
UC Irvine
ICS Technical Reports

Title
A data-driven model for parallel interpretation of logic programms [sic]

Permalink
https://escholarship.org/uc/item/058942fd

Author
Bic, Lubomir

Publication Date
1984
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/058942fd
https://escholarship.org
http://www.cdlib.org/


Notice: This Material
may be protected
by Copyright Law
(Titie 17 U.S.C.)

A Data^Driven Mcxlel for
Parallel Interpretation ofLogic Programn^

by

Lubomir Bic

Department of Information and Computer Science
University of California
Irvine, California 92717

January 1084

Technical Report 217

no, 21*]

^This work was supported by the NSF. Grant MCS-8117516: The UCI Dataflow
Project.



Abstract

The main objective of this paper is to present a model of computa
tion which permits logic programs to be executed on a highly-parallel
computer architecture. It demonstrates how logic programs may be
converted into collections of dataflow graphs in which resolution is
viewed as a process of finding matches between certain graph tem
plates and portions of the dataflow graphs. This graph fitting pro
cess is carried out by tokens propagating asynchronously through the
dataflow graph; thus computation is entirely data-driven, without the
need for any centralized control. It is shown that at the implemen
tation level the proposed model is very similar to a general dataflow
system and hence a dataflow architecture could easily be extended to
support the proposed model.

CR Categories: C.1.3 [Processor Architectures]: Other Archi
tecture Styles - Data-flow Architectures] F.1.2 [Computation by Ab
stract Devices): Modes of Computation - Parallelism] F.4.1 [Math
ematical Logic and Formal Languages): Mathematical Logic - Logic
Programming

Additional Key Words and Phrases: data-driven computa
tion, parallel logic programming



1. Introduction

Logic programming has been recognized as an effective approach to representing

information and describing problems that can be solved by a computer using logical

inferences 7Kow82/. Furthermore, logic programs do not presuppose a von Neu

mann architecture and are, therefore, inherently well suited to parallel computa

tions. Several recent research projects have investigated this potential and schemes,

which permit parallel execution of logic programs have been proposed /Bow82,

CoKi83, Con83, EKM82/. While all these approaches differ in many fundamental

aspects, the principle common to all of them is to view each predicate p(ii,..., x„)

as a node in an AND/OR-tree of possible solutions. Execution then may proceed

concurrently along the OR-brancheswhile AND-branches are subject to restrictions

resulting from free variables shared among predicates.

In /DeKo79/ Deliani and Kowalski have shown how logic programs may be

viewed as an (extended) form ofsemantic networks. In this approach, each predicate

is assumed to be binary, ie. of the form an thus may be represented as a

labeled arc p interconnecting the two nodes ti and <2- Such a representation permits

resolution to be viewed as a special pattern matching problem in which networks

corresponding to individual clauses are fitted into portions of other graphs.

In the approach presented in this paper we adopt a similar point of view by

representing logic programs as collections of graphs and graph templates. The

main distinction, however, is the way the pattern matching is carried out. This

is based on the principles of asynchronous, data-driven computations /COM82,

Den75, TBH82/ in which a graph is not merely a passive representation of a pro

gram stored in memory; rather each node is an active agent, supported by an

independent processing element, and hence is capable of communicating with other

nodes via value tokens traveling asynchronously along the graph arcs. Finding a

1



given pattern (a graph template) in such a dataflow graph is then accomplished

by an asynchronous propagation of tokens through the graph. The pattern to be

fitted is placed on one or more tokens which are injected into specific nodes of the

graph. Each token is replicated into all possible directions, thus searching for the

given pattern. Since many processing elements may be engaged in the replication

and forwarding of individual tokens, a high degree of parallelism can be achieved.

It should be mentioned at the outset that in this paper we are concerned with

only 'pure' logic programming; it would be premature to include constructs that

have been added to create an actual programming environment such as PROLOG.

Furthermore, we will restrict the current model to only binary predicates as ad

vocated in /DeKo79/. Finally, it should be mentioned at this point that the

area of applications envisioned for the model is within the realm of database or

knowledge representation systems /Dah82, GaMi78, Min78, War81/, as opposed to

mathematically oriented computations.

