantum orders and symmetric spin liquids. *Phys. Rev. B* 65, 165113 (2002).
- Anderson, P. W. The Resonating Valence Bond State in La₂CuO₄ and
 Superconductivity. *Science* 235, 1196-1198 (1987).
- 421 7 Lee, P. A. From high temperature superconductivity to quantum spin liquid: progress
 422 in strong correlation physics. *Rep. Prog. Phys.* **71**, 012501 (2008).
- Shimizu, Y., Miyagawa, K., Kanoda, K., Maesato, M. & Saito, G. Spin liquid state in an organic Mott insulator with a triangular lattice. *Phys. Rev. Lett.* 91, 107001 (2003).
- Yamashita, M. *et al.* Highly Mobile Gapless Excitations in a Two-Dimensional
 Candidate Quantum Spin Liquid. *Science* 328, 1246-1248 (2010).
- 427 10 Shen, Y. *et al.* Evidence for a spinon Fermi surface in a triangular-lattice quantum428 spin-liquid candidate. *Nature* 540, 559-562 (2016).
- 429 11 Motrunich, O. I. Variational study of triangular lattice spin-1/2 model with ring 430 exchanges and spin liquid state in κ -(ET)₂Cu₂(CN)₃. *Phys. Rev. B* **72**, 045105 (2005).
- 431 12 Lee, S. S. & Lee, P. A. U(1) gauge theory of the Hubbard model: spin liquid states 432 and possible application to κ -(BEDT-TTF)₂Cu₂(CN)₃. *Phys. Rev. Lett.* **95**, 036403 433 (2005).
- Lee, S. S., Lee, P. A. & Senthil, T. Amperean pairing instability in the U(1) spin liquid state with fermi surface and application to kappa-(BEDT-TTF)₂Cu₂(CN)₃. *Phys. Rev. Lett.* 98, 067006 (2007).

437	14	Mross, D. F. & Senthil, T. Charge Friedel oscillations in a Mott insulator. Phys. Rev.
438		<i>B</i> 84 , 041102(R) (2011).
439	15	Law, K. T. & Lee, P. A. 1T-TaS ₂ as a quantum spin liquid. <i>Proc. Natl. Acad. Sci. U. S.</i>
440		<i>A</i> . 114 , 6996-7000 (2017).
441	16	He, W. Y., Xu, X. Y., Chen, G., Law, K. T. & Lee, P. A. Spinon Fermi Surface in a
442	-	Cluster Mott Insulator Model on a Triangular Lattice and Possible Application to 1T-
443		TaS ₂ Phys Rev Lett 121 046401 (2018)
444	17	Klanišek M <i>et al</i> A high-temperature quantum spin liquid with polaron spins
445	17	Nature Phys 13 1130-1134 (2017)
445 446	18	Kratochvilova M <i>et al.</i> The low-temperature highly correlated quantum phase in the
440	10	charge density wave 1T TaS, compound <i>uni Quantum Materials</i> 2 42 (2017)
447 118	10	Ribal A at al Gapless excitations in the ground state of $1T-TaS_{2}$ Phys. Ray R 96
440	19	(105121) (2017)
449	20	193131 (2017). Yu Y L et al Heat transmort study of the smin liquid condidate 1T TeS. Dhus Dev
450	20	Y u, Y. J. <i>et al.</i> Heat transport study of the spin fiquid candidate $11-1as_2$. <i>Phys. Rev.</i>
451	21	B 90, 081111(K) (2017).
452	21	Murayama, H. <i>et al.</i> Effect of quenched disorder on the quantum spin liquid state of
453	22	the triangular-lattice antiferromagnet 11-1aS ₂ . Phys. Rev. Research 2, 013099 (2020).
454	22	Wilson, J. A., Di Salvo, F. J. & Mahajan, S. Charge-density waves and superlattices
455		in the metallic layered transition metal dichalcogenides. Adv. Phys. 24, 117-201
456		(1975).
457	23	Fazekas, P. & Tosatti, E. Electrical, structural and magnetic properties of pure and
458		doped 1T-TaS ₂ . <i>Philos. Mag.</i> 39 , 229-244 (1979).
459	24	Qiao, S. <i>et al.</i> Mottness Collapse in $1T-TaS_{2-x}Se_x$ Transition-Metal Dichalcogenide:
460		An Interplay between Localized and Itinerant Orbitals. Phys. Rev. X7, 041054 (2017).
461	25	Ritschel, T. et al. Orbital textures and charge density waves in transition metal
462		dichalcogenides. Nature Phys. 11, 328-331 (2015).
463	26	Ma, L. et al. A metallic mosaic phase and the origin of Mott-insulating state in 1T-
464		TaS ₂ . Nat. Commun. 7, 10956 (2016).
465	27	Cho, D. et al. Nanoscale manipulation of the Mott insulating state coupled to charge
466		order in 1T-TaS ₂ . Nat. Commun. 7, 10453 (2016).
467	28	Nakata, Y. et al. Selective Fabrication of Mott-Insulating and Metallic Monolayer
468		TaSe ₂ . ACS Appl. Nano Mater. 1, 1456-1460 (2018).
469	29	Chen, Y. et al. Strong correlations and orbital texture in single-layer 1T-TaSe ₂ .
470		<i>Nature Phys.</i> 16 , 218-224 (2020).
471	30	Kim, B. J. et al. Distinct spinon and holon dispersions in photoemission spectral
472		functions from one-dimensional SrCuO ₂ . <i>Nature Phys.</i> 2 , 397-401 (2006).
473	31	Ryu, H. et al. Persistent Charge-Density-Wave Order in Single-Layer TaSe ₂ . Nano
474		Lett. 18, 689-694 (2018).
475	32	Cai, P. et al. Visualizing the evolution from the Mott insulator to a charge-ordered
476		insulator in lightly doped cuprates. <i>Nature Phys.</i> 12 , 1047-1051 (2016).
477	33	Ruan, W. <i>et al.</i> Relationship between the parent charge transfer gap and maximum
478		transition temperature in cuprates <i>Science Bulletin</i> 61 1826-1832 (2016)
479	34	Battisti I <i>et al</i> Universality of pseudogap and emergent order in lightly doped Mott
480	5.	insulators Nature Phys 13 21-25 (2017)
481	35	Ruan W et al Visualization of the periodic modulation of Cooper pairing in a
482	55	cuprate superconductor Nature Phys 14 1178-1182 (2018)
483	36	Hewson A C The Kondo Problem to Heavy Formions (The Press Syndicate of the
487	50	University of Cambridge 1993)
-0-		University of Cumulage, 1775).

