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THE NEUMANN ISOSPECTRAL PROBLEM FOR
TRAPEZOIDS

HAMID HEZARI, ZHIQIN LU, AND JULIE ROWLETT

Abstract. We show that trapezoids with identical Neumann spectra are
congruent up to rigid motions of the plane. The proof is based on heat
trace invariants and some new wave trace invariants associated to certain
diffractive billiard trajectories. We use the method of reflections to express
the Dirichlet and Neumann wave kernels in terms of the wave kernel of
the double polygon. Using Hillairet’s trace formulas for isolated diffractive
geodesics and one-parameter families of regular geodesics with geometri-
cally diffractive boundaries for Euclidean surfaces with conic singularities
[Hi05], we obtain the new wave trace invariants for trapezoids. To handle
the reflected term, we use another result of [Hi05], which gives an FIO rep-
resentation for the Cheeger-Taylor parametrix [ChTa1, ChTa2] of the wave
propagator near diffractive geodesics. The reason we can only treat the
Neumann case is that the wave trace is “more singular” for the Neumann
case compared to the Dirichlet case. This is a new observation which is
interesting on its own.

1. Introduction

Our main result is the following:

Theorem 1. Let T1 and T2 be two trapezoidal domains in R2. Then if the
spectra of the Euclidean Laplacian with Neumann boundary conditions coincide
for T1 and T2, the trapezoids are congruent, that is equivalent up to rigid
motions of the plane.

Our proof relies on heat trace invariants and also some new wave trace in-
variants associated to some diffractive billiard trajectories. We first use the
method of reflections to express the Dirichlet and Neumann wave kernels in
terms of the wave kernel of the double of the trapezoid which can be realized
as a Euclidean surface with conical singularities (ESCS). We then obtain new

Key words and phrases. isospectral; trapezoid; polygons; heat invariants; wave invariants,
diffraction, inverse spectral problems. MSC primary 58C40, secondary 35P99.
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2 HAMID HEZARI, ZHIQIN LU, AND JULIE ROWLETT

Figure 1. The orbit γb, which bounces between two diffractive
conic singularities, contributes a singularity at t = 2b of order
(−1

2
)+ to the wave trace of the double of the trapezoid (as an

ESCS) if there are no other orbits of the same length. Hence
2b is a spectral invariant if both Dirichlet and Neumann spectra
are known. In fact, as we prove, 2b is a spectral invariant for
the Neumann spectrum.

wave trace invariants using two results of Hillairet [Hi05] for ESCS. The first
is a parametrix construction of the wave propagator near diffractive geodesics
as an FIO, which we will use for the reflected term. Such paramatrices were
found by Cheeger-Taylor [ChTa1, ChTa2], however expressing them in the
language of FIOs was first done by Hillairet in [Hi05]. For the non-reflected
term we use trace formulas of [Hi05] associated to isolated diffractive geodesics
and to one-parameter families of regular geodesics with geometrically diffrac-
tive boundaries. More precisely we apply the trace formulas of [Hi05] to the
diffractive bouncing ball orbit associated to the top edge of the trapezoid (Fig-
ure 1), and to the one-parameter family of bouncing ball orbits associated to
the altitudes of the trapezoid (Figure 2). The lengths of these orbits and
the principal terms of the singularity expansions of the Neumann wave trace
at these lengths provide new spectral invariants for the trapezoid. Together
with the well known heat trace invariants, these can be used to prove spectral
uniqueness of a trapezoid amongst all trapezoids.

The reason we can only treat the Neumann case is that in some sense the
wave trace is “more singular” for the Neumann case when compared to the
Dirichlet case. This is a new feature which is of independent interest. In fact
the Neumann wave trace has a larger singularity at 2b (See Figure 1) than the
Dirichlet wave trace. It would be interesting to study the singularity of the
Dirichlet wave trace at 2b (if singular at all), but since we do not require this
for our inverse result for the Neumann boundary condition, we refrain from
exploring this question here. In a future work we shall study the isospectral
problem in the Dirichlet case.
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Figure 2. The blue lines show the interior of a one-parameter
family of non-diffractive bouncing ball orbits of length 2h. The
red periodic orbits, which are both geometrically diffractive, are
the boundaries of the blue family. The family, which we call γh,
contributes a singularity at t = 2h of order 1+ to both Dirichlet
and Neumann wave traces if there are no other periodic orbits
of length 2h with the same order of singularity.

2. Background

The isospectral problem is: if two Riemannian manifolds are isospectral, then
are they isometric? For a Riemannian manifold (M, g) the spectrum in ques-
tion is for the Laplace operator

∆ = −
n∑

i,j=1

1√
det(g)

∂ig
ij
√

det(g) ∂j.

The answer in this generality is no, and was proven by Milnor in 1964 [Mi64].
He used a construction of Witt [Wi41] of two self-dual lattices L1 and L2 in R16

such that no rotation of R16 maps one to the other, but such that the spectra of
the Riemannian manifolds R16/Li are identical for i = 1, 2. Around the same
time, M. Kac wrote a popular article [Ka66], “Can one hear the shape of a
drum?” He popularized the isospectral problem for planar domains. Although
this may seem like an easier setting, it turned out to be quite difficult to prove
that the answer is in general negative.

For a bounded domain Ω in R2, we consider the Euclidean Laplacian ∆ with
Dirichlet or Neumann boundary conditions,

(2.1) ∆u(x, y) := −∂
2u

∂x2
− ∂2u

∂y2
= λu, Bu = 0,

where Bu = u|∂Ω when B = D, and Bu = ∂νu|∂Ω when B = N . For both
boundary conditions, the eigenvalues, which depend on B, form a discrete
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subset of R of the form 0 ≤ λ1 < λ2 ≤ λ3 ≤ . . . . In the Dirichlet case, the
spectrum is in bijection with the resonant frequencies a drum would produce
if Ω were its drumhead. With a perfect ear one could hear all these frequencies
and therefore know the spectrum. This is the origin of the title of Kac’s paper
[Ka66].