Overview of paper. After briefly surveying the basic principles of logic program

ming, we will demonstrate how logic programs are converted into a network form

(Section 2). Then the principles of solving goals using token propagation will be in

troduced (Section 3). In Section 4 we will introduce a linear form of a goal which is

easier to search for in the dataflow graph, and a method for transforming arbitrary

goals into linear sequences will be presented. Section 5 then defines the operational

semantics of the model by specifying the exact procedures executed by each node of

the dataflow graph when a token is received. Finally, the architectural requirements

for supporting the proposed model will be addressed in Section 6.

^ It c&n be shown tbit any n-ary relation may be transformed into asequence of binary relations.



2. Representing Logic Programs as Networks

We assume the reader to be familiar with the principles of logic programming;

the following paragraphs survey only briefly the fundamental concepts and introduce

an example to be used in subsequent sections.

A logic program is a set of claoses of the form

po ,Pi» •

Each Pi is called a literal and has the form where p is a predicate

symbol and fi,tm are terms. Terms may be constants, variables, or functors.

po is called the head or conclusion, and p\ through pn form the body or

conditions of the clause. A clause with an empty set of conditions is called an

assertion and is used to represent explicit facts. In Figure 1 a sample program is

presented which records the relationships 'mother' and 'father' among individuals

as a sequence of assertions (lines 1-5). ^

A clause which contains both a head and a body can be interpreted as recording

implicit information. For example, the program in Figure 1 records that a 'par

ent' relationship between two individuab X and Y holds if they are related via the

relationships 'mother' (line 6) or 'father' (line 7). Similarly, a 'grandparent' rela

tionship between X and Y holds if two 'parent' relationship, one between X and Z

and another between Z and Y, exist (line 8).

A clause with an empty conclusion is interpreted as a request or goal which

the system tries to solve by unifying it with the head of some other clause. In

Figure 1, line 9 contains a goal paraphrased as 'Who are the grandparents of bill?'.

The system will try to unify this goal with some other clause, in our example, the

^ Throughout this p»per, lower case letters are used to denote constants while capitals are used to denote free
variables.



clause on line 8. The variable X is bound to the constant 'bill' which generates two

new goals, parent(bill,Z) and parent(Z,Y), both ofwhich must be solved in order to

satisfy the original goal. This process is repeated until one (or more) solutions are

found, or no further unifications are possible.

(1) father(bill,john) ♦-

(2) mother(bill,jane) ♦-

(3) father(john,hans) ♦-

(4) father(jane,fred) ♦-

(5) mother(john,ann) <—
(6) parent(X,Y) ♦- mother(X,Y)
(7) parent(X,Y) *- father(X,Y)
(8) grandparent(X,Y) parent(X,Z), parent(Z,Y)
(9) *— grandparent(bill,Y)

Figure 1

A literal, as defined above, consists of a predicate name and a sequence of

arguments. We can transform any logic program (restricted to binary predicates)

into a collection of graphs by representing each literal p{ti,t2) as a directed arc of

the form

ti p <2
• >•

The arrow head is used to record the order in which the terms of the literal

were given. This information must be preserved when the literal represents an

asymmetric relation. (As will be discussed later, the arrow heads do not prescribe

the direction in which tokens may flow through the graph.)

Literals sharing the same term result in arcs connected to one another via the

corresponding node. Since many terms may be shared among different literals,

graphs of arbitrary complexity may result.



(Notation: Since an arc is just another way of representing the same informa

tion contained in a literal, we will use the expressions 'literal' and 'arc' as synonyms.

Similarly, the expressions 'term' and 'node' will refer to the same concept.)

We will dbtinguish two types of graphs: An assertion graph is constructed

from the sequence of all assertions containing only ground terms (ie. terms without

free variables), and thus represents the collection of explicit facts. Figure 2 shows

the assertion graph corresponding to the program of Figure 1. Note that multiple

occurences of any ground term are mapped onto the same node of the assertion

graph.

The assertion graph is assumed to be a dataflow graph which implies that

each node is an active element capable of receiving, processing, and emitting value

tokens traveling asynchronously along the graph arcs.

hans • fred^

father\ /mother / ther

father mother

Figure 2

All other clauses are interconnected via pointers into a directed structure as

follows; a literal in the body of a clause points to all clauses whose heads are

unifiable with that literal. This (possibly cyclic) collection of graphs will be referred

to as the goal structure and may be interpreted as foUows: a literal Lwith pointers

to other clauses may be solved either by unifying L itself with one of the assertions

5



in the assertion graph, or by solving one of the clauses pointed to by L. Figure 3

shows the goal structure constructed from the program in Figure 1.