485 37 Nagaoka, K., Jamneala, T., Grobis, M. & Crommie, M. F. Temperature dependence

- 486 of a single Kondo impurity. *Phys. Rev. Lett.* **88**, 077205 (2002).
- 487 38 Helmes, R. W., Costi, T. A. & Rosch, A. Kondo proximity effect: how does a metal penetrate into a Mott insulator? *Phys. Rev. Lett.* 101, 066802 (2008).
- Madhavan, V. V., Chen, W., Jamneala, T., Crommie, M. F. & Wingreen, N. S.
 Tunneling into a Single Magnetic Atom: Spectroscopic Evidence of the Kondo
 Resonance. *Science* 280, 567-569 (1998).
- 40 Ge, Y. & Liu, A. Y. First-principles investigation of the charge-density-wave instability in 1T-TaSe₂. *Phys. Rev. B* 82, 155133 (2010).
- 41 Galitski, V. & Kim, Y. B. Spin-triplet pairing instability of the spinon fermi surface in a U(1) spin liquid. *Phys. Rev. Lett.* **99**, 266403 (2007).
- 496 42 Grover, T., Trivedi, N., Senthil, T. & Lee, P. A. Weak Mott insulators on the triangular lattice: Possibility of a gapless nematic quantum spin liquid. *Phys. Rev. B*498 81, 245121 (2010).
- 43 Xu, X. Y., Law, K. T. & Lee, P. A. Pair Density Wave in the Doped *t*-J Model with
 500 Ring Exchange on a Triangular Lattice. *Phys. Rev. Lett.* **122**, 167001 (2019).
- 44 Agterberg, D. F. & Tsunetsugu, H. Dislocations and vortices in pair-density-wave superconductors. *Nature Phys.* 4, 639-642 (2008).
- Fradkin, E., Kivelson, S. A. & Tranquada, J. M. Colloquium: Theory of intertwined orders in high temperature superconductors. *Rev. Mod. Phys.* 87, 457-482 (2015).
- Tang, E., Fisher, M. P. A. & Lee, P. A. Low-energy behavior of spin-liquid electron
 spectral functions. *Phys. Rev. B* 87, 045119 (2013).
- 507 47 Edkins, S. D. *et al.* Magnetic field-induced pair density wave state in the cuprate 508 vortex halo. *Science* **364**, 976 (2019).
- Huse, D. A. & Elser, V. V. Simple variational wave functions for two-dimensional Heisenberg spin-1/2 antiferromagnets. *Phys. Rev. Lett.* 60, 2531-2534 (1988).
- 49 Ribeiro, P. & Lee, P. A. Magnetic impurity in a U(1) spin liquid with a spinon Fermi surface. *Phys. Rev. B* 83, 235119 (2011).
- 50 Norman, M. R. & Micklitz, T. How to measure a spinon fermi surface. *Phys. Rev. Lett.*514 102, 067204 (2009).
- 515
- 516
- 517