Gordon, Webb, and Wolpert answered Kac’s question in the negative [GoWeWo92,
GoWeWo92], based on Buser’s work [Bu86]. The isospectral problem for sur-
faces was previously demonstrated to have a negative answer by [Vi78]. Buser’s
method relied on a pasting procedure for pairs of surfaces. In [GoWeWo92],
they determined how to suitably “fold” two such curved surfaces to create
isospectral non-isometric planar domains. This general idea of folding paper
was later presented in an accessible style by Chapman [Cha95].

On the other hand, in some cases the isospectral problem has a positive an-
swer. If one considers for example triangular domains in the plane, then if two
such domains are isospectral, the triangles are congruent. The first proof of
this fact is contained in the doctoral thesis of C. Durso [Du88]. She used the
fact that the heat trace implies that the area and perimeter are spectral invari-
ants, so any two triangles which are isospectral must have the same area and
perimeter. To complete the proof, she used the wave trace and demonstrated
that the length of the shortest closed geodesic in a triangular domain is also
a spectral invariant. More recently Grieser and Maronna [GrMa13] realized
that if one used an additional spectral invariant from the heat trace, then this
together with the area and perimeter uniquely determine the triangle. That
is a much simpler proof. Other types of domains which are known to be spec-
trally determined are analytic planar domains with reflective symmetries; see
the works of Colin de Verdière [CdV84, CdV73] and Zelditch [Ze00, Ze09].

After triangles, one is naturally interested to know whether the same result
may hold for quadrilaterals. For rectangles, this is a straightforward exercise
to prove that if two rectangles are isospectral, then they are congruent. In
fact, one only requires the first two eigenvalues to prove this fact. For par-
allelograms, it is also a straightforward argument using the first three heat
trace invariants as in [LuRo15]. Of course the next natural generalization is
to trapezoids. In this case, one can rather easily prove that the geometric
information which can be extracted from the heat trace is insufficient to prove
that isospectral trapezoids are congruent. It is therefore necessary to use the
wave trace in the spirit of [Du88], which is a much more delicate matter.
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Figure 3. Parameters of a trapezoid

In §3, we review heat trace invariants associated to polygons and we also
discover some new wave trace invariants for trapezoids. In §4, we prove the
main propositions on wave trace invariants using [Hi05]. Finally, in §5 we
prove our inverse spectral result.

3. Spectral invariants of trapezoids

Definition 2. A trapezoid is a convex quadrilateral which has two parallel
sides of lengths b and B with B ≥ b. The side of length B is called the base.
The two angles α, β adjacent to the base are called base angles. The angles at
the base satisfy

0 < β ≤ α ≤ π

2
.

The other two sides of the trapezoid are known as legs of lengths ` and `′,
respectively. If ` = `′, then we say the trapezoid is isosceles. The distance
between two parallel sides is called the height.

Any quantity which is uniquely determined by the spectrum is known as a
spectral invariant.

Notation 3. If we are considering different boundary conditions on a domain
Ω, we shall use the notation ∆B

Ω to indicate the boundary condition B. If we
are considering a compact Riemannian manifold M without boundary we shall
use ∆M . We shall use these notations when Ω is a polygon, and when M is the
double of a polygon as a compact Euclidean surface with conic singularities.
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3.1. The heat trace invariants. The heat trace

Tr e−∆B
Ω t =

∑
k≥1

e−λk(∆B
Ω )t,

is a spectral invariant. It is an analytic function for <(t) > 0 and has a
singularity at t = 0. It is well known in this setting (see [Ka66, McSi67,
vdBeSr, LuRo15]) that the heat trace on a polygonal domain P admits an
asymptotic expansion 1 as t ↓ 0,

(3.1) Tr e−∆B
P t ∼ |P |

4πt
+ (−1)s(B) |∂P |

8
√
πt

+
n∑
k=1

π2 − θ2
k

24πθk
+O(e−

c
t ), t ↓ 0,

where c > 0, and s(B) = 1 when B = D, and S(B) = 0 if B = N . Above, |P |
and |∂P | denote respectively the area and perimeter of the domain P , and θk
are the interior angles. Since the angles of a trapezoid are α, π − α, β, and
π − β, we therefore have the following:

Proposition 4. For a trapezoidal domain, the area A = |P |, perimeter L =
|∂P |, and the angle invariant

q = qα,β =
1

α(π − α)
+

1

β(π − β)
,

are spectral invariants.

Remark 1. Note that by the definition of a trapezoid,

q ≥ 8

π2
,

and equality holds if and only if the trapezoid is actually a rectangle.

Remark 2. One can show that these quantities A, L, and q are insufficient
to determine a trapezoid. In other words, considering any trapezoid T , up to
congruence via rigid motions of the plane, there are infinitely many different
trapezoids which have the same A, L, and q.

Remark 3. The remainder term in the heat trace decays exponentially as t ↓ 0,
as shown by [vdBeSr, Ko13]. It is therefore not feasible to extract further
geometric information from the heat trace so we shall turn to a more subtle
spectral invariant: the wave trace.

1In fact in [vdBeSr], this is proved only for the Dirichlet Laplacian. That a similar
asymptotic is valid for the Neumann case follows easily from the Dirichlet case and the
works of [Ko13, Fu94] on heat trace asymptotics on ESCS; see also Remark 6.
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3.2. The wave trace invariants. The wave trace is the trace of the wave
propagator, also known as the wave group, and is formally

w(t) := Tr eit
√

∆ =
∑
k≥1

eit
√
λk .