♦- grandparent(bill,Y)

grandparent(X,Y) *— parent(X,Z), parent(Z,Y)

parent(X,Y) ♦- mother(X,Y)

parent(X,Y) ♦- father(X,Y)

Figure 3

The body of each clause in the goal structure may itself be viewed as a graph,

similar to the assertion graph, if terms are interpreted as nodes interconnected by

arcs. Since each such clauseusually contains free variables it will be referred to as a

graph tenaplate. For example. Figure 4a shows the graph template corresponding

to the initial goal (line 1) ofFigure 3. Similarly, Figure 4b shows thegraph template

corresponding to the body of the clause on line 2 ofFigure 3. (The variable X has

already been bound to the constant bill.)

bill grandparent Y bill parent Z parent Y
^ # V# • '

Figure 4a Figure 4b

Notation: To avoid drawing an excessive number of figures, wewill use the fol-
p

lowing notation to denote an arc labeled p between two nodes Ti and T2' T\ • Tjj.

Arcs sharing a common node are joined to form connected seqences. For example,
parent parent

the graph template ofFigure 4b, would be transcribed as bill —• Z —• Y.)



3. Solving Goals Using Token Propagation

3.1. Subgo&b without Pointers

The sequence of literals constituting the body of a clause is usually referred to

as agoal while each of the individual literals is called a snbgoal. We first consider

subgoals without pointers to other clauses. In the graph representation, solving such

a subgoal p{ri,r2) corresponds to the following graph fitting problem; determine
P

possible bindings for the terms Ti and Tz such that the graph template Ty —» Tz
matches some arc of the assertion graph. Operationally, this is accomplished by

placing the graph template on a token and injecting it into specific nodes of the

assertion graph. From each of these nodes the token is repbcated along existing

arcs in an attempt to find a match. We can distinguish the following four cases:

(a) Both nodes Ti and T2 are bound to ground terms <1 and <2, respectively. Since
there can be only one occurence of each of the nodes fi and t2 in the assertion

graph, the token is injected into one of these, say <1. This node then replicates

the token along all arcs labeled p that emanate from <1. If one of the nodes

receiving the replicated token matches the second term <2, the subgoal is solved

successfully; otherwise there is no direct match for this pattern.

The same result b obtained when the token b initially injected into <2 from

which it replicates in a search for <1. Thb will be denoted by reversing the
p

direction of the arc: T2 *— Ti-

(b) The node Ti b bound to a ground term <1 while the node 72 b a free variable.
As in the first case, the token b injected into the node ti from which it b

replicated along all arcs labeled p. Thb time, however, any node <2 receiving

the replicated token may be bound to the variable T2 and hence presents a

solution to the given subgoal p(71,72).

(c) The node 72 b bound to a ground term <2 while the node 7i b free. In thb
7



p

case, reversing the arc to T2 *— Ti yields a situation analogous to (b), where

the first term is bound while the second is free. Hence the same approach can

be taken.

(d) Both variables Ti and T2 are free. This case differs from the previous three in

that there is no unique injection point for the token. Rather any node of the

assertion graph is a potential binding for either variable and hence the token

must be injected into a//nodes of the assertion graph. Each of these nodes

binds the first variable T\ to its own content and replicates the token along

all arcs labeled p in the same way as described under (b). In other words, the

search is started in all nodes simultaneously.

3.2. Sequences of Subgo&ls without Pointers

In this section we extend the scheme for solving individual subgoals presented

above to cope with sequences of subgoals of the form P\{T\,T2), P2{T2,Tz), ...,
Pi

Pn—l(Tn—1, Tn). Such a sequence corresponds to the following graph template T\ —•
Pi Ptt^l

T2 —• ... T„-i —• Tn and shall be referred to as linear form. Note that the

first term of each literal matches the second term of the preceeding literal which

implies the following important property: Each time a literal p,- is solved, it binds

the term which is the first term of the next literal p,+i. Hence all literals of

the linear sequence, except the first, will have at least one term bound when the

sequence is processed from left to right.

Assuming that none of the subgoals p,- has a pointer to other clauses, the process

ing of the linear sequence then corresponds to the following graph fitting problem:

^ In terms of a conventional implementation, the ability to inject a token into a node corresponds to indexing
on arguments rather than on predicate names. Currently we are investigating a scheme which would correspond to
indexing on predicate names. In this case the token would not have to be replicated to aO nodes of the assertion graph
but only to those connected to an arc labeled p. This could be viewed as injecting the token into specific arcs instead
of nodes and would drasticly reduce the number of injected tokens.



determine possible bindings for all terms T,- such that the graph template matches

some path in the assertion graph. Operationally, thb is accomplished as foUows:

A token, carrying the entire graph template, is injected into nodes of the assertion

graph that may be bound to the first term T\. (As was the case with individual

subgoals, only one such node ti will exist if Ti is bound to a ground term; otherwise

the token must be injected into all nodes of the assertion graph.) Each node

receiving the injected token will replicate it along all arcs that match the template

arc pi. Each of the nodes t2, receiving the replicated token, will attempt to bind

<2 to T2 and, if successful, will continue the propagation of the token along all arcs

matching the name p2. An analogous step is performed by any node receiving the

token, which results in a stepwise expansion of the graph template into all possible

directions of the assertion graph. Each branch continues to grow until one of the

following conditions occur:

(a) Anode f,- is unable to bind itself to the corresponding node T,- (ie., T,- is already

bound to a term different from f,-), or, no arc emanating from matches the

corresponding template arc p,-. In this case a special token, (called end-of-stream

as will bediscussed in Section 5.1), which indicates that no solution can be found

along this path, is returned by the node <,• to the sender of the received token.

(b) The last node Tn of the template has been reached, implying the detection of

a match for the given graph template. At this point, a reply token, carrying

all the bindings made during the forward propagation, is created and returned

along the same path to the original injection point. It represents one complete

solution to the original goal (the linear sequence).

3.3. Goals with Pointers to Other Clauses

The scheme described so far only finds solutions that result from processing

the given goal against the collection of all assertions; no clause substitutions were

9



considered. We now extend the scheme to utilize all clauses that may contribute to

solving the given goal.

Consider the general situation depicted in Figure 5, where p is the goal to be

solved.

(1) Pl) •••> A—1> R'-f1> Pn

(2) Pi*

Figure 5

There are two possible sequences of literals that may yield independent solutions

for p. These are

(a) The original sequence pi, ...,Pn, and

(b) The sequence pi,...,P.-i,9i,-,9m,P.+i,-,Pn, obtained by replacing p,- in the

original sequence by the sequence pointed to by p,-.

Note that both sequences have the first »—1 literals in common. We will use this

fact to extend the previous scheme as follows:

To solve the goal p, a graph template corresponding to the sequence pi, ...,pn is

placed on a token and starts expanding from an injection node into all possible

directions as described in Section 3.2. In addition, each time an arc p,- with pointers

to other clauses is encountered a new branch of search is started by the node U

processing the token: it fetches the clause pointed to by p,-, forms a new graph

template consisting of the literals 91,...,9m and a copy of the yet unused portion

of the current sequence p.+i, ...,Pn, and starts replicating the new token along all

appropriate arcs in the same way as the original token. It then waits for responses

to both types of token, which will represent independent solutions to the templates

10



Pi, --iPn and Pi, ...,p,-_i,5i,-MflmiPt+ij—iPnj respectively.

The scheme described thus far is complete in that it finds all solutions to a

given goal by applying the resolution principle to all relevant clauses constituting

the program. It requires, however, that all clauses be in the linear form as defined in

Section 3.2. Furthermore, the leftmost term Ti should bebound, if possible, inorder

to reduce the number of injection points to one. The next section b devoted to the

problem of transforming arbitrary sequences of literals into such linear sequences.

4. TVansformation of Clause into Linear Sequences

Assume an arbitrary sequence of literals pi,...,Pn is to be solved. In order

to exploit parallelism within such a clause (referred to as AND-parallelism), it is

desirable to process as many literals p,- concurrently as possible. This, however,

is limited by free variables shared among different literals since each such variable

must be bound to the same term during execution. We will take the following

approach; First the original sequence of literals is divided into groups such that

any two literals belong to the same group if and only if they share at least one

free variable. Each such group will be referred to as a cluster. From its definition

it follows that any cluster may be fitted into the assertion graph independently

since no free variables are shared among clusters. Hence the number of clusters

comprising a sequence pi,>.-,Pn determines the number of activities that can be

started concurrently for the given sequence. Such activities are AND-parallel, ie.,

a solution to the sequence pi,...,p„ exists only if each cluster yields at least one

solution.

Since clusters may be solved independently, they will be carried (and fitted into

the assertion graph) by separate sets of tokens. Hence we can concentrate on the

problem of transforming clusters (as opposed to arbitrary sequences of literals) into
11



linear forms. This transformation is based on the idea of finding an Euler path

^ through the corresponding graph template, (ie. a path which traverses all arcs

exactly once). Furthermore, the transformation will attempt to construct the linear

sequence such that the leftmost node is a bound variable. Thb will reduce the

number of injection points to one as discussed in Section 3.1. The only time this

will not be possible is when none of the variables constituting the cluster b bound.

We can dbtingubh the following three cases when transforming a cluster into such

a linear sequence:

1. All nodes of the cluster have an even local degree, (where local degree b defined

as the number of arcs connected to that node.) In thb case an Euler path b

guaranteed to exbt /Mar71/; traversing thb path then yields a linear sequence

comprising all literab of the cluster. Furthermore, the Euler path is circular,

hence we can begin the traversal at any point within the cluster. If at least

one node of the cluster is a bound variable we can choose it as the starting
I

point thus constructing the desired linear sequence in which the leftmost node

b bound. Figure 6a shows the graph template corresponding to the sequence

Pi(A, b), pzib, C), psiA,d), Pi{C, d). It contains a circular Euler path and hence

we can construct the following linear sequence with 6 as the leftmost node:
. Pa _ , P3 Pi
b—*C ——•6.

(Note that the arc pa will be traversed against the arrow head.)

2. There exbt two nodes with odd local degree. In this case an Euler path con

necting these two nodes b guaranteed to exbt /Mar71/. TVaversing thb path

yields a linear sequence comprbing all literab of the cluster. If one of the nodes

with odd local degree b bound, the sequence b in the desired form. Otherwbe

the following modification b performed: The path b broken at one of the bound

Also referred to as Eulerian Chain in the literature.

12



nodes along the path and the portion to the left of that node b reversed. Thus

we obtain a sequence of two paths, each beginning with the same bound node.

Note that the only time thb transformation b not possible b when the entire

cluster consbts of only free variables. Figure 6b illustrates the situation. An

Euler path connects the two odd local degree nodes A and £!, both of which are

free variables. By breaking the path at one of the bound nodes, 6, we obtain

the following two paths:

l^AlL,E=>h^C-^d^A

The double arc connecting the two paths indicates that thb transition b not the

traversal of an arc, rather it denotes a 'transfer' or 'jump' to b. Since the target

node b b bound, such a jump b analogous to injecting a token into the node

6. Hence injecting a token and performing a jump may be implemented using

the same mechanbm for routing a token to a given node, as will be dbcussed

further in Section 6.

Note: When traversing an Euler path it may be necessary to visit some nodes

more than once which results in multiple occurences of terms within the linear

sequence. If such a term b a free variable, all occurences will have to be bound

to the same term during execution. For example, in the above sequence the

variable A occurs twice. When the token carrying thb template reaches a node

a which binds itself to the first occurence of A, all other occurences of A within

that sequence must be bound to a as well before forwarding the token to other

nodes.

3. The cluster contains more than two nodes with odd local degree. Since no

Euler path exbts in thb case, we must find several dbjoint paths and connect

these using the jump-construct introduced in point 2 above. It can be shown

that n/2 edge-dbjoint paths are necessary to travers a cluster, where n b the

13



number of nodes with odd local degree /Mar71/. Using the same approach as

in 2, each of these paths may be constructed such that it begins with a bound

node, unless all nodes along that path are free variables. Note that all paths,

except the first, will have at least one node bound. This b because each path

has an intersection X with at least one other path (otherwise the cluster would

not be a connected graph); when a path b traversed, all of its nodes are bound

and hence the path to be traversed next will have at least one bound node - the

intersection node X. Figure 6c shows a cluster which can be traversed in three

paths connected via the jump-construct as follows:

b^A-^E=>b-^C-^d^A=>C-^F

The first two have been obtained by breaking a single path at the bound node

6 as in the previous case. Note that the third path begins with a free variable

C. The same variable C, however, appears on the second path, and hence will

be bound before the jump-construct to C b reached.

d p4 C d p4 C pt F
^

A Pi b E pb A Pi b E pb A Pi b

Figure 6a Figure 6b Figure 6c

From the above it follows that any sequence of literab may be converted into one

or more linear sequences, some of which may be connected via the jump-construct.