518 Fig. 1. Structure of single-layer TaSe₂ and 1T/1H vertical heterostructures.

a, Side-view of the crystal structures of single-layer 1T- and 1H-TaSe₂ as well as a 1T/1H

520 vertical heterostructure on BLG-terminated SiC(0001). **b**, STM topographic image shows

- 521 single-layer 1T-TaSe₂, single-layer 1H-TaSe₂, and a 1T/1H vertical heterostructure on
- 522 BLG/SiC(0001) ($V_b = -1 \text{ V}$, $I_t = 5 \text{ pA}$). The insets are close-up images of the single-layer 1T
- and 1H islands (scanned at $V_b = -0.5$ V, $I_t = 30$ pA, and $V_b = 50$ mV, $I_t = 1.3$ nA, respectively)
- 524 (T = 5K). c, Schematic of the triangular spin lattice and star-of-David charge density wave
- 525 pattern in 1T-TaSe₂. Each star consists of 13 Ta atoms and has a localized spin represented
- 526 by a blue arrow at the star center. The wavefunction of the localized electrons is represented
- 527 by gray shading.

528 Fig. 2. Kondo resonance observed in a 1T/1H TaSe₂ vertical heterostructure.

a, Local electronic structure measured at T = 5 K via dI/dV spectroscopy for single-layer 1H-TaSe₂ (green), single-layer 1T-TaSe₂ (red), and a 1T/1H TaSe₂ vertical heterostructure (blue)

- 531 (1H: $V_b = -1.5 \text{ V}$, $I_t = 30 \text{ pA}$, $V_{mod} = 50 \text{ mV}$; 1T: $V_b = 1.5 \text{ V}$, $I_t = 40 \text{ pA}$, $V_{mod} = 20 \text{ mV}$; 1T/1H:
- 532 $V_{\rm b} = -1.5 \text{ V}, I_{\rm t} = 30 \text{ pA}, V_{\rm mod} = 20 \text{ mV}$). The insets show higher resolution dI/dV spectra (1H:

533 $V_{\rm b} = 0.1 \text{ V}, I_{\rm t} = 30 \text{ pA}, V_{\rm mod} = 5 \text{ mV}; 1\text{T}: V_{\rm b} = -0.25 \text{ V}, I_{\rm t} = 30 \text{ pA}, V_{\rm mod} = 2 \text{ mV}; 1\text{T}/1\text{H}: V_{\rm b} = -0.25 \text{ V}, I_{\rm t} = -0.25 \text{ V}, I_{t$

-0.1 V, $I_t = 30$ pA, $V_{mod} = 1$ mV) (the Kondo peak in the inset is sharper and taller compared

to the lower resolution measurement due to the use of a smaller wiggle voltage). **b**,

536 Temperature dependence of the Kondo resonance peak observed in 1T/1H TaSe₂ vertical

537 heterostructures for 5 K $\leq T \leq$ 70 K. The spectra are vertically offset for clarity ($V_b = -0.1$ V,

538 $I_t = 30 \text{ pA}, V_{\text{mod}} = 1 \text{ mV}$). c, Temperature dependence of the intrinsic Kondo resonance width

- 539 Γ (black with error bar). The error is estimated by the Γ threshold beyond which the fit
- significantly worsens³⁷. The fit of Eq. (1) to the data (red dashed line) yields a Kondo

541 temperature of $T_{\rm K} = 57$ K.

