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Abstract

The main objective of this paper is to present a model of computa-
tion which permits logic programs to be executed on a highly-parallel
computer architecture. It demonstrates how logic programs may be
converted into collections of dataflow graphs in which resolution is

‘viewed as a process of finding matches between certain graph tem-

plates and portions of the dataflow graphs. This graph fitting pro-
cess is carried out by tokens propagating asynchronously through the
dataflow graph; thus computation is entirely data-driven, without the
need for any centralized control. It is shown that at the implemen-
tation level the proposed model is very similar to a general dataflow
system and hence a dataflow architecture could easily be extended to
support the proposed model.

CR Categories: C.1.3 [Processor Architectures]: Other Archi-
tecture Styles - Data-flow Architectures; F.1.2 [Computation by Ab-
stract Devices]: Modes of Computation — Parallelism; F.4.1 [Math-
ematical Logic and Formal Languages): Mathematical Logic — Logie
Programming

Additional Key Words and Phrases: data-driven computa-
tion, paralle] logic programming



1. Introduction

Logic programming has been recognized as an effective approach to repr@énting
information and describing problems that can be solved by a computer using logical
inferences /Kow82/. Furthermore, logic programs do not presuppose a von Neu-
_mann aréhitécture and are, therefore, inherently well suited to parallel computa-' ‘
tions. Several recent research projects have investigated this potentié] and schemes.
which perﬁxit parallel execution of logic programs have been proposed /Bow82,
CoKi83, Con83, EKM82/. While all these approaches differ in many fundarhental
aspects, the principle common to all of them is to view each predicate p(zy, ..., z,,)
as a node in an AND/OR-tree of possible solutions. Execution then ‘may proceed
concurrently along the OR-branchés while AND-branches are subject to restrictions

resulting from free variables shared among predicates.

In /DeKo79/ Deliani and Kowalski have shown how logic programs mai' be
viewed as an (extended) form of semantic networks. In this approach, each predicate
is assumed to be binary, ie. of the form p(t;,#2), an thus may be represented as a
labeled arc p interconnecting the two nodes ¢; and ¢;. Such a representation pefmifs
resolution to be viewed as.a special pattern matching problem in which networks

corresponding to individual clauses are fitted into portions of other graphs.

In the approach presented in this paper we adopt a similar point of view by
representing logic programs as collections of graphs and graph templates. The
main distinction, however, is the way the pattern matching is carried out. This
is based on the principlés of asynéhronous, data-driven computations /COMS82,
Den75, TBH82/ in which a graph is not merely a passive representation of a pro-
gram stored in memory; rather each node is an active agent, supported. by an
independent processing element, and hence is capable of communicating with other
nodes via value tokens traveling asynchronously along the graphﬂ arcs. Finding a
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given pattern (a graph template) in such a dataflow graph is then accomplished
by an asynchronous propagation of tokens ‘ihrough the graph. The pattern to be
fitted is placed on.one or more tokens which are injected into specific nodes of the
graph. Each token is replicated into all possible directions, thus searching for the
given pattern. Since many processing elements may be engaged in tﬁe }eplication

and forwarding of individual tokens, a high degree of parallelism can be-achieved.

It should be mentioned at the outset that in this paper we are concerned with
only ’'pure’ logic programmiﬁg; it would be premature to include constructs that
have been added to create an actual programming environment such as PROLOG.
Furthermore, we will restrict the current model to only binary predicates as ad-
vocated in /DeKo79/. 1 Finally, it should be mentioned at this point that the
area of applicétions envisioped for the model is within the realm of database dr
knowledge representation systems /Dah82, GaMi78, Min78, War81/, as opposed to

mathematically oriented computations.