This is purely formal, since the wave trace is only well-defined when paired
with a Schwartz class test function; it is a tempered distribution by an easy
application of Weyl’s law. It is defined in more general settings such as compact
Riemannian manifolds without boundary as well as with boundary and with
various boundary conditions. Duistermaat-Guillemin [DuGu75] showed that
in the case of compact Riemannian manifolds without boundary the singular
support of the wave trace is contained in {0}∪±L, where L is the set of lengths
of closed geodesics. They also found the principal term in the singularity
expansion when the orbit is single and non-degenerate. Guillemin-Melrose
[GuMe79] studied this problem in the presence of a smooth boundary and
considered the Dirichlet, Neumman, as well as more general Robin boundary
conditions. They showed that in all cases

SingSuppw(t) ⊂ {0} ∪ ±L,
where

L = {lengths of generalized broken periodic geodesics}.
Note that in this case the length spectrum L contains the lengths of all periodic
billiard trajectories hitting the boundary transversally, as well as the lengths of
ghost orbits and the boundary itself when trajectories become tangent to the
boundary at some point. Hence in a smooth convex planar domain only the
lengths of transversal billiard trajectories and the boundary (and its multiples)
contribute to the length spectrum. Some experts conjecture that the above
containment for SingSuppw(t) is in fact an equality, but this has neither been
proven nor have any counter-examples been discovered. The containment is
an equality on compact manifolds with negative curvature [DuGu75].

3.2.1. The length spectrum of polygonal domains. A polygonal domain is a
planar domain whose boundary is a Euclidean polygon. In the study of the
length spectrum on such domains, the terminology polygonal table is often
used due to the interpretation of a polygonal domain as the top surface of
a billiard table and the identification of geodesic trajectories with billiard
trajectories. Propagation of singularities of the wave operator in polygonal
tables or in general on manifolds with corners or with conical singularities
are more difficult to study because of the diffraction phenomena that takes
place at the conical singularities. Roughly speaking, when a geodesic that
carries a singularity of the wave hits a conical singularity, it can reflect in all
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Figure 4. Some diffractive periodic orbits of a trapezoid.

possible directions. There is a huge literature on the subject of diffraction, and
for the sake of brevity we only list the most relevant ones for our purposes:
Keller [Ke58], Sommerfeld [So1896], Friedlander [Fr86, Fr81], Cheegar-Taylor
[ChTa1, ChTa2], Melrose-Wunsch[MeWu04]. There has also been a lot of
research on the contribution of diffractive geodesics to the wave trace; see
Friedlander [Fr86], Durso [Du88], Wunsch [Wu02], Hillairet [Hi02, Hi05], Ford-
Wunsch [FoWu14], and more recently Hassell-Ford-Hillairet [FoHaHi15]. In
the physics literature, we also note the works of Bogomolny-Pavloff-Schmit
[BoPaSc] and Pavloff-Schmit [PaSc95].

A standard technique used in studying the wave trace for polygonal tables is to
double the polygon along its edges to obtain a compact Euclidean surface with
conical singularities, or ESCS, as commonly abbreviated in the literature. A
compact n-dimensional ESCS is a compact manifold with finitely many conical
singularities which is locally isometric to Rn away from the conical points, and
near conical points it is isometric to a neighborhood of the vertex of a Euclidean
cone Cα.

Let P be a polygon, and let P ′ be a copy of P , disjoint from P , andR : P → P ′

be the identity map. We use 2P for (P ∪ P ′)/ ∼ where we have identified the
points of ∂P and ∂P ′ under the map R. There is a canonical extension of R
to an involution R : 2P → 2P . The surface 2P is smooth everywhere except
at the vertices which are isolated conical singularities. We note that the cone
angles are doubled under this procedure, meaning that the cone angle in the
surface is twice the interior angle at the corresponding vertex in the polygon.
The Laplace operator on the ESCS arising from the doubled polygon 2P has
many self-adjoint extensions. We shall only consider the Friedrichs extension
of the Laplacian on 2P , which we denote simply by ∆2P .

It was proved by Hillairet [Hi02] (and in a more general setting by Wunsch
[Wu02]) that

SingSupp Tr eit
√

∆2P ⊂ {0} ∪ ±L2P
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To describe L2P precisely, we first need to describe the geodesics on an ESCS,
and to do so we need some definitions. The conic points are separated into
two groups. A conic point is called non-diffractive if its angle is equal to 2π

N
for some positive integer N , otherwise it is called diffractive. We also use the
same terminology for polygons except that non-diffractive angles are of the
form π

N
. For example, if a trapezoid T is not a rectangle, then the top vertex

with angle π−β is diffractive, while the bottom two could be either diffractive
or non-diffractive, and the top vertex with angle π−α is non-diffractive if and
only if α = π

2
.

When a geodesic in a ESCS hits a non-diffractive conical singularity with
cone angle 2π

N
, it continues on a straight line in the cone C2π (which is iso-

morphic to R2), as an N -fold covering space of C2π/N . Hence if the incom-
ing angle of a geodesic is θin, its outgoing angle θout is ΠN(π + θin) where
ΠN : C2π → C2π/N is the natural covering map. In contrast, when a geo-
desic hits a diffractive conic point, it reflects according to Keller’s democratic
law of diffraction, meaning that it reflects in all possible directions, and we
call θout − θin the angle of diffraction. A geodesic is called diffractive if goes
through at least one diffractive singularity (see Figure 4). A geodesic geo-
metrically diffracts at a diffractive conic point with angle α if it is the limit
of a family of non-diffractive geodesics (see Figure 2), which happens when
θout − θin = ±π mod αZ. All the above are defined similarly on polygons
except that geodesics reflect on the edges according to Snell’s law. The follow-
ing wavefront relations hold ([ChTa1, ChTa2]) for the integral kernels of the

propagators eit
√

∆2P and eit
√

∆B
P

(3.2)

WF′eit
√

∆2P ⊂
{

(t, τ, x, ξ, y, η) ∈ T ∗(R× 2P × 2P ); τ = |ξ|, Φt
2P (x, ξ) = (y, η)

}
,

(3.3)

WF′eit
√

∆B
P ⊂

{
(t, τ, x, ξ, y, η) ∈ T ∗(R× P × P ); τ = |ξ|, Φt

P (x, ξ) = (y, η)
}
,

where Φ2P and ΦP are geodesics flows on 2P and P , where geodesics are
defined above. Consequently, L2P and LP are defined to be the lengths of
closed geodesics, where geodesics follow the above rules of diffractions.