543 **a**, Large-scale topographic image of a single-layer 1T-TaSe₂ island ($V_b = -1$ V, $I_t = 2$ pA). **b**, 544 The dI/dV spectrum of single-layer 1T-TaSe₂ ($V_b = 1.5 \text{ V}$, $I_t = 40 \text{ pA}$, $V_{mod} = 20 \text{ mV}$). c-g, 545 Constant-height dI/dV maps at different energies acquired in the area indicated by yellow 546 dashed square in **a** ($I_t = 30$ pA, $V_{mod} = 20$ mV). **h-l**, Corresponding Fourier transforms (FTs) of the dI/dV maps in c-g. FT peaks circled in red reflect the primary reciprocal lattice vectors 547 548 of the star-of-David CDW and the red hexagon represents the CDW Brillouin zone. FT peaks 549 circled in blue (i-k) reflect the incommensurate super-modulation (ICS) at 0.62 V, 0.2 V, and 550 -0.18 V. FT peaks circled in green (k) reflect the commensurate super-modulation (CS) (T =551 5 K).

Fig. 3. Super-modulations in single-layer 1T-TaSe₂ visualized by spectroscopic imaging.

552 Fig. 4. Energy dependence of super-modulations in single-layer 1T-TaSe₂.

a, Plot of Fourier transform (FT) amplitude as a function of both the wavevector $\mathbf{q} =$

554 $q(\mathbf{b}_1 + \mathbf{b}_2)$ (q measured in units of $|\mathbf{b}_1 + \mathbf{b}_2| = 4\pi/a$) along the Γ -K direction (y-axis, indicated

by black dashed line in the inset) and the sample bias voltage (x-axis). High FT amplitude

556 (dark color) appears at $\mathbf{b}_1 + \mathbf{b}_2$ (black dashed ovals), the ICS wavevector (blue dashed ovals),

and the CS wavevector (green dashed oval) (T = 5 K). **b**, Energy dependence of the ICS

strength (blue dots) shows enhanced amplitude at Hubbard band energies. The ICS strength is

defined as the FT amplitude at the ICS wavevector ($\rho(E, \mathbf{q}_{\text{ICS}})$) divided by the FT amplitude

560 at $\mathbf{q} = \mathbf{0} (\rho(E, \mathbf{q} = \mathbf{0}))$. The reference dI/dV spectrum is plotted in black (T = 5 K). c,

561 Schematic density of states of a Mott insulator. d, Cartoon of a tip-QSL tunnel junction. An

electron injected into the strongly-correlated UHB of the QSL decays into a spinon and a

563 chargon.

Fig. 5. Super-modulation periodicities predicted from spinon Fermi surface compared with experiment.

- 566 a, Schematic of spinon Fermi surface at half-filling (red) with partial gaps opening along the
- 567 Γ -M directions. The black hexagon is the star-of-David CDW Brillouin zone and the black
- arrows (**b**_{*i*}) are the primary reciprocal lattice vectors of the CDW Brillouin zone ($1 \le i \le 6$,
- only \mathbf{b}_1 and \mathbf{b}_2 are labeled). The spinon Fermi surface instability wavevectors \mathbf{P}_i (red arrow)
- 570 connect the partial gaps on different spinon Fermi surfaces in an extended zone scheme. **b**,
- 571 Spinon Fermi surface instability wavevectors \mathbf{P}_i (red dots) and harmonics \mathbf{Q}_i (blue dots) and
- 572 **Q'**_i (purple dots) in the CDW Brillouin zone. **c**, Fourier transform (FT) of the STM image of
- 573 1T-TaSe₂/BLG at $V_b = 0.5$ V (STM image shown in Supplementary Fig. 7a inset).
- 574 Experimental ICS wavevectors \mathbf{q}_{ICS} are circled in blue (T = 5 K). **d**, FT of the STM image of
- 575 1T-TaSe₂/HOPG at $V_b = -0.15$ V (STM image shown in Supplementary Fig. 12j).
- 576 Experimental super-modulation wavevectors \mathbf{q}_{M} close to the M points are circled in purple (T

577 = 5 K).