Overview of paper: After briefly surveying the basic principles of logic program- -
. ming, we will demonstrate how logic progfams are converted into‘ a network form
(Section 2). Then the principles of solving goals using token propagation will be in-
troduced (Section 3). In Section 4 we will introduce a linear form of a goal which is
easier to search for in the dataflow graph, and a method for transforming arbitrary
goals into linear sequences will be presented. Section 5 then defines the operational
semantics of the model by specifying the exact procedures executed by each node of
| the dataflow graph when a token is received. Finally, thé architectural requirements

for supporting the proposed model will be addressed in Section 6.

t It can be shown that any p-ary relation may be transformed into a sequence of binary relations.
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2. Representing Logic .Prbgrams as Networks

We assume the reader to be familiar with the principles of logic programming;
the following paragraphs survey only briefly the fundamental concepts and introduce

an example to be used in subsequent sections.

A logic program is a set of clauses of the form

Po < P14y Pn -

Each p; is called a literal and has the form p(ty,...,¢,,), where p is a predicate

symbol and ¢, ..., ¢,, are terms. Terms may be constants, variables, or functors.

po is called the head or conclusion, and p; through p, form the body or
conditions of the cla‘use.. A clause with an empty set of conditions is called an
assertion and is used to represent explicit facts. In Figure 1 a sample program is
presented which records the relationships 'mother’ and 'father’ among individuals

as a sequence of assertions (lines 1-5). 1

| A clause which contains both a head and a body can be interpreted as recording
implicit information. For example, the program in Figure 1 records that a 'par-
ent’ relationship between two individuals X and Y holds if they are related via the
relationships 'mother’ (iine 6) or ’'father’ (line 7). Similarly, a 'grandparent’ rela-
tionship between X and Y holds if two 'parent’ relationship, one between X and Z

~and another between Z and Y, exist (line 8).

A clause with an empty conclusion is interpreted as a request or goal which
the system tries to solve by unifying it with the head of ‘some_ other claixse. In
Figure 1, line 9 contains a goal paraphrased as 'Who are the grandparents-of bill?".

The system will 'try to unify this goal with some other clause, in our example, the

t Throughout this paper, lower case letters are used to denote constants while capitaks are used to denote free

variables.



clause on line 8. The variable X is bound to the constant 'bill' which generates two

new goals, parent(bill,Z) and parent(Z,Y), both of which must be solved in order to

satisfy the original goal. This process is repeated until one (or more) solutions are

found, or no further unifications are possible.

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

father(bill,john) «

mother(bill,jane) «

father(john,hans) +

father(jane,fred) «

mother(john,ann) «

parent(X)Y) « mother(X,Y)

parent(X,Y) « father(X)Y)

grandparent(X,Y) « parent(X,Z), parent(Z,Y)
«— grandparent(bill,Y) '

Figure 1

A literal, as defined above, consists of a predicate name and a sequence of

arguments. We can transform any logic program (restricted to binary predica.té)

into a collection of graphs by representing each literal p(t;,#2) as a directed arc of

the form

th p ¢t
o—>9

The arrow head is used to record the order in which the terms of | the literal

were given. This information must be preserved when the literal represents an

asymmetric relation. (As will be discussed later, the arrow heads do not prescribe

the direction in which tokens may flow through the graph.)

Literals sharing the same term result in arcs connected to one another via the

corresponding node. Since many terms may be shared among different literals,

graphs of arbitrary complexity may result.
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(Notation: Since an arc is just another way of representing the same informa-
tion contained in a literal, we will use the expressions 'literal’ and ’arc’ as synonyms.

Similarly, the expressions 'term’ and 'node’ will refer to the same concept.)

We will distinguish two types of graphs: An assertion graph is const;ucted
from the sequence of all assertions containing only ground terms (ie. terms without
free variables), and thus represents the collection of explicit facts. Figure 2 shows
the assertion graph corresponding to tﬁe program of Figure 1. Note that multiple

occurences of any ground term are mapped onto the same node of the assertion

graph.

The assertion graph is assumed to be a dataflow graph which implies that
each node is an active element capable of receiving, processing, and emitting value

tokens traveling asynchronously along the graph arcs.

hans fred

father father

father mother

Figure 2

All other clauses are interconnected via pointers into a directed structure as
follows: a literal. in the body of a clause points ‘to all clauses whose heads are
unifiable with that literal. This (possibly cyclic) collection of graphs will be referred
to as the goal structure and may be interpreted as fbllows: a literal L with pointers
to other clauses may be solved either by unifying L itself with one of the assertions

5



in the assertion graph, or by solving one of the clauses pointed to by L. Figure 3

shows the goal structure constructed from the program in Figure 1.

