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The accuracy of neutrons modeling and simulation tools strongly depends on the quality of the nuclear
data. Data libraries are generated by evaluators combining physics-based model codes and experimental
data. There are many instances where experimental data are not available, are not reported rigorously or
are discordant. In such cases, the evaluators need to make an expert judgment exposing the generated
data to human bias and large uncertainties. This work proposes to support the evaluators’ complex tasks
by leveraging Machine Learning (ML) and Artificial Intelligence (AI). Two proof-of-concept ML models, a
Decision Tree and K-Nearest-Neighbor, were developed to fit nuclear data from the EXFOR database in
order to infer neutron induce reaction cross sections. Both models were used to predict nuclear data
for 233U, a well-characterized isotope in literature, and 35Cl, a less studied but important nuclide for some
advanced nuclear reactors. The predicted values for 233U were validated using the 233U Jezebel benchmark
in Serpent2 model. The predicted values for 35Cl(n,p) cross section were compared against recent new
measurement not available in EXFOR. The predicted ML/AI values matched more accurately the new
measurements than any of the evaluated data libraries, which overestimate experimental results by up
to a factor of five. In turn, the proof-of-concept models explored in this work, reliant on learning under-
lying patterns of cross section data from other radionuclides, demonstrate evidence that ML models can
aid traditional physics-guided models and have a role to play in nuclear data evaluations. Furthermore,
incorporating ML models in the nuclear data pipeline can allow evaluators to make faster bias-free deci-
sions in areas of uncertainty as well as better inform future data measurement campaigns on areas of
greatest sensitivity in EXFOR.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Research and development heavily rely on modeling and simu-
lation in order to make rapid progress, reduce costs, and ensure
safety. In the field of nuclear science and engineering, the need
to understand the behavior of nuclear particles further exacerbates
the reliance on simulation software, therefore, major efforts are
directed to advance modeling tools aiming to improve fidelity,
increase accuracy, and decrease computing time. Nevertheless, it
is well understood that the reliability of any radiation transport
modeling tool strongly depends on the accuracy of the nuclear data
it relies on. These data are provided in the form of libraries such as
the Evaluated Nuclear Data File (ENDF) or the Joint Evaluated Fis-
sion and Fusion (JEFF) that contain recommended data for energy
differential cross sections, fission product yields, decay data,
covariance for neutron cross section, product energy-angle distri-
butions, etc. (Chadwick and Oblo, 2006). These libraries are gener-
ated by evaluators using a variety of tools including physics-based
model codes (i.e., TALYS and EMPIRE) where the calculations are
guided by data from experimental databases like the Experimental
Nuclear Reaction Data (EXFOR) database. Recommended values are
used all over the world by researchers and industry in Monte Carlo
and deterministic modeling codes to simulate a variety of systems
and phenomena including nuclear reactors, radiation detectors,
particle accelerators, medical treatments, etc. All such derived
studies rely on the available data and benchmarks, as well as, the
judgment of the evaluators, to provide the best set of recom-
mended values. However, there are many instances where experi-
mental data are not available for a specific isotope-reaction
channel pair or limited to a specific energy range, where experi-
mental data were not collected with adequate rigor, or where
experimental data sets present large discrepancies. It is the job of
the evaluators to assess the trustworthiness of the data, select
the physics model to combine with the experimental data, and
ultimately fill the gaps to recommend data over the wide energy
range that is in general of interest. This process can lead to large
uncertainties and is vulnerable to human bias, in particular in
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those cases where experimental data are scarce or nonexistent.
This work proposes to support the evaluators’ complex tasks by
leveraging Machine Learning (ML) and Artificial Intelligence (AI)
during the process of cross section evaluation. The large set of
experimental data collected throughout the years presents a logi-
cal opportunity for ML applications that can inform cross sections
in areas of uncertainty, iterate faster through the evaluation steps,
and ultimately reduce, if not eliminate, the human bias from the
process. Such ML-driven tools are not meant to replace the evalu-
ator or the physics-guided tools, but to enhance their analytical
power and extract meaningful physics that can serve for future
evaluations.

This manuscript discusses the potential role of ML in supporting
cross section evaluation and proposes an ML augmented nuclear
data evaluation pipeline for neutron-induced reactions cross sec-
tion. The potential impact of this new process for evaluating cross
sections is illustrated using two examples: 233U and 35Cl cross sec-
tions. Section 2 reviews the current evaluation pipeline, Section 3
describe the proposed methodology based on ML, and Section 4
illustrates the two examples. Finally, conclusions and additional
considerations are provided.
2. Background

The United States government and many other international
private and public entities have spent considerable resources col-
lecting experimental nuclear data throughout many decades to
better understand the behavior of isotopes important for nuclear
power and nuclear weapon development such as uranium and plu-
tonium isotopes. Additionally, data for many of the structural
materials used in the current fleet of light water reactors have been
extensively measured. Nevertheless, significant gaps remain in the
cross sections data of many elements, isotopes, reaction channels,
or energy ranges. Such missing data often constitute a critical
obstacle to the development of new technologies like an advanced
nuclear reactor. Filling data gaps, in general, requires lengthy and
costly experimental campaigns. ML models, instead, can leverage
existing data from well explored (isotope, reaction-channel) pairs
and learn patterns and behaviors that can be applied to other less
measured isotopes including those envisioned to be used in
advanced reactor concepts. More specifically, the EXFOR database
contains more than four million datapoints of neutron-induced
reactions. The amount of data needed for an ML algorithm varies
depending on the challenge and type of algorithm. It is the general
consensus that as the number of available samples increases both
the confidence and accuracy of the model is expected to increase
(Jain et al., 1982). This is especially true in data-hungry models
such as neural networks. Depending on the area of application,
such as the nuclear data field, more data may not be easily gath-
ered and/or might be extremely expensive. The only way to truly
assess if the available data will suffice is by attempting to fit, opti-
mize, and assess several models that might be appropriate for the
challenge. Having collected this amount of data in EXFOR makes
the field a prime candidate for the application of ML methods.