Furthermore, the leftmost term of any linear sequence will be a free variable only

if no bound variable occured in the entire cluster.

5. Procedures for Token Propagation

The semantics of a general dataflow system may be deflned by specifying the

14



procedures to be performed by each graph node when receiving a token. Each

such procedure is invoked as soon as the necessary input tokens have arrived and it

causes the generation of result tokens which are forwarded to other nodes. While

the model proposed in this paper differs in many respects from a general dataflow

system, it can be defined in terms of similar procedures, triggered solely by the

arrival of tokens. Hence the model is strictly data-driven - there is no need for any

centralized control to synchronize concurrent operations.

S.l. GeDeratioD of Activity Names

Before presenting the actual procedures, we need to introduce a scheme which

would permit individual nodes to keep track of concurrent activities started in

response to a received token, and to await the corresponding response tokens. This

scheme is based on the principles employed in general dataflow systems /AGP78/:

Each token, in addition to carrying the necessary data, contains a unique identifier

called an activity name. This name is used by receiving nodes to disambiguate

the various tokens traveling iasynchronously through the graph.

The basic principles governing the generation and use of activity names is as

follows. There are two types of tokens in our system: regular tokens, which

propagate forward in an attempt to find a match for the graph templates they carry,

and reply tokens which return along the same paths in the opposite direction and

report the bindings made during the forward propagation. Whenever a regular

token is propagated forward, its activity name is extended by appending to it a

new component generated by the sending node. Thus activity names have the form

ai.02 On, where each component Oj is an integer appended to the activity by

a different node. Similarly, each time a reply token is propagated backward, the

rightmost component of the activity name is detached by the sending node. Hence,

within each node, activity names provide the necessary matching information. The

15



following paragraphs discuss the exact form of activity names and their generation.

Assume that a node t,- has just received a token carrying the graph template

Ti Tf+i ... -—* Tn and the activity name 01.02. ... .o,-, which we shall

abbreviate as &. As described in Section 3.2, the node will replicate the token

along all arcs labeled p,- These tokens will be given the activity names a.l, a.2,S.p

constructed by concatenating the original name, &, with a new component - an

integer ranging from 1 to p, where p is the number of arcs matching p,-. All these

activities are recorded by the node f,- as pending, that is, tokens with matching

activity names are expected to arrive.

In addition to replicating the token along the pi arcs, the node must start a

new activity for each clause pointed to by p,-, as was described in Section 3.3.

These activities will be assigned the names a.{p + 1), a.(p + 2),..., a.(p + Jb), where

k is the number of pointers from p,-. Each such activity is started by fetching the

clause pointed to by p,- and converting it into a set of linear clusters. Hence several

tokens, each carrying one cluster, are created for such an activity. These tokens

will be distinguished by subactivity names of the form a.[(p + y).l], a.[(p+y).2], ...,

a.[(p+ y)./], where / is the number of clusters (subactivities) comprising the activity

2 (P + j)) for 1 < j < k.

The following sequence summarizes the complete set of activities generated by

a node when receiving a token with activity name a:

{a.i}...{a.p}{a.[(p + i).i],..., a.I(p + ... {a.[(p + A).i],...,a.Rp + k).lk])

Activities enclosed in curly brackets represent OR-activities; each yields an

independent solution to the received cluster. Subactivities within curly brackets

represent AND-activities; all must be solved in order to obtain a solution to the

corresponding OR-activity.

One more construct must be introduced before the procedures can be presented:

16



Note that any number of reply tokens (including zero) could be received by a node

for a pending activity. Due to theasynchronous nature ofthe model it is not possible

for a node to determine when all reply tokens for a given activity have arrived. In

order to solve this problem we introduce a special type of token, called eos-token

(for end ofstream), similar to that used in general dataflow systems /AGP78/. An

eos-token, identified by an activity name, is sent by a node after all reply tokens for

that activity have been emitted. It carries the number of these reply tokens which

permits the receiving node to determine when all have arrived.

5.2. Procedures

This section defines the semantics of the model by specifying the procedures

to be executed by a graph node upon receiving a token. The first procedure is

executed when a regular token, carrying a graph template, is received. It causes

the forward propagation of such tokens as was discussed in Section 3. The second

procedure is executed when a reply token, carrying the bindings made during the

forward propagation, is received. It causes the backward propagation of the reply

tokens. Finally, the third procedure is invoked when an eos-token is received. These

tokens, which follow sets of reply tokens, terminate the activities along the paths.

1. Procedure performed by a node <,• upon receiving a regular token T from a
sender S; each such token carries the foUowing information:

activity name: 3

Pi Pi+1 P"-l _
graph template: Ti —• iV+i —• ... •—• In

bindings made so far: This is a list L of pairs {Tj,tj), where each Tj is one of
the variables of the template and tj is the node that bound its name to Tj when
it was visited by the token.

17



Procedure:

(indentation is used to indicate the scope of then and else clauses)
if Ti is bound to a term differentIrom <,•
then return eos-token with activity name a to sender S,

discard token T

else bind <,• to T,- (appending the pair (Ty, ty) to the list L)
if Ti is the last node (r„) of the template
then return a reply token (carrying the list L and the activity

name a) to sender S,
discard token T

else form a new token T' with graph template —• ... • Tn
and the list of bindings L (including the new pair {3y,ty)),
replicate T' along all arcs that inatch p,-; the activity names
of these tokens will be a.l, ...,a.p (see section 5.1),
record the new activity names as pending activities;
if Pi points to other clauses
then for each such clause do

fetch the clause,
form / linear clusters as described in Section 4,
place each cluster on a token and send it to the node that
matches the leftmost node of the cluster,
record / new subactivities a.[(p + ;).l],...,a.|(p + ;)•/],
(where 1 < j < k).

2. Procedure executed by a node <,• upon receiving a reply token R; each such token
has the form:

activity name: i.j (where j is the right-most component of the activity name)

bindings: List L of pairs (Ty, <y) as defined above.

Procedure:

if the activity name a.j is within S.l,...,S.p
then send reply token (with activity name a) to sender S;
else (ie. when the activity name is within a.(p + 1), a.(p -f- k))

record all bindings (list L) with the activity a.j.

3. Procedure executed by a node <,• when receiving an eos-token; each such token
has the form:

activity name: i.j (where ; b the right-most component of the activity name)

18



Procedure:

if the activity name i.j is within fl.l,fl.p
then terminate the activity i.j
eke mark the corresponding subactivity as completed;

if all subactivities within the activity a.j are marked
then for each combination of bindings (one from each subactivity)

produce a reply token (carrying that combination of bindings
and the activity name S),
return the token to sender S;
terminate the activity fl.j.

if all activities a.l,...,a.(p + k) have been terminated
then return eos-token (with activity name a) to sender S.

6. Architectural Issues

In this section weexamine the requirements that mustbe satkfiedby a computer

architecture in order to exploit the potential parallelism offered by the proposed

model.

We consider an architecture consisting of a large number of asynchronously

operating processing elements (PEs), each equiped with a certain amount of local

memory. The architecture must satisfy the following fundamental requirements:

1. The assertion graph must be mapped onto the collection of PEIs during exe

cution such that each node can receive, process, and emit tokens. This can be

accomplished by using a global mapping function which, given a node of the

assertion graph, yields a number from 1to n, where n is the number ofPEIs. The

node is then assigned to the PE corresponding to the selected number. Hence

each PE is 'multiplexed' among all nodes mapped onto that PE. This require

ments is analogous to the problem of mapping a general dataflow graph onto a

parallel architecture and a number of possible schemes have been proposed and

investigated /GoThSO/.

2. Nodes must be able to exchange tokens with one another along the (logical)

graph arcs. This is accomplished by associating with each node t a list of all

19



those nodes to which t is (logically) connected. Sending a token along such an

arc then involves calculating the PE number of the destination node and letting

the token propagate via neighboring PEs to its final destination. Similar to

requirement 1 above, any dataflow architecture must be capable of supporting

such an exchange of tokens among graph nodes and hence the same principles

apply to the system presented in this paper.

3. A token carrying a graph template may contain pointers to other clauses in the

goal structure. General dataflow systems are capable of solving an analogous

probleih: tokens must carry pointers to large data structures kept in a common

memory and shared among different tokens /ArThSO/. In our casethe situation

is further simplified by the fact that the goal structure, while being shared, need

not be modified during execution.

4. It must be possible to inject a token into any node of the assertion graph. This

includes the injection of initial tokens from outside of the system, as well as the

implementation of the jump-construct introduced in Section 4, which requires

a token to travel to some other node of the graph. Both cases are analogous

to the problem of sending a token from one node to another along a logical arc

(requirement 2 above) and may besolved using the same mechanisms: given the

destination node name, the corresponding PE holding that node may be deter

mined by applying the global mapping function (discussed under requirement 1

above) to that node name. The token is then routed to that PE via the physical

connections of the architecture.

From the above discussion it follows that the fundamental architectural re

quirements of the proposed model are already satisfied by any general dataflow

architecture and that only minor modifications would be necessary to adapt such

an architecture to support the proposed logic programming model.

20



7. Conclusions

The aim of this paper was to present a model of computation which would

permit lope programs to be executed on a highly parallel computer architecture.

The approach was based on the idea of transforming logic programs into coDections

of dataflow graphs and graph templates and to let resolution be carried out by

asynchronously propagating tokens through the graphs. The main advantage of

this approach is a high-degree of potential parallelism, exploitable at the following

three levels:

OR-parallelism: If more than one clause is unifiable with a given goal, each may

be processed independently by separate sets of tokens injected into the graph.

AND-parallelism: Clusters, ie., groups of literals within a clause which do not

share free variables, may be processed concurrently by separate tokens.

Simultaneous execution of independent programs: By using different activity

name sets, many programs, eg. database queries, may be processed concurrently

thus further increasing the throughput of the system.

In terms of the necessary architectural support required, the proposed model

bears a strong similarity to a general dataflow system, primarily due to the underly

ing data-driven principles of operation. Hence this paper offers further support for

the claim that dataflow machines could be extended to inference machines through

the use of logic programming /Ais8l/.

21



References

/AGP78/ Arvind, K P Gostelow, WPlouffe, An ^Synchronous Programming Lan
guage and Computing Machine, Advances in Computing Science and Tech
nology (ed. Ray Yeh), Prentice-Hall publ. 1978

/ArTh80/ Arvind, R E Thomas, I-Structures: An Efficient Data Type for Func
tional Languages, Tech. Rep. TM-178, Lab. for Computer Science, MIT,
Cambridge, Mass., Sept. 19^

/Ais81/ HAiso, Fifth Generation Computer Architecture, Proc. Int'l Conf. Fifth
Generation Computer Systems, Oct. 1981

/Bow82/ K A Bowen, Concurrent Execution of Logic, Proc. 1st Int'l Logic Pro
gramming Conf., Marseilles, Sept. 82

/CoKi83/ J Conery, D Kibler, AND Parallelism in Logic Programs, IJCAI1983
/COM82/ COMPUTER, Special Issue on Dataflow Systems, 15,2, Feb. 1982
/Con83/ J Conery, The AND/OR Model for Parallel Interpretation ofLogic Pro

grams, PhD Thesis, Dept. of ICS, Univ. of California, Irvine, 1983
/Dah82/ VDahl, On Database Systems Development Through Logic, ACM TODS,

Vol.7, No.l, March 82

/DeKo79/ ADeliyanni, R AKowalski, Logic and Semantic Networks, CACM 22,2,
March 79

/Den75/ J B Dennis, First Version of a Dataflow Procedure Language, Mac Tech.
Memorandum 61, M.I.T., Cambridge, 1975

/EKM82/ NEisinger, SKasif, J Minker, Logic Programming: AParallel Approach,
Proc. First Int'l Logic Programming Conf., Faculte des Sciences de Luminy,
MarseUle, Sept. 1982

/GaMi78/ H Gallaire, J Minker (Eds.), Logic and Data Bases, Plenum, N.Y. 1978
/GoTh80/K P Gostelow, R E Thomas, Performance ofa Simulated Dataflow Com

puter, IEEE TC, Vol. C-29,10, Oct. 1980

/Kow82/ R AKowakki, Logic Programming for the Fifth Generation, Proc. Int'l
Conf. on Fifth Generation Systems, SPL Internationals 1982

/Mar71/ C W Marshall, Applied Graph Theory, Wiley-Interscience, 1971
/Min78/ J K Minker, An Experimental Relational Database System Based onLogic,

in Logic and Databases (H Gallair, J K Minker, Eds.), Plenum Pub., 1978
/TBH82/ P C TVeleaven, T R Brownbridge, R C Hopkins, Data-Driven and

Demand-Driven Computer Architecture, ACM Computing Surveys, 14,1,
March 1982

/War81/ DWarren, Efficient Processing ofInteractive Relational Database Queries
Expressed in Logic, Proc. 7th Int'l Conf. VLDB, Cannes, 1981

22