« grandparent(bill,Y)

grandparent(X,Y) « parent(X,Z), f)arent(Z,Y)

parent(X,Y) « mother(X,Y)
parent(X,Y) « father(X)Y) |

Figure 3

The body of each clause in the goal structure may itself be viewed as a graph,
similar to the assertion graph, if terms are interpreted as nodes interconnected by
arcs. Since each such clause usually contains free variables it will be referred to as a
graph template. For example, Figure 4a shows the graph template corresponding
to the initial goal (line 1) of Figure 3. Similarly, Figure 4b shows the grapi) template
corresponding to the body of the clause on line 2 of Figure 3. (The variable X has
already been boﬁnd to the constant bill.)‘ a

bill grandparent Y bill parent Z  parent Y
s > - »o— —>e
| Figure 4a - Figure 4b

Notation: To avoid drawing an excessive number of figures, we will use the fol-

. . P
lowing notation to denote an arc labeled p between two nodes T and To: Ty — To.
Arcs sharing a common node are joined' to form connected seqences. For example,

parent parent

the graph template of Figure 4b, would be transcribed as bill '— Z —Y)




3. Solving Goals Using Token Propagation

3.1. Subgoals without Pointers

- The sequence of literals constituting the body of a clause is usually referred to
as a goal while each of the individual literals is called a subgoal. We first consider
subgoals without pointers to other clauses. In the graph representation, solving such

a subgoal p(T1, T2) corresponds to the following graph fitting problem: determine

possible bmdmgs for the terms T; and T: such that the graph template T} 2, .

matches some arc of the assertion graph. Operationally, this is accomplished by
placing the graph template on a token and injecting it into specific nodes of the
assertion graph. From each of these nodes the token is replicated along existing

arcs in an attempt to find a match. We can distinguish the following four cases:

(a) Both nodes Ty and T are bound to g'rdund terms ¢; and i3, respectively. Since"

there can be only one occurence of each of the nodes ; and #; in the assertion
graph, the token is injected into one of these, say ). This node then replicé,tes
the token along all arcs labeled p that emanate from ¢;. If one of the nodes
receiving the replicated token matches the second term to, the subgoal is solved
successfully; otherwise there is no direct match for this pattern.

The same. result is obtained when the token is initially injected into ¢ from
wilich it replicatés in a search for ¢;. This will be denoted by reversing the

.. P
direction of the arc: Ty «— T.

(b) The node T; is bound to a ground term ¢; while the node T2 is a free variable.

As in the first case, the token is injected into the mode t; from which it is
replicated along all arcs labeled p. This time, however, any node #2 receiving

the replicated token may be bound to the variable T> and hence presents a

solution to the given subgoal p(T1, T3).

(¢) The node T is bound to a ground term ¢z while the node T; is free. In this



case, reversing the arc to Tp L T; yields a situation analogous to (b), where
the first term is bound while the second is free. Hence the same approach can

be taken.

(d) Both variables T; and T are free. This case differs from the previous three in
that there is no unique injection point for the token. Rather any node of the
assertion graph is a potehtial binding for either variable and hence thé token
musi be injected into all nodes of the assertion graph. ! Each of these nodes
binds the first variable T} to its own content and replicates the token along
all arcs labeled pm the same way as described under'(b). In other words, the

search is started in all nodes simultaneously.

3.2. Sequences of Subgoals without Pointers

In this section we extend the scheme for solving individual subgoéls presented
above to cope with sequences of subgoals of the form p)(T, T2), p2(T2,T3), ...,
Prn—1{Tn-1, Ty). Such a sequence corresponds to the following graph template T} 2,

T, 2, vo Tha i T, and shall be referred to as linear form. Note that the

first term of each literal matches the second term of the preceeding literal which
implies the following importaht property: Each time a literal p; is solved, it binds
the term T, which is the first term of the next literal p;,;. Hence all literals of

the linear sequence, except the first, will have at least one term bound when the

sequence is processed from left to right.