Currently, modeling neutron-induced reaction cross sections is
a non-trivial problem as there is no one-model fits-all approach
and the physics are not fully understood. Traditional approaches
include using physics-based tools guided by experimental data to
create a set of recommended values. In these tools, several physical
parameters need to be adjusted for the model to generate a good
function that fits and explains the experimental cross section data
accurately although in some cases, these parameters can give too
much flexibility consequently overfitting the data at the expense
of physical meaning.
2

The current nuclear data evaluation pipeline can be summa-
rized in four steps: compilation, evaluation, processing, and valida-
tion (Bernstein and Brown, 2019). In the compilation phase,
nuclear data from references contained in the Nuclear Science Ref-
erences database are extracted and compiled into the EXFOR
library in the case of nuclear reaction data (Pritychenko et al.,
2011). In the evaluation phase, the relevant data are used to guide
physics-based model calculations which will result in best esti-
mates, dependent on data availability, of mean values including
uncertainties and covariances. These values can then form part of
one or more regional libraries (i.e., ENDF/B, JENDL). In the process-
ing step, data are processed into a format compatible with a partic-
ular application. It is a nontrivial step that requires knowledge of
the evaluation process and physics used. The last phase, validation,
consists of using the processed evaluated data on codes and a set of
defined problems to measure its performance. These problems
more popularly consist of integral benchmarks data which are
measured with a precision of several orders of magnitude (N. E.
Agency, 2020). An example of these integral benchmarks are criti-
cal assemblies where the multiplication factor (keff ), the ratio of
neutron production to neutron loss, is known. The evaluated data
must perform adequately or at least be an improvement relative
to the preceding evaluation otherwise the new evaluation is
rejected and the process needs to start over.

The fields of ML and AI have improved drastically since their
inception in the 1980s in part thanks to the fast increase in compu-
tational power over the last decade. This includes better Core Pro-
cessing Units, faster storage Input/Output speeds, and the
development of better Graphical Processing Units. The latter, cou-
pled with the wide availability of data and more efficient ML algo-
rithms and optimization methods, allows for more accurate
models with faster training times. Consequently, the prominence
of ML/AI throughout business and technology sectors has only
grown, translating into a significant impact in people’s daily life.
Despite the continuous growth of ML/AI throughout virtually every
industry, its extension/application to Nuclear Physics and Engi-
neering remains somewhat limited.
3. Methodology

Fig. 1 presents a potential evaluation pipeline augmented by
ML. Its steps can be summarized as (1) dataset creation, (2) feature
extraction and processing, (3) ML model training and evaluation,
(4) hybrid library generation, and (5) validation which in turn
informs model selection. Similar to the current nuclear data pipe-
line, it ends on the application side. The first step consists of col-
lecting the relevant experimental data. For ML to effectively
tackle this challenge, a representative dataset containing the phys-
ical properties and features that are believed to affect cross section
behavior is needed. This mainly includes data from the EXFOR
database, the Atomic Mass Evaluation, the Evaluated Nuclear
Structure Data File, and any other appropriate experimental data
source that may have a role/impact in cross section behavior. After
collecting all relevant data feature extraction and processing are
performed. This step consists mostly of cleaning the data and
transform it into a form suitable for ML algorithms. This process
is model-dependent and needs to be carefully performed. After
having all features in an ML-friendly format, the chosen model is
trained and its performance is first evaluated using an unseen
dataset subset. The trained model can then be used to generate
ML-derived recommended values (libraries) based purely on pat-
terns and behaviors it learned from the training dataset. These
cross sections are then validated using benchmark calculations.
In this particular challenge, it is not possible to just rely on the val-
idation subset performance for model selection. The error from the



Fig. 1. Machine Learning Augmented Nuclear Data Evaluation Pipeline.

Table 1
Dataset features.

Feature Name Values (min, max)

Incident energy (eV)a 5.7630e-10, 1.0170e + 11
Number of protons 1, 99
Number of neutrons 0, 156
Atomic mass number 1, 255

1–4, 16–18, 22, 24, 28–29
32–33, 37, 41, 51, 101–108

Reaction number (MT) b 111–113, 152–153, 155
158–161, 203, 1003, 1108
2103, 9000, 9001

Center of mass flag b Lab, Center of mass
Target type b Isotope, Natural
Atomic Mass (micro-amu) 1.0070e+06, 2.5509e+08
Target Atomic Radius (fm) 1.25–7.92
Neutron/Target Atomic 1.0092e-01, 6.4000e-01
Radius Ratio (fm)
Mass Excess (keV) -9.1652e+04, 8.4089e+04
Binding Energy (keV) 0.0000e+00, 8.7945e+03
b� Decay Energy (keV) �2.2898e+04, 1.8244e+04
S(2n) Energy (keV) 2.0254e+03, 3.7512e+04
S(2p) Energy (keV) 7.7180e+03, 3.6635e+04
S(n) Energy (keV) 1.0969e+03, 2.0577e+04
S(p) Energy (keV) 0.0000e+00, 2.0831e+04