Remark 4. We note that L2P ⊂ LP but they are not necessarily equal. For
example when P is a tall trapezoid, an easy observation shows that the length
of the orthic triangle (see Figure 5) is in LP but it is not in L2P .



10 HAMID HEZARI, ZHIQIN LU, AND JULIE ROWLETT

3.2.2. Singularities of wave trace on polygons. Since the involution R com-
mutes with ∆2P , there is an orthonormal basis (ONB) consisting of eigen-
functions of both operators, R and ∆2P . The eigenvalues of R are ±1, and
hence the joint eigenfunctions of R and ∆2P are even and odd eigenfunctions
of ∆2P with respect to R. The even eigenfunctions of ∆2P correspond to the
eigenfunctions of the Neumann Laplacian on P , ∆N

P , and the odd eigenfunc-
tions correspond to the ones of Dirichlet Laplacian, ∆D

P . It is now clear that
counting multiplicities we have

Spec∆2P = Spec∆D
P ∪ Spec∆N

P ,

and therefore

(3.4) Tr eit
√

∆2P = Tr eit
√

∆D
P + Tr eit

√
∆N
P .

This in particular shows that

SingSupp Tr eit
√

∆2P ⊂ SingSupp Tr eit
√

∆D
P

⋃
SingSupp Tr eit

√
∆N
P .

Remark 5. Again, this inclusion is not an equality because for example the
length of the orthic triangle in a tall trapezoid belongs to the singular support
of both traces on the right hand side but it does not belong to the singular
support of Tr eit

√
∆2P . In fact what happens in this case is that the singularities

of Dirichlet and Neumann wave traces (at the length of orthic triangle) cancel
each other on the right hand side of 3.4 (see Proposition 9).

Remark 6. We point out that a similar relationship holds between the Dirichlet
and Neumann heat traces and the heat trace of 2P as a ESCS. More precisely,

Tr e−t∆2P = Tr e−t∆
D
P + Tr e−t∆

N
P .

The asymptotic expansion (3.1) was proved in [vdBeSr] for the Dirichlet heat
trace. We have not found a reference in literature stating the asymptotic 3.1
for the Neumann heat trace, however it follows immediately from the above
identity and the asymptotic expansion

Tr e−t∆2P =
|P |
2πt

+
n∑
k=1

π2 − θ2
k

12πθk
+O(e−

c
t ), t→ 0+,

proved by Kokotov (see Theorem 1 of [Ko13]) and Fursaev [Fu94].

A common way to measure the singularity of a tempered distribution is to
study the decay and growth properties of its local Fourier transform (smoothed
resolvent). The following propositions are crucial to proving our inverse prob-
lems for trapezoids.
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Figure 5. The blue orbit corresponds to the orthic triangle,
whose vertices are the feet of the heights of the triangle that
extends a trapezoid. It does not exists if the trapezoid is too
short or if it is acute: α + β ≤ π

2
. Its linearized Poincare map

is −I, hence it is a non-degenerate orbit, and by a result of
Guillemin-Melrose [GuMe79] it contributes a singularity of order
1
2

+
to both Dirichlet and Neumann wave traces if there are no

other periodic orbits of the same length with the same order of
singularity.

Proposition 5. Let T be a trapezoid that is not a rectangle. Suppose there
are no other closed geodesics in T of length 2h, or arbitrarily close to 2h,
other than the one-parameter family in Figure 2. Let ρ̂(t) ∈ C∞0 (R) be a cutoff
function supported near t = 2h whose support does not contain any lengths in
{0} ∪ ±LT other than 2h. Then as k → +∞∫

ρ̂(t)e−ikt Tr eit
√

∆B
T dt =

eiπ/4e−2ihk

√
4πh

ρ̂(2h)A(R)k
1
2 + o(k

1
2 ),

where B = D orN , and A(R) is the area of the inner rectangle of T .

Corollary 6. If the conditions of Proposition 5 are satisfied then 2h and
A(R) = bh, the area of the inner rectangle of T , are spectral invariants.

Remark 7. The above proposition, with A(R) replaced by 2A(R), was proved
by Hillairet [Hi05] for the trace of the wave group of ∆2T . In fact it was proved
in a more general context, namely for ESCS and for any one-parameter family
of regular periodic geodesics whose boundaries are one or two geometrically
diffractive geodesics. Hence it immediately applies to the double of the trape-
zoid in Figure 2. However, recalling (3.4), it does not immediately imply any-
thing about the asymptotics of the traces of the wave groups associated to ∆D

T
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or ∆N
T . We emphasize that Hillairet’s theorem implies that if both Dirichlet

and Neumann spectrum are known, then 2h and A(R) are spectral invariants.
We do not wish to make this strong assumption, but we will nonetheless show
using the method of reflections and a wavefront calculation that the Dirchlet
and Neumann wave traces have an identical singularity at t = 2h, showing that
indeed Proposition 5 follows from Hillairet’s result. Note that this is special
for the orbits in Figure 2 and does not necessarily hold for other orbits. For
example as we will see in Proposition 7, the orbit in Figure 1 contributes a
singularity at t = 2b to the trace of the Neumann wave group which is larger
than the singularity at t = 2b of the trace of the Dirichlet wave group.

Remark 8. We note that as k → −∞ we have∫
ρ̂(t)e−ikt Tr eit

√
∆B
P dt = O(|k|−∞).

This is because by the Fourier inversion formula∫
ρ̂(t)e−ikt Tr eit

√
∆B
P dt = 2πTr ρ

(√
∆B
P − k

)
.