Assuming that none of the subgoals p; has a pointer to other clauses, the process-

ing of the linear sequence then corresponds to the following graph fitting problem:

1 In terms of a conventional implementation, the ability to inject a token into s node corresponds to indexing
on arguments rather than on predicate names. Currently we are investigating & scherme which would correspond to
indexing on predicate names. In this case the token would not have to be replicated to all nodes of the assertion graph
but only to those connected to an arc labeled p. This could be viewed as injecting the token into specific arcs instead
of nodes and would drasticly reduce the number of injected tokens.




~ determine possible bindings for all terms T; such that the graph template mﬁtches
~ some path in the assertion graph. Operationally, this is accomplished as follows:
A token, carrying the entire graph templaté, is injected into nodes of the assertion
graph that may be bound to the first term Tl; (As was the case with individual
subgoals, only one such node ¢; will exist if T} is bound to a ground term; otherwise
the tokeh must be injecﬁed into all nodes of the assertion graph.) Each node ¢,
receiving the injected token will replicate it along all arcs that match the templaté
arc p;. Each of the nodes t3, receiving the replicated token, will attempt to bind
t; to Tp and, if successful, will continue the propagation of the token along all arcs
‘matching the name p2. An analogous step is performed by any node ¢; receiving the
token, which results in a stepwise expansion of the graph template into all possible
directions of the assertion graph. Each branch continues to grow until one of the

following conditions occur:

(a) A ndde t; is unable to bind itself to the corresponding node T; (ie., T; is already
bound to a term different from ¢;), or, no arc emanating from ¢; matches the
corresponding template arc p;. In this case a special token, (called end-of-stream
as will be discussed in Section 5.1), which indicates that no solution can be found

along this path, is returned by the node ¢; to the sender of the received token.

(b) The last node T, of the template has been reached, implying the detection of
a match for the given graph template. At this point, a reply ‘token, carrying
all the bindings made during the forward propagation, is created and returned
along the‘same path to the original injection point. It represents one complete

solution to the original goal (the linear sequence).

3.3. Goals with Pointers to Other Clau.ém

The scheme described so far only finds solutions that result from processing

the given goal against the collection of all assertions; no clause substitutions were
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considered. We now extend the scheme to utilize all clauses that may contribute to

solving the given goal.

Consider the general situation depicted in Figure 5, where p is the goal to be

solved.

(1) P D1y By Pir Bitly s P

(2) Pi+q1,-qm

Figure 5

There are two possible sequences of literals that may yield independent solutions

for p. These are
(a) The original sequence py, ..., pn, and

(b) The sequence pi, ..., Pi—1, i s @m) Pi+1, ---» Pn, Obtained by replacing p; in the

original sequence by the sequence pointed to by p;.

Note that both sequences have the first 4 — 1 literals in common. We will use this

fact to extend the previous scheme as follows:

To solve the goal p, a graph template éorresponding to the sequence py, ..., pn is
placed on a token and starts expanding from an injection node ¢, into all poss_ib]e
directions as described in Section 3.2. In addition, each time an arc p; with pointers
to other clauses is encountered a new branch of search is started by the node ¢;
processing the token: it fetches the clause pointed to by p;, forms a new graph
template consisting of the literals qi, ...,gm and a copy of the yet unused portion
of the‘current sequence Pi41,--- Pn, and starts replicating the new token along all
appropriate #rcs in the same way as the original token. It then waits for responses

to both types of token, which will represent independent solutions to the templates
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Pl -1 Pi-1 Pi: Pi+1y -1 Pn and Pl vy Pi-1,41, - qﬂhpl'fl’ veey Py Y@P%tivel)'-

The scheme described thus far is complete in that it finds all solutions to a
given goal by applying the resolution principle to all relevant clauses constituting
the program. It requires, however, that all clauses be in the linear form as defined in
Section 3.2. Furthermore, the leftmost term Tj should be bound, if possible, in order

to reduce the number of injection points to one. The next section is devoted to the

problem of transforming arbitrary sequences of literals into such linear sequences.

4. Transformation of Clauses into Linear Sequences

Assume an arbitrary sequenée of literals pj,...,pn is to be solved. In order
to exploit parallelism within such a clause (referred to as AND-parallelism), it is
desirable to process as many literals p; concurrently as possible. This, however,
is limited by free variables shared among different literals since each such variable

‘ must be bound to the same term during execution. We will take the'following
| approach: First the original sequencve of literals is divided into groups such that
any two literals belong to the same group if and only if they share at least one
free variable. Each such group will be referred to as a cluster. From its deﬁnition
it follows that any cluster may be fitted into the assertion graph independently
since no free variables ‘are shared among clusters. Hence t.he number of clusters
comprising a sequence pi, ..., Pn determines the number of activities timat can be
started concurrently for the given sequence. Such activities are AND-parallél, ie.,

a solution to the sequence py, ..., pn exists only if each cluster yields at least one
solution.

| Since clusters may be solved independently, they will be carried (and fitted into
the assertion graph) by separate sets of tokens. Hence we can concentrate on the
problem of transforming clusters (as opposed to arbitrary sequences of literals) into -

11
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linear forms. This transformation is based on the idea of finding an Euler path

_f through the corresponding graph template, (ie. a path which traverses all arcs

exactly once). Furthermore, the transformation will attempt to construct the linear

sequence such that the leftmost node is a bound variable. This will reduce the

number of mjectlon points to one as discussed in Sectlon 3.1. The only time this

will not be possible is when none of the vanablw constltutmg the cluster is bound.

We can distinguish the following three cases when transforming a cluster into such

a linear sequence:

1. All nodes of the cluster have an even local degree, (where local degree is defined
as the number of ar;cs connected to that node.) In this case an Euler path is
- guaranteed to exist /Mar71/; traversing this path then yields a linear sequence
comprising all literals of the cluster. Furthermofe, the Euler path is circulé.r,
hence we can begin the traversal at any point within the cluster. If at least
one node of the cluster is a bpund variable we can choosg it as the starting
pdint thus constructing the desired linear sequence in which the leftmost node
is bound. Figure "Ga shows the graph template corresponding to the sequence
pi1(A, b), p2(b, C), p3(A, d), p4(C, d). It contains a circular Euler path and hence
we can construct the following linear sequence with b as the leftmost node:
b—C—de—A—b |

(Note that the arc p; will be traversed against the arrow head.)

2. There exist two nbdes with odd local degree. In this case an Euler path con-
necting these two nodsi is guaranteed to exist /Mar71/. Traversing this path'
yields a linear sequence comprising all literals of the cluster. If one of the nodes
with odd local degree is bound, the sequence is in the desired form. Otherwise

the following modification is performed: The path is broken at one of the bound

t Also referred to as Eulerian Chain in the literature.
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nodes along the path and the portion to the left of that node is reversed. Thus

we obtain a sequence of two paths, each beginning with the same bound node.
Note that the only time this traﬁsformafion is not possible is when the entire
cluster consists of only free v#riablw. Figure 6b illustrates the situation. An
Euler path connects the two odd lbcal degree nodes A and E, both of which are
free variables. By breaking the path at one of the bound nodes, b, we obtain
the following two paths: |

Ry Pily  JEY JLLNY, JLANY LAY |

The double arc connecting the two paths indicates that this transition is not the
traversal of an arc, rather it denotes a 'transfer’ or 'jump’ to . Since the target
node b is bound, such a jump is analogous to injecting a token into the node
b. Hence injecting a token and performing a jump may be implemented using
the same mechanism for routing a tdken to a given node, as will be discussed

further in Section 6.

Note: When traversing an Euler path it may be necessary to i'isit some nodes
more than once which results in multiple occurences of terms within the linear
sequence. If such a term is a free variable, all occurences will have to be bound
to the same term during execution. ‘For example, in the above sequence the
variable A occurs twice. When the token carrying this template reaches a node
a which binds itself to the first occurence of A, all .other occurences of A within
that sequence must be bound to @ as well before forwarding the token to other

nodes.

The cluster contains more than two nodes with odd local degree. Since no
Euler path exists in this case, we must find several disjoint paths and connect
these using the jump-construct introduced in point 2 above. It can be shown

that n/2 edge-disjoint paths are necessary to travers a cluster, where n is the

13




number of nodes with odd local degree /Mar71/. Using the same approach as
in 2, each of these paths may be censtructed such that it begins with a bound
node, unless all nodes along that path are free variables. Note that all paths,
except the first, Qill have at least one node bound. This is because each path
has an intersection X with at least one other j)ath (otherwise the cluster would
not be a connected gfaph‘); when a path is traversed, all of its nodes are bound
and hence the path to be traversed next will have at least one bound node - the
intersection node X. Figure 6¢ shows a cluster which can be traversed in three
paths connected via the jump-construct as follows: |

b Al k=t cdl A= cF

The first two have been obtained by breaking a single path at the bound node
b as in the prevxous case. Note that the thlrd path begms with a free variable
C. The same variable C, however, appears on the second path, and hence will

be bound before the jump-construct to C is reached.

N

Figure 8a Figure 6b Figure 6c¢

From the above it follows that any sequence of literals may be converted into one
or more linear sequences, some of which may be connected via the jump-construct.
Furthermore, the leftmost term of any linear sequence will be a free variable only

if no bound variable occured in the entire cluster.

5. Procedures for Token Propagation

The semantics of a general dataflow system may be defined by specifying the

14



procedures to be~perfofmed by each graph node when receiving a token. Each
such procedure is invoked as soon as the necessary input tokens have arrfved and it
" causes the generation of result tokens which_ are forwarded to other nodes. While
the model proposed in this paper differs in many respects from a general data.ﬂow
system, it ‘can be defined in terms of similar procedures, triggered solely by the
arrival of tokens. Hence the model is strictly data-driven - there is no need for any

centralized control to synchronize concurrent operations.

- 8.1. Generation of Activity Names

Before presenting the actual procedures, we need to introduce a scheme which
would permit individual nodes to keep track of concurrent activities started in
response to a received token, and to await the corresponding response tokens. This
scheme is based on the principles employed in general dataflow systems /AGP78/:
Each token, in addition to carrying the necessary data, contains a uniqué identifier
called an activity name. This name is used by receiving nodes to disambiguate

the various tokens traveling asynchronously through the graph.

The basic principles governing the generation and use of activity names is as
follows. There are two types of tokens in our system: regular tokens, which
propagate forward in an attempt to find a match for the graph templates they carry,
and reply tokens which return along the same paths in the opposite direction and
report the bindings made during the forward propagation. Whenever a fegula.r :
token is prqpagated forward, its activity name is extended by appénding toit a
" new componént generated by the sending node. Thus activity names have the form
" @y.3. ... .G, Where each component a; is an integer appended to the activity by
a different node. Similarly, each time a reply token is propagated backward the
rightmost component of the activity name is detached by the sendmg node. Hence,
w1th1n each node, activity names provide the necessary matching information. The

15



following paragraphs discuss the exact form of activity names and their generation.

Assume that a node ¢; has just received a token carrying the graph template
T; Z, T p'—“» R i T, and the activity name @;.63. ... .6;, which we shall
abbreviate as 8. As described in Section 3.2, the node ¢; will replicate> the token
along all arcs labeled p;. These tokens will be given the activity names a.1, 3.2, vy 8.
constructed by concatenating the original name, 3, with a new component - an
integer ranging from 1 to p, where p is the number of ares matching p;. All these

activities are recorded by the node ¢; as pending, that is, tokens with matching

activity names are expected to arrive.

In addition to replicating the token along the p; arcs, the node must start a
new activity for each clause pointed to by 'p.-, as was described in Section 3.3.
These activities will be assigned the names a(p+1),8.(p+2),..8(p+k) whefe
k is the number of pointers from p;. Each such activity is started by fetching the
clause pointed to by p; and converting it into a set of linear clusters. Hence several
tokens, each carrymg one cluster, are created for such an activity. These tokens
will be dlstmgmshed by subactivity names of the form 2. (p+3)1], 8lp+7)2], .
a.[(p+ 5).1}, where ! is the number of clusters (subactivities) comprising the activity
d(p+j)for1<j<k.

The following sequence summarizes the complete set of activities generated by

a node when receiving a token with activity name a:

{a.1})..{a.p}{a.[(p + 1)-1),...,a.[(p + 1).1]} ... {a.[(p + K).1],...,8.[(p + K).1i]}

Activities enclosed in curly brackets represent OR-activities; each yields an
independent solution to the received cluster. Subactivities within curly brackets

represent AND-activities; all must be solved in order to obtain a solution to the
corresponding OR-activity.

One more construct must be introduced before the procedures can be presented:
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Note that any number of reply tokens (including zero) could be received by a node
for a pending activity. Due to the asynchronous nature of the model it is not possible

for a node to determine when all reply tokens for a given activity have arrived. In

order to solve this problem we introduce a special type of token, called eos-token
(for end of stream), similar to that used in general dataflow systems JAGP78/. An
eos-token, identified by an activity name, is sent by a node after all reply tokens for
‘ that activity have been emitted. It carries the number of these reply tokens which

‘ ~ permits the receiving node to determine when all have arrived.

5.2. Procedures

This section defines the semantics of the model by specifying the procedures
to be executed by' a graph node upon receiving a token. The first procedure is
executed when a regular token, carrying a graph template, is received. It causes
the forward propagation of such tokens as was discussed in Section 3. The second
procedure is executed when a reply token, carrying the bindings made during the
forward propagation, is received. It causes the backward propagation of the reply
tokens. Finally, the third procedure is invoked when an eos-token is received. These

tokens, which follow sets of reply tokens, terminate the activities along the paths.

1. Procedure performed by a node ¢; upon receiving a regular token T from a
sender S; each such token carries the following information:

activity name: 8
|
| ’ i Pi ' Pr-
graph template: T; RN T = .= T,

bindings made so far: This is a list L of pairs (T}, ¢;), where each T; is one of
the variables of the template and ¢; is the node that bound its name to T; when
it was visited by the token. ’

17



Procedure:
(mdentatlon is used to indicate the scope of then and else clauses)
if T; is bound to a term different from ¢;
then return eos-token with activity name 2 to sender S, -
discard token T
else bind ¢; to T; (appending the pair (T}, ¢;) to the list L)
if T; is the last node (T,) of the template
then return a reply token (carrying the list L and the activity
name 3) to sender S,
discard token T pirt poc
else form a new token T’ with graph template T..H - .. =T,
and the list of bindings L (including the new pair (T}, ¢;)),
replicate T’ along all arcs that match p;; the activity names
of these tokens will be a.1,...,3.p (see section 5.1),
record the new activity names as pending activities;
if p; points to other clauses |
then for each such clause do
- fetch the clause,
form [ linear clusters as descnbed in Section 4,
place each cluster on a token and send it to the node that
matches the leftmost node of the cluster,
record I new subactivities &.[(p + 5).1], ..., 8.[(p + 3).1},
(where 1 < j < k). :

2. Procedure executed by a node ¢; upon receiving a reply token R; each such token
has the form:

activily name: 8. (where j is the right-most component of the activity name)

bindings: List L of pairs (T}, t;) as defined above.

Procedure:

if the activity name &.j is within &.1,...,8.p

then send reply token (with activity name 8) to sender S;

else (ie. when the activity name is within &.(p + l) . 8. (p + k))
record all bmdmgs (list L) with the activity &.5.

3. Procedure executed by a node ¢; when receiving an eos-token; each such token
has the form: :

activity name: 8.5 (where j is the right-most component of the activity name) .
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Procedure:
if the activity name &.5 is within 3.1,...,3.p
then terminate the activity a.y
else mark the corresponding subactivity as completed,;
if all subactivities within the activity &.5 are marked
then for each combination of bindings (one from each subactmty)
produce a reply token (carrying that combination of bindings
and the activity name a),
return the token to sender S;
. terminate the activity a.j.
" if all activities 8.1,...,8.(p + k) bave been terminated
then return eos-token (with activity name a) to sender S.

6. Architei:tural Issues

In this section we examine the requirements that must be satisfied by a computer

architecture in order to exploit the potential parallelism offered by the proposed

model.

We consider an architecture consisting of a large number of asynchronously
operating processing elements (PEs), each equiped with a certain amount of local

memory. The architecture must satisfy the following fundamental requirements:

1. The assertion graph must be mapped onto the collection of PEs during exe-
cution such that each node can receive, process, and emit tokens. This can be
accomplished by using a global mapping function which, given a node of the
assertion graph, yields a number from 1 to n, where n is the number of PEs. The
node is then assigned to the PE Eorrsponding to the selected number. Hence
each PE is 'multiplexed’ among all nodes mapped onto that PE. This require-

. ments is analogous to the problém of mapping a general dat_aﬂow graph onto a
parallel architecture and a number of possible schemés have been proposed and

investigated / GoTh80/.

2. Nodes must be able to exchange tokens with one another along the (logical)

g'raph arcs. This is accomplished by associafing with each node t a list of all

19




those nodes to which t 'is (logically) connected. Sending a token along such an _ | |
arc then involves calculating the PE number of the destination node and 'letting' ‘
the token pfopa_gate via neighboril;g PEs to its final destination. Similar to
requirement 1 above, any dataflow architecture must be capable of supporting
such an exchange of tokens among graph nodes and hen_ce the same principles

apply to the system presented in this paper.

3. A token carrying a graph template may contain pointers to other clauses in the
goal structure. Cenera.l dataflow systems are capable of solving an analogous
problem: tokens must carry pointers to large data structures kept in a common
memory and shared among different tokens /ArTh80/. In our case the situation
is further simplified by the fact that the goal structure, while being shared, need

not be modified during execution.

4. It must be possible to inject a token into any node of the assertion graph. This
includes the injection of initial tokens from outside of the system, as well as the
-implementation of the jump-construct introduced in Section 4, which requires
a token to travel to some other node of,the graph. Both cases are analogous:
to the problem of sending a token from one node to another along a logical arc
(requirement 2 above) and may be solved using the same mechanisms: given the
déstination node name, the corresponding PE hol'ding- that node may be deter-
mined by applying the global mapping function (discussed under requirement 1
above) to that node name. The tokén is then routed to that PE via the physical

connections of the architecture.

From the above discussion it follows that the fundamental architectural re-
quirements of the pi'oposed model are aheady satisfied by any general dataflow
architecture and that only minor modifications would be necessary to adapt such

an architecture to support the proposed logic programming model.

20




7. Conclusions

The 2im of this paper was to present a model of computation which would
permit logic programs to be executed on a highly parallel computer architecture.
The approach was based on the idea of transforming logic programs into collections
of dataflow graphs and graph templates and to let raolu;ion be c#rried out by
asynchronously propagating tokens through the graphs. The main advantage of
this approach is a high-degree of potential parallelism, exploitable at the following

three levels:

OR-parallelism: If more than one clause is uniﬁabKIe with a given goal, each may

be processed independently by separate sets of tokens injected into the graph.

AND-parallelism: Clusters, ie., groups of literals within a clause which do not

share free #ariables, may be processed concurrently by separate tokens.

Simultaneous ezecution of independent programs: By using different activity
name sets, many programs, eg. database queries, may be processed concurrently

thus further increasing the throughput of the system.

In terms of the necessary architectural support required, the proposed model
bears a strong similarity to a genera]‘dataﬂow system, primarily due to the underly-
ing data-driven principles of operation. Hence this paper offers further §uppoft for
tht_a claim that datafiow machines could be extended to inference machines through

the use of logic programming /Ais81/.
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