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Abstract

Advanced Computational Approaches to Plasma Behavior in Argon and Helium
Systems

by

José Alfredo Millán Higuera

Doctor of Philosophy in Mechanical Engineering

University of California, Merced

Professor Venkattraman Ayyaswamy, Chair

This dissertation undertakes a comprehensive exploration of computational methods
for studying and optimizing plasma processes, focusing specifically on the behavior
and characteristics of atmospheric plasmas under various ignition waveforms. Lever-
aging somaFOAM, an in-house plasma solver based on OpenFOAM, this research
delves into the effects of different voltage profiles—including sinusoidal, unipolar,
bipolar, and sinusoidal damped waveforms—on plasma stability and efficiency. While
atmospheric plasmas provide potential novel applications in medical, surface treat-
ment, water purification, and decontamination of surfaces, the main limitation is the
inherent instability of atmospheric plasma due to the high breakdown voltage. Fur-
thermore, its traditional mode of operation, which consists of filamentary discharges,
can be counterproductive to surface treatment as the filaments current are discretized,
now allowing for fine control of the system when the sensitivity of the surface needs
to be considered, alongside the nonuniform mode of operation. As such, atmospheric
pressure glow discharges, operating in the radio frequency regime, allow for modular
control of the plasma intensity while allowing the surface to be treated uniformly.
Further study is of interest to supplant and replace depending on the application
filamentary discharges. However, a systematic understanding of the controlling pa-
rameters within the plasma is required to have a stable glow discharge, as the ignition
of an atmospheric glow discharge is inherently difficult due to the high power required
to operate at atmospheric pressure. As such, it is interesting to study modes of con-
trol to ignite a stable plasma while simultaneously maximizing its reactivity, as these
properties are inverse to each other.

As such, the first project aims to consider control of the input parameters by utilizing
different ignition waveforms at the same cycled-averaged power to study the effects
of utilizing different waveforms on plasma stability and reactivity. However, as the
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feedstock gases also affect the characterization of the waveforms, two feedstock gases,
argon and helium, are utilized to establish independence or dependence on the feed-
stock gas while at the same time studying the benefits of each feedstock gas, helium
provides ease of operation and characterization, argon has been touted as a low-cost
alternative which also promises ease of operation in comparison to other feedstock gas.
Analysis is provided to determine whether the plasma operates in the α or γ mode of
operation. However, further research is required, such as determining the criticality
of the waveforms utilized to operate the plasma while at the same time investigating
the effects of dielectric barrier discharges to maximize reactivity within the system,
as previous research in the kilohertz regime seems to indicate that dielectrics can
stabilize the plasma operation.

The second project further investigates argon plasma as research also considers the
potential for scalability of the plasma, for which argon provides an opportunity. α-γ
relationship between the voltage and current, the relationship between the γ mode of
operation and a plasma dominated by secondary electron emissions followed by the
study of the electron profiles as a relationship of stability, the relationship between
the bulk voltage and input voltage for the pulsed waveforms for power coupling are
studied for bare electrodes in order to provide a comprehensive picture of the plasma
characterization, allowing for a deeper study of the plasma physics compared to the
first project which one touched to a surface level as the interest was to determine
the effects of the waveform coupled with the feedstock gas. At the same time, the
addition of dielectric elements is considered within the dielectric gap to character-
ize the addition of such elements into the plasma and whenever such a strategy to
maximize reactivity and stability is feasible. The third project, inspired upon the
numerical downtime of utilizing modeling techniques in the second project, intends
to use dynamic mode decomposition as a data-driven method to obtain a prediction
that is adequate for purposes of analysis and characterization of the plasma without
the computational downtime, utilizing a domain of parametrized solutions to train
the model. Three cases are evaluated, with the first case at the boundary of the
solution domain, the second case within the domain of the solution, and the third
case partially outside the domain of the solution to evaluate edge cases and cases
within the domain of the solution to determine the strength and weaknesses of the
prediction, to be able to utilize data-driven techniques with existing databases to be
able to characterize the plasma without the computational burden encountered with
modeling techniques, allowing for just-in-time data results, improving efficiency.

The different projects presented here aim to comprehensively describe atmospheric
plasmas and their characterization under different feedstock gases and input wave-
forms in order to propose a new way to maximize stability and reactivity simultane-
ously, utilizing a control approach to achieve this. At the same time, as parametriza-
tion techniques are computationally expensive, a data-driven technique could be seen
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as another tool to minimize computational downtime while obtaining results that can
be utilized to understand the plasma characterization, allowing for a more efficient
control mode of the plasma.
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Chapter 1

Introduction

1.1 Plasma fundamentals

Plasmas, also known as the fourth state of matter, make up a large portion of the
available matter in the universe, with more than 99 % of matter being plasma [1].
Although similar in composition to a gas, plasma is thermally and electrically conduc-
tive, as the free ions and electrons facilitate the conductivity of thermal and electrical
loads [2, 3, 4]. An important distinction in plasmas is whether they are thermal or
nonthermal, which informs the range of operations and applications where they can
be applied. For practical applications, which are the focus of this document, thermal
plasmas are classified as plasmas where the energy of the electrons and the other
charged species match each other [5, 6]. In contrast, in nonthermal plasmas, there
are orders of magnitude differences in the energy of the electrons compared to the
ions [5, 6]. This relationship can be expressed as Te >> Ti for nonthermal plasmas
and Te ∼ Ti for thermal plasmas.

Different applications and points of interest for thermal plasmas include aerospace
applications such as the ignition of scramjet systems [7] and engineering solutions
tailored towards re-entry of launch vehicles into the atmosphere [8] and hypersonic
systems [9], applications within heavy industries such as garbage disposal [10], welding
[11], surface cutting [12], diamond growth [13], and metal component melting [14],
among others. In the automotive industry, thermal plasmas are widely utilized for the
ignition of combustion processes through the use of spark plugs [15]. Other thermal
plasma processes include generating extreme ultraviolet (EUV) light [16] and nuclear
fusion processes [17]. Therefore, the need for thermal plasmas in modern applications
is widespread. Figure 1.1 showcases a schematic of an inductively coupled plasma
(ICP) utilized in different thermal applications [11, 12, 14].

On the other hand, nonthermal plasmas, alongside laser-assisted plasmas in the
generation of EUV light, form the backbone of the semiconductor industry. Nonther-
mal plasmas in different ignition modes are responsible for various processes, such as
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Figure 1.1: Schematic diagrams of ICP plasmas in different configurations. ICP
processes are employed in various thermal plasma applications.

etching [19, 20], surface decontamination [21], and deposition [22]. Recently, plasma
processes have also gained interest due to their benefits in medical applications, such
as the topical treatment of cancer, the healing of scarring tissues due to burns, and the
healing of tissue affected by invasive methods in medical procedures [23]. Other ap-
plications, such as water treatment and agricultural processes [24, 21], are also fields
of application for nonthermal plasmas, where successes have been found in decon-
tamination and surface treatment. The study of nonthermal plasmas is of particular
interest due to the array of applications that can be utilized with great success. Fig-
ure 1.2 showcases a schematic of different dielectric barrier discharge (DBD) systems
utilized in the ignition of nonthermal plasma at atmospheric pressure [25].

Nonthermal plasmas, depending on the operational parameters and electro-spatial
characterization, can be classified as DBD [18, 26, 27], glow discharge [28, 29, 30],
atmospheric pressure glow discharge (APGD) [18, 31, 32], and capacitively coupled
plasma (CCP) [19, 33, 34], to mention a few modes of operation. These classifications
might overlap, such as an APGD plasma operating in the radio frequency (RF) regime,
which can also function as a CCP [22]. The descriptions of these plasmas are as
follows:

• DBD: Plasma operated in the kilohertz (kHz) regime at atmospheric pressure,
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Figure 1.2: Basic planar configurations of DBDs [18]. Different configurations are
utilized depending on the case being studied.

where a high voltage breaks down the plasma [18]. Stability is achieved with
a dielectric barrier in the electrodes, where the dielectric acts as a ballast,
accumulating charge and countering charges within the plasma to avoid arcing
[35, 36]. These plasmas manifest as streamers in operations of interest [36].

• Glow Discharge: Plasmas operated using a DC source at reduced pressures ap-
pear as a cloud of light enclosed by the reactor [37]. They can also operate in
the RF regime at reduced and atmospheric pressures [34, 38].

• APGD: This is a subclassification of glow discharge plasmas. These plasmas are
ignited under atmospheric pressure at different operational regimes [39, 40],
such as RF or kHz. The selection of feedstock gas is important to minimize
instabilities [41], particularly for plasmas operating in the kHz regime [42].