However since ρ is rapidly decaying near infinity, and since by the Weyl’s law
the eigenvalues grow linearly in dimension 2, the trace Tr ρ(

√
∆B
P − k) decays

rapidly as k → −∞. This together with proposition 5 shows that locally near

t = 2h, the wave trace Tr eit
√

∆B
T belongs to the Sobolev spaces H−s(R) for all

s > 1 but does not belong to H−1(R), and for this reason we say that t = 2h

is a singularity of order 1+. In general if Tr eit
√

∆ has an isolated singularity
at t = t0 and if for some ρ̂ supported near t0 we have as k → +∞∫

ρ̂(t)e−ikt Tr eit
√

∆dt = ce−ikt0ka + o(ka),

for some a ∈ R and nonzero constant c, then t0 is a singularity of order (a+ 1
2
)+

meaning that near t = t0 the wave trace belongs to H−s(R) for all s > a + 1
2

but does not for s = a+ 1
2
.

Remark 9. The discussion in remark 8 also shows that as k → +∞∫
ρ̂(t)e−iktTr cos(t

√
∆)dt =

1

2

∫
ρ̂(t)e−iktTr eit

√
∆dt+O(k−∞).

This shows a relation between Tr cos(t
√

∆) and Tr eit
√

∆.

The next proposition concerns the diffractive orbit γb in Figure 1.

Proposition 7. Let T be a trapezoid with α 6= π
2

and β 6= π
2

. Suppose there
are no closed geodesics in T of length 2b, or arbitrarily close to 2b, other than



THE NEUMANN ISOSPECTRAL PROBLEM FOR TRAPEZOIDS 13

γb in Figure 1. Let ρ̂(t) ∈ C∞0 (R) be a cutoff function supported near t = 2b
whose support does not contain any lengths in {0}∪±LT other than 2b. Then
as k → +∞∫

ρ̂(t)e−ikt Tr eit
√

∆B
T dt = −πiρ̂(2b)e−2bkiCα,βk

−1 +O(k−2),

for B = Neumann, and∫
ρ̂(t)e−ikt Tr eit

√
∆B
T dt = O(k−2),

for B = Dirichlet. Here the constant Cα,β is given by

(3.5) Cα,β =
cot( π2

2π−2α
) cot( π2

2π−2β
)

(π − α)(π − β)
.

When α = π
2

and β 6= π
2
, as k →∞ we have∫

ρ̂(t)e−ikt Tr eit
√

∆B
T dt = (2πb)

1
2 ρ̂(2b)e−

πi
4 e−2bkiCβk

− 1
2 +O(k−

3
2 ),

for B = Neumann, and∫
ρ̂(t)e−ikt Tr eit

√
∆B
T dt = O(k−

3
2 ),

for B = Dirichlet. Here

(3.6) Cβ = −
cot( π2

2π−2β
)

π − β
.

As a quick corollary we obtain a new angle invariant.

Corollary 8. Let T be a trapezoid such that there no orbits of length 2b other
than the bouncing ball orbit γb corresponding to the top edge. If β ≤ α <
π
2
, then 2b and Cα,β defined by 3.5 are spectral invariants for the Neumann

spectrum. If β < α = π
2
, then 2b and Cβ defined by 3.6 are spectral invariants

for the Neumann spectrum.

Remark 10. Again, this proposition follows from Hillairet [Hi05] with required
modifications to separate the Dirichlet and Neumann wave traces, which we
will discuss in the proof.

Remark 11. The following proposition might be useful when one studies the
isospectral problem on trapezoids for the Dirichlet Laplacian. It concerns the
wave trace contribution of the orthic orbit in Figure 5. Up to the principal part,
it is a direct consequence of Guillemin-Melrose trace formula [GuMe79] for
simple and non-degenerate periodic orbits. We state the proposition without
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the proof because we do not use it in this paper. In the following we use lF for
the length of the orthic (also called Fagnano) triangle which by the notations
of Figure 3 equals 2B sinα sin β.

Proposition 9. Let T be a trapezoid with α and β 6= π
2
, and α + β > π

2
.

Suppose T is tall enough that the orthic (Fagnano) triangle lies in T and is
non-diffractive as in Figure 5. Suppose there are no other closed geodesics in
T of length lF , other than the orthic triangle. Let ρ̂(t) ∈ C∞0 (R) be a cutoff
function supported near t = lF whose support does not contain any lengths in
{0} ∪ ±LT other than lF . Then as k → +∞∫

ρ̂(t)e−ikt Tr eit
√

∆B
T dt ∼ (−1)sB lF e

−iklF ρ̂(lF )
∞∑
j=0

cjk
−j,

where sB = 0 if B = D and sB = 1 if B = N . The constant c0 is nonzero.
Moreover, the constants {cj}∞j=0 depend only on lF and are independent of B.
Hence, the invariants {cj}∞j=0 do not introduce any spectral invariants other
than lF .

Corollary 10. Under the conditions of Proposition 9, lF = 2B sinα sin β is a
spectral invariant for both Dirichlet and Neumann spectra.

4. Proofs of Propositions 5 and 7

Let P be a polygonal domain and define 2P and the involution map R : 2P →
2P as in the previous section. We denote

U2P (t) = eit
√

∆2P , UD
P (t) = eit

√
∆D
P , UN

P (t) = eit
√

∆N
P ,

and we use
U2P (t, x, y), UD

P (t, x, y), UN
P (t, x, y),

for their integral kernels. The following proposition expresses the Dirichlet
and Neumann wave kernels in terms of U2P (t, x, y).

Proposition 11. For all t ∈ R and all x, y ∈ P :

UD
P (t, x, y) = U2P (t, x, y)− U2P (t, x,Ry),

UN
P (t, x, y) = U2P (t, x, y) + U2P (t, x,Ry).

The proof is obvious from the expansion of U2P (t, x, y) in terms of an ONB of
eigenfunctions of ∆2P consisting of even and odd eigenfunctions with respect
to R.
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As an immediate corollary we obtain:

Corollary 12.