[a]85% and 17% of the energy and cross section values respectively either did not
report uncertainties or were not readily accessible, therefore, uncertainty for these
features was not included. [b]Treated as categorical features.
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benchmark must have a higher weight on model selection since
these are the closest representations to real-world deployment
scenarios. However, the benchmark loss is currently not directly
taken into account in model training but it provides essential met-
rics for further improvement. This process is iterative until an opti-
mal set of model parameters is found. The selected models can
then be used to make predictions to inform evaluators in areas of
uncertainties where measurements have not been made or have
been made but not accurately enough.

Several aspects require caution when implementing ML pipeli-
nes to this area in particular. Theoretically derived data including
physical parameters or factors that scientists think can help the
model learn behaviors in cross sections must not be included in
the dataset. Including them will cause the ML model to have the
same constraints as those other models used to derive said theo-
retical data. For example, filling missing values with ENDF data
means the model will not only learn characteristics from the real
physical phenomena but also from those models used to create
the evaluated library (i.e., TALYS, EMPIRE). In addition, it inherits
the bias in the creation of these values. Next, splitting must be per-
formed in a stratified manner rather than randomly. It is important
to fit the model on a representative diverse dataset, otherwise, it
will have poor performance on data types that were not included
in the training set. A clear example is elastic scattering of which
there are thirty-seven thousand datapoints. Approximately two-
thirds of those belong exclusively to 237Np. Random splitting risks
the majority of the elastic scattering points in the training subset
belonging to 237Np. This can translate into poor predicting capabil-
ities on other non-seen isotopes. Another issue arises in the valida-
tion phase. Similar to the current nuclear data pipeline, integral
benchmarks are part of the validation step to inform model selec-
tion. This means there is a risk of overfitting to a particular bench-
mark. The model selection process must be based on the average
performance on all benchmarks. On another aspect, cleaning the
data is a non-trivial process. This step is a hybrid realm between
the data sciences and the nuclear data field. Although there might
be good causes to discard one dataset versus another, this is out-
side the scope of the work presented here.

ML applied to cross section and nuclear evaluation presents
very unique characteristics that are not usually present in common
ML challenges due to the physical nature and meaning of the
EXFOR database. EXFOR datapoints consist of experimental mea-
surements of a variety of isotopes undertaken by researchers at dif-
ferent facilities. These carry uncertainty that is a function of the
experimental settings, procedures, and more. Measurements are,
3

therefore, only an approximation of an unknown true cross section
value. The evaluation pipeline recognizes this and incorporates the
validation phase by the use of benchmarks. For example, a critical
assembly has a multiplication factor of one (critical). This is an
actual true value. In other words, the assembly is critical or it is
not (there is no in-between) and there exists a set of true cross sec-
tion values that allows this assembly to exists in a criticality state
given the composition and the geometry. These hidden sets of real
cross section values would ideally be the labels in the datasets,
however, only measurements are available that are regarded as
being close enough to the unknown true values. Competing exper-
imental campaigns and outliers exist in EXFOR and this is why tra-
ditionally the evaluator inspects each dataset for quality. To limit
bias, the proposed pipeline does not discard datapoints manually
and, therefore, an odd issue arises.

Most machine learning models try to minimize a given loss
function which itself is a function of the predicted value and the
given label. Knowing that the labels are not ideal or accurate
enough and that the benchmarks are currently not part of the



Fig. 2. 35Cl(n,p)35S reaction channel experimental datapoints in EXFOR vs. the
ENDF/B-VIII.0 evaluation.
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training loss function directly, it may not be the best approach to
completely minimize the loss with respect to the EXFOR dataset
if this means increasing the loss with respect to the integral bench-
marks. Given any model selection process (i.e., cross validation,
train-val-test), an optimal model with the lowest mean absolute
error (MAE) and no overfitting will in some cases perform worse
in a benchmark than an over-fitted model. This is due to the ”ap-
proximation” nature of the dataset, the high uncertainties in some
measurements, and the frequent presence of outliers. In other
words, the EXFOR database converged model might not be the best
model. Given these arguments, one must understand the limita-
tions and carefully go about the training process on these types
of experimental datasets.

For this work, a new python library (NucML) was developed
that allows to quickly navigate through the proposed ML evalua-
tion pipeline in an automatized manner. NucML provides utilities
for custom dataset creation and manipulation, model building
and testing capabilities, ML-based library generation, benchmark
testing, and visualization tools.
3.1. Data sources and processing

This section provides a brief overview of the data used for train-
ing and comparison of the ML models: the EXFOR database and the
ENDF/B-VIII.0 library. The dataset features 1 are listed in Table 1.
Fig. 3. 233U(n,f) X reaction channel experimental datapoints in EXFOR vs. the ENDF/
B-VIII.0 evaluation.
3.1.1. EXFOR database
The nuclear reaction compilation database, known as the EXFOR

library was collected from the International Atomic Energy Agency
(IAEA) (Otuka and Dupont, 2014). By means of international collab-
oration between the Nuclear Reaction Data Centres and supervised
by the IAEA Nuclear Data Section, a compilation of experimental
data takes place by identifying the literature for publications
where neutron-induced reaction measurements have been made.
Once identified, the National Nuclear Data Center, the NRDC insti-
tution for data measured in the United States and Canada, creates
an EXFOR entry number and data is revised between institutions
for incorporation into the EXFOR Master File. In addition to reac-
tion cross sections, the EXFOR database contains resonance inte-
grals, fission yields, polarization data, etc. For this work, only
neutron-induced reaction cross sections (MF = 3) were extracted
which corresponds to approximately 4.5 million datapoints. Cross
section measurements dependent as ratios or other types of
derived cross section data were not used. These data types can
be transformed into useful data for this methodology or be used
for post-training model evaluation but are out of the scope of this
work.

The EXFOR library, being a platform for experimental results,
contains a variety of conflicting experimental campaigns. For
example, Fig. 2 shows the 35Cl(n,p)35S cross section experimental
campaigns. In the 101 to 106eV energy region, the campaigns per-
formed by Koehler and Popov differ significantly in almost every
region including the 1=v region and the magnitude of the first
two resonance peaks (Koehler, 1991; Popov, 1961). Another exam-
ple of experimental variety is the 233U(n,f) X cross section depicted
in Fig. 3. This well-measured isotope is representative of the abun-
dance and variety of different experimental campaigns encounter
in other well-measured isotopes. Fortunately, resistance to outliers
is one of the strengths of manyML pipelines with the added benefit
of providing bias-free calculations. Because of this, the dataset was
only checked for consistency and converted into a clean numerical
1 In machine learning a feature is an individual measurable property or charac-
teristic of a phenomenon being observed

4

format appropriate for the ML algorithm of choice. Conflicting
experimental campaigns were left as appeared.

Although it is of interest to calculate the uncertainty in the ML
model predictions, it is not possible to do so accurately given the
current state of EXFOR. Of the four and a half million extracted data
points, approximately four million energy points and eight hun-
dred thousand cross section points uncertainty values were either
not reported or were documented in another format not easily
accessible. This makes it harder for the model to accurately infer
or propagate uncertainties since it does not have enough accurate
information to train on. Consequently, neither the uncertainty in
energy nor in cross section was used to train the models presented
here.
3.1.2. ENDF and JENDL library
Regional libraries often need to be processed further into a for-

mat suitable for application codes. For example, the ENDF library is
often processed with tools like NJOY and AMPX into a format suit-
able for transport codes like MCNP, SERPENT2, and SCALE
(MacFarlane et al., 2016; Kim et al., 2019; Werner et al., 2018;
Leppänen and Pusa, 2015; Wieselquist et al., 2020). Once in the
appropriate format, these libraries can be tested on the validation
step using integral benchmarks (i.e., critical assemblies) from the
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International Criticality Safety Benchmark Evaluation Project (ICS-
BEP) Handbook, which contains criticality safety benchmark spec-
ifications from various experiments performed around the world
(N. E. Agency, 2020). As a measure of current predicting power,
the ENDF/B-VIII.0 library was used as a benchmark for the ML
models to compare to. The error was measured with respect to
the EXFOR datapoints. For the 35Cl(n,p)35S reaction channel the
JENDL-4.0 evaluation (Shibata et al., 2011) was also employed.

3.2. Feature processing

This section provides an overview of the dataset transforma-
tions and standardization procedures which are important for
model optimization and performance. First, all categorical features
were one-hot encoded and were not subject to the transformations
and normalization methods described here to preserve sparsity.
One-hot encoding, also known as one-of-k, refers to the process
of encoding categorical features as a one-hot numeric array mean-
ing a binary column for each category is created. It is a typical step
in any data processing pipeline for ML algorithms that require all
data to be represented in numerical form. Afterward, the dataset
was split into training, validation, and testing subsets in an 80–
10-10 proportion. Although the performance on the validation sub-
set was evaluated, the benchmarks are the main validation stage
and the ultimate performance target.

3.2.1. Dataset transformations
Data ranges and skewness must be dealt with before any data

transformation. Many of the data features are highly positively or
negatively skewed including the incident energy. Highly skewed
features can cause issues for many ML algorithms. The tail region
of any skewed feature may act as an outlier for a statistical model,
therefore, affecting the model’s performance, especially in
regression-based models (Han et al., 2012). Although there are
models that are robust to outliers like Tree-based models, highly
skewed features limit the possibility to try other models like K-
Nearest-Neighbors and Neural Networks (John, 1995;
SubbaNarasimha et al., 2000). Skewed data can be dealt with by
transforming them into a Gaussian-like or Normal distribution by
applying a Yeo-Johnson power transform (Eq. 1), a parametric-
monotonic transform function, feature-wise for each instance xi
on the training set (Yeo and Johnson, 2000).

xðkÞi ¼

� ½ð�xiþ1Þ2�k�1�
ð2�kÞ if k – 2; xi < 0;

½ðxiþ1Þk�1�
k if k – 0; xi P 0;

lnðxi þ 1Þ if k ¼ 0; xi P 0
� lnð�xi þ 1Þ if k ¼ 2; xi < 0

8>>>>><
>>>>>:

ð1Þ

This method finds an optimal parameter (k) that minimizes skew-
ness through maximum likelihood estimation. Once the power
transformation was fitted to the training data set, the same param-
eters were used to transform the testing set.

3.2.2. Standardization
All feature vectors (x) were standardized (Eq. 2) by removing

the mean (�x) and scaling to unit variance using the feature stan-
dard deviation (r).

x0 ¼ x� �x
r

: ð2Þ

This type of normalization is also known as Z-score normalization.
It gives features the properties of a standard normal distribution
with l ¼ 0 and r ¼ 1 where l is the mean and r is the standard
deviation from the mean. This is performed to prevent certain ML
models to give more importance to higher magnitude features. Sim-
5

ilarly to the power transformer, the mean and standard deviation
for the training set was used to normalize the testing set. This step
assumes that the training set is representative of the problem at
hand. It helps also to identify outliers on the validation and testing
set. In addition to the power transformer, a robust scaler was also
tested to minimize the impact of outliers since it calculates the
statistics based on the interquartile range (the range between the
first and third quartile). These transformations were not applied
to the dataset used to train the Decision Tree models.

3.3. Machine learning algorithms

There are a variety of regression algorithms including K-Nearest
Neighbors (KNN), Linear and Logistic Regression, Support Vector
Machines (SVM), Decision Trees (DT), Random Forests (RF), and
Neural Networks (NN) (Goldberger et al., 2005; Han et al., 2012;
Chang and Lin, 2011; Moisen and Service, 2008; Chen and
Guestrin, 2016; Abadi et al., 2015). As the complexity of the model
increases, more data for training is needed. The true goal of any ML
model is generalization meaning adequate performance when
deployed in real-world conditions with unseen data and, in this
particular application, performance in benchmark calculations.
For this proof-of-concept work, two basic but proven ML algo-
rithms were chosen: KNN and DT. A brief description of KNN and
DT algorithms is provided in this Section. Further details can be
found in References (Goldberger et al., 2005; Moisen and Service,
2008). The Scikit-Learn implementations are employed for both
models (Pedregosa et al., 2011).

3.3.1. K-nearest-neighbors
The KNN regression algorithm calculates a new data point’s

value by first querying the K nearest datapoints available in the
training set and sorting them by increasing distance, hence the
model’s name. Here, K is a hyperparameter that has to be set before
training. There is a variety of available distance metrics, including
Euclidean and Manhattan, that can be used to measure the dis-
tance between points in the i dimensional space where i is the
number of training features. In the case of Euclidean, the distance
is calculated between points p and x by taking the square root of
the squared difference between ðp1; p2; . . . ; pnÞ and ðx1; x2; . . . ; xnÞ
(Eq. 3). The Manhattan distance in the other hand is calculated as
the absolute difference between points x and p (Eq. 4). If the
weights are set to uniform then the new data point’s value is the
mean of the K nearest points (Eq. 5). Alternatively, the K nearest
points can be weighted according to distance, meaning closest
points have a heavier influence on the new data point’s value (they
are weighted by the inverse of their distance).

dðp; qÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn
i¼1

ðpi � xiÞ2
vuut : ð3Þ

dðp; qÞ ¼
Xn
i¼1

jpi � xij: ð4Þ

NewPoint ¼ 1
K

XK
i

ki: ð5Þ

An issue with these types of algorithms is generalization beyond the
training set features data ranges. For example, this means that the
model will not perform well beyond the given energy ranges for a
specific (isotope, reaction-channel) pair. Although a very simple
algorithm, nearest neighbors have been successfully applied to a
variety of challenges including satellite imagery classification and
fraud detection, and it is worth exploring. Simple models also allow
to study the characteristics of a dataset. Additionally, a major
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Table 2
Tested K-Nearest-Neighbor and Decision Tree Model Parameters.

K-Nearest-Neighbor

Number of Neighbors (K) 1–20
Weight Function Distance, Uniform
Algorithm Brute
Distance Metric Manhattan, Euclidean

Decision Tree

Criterion Mean Squared Error
Splitter Best
Max Depth 10–400
Minimum Samples for Split 2–15
Minimum Samples for Leaf 2–15
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advantage is the non-parametric nature of the algorithm. This
makes it suitable for problems where decision boundaries are not
well defined. The range of parameters tested is specified in Table 2.

3.3.2. Decision tree
DT models also belong to the family of non-parametric methods

and can be applied to both classification and regression tasks. The
model approaches both tasks by learning simple if-then-else deci-
sion rules from the available features. DT are white-box models
meaning any prediction can be explained by boolean logic. The
deeper the tree is allowed to be built, the more complex the rules
become and consequently the more it is at risk of overfitting the
dataset. The maximum depth is a hyperparameter that needs to
be carefully selected before training and tuned in future iterations
of the model. Additionally, DTs tend to be biased towards domi-
nant classes or highly populated numerical regions in the training
set. Achieving the right balance of classes (i.e. reaction channels)
on the training data set is essential. An advantage of DT relative
to KNN is the little data preparation needed. The best splits are
found feature-wise independent of each other scale. There are a
variety of DT implementations that are capable of creating trees
with multiple branches, but the scikit-learn implementation is
built around an optimized version of the CART algorithm meaning
only binary trees are built through the training process.

The training process starts by feeding in the training vectors xi
and the label vector y. The decision tree will try to find an optimal
point h ¼ ðj; tmÞ to split the data Q at nodem by setting up a thresh-
old tm for each feature j in such a way that the impurity GðQ ; hÞ is
minimized (Eq. 6).