• CCP: Plasma operated in the RF frequency regime, where the operation of the
plasma at this frequency causes a capacitive effect, manifested in the phase
shift angle between current density and operating voltage in sinusoidal driven
plasmas [19, 34, 43].
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Figure 1.3: Paschen curve for different gases at various operating pressures and gaps.

Given the variety of operational modes and their distinct characteristics, it would
be unfeasible to study all the aforementioned modes of operation. Therefore, this
study focuses on APGD-CCP and CCP-DBD, as they present novel opportunities in
applications of interest due to the ease of ignition and relatively low operating costs
since such plasmas do not require vacuum systems to achieve operations of interest
[22, 38, 39].

Two modes of operation are important to distinguish the stability of the system:
the α and γ modes [31, 44, 45, 46]. These modes differ in their electron generation and
current ranges. The alpha mode operates at low current density, where the plasma
process is sustained by bulk ionization [31]. In contrast, the γ mode operates at a
high current density and sustains the plasma through secondary electron emissions
(SEE) [31, 47]. In the γ mode, the collision of ions with the electrode generates
secondary electrons, further intensifying the plasma. SEE depends on the electrode
or dielectric material [48]. The γ mode of operation should be avoided as it is prone
to instabilities such as constriction and filamentation, potentially leading to arcing
if plasma parameters are not properly controlled [46, 49, 50]. While DBD plasmas
are typically ignited in a filamentary form when operated in the kHz regime, one of
the main interests in APGD plasmas is their glow structure, allowing for their use in
applications where a filamentary discharge would not be suitable due to the risk of
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damage associated with the high operating current of DBD plasmas [51].
An external power supply ignites APGD-CCP and DBD-CCP plasmas in the

RF frequency regime. Depending on the feedstock gas, different breakdown voltages
are encountered as a function of operating pressure and reactor dimension. This
relationship can be expressed with the Paschen equation, an empirical relationship
relating the aforementioned parameters [52].

Vb =
B(p · d)

ln [A(p · d)]− ln [ln (1 + 1/γse)]
(1.1)

In the Paschen equation, A and B are constants found experimentally depending
on the feedstock gas, γ is the SEE coefficient, d is the gap of the plasma reactor,
and p is the system’s pressure. The reactor’s pressure and gap size determine the
plasma’s breakdown voltage and feedstock gas selected for the plasma system. The
Paschen curve, while obtained by the ignition of an arc for a feedstock gas, a similar
curve with a similar trend is also obtained for breakdown voltages for both direct cur-
rent (DC) and frequency driven plasmas [53, 54], providing important insights into
the ignition characteristics of the feedstock gas to be utilized. For the frequency of
interest, RF, it is observed that the breakdown voltage decreases by 20% compared
to a plasma operated in the kHz regime [53], indicating that a lower voltage is re-
quired for plasma ignition. Figure 1.4 showcases the relationship between breakdown
voltage and frequency for sinusoidal ignition waveform. This observation aligns with
numerous published papers, where the operational voltage of DBD plasmas [55] is
compared to that of APGD-CCP plasmas [39], showing a decrease in voltage by an
order of magnitude. An important consideration when studying plasmas is that the
breakdown voltage is always higher than the operating voltage [38]. The initial pro-
cess necessitates a high voltage to break down the feedstock gas utilized to ignite the
plasma. Afterward, the plasma is self-sustained by operating in the α and γ mode
by highly energetic electrons flowing through the space as a function of the potential
within the system and generating charged species as they collide with neutral species.
However, these electrons do not require a large driving voltage as pre-breakdown
conditions because there is already a level of ionization within the system [39].

Other considerations, as shown in the pressure-distance relationship, indicate that
a larger voltage is required to initiate the breakdown process as the pressure and
distance increase as seen in figure 1.3. This is less than ideal for atmospheric plasmas
due to the high power requirements of high pressure-distance values. While decreasing
the pressure or gap of the reactor will alleviate the need for high operational power,
reducing the pressure necessitates using vacuum systems, defeating the purpose of
studying atmospheric pressure plasmas if vacuum systems are needed. Reducing the
gap can be done, but it is important to determine whether such a reduction is feasible
for the applications of interest, as reducing the gap might be tailored toward other
applications outside the scope of this study.
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Figure 1.4: Ratio of the breakdown voltage at an operating frequency to the Paschen
breakdown voltage.

Hence, the interest in studying different feedstock gases to operating parameters
is crucial, as certain gases ignite more easily than others, facilitating the study and
application of plasma processes. Nonetheless, operational costs must be considered to
minimize the cost of an application of interest. As shown in figure 1.3, different gases
utilized, and the pd values to ensure ignition indicate that helium is the most stable
and easiest plasma to ignite compared to the alternatives. However, compared to
other gases such as argon, the high operating cost of helium [56] limits its applications
to laboratory settings where the goal is to ensure the stability of the system being
studied and understand the response to the operational parameters before expanding
to practical applications. Therefore, it is of interest to study alternatives that provide
low operational costs and stable operation akin to that provided by a helium plasma.

Besides the aforementioned parameters to stabilize the plasma, such as reactor
gap, pressure, and feedstock gas, a DBD can also be utilized to stabilize the plasma
[58]. However, such effects are unclear in plasmas operating in the DBD-RF config-
uration under different ignition profiles. Nonetheless, there is still interest in investi-
gating the effects of integrating such elements into the reactors, as the main interest
is to maximize the system’s stability while maximizing reactivity. These two fac-
tors, however, are inversely related; the more reactive the plasma, the less stable it
becomes [22]. Therefore, it is of interest to study the parameterization of the input
waveforms utilized in power supplies to ignite the plasma, as in many instances, oper-
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Figure 1.5: Schematic overview of DMD on a fluid flow [57].

ating parameters such as duty cycle, amplitude, frequency, and damping factor can be
modified to optimize a solution where plasma reactivity is maximized while avoiding
instabilities and arcing of the system. This problem thus becomes a control problem
where multiple variables are carefully parameterized to maximize the solution given
a set of conditions.

As such, maximizing plasma reactivity while maintaining a stable mode of op-
eration is an ideal problem that could be explored using machine-learning methods.
Methods such as dynamic mode decomposition (DMD) allow for training datasets to
predict behavior and thus speed up results that would otherwise be obtained using
conventional plasma modeling tools, adding overhead which is often time prohibitive
[59]. By exploring such methods, gaps in the data they were originally trained on can
be predicted, allowing for running different parameterization studies while minimizing
time constraints [60]. Such machine learning algorithms could be utilized to study
ways to minimize power consumption during the breakdown process, which, in many
instances, is ignited using a sinusoidal waveform that is less than ideal for system
efficiency. Nonetheless, utilization of such algorithms warrants comprehensive study
to determine their limitations and advantages given a training dataset [61]. However,
there are many possibilities, as DMD methods allow for predicting gaps and future
behavior within the data. Figure 1.5 [62] showcases an overview of DMD on a fluid
flow example and how it can be utilized in the diagnostics of trained data.
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1.2 Comparison of different ignition waveforms at

constant power

An important consideration in the ignition of plasma systems is the power absorption
by the plasma. Depending on the ignition waveform, larger power absorption indicates
a more efficient mode of operation than its counterparts. Thus, a plasma can achieve
the same number density at a lower power than another plasma with a higher power
load [24, 36, 63]. It is of interest to study the effects that different ignition waveforms,
operating at the same power, have on the number density of the plasmas. In this
instance, whether the plasma operates in the α or γ mode is secondary; the goal is to
analyze and determine which ignition waveform can generate the strongest plasma.

While a direct comparison between feedstock gases is not possible due to each
gas’s different characteristics, it is still useful to compare different feedstock gases
to gain a broad understanding of the plasma’s characterization and intensity due to
the parameterization of its operating parameters. This study used argon and helium
feedstock gases to study the plasma characterization. Also, DBD are excluded to
minimize the introduction of variables to the system. Nevertheless, studying the
effects of the dielectric on plasma stability remains of interest.

For this study, parameters such as ignition waveform, feedstock gas, pressure,
and reactor dimensions are fundamental to establishing a relationship within these
parameters in an atmospheric-driven plasma. One of the main challenges of igniting
an APGD-CCP plasma is the high power requirement due to the operating pressure
[64]. The operational characterization of the plasma is challenging because of the
risk of entering the γ mode of operation due to the already high voltage used within
the plasma. This study aims to provide insights into balancing power input and the
mode of operation, dependent on the feedstock gas and the ignition waveform.

1.3 Study of the critical point of operation for

different ignition waveforms for an argon

plasma

While the preceding study provided insights into the mode of operation and num-
ber density generated as a result of constant input power, it does not address the
operational criticality for each waveform utilized, i.e., the transition point between
a plasma in the α mode of operation to one in the γ mode of operation. Therefore,
it is of interest to determine operational criticality to establish the maximum reac-
tivity the plasma can achieve before instabilities appear within the system. In this
case, only argon was studied due to its immediate interest and low cost of operation,
which promises widespread adoption compared to helium [56, 58] . Additionally, the
effects of integrating a dielectric into the system are studied to determine whether
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the waveform’s operational efficiency and reactivity increase due to the presence of
dielectrics [58].

Moreover, compared to the preceding study where a power-coupled algorithm was
utilized to match the power of the plasma to that of a user-specified power, an external
circuit algorithm is now coupled to the model. This ensures the simulation accounts
for the impedance losses found in a power supply and the transition between α and γ
modes of operation, where input voltage decreases compared to its critical value as the
differential conductivity of the plasma becomes negative [39]. Building on the previous
study’s findings, this research aims to provide a comprehensive understanding of
APGD-CCP and DBD-RF plasma characterization, to maximize reactivity in the
system while maintaining stable plasma operation.

1.4 Utilization of DMD for prediction of

intermediate data

One of the challenges encountered in previous studies was the large data generation
and post-processing requirements, which resulted in significant time and computa-
tional overhead due to the number of simulations needed for a comprehensive analysis
of plasma characterization. Additionally, because pulsed waveforms have advantages
over other types of waveforms, it is of interest to parameterize and study these phe-
nomena using Gaussian waves. These waveforms allow granular control of the plasma
profile in the reactor. However, studying all possible cases is impractical due to the
large amount of data required.

DMD offers a solution to this problem. DMD is a data-driven algorithm that de-
composes complex dynamical systems into spatiotemporal modes, providing insights
into the system’s behavior. Initially developed for fluid dynamics [65], DMD has ex-
panded into various fields [61]. By approximating linear dynamics that best fit the
observed data, DMD extracts dominant modes that capture the system’s essential
features. DMD’s data-agnostic nature makes it particularly suited for handling large
datasets, as it relies on the data to uncover patterns and dynamics rather than spe-
cific physical models [62]. This flexibility allows researchers to explore a wide range
of behaviors and operational scenarios efficiently.

DMD can be utilized to significantly reduce computational overhead in plasma
research by predicting plasma behavior under different conditions without extensive
simulations. Training the DMD model on a subset of data allows it to predict the
plasma’s response to untested parameter sets, saving resources and accelerating the
research process. This method provides quick insights into the effects of various
parameters, optimizing the system’s performance while maintaining stability.
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1.5 Goals and objectives

The utilization of glow discharges has dominated low-pressure systems due to the
large characteristic lengths of particles at such pressures, allowing for isotropic pro-
cessing of surfaces in various semiconductor industry applications. However, while
APGD-CCP may not be suitable for state-of-the-art semiconductor processes, numer-
ous potential applications still need to be explored. These include decontamination
of surfaces where filamentary discharges might cause damage, medical applications
where glow discharges may be less invasive, and areas where replacing filamentary
discharges could benefit the lifespan of reactors, such as ozone generation. A signifi-
cant challenge in utilizing APGD-CCP discharges lies in the high-power requirements
due to the pressure-distance relationship, making the parametrization of operating
conditions difficult. APGD-CCP plasmas are highly sensitive to the driven potential,
leading to an inherently unstable system that can exhibit constriction and arcing,
defeating the purpose of using APGD-CCP. Although several studies have demon-
strated the benefits of different feedstock gases and waveforms in maximizing plasma
intensity while minimizing instability, a comprehensive parametric study still needs
to be completed on the behavior of feedstock gases and waveforms used to ignite the
plasma. The main objective of this research is to provide a comprehensive under-
standing of the differences between feedstock gases and driven waveforms. It seeks to
determine whether different feedstock gases dramatically change the plasma profile
and whether certain waveforms can drive the plasma to higher intensity while main-
taining stability, thus allowing for lower operational power and adequate number
density for specific applications. Two feedstock gases will be studied — helium and
argon plasmas. Helium, known for its ease of ignition, serves as a comparative basis.
Conversely, argon has a lower operating cost and offers the potential for scalability
in various processes of interest.

Another point of interest, from a modeling perspective, is the significant compu-
tational overhead in obtaining results due to the complexity of the plasma medium.
Given the parametrized nature of these studies, computational downtime can hinder
the application of obtained results in potential applications. Therefore, it is essential
to investigate the feasibility of data-driven techniques such as DMD. This approach
could yield results approximating those from running a simulation but with minimal
computational overhead. Such advancements in reducing computational overhead
would accelerate the development of novel technologies, enabling quicker access to
results than traditional simulation methods.

1.6 Executive summary

The main objectives of this research can be summarized as follows:

• Study APGD-CCP for argon and helium plasmas under different waveforms at
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constant power input to determine which waveform can ignite a plasma with
the highest intensity.

• Determine the critical point of operation within the stable and unstable modes
of operation, i.e., α and γ modes, for the different waveforms utilized in both
APGD and DBD-RF modes.

• Investigate the effects of integrating dielectric materials into the system to deter-
mine whether their presence enhances the operational efficiency and reactivity
of the plasma.

• Examine the influence of different feedstock gases, specifically argon and helium,
on plasma characterization and performance.

• Evaluate the high power requirements and operational challenges associated
with igniting APGD-CCP plasmas, focusing on balancing power input and
maintaining stable operation.

• Provide a comprehensive understanding of APGD-CCP and DBD-RF plasma
characterization, with the goal of optimizing plasma reactivity while maintain-
ing stability.

• Analyze the application of Gaussian waveforms for granular control of the
plasma profile and their potential advantages over other waveform types.

• Study the feasibility of utilizing machine learning algorithms such as DMD to
predict data from a training dataset, aiming to reduce computational overhead
and accelerate the research process.

The following subsections will discuss in detail the findings related to the different
objectives of this research, providing a comprehensive analysis of the plasmas studied
and the characterization of these systems.
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Chapter 2

Basic plasma equations and
equilibrium

2.1 Governing equations

The plasma medium is difficult to simulate due to its stochastic nature and the varying
time frames of its parameters. Lieberman [66] describes the problem: a distribution
function f(r,v, t) is introduced for a given species in the six-dimensional phase space
(r,v) of particle positions and velocities. The distribution function is defined as the
number of particles within a spatial volume, where r denotes the position vector and
v represents the particle velocity.

f(r,v, t)d3rd3 = number of particles inside a six-dimensional phase space volume
d3rd3v at (r,v) at time t.

The six coordinates (r,v) are considered independent variables. Figure 2.1 shows
a fixed differential volume dx, dvx simplified in one dimension to solve the fluxes en-
tering and exiting the fixed differential volume. The Boltzmann equation is obtained
by deriving and solving the fluxes of the differential volume and accounting for the
collision term for a given species.

∂f

∂t
+ v · ∇rf +

F

m
· ∇vf =

∂f

∂t

∣∣∣∣∣
c

(2.1)

Here, the function f denotes the number of particles within a spatial volume, v
represents the particle velocity, and F represents the force exerted on the particle.
The variable m signifies the particle mass, ∇r indicates the vector gradient, and ∇v

corresponds to the velocity gradient. The left-hand side of the equation is derived
from the solution of the collisionless Boltzmann equation, while the right-hand side
embodies the collision term. The continuity equation can be obtained by integrating
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Figure 2.1: One-dimensional vx − x phase space, illustrating the derivation of the
Boltzmann equation and the change in f due to collisions [66].

the Boltzmann equation over velocity space. However, to solve the plasma problem as
a fluid continuum, the Boltzmann equation distribution properties must be averaged
to obtain equations depending on the spatial coordinates and time only, as seen in
equation 2.2 and 2.3. The Boltzmann equation can be expressed as a macroscopic
continuity equation by integrating the distribution function and particle velocity, as
shown in equation 2.4.

n(r, t) =

∫
fd3v (2.2)

Γ(r, t) = nu =

∫
vfd3v (2.3)

∂n

∂t
+∇ · (nu) = G− L (2.4)

The variable n signifies the average particle density, u represents the mean velocity,
and G and L denote the particle gains and losses, respectively. When macroscopic
transport is not considered [67], the continuity equation’s source and loss terms can
be calculated as gains and losses from the chemical reactions themselves as seen in
equation 2.5.
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ωi = kfi
∏
k

[X]
v
′
ki

k − kri
∏
k

[X]
v
′′
ki

k (2.5)

The sources and losses for reactions are calculated as follows: kfi and kri are the
forward and reverse reaction rates, v′ki and v′′ki are the stoichiometric coefficients, and
X is the molar concentration of species k. The total gains and losses are calculated by
summing all the sources and losses from all the reactions where species i is present.
Further expansion of the continuity equation gives rise to the momentum equation.
For readers interested in the intricate details of the momentum equation’s derivation,
we direct them to the work of Krall and Trivelpiece [68].

mn

(
∂u

∂t
+ (u · ∇)u

)
= en(E+ u×B)−∇ · Π+ f

∣∣∣∣∣
c

(2.6)

Where e signifies the electric charge, E represents the electric field, B denotes
the magnetic field, and Π corresponds to the pressure tensor. For weakly ionized
plasmas, the pressure tensor simplifies to a pressure gradient ∇p. The magnetic
term B, exerting minimal effects on the plasma studied in this paper, is omitted
for practicality. The term f describes the momentum transfer per unit volume due
to collisions with other species. One can derive the energy conservation equation
by multiplying the Boltzmann equation by 1

2
mv2 and then integrating over velocity.

Subsequent integration and mathematical manipulations yield the energy equation.

∂

∂t

(3
2
p
)
+∇ · 3

2
(pu) + p∇ · u+∇ · q =

∂

∂t

(3
2
p
)∣∣∣∣∣

c

(2.7)

The term (3
2
p) denotes the thermal energy density, while (3

2
pu) represents the

macroscopic thermal energy flux, characterizing the flow of thermal energy density
at the fluid velocity. The term p∇ · u accounts for the heating of the fluid due to
compressibility, and q represents the heat vector flow, contributing to the macroscopic
thermal energy flux. The right-hand side of the equation addresses the generation
and loss of species’ thermal energy. As the plasma is a multiphysics problem driven
by an electrical source, it is necessary to describe the electrical distribution within the
plasma. To characterize the electrical properties of the plasma, the Maxwell equations
are solved to obtain the poisson equation, assuming negligible magnetic effects. The
equations are as follows

∇× E = −µ0
∂H

∂t
(2.8)

∇×H = ϵ0
∂E

∂t
+ J (2.9)
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ϵ0∇ · E = ρ (2.10)

ϵ0∇ ·H = 0 (2.11)

E(r, t) and H(r, t) are the electric and magnetic field vectors, and µ0 and ϵ0
are the permeability and permittivity of free space. The charge continuity equation
relates the field sources, the charge density ρ(r, t), and the current density J(r, t). By
combining the charge continuity equation, equation 2.12 and the Maxwell equations,
equations 2.8, 2.9, 2.10, and 2.8, the following equation is obtained represented in
equation 2.13.

∂ρ

∂t
+∇ · J = 0 (2.12)

∇ · E =
ρ

ϵ0
(2.13)

In the case a dielectric element is present, the following equation calculates the
charge accumulation of electrons and ions is given as [55]

dσe
dt

= n · Γe (2.14)

dσi
dt

= αs(1 + γSEE)niµiE · n−min(σe, σi) (2.15)

where the function min(σe, σi) compares the values of σe and σi returns the value
of the smallest one. The field generated due to the accumulation of charge on the
dielectric is calculated using

n(D1 −D2) = ρs (2.16)

Where ρs is the net charge density of the dielectric surface and D1 and D2 are the
electric displacement fields above and below the boundary. Within somaFOAM, the
continuity, momentum, and energy equations are adapted, simplified, and resolved
using a segregated approach. Leveraging the drift-diffusion approximation [66] fur-
ther streamlines the problem, eliminating the need to solve the momentum equation
directly. The equations employed in somaFOAM, starting with the drift-diffusion
approximation, are presented below.

Γ = ±µnE−D∇n (2.17)

D = µ
kbT

e
(2.18)
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Here, Γ represents the particle flux, µ denotes the mobility coefficient, and D is the
diffusion coefficient, with kb representing the Boltzmann constant and T the species’
temperature. The introduction of the drift-diffusion approximation necessitates al-
terations to the continuity equation. The modified equation is presented below and
defined as follows

∂n

∂t
+∇ · Γ = G− L (2.19)

In the case of the electron energy equation, the following form is adopted [69]

3

2
kBneTe +∇ · qe = eΓe · E+Qe +

∑
j

Rje∆He (2.20)

Where qe represents the electron energy flux, Qe denotes the electron energy loss
due to elastic collisions, and the summation of Rje multiplied by ∇He signifies the
electron energy gain from inelastic collisions. In this context, Rje denotes the rate
coefficient for the inelastic collision of electrons with species j. ∇He symbolizes the
corresponding energy exchange, corresponding to the energy threshold needed for the
electron to initiate the reaction. Both qe and Qe are further decomposed as follows

∇ · qe = ∇ ·

(
5

2
kBTeΓe

)
−

(
5

2
neDe

)
∇2Te (2.21)

Qe = 3
me

M
neven(Te − Tg) (2.22)

Where M represents the mass of the background gas, ven denotes the electron-
neutral momentum transfer frequency, and Tg corresponds to the background gas
temperature. ven can be defined as follows:

ven =
|e|
meµe

(2.23)

Considering the benchmark models for this paper, ions’ contributions to the back-
ground temperature are omitted because ion contributions are negligible in non-
thermal, stable atmospheric plasmas. While the background gas temperature is im-
portant in practical applications, such analysis is beyond the scope of this paper.
The drift-diffusion model was selected for its simplicity and because both benchmark
models employ the drift-diffusion approximation.

2.2 Boundary conditions

Boundary conditions for the species number density, voltage, and electron tempera-
ture are prescribed as follows. Unless noted otherwise, these boundary conditions are
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sourced from Hagelaar [70, 71]. The boundary conditions for ions, excited states, and
ground states are as follows.

∇ni = 0 (2.24)

A flux boundary condition is utilized to close the continuity equation for the
electrons. The electron number density boundary condition is presented below.

Γe =
1

4
ne

√
8kBTe
πme

n+ (a− 1)µeEne − a
∑
k

γse,kΓi,k (2.25)

γse denotes the SEE coefficient, and Γi,k represents the ion flux towards the elec-
trodes. The coefficient a is a Boolean value indicating whether E is directed towards
the electrodes (having a value of 1) or not (having a value of 0). The vector n rep-
resents the normal unit directed towards the boundary. The impact of ions on the
electrode surface causes a dislocation from the electrode, effectively acting as a source
for electrons. However, not every collision produces an electron, as the generation of
an electron due to ion collision with the electrode walls is contingent upon the SEE
coefficient. The ion flux boundary condition is presented as follows, resembling the
electron boundary condition except for the SEE [69].

Γi =
1

4
ni

√
8kBTi
πmi

n+ aµiEni (2.26)

A modified version of equation (2.25) is utilized for the electron energy equation.

Γϵ =
(5
2
kBTe

)[1
4
ne

√
8kBTe
πme

]
−
(5
2
kBTse

)∑
k

γse,kΓi,k (2.27)

For the voltage boundary condition, 0 V (ground) is assigned to the mesh’s left
electrode. A power-regulating algorithm adjusts the voltage in each cycle for the right
electrode, ensuring that the simulated power aligns with a specified time-averaged
power. This configuration was utilized to benchmark the results obtained from so-
maFOAM against the benchmark cases. Other simulation parameters, such as pres-
sure and background gas temperature, are kept constant.
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Chapter 3

Finite volume method and
somaFOAM

3.1 Application of finite volume method in

somaFOAM

The solution of plasma phenomena requires a discretized approach, as plasma equa-
tions are very difficult to solve analytically [72]. While some cases are solvable with
many assumptions to simplify the problem, these mathematical methods demand an
advanced understanding of mathematics [66]. However, most plasma problems fall
outside the scope of these assumptions, necessitating numerical tools to represent
plasma physics accurately. Many commercial solvers, such as COMSOL [73], Star-
CCM+ [74], and PLASIMO [75], have libraries capable of solving nonthermal plasma
problems. However, utilizing these libraries often requires paying additional fees on
top of those for the base software, making access to such software suites impractical
for many.