TrUD
P (t) =

1

2

(
TrU2P (t)−

∫
2P

U2P (t, x,Rx)dx

)
,

TrUN
P (t) =

1

2

(
TrU2P (t) +

∫
2P

U2P (t, x,Rx)dx

)
.

We now specialize to the case of a trapezoid. To prove Propositions 5, 7, and 9,
we use Corollary 12 to reduce the problem to studying asymptotics of tempered
distributions TrU2P (t) and

∫
2P
U2P (t, x,Rx)dx. Theorem 2 of Hillairet [Hi05]

gives the asymptotics of the trace TrU2P (t), but the term
∫

2P
U2P (t, x,Rx)dx

is a new ingredient which is relatively easy to study.

Proof of Proposition 5. Let ε > 0 such that there are no lengths other than 2h
in the interval (2h− ε, 2h+ ε). To prove Proposition 5 it suffices to show that
on the interval (2h− ε, 2h+ ε) we have

WF

(∫
2P

U2P (t, x,Rx)dx

)
= ∅,

because this would imply that∫
ρ̂(t)e−ikt

(∫
2P

U2P (t, x,Rx)dx

)
dt = O(k−∞).

To prove the emptiness of the above wavefront set, we just need to follow the
argument as in [DuGu75] and write∫

2P

U2P (t, x,Rx)dx = Π∗4∗(U2P ◦ R),

where 4∗ is the pullback by the diagonal map 4 : R × 2P → R × 2P × 2P ,
and Π∗ is the pushforward by the projection map Π : R× 2P → R. The same
wavefront calculations as in [DuGu75] shows that

WF

∫
2P

U2P (t, x,Rx)dx

⊂
{

(t, τ); τ > 0,∃(x, ξ) ∈ T ∗(2P ) : Φt
2P (x, ξ) = (Rx, ξ)

}
.

Now suppose t0 ∈ (2h − ε, 2h + ε), and Φt0
2P (x, ξ) = (Rx, ξ) for some (x, ξ) ∈

T ∗(2P ). Then the projection of the geodesic segment {Φt
2P (x, ξ)}t∈[0,t0] onto

T ∗P , under the the natural projection π : 2P → P , is a closed geodesic
in P (as a billiard table) of length t0. However, by assumption the only
periodic orbits in P of length in the interval (2h − ε, 2h + ε) must belong to
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the one-parameter family in Figure 2. Hence t0 = 2h, and the projection of
{Φt

2P (x, ξ)}t∈[0,2h] onto P must be a bouncing ball orbit parallel to the altitude

of the trapezoid. Unfolding this onto 2P we get that Φt0
2P (x, ξ) = (x, ξ), and

since Φt0
2P (x, ξ) = (Rx, ξ), we must have Rx = x, or equivalently x ∈ ∂P .

However we may repeat the same argument with a point (x, ξ) in the orbit
which is in the interior of P since the orbit is parallel to the altitude. This
gives a contradiction.

�

Remark 12. The wavefront calculation above shows that in general for the dis-
tribution

∫
2P
U2P (t, x,Rx)dx to have nonempty wavefront set near the length

of an orbit (with no other lengths nearby), it is required that the orbit lies
entirely on the boundary of P . This is precisely what happens in Proposition
7.

Proof of Proposition 7. Theorem 2 of [Hi05] gives the asymptotics for TrU2P (t)
near t = 2b, which are exactly those given in Proposition 7. Hence, by Corol-
lary 12, to prove this proposition it suffices to show that
(4.1)∫

R

∫
2P

ρ̂(t)e−iktU2P (t, x,Rx)dxdt =

∫
R

∫
2P

ρ̂(t)e−iktU2P (t, x, x)dxdt+O(k−
n
2
−1),

where n = 2 if β ≤ α 6= π
2
, and n = 1 when β < α = π

2
. We note that in fact

n corresponds to the number of diffractions because there is no diffraction at
the top left vertex when α = π

2
.

To prove the proposition we use Theorem 5 of [Hi05] which gives a parametrix
for U2P (t, x, y) microlocalized near a diffractive geodesic connecting a point x0

near x to a point y0 near y.

Theorem 13 (Hillairet). Let P be a polygon and γ be a diffractive geodesic on
2P of length t0, with initial and terminal points x0 and y0 in 2P , going through
n diffractions at conic points p1, p2, . . . , pn of angles α1, α2, . . . , αn, with angles
of diffractions β1, β2, . . . , βn. Let (r, θ) and (R,Θ) be polar coordinates centered
at p1 and pn, chosen in such a way that the line segments x0p1 and pny0

correspond to θ = 0 and Θ = 0 respectively. Then microlocally near γ, U2P is
an FIO, and near (t0, x0, y0) and away from the conic points, has a parametrix
of the form

Ũ2P,γ(t, x, y) =

∫
ξ>0

eiξ(t−R0(x)−R1(y)−
∑n−1
j=1 Lj)aγ(t, x, y, ξ)dξ,
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where Lj = d(pj, pj+1) and as ξ → +∞ the amplitude aγ has an asymptotic
expansion of the form

aγ(t, x, y, ξ) ∼
∞∑
m=0

am(t, x, y)ξ−
n−1

2
−m,

with leading term

a0(t, x, y) = (2π)(n−3)/2e(n−1)iπ/4 Sγ(x, y)√
Lγ(x, y)

.

Here

Sγ(x, y) = Sα1(β1 − θ(x))Sα2(β2) . . . Sαn−1(βn−1)Sαn(Θ(y)− βn),

and

Lγ(x, y) = R0(x)L1L2 . . . Ln−1R1(y),

where

Sδ(η) = −
sin(2π2

δ
)

2δ sin(π
δ
(π + η)) sin(π

δ
(π − η))

,

which at η = 0 simplifies to Sδ(0) = −1
δ

cot(π
2

δ
).

We now apply this theorem to γb in Figure 1. First we choose the coordinates
so that the top left corner of T is at C1 := (0, 0), and the top right corner is
at C2 := (b, 0), hence γb lies on the x1 axis. We then reflect T about the x1

axis. In particular, this would give a natural neighborhood of the interior of γ,
and the involution map R becomes R(x1, x2) = R(x1,−x2). We also choose
three cutoff functions, χC1 , χC2 , and χ on 2T , all invariant under R. These
are chosen to satisfy: χC1 + χC2 + χ = 1 near γb; χC1 and χC2 are supported
in small neighborhoods of C1 and C2, respectively; and χ is supported away
from C1 and C2. By a wavefront calculation as in the proof of the previous
proposition we can see that∫

ρ̂(t)e−ikt TrU2P (t) ◦ Rχdt =

∫
ρ̂(t)e−ikt Tr Ũ2P,γ(t) ◦ Rχdt+O(k−∞)

Newt, we substitute the parametrix given in the statement of the theorem for
Ũ2P,γ(t, x, y). However, an immediate observation shows that R1(Rx) = R1(x),
and Θ(Rx) = Θ(x). Hence the phase functions and the leading terms of the
amplitudes of the oscillatory integrals Ũ2P,γ(t, x,Rx) and Ũ2P,γ(t, x, x) agree on
Suppχ. By the stationary phase lemma, as performed in the proof of Theorem
5 of [Hi05], we have∫

ρ̂(t)e−ikt Tr Ũ2P,γ(t) ◦ Rχdt =

∫
ρ̂(t)e−ikt Tr Ũ2P,γ(t)χdt+O(k−

n
2
−1).
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This implies 4.1 because∫
ρ̂(t)e−ikt TrU2P (t)χdt =

∫
ρ̂(t)e−ikt Tr Ũ2P,γ(t)χdt+O(k−∞).

Near the conic points C1 and C2 we can use the cyclicity of the trace, as used
by [Du88, Hi05, FoHaHi15] to move the support of the integrands away from
the conic points and reduce to the setting above. �

5. Proof of Theorem 1

Our first simple observation is

Proposition 14. The length of any periodic orbit in a trapezoidal table T is
strictly larger than 2h or 2b unless the orbit is a bouncing ball corresponding
to one of the altitudes or it is the bouncing ball between the top two vertices.

Proof. We note that any closed diffractive or non-diffractive geodesic in T that
starts from the top edge (including the corners) and is transversal (i.e. not
tangent) to the top edge must be of length strictly larger than 2h unless it is
parallel to the altitude. Furthermore, any geodesic that touches the left and
right edges (including the corners) must be of length larger than 2b unless it
is the bouncing ball orbit γb. If a geodesic touches the bottom edge and the
right edge (respectively, left edge) then it must also visit the top edge or the
left edge (respectively, right edge) and hence its length is larger than 2h or
2b. �

The main theorem follows immediately by combining the following four propo-
sitions and the heat trace invariants A, L, and qα,β.

Proposition 15. Let T1 and T2 be two trapezoids with the same Neumann
spectra. If T1 is a rectangle, then T2 is a rectangle that is congruent to T1.

Proposition 16. Let T1 and T2 be two non-rectangular trapezoids with the
same Neumann spectra.

• If h(T1) ≤ b(T1), then h(T1) = h(T2) and b(T1) = b(T2).
• If b(T1) < h(T1) then b(T1) = b(T2). In addition if α(T1) 6= π

2
, then

α(T2) 6= π
2
, and Cα(T1),β(T1) = Cα(T2),β(T2), where Cα,β is defined by

(3.5). Moreover, if α(T1) = π
2
, then α(T2) = π

2
and Cβ(T1) = Cβ(T2)

where Cβ is given by (3.6).
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Proposition 17. If two trapezoids have the same area A, perimeter L, height
h, and b, then they are congruent up to rigid motions.

Proposition 18. If two trapezoids, with α(T1) and α(T2) 6= π
2
, have the same

area A, angle invariant qα,β, the same b, and the same Cα,β, then they are
congruent up to rigid motions. Moreover, if two non-rectangular trapezoids,
with α(T1) = α(T2) = π

2
, have the same area A, angle invariant qα,β, and the

same b, then they are congruent up to rigid motions.

We now give the proofs of these propositions.

Proof of Proposition 15 . The angle invariant satisfies

q ≥ 8

π2

with equality if and only if the trapezoid is a rectangle. Since T1 and T2 are
isospectral, they have the same angle invariant. Consequently, since T1 is a
rectangle, T2 is as well. Furthermore, by isospectrality, T1 and T2 have the
same area and perimeter, and these uniquely determine a rectangle up to rigid
motions. �

Proof of Proposition 16. First suppose h(T1) < b(T1). Then by Proposition 14,
2h(T1) is the shortest length in LT1 and there are no orbits other than the one-
parameter family of altitudes having the same length. Hence by Proposition 5,
both Dirichlet and Neumann wave traces of T1 have a singularity of order 1+

at t = 2h(T1) where up to a constant the leading coefficient equals b(T1)h(T1),
the area of the inner rectangle. Since T1 and T2 are isospectral, the same must
hold for the wave trace of T2. In particular, we must have 2h(T1) = 2h(T2),
and b(T1)h(T1) = b(T2)h(T2), so that b(T1) = b(T2).

If b(T1) < h(T1), then again using Proposition 14, 2b(T1) is the shortest length
in LT1 . By Proposition 7, the Neumann wave trace of T1 has a singularity
at t = 2b(T1). If the order of this singularity is (−1

2
)+, then we know that

α(T1) 6= π
2
, and the same type of singularity is found in the Neumann wave

trace of T2, thus α(T2) 6= π
2

as well. Furthermore, 2b(T1) = 2b(T2), and
Cα(T1),β(T1) = Cα(T2),β(T2). Similarly, if the order of this singularity is 0+, then
we know that there is only one diffraction, meaning that α(T1) = π

2
. Since the

singularity in the wave trace of T2 must be the same, we must have α(T2) = π
2
,

2b(T1) = 2b(T2) and Cβ(T1) = Cβ(T2).
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When h(T1) = b(T1), since there are no orbits of length 2h(T1) = 2b(T1) other
than γh and γb, the singularities of the wave trace at t = 2h(T1) and t = 2b(T1)
add. This is because in fact Propositions 5 and 7 are also valid microlocally
near their corresponding orbits. In this case since the singularity at t = 2h(T1)
is larger, and it contributes to the leading singularity of the wave trace. Hence
as in the first case, we have 2h(T1) = 2h(T2), and b(T1)h(T1) = b(T2)h(T2),
thus b(T1) = b(T2). �

Proof of Proposition 17. If A, b, and h are known, then obviously B can be
determined. On the other hand, it is clear from Figure 3 that

B − b
h

= cotα + cot β,
L−B − b

h
= cscα + csc β.

Hence cscα + csc β and cotα + cot β are spectrally determined. By adding
and subtracting these two invariants we arrive at

cot
α

2
+ cot

β

2
, tan

α

2
+ tan

β

2
,

as two spectrally determined quantities. Since cot α
2

+ cot β
2

=
tan α

2
+tan β

2

tan α
2

tan β
2

, we

can also determine tan α
2

tan β
2
, which uniquely determines tan α

2
and tan β

2
.

Therefore α and β are spectrally determined because 0 < β ≤ α ≤ π
2
.

�

Proof of Proposition 18. Our plan is to show that for β ≤ α < π
2
, the pair

{qα,β, Cα,β} determines α and β uniquely. To do this we show that Cα,β is an
increasing function on the level curves of qα,β as α increases.

We recall from Proposition 4 that

(5.1) qα,β =
1

α(π − α)
+

1

β(π − β)
= F (α) + F (β), F (α) :=

1

α(π − α)
.

Under the assumptions that q ≥ 8/π2 and β ≤ α, which are always valid for
trapezoids, each q and α uniquely determine β by

β = β(α) =
π

2

(
1−

√
1− 4

π2(q − F (α))

)
.
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Since β ≤ α, the range for α is [α0, π/2), where α0 is determined by setting
α = α0 = β,

α0 =
π

2

(
1−

√
1− 8

qπ2

)
.

Then F (α0) = q/2. Using implicit differentiation in the equation

q = F (α) + F (β),

we have

(5.2) β′(α) = −F
′(α)

F ′(β)
,

where

F ′(α) = − π − 2α

α2(π − α)2
≤ 0

for α ∈ [α0, π/2]. The inequality is strict when α > β.

We also recall that

Cα,β =
cot( π2

2π−2α
) cot( π2

2π−2β
)

(π − α)(π − β)
.

Since α, β ∈ (0, π
2
), both cot( π2

2π−2α
) and cot( π2

2π−2β
) are negative, and Cα,β > 0.

We will show that d
dα

logCα,β ≥ 0, and that it is zero if and only if β = α = α0.

Using the identity 1+cot2(a)
cot a

= 2
sin 2a

and (5.2), we get

d

dα
logCα,β =

(
1

π − α
− π2

(π − α)2 sin π2

π−α

)
+ β′(α)

(
1

π − β
− π2

(π − β)2 sin π2

π−β

)

= −F ′(α)

(
α2

π − 2α

(
π − α− π2

sin π2

π−α

)
− β2

π − 2β

(
π − β − π2

sin π2

π−β

))
.

We now define

G(σ) =
σ2

π − 2σ

(
π − σ − π2

sin π2

π−σ

)
.

Since F ′(α) < 0 for all α > β, and β ≤ α, to prove that d
dα

logCα,β ≥ 0
with equality if and only if β = α, we need to show that G(σ) is an increasing
function on (0, π

2
). It is more convenient to change the variable by

θ =
π2

π − σ
− π.

Then since σ ∈ (0, π/2), we have θ ∈ (0, π) .
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Then G as a function of θ becomes

G(θ) =
π3θ2

(π + θ)(π − θ)

(
1

sin θ
+

1

π + θ

)
, θ ∈ (0, π).

To show that G(θ) is increasing on (0, π), we prove that d
dθ
G(θ) > 0 on (0, π).

Since θ ∈ (0, π), it is clear to see that G(θ) > 0. It therefore suffices to prove
that d

dθ
logG(θ) > 0. A simple calculation shows that

d

dθ
logG(θ) =

2

θ
− 1

π + θ
+

1

π − θ
−

cos θ
sin2 θ

+ 1
(π+θ)2

1
sin θ

+ 1
π+θ

>
2

θ
− 2

π + θ
+

1

π − θ
−

cos θ
sin2 θ

1
sin θ

+ 1
π+θ

.

Clearly if θ ∈ [π
2
, π), then this implies that

d

dθ
logG(θ) >

2

θ
− 2

π + θ
+

1

π − θ
>

8

3π
> 0.

On the other hand, if θ ∈ (0, π
2
), using the inequality sin θ > 2

π
θ,

d

dθ
logG(θ) >

2

θ
− 2

π + θ
+

1

π − θ
− cos θ

sin θ

>
(

2− π

2

) 1

θ
− 2

π + θ
+

1

π − θ

=
(

2− π

2

) 1

θ
+

3θ − π
π2 − θ2

.

Obviously the last quantity is positive if θ ∈ (π
3
, π

2
) because it is the sum of

two positive terms. Moreover, for θ ∈ (0, π
3
], we have the lower bound

3(4−π)
2
−1

π
,

which is larger than 0.09.

The above calculations show that qα,β and Cα,β uniquely determine α and β.
Since b and A are also known, the trapezoid is uniquely determined.

We also note that in the case α = π
2
, the angle invariant q determines β

uniquely, therefore the trapezoid can be determined again from the knowledge
of A and b.

�
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