GðQ ; hÞ ¼ nleft

Nm
HðQleftðhÞÞ þ

nright

Nm
HðQrightðhÞÞ ð6Þ

where:

HðXmÞ ¼ 1
Nm

X
i2Nm

ðyi � �ymÞ2 ð7Þ

�ym ¼ 1
Nm

X
i2Nm

yi ð8Þ

DTs have many other parameters to help reduce overfitting includ-
ing the minimum samples required to make a split (MSS) and the
minimum samples required for a node to become a leaf (MSL).
The higher the number on both the more restricted the model will
be resulting in less predictive power. A balance must be found
between the max depth, the MSS, and the MSL. The range of tested
model parameters is specified in Table 2. Contrary to KNN, DT does
minimize a loss function given by the impurity (MSE). This makes it
an ideal basic candidate to test the hypothesis that a lower MAE
does not lead to a better performance in the benchmark in loss-
minimizing algorithms.

4. Examples

The potential impact of ML to support cross section data gener-
ation for use in modeling and simulation is demonstrated in two
examples. 233U and 35Cl cross sections were chosen as test cases
for two opposite reasons. 233U is a data-rich isotope and was cho-
sen to validate performance and demonstrate the reliability of
trained ML algorithms. Total, inelastic, fission, capture, and elastic
cross sections of 233U were generated, compiled into the ACE for-
mat, and tested by modeling the 233U Jezebel benchmark with
the Monte Carlo code Serpent 2 (Leppänen and Pusa, 2015). 35Cl,
instead, has far less experimental data and in particular, the lack
of data for the (n,p) reaction in the energy range above 0.1 MeV
has a substantial impact on the development of molten chloride
6

fast spectrum reactors. In addition to reactor design, chlorine neu-
tron absorption is thought to play an important role in other areas
of nuclear criticality safety. For example, in storage and transporta-
tion of dual-purpose canisters, chlorine available in deep geological
repository media can provide natural reactivity reduction which
ensures sub-criticality of disposed material (Sobes et al., YYYY).
Recently, a measurement performed at the University of California,
Berkeley at about 2.5 MeV has shown that existing data libraries
overestimate measured points by up to a factor of five
(Batchelder and Chong, 2019). Therefore, 35Cl was chosen to
demonstrate the capability of the ML model to generate cross sec-
tion data for data-starved reactions and its viability was evaluated
against the new measurements whose results were not known to
the algorithm at any stage.

4.1. U-233 Jezebel benchmark

A SERPENT2 model was created for the 233U Jezebel critical
assembly based on the information contain in the ICSBEP Hand-
book, one of the three Jezebel assemblies that were fabricated
and operated at Los Alamos Scientific Laboratory (R. Douglas
O’Dell et al., 2020; N. E. Agency, 2020). This assembly consists of
a bare 233U metallic sphere (5.9838cm radius and 18.424g/cm3

density) at room temperature of composition as specified on
Table 3. The 233U Jezebel benchmark was selected due to the sim-
ple, almost mono-isotopic nature. The generated cross sections
included 233U (n,tot), (n,c), (n,inelastic), (n,elastic), and (n,f). For
every channel, the ML algorithmwas used to generate cross section
values for the entire energy region. In line with the expected
hybrid implementation, the 1/v region for all ML-generated cross
sections (values up to the first resonance peak) was adjusted in
post-processing due to the instabilities presented by both models
using data from ENDF. In other words, the solution presented here
consists of a machine learning and traditional tools hybrid model-
ing technique. All other uranium isotopes were left unchanged.
During the compilation process, the cross sections were run
through standard checks (i.e. making sure the appropriate reaction
channels sum up to the total cross section).

4.1.1. KNN model selection and performance
While the size of the EXFOR dataset is large, brute-force calcu-

lations for the KNN algorithm are feasible. Even though the train-
ing and inferences time will be large, the challenge’s objective
does not carry a time constraint. This makes the training scenarios
simpler by limiting the number of hyperparameters to the number
of neighbors (K), the distance metric, and the weight function.
Before training the models the impact of different scalers and nor-
malizers in generalization performance tested, the robust scaler
achieving overall better results. Due to the fact that cross section
is a function of the energy, the ”distance” weight function and
the euclidean distance were chosen. The top graph in Fig. 4 repre-
sents the MAE for the train and validation sets as a function of the



Table 3
233UJezebel Critical Assembly (R. Douglas
O’Dell et al., 2020).

Isotope Density (atoms/barn-cm)

233U 4.6712E-02
234U 5.9026E-04
235U 1.4281E-05
238U 2.8561E-04

Fig. 4. Train and validation MAE as a function of the number of neighbors (k) (top).
Validation MAE and Multiplication Factor (keff ) error relative to 1 as a function of
the number of neighbors (k) (bottom). Both the train and validation MAE are in a
log10 scale.
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parameter K (number of nearest neighbors). The model with k ¼ 8
served as the traditionally selected model since it is at this point
that the validation MAE starts to increase and deviate from a
downwards trajectory while the train MAE kept decreasing indi-
cating overfitting. Using this model, the Jezebel benchmark was
run using the 233U KNN-generated cross sections. The results for
this model are listed in Table 4. The performance is adequate with
an error of 0.55%.

To find if the traditionally selected model was indeed the best
model in terms of benchmark performance, 233U cross sections
were generated using all KNN models. The bottom graph in Fig. 4
depicts the validation MAE and the multiplication factor as a func-
tion of K. As expected, the traditional model selection technique
does not seem to correlate with benchmark performance. The
train-based selected model (k ¼ 20) provides better benchmark
results than the traditionally selected model (k ¼ 9) by around
75%. On the other side, handpicking the model with the best
benchmark performance (k ¼ 18) leads to a big improvement with
an error of 0.011%. This is a big difference and already outperforms
the ENDF-based benchmark results. One drawback of performing
this kind of analysis in KNN models is that there is no loss function
being optimized. The performance comes strictly from the dataset
completeness. Still, it provides important insight into the dataset
issues causing deviation from the expected validation MAE/multi-
plication factor correlation.

The deviations could be explained by a variety of factors. Using
the best benchmark model (k ¼ 10) for example. Fig. 5 shows the
fission and capture cross section results along with the absolute
differences relative to the ENDF cross sections. As expected, the
resonance region is where most of the differences arise. Overall,
the generated cross sections for 233U appear to be similar to those
in ENDF with the maximum difference being up to 130 barns for all
reaction channels except the (n,elastic) cross section (Fig. 7). These
differences should not be interpreted as an error since it is not the
objective to minimize the differences between the current evalua-
tions and the ML algorithms. As seen in Fig. 6, the experimental
datapoints available are scarce. This limits the model’s perfor-
mance in this particular (isotope, reaction-channel) pair. Because
of the high availability of other reaction channels, the MT 2 cross
section was calculated as the difference between the ML generated
(n,tot) and (n,nonelastic) cross sections. The resulting values show
some erratic behavior at low energies. In intermediate energies,
the resonances seem to have a higher magnitude in both directions
relative to ENDF. This is a clear example of the limitations of using
this type of model and performance metrics when working with
databases like EXFOR. There are also differences in the transition
between the resonance and fast energy regions. This is to be
expected since resonances exist in the fast energy region but the
available capabilities/resolution do not allow to measure them
and therefore an average is taken in ENDF. In a real ML-hybrid
modeling scenario, the evaluator would need to make a decision
based on benchmark performance.
4.1.2. DT model selection and performance
Decision Trees on the other hand do optimize for MSE. As men-

tioned, a balance between the max depth, MSS, and MSL must be
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found to achieve good generalization and performance. Table 4
shows the results on the Jezebel benchmark for the validation-
based and train-based selected models along with the final model
parameters. Similar to the KNN results, the performance is ade-
quate for the validation-based model with an error of around
0.28%. Having observed that traditional model selection techniques
may not yield the best model in terms of benchmark performance,
a parametric study was performed by generating the 233U cross
sections and running the benchmark using every trained DT model.

Fig. 8 depicts the validation MAE (left) and multiplication factor
error (right) as a function of the max depth and the MSS. The train-
based selected model achieved much better performance in the
benchmark relative to the validation-based selected model. Similar
to the outcome in the KNN based models, the figure shows that the
lowest validation MAE does not yield the best benchmark per-
former. For both the validation and train MAE, there is a value
where the optimal benchmark performer can be found. Handpick-
ing the model based on benchmark performance leads to an
improvement of huge improvement relative to the validation-
based model with just an error of 0.0057%.
4.2. Cl-35 cross section

The cross section for 35Cl(n,p)35S, a reaction of interest in the
development of chlorine-based fast reactors, was inferred using
both handpicked KNN and DT models. Recently, the joint Lawrence
Berkeley Laboratory and UC Berkeley (LBNL/UCB) Nuclear Data
Group measured the 35Cl(n,p)35S cross section for
2:42 < En < 2:74 MeV neutron energies using a high flux neutron



Table 4
233U Jezebel Benchmark Results.

Library keff Uncertainty Error (%) Train MAE Validation MAE Test MAE

ENDF 1.0002 +/- 0.0011 0.02 N/A N/A N/A
KNNa (k ¼ 9) 1.0038 +/- 0.0004 0.38 0.025921 0.119010 0.118578
KNNb (k ¼ 20) 0.9934 +/- 0.0004 0.66 0.025814 0.121110 0.120706
KNNc (k ¼ 18) 1.0000 +/- 0.0004 0.00 0.025818 0.120711 0.120294
DTa, d 0.9971 +/- 0.0004 0.29 0.094443 0.118699 0.119142
DTb, e 1.0023 +/- 0.0004 0.23 0.025773 0.136140 0.135027
DTc, f 0.9999 +/- 0.0004 0.01 0.088061 0.120462 0.120684

[a]Validation-based selected model; [b]Train-based selected model; [c]Hand-picked model; [d]Max Depth = 70, MSS = 10, MSL = 7; [e]Max Depth = 400, MSS = 2, MSL = 1; [f]
Max Depth = 80, MSS = 15, MSL = 3

Fig. 5. Comparison of KNN generated and ENDF/B-VIII.0 cross sections for fission and radioactive capture.

Fig. 6. 233U(n,elastic) reaction channel experimental datapoints in EXFOR vs the
ENDF/B-VIII.0 evaluation.

Fig. 7. KNN inferred cross section values for the 233U elastic channel vs the ENDF/B-
VIII.0 evaluation.
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generator and decay gamma spectroscopy (Batchelder and Chong,
2019). Results ranged from 30–50 millibarn and were used in this
work exclusively for validation of both the KNN and DT models. In
other words, these datapoints were not part of EXFOR dataset.
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Fig. 9 shows the available EXFOR datapoints, the LBNL/UCB mea-
sured datapoints, the ENDF/B-VIII.0 evaluation, and the ML-
generated cross sections. Table 5 shows the errors with respect
to the LBNL/UCB measurements for the ML-generated values, the
ENDF/B-VIII.0 library, and the JENDL-4.0 library.



Fig. 8. Validation mean absolute error (MAE) and multiplication factor error relative to 1 as a function of the max depth and MSS. The validation MAE are in a log10 scale.

Fig. 9. KNN and DT generated cross section for the 35Cl(n,p)35S reaction vs the ENDF/B-VIII.0 library and the available EXFOR experimental datapoints.

Table 5
Evaluated Libraries and ML model predictions error on the LBNL New Measurements for 35Cl(n,p)35S Reaction

Energy (eV) Cross Section (b) Decision Tree (b) KNN (b) ENDF (b) JENDL-4.0 (b)

2.42E6 0.0196 0.040300 0.040723 0.162609 0.165603
2.52E6 0.0261 0.091000 0.045894 0.162724 0.171788
2.58E6 0.0446 0.078307 0.054121 0.165948 0.173959
2.64E6 0.0500 0.070000 0.059396 0.168482 0.176129
2.74E6 0.0315 0.085276 0.064900 0.169618 0.178300

MAE 0.072977 0.053007 0.136624 0.145688
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The DT algorithm was able to predict the cross section values
better than any of the evaluated libraries by learning a set of if-
then-else rules based on important features from not only other
X(n,p) Y reactions but also other reaction channels. Not only was
the magnitude of the newly measured datapoints more accurately
described, but the expected trend after 106 eV seems similar to that
of the ENDF evaluation even when no known datapoints were
available in the entire dataset constraining the calculations. Simi-
larly, the KNN also outperforms the ENDF and JENDL evaluations
in these particular datapoints. There is certainly room for improve-
ment. Due to the if-then-else nature, the DT predictions have a
9

step-like behavior. Post-processing smoothing can be applied to
make the 1=v region and the resonance peaks smoother. The same
can be applied to the KNNmodel predictions. Both the DT and KNN
seem to be overfitting some of the EXFOR datapoints in the 1=v
region. More powerful algorithms can be applied that do not have
the limitations that these two models possess. The next step in the
process would be to test the newly generated cross sections in a
benchmark. Although some critical configurations containing chlo-
rine exists, most are thermal spectrum and will therefore provide
limited information on the fast spectrum cross sections. A suitable
benchmark was not identified.
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5. Conclusions

Nuclear data evaluators have an important task at hand when
an evaluation takes place and it is important they have the neces-
sary tools to navigate this process. Physics-based reaction model-
ing codes (i.e., EMPIRE and TALYS), guided by experimental
databases like EXFOR, are used to create an appropriate fit that
explains most of the experimental data points. However, some
evaluations are inevitably created with higher uncertainty and
human bias, especially in reactions where experimental data is
not available to constrain the model calculations.

This work proposes a framework for ML-augmented nuclear
evaluations that would reduce human bias and accelerate the eval-
uation process. ML models were built based on the experimental
data contained in the EXFOR database and atomic properties, and
were tested in two example cases. In general, the success of any
ML model not only depends on the characteristics of the chosen
algorithm but also on the quality and quantity of the data obtained.
The latter is often regarded as the most important aspect for the
successful application of ML approaches. In the nuclear data field,
data is expensive and sometimes wrongly reported. For example,
a large percentage of the energy and cross section values in EXFOR
have either missing uncertainties or were not logged appropriately.
Despite this, the results obtained show the capability of ML algo-
rithms to inform evaluations and provide useful information in
areas where no experimental data is available. Both the K-
Nearest-Neighbor and Decision Tree models performed adequately
on the 233U Jezebel Benchmark, in some cases providing results clo-
ser to the experimental values than data from the ENDF library.
The fast evaluation aspect is also evident. The KNNmodel only took
2.4 h whereas the DT model took just a couple of minutes. Training
the entire set of KNN and DT models took in total four days. Fur-
thermore, the (n,p) cross section for 35Cl, a less measured nuclide,
was investigated. Both the KNN and DT model, reliant on learned
patterns and behaviors of other X(n,p) Y reactions, predicted the
latest LBNL/UCB measurements more accurately than any of the
evaluated data libraries which overestimate experimental results
by up to a factor of five. This also demonstrates the potential for
ML models to aid traditional physics-guided models. Due to the
issues presented by training an ML algorithm in this type of exper-
imental dataset, the best KNN and DT models were handpicked
based on the benchmark performance. However, the selection pro-
cess should be automated potentially relying on the best average
performance in a validation set of benchmarks.

Future work also includes using more powerful algorithms that
can generalize well beyond the given data ranges, a current limita-
tion of both the KNN and DT models. These include powerful algo-
rithms like Gradient Boosting and advanced and complex models
like Deep Neural Networks (DNN) which also allow for multi-
output calculations, a feature useful for incorporating uncertainty
calculations. For these capabilities to be accurate and reliable, the
current state of the EXFOR database needs to be improved. Addi-
tionally, DNNs allow the incorporation of custom loss functions
which can be written to enforce unitarity during training rather
than post-training. New EXFOR specific loss functions can also pro-
vide robustness to outliers provided an optimal architecture is
found. Including new relevant features like the number of valence
neutrons and protons, and the promiscuity factor can also provide
more information than complex new algorithms.
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