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Modeling covariance (and correlation)matrices is a challeng-
ing problem due to the large dimensionality and positive-
definiteness constraint. In this paper, we propose a novel
Bayesian framework based on decomposing the covariance
matrix into variance and correlationmatrices. The highlight
is that the correlations are represented as products of vec-
tors on unit spheres. We propose a variety of distributions
on spheres (e.g. the squared-Dirichlet distribution) to induce
flexible prior distributions for covariancematrices that go
beyond the commonly used inverse-Wishart prior. To han-
dle the intractability of the resulting posterior, we introduce
the adaptive∆-Spherical HamiltonianMonte Carlo. We also
extend our structured framework to dynamic cases and in-
troduce unit-vector Gaussian process priors for modeling
the evolution of correlation amongmultiple time series. Us-
ing an example of Normal-Inverse-Wishart problem, a simu-
lated periodic process, and an analysis of local field potential
data (collected from the hippocampus of rats performing
a complex sequence memory task), we demonstrated the
validity and effectiveness of our proposed framework for
(dynamic) modeling covariance and correlationmatrices.
K E YWORD S
Dynamic covariancemodeling, Separation strategy, Geometric
methods,∆-Spherical HamiltonianMonte Carlo
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2 SHIWEI LAN ET AL.

1 | INTRODUCTION

Modeling covariance matrices—or more broadly, positive definite (PD) matrices—is one of the most fundamental
problems in statistics. In general, the task is difficult because the number of parameters grows quadratically as the
number of variables increases. The complexity of the challenge increases substantially if we allow dependencies to vary
over time (or space) in order to account for the dynamic (non-stationary) nature of the underlying probability model.
In this paper, we propose a novel solution to the problem by developing a flexible and yet computationally efficient
inferential framework for both fixed and dynamic covariancematrices.

Within the Bayesian framework, it is common to use an Inverse-Wishart prior on the covariancematrix for com-
putational convenience (Mardia et al., 1980; Anderson, 2003). This choice of prior however is very restrictive (e.g.
common degrees of freedom for all components of variance) (Barnard et al., 2000; Tokuda et al., 2011). Alternatively,
onemay use decomposition strategies for more flexible modeling choices (see Barnard et al. (2000) for more details).
For instance, Banfield and Raftery (1993), Yang and Berger (1994), Celeux and Govaert (1995), Leonard and Hsu (1992),
Chiu et al. (1996), and Bensmail et al. (1997) proposedmethods based on the spectral decomposition of the covariance
matrix. Another strategy is to use the Cholesky decomposition of the covariancematrix or its inverse, e.g., Pourahmadi
(1999, 2000); Liu (1993); Pinheiro and Bates (1996). In general, thesemethods fail to yield full flexibility (Pourahmadi,
1999, 2000, for a special type of ‘joint mean-covariancemodel’), generality (Liu, 1993, for applications in ’monotone
missing data’), or sacrifice for statistical interpretability (Pinheiro and Bates, 1996). The proposedmethod in this paper
is based on the separation strategy (Barnard et al., 2000) and the Cholesky decomposition for separately modeling
mean, variance and correlation in a fully flexible way.

Tomodel the real-life spatio-temporal processes with complex dependence structures (e.g., brain signals during
cognitive tasks), we extend our structuredmodeling framework for covariance and correlationmatrices to the dynamic
setting. To address the constraint for correlation processes (positive definite matrix at each time having unit diagonals
and off-diagonal entries withmagnitudes no greater than 1), we introduce unit-vector Gaussian process priors. There
are other relatedworks, e.g. generalizedWishart process (Wilson andGhahramani, 2011), and latent factor process
(Fox and Dunson, 2015), that explore the product of vector Gaussian processes. In general they do not grant full
flexibility in modeling all of themean, variance and correlation processes, and thus are outperformed by our proposed
flexible framework (See more details in Section 4.2.2). Other approaches to model non-stationary processes use a
representation in terms of a basis such aswavelets (Nason et al., 2000), the SLEX (Ombao et al., 2005), which are actually
inspired by Fourier representations in Priestley (1965) and Dahlhaus (2000). These approaches are frequentist and do
not easily provide a framework for inference (confidence intervals and hypothesis testing). The class of time-domain
parametric models allows for the ARMA parameters to evolve over time (see, e.g. Rao, 1970) or via parametric latent
signals (West et al., 1999; Prado et al., 2001). A restriction for this class of models is that some processes might not be
adequately modeled by these parametric models.

This paper contains the following contributions:

• a general and flexible framework is proposed for modelingmean, variance and correlation processes separately;
• the sphere-product representation of a correlationmatrix is introduced and distributions based on this representa-

tion, including the squared-Dirichlet distribution and normalized Gaussian distributions, are discussed;
• a new stochastic process is defined on the sphere and used to induce dynamic priors for covariancematrices;
• an efficient algorithm is introduced to infer correlationmatrices and processes;
• posterior contraction phenomena are studied for bothmean and covariance (correlation) processes.
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There is a strong potential impact of this work in modeling the dynamic connectivity of brain processes. Brain
connectivity plays a prominent role in neuroscience because it is associatedwith cognitive processes such as learning
andmemory and it is considered as a potential biomarker for mental and neurological diseases. There are a number of
newmethods that have been developed (Cribben et al., 2012; Fiecas andOmbao, 2016; Lindquist et al., 2014; Ting et al.,
2015; Prado, 2013) but themain limitation of thesemethods (especially the ones that have a frequentist approach) is a
lack of natural framework for inference. Moreover, parametric approaches (e.g. vector auto-regressivemodels) need
to be tested for adequacy for modeling complex brain processes and often have high dimensional parameter spaces
(especially with a large number of channels and high lag order). This work provides both a nonparametric Bayesian
model and an efficient inferential method for modeling the complex dynamic dependence amongmultiple stochastic
processes that is common in the study of brain connectivity.

The rest of the paper is organized as follows. In the next section, we present a geometric view of covariance
matrices. Next, we will extend this view to allow covariance matrices to change over time. In Section 3, we will use
this geometrical perspective to develop an effective and computationally efficient inferential method for modeling
static and dynamic covariancematrices. Using simulated data, wewill evaluate our method in Section 4. Then we apply
our proposedmethod to local field potentials (LFP) data recorded from the hippocampus of rats performing a complex
sequencememory task. In the final section, we conclude with discussions about future work.

2 | STRUCTURED BAYESIAN MODELING COVARIANCES (CORRELATIONS)

To derive flexiblemodels for covariance and correlationmatrices, we start with the Cholesky decomposition, form a
sphere-product representation, and finally obtain the separation decomposition in Barnard et al. (2000) with correla-
tions represented as products of vectors on spheres. The sphere-product representation is amenable for the inferential
algorithm to handle the resulting intractability, and hence lays the foundation for full flexibility in choosing priors.

Any covariancematrixΣ = [σi j ] is symmetric positive definite, and hence has a unique Cholesky decomposition

Σ = LLT, σi j =

min{i ,j }∑
k=1

l i k l j k

where the Cholesky factor L is a lower triangular matrix. We denote the variance vector asσ2 := [σ21 , · · · ,σ2D ]T, then
each variance component, σ2

i
, can bewritten in terms of L as follows:

σ2i := σi i =
i∑
k=1

l 2i k = ‖li ‖2, li := [l i1, l i2, · · · , l i i ], L =

l1
.
.
.

lD


(1)

ForΣ to be positive definite, it is equivalent to require all the leading principal minors {Mi } to be positive,

Mi =
i∏
k=1

l 2k k > 0, i = 1, · · · ,D ⇐⇒ l i i , 0, i = 1, · · · ,D (2)

Based on (1) and (2), li , for i ∈ {1, · · · ,D }, is restricted to be on a sphere with radius σi := √σi i excluding the equator,
denoted as Si−10 (σi ). Therefore the space of the Cholesky factor in terms of its rows can be written as a product of
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spheres andwe require

(l1, l2, · · · , lD ) ∈ S00 (σ1) × S10 (σ2) · · · × SD−10 (σD ) (3)

Note that (3) is the sufficient and necessary condition for the matrixΣ = LLT to be a covariance matrix. The norm
requirements for correlations are immediately satisfied by the Cauchy-Schwarz inequality: |ρi j | := |σi j |σi σj

=
|〈li ,lj 〉|
‖li ‖‖lj ‖ ≤ 1.For simplicity, we present probabilistic models involving covariancematrices in the following generic form:

y |Σ(σ, L) ∼ `(y;Σ(σ, L)), Σ(σ, L) = LLT
σ ∼ p(σ)

L |σ ∼ p(L;σ), vechT(L) ∈
D∏
i=1

Si−10 (σi )

(4)

whereσ := [σ1, · · · ,σD ]T, and the half-vectorization in row order, vechT, transforms the lower triangular matrix L into
a vector (l1, l2, · · · , lD ) = (l11, l21, l22, · · · , lD1, · · · , lDD ). The total dimension of (σ, L) is D (D+1)2 .1

Alternatively, if we separate variances from covariance, thenwe have a unique Cholesky decomposition for the
following correlationmatrix P = [ρi j ]

P := diag(σ2)−
1
2Σ diag(σ2)−

1
2 = L∗(L∗)T, ρi j =

min{i ,j }∑
k=1

l ∗i k l
∗
j k

where the Cholesky factor L∗ = diag(σ−1)L can be obtained by normalizing each row of L. Thus we require

(l∗1, l∗2, · · · , l∗D ) ∈ S00 × S10 · · · × SD−10 (5)

where Si−10 := Si−10 (1). Similarly, (5) is the sufficient and necessary condition for P = L∗(L∗)T to be a correlationmatrix.
Thenwe have the following alternatively structuredmodel for covarianceΣ that involves correlation P explicitly

y |Σ(σ, L∗) ∼ `(y;Σ(σ, L∗)), Σ(σ, L∗) = diag(σ)Pdiag(σ), P = L∗(L∗)T
σ ∼ p(σ)

L∗ ∼ p(L∗), vechT(L∗) ∈
D∏
i=1

Si−10

(6)

Note, this direct decompositionΣ = diag(σ)Pdiag(σ) as a separation strategy is motivated by statistical thinking in
terms of standard deviations and correlations (Barnard et al., 2000). This setting is especially relevant if the statistical
quantity of interest is correlationmatrix P itself, and we can then skip inference of the standard deviationσ by fixing it
to a data-derived point estimate.

In what follows, wewill show that the above framework includes the Inverse-Wishart prior as a special case, but
it can be easily generalized to a broader range of priors for additional flexibility. Such flexibility enables us to better
express prior knowledge, control themodel complexity and speed up computation (Section 4.2.3) in modeling real-life
phenomena. This is crucial in modeling spatio-temporal processes with complex structures.

1For each i ∈ {1, · · · ,D }, givenσi , there are only (i − 1) free parameters on Si−10
(σi ), so there are totally D (D−1)2 + D free parameters.
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2.1 | Connection to the Inverse-Wishart Prior
There are some interesting connections between the spherical product representations (3) (5) and the early develop-
ment of theWishart distribution (Wishart, 1928). The originalWishart distribution was derived by orthogonalizing
multivariate Gaussian randomvariables leading to a lower triangularmatrix whose elements {t ∗

i j
|i ≥ j } (analogous to l i j

or l ∗
i j
) were called rectangular coordinates. This way, the probability density has a geometric interpretation as a product of

volumes and approximate densities on a series of spherical shells with radius {t ∗
i i
} (Seemore details in Sverdrup, 1947;

Anderson, 2003). Nowwe demonstrate that the proposed schemes (4) (6) include the commonly used inverse-Wishart
prior as a special case in modeling covariances.

SupposeΣ is a random sample from the inverse-Wishart distributionW−1
D (Ψ, ν), whereΨ > 0 is the scale matrix

and ν ≥ D is the degree of freedom. Therefore, Σ−1 ∼ WD (Ψ−1, ν). Denote C as the Cholesky factor of Ψ−1, i.e.
Ψ−1 = CCT. ThenΣ−1 has the following Bartlett decomposition (Anderson, 2003; Smith andHocking, 1972)

Σ−1 = TTT, T := CT∗, t ∗i j ∼


χD−i+1, i = j

N(0, 1), i > j

δ0, i < j

(7)

where the lower triangular matrix T, the Bartlett factor, has the following density (Theorem 7.2.1 of Anderson, 2003)

p(T) = |Ψ |ν/2

2D (ν−2)/2ΓD (ν/2)

D∏
i=1

|t i i |ν−i exp
(
−1
2
tr(ΨTTT)

)
withmultivariate gamma function defined as ΓD (x ) := πD (D−1)/4 ∏D

i=1 Γ[x + (1 − i )/2].
Now taking the inverse of the first equation in (7) yields the following reversed Cholesky decomposition2

Σ = UUT, σi j =
D∑

k=max{i ,j }
ui k u j k , vech(UT) ∈

D∏
i=1

SD−i0 (σi )

whereU := T−T is an upper triangular matrix. The following theorem describes the density of the reversed Cholesky
factorU ofΣ, which enables us to treat the inverse-Wishart distribution as a special instance of strategy (4) or (6).
Theorem 1 AssumeΣ ∼ W−1

D (Ψ, ν). Then its reversed Cholesky factorU has the following density

p(U) = |Ψ |ν/2

2D (ν−2)/2ΓD (ν/2)
|U |−(ν+D+1)

D∏
i=1

u ii i exp
(
− 1
2
tr(ΨU−TU−1)

)
Proof See Appendix A.

Remark 1 If we normalize each row ofU and write

U = diag(σ)U∗, σi =
√
σi i = ‖ui ‖, u∗i j = ui j /σi ,

2This canbe achieved through the exchangematrix (a.k.a. reversalmatrix, backward identity, or standard involutory permutation)Ewith1’s on the anti-diagonal
and 0’s elsewhere. Note that E is both involutory and orthogonal, i.e. E = E−1 = ET . Let EΣE = LLT be the usual Cholesky decomposition. ThenΣ =

(ELE)(ELE)T = UUT and defineU := ELET .
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then the following joint prior of (σ,U∗) is inseparable in general:

p(σ,U∗) ∝
D∏
i=1

|σiu∗i i |
i−(ν+D+1) exp

{
− 1
2
tr(Ψ diag(σ−1)(U∗)−T(U∗)−1 diag(σ−1))

}
(8)

With this result, we can conditionally model variance and correlation factor as p(σ |U∗) and p(U∗ |σ) respectively, similarly as in
our proposed scheme (4) or (6). This result facilitates the construction of a broader class of more flexible prior distributions for
covariance matrix in the following section 2.2. It is also used to verify the validity of our proposed method (6) (see more details in
Section 4.1.1). A similar result exists for theWishart prior distribution regarding the Cholesky factor.

2.2 | More Flexible Priors
Within the above framework, the only constraint onU or L is that it resides on the product of spheres with increasing
dimensions. Using this fact, we can develop a broader class of priors on covariancematrices and thus be able tomodel
processes withmore complicated dependence in covariance structures. Sinceσ and L∗ have independent priors in (6),
in what follows we focus on the scheme (6), and for simplicity, we denote the normalized Cholesky factor as L. Also,
following Barnard et al. (2000), we assume a log-Normal prior on σ :

log(σ) ∼ N(ξ,Λ)

Wenow discuss priors on L that properly reflect the prior knowledge regarding the covariance structure among
variables. If two variables, yi and yj (assuming i < j ) are known to be uncorrelated a priori, then can choose a prior
that encourages li and lj to be perpendicular to each other, e.g. l j k ≈ 0 for k = 1, · · · , i . In contrast, if we believe a priori
that there is a strong correlation between the two variables, we can specify that li and lj be linearly dependent, e.g., by
setting l j k |li ≈ l i k , k = 1, · · · , i or l j k |li ≈ −l i k , k = 1, · · · , i . When there is no prior information, wemight assume that
components are uncorrelated and specify priors for li that concentrate on the (two) poles of Si−10 ,

p(li ) ∝ |l i i |, i = 2, · · · ,D (9)

Puttingmore prior probability on the diagonal elements of L renders fewer non-zero off-diagonal elements, which in
turn leads to a larger number of perpendicular variables; that is, such a prior favors zeros in the correlation matrix
P. More generally, one can map a probability distribution defined on the simplex onto the sphere. We consider the
following squared-Dirichlet distribution:
Definition 1 (Squared-Dirichlet distribution) A random vector li ∈ Si−1 is said to have a squared-Dirichlet distribution
with parameterαi := (αi1, αi2, · · · , αi i ) if

l2i := (l 2i1, l 2i2, · · · , l 2i i ) ∼ Dir(αi )

Then we denote li ∼ Dir2(αi ) and li has the following density

p(li ) = p(l2i ) |2li | ∝ (l2i )αi −1 |li | = |li |2αi −1 :=
i∏
k=1

|l i k |2αi k −1 (10)
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F IGURE 1 Symmetric squared-Dirichlet distributions Dir2(α) defined on the 2-sphere with different settings for
concentration parameterα = α1. The uniform distribution on the simplex, Dir(1), becomes non-uniform on the sphere
due to the stretch of geometry (left); the symmetric Dirichlet distribution Dir( 12 1) becomes uniform on the sphere(middle); with α closer to 0, the induced distribution becomesmore concentrated on the polar points (right).

Remark 2 This definition includes a large class of flexible prior distributions on the unit sphere that specify different concentra-
tions of probability density through the parameterαi . For example, the above prior (9) corresponds toαi = ( 12 , · · · , 12 , 1).

To induce a prior distribution for the correlation matrix P = LLT, one can specify priors on row vectors of L,
li ∼ Dir2(αi ) for i = 2, · · · ,D . To encourage small correlation, we choose the concentration parameterαi so that the
probability density concentrates around the (two) poles of Si−10 , e.g. 0 < αi k � αi i for k < i . Figure 1 illustrates the
density heatmaps of some symmetric squared-Dirichlet distributions Dir2(α1) on the 2-sphere. It is interesting that
the squared-Dirichlet distribution induces two important uniform prior distributions over correlationmatrices from
Barnard et al. (2000) in an effort to provide flexible priors for covariancematrices, as stated in the following theorem.

Theorem 2 (Uniform distributions) Let P = LLT. Suppose li ∼ Dir2(αi ), for i = 2, · · · ,D , are independent, where li is the
i -th row of L. Then we have

1. Ifαi = ( 12 1Ti−1, αi i ), αi i = (i−2)D−12 , then P follows amarginally uniform distribution, that is, ρi j ∼ Unif(−1, 1), i , j .
2. Ifαi = ( 12 1Ti−1, αi i ), αi i = D−i

2 + 1, then P follows a jointly uniform distribution, that is, p(P) ∝ 1.

Proof See Appendix A.

Another natural spherical prior can be obtained by normalizing a multivariate Gaussian random vector. This is later
generalized to a vector Gaussian process constrained to a sphere that serves as a suitable prior for modeling correlation
processes. Nowwe consider the following normalized multivariate Gaussian distribution:

Definition 2 (Normalized Gaussian distribution) A random vector li ∈ Si−1 is said to have a normalized multivariate
Gaussian distribution with meanµ and covarianceΣ if

li := z
‖z‖2 , z ∼ Ni (µ,Σ)
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Then we denote li ∼ n-N(µ,Σ) and li has the following (conditional) density

p(li | ‖z‖2 = σi ) = pN (z)
���� dzd li

���� = pN (liσi )σ ii = σ i
i

(2π)
i
2 |Σ |

1
2

exp
{
− 1
2
(liσi −µ)TΣ−1(liσi −µ)

}
Remark 3 This conditional density essentially defines the following Fisher-Bingham distribution (a.k.a. generalized Kent
distribution, Kent, 1982; Mardia and Jupp, 2009). IfΣ = I, then the above distribution reduces to the von Mises-Fisher
distribution (Fisher, 1953; Mardia and Jupp, 2009) as a special case. If in additionµ = 0, then the above density becomes a
constant; that is, the corresponding distribution is uniform on the sphere Si−10 .
Definition 3 (Fisher-Bingham / Kent distribution) The probability density function of the Kent distribution for the random
vector li ∈ Si−1 is given by

p(li ) ∝ exp
{
κγ1

Tli +
i∑
k=2

βk (γk Tli )2
}

where∑i
k=2 βk = 0 and 0 ≤ 2 |βk | < κ and the vectors {γk }ik=1 are orthonormal.

Remark 4 The parameters κ andγ1 are called the concentration and themean direction parameter, respectively. The greater
the value of κ , the higher the concentration of the distribution around the mean direction γ1. The choice of γ1 could impact
our priors whenmodeling correlations (see Section 4.1.2 for more details). Parameters {βk }ik=2 determine the ellipticity of the
contours of equal probability. The vectors {γk }ik=2 determine the orientation of the equal probability contours on the sphere.
Remark 5 If βk = 0 for k = 2, · · · , i , then this distribution reduces to vonMises-Fisher distribution (Fisher, 1953; Mardia
and Jupp, 2009), denoted as vMF(κ,γ1). If κ = 0, then it defines an antipodally symmetric distribution, named Bingham
distribution (Bingham, 1974), denoted asBing(A), with lT

i
Ali = ∑i

k=2 βk (γk
Tli )2.

As before, to induce smaller correlations, one can put higher prior probabilities for li on the poles of Si−1. For
example, wemight consider li ∼ vMF(κ, ni ), or li ∼ Bing(ζ diag(ni )), where ni := (0, · · · , 0, 1)T is denoted as the north
pole. Wewill explore the effect of κ and ζ on spherical priors for correlations in Section 4.1.2.

2.3 | DynamicallyModeling the Covariance
In this section, we extend the static model (6) to allow for time-varying covariance in non-stationary processes. To this
end, we consider the following dynamic model:

yt |Σt (σt , Lt ) ∼ `(yt ;Σt (σt , Lt )), Σt (σt , Lt ) = diag(σt )Pt diag(σt ), Pt = Lt Lt T
σt ∼ p(σt )

Lt ∼ p(Lt ), vechT(Lt ) ∈
D∏
i=1

Si−10

(11)

One canmodel the components ofσt as independent dynamic processes using, e.g. an ARMA, GARCH, or log-Gaussian
process specification. For Lt , we use vector processes. Since each row of Lt has to be on a sphere of certain dimension,
we require the unit norm constraint for the dynamic process over time. We refer to anymultivariate process satisfying
the following requirement as unit-vector process (uvP).
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Definition 4 (Unit-vector process) A vector stochastic process li (x ) is called unit-vector process, if

‖li (x ) ‖ ≡ 1, [x ∈ X

where ‖ · ‖ could be any vector norm, e.g. 2-norm.

Note, the norm constraint is imposed in the strong sense, not under the expectation. A unit-vector process can be
obtained by normalizing an existingmultivariate process, e.g. the vector Gaussian process (vGP), as defined below.

Definition 5 (Vector Gaussian process) A D -dimensional vector Gaussian process Z(x ) := (Z1(x ), · · · , ZD (x )), with
vector mean functionµ(x ) = (µ1(x ), · · · , µD (x )), covariance function C and (D -dimensional) cross covarianceVD×D ,

Z(x ) ∼ GPD (µ, C,VD×D )

is a collection of D -dimensional random vectors, indexed by x ∈ X, such that for any finite set of indices {x1, · · · , xN }, the
randommatrix Z̃N×D := (Z(x1), · · · ,Z(xN ))T has the following matrix normal distribution

Z̃N×D ∼ MNN×D (MN×D ,KN×N ,VD×D )

whereMN×D := (m1, · · · ,mD ), andmk = (µk (x1), · · · , µk (xN ))T, andK is the kernel matrix with elements Ki j = C(xi , xj ).

Remark 6 Note for each k = 1, · · ·D , we have the following marginal GP

Zk (x ) ∼ GP(µk , C)

In the above definition, we require a common kernel C for all the marginal GPs, whose dependence is characterized by the cross
covarianceVD×D . On the other hand, for any fixed x ∗ ∈ X, we have

Z(x ∗) ∼ ND (µ(x ∗),VD×D )

For simplicity, we often consider µ ≡ 0 andVD×D = ID . That is, Zk (x ) i i d∼ GP(0, C) for k = 1, · · · ,D . Normalizing
vGP Z(·) yields a unit-vector Gaussian process (uvGP) Z∗(·) := Z(·)/‖Z(·) ‖, denoted as Z∗(·) ∼ GPSD (µ, C,V). Note for any
fixed x ∗ ∈ X, Z∗(x ∗) ∼ n-N(µ,V). Setting µ ≡ 0,V = I and conditioned on the length `n of each row of Z̃, we have

p(Z̃∗ | { ‖zn · ‖ = `n }) = pMN (Z̃)
����� dvec(Z̃)dvec(Z̃∗)

����� = ∏N
n=1 `

D
n

(2π)
ND
2 |K | D2

exp
{
−1
2
tr

[
(Z̃∗)T diag({`n })K−1 diag({`n })Z̃∗

]}
For eachmarginal GP, we select the following exponential function as the common kernel

C(x , x ′) = γ exp(−0.5‖x − x ′ ‖s/ρs )

where s controls the smoothness, the scale parameter γ is given an inverse-Gamma prior, and the correlation length
parameter ρ is given a log-normal prior. Figure 2 shows a realization of vector GP Zt , its normalization (forming rows of)
Lt and the induced correlation process Pt respectively under themodel (11).
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F IGURE 2 A realization of vector GP Zt (left), its normalization (forming rows of) Lt (middle) and the induced
correlation process Pt (right).

In what follows, we focus onmultivariate time series; therefore, we use the one dimensional time index t ∈ X = Ò+ .
The overall structured dynamic model can be summarized as follows:

yt ∼ N(µt ,Σt ), Σt = diag(σt )Lt Lt T diag(σt )
µt ∼ GPD (0, Cµ , I), Cµ (t , t ′) = γµ exp(−0.5‖t − t ′ ‖s/ρsµ )

logσt ∼ GPD (0, Cσ , I), Cσ (t , t ′) = γσ exp(−0.5‖t − t ′ ‖s/ρsσ )
li (t ) ∼ GPSi (ni , CL , I), CL (t , t ′) = γL exp(−0.5‖t − t ′ ‖s/ρsL )

γ∗ ∼ Γ−1(a∗, b∗), log ρ∗ ∼ N(m∗,V∗), ∗ = µ,σ, orL

(12)

where a constant mean function ni is used in the uvGP prior for li (t ), with meanmatrixM = 1N ⊗ nTi for the realization
l̃i . With this structure, one can naturally model the evolution of variances and correlations separately in order to obtain
more flexibility. If the focus is onmodeling the correlation amongmultiple time series, then one can substituteσt with
a point estimate σ̂ from one trial and assume a steady variance vector. Alternatively, if sufficient trials are present,
one can obtain an empirical estimate, σ̂t , frommultiple trials at each time point. In the next section, we will discuss
a computationally efficient sampling algorithm to obtain the resulting posterior distribution on the covariance (or
correlation) matrices given the observed data.

3 | POSTERIOR INFERENCE
We now focus on obtaining the posterior probability of µt ,σt , Lt , γ := (γµ , γσ , γL ) and ρ := (ρµ , ρσ , ρL ) in the model
(12). Denote the realization of processesµt ,σt , Lt at discrete time points {tn }Nn=1 as µ̃N×D , σ̃N×D , L̃N×D×D respectively.
Transform theparameters τ̃ := log(σ̃),η := log(ρ) for the convenienceof calculation. Denote ỸM×N×D := {Y1, · · · ,YM }
forM trials, (Ym )N×D := [ym1, · · · , ymN ]T and y∗mn := (ymn −µn ) ◦ e−τn where ◦ is the Hadamard product (a.k.a. Schur
product), i.e. the entry-wise product. LetK∗(γ∗, η∗) = γ∗K0∗(η∗) and l̃∗i := l̃i − 1N ⊗ nTi .

3.1 | Metropolis-within-Gibbs
Weuse aMetropolis-within-Gibbs algorithm and alternate updating themodel parameters µ̃, τ̃ , L̃,γ,η. We now list the
parameters and their respective updates one by one.
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(γ). Note the prior for γ is conditionally conjugate given ∗ = µ, τ, orL,

γ∗ |∗̃, η∗ ∼ Γ−1(a′∗, b′∗), a′∗ = a∗ +
ND

2
((D + 1)/2 − D−1)[∗=L], b′∗ = b∗ +

1

2
tr(∗̃TK0∗(η∗)−1∗̃)

where [condition] is 1 with the condition satisfied and 0 otherwise.
(η). Given ∗ = µ, τ, orL, we could sample η∗ using the slice sampler (Neal, 2003), which only requires log-posterior
density andworks well for scalar parameters,

log p(η∗ |∗̃, γ∗) = −D ((D + 1)/2 − D−1)[∗=L]
2

log |K0∗(η∗) | − 1
2
tr(∗̃TK0∗(η∗)−1∗̃)/γ∗ − 1

2
(η∗ −m∗)2/V∗

(µ̃). By the definition of vGP, we have µ̃ |γµ , ηµ ∼ MNN×D (0,Kµ , ID ); therefore, vec(µ̃) |γµ , ηµ ∼ NND (0, ID ⊗ Kµ ). On
the other hand, one canwrite

M∑
m=1

N∑
n=1

y∗mnTP−1n y∗mn =
M∑
m=1

vec((Ym − µ̃)T)T diag({Σ̃−1n })vec((Ym − µ̃)T)

=
M∑
m=1

(vec(Ym ) − vec(µ̃))TΣ̃−1K (vec(Ym ) − vec(µ̃))

where Σ̃−1K := K(D ,N ) diag({Σ̃n })−1K(N ,D ) , andK(N ,D ) is the commutationmatrix of sizeND ×ND such that for anyN ×D
matrix A, K(N ,D )vec(A) = vec(AT) (Tracy and Dwyer, 1969; Magnus and Neudecker, 1979). Therefore, the prior on
vec(µ̃) is conditionally conjugate, andwe have

vec(µ̃) |Ỹ, Σ̃, γµ , ηµ ∼ NND (µ′,Σ′), µ′ =Σ′Σ̃−1K

M∑
m=1

vec(Ym ), Σ′ =
(ID ⊗ K−1µ +M Σ̃−1K

)−1

(τ̃ ). Using a similar argument bymatrix Normal prior for τ̃ , we have vec(τ̃ ) |γτ , ητ ∼ NND (0, ID ⊗ Kτ ). Therefore, we
could use the elliptic slice sampler (ESS, Murray et al., 2010), which only requires the log-likelihood

log p(τ̃ ; Ỹ, µ̃) = −
N∑
n=1

[
M 1TDτn +

M∑
m=1

1

2
y∗mnTP−1n y∗mn

]
= −M 1TND vec(τ̃ ) −

M∑
m=1

1

2
vec(Y∗m )TP̃−1K vec(Y∗m )

where P̃−1K := K(D ,N ) diag({P̃n })−1K(N ,D ) andY∗m := (Ym − µ̃) ◦ exp(−τ̃ ).
(̃L). For each n ∈ {1, · · ·N }, we have vechT(Ln ) ∈ ∏D

i=1 S
i−1
0 . We could sample from its posterior distribution using

the∆-Spherical HamiltonianMonte Carlo (∆-SphHMC) described below. The log-posterior density of L̃ is

log p (̃L |Ỹ, µ̃, τ̃ , γL , ηL ) = −
N∑
n=1

[
M log |Ln | +

M∑
m=1

1

2
y∗mnTP−1n y∗mn

]
− 1
2

D∑
i=2

tr(l̃∗Ti K−1L l̃∗i )

The derivative of log-likelihoodwith respect to Ln and the derivative of log-prior with respect to l̃i can be calculated as

∂

∂Ln log p (̃L; Ỹ, µ̃, τ̃ ) = −M
ID
Ln +

M∑
m=1

tril(P−1n y∗mny∗mnTL−Tn ), ∂

∂ l̃i log p (̃L |γL , ηL ) = −K
−1
L l̃∗i



12 SHIWEI LAN ET AL.

3.2 | Spherical HMC

We need an efficient algorithm to handle the intractability in the posterior distribution of L̃ introduced by various
flexible priors. Spherical HamiltonianMonte Carlo (SphHMC, Lan et al., 2014; Lan and Shahbaba, 2016) is a Hamiltonian
MonteCarlo (HMC,Duane et al., 1987;Neal, 2011) algorithmon spheres that can be viewed as a special case of geodesic
Monte Carlo (Byrne and Girolami, 2013), or manifoldMonte Carlo methods (Girolami and Calderhead, 2011; Lan et al.,
2015). The algorithm was originally proposed to handle norm constraints in sampling so it is natural to apply it to
sample each row of the Cholesky factor of a correlationmatrix with unit 2-norm constraint. The general notation q is
instantiated as li in this section.

Assume a probability distribution with density function f (q) is defined on a (D − 1) dimensional sphere with
radius r , denoted as SD−1(r ) := {q ∈ ÒD | ‖q‖2 = r }. Due to the norm constraint, there are (D − 1) free parameters
q−D := (q1, · · · , qD−1), which can be viewed as the Cartesian coordinates for themanifold SD−1+ (r ) (Lan and Shahbaba,
2016). The last component is determined up to a sign: qD = ±

√
r 2 − ‖q−D ‖22 ). To induce Hamiltonian dynamics on

the sphere, we define the potential energy for position q as U (q) := − log f (q). Endowing the canonical spherical
metricG(q−D ) = ID−1 + q−D qT−D

q2
D

on the Riemannianmanifold SD−1(r ), we introduce the auxiliary velocity vector v |q ∼
N(0,G(q)−1) and define the associated kinetic energy as K (v;q) := − log fN (v |q) = − 12 log |G(q−D ) | + 1

2vT−DG(q−D )v−D
(Girolami and Calderhead, 2011). Therefore the total energy is defined as

E (q, v) := U (q) + K (v;q) = Ũ (q) + K0(v;q) (13)

where we denote Ũ (q) := U (q) − 1
2 log |G(q−D ) | = − log f (q) + log |qD |, and K0(v;q) := 1

2vT−DG(q−D )v−D = 1
2vTv (Lan

and Shahbaba, 2016). Therefore the Lagrangian dynamics with above total energy (13) is (Lan et al., 2015)

ÛqD−D = v−D
Ûv−D = −vT−DΓ(q−D )v−D − G(q−D )−1+q−D Ũ (q)

(14)

where Γ(q−D ) = r −2G(q−D ) ⊗ q−D is the Christoffel symbols of second kind (see details in Lan and Shahbaba, 2016, for
r = 1). A splitting technique is applied to yield the following geometric integrator (Lan et al., 2014; Lan and Shahbaba,
2016), which also includes the last coordinates qD ,vD :

v− = v − h
2
P(q)g(q)[q′

v+
]
=

[
r 0

0 ‖v− ‖2
] [ cos( ‖v− ‖2r −1h) + sin( ‖v− ‖2r −1h)
− sin( ‖v− ‖2r −1h) + cos( ‖v− ‖2r −1h)

] [
r −1 0

0 ‖v− ‖−12

] [ q
v−

]
v′ = v+ − h

2
P(q′)g(q′)

(15)

where g(q) := +qŨ (q), P(q) := ID − r −2qqT. (15) defines a mapping Th : (q, v) 7→ (q′, v′). Denote ‖u‖2P(q) := uTP(q)u.
After applying such integratorT times, a proposal (qT , vT ) = TTh (q0, v0) is acceptedwith the following probability

asphHMC =1 ∧ exp(−∆E )

∆E =Ũ (qT ) − Ũ (q0) − h
2

8

[
‖g(qT ) ‖2P(q) − ‖g(q0) ‖2P(q)

]
− h
2
[〈v0, g(q0)〉 + 〈vT , g(qT )〉] − h

T −1∑
τ=1

〈vτ , g(qτ )〉
(16)



SHIWEI LAN ET AL. 13

We can prove the following limiting result (Beskos et al., 2011).

Theorem 3 Let h → 0we have the following energy conservation

E (q(T ), v(T )) − E (q(0), v(0)) = Ũ (q(T )) − Ũ (q(0)) −
∫ T

0
〈v(t ), g(q(t ))〉d t = 0

Proof See Appendix B.

3.3 | Adaptive Spherical HMC
There are two tuning parameters in HMC and its variants: the step size h and the number of integration (leapfrog) steps
T . Hand tuning heavily relies on domain expertise and could be inefficient. Here, we adopt the ‘No-U-Turn’ idea from
Hoffman and Gelman (2014) and introduce a novel adaptive algorithm that obviates manual tuning of these parameters.

First, for any given step size h, we adopt a rule for setting the number of leapfrog steps based on the samephilosophy
as ‘No-U-Turn’ (Hoffman and Gelman, 2014). The idea is to avoid waste of computation occurred (e.g. when the sampler
backtracks on its trajectory) without breaking the detailed balance condition for theMCMC transition kernel. SD−1(r )
is a compact manifold where any two points q(0), q(t ) ∈ SD−1(r ) have bounded geodesic distance πr . We adopt the
stopping rule for the leapfrog when the sampler exits the orthant of the initial state, that is, the trajectory measured in
geodesic distance is at least π2 r , which is equivalent to 〈q(0), q(t )〉 < 0. On the other hand, this condition may not be
satisfiedwithin reasonable number of iterations because the geometric integrator (15) does not follow a geodesic (great
circle) in general (only themiddle part does), therefore we set some thresholdTmax for the number of tests, and adopt
the following ‘Two-Orthants’ (as the starting and end points occupy two orthants) rule for the number of leapfrogs:

T2or th = min
τ∈{0,··· ,Tmax}

{τ : 〈q0, qτ 〉 < 0} (17)

Alternatively, one can stop the leapfrog steps in a stochasticway based on the geodesic distance travelled:

Tst och = min
τ
{τ : Zτ = 0}, Zτ ∼ Bern(pτ ), pτ =

r −2 〈q0, qτ 〉 + 1
2

(18)

These stopping criteria are already time reversible, so the recursive binary tree as in ‘No-U-Turn’ algorithm (Hoffman
and Gelman, 2014) is no longer needed.

Lastly, we adopt the dual averaging scheme (Nesterov, 2009) for the adaptation of step size h. See Hoffman
andGelman (2014) for more details. We summarize our Adaptive Spherical HamiltonianMonte Carlo (adp-SphHMC) in
Algorithm 1.

To sample L (or Lt ), we could use amulti-Spherical HMC for the product of spheres, e.g.∏D
i=1 S

i−1
0 , can run in parallel.

More specifically, on each factor sphere Si−10 , we update the parameter vector li according to (15). However, we
calculate the acceptance probability (16) based on the sum of total energy of all components; that is, updating and
accepting vechT(L) (or vechT(Lt )) all together. For this specific application of sampling Cholesky factor of correlation
(covariance) matrix, we refer to the resulting algorithm as∆-Spherical HMC (∆-SphHMC).

The computational complexity of the GP prior is O(N 3), and that of the likelihood evaluation is O(MD 2). Finally
MCMC updates of µ̃N×D , σ̃N×D , L̃N×D×D have complexity O(ND ), O(ND ) and O(ND 2), respectively. To scale up appli-
cations to larger dimensionD , onemay use prior knowledge to group the data. In this way, one does not have tomaintain
the full covariance/correlationmatrices/processes. Subgroups correspond to blocks in covariancematrices whichmay
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Algorithm 1Adaptive Spherical HMC (adp-SphHMC)
Given q0, a0,N ,N adapt .
Set h0 = 1 or using Algorithm 4 of Hoffman and Gelman (2014), µ = log(10h0), h0 = 1,A0 = 0, γ = 0.05, n0 = 10, κ =
0.75.
for n = 1 to N do
Sample a new velocity vn−1 ∼ N(0, ID ), and set vn−1 = P(qn−1)vn−1.
Set q(0) = qn−1, v(0) = vn−1.
for τ = 0 toT − 1 (T = T2or th or Tst och ) do
Run leapfrog step (15) to update (q(τ+1), v(τ+1)) ← Thn−1 (q(τ), v(τ)).
if Stopping criterion (17) (or (18)) is satisfied then
Break

end if
end for
Accept the proposal (q(T ), v(T ))with probability asphHMCn in (16) and set qn = q(T ); otherwise set qn = qn−1.
if n ≤ N adapt then
SetAn =

(
1 − 1

n+n0

)
An−1 +

1
n+n0
(a0 − an ).

Set log hn = µ −
√
n
γ An , and log hn = n−κ log hn + (1 − n−κ ) log hn−1.

else
Set hn = hNadpat .

end if
end for

be arranged in some ‘band’ along the diagonal. Assuming no correlation among sub-groups, one can take advantage
of such ‘w -band’ structure inmodeling covariancematrices/processes. More specifically, we can assume Lt isw -band
lower triangular matrix for each time t , i.e. if l i j = 0 for i < j or i − j ≥ w , then the resulting covariance/correlation will
be (2w − 1)-banded. In this way the complexity of likelihood evaluation and updating L̃will be reduced to O(MwD ) and
O(NwD ) resepctively. Therefore the computational cost would scale linearly with the dimensionD . This technique will
be investigated in Section 4.2.3.

4 | NUMERICAL EXPERIMENTS

In this section, we use several examples to illustrate our structured modeling for covariance and application of ∆-
SphHMC. As a first example, we consider the Normal-inverse-Wishart problem. Since there is conjugacy andwe know
the true posterior, we use this to verify our method and study the flexibility of priors in Section 2.2. Then we test
our dynamical modelingmethod in Section 2.3 on a simulated periodic model. This simulation also demonstrates the
advantage of ourmodel in full flexibility compared to a state-of-the-art nonparametric covariance regressionmodel
based on latent factor process (Fox andDunson, 2015). Finally, we apply ourmethodology to local potential field data
collected from amemory sequence experiment tomodel the evolving pattern of multiple time series.
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F IGURE 3 Marginal posterior densities of σi j in the normal-inverse-Wishart problem. Solid blue lines are estimates
by∆-SphHMC and dashed red lines are estimates by direct sampling. All densities are estimatedwith 106 samples.

4.1 | Normal-inverse-Wishart Problem
Nowwe consider the following example involving inverse-Wishart prior

yn |Σ ∼ N(µ0,Σ), n = 1, · · · ,N

Σ ∼ W−1
D (Ψ, ν)

(19)

It is known that the posterior ofΣ |Y is still inverse-Wishart distribution:

Σ |Y ∼ W−1
D (Ψ + (Y −µ0)(Y −µ0)T, ν + N ), Y = [y1, · · · , yN ]T (20)

In all examples of this section, we consider dimensionD = 3 and generate dataYwith the following setting

µ0 = 0, Σ =Σ0 =
1

11
(I + 11T)

where ρi j ≡ ρ = 0.50 for i , j . We generate N = 20 data points so that the prior is not overwhelmed by data.

4.1.1 | Verification of Validity
Specifying conditional priors based on (8) in the structuredmodel (6), wewant to check the validity of our proposed
method by comparing the posterior estimates using∆-SphHMC agains the truth (20).

We sample τ := log(σ) using standard HMC and U∗ using ∆-SphHMC. They are updated in Metropolis-Within-
Gibbs scheme. 106 samples are collected after burning the first 10% and subsampling every 1 of 10. For each sample of τ
and vech(U∗), we calculateΣ = diag(eτ )U∗(U∗)T diag(eτ ). Marginal densities of entries inΣ are estimated with these
samples and plotted against the results by direct sampling in Figure 3. Despite of sampling variance, these estimates
closely match the results by direct sampling, indicating the validity of our proposedmethod.
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F IGURE 4 Marginal posterior, prior (induced from squared-Dirichlet distribution) densities of correlations and
MLEs with different settings for concentration parameterα, estimatedwith 106 samples.

4.1.2 | Examining Flexibility of Priors

Wehave studied several spherical priors for the Cholesky factor of correlationmatrix proposed in Section 2.2. Nowwe
examine the flexibility of these priors in providing prior information for correlation with various parameter settings.

With the same data generated according to (19), we now consider the squared-Dirichlet prior (10) for L in the
structuredmodel (6) with the following setting

τi = log(σi ) ∼ N(0, 0.12), i = 1, · · · ,D

li ∼ Dir2(αi ), αi = (α1i−1, α0), i = 2, · · · ,D
(21)

where we consider three cases i) α = 1, α0 = 1; ii) α = 0.1, α0 = 1; iii) α = 0.1, α0 = 10.

We run standard HMC for τ and ∆-SphHMC for L to generate 106 samples as in Section 4.1.1. Then we convert
the posterior samples of L to the correlationmatrix using P = LLT. We also generate 106 prior samples for L from (21)
and convert them to samples of P. For each entry of P, we estimate the marginal posterior (prior) density based on
these posterior (prior) samples. The posteriors, priors andmaximal likelihood estimates (MLEs) of correlations ρi j with
differentα’s are plotted in Figure 4 respectively. In general, the posteriors are compromise between priors and the
likelihoods (MLEs). Withmore andmore weight put around the poles (last component) of each factor sphere, the priors
become increasingly dominant till the posteriors almost fall on priors when α = (0.1, 0.1, 10). In this extreme case,
the squared-Dirichlet distributions induce priors in favor of trivial (zero) correlations. We have similar conclusion on
Bingham prior and vonMises-Fisher prior but results are reported in the supplementary file.
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F IGURE 5 Estimation of the underlyingmean functions µt (left in each of 4 subpannels) and covariance functionsΣt
(right in each of 4 subpannels) of 2-dimensional periodic processes.M is the number of trials, and N is the number of
discretization points. Dashed lines are true values, solid lines are estimates and shaded regions are 95% credible bands.

4.2 | Simulated Periodic Processes
In this section, we investigate the performance of our dynamic model (12) on the following simulated example

y (t ) ∼ ND (µ(t ),Σ (t )), Σ (t ) = L(t )L(t )T ◦ S , t ∈ [0, 2]

µi (t ) = sin(i t π/D ), Li j (t ) = (−1)i sin(i t π/D )(−1)j cos(j t π/D ), j ≤ i = 1, · · · ,D ,

Si j = ( |i − j | + 1)−1, i , j = 1, · · · ,D

(22)

Based on themodel (22), we generatedM trials (process realizations) of data y atN evenly spaced points for t in [0, 2],
and therefore the whole data set {y (t )} is anM × N × D array. We first consider D = 2 to investigate the posterior
contraction phenomena and the model flexibility; then we consider D = 100 over a shorter period [0, 1] to show the
scalability using the ‘w -band’ structure.

4.2.1 | Posterior Contraction
Posterior contraction describes the phenomenon that the posterior concentrates on smaller and smaller neighborhood
of the true parameter (function) given more and more data (van der Vaart and van Zanten, 2008). We investigate
such phenomena in both mean functions and covariance functions in our model (12) using the following settings
i )M = 10,N = 20; i i )M = 100,N = 20; i i i )M = 10,N = 200; iv )M = 100,N = 200.

To fit the data using the model (12), we set s = 2, a = (1, 1, 1), b = (0.1, 10−3, 0.2), m = (0, 0, 0) for all settings,
V = (1, 0.5, 1) forN = 20 andV = (1, 1, 0.3) forN = 200. We also add an additional nugget of 10−5In to all the covariance
kernel of GPs to ensure non-degeneracy. Following the procedure in Section 3.1, we runMCMC for 1.5 × 105 iterations,
burn in thefirst 5×104 and subsample 1 for every 10 to obtain 104 posterior samples in the end. Based on those posterior
samples, we estimate the underlyingmean functions and covariance functions and plot the estimates in Figure 5.
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F IGURE 6 Estimation of the underlyingmean functions µt (left column), variance functions σt (middle column) and
correlation function ρt (right column) of 2-dimensional periodic processes, using latent factor process model (upper
row) and our flexible model (lower row), based onM = 10 trials of data overN = 200 evenly spaced points. Dashed lines
are true values, solid lines are estimates and shaded regions are 95% credible bands.

The first row of Figure 5 shows the estimatedmean and covariance functions for N = 20 discretization points and
the second row shows the results forN = 200 points. Bothmean and covariance functions have narrower credible bands
for more discretization points N . On the other hand, the first column shows the estimates withM = 10 trials while
the second the column shows the results forM = 100 trials. The posteriors for both mean and covariance functions
contract further with more trials (realizations of the process)M . BothM and N have effect on the amount of data
information thereafter on the posterior contraction but the contraction ratemay depend on them differently. In general
the posterior of mean function contracts to the truth faster than the posterior of covariance function. WithM = 100

trials andN = 200 discretization points, bothmean and covariance functions are recovered very well by themodel (12).

4.2.2 | Full Flexibility
Since ourmethod (12)modelsmean, variance and correlation processes separately, it grants fullflexibility in dynamically
modeling themwhen they behave differently. This contrasts latent factor basedmodels for whichmean and covariance
processes are tied together. One of the state-of-the-art models of this type is Bayesian nonparametric covariance
regression (Fox andDunson, 2015):

y (x ) ∼ ND (µ(x ),Σ (x )), µ(x ) = Λ(x )ψ(x ), Σ (x ) = Λ(x )Λ(x )T + Σ0 (23)

We tweak the simulated example (22) for D = 2 to let mean and correlation processes have higher frequency than
variance processes, as shown in the dashed lines in Figure 6. We generateM = 10 trials of data over N = 200 evenly
spaced points. In this case, the truemean processes µ(x ) and true covariance processesΣ (x ) behave differently but are
modeledwith a common loadingmatrix Λ(x ) inmodel (23). This imposes difficulty on (23) to have a latent factor process
ψ(x ) that could properly accommodate the heterogeneity in mean and covariance processes. Figure 6 shows that due
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F IGURE 7 Posterior estimation of the underlying correlation functions Pt (left) and its 2-norm distance to the truth
(right) of 100-dimensional periodic processes with 2-band structure, based onM = 100 trials of data over N = 100

discretization points. Dashed lines are true values, solid lines are estimates and shaded regions are 95% credible bands.

to the different behavior of mean, variance and correlation processes, latent factor basedmodel (23) (upper row) fails
to generate satisfactory fit for all of them. Our fully flexible model (12) (bottom row), on the contrary, successfully
produces more accurate characterization of all these processes. Note that this artificial example is used to demonstrate
the flexibility of our dynamic model (12). For cases that are not as extreme, (23) may performance equally well. See
more discussion in Section 5 andmore details in the supplementary file.

4.2.3 | Scalability
Nowwe use the same simulationmodel (22) forD = 100 dimensions to test the scalability of our dynamicmodel (12).
However instead of the full covariance, we only consider a diagonal covariance matrix plus 4 non-zero off-diagonal
entries σ1,2 (σ2,1) and σ99,100 (σ100,99). We focus on the correlation process in this example thus set µt ≡ 0 and σt ≡ 1,
for t ∈ [0, 1]. More specifically when generating data {yt }with (22), if i < {2, 100}we set i -th rows Li = Si = e i with e i
being the i -th row of identity matrix.

To apply our dynamical model (12) in this setting, we let Lt have ‘w -band’ structure with w = 2 at each time t .
Setting s = 2, a = 1, b = 0.1, m = 0 andV = 10−3, N = 100 and M = 100, we repeat the MCMC runs for 7.5 × 104
iterations, burn in the first 2.5 × 104 and subsample 1 for every 10 to obtain 5 × 103 posterior samples in the end. Based
on those samples, we estimate the underlying correlation functions and only plot ρ1,2, ρ49,50 and ρ99,100 in Figure 7.
With the ‘w -band’ structure, we have less entries in the covariancematrix and focus on the ‘in-group’ correlation. Our
dynamical model (12) is sensitive enough to discern the informative non-zero components from the non-informative
ones in these correlation functions. Unit-vector GP priors provide flexibility for the model to capture the changing
pattern of informative correlations. The left panel of Figure 7 shows that themodel (12) correctly identify the non-zero
components ρ1,2 and ρ99,100 and characterize their evolution. The right panel shows that the 2-norm distance between
the estimated and true correlationmatrices, ‖P̂ (t ) − P (t ) ‖2, is small, indicating that our dynamicmodel (12) performs
well with higher dimension in estimating complex dependence structure amongmultiple stochastic processes.

4.3 | Analysis of Local Field Potentials
Wewill now use the proposed model (12) to analyze a local field potential (LFP) data. The goal of this analysis is to
elucidate howmemory and cognition arise from functional interactions among brain regions, bymodeling how their
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F IGURE 8 LFP signals on “in sequence" and “out of sequence" trials. It is difficult to identify differences between
the two conditions based on amere visual inspection of the LPFs.

dynamic connectivity varies during performance of complex memory tasks. Here we focus on multi-site LFP data
recorded from 24 electrodes spanning the dorsal CA1 subregion of the hippocampus as rats performed a hippocampus-
dependent sequencememory task (Allen et al., 2016). The task involves repeated presentations of a sequence of odors
(e.g., ABCDE) at a single port and requires rats to correctly determine whether each odor is presented ‘in sequence’
(InSeq; e.g., ABCDE; by holding their nosepoke response until the signal at 1.2s) or ‘out of sequence’ (OutSeq; e.g.,
ABDDE; by withdrawing their nose before the signal). In previous work using the same dataset, Holbrook et al. (2016)
used a directMCMCalgorithmnamedpositive definiteHamiltonianMonteCarlo (PDHMC) to study the spectral density
matrix of LFP from 4 selected channels. However, they did not examine how their correlations varied across time and
recording site. These limitations are addressed in this paper.

For practical reasons, we focused our analyses on the timewindow from 0ms to 750ms (with 0 corresponding to
when the rat’s nose enters the odor port). Critically, this includes a time period duringwhich the behavior of the animal is
held constant (0-500ms) so differences in LFP reflect the cognitive processes associated with task performance, and, to
serve as a comparison, a time period near 750ms duringwhich the behavioral state of the animal is known to be different
(i.e., by 750ms the animal has already withdrawn from the port on themajority of OutSeq trials, but is still in the port on
InSeq trials). We also focused our analyses on two sets of adjacent electrodes (electrodes 20 and 22, and electrodes
8 and 9), which allows for comparisons between probes that are near each other (<1mm; i.e., 20:22 and 8:9) or more
distant from each other (>2mm; i.e., 20:8, 20:9, 22:8, and 22:9). Figure 8 showsM = 20 trials of these LFP signals from
D = 4 channels under both InSeq andOutSeq conditions. Ourmain objective was to quantify how correlations among
these LFP channels varied across trial types (InSeq vs OutSeq) and over time (within the first 750ms of trials). To do
so, we discretize the timewindow of 0.75 seconds into N = 300 equally spaced small intervals. Under each experiment
condition (InSeq or OutSeq), we treat all the signals as a 4 dimensional time series and fit them using our proposed
dynamic covariance (correlation) model (12) in order to discover the evolution of their relationship. Note, wemodel the
mean processes, variance processes and correlation processes separately, which is more natural to statisticians.

We set s = 2, a = (1, 1, 1), b = (1, 0.1, 0.2),m = (0, 0, 0),V = (1, 1.2, 2), and the general results are not very sensitive
to the choice of these fine-tuning parameters. We also scale the discretized time points into (0, 1] and add an additional
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F IGURE 9 Estimated correlation processes of LFPs (beta) under in-sequence condition (top), out-of-sequence
condition (middle) and the (Frobenius) distance between two correlationmatrices (bottom).

nugget of 10−5In to the covariance kernel of GPs. We follow the same procedure in Section 3.1 to collect 7.5 × 104
samples, burn in the first 2.5×104 and subsample 1 for every 10. The resulting 104 samples yield estimates of correlation
processes as shown in Figure 9 for beta-filtered traces (20-40Hz) but similar patterns were also observed for theta-
filtered traces (4-12Hz; see the supplement). The bottom panel of Figure 9 shows the dissimilarity between correlation
processes under different conditionsmeasured by the Frobenius norm of the difference between the two correlation
matrices.

Our approach revealedmany important patterns in the data. First, it showed that electrodes near each other (20:22
and 8:9) displayed remarkably high correlations in their LFP activity on InSeq andOutSeq trials, whereas correlations
were considerably lower among more distant electrodes (20:8, 20:9, 22:8, and 22:9). Second, it revealed that the
correlations between InSeq andOutSeqmatrices evolved during the presentation of individual trials. These results
are consistent with other analyses on learning (see, e.g., Fiecas and Ombao, 2016). As expected, InSeq and OutSeq
activity was very similar at the beginning of the timewindow (e.g., before 350ms), which is before the animal has any
information about the InSeq or OutSeq status of the presented odor, but maximally different at the end of the time
window, which is after it hasmade its response onOutSeq trials. Most important, however, is the discovery of InSeq
vs OutSeq differences before 500ms, which reveal changes in neural activity associated with the complex cognitive
process of identifying if events occurred in their expected order. These findings highlight the sensitivity of our novel
approach, as such differences have not been detected with traditional analyses.

5 | CONCLUSION

In this paper, we propose a novel Bayesian framework that grants full flexibility in modeling covariance and correlation
matrices. Themethod is motivated by the statistical interpretation of covariances in terms of variances and correlations.
It extends the separation strategy proposed by Barnard et al. (2000) and uses the Cholesky decomposition tomaintain
the positive definiteness of the correlationmatrix. By defining priors on spheres for rows of the Cholesky factor of the
correlationmatrix, this framework introduces a series of flexible priors for covariances that go beyond the commonly
used but restrictive inverse-Wishart distribution. These priors defined on spheres, including the squared-Dirichlet
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distribution, and normalized Gaussian distributions (the VonMises-Fisher distribution and the Bingham distribution),
have freedom in controlling correlation size when modeling the covariance and correlation matrices. Adaptive ∆-
Spherical HMC is introduced to handle the intractability of the resulting posterior. What is more, we extend this
structured scheme to dynamical models to capture complex dependence amongmultiple stochastic processes. The
unit-vector Gaussian process is then introduced as a flexible prior process tomodel the evolution of correlation. The
resulting framework was shown to be effective in Bayesian modeling covariance and correlation matrices using the
Normal-inverse-Wishart problem, a simulated periodic process, and an analysis of LFP data.

In future work, wewill explore the low-rank structure of covariance and correlationmatrices to further scale our
method to problems of greater dimensionality. For example, we can adopt the similar decomposition as in the latent
factor process model (Fox andDunson, 2015), and assume vechT(Lt ) ∈ (Sk )D for some k � D .

It is novel, to the best of our knowledge, to systematically define the vector Gaussian process through thematrix
normal distribution. In the current work, we only consider unit cross covariancematrixV = I; there is possibility for
theoretic exploration in non-unit cross-covariances to better capture the relationships between component processes.
Another future direction is to generalize our dynamic modeling of multivariate time series to dynamical regression on
covariates x ∈ X. It would be interesting to investigate how they influence the response along the process.

The limitation of this current analysis on LFP data is that it is conducted on a single rat. The proposedmodel will be
generalized to account for variation among rats. In the future, wewill apply this sensitive approach to other datasets,
including simultaneous LFP recordings frommultiple brain regions in rats as well as fMRI data collected from human
subjects performing the same task.
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A | CONNECTION TO KNOWN PRIORS

The following lemma is essential in proving that our proposedmethods (4) (6) generalize existing methods in specifying
priors, including the inverse-Wishart distribution, and two uniform distributions (Barnard et al., 2000) as well.

Lemma 1 LetΣ = UUT be the reversed Cholesky decomposition ofΣ. The Jocobian of the transformationΣ 7→ U is
���� dhΣdhUT

���� := ���� ∂vechΣ∂vechUT
���� = 2D D∏

i=1

|ui i |i

Let P = LLT be the Cholesky decomposition of P. The Jacobian of the transformation L 7→ P is
���� dhLdhP

���� := ���� ∂vechL∂vechP
���� = 2−D D∏

i=1

|l i i |i−(D+1)

Proof Note we have

dΣ = dUUT + UdUT

Taking vec on both sides and applying its property

dvecΣ = (U ⊗ I)dvecU + (I ⊗ U)dvecUT

Applying the elimination LD on both sides

dvechΣ = LD [(U ⊗ I)KD dvecUT + (I ⊗ U)dvecUT] = LD (KD + I)(I ⊗ U)dvecUT
= 2LDND (I ⊗ U)LTD dvechUT = 2LDNDLTDDTD (I ⊗ U)LTD dvechUT

where KD is the commutation matrix such that KD vecA = vecAT for matrix AD×D , ND := (KD + I)/2, and DD is the
duplication matrixwhich is regarded as the inverse of the elimination matrix LD . The last equation is by DDLDND =

ND = NTD (Lemma2.1 and Lemma3.5 inMagnus andNeudecker, 1980). Thus according to (Lemma3.4 and Lemma4.1 in
Magnus andNeudecker, 1980) we have

���� dhΣdhUT
���� = ���� ∂vechΣ∂vechUT

���� = |2LDNDLTDDTD (I ⊗ U)LTD | = 2D (D+1)/2 |LDNDLTD | |LD (I ⊗ UT)DD | = 2D D∏
i=1

|u ii i |

By similar argument, we have
���� dhPdhL

���� = ���� ∂vechP∂vechL
���� = |2LDNDLTDDTD (L ⊗ I)LTD | = 2D (D+1)/2 |LDNDLTD | |LD (LT ⊗ I)DD | = 2D D∏

i=1

|l i i |D+1−i .

Thus it completes the proof.
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Proof of Theorem 1 Weknow that the density ofΣ ∼ W−1
D (Ψ, ν) is

pW−1 (Σ ;Ψ, ν) = |Ψ |ν/2

2Dν/2ΓD (ν/2)
|Σ |−(ν+D+1)/2 exp

(
− 1
2
tr(ΨΣ−1)

)
By Lemma 1we have

p(U) = p(Σ)
���� dhΣdhUT

���� = 2D pW−1 (UUT ;Ψ, ν) D∏
i=1

|u ii i | =
|Ψ |ν/2

2D (ν−2)/2ΓD (ν/2)
|U |−(ν+D+1)

D∏
i=1

u ii i exp
(
− 1
2
tr(ΨU−TU−1)

)
.

Then the proof is completed.

Proof of Theorem 2 To prove the first result, we use Lemma 1

p(P) = p(L)
���� dhLdhP

���� ∝ D∏
i=2

|li |2αi −1
D∏
i=1

|l i i |i−(D+1) =
D∏
i=1

|l i i |(i−3)(D+1)

On the other hand, from Equation (8) in Barnard et al. (2000), we have the density of marginally uniform distribution:

p(P) ∝ |P | D (D−1)2 −1(
∏
i

Pi i )− D+12 = (
D∏
j=1

l 2j j )
D (D−1)

2 −1(
D∏
j=1

j∏
i=1

l 2i i )
− D+12 =

D∏
j=1

|l j j |(j−3)(D+1)

where Pi i is the i -th principal minor of P. Similarly by Lemma 1we can prove the second result

p(P) = p(L)
���� dhLdhP

���� ∝ D∏
i=2

|li |2αi −1
D∏
i=1

|l i i |i−(D+1) ∝ 1 .

Therefore we have finished the proof.

B | SPHERICAL HAMILTONIAN MONTE CARLO

B.1 | Derivation of the geometric integrator for SphHMC
The Lagrangian dynamics (14) on the sphere SD−1(r )with the first (D −1) coordinates can be split (14) into the following
two smaller dynamics:


Ûq−D = v−D
Ûv−D = −vT−DΓ(q−D )v−D

(24a)

Ûq−D = 0

Ûv−D = −+−1q−D Ũ (q−D )
(24b)

where (24a) is the equation of geodesic onmanifold SD which has analytical solution; and (24b) has analytical solution.
Both define volume preservingmaps.

The mapping I : q−D 7→ q = (q−D , qD ) can be viewed as an imbedding of SD−1+ intoÒD . Denote its Jacobian as
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dI(q) :=

ID−1
− q

T
−D
qD

 . Thenwe have
dI(q)TdI(q) = G(q−D ), dI(q)G(q−D )−1dI(q)T = P(q) = I − r −2qqT

+q−D Ũ (q) = dI(q)T+qŨ (q), v = dI(q)v−D , vTv = vT−DG(q−D )v−D

Then Equation (24a) has the following solution with full coordinates[q(t )
v(t )

]
=

[ I 0

0T r −1 ‖v(0) ‖2
] [ cos(r −1 ‖v(0) ‖2t ) sin(r −1 ‖v(0) ‖2t )
− sin(r −1 ‖v(0) ‖2t ) cos(r −1 ‖v(0) ‖2t )

] [ I 0

0T r ‖v(0) ‖−12

] [q(0)
v(0)

]
=

[ q(0) cos(r −1 ‖v(0) ‖2t ) + rv(0) ‖v(0) ‖−12 sin(r −1 ‖v(0) ‖2t )
−r −1q(0) ‖v(0) ‖2 sin(r −1 ‖v(0) ‖2t ) + v(0) cos(r −1 ‖v(0) ‖2t )

] (25)

and Equation (24b) has the following solution in full coordinates

q(t ) = q(0)
v(t ) = v(0) − t

2
d i (q(0))+−1q−D Ũ (q(0)) = v(0) − t2 P(q)+qŨ (q(0))

(26)

So numerically updating (26) for h/2, updating (25) for h and updating (26) for another h/2 yield the integrator (15).

B.2 | Reformulating Acceptance

At the end of the numerical simulation, a proposal (qT , vT ) is accepted according to the following probability

asphHMC = 1 ∧ exp(−∆E ), ∆E = E (qT , vT ) − E (q0, v0) (27)

Such classic definition of acceptance probability can be reformulated by replacing∆E in (27) with

∆E =
T∑
τ=1

∆Eτ ∆Eτ = E (qτ , vτ ) − E (qτ−1, vτ−1)
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With (15) we canwrite

∆E ′ =E (q′, v′) − E (q, v)
=Ũ (q′) − Ũ (q) + 1

2
v′T−DG(q′−D )v′−D − 12vT−DG(q−D )v−D

=∆Ũ − 1
2
‖v‖22 + 1

2

v+ − h2 P(q′)+qŨ (q′)22
=∆Ũ − 1

2
‖v‖22 + 1

2
v+Tv+ − h

2
v+TP(q′)+qŨ (q′) + h

2

8
+qŨ (q′)TP(q′)+qŨ (q′)

=∆Ũ − 1
2
‖v‖22 + 1

2
‖v− ‖22 − h2 v+

T
+qŨ (q′) + h

2

8
‖+qŨ (q′) ‖2P(q′)

=∆Ũ − 1
2
‖v‖22 − h2 v+

T
+qŨ (q′) + h

2

8
‖+qŨ (q′) ‖2P(q′) + 1

2
‖v‖22 − h2 vT+qŨ (q) +

h2

8
‖+qŨ (q) ‖2P(q)

=∆Ũ − h
2

[v′T+qŨ (q′) + vT+qŨ (q)] − h2
8

[
‖+qŨ (q′) ‖2P(q′) − ‖+qŨ (q) ‖2P(q)

]
where P(q′)v+ = v+, P(q)v− = v−, and ‖v+ ‖22 = ‖v− ‖22 . Accumulating the above terms over τ = 1, · · · ,T yields the
reformulated acceptance probability (16).

We now prove the energy conservation theorem 3 (Beskos et al., 2011).

Theorem 3 Let h → 0we have the following energy conservation

E (q(T ), v(T )) − E (q(0), v(0)) = Ũ (q(T )) − Ũ (q(0)) −
∫ T

0
〈v(t ), g(q(t ))〉d t = 0

Proof With the second equation of Lagrangian dynamics (14) we have

−〈v(t ), g(q(t ))〉 = v(t )T+qŨ (q(t )) = v−D (t )TdI(q)T+qŨ (q(t )) = v−D (t )T+q−D Ũ (q(t ))
= v−D (t )TG(q−D (t ))

[
Ûv−D (t ) + vT−D (t )Γ(q−D (t ))v−D (t )

]
= v−D (t )TG(q−D (t )) Ûv−D (t ) + 1

2
v−D (t )TdG(q−D (t ))v−D (t )

=
d

d t

1

2
v−D (t )TG(q−D (t ))v−D (t ) = d

d t

1

2
‖v(t ) ‖22

Thenwe have the first equality hold because

−
∫ T

0
〈v(t ), g(q(t ))〉d t = 1

2
‖v(T ) ‖22 − 12 ‖v(0) ‖22

Lastly, from the first equation of Lagrangian dynamics (14)

Ũ (q(T )) − Ũ (q(0)) =
∫ T

0

Û̃U (q(t )) =
∫ T

0
〈 Ûq(t ),+qŨ (q(t ))〉d t =

∫ T

0
〈v(t ), g(q(t ))〉d t

Therefore the second equality is proved.
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C | GRADIENT CALCULATION IN NORMAL-INVERSE-WISHART PROBLEM
Weuse the representation (6) and derive log-posterior (log-likelihood and log-prior) and the corresponding gradients
for (19) usingmatrix calculus.

C.1 | Gradients of log-likelihood
Denote y∗n := (yn −µ0)/σ. Then the log-likelihood becomes

`(y∗;σ,P) = −N 1TD logσ − N2 log |P | −
1

2

N∑
n=1

y∗nTP−1y∗n

[
∂`
∂τ

] . We calculate the gradient of log-likelihoodwith respect toσ

∂`

∂σk
= −Nσ−1k +

N∑
n=1

∑
i

y ∗
ni

σi
δi k (P−1y∗n )i , i . e .

∂`

∂σ
= −Nσ−1 +

N∑
n=1

diag(y∗n/σ)(P−1y∗n )

Andwith the transformation τ = log(σ) it becomes

∂`

∂τ
=
dσT
dτ

∂`

∂σ
= diag(σ)

[
−N
σ
+

N∑
n=1

diag(y∗n/σ)(P−1y∗n )
]
= −N 1D +

N∑
n=1

diag(y∗n )(P−1y∗n )

[
∂`
∂U∗

(
∂`
∂L

)]
. When P = U∗(U∗)T, 12 log |P | = log |U∗ | = 1TD log | diag(U∗) | and thus we have

∂`

∂U∗ = −
N ID
U∗ +

N∑
n=1

dgn (Ũ)
dU∗

where IDU∗ = diag({(u∗i i )−1 }) is a diagonalmatrix formedbyelement-wisedivision, Ũ := (U∗)−1 and gn (Ũ) := − 12y∗nTŨTŨy∗n .
Taking differential directly on gn (U∗) := − 12y∗nT(U∗)−T(U∗)−1y∗n , and noting that differential and trace operators are

exchangeable, we have

dgn (U∗) = −1
2
tr(y∗nTd (U∗)−T(U∗)−1y∗n + y∗nT(U∗)−Td (U∗)−1y∗n )

=
1

2

[
tr(y∗nT(U∗)−Td (U∗)TP−1y∗n ) + tr(y∗nTP−1dU∗(U∗)−1y∗n )

]
= tr(y∗nTP−1dU∗(U∗)−1y∗n ) = tr((U∗)−1y∗ny∗nTP−1dU∗)

Conversion from differential to normal derivative form in the numerator layout (Minka, 1997; revised 12/00) yields
∂gn (U∗)
∂(U∗)T = tril((U∗)−1y∗ny∗nTP−1), i .e .,

∂gn (U∗)
∂U∗ = triu(P−1y∗ny∗nT(U∗)−T)

Finally, we have

∂`

∂U∗ = −
N ID
U∗ + triu(P−1

N∑
n=1

y∗ny∗nT(U∗)−T)
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When P = LLT, by similar argument as above, we have

∂`

∂L = −
N ID
L + tril(P−1

N∑
n=1

y∗ny∗nTL−T)

C.2 | Gradients of log-priors

The logarithm of conditional prior p(σ |U∗) after transformation τ = log(σ) becomes

log p(τ |U∗) = log p(σ |U∗) + log
���� dσdτ ���� = D∑

i=1

(i − (ν + D + 1))τi −
1

2
tr(Ψ diag(e−τ )P−1 diag(e−τ )) +

D∑
i=1

τi

=
D∑
i=1

(i − (ν + D ))τi −
1

2
tr(Ψ diag(e−τ )P−1 diag(e−τ ))

[
d
dτ log p(τ |U∗)

] . We calculate the derivative of log p(τ |U∗)with respect to τ

d

dτ
log p(τ |U∗) = i − (ν + D ) + dg (τ )

dτ

where i = [1, · · · ,D ]T, and g (τ ) = − 12 tr(Ψ diag(e−τ )P−1 diag(e−τ )).

Noting that differential and trace operators are exchangeable, we have

dg (τ ) = − 1
2
tr(Ψd diag(e−τ )P−1 diag(e−τ ) +Ψ diag(e−τ )P−1d diag(e−τ ))

=
1

2

[
tr(P−1 diag(e−τ )Ψ diag(e−τ )diag(dτ )) + tr(Ψ diag(e−τ )P−1 diag(e−τ )diag(dτ ))]

=
D∑
i=1

dτi

D∑
j=1

ψi j e
−τj ρj i e−τi

Thus
dg (τ )
dτ

= diag(Ψ diag(e−τ )P−1)diag(e−τ ) = diag(P−1 diag(e−τ )Ψ)diag(e−τ ) = diag(Ψ diag(e−τ )P−1) ◦ e−τ

where diag acting on a vector forms a diagonal matrix while the action amatrix means extracting the diagonal vector. ◦
is the Hadamard product (a.k.a. Schur product), i.e. the entrywise product.[
d
dU∗ log p(U∗ |τ )

] . Now consider the derivative of log p(U∗ |τ )with respect to thematrixU∗. We have

d

dU∗ log p(U∗ |τ ) =
diag(i − (ν + D + 1))

U∗ +
dg (U∗)
dU∗

where g (U∗) = − 12 tr(Ψ diag(e−τ )(U∗)−T(U∗)−1 diag(e−τ )), and diag(i)U∗ is a diagonal matrix formed by element-wise divi-
sion.
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Again by the exchangeability between differential and trace, we have

dg (U∗) = − 1
2
tr(Ψ diag(e−τ )d (U∗)−T(U∗)−1 diag(e−τ ) +Ψ diag(e−τ )(U∗)−Td (U∗)−1 diag(e−τ ))

=
1

2

[
tr(Ψ diag(e−τ )(U∗)−Td (U∗)TP−1 diag(e−τ )) + tr(Ψ diag(e−τ )P−1dU∗(U∗)−1 diag(e−τ ))]

=
1

2

[
tr(diag(e−τ )P−1dU∗(U∗)−1 diag(e−τ )Ψ) + tr(Ψ diag(e−τ )P−1dU∗(U∗)−1 diag(e−τ ))]

= tr((U∗)−1 diag(e−τ )Ψ diag(e−τ )P−1dU∗)

Therefore we have
dg (U∗)
d (U∗)T = tril((U

∗)−1 diag(e−τ )Ψ diag(e−τ )P−1) ,

that is,
dg (U∗)
dU∗ = triu(P−1 diag(e−τ )Ψ diag(e−τ )(U∗)−T) ,

[
d
dτ log p(τ ), d

dL log p(L)
] . Lastly, the log-priors for (21) and their gradients after transformation τ := log(σ) are

calculated

log p(τ ) = − 1
2
τTτ , d

dτ
log p(τ ) = −τ

log p(li ) = log p(l2i ) + 1Ti log |2li | = (2(αi − 1) + 1i )T log |li |, d

d li log p(li ) =
2(αi − 1) + 1i

li
The bottom row can bewritten as

log p(L) =
D∑
i=1

(2αi − 1)T log |li |, d

dL log p(L) =
2α − 1
L

where 1L denotes a lower-triangular matrix with l −1i j being its (i , j ) entry (i ≥ j ).

D | MORE NUMERICAL RESULTS

E | FLEXIBILITY OF VON MISES-FISHER PRIOR AND BINGHAM PRIOR

Now let’s consider the following vonMises-Fisher prior (Fisher et al., 1987; Fisher, 1953;Mardia and Jupp, 2009) for li ,
the i -th row of the Cholesky factor L of correlationmatrix P in the structuredmodel (6).

Definition 6 (VonMises-Fisher distribution) The probability density function of the vonMises-Fisher distribution for the
random vector li ∈ Si−1 is given by

p(li ) = Ci (κ) exp(κµTli )
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F IGURE 10 Marginal posterior, prior (induced from vonMises-Fisher distribution) densities of correlations and
MLEs with different settings for concentration parameter κ , estimatedwith 106 samples.

where κ ≥ 0, ‖µ‖ = 1 and the normalization constantCi (κ) is equal to

Ci (κ) =
κ i /2−1

(2π)i /2Ii /2−1(κ)

where Iv denotes the modifiedBessel function of the first kind at order v . Denote li ∼ vMF(κ,µ).

Since we have no prior knowledge about themean directionµ, we chooseµ = ni = (0i−1, 1)T that favors the polar
direction, i.e.

li ∼ vMF(κ, ni ), p(li ) ∝ exp(κl i i ), i = 2, · · · ,D

where we consider i) κ = 1; ii) κ = 10; iii) κ = 100. With the vonMises-Fisher prior, we have

log p(L) =
D∑
i=1

κl i i = κtr(L), d

dL log p(L) = κI

We repeat the experiment in Section 4.1.2 with the vonMises-Fisher prior for li . The posteriors, priors andmaximal like-
lihood estimates (MLE) of correlations with different κ ’s are plotted in Figure 10 respectively. With larger concentration
parameter κ , the posterior is pulledmore towards 0.

Finally, we consider the following Bingham prior (Bingham, 1974; Onstott, 1980) for li in the structuredmodel (6).

Definition 7 (Bingham distribution) The probability density function of the Bingham distribution for the random vector
li ∈ Si−1 is given by

p(li ) =1F1(1
2
; n
2
; Z)−1 exp(lTi MZMTli )
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F IGURE 11 Marginal posterior, prior (induced fromBingham distribution) densities of correlations andMLEs with
different settings for concentration parameter ζ, estimatedwith 106 samples.

whereM is an orthogonal orientation matrix, Z is a diagonal concentration matrix, and 1F1(·; ·; ·) is a confluent hypergeomet-
ric function of matrix argument. Denote li ∼ Bing(M,Z).

Note, according to Bingham (1974), this distribution is defined for Z up to an arbitrary scalar matrix ζ0I. Therefore,
we considerM = I and Z = ζ diag(ni ) that favors the polar direction, i.e.

li ∼ Bing(I, ζ diag(ni )), p(li ) ∝ exp(ζl 2i i ), i = 2, · · · ,D

where we consider i) ζ = 1; ii) ζ = 10; iii) ζ = 100. The log-prior and its gradient are calculated as follows

log p(L) =
D∑
i=1

ζl 2i i = ζ ‖ diag(L) ‖2, d

dL log p(L) = 2ζ diag(L)

We repeat the above experiment with the Bingham prior for li . The posteriors, priors andmaximal likelihood estimates
(MLE) of correlations with different ζ’s are plotted in Figure 11 respectively. With larger concentration parameter ζ, the
posteriors are pulledmore towards the induced priors and concentrate on 0.

E.1 | More Comparison to Latent Factor ProcessModel
The example of simulated periodic process in Section 4.2.2 is consider for D = 2 for simplicity and convenience of
visualization. Here we consider higher dimensionD = 10. The purpose here is not to show the scalability, but rather to
investigate the robustness of our dynamic model (12) in terms of full flexibility.

We generateM = 20 trials of data over N = 100 evenly spaced points over [0, 1]. The true mean, variance and
correlation functions aremodified from the example (22) using the Clausen functions (Clausen, 1832). Seen from Figure
12, they behavemore intricately with higher heterogeneity among those processes. This could impose further challenge
for latent factor basedmodels like (23) compared toD = 2. We repeat the experiments in Section 4.2.2 and compare
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F IGURE 12 Simulated data y over the underlyingmean functions µt (left), the variance functionsΣt , and the
correlation functions Pt (right) of 10-dimension periodic processes.

our dynamicmodel (12) with the latent factor processmodel (23) by Fox andDunson (2015). To aid the visualization,
we subtract the estimated process from their true values and plot the error functions in Figure 13. Even if we have
tried our best to tune the parameters, e.g. L, the number of basis functions, and k , the size of latent factors, the latent
factor processmodel (Fox andDunson, 2015) is outperformed by our flexible dynamicmodel (12) in reducing estimation
errors.

F IGURE 13 Estimated error functions of the underlyingmean µt (left column), variance σt (middle column) and
correlation ρt (right column) of 10-dimensional periodic processes, using latent factor process model (upper row) and
our flexible model (lower row), based onM = 20 trials of data over N = 100 evenly spaced points. Solid lines are
estimated errors and shaded regions are 95% credible bands.
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F IGURE 14 Locations of recorded LFP signals in CA1 subregion of the hippocampus of the rat.

E.2 | More Results on the Analysis of LFP data
In Section 4.3, we studied the LFP data collected from the hippocampus of rats performing a complex sequencememory
task. Figure 14 shows 12 locations fromCA1 subregion of the hippocampus of the rat where LFP signals are record.
Figure 15 shows the theta-filtered traces (4-12Hz; left panel) and the estimated correlation processes under different
experiment conditions (InSeq vs OutSeq; right panel). Here we observe the similar dynamic pattern of correlation
matrices under two conditions that diverge after 600ms, indicating the neural activity associatedwith the cognitive
process of identifying whether events occurred in their expected order.
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F IGURE 15 Results of LFP theta signals: data (left), estimation of correlations (right).


	1 Introduction
	2 Structured Bayesian Modeling Covariances (Correlations)
	2.1 Connection to the Inverse-Wishart Prior
	2.2 More Flexible Priors
	2.3 Dynamically Modeling the Covariance

	3 Posterior Inference
	3.1 Metropolis-within-Gibbs
	3.2 Spherical HMC
	3.3 Adaptive Spherical HMC

	4 Numerical Experiments
	4.1 Normal-inverse-Wishart Problem
	4.1.1 Verification of Validity
	4.1.2 Examining Flexibility of Priors

	4.2 Simulated Periodic Processes
	4.2.1 Posterior Contraction
	4.2.2 Full Flexibility
	4.2.3 Scalability

	4.3 Analysis of Local Field Potentials

	5 Conclusion
	A Connection to Known Priors
	B Spherical Hamiltonian Monte Carlo
	B.1 Derivation of the geometric integrator for SphHMC
	B.2 Reformulating Acceptance

	C Gradient Calculation in Normal-inverse-Wishart Problem
	C.1 Gradients of log-likelihood
	C.2 Gradients of log-priors

	D More Numerical Results
	E Flexibility of von Mises-Fisher Prior and Bingham Prior
	E.1 More Comparison to Latent Factor Process Model
	E.2 More Results on the Analysis of LFP data