Moreover, the closed-source nature of these software packages prevents researchers
from modifying the source code to meet their specific needs, forcing them to rely on
the vendor to implement desired algorithms. This may involve additional fees or wait-
ing for software release cycles, with no guarantee that the requested features will be
included. These limitations hinder research endeavors, making the use of commercial
platforms less prudent. On the other hand, developing a numerical suite from scratch
is a time-consuming process. Creating boilerplate code takes significant time before
any tailored development for studying plasma phenomena can begin. Furthermore,
while this approach allows for minute control over the modeling code, choosing a pro-
gramming baseline becomes challenging. Compiled languages like C++, Rust, and C
offer fast execution times but can be cumbersome to develop [76, 77, 78]. Conversely,
interpreted languages like Python and MATLAB enable quick implementation of al-
gorithms but at the cost of time overhead due to their interpreted nature [79].
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Figure 3.1: Conservation of a discrete element utilizing a FVM approach.

OpenFOAM, an open-source numerical toolbox based in C++, provides a sub-
stantial amount of boilerplate code to comprehensively develop numerical algorithms
in a compiled language. Originally developed as a computational fluid dynamics
(CFD) code utilizing a object-oriented approach [80], it has become the numerical
toolbox of choice for developing algorithms utilizing the finite volume method (FVM)
for different complex physics phenomena [81]. The FVM, based on the control volume
formulation, divides the solution domain into control volumes (cells within a mesh),
where the variable of interest in each cell is the average with respect to the control
volume stored in the centroid of the finite volume element [82]. Figure 3.1 showcases
the control volume formulation of the FVM. The FVM is conservative as the flux
entering a given control volume is identical to the flux leaving it [83].∫

VP

∇ · (ρuϕ)dV =

∮
∂VP

dS · (ρuϕ) =
∑
f

Sf · (ρuϕ)f (3.1)

∫
VP

∇ · (ρΓϕ∇ϕ)dV =

∮
∂VP

dS · (ρΓϕ∇ϕ) =
∑
f

Sf · (ρΓϕ∇ϕ)f (3.2)

∫
VP

Sϕ(ϕ)dV = ScVP + SPVPϕP (3.3)
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Figure 3.2: Code snippet in somaFOAM syntax describing the continuity equation.

(∇ϕ) = 1

VP

∑
f

(Sfϕf ) (3.4)

To discretize the partial differential equation using the FVM, the governing equa-
tions are integrated over a differential volume integral, where the volume integrals
are converted to surface integrals using Gauss’s theorem [84]. The surface integral is
approximated using the midpoint rule, resulting in a summation of the convective,
diffusive, source, and gradient terms as seen in equations 3.1, 3.2, 3.3 and 3.4 for the
transport equation correlating the centroids of the control volume to the surface faces
of the centroids [82, 85]. For the source term, Sc is the constant part of the source
term, while for Sp is the non-linear part of the source term. For a transport equation,
all the terms are combined as seen in equation 3.5.

∫
VP

∂ρϕ

∂t
dV +

∑
f

Sf · (ρuϕ)f +
∑
f

Sf · (ρΓϕ∇ϕ)f = ScVP + SPVPϕP (3.5)

To advance the solution in time, a time integral is applied such as shown in
equation 3.6, where the time derivative and the implicit source integral is expanded
further in equation 3.7, 3.8, 3.8 and 3.10.

∫ t+∆t

t

[(
∂ρϕ

∂t

)
P

VP +
∑
f

Sf · (ρuϕ)f +
∑
f

Sf · (ρΓϕ∇ϕ)f

]
dt

=

∫ t+∆t

t

(ScVP + SPVPϕP )dt

(3.6)

(
∂ρϕ

∂t

)
P

=
ρnPϕ

n
P − ρoPϕ

o
P

∆t
(3.7)
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Table 3.1: Partial entities for fvm or fvc class functions in OpenFOAM.

Term description Implicit/Explicit Test Expression fvm::/fvc:: functions

Laplacian Imp/Exp
∇2ϕ

∇ · Γ∇ϕ

laplacian(phi)

laplacian(Gamma, phi)

Time derivative Imp/Exp
∂ϕ
∂t

∂ρϕ
∂t

ddt(phi)

ddt(rho, phi)

Second time derivative Imp/Exp ∂
∂t
(ρ∂ϕ

∂t
) d2dt2(rho, phi)

Convection Imp/Exp
∇ · (ψ)

∇ · (ψϕ)
div(psi, phi)

Divergence Exp ∇ · χ div(chi)

Gradient Exp
∇χ

∇ϕ
grad(chi)

Curl Exp ∇× ϕ curl(phi)

Source
Imp

Imp/Exp
ρϕ

Sp(rho,phi)

SuSp(rho,phi)

∫ t+∆t

t

ϕ(t)dt =
1

2
(ϕo + ϕn)∆t (3.8)

ϕn = ϕ(t) + ∆t (3.9)

ϕ0 = ϕ(t) (3.10)

OpenFOAM provides a database of different discretization schemes [85], allow-
ing for ease of implementation since they are part of OpenFOAM’s boilerplate code.
OpenFOAM syntax, tailored towards solving FVM problems, is very similar to a sym-
bolic representation of the partial differential equation of interest, allowing for ease of
implementation [86]. For instance, the continuity equation’s form in somaFOAM as
shown in figure 3.2 is similar to its symbolic representation. Partial differential equa-
tions in OpenFOAM are solved by storing the equation in classes fvScalarMatrix

or fvVectorMatrix, depending on whether the equation is scalar or vector. The
functions within the continuity equation, fvm, and fvc, specify whether the terms are
solved explicitly or implicitly. Table 3.1 specifies the different discretization schemes
as function of fvm or fvc depending on the case use. After the matrix is set up,
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Figure 3.3: UML diagram showcasing the relationship of different libraries in SO-
MAFOAM [89].

relaxation factors are applied to make the matrix diagonally dominant, reducing in-
stabilities in the solution. The solve() function is executed to solve the matrix of
the constituent partial differential equation.

Equations encompassing the plasma problem are solved in somaFOAM, an in-
house plasma solver based on OpenFOAM developed for solving plasma phenomena.
Access to the code, installation instructions, and sample cases are available as refer-
ence [87]. The governing equations for plasmas are solved in a segregated manner [88],
first solving the continuity equation (which requires solving the source and sink terms
of the chemical reactions, handled by the plasma thermophysical library), then solv-
ing the drift-diffusion approximation to solve the energy equation, and finally solving
the Poisson equation in conjunction with the dielectric, if present, iteratively until the
problem is solved. This process continues to the next time step until a user-defined
end time completes the simulation. A unified modeling language (UML) diagram, as
seen in figure 3.3 and provided by somaFOAM original paper [89], provides insights
into the relationship between the different libraries within somaFOAM necessary to
solve the plasma problem. Since plasma problems are complex multiphysics problems,
a large number of libraries solving different physical parameters are required.
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3.2 Discretization schemes for governing

equations

In somaFOAM, fvm is employed, converting the volume integral into a surface inte-
gral. The keyword Gaussian must be specified before utilizing any scheme of interest
per part of somaFOAM syntax.∫

V

∇ · adV =

∮
∂V

dS · a (3.11)

A central differencing scheme, named linear in OpenFOAM, is utilized for gradi-
ent schemes. This scheme is derived from approximating the integral using the mid-
point rule, summing the surface elements, and rearranging the elements as needed.
The accompanying equation 3.15 and diagram 3.4 showcases the discretization and
stencil of the central differencing scheme. fx represents the interpolation factor defined
as the ratio of distances fN and PN as seen in equation 3.13.

ϕf = fxϕP + (1− fx)ϕN (3.12)

fx =
fN

PN
(3.13)

A linear limited (linearLimited) scheme is employed for divergence schemes,
combining both the upwind and the linear schemes. The upwind scheme is defined
as seen in equation 3.14 and stencil represented in figure 3.5

ϕf =

ϕf = ϕP ,
◦
F ≥ 0

ϕf = ϕN ,
◦
F ≤ 0

(3.14)

The implementation of the linearLimited scheme is done by utilizing a Sweby
limiter as seen in equation 3.14, coupling a first-order scheme to a correction factor,
Ψ, to increase the accuracy of the solution while minimizing the oscillatory behavior
encountered in central differencing schemes for divergence schemes.

ϕf = ϕUD +Ψ[(ϕ)CD − (ψ)UD] (3.15)

Where ϕUD represented the solution of the upwind scheme and ϕCD the solution
of the central difference scheme. Since the cases studied are one-dimensional and
orthogonal, the discretization of the gradient in the diffusion term is performed in
somaFOAM with a central difference scheme as seen in equation 3.15 with the or-
thogonality represented in figure 3.6, which is the default in all the studies performed.

An Euler time discretization is utilized to determine both value ϕ and value ∇ϕ.
Equations 3.16 and 3.17 showcases the implementation of the euler implicit method
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Figure 3.4: Stencil of the central differencing scheme.

Figure 3.5: Stencil of the upwind scheme.
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Figure 3.6: Orthogonality in the diffusive term.

ϕf = fxϕ
n
P + (1− fx)ϕ

n
N (3.16)

S(∇ϕ)f = ∆
ϕn
N − ϕn

P

d
(3.17)

As the equations are assembled, matrix-solving techniques such as BiCGStab and
BICCG are utilized alongside matrix preconditioners to speed up the convergence of
the matrix being solved [90]. This approach ensures that the numerical solution of the
plasma governing equations is accurate and efficient, leveraging various discretization
schemes to handle the complexities of plasma behavior.

3.3 Implementation of plasma boundary

conditions in somaFOAM

As the partial differential equations are solved, boundary conditions must be provided.
A zero-gradient boundary condition is applied for the neutral species, equating the
value of the adjacent cell to the boundary condition. For the active species, the conti-
nuity and energy equations for electrons implement mixed boundary conditions. This
dictates that the boundary operates as a Dirichlet or Neumann boundary condition
based on the calculated ratio, with 1 indicating a Dirichlet boundary condition and 0
signifying a Neumann boundary condition. A sample boundary condition in figure 3.7
considering the heat transfer problem is shown, representing convection heat transfer
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in a wall and elucidating how such conditions are implemented within somaFOAM.
The following equations for conduction and convection are given as follows:

qconv = qcond (3.18)

qconv = ·A · (Tinf − TB) (3.19)

qcond =
λ

σ
· A · (TB − TX) (3.20)

where h is the convective heat transfer coefficient, λ the conductive heat transfer
coefficient, A the surface area, and δ the distance from the surface to the center of
the conductive element. In somaFOAM, the mixed boundary condition is defined as
follows

XB = f · xref + (1− f) ·
[
Xx +

Gradref(x)

deltaCoeffs

]
(3.21)

where xref is the reference value at the boundary, xx is the value in the cell center,
Grad(X)ref is the reference gradient, deltaCoeffs is the inverse of the face-center to
cell-center distance, and f is a weighted factor that defines the boundary condition
type.

TB = f · Tinf + (1− f) · Tx (3.22)

f =
1

1 + λ
h·δ

(3.23)

Algebraic modifications yield the final boundary condition form. As shown in
equation 3.22 and 3.23. For the boundary conditions, the values are extracted for the
time step being solved, after the solution is developed in time to close the solution.

3.4 Implementation of external voltage boundary

conditions in somaFOAM

While the previous sections discussed the implementation of boundary conditions for
the active species, the implementation of the powered boundary condition required
detailed discussion, as it is not directly implemented on the electrode. Instead, two
types of boundary conditions were implemented: one that directly couples the power
to the plasma, and another that simulates an external circuit from a power supply
with an added resistance element [39]. For the power-coupled plasma algorithm,
figure 3.8 showcases a UML diagram showcase how the algorithm is integrated into
somaFOAM.
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Figure 3.7: Control volume for a conduction-convection case showcasing mixed bound-
ary conditions.

The power-coupled algorithm works for cases where the electrode is bare or in the
presence of a dielectric. However, limitations exist. As the power-coupled algorithm
matches the average power of the plasma per cycle to user input, it can not model
the electrical characterization of the plasma because of an external power supply,
which is important as the plasma intensity is a function of the external power supply.
Nonetheless, such an approach is still acceptable for obtaining a general idea of the
characterization of plasma at a certain power. To address this, an external circuit
with a resistor representing the impedance of the external circuit is implemented to
simulate a plasma system connected to an external power supply. Figures 3.9 and
3.10 show the schematic of the implementation in OpenFOAM, with equations 3.9
and 3.10 presenting the semi-discretized form of the external circuit, implemented
in somaFOAM as a boundary condition. This boundary condition is implemented
semi-implicitly to ensure stability in the solution.

Jc =
1

d

∫ a

0

∑
s

qsΓsdx (3.24)



28

Figure 3.8: Logic diagram of the electromagnetic library within somaFOAM.
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Figure 3.9: Electrical configuration of bare electrodes used to ignite argon and helium
plasmas.

Figure 3.10: Electrical configuration of DBD used to ignite argon and helium plasmas.

Uk
R = (V k

rf − P k)/

(
1− L∆t

ϵeqR

)
(3.25)

P k+1 = P k + (Uk
R −RJk

c )
L∆t

ϵeqR
(3.26)

For the first study, which examines the influence of power in helium and argon
plasmas using different ignition waveforms, the power-coupling algorithm is used. For
the follow-up study to determine the critical point of operation and the study where
a training dataset is utilized for the DMD algorithm, the external circuit is used by
default as it provides a more accurate modeling of the plasma.

The different waveforms used are shown in figure 3.11 for the first and second
studies, with the third study superimposing a sinusoidal waveform with a Gaussian
waveform with a duty cycle of 10%, as shown in figure 3.12. Equations 3.27 and 3.28
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Figure 3.11: Input waveforms used to ignite argon and helium plasmas.

outline the unipolar and bipolar discharges, respectively, each operating at a duty
cycle of 50%. In the unipolar pulsed discharge, the voltage amplitude v0 falls to zero
during the switching event. Similarly, for the bipolar pulsed discharge, there is a drop
in voltage amplitude to −v0 after the duty cycle.

v(t) =

{
v0, t ≤ Dduty ∗ 1

f

0, t ≥ Dduty ∗ 1
f

(3.27)

v(t) =

{
v0, t ≤ Dduty ∗ 1

f

−v0, t ≥ Dduty ∗ 1
f

(3.28)

For the sinusoidal damped ignition waveforms, the behavior is dictated by equation
3.29, where v0 denotes the voltage amplitude, ωD represents the damped natural
frequency as specified by equation 3.30, ω is the natural frequency, and ξ stands for
the viscous damping ratio. The sinusoidal decay equation, originally formulated by
Resen et al [91]. to analyze vibrational effects in structures, has been repurposed in
this study to generate a sinusoidal pulsed discharge, building on previous research.

v(t) = eξωt

[
v0 cosωDt+

(
1

ωD

+ 2ξ sinωDt

)]
(3.29)
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Figure 3.12: Sinusoidal-superposed gaussian waveform modeled for the DMD cases.

ωD = ω
√

1− ξ2 (3.30)

Two waveforms are studied for the sinusoidal damped waveforms in the first study:
one with a damping factor of ξ = 0.25 and the other with a damping factor of ξ = 0.1.
A value of 3× 108 is utilized for the natural frequency. Figure 3.12 visually represents
these ignition waveforms. For the second study, only a sinusoidal damped waveform
with ξ = 0.25 is used. For the Gaussian-assisted sinusoidal waveform, the Gaussian
waveform is superimposed depending on the configuration of interest. Nonetheless,
equations 3.31 and 3.32 relate the sinusoidal, Gaussian distribution, and superposed
form at the specified duty cycle.

f(x) =
vg

max(f(x))

1

σ
√
2π

exp
−(x− µ)2

2σ2
(3.31)

v(t) =

{
v0 sin(2πft) + f(x), t ≤ Dduty ∗ 1

f

v0 sin(2πft), t ≥ Dduty ∗ 1
f

(3.32)

Where vg is the maximum desired peak of the Gaussian distribution, µ is the
median of the normal distribution, and σ2 is the variance, which is controlled as a
function of the duty cycle such that 99.7% of the data is collected. v(t) represents
the control of the voltage as a function of the duty cycle.
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Figure 3.13: Courant controls and effects in numerical models.

3.5 Time controls

To speed up the simulation while ensuring system stability, a Courant condition is
used to adjust the time step at each instance as the simulation progresses. The
Courant condition specifies that the distance any information travels during the time
step within the mesh must be less than the distance between elements [92]; in other
words, the information from a given mesh element must propagate only to its imme-
diate neighbors. Figure 3.13 illustrates the relationship between the Courant number
and the propagation of information within the mesh. The Courant number is defined
in equation 3.33 as

Courant number =
U∆t

∆x
(3.33)

where U is the velocity vector, ∆t is the time step, and ∆x is the characteristic
size of the mesh [93]. Since the drift-diffusion model calculates the flux of electrons
rather than the velocity, the Courant number is expressed as:

Courant number =
1

2

Γ∆t

∆x
(3.34)

where Γ is the flux of electrons. A Courant number of 0.7 strikes a balance
between stability and speed [94], while a Courant number of 0.5 is used for highly
diffusive systems [95]. The time step is determined by comparing the minimum of the
calculated time step from the Courant number from equation 3.34 to a user-defined
maximum allowed time step. A second calculation compares the maximum between
the user-defined minimum allowed time step and the previous comparison.
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Chapter 4

Setup of simulation and external
tools

4.1 Chemical considerations

The cases studied utilize argon and helium as feedstock gases. As each gas has
different reaction profiles and coefficients for parameters such as mobility and drift-
diffusion coefficient, it is necessary to provide these profiles for each feedstock gas
since the characterization of the plasma depends on these properties. As seen in
the governing equations and boundary conditions, the utilization of these different
coefficients is ubiquitous. The mobility coefficients are obtained from experimental
data referenced in the literature for the ions [96, 97, 98, 99]. For electrons, depending
on the feedstock gas being utilized, an empirically obtained cross-sectional area for
reaction i of the feedstock gas of the plasma of interest is used and solved using an
external Boltzmann solver to determine the electron mobility. The cross-sectional
area can be defined as the probability of an particle hitting another particle. The
mobility for i charged species is defined as

µ =
q

mνm
(4.1)

Where q is the charge of the species, vm is the momentum-transfer collision fre-
quency defined as the frequency of collision between ions and neutral species [66],
and m is the mass of species i. As such, mobility is a function of a reduced electric
field, which relates the electric field within the system to the density of the back-
ground gas [66]. The mobility and drift-diffusion are related by equation 2.18, where
the diffusion coefficient relates the diffusion of the charged particles within a system
to its electrical characterization and temperature of active species i. Mobilities and
drift-diffusion are tabulated in table 4.1 and 4.2 for the ions and electrons of both
argon and helium.
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Table 4.1: Mobility/drift diffusion coefficients and species weights that compose the
argon plasma. DD stands for drift diffusion coefficient.

Specie Molecular Weight Mobility/DD-coefficient References

Ar 39.99 - [100]

Ar+ 39.99 µAr+ [100, 96]

Ar+2 79.89 µAr+2
[100, 96]

Ar* 39.99 1.65× 10−5 [100, 96]

e− 5.48× 10−4 µe− [100, 101]

Table 4.2: Mobility/drift diffusion coefficients and species weights that compose the
helium plasma. DD stands for drift diffusion coefficient.

Specie Molecular Weight Mobility/DD-coefficient References

He 4.00 - [100]

He∗2 8.00 4.73× 10−5 [100, 69]

He* 4.00 1.64× 10−4 [100, 69]

He+2 8.00 µHe+2
[100, 69]

He+ 4.00 µHe+ [100, 69]

e− 5.48× 10−4 µe− [100, 101]

The reaction rates need to be calculated to calculate the sink and source terms
for plasma reactions. While in many instances, the reaction rates can be calculated
using the Arrhenius form if the gas is assumed to have a Maxwellian distribution for
the velocities of the particles, the Maxwellian distribution falls short when modeling
non-thermal plasmas due to differences in energy between the electrons and the neu-
tral particles [102]. To overcome these deficiencies, the Boltzmann equation can be
further developed by using spherical coordinates, alongside a two-term expansion, to
calculate the distribution function [101]. As described by Hagelaar, while Boltzmann
solvers have usually been developed with high accuracy (up to seven expansion terms
to verify experimental data), for a fluid model, there are different requirements, in-
cluding being able to work over a large range of discharge conditions, fast numerical
convergence, and a larger tolerance for errors in the calculation of derived quantities
such as mobilities and reaction rates. The end goal is not to compare against specific
experiments but to be useful for a large range of modeling conditions. As such, BOL-
SIG+, a Boltzmann solver developed by Hagelaar, is utilized to obtain the electron
energy distribution function (EEDF) and derived quantities such as reaction rates and
electron mobilities of the plasma [101]. For the electron mobilities, as the background
gas number density is 1 Torr in BOLSIG+, and since the plasmas presented are op-
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Table 4.3: Reaction set used in the argon cases, excluding the DMD database. Rates
in cm3·s-1 and cm6·s-1 for two- and three-body collisions, respectively. Te and T in K.

Reaction Reaction Rate ∆ϵ Ref.

cm3·s−1 or cm6·s−1 eV

R1 e + Ar ⇒ 2e + Ar+ σ1 15.76 [101]

R2 e + Ar ⇒ e + Ar* σa 11.55 [101]

R3 e + Ar* ⇒ 2e + Ar+ σa 4.14 [101]

R4 2Ar* ⇒ e + Ar+ + Ar 1.2× 10−9(300/T )1/2 - [104]

R5 Ar+ + 2Ar ⇒ Ar+2 + Ar 2.5× 10−31(300/T )3/2 - [105]

R6 e + Ar+2 ⇒ Ar* + Ar 7× 10−7(300/Te)
1/2 - [106]

R7 Ar* ⇒ Ar + hv 5× 105 - [107]

R8 e + Ar ⇒ e + Ar σa - [101]

Table 4.4: Reaction set used in the argon cases, excluding parametrization cases.
Rates in cm3·s-1 and cm6·s-1 for two- and three-body collisions, respectively. Te and
T in K.

Reaction Reaction Rate ∆ϵ Ref.

cm3·s−1 or cm6·s−1 eV

R1 e + Ar ⇒ 2e + Ar+ σ2 15.76 [101]

R2 e + Ar ⇒ e + Ar* σa 11.55 [101]

R3 e + Ar* ⇒ 2e + Ar+ σa 4.14 [101]

R4 Ar* + e ⇒ Ar + e 1.7× 10−9 -11.55 -

R5 Ar* + Ar* ⇒ Ar+ + e 2.8× 10−10 - -

R6 Ar* + Ar ⇒ Ar + Ar 3.0× 10−15 - -

erated at 760 Torr except for the argon plasma where the DMD method is applied,
the mobilities have to be adjusted accordingly [103]. To do so, the mobility provided
by BOLSIG+ is divided by the number density at 1 Torr and room temperature,
then multiplied by a number density corresponding to the operating conditions. The
mobility is calculated in BOLSIG+ in equation 4.2.

µN = −γ
3

∫ ∞

0

ϵ
∼
σm

∂F0

∂ϵ
dϵ (4.2)

Where ϵ corresponds to the electron energy, F0 is the isotropic part of the distri-
bution function,

∼
σm is the effective total momentum-transfer cross-section, and γ is

a constant coefficient relating the electron charge to the mass.
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Table 4.5: Reaction set used in the helium case. Rates in cm3·s-1 and cm6·s-1 for two-
and three-body collisions, respectively. Te in K.

Reaction Reaction Rate ∆ϵ Ref.

cm3·s−1 or cm6·s−1 eV

R1 e + He ⇒ He* + e 2.308× 10−10T 0.31
e exp

(
− 2.297×105

Te

)
19.8 [108, 109]

R2 e + He* ⇒ He + e 1.099× 10−11T 0.31
e -19.8 [108]

R3 e + He ⇒ He+ + 2e 2.584× 10−12T 0.68
e exp

(
− 2.854×105

Te

)
24.6 [108, 109]

R4 e + He* ⇒ He+ + 2e 4.661× 10−10T 0.6
e exp

(
− 5.546×104

Te

)
4.87 [108, 109]

R5 e+He∗2 ⇒ He+2 + 2e 1.268× 10−12T 0.71
e exp

(
− 3.945×104

Te

)
3.4 [108]

R6 e + He+2 ⇒ He* + He 5.386× 10−7T−0.5
e - [108]

R7 He* + 2He ⇒ He*2 + He 1.3× 10−33 - [108]

R8 He++ 2He ⇒ He+2 + He 1.0× 10−33 - [108]

R9 e + He+2 ⇒ 2He 1.0× 10−9 - [110]

R10 e + He+2 + He ⇒ 3He 2.0× 10−27 - [110]

Figure 4.1: Mobilities of active species for argon.
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Figure 4.2: Mobilities of active species for helium.

Tables 4.3, 4.4 and 4.5 correspond to the reaction rate profiles for the argon and
helium plasmas. For argon, two reaction profiles were provided. Table 4.3 is used for
the parametric studies of APGD plasmas operating at atmospheric pressure, while
table 4.4 is used to create a database of different simulations and train a DMD model
for parametrizing operating conditions. The reason for different argon reaction profiles
is due to the simplicity of the second reaction profile for argon shown in table 4.4,
which allows the study of DMD algorithms regarding feasibility before upscaling usage
of DBD to more complicated plasma models. For table 4.4, reactions 5 thru 9 are
provided by the experience garnered thru modeling argon plasma, making educated
assumptions for such reaction rates. For helium, as Lui [38] was able to accurately
simulate helium plasmas at atmospheric pressure using a Maxwellian approach, the
reaction rates for the active species are calculated using the Arrhenius form as seen
in table 4.5. However, unless noted otherwise, such an instance is not the case for
nonthermal-atmospheric plasmas, preferring a Boltzmann approach to the calculation
of plasma parameters [102]. The EEDF distribution was solved using BOLSIG+ for
the electrons.

The mobility profiles, as a function of the E/N applied as a function of average
energy (which is a function of the E/N calculated), are plotted in the figures 4.1 and
4.2 for argon and helium. The average electron energy and reaction rate for argon
are calculated utilizing equation 4.3 and equation 4.4.
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Figure 4.3: Reaction rates for argon calculated by BOLSIG+.

nϵ = n

∫ ∞

0

ϵ3/2F0dϵ ≡ n
−
ϵ (4.3)

These values will be used to match the properties in the system with the aver-
age electron energy calculated using the FVM method. While a concern with the
BOLSIG+ model is the increase in anisotropy in the distribution profile as the E/N
increases [101], the relatively low operating electron temperature (up to 10 eV in
some cases for argon and helium plasmas) precludes this from being an issue for the
plasmas being studied. However, this might not be the case in all instances, and
special care might be needed when dealing with high E/N values to ensure acceptable
accuracy in the calculated variables.

kk = γ

∫ ∞

0

ϵσkF0dϵ (4.4)

4.2 Generation of mesh

All the cases in these studies consisted of one-dimensional simulations. Therefore,
a mesh must be provided to ensure that somaFOAM can interpret it as a one-
dimensional, orthogonal mesh. For dielectric cases, the mesh must be coupled with the
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primary mesh. While meshes can be constructed using built-in tools like blockMesh

[111], these tools are tedious and have limited usability for more complex meshes.
Thus, Gmsh, an open-source meshing tool [112], generates the meshes. Gmsh’s ca-
pabilities include labeling boundary conditions, defining volume spaces, and mesh
refinement in both structured and unstructured meshes, among other functions. A
noteworthy feature of Gmsh is its ability to create meshes using both the GUI and
scripting, allowing for fine-tuned refinement and automation of the mesh generation
process when needed. Sample code used to generate meshes for argon and helium
plasmas is shown in figure 4.4.

By default, somaFOAM defines the mesh in a three-dimensional (3D) space. Un-
less specified otherwise by the user, the mesh defaults to a 3D space. Figure 4.5
showcase the generation of the mesh defined by the script in Figure 4.4. Lines 1 to
4 represent the points defining the physical boundaries of the mesh, where the mesh
will be generated between these points. Lines 6 to 9 represent the lines connecting
the points to bind the mesh. Lines 11 to 13 define the physical extent of the mesh
and set up the mesh gradient within the defined geometry, with a resolution of 800
cells. Lines 14 and 16 define the mesh as structured, ensuring orthogonality, while
lines 17 to 21 define the volume of the mesh to ensure compliance with OpenFOAM.
Lines 23 to 26 define the boundary labels and the volume of the mesh.

After using Gmsh, the mesh is converted to a format compatible with somaFOAM
using the command gmshToFoam in the terminal, followed by transformPoints -scale

"(0.001 0.001 0.001)", which scales the mesh in the x, y, and z directions accord-
ingly. In the dielectric case, Figure 4.6 shows the coupling of the plasma mesh to
the dielectric mesh, where the directMappedPatch boundary condition is used to
couple the dielectric mesh to the plasma mesh. The boundary conditions are defined
within the mesh files in somaFOAM, as seen in 4.7, where patch indicates a base-
type boundary condition further defined in the 0 folders within the case directory. To
define the dimensions of the mesh, empty indicates an empty boundary condition.

This approach ensures that the meshing process is efficient and adaptable, provid-
ing a robust framework for simulating plasma phenomena with somaFOAM. The use
of Gmsh for mesh generation and subsequent conversion for somaFOAM compatibil-
ity streamlines the setup, allowing for precise control and customization according to
the specific requirements of each simulation.

4.3 Dynamic mode decomposition

One of the main limitations of parametric studies is the large number of simulations
required to consider the expansive ranges of the studied variables. Depending on
the parametrization required and how many variables are to be parametrized, these
databases can be expensive in size and computational runtime. They require many
processors if run in serial mode, alongside significant storage requirements if high
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Figure 4.4: gMesh scripting of 1D mesh.
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Figure 4.5: Mesh representation for the bare electrode cases.

Figure 4.6: Mesh representation of the DBD cases.

Figure 4.7: Boundary condition definition in foam mesh format.
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resolution is needed. Thus, it is beneficial to implement data learning methodologies
that can accurately predict parametrized behavior within a set of ranges of interest
while minimizing large storage requirements and computational downtime. It is worth
investigating the feasibility of utilizing data-driven algorithms such as DMD [113]. A
training model can be developed to obtain intermediate values without actual simu-
lations by running an initial dataset of ranges of interest within the parametrization
[60]. This possibility would allow efficient and rapid data output, accelerating research
interests [114]. The aforementioned studies on the parametrization of the voltage for
argon plasmas indicate a need for such algorithms, as the parametrization required
multiple servers and storage space to obtain a solution. Hence, the utilization of
DMD in these studies is necessary.

DMD, developed by Schmid in fluid mechanics to study fluid phenomena [65],
allows for a data-driven approach to complex phenomena based on spatiotemporal
coherent structures. One of the main advantages of the DMD method is that it is
independent of the governing equations used to model the trained data; rather, data
is the driving method [59]. Applications where the DMD method has shown inter-
est include neurosciences [115], blood flow [116], epidemiology [117], robotics [118],
finance [119], among others, where the commonality is the highly nonlinear nature
of the data in both time and space [120, 121, 122]. Thus, DMD offers attractive
applications within the plasma field, where plasmas, regardless of their mode of oper-
ation, are highly nonlinear in both time and space, as it is often required to have an
educated assumptions to simplify the plasma model while ensuring a baseline level of
fidelity within the data. While the scope of DMD for the following study is towards
numerical models [114], there is a compelling argument for using DMD methods for
experimental data [65]. DMD can filter data noise [123], provide predictions indepen-
dent of an initial set of parameters, and predict model behavior for all time in the
future, provided the model baseline is in a cyclical quasi-steady state [62].

When processing a dataset, the DMD approach utilizes a singular value decom-
position (SVD) [62] approach and expands upon it. The SVD approach allows the
capture of the dominant patterns within the data while discarding weakly correlated
data by calculating the strengths of the correlations when determining the eigenvalues
of the orthonormal coefficient matrix [124]. The SVD algorithm is used in processes
involving data compression and noise reduction. The SVD is calculated by expressing

the dataset X, as seen in equation 4.5, in terms of its left-singular vectors (
∼
U), right-

singular vectors (
∼
V), and singular values (

∼
Σ) as seen in equation 4.6, which arrange

the diagonal from the strongest to the weakest correlation, expanded in equation 4.7,

where σk is the k
th diagonal entry of

∼
Σ, uk the kth columns of

∼
U and vk the kth column

of
∼
V. The tilde corresponds to a truncated singular value dataset if truncated. The

SVD size can be truncated to retain 90-95% of the total variance, as seen in equation
4.7, where the data is organized in terms of the strength of their singular values, from
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larger to smaller, with the goal of compressing the data, minimizing computational
overhead, and accurately representing the analyzed data [124, 125].

X =

[
|
x1
|

|
x2
|

|
x3
|

...
|

xm
|

]
(4.5)

X ≈
∼
U

∼
Σ

∼
V

T

(4.6)

X =
m∑
k=1

σkukv
T
k = σ1u1v

T
1 + σ2u2v

T
2 + ...+ σmumv

T
m (4.7)

The DMD algorithm expands upon the SVD algorithm to allow for time evolution
analysis of the system. This is done by storing the time evolution of the data into
data matrices X and X’ as seen in equation 4.8 and 4.9, where each column of X
represents an n-dimensional state vector at a time step tk, and X’ represents the state
at time tk+1 [62].

The DMD algorithm finds the optimal linear transformation approximating the

data at each time step [59] first by calculating a reduced best-fit matrix,
∼
A, by utilizing

a pseudo-inverse matrix of the time evolution [124] through the SVD method [62, 124]
in rank-r truncated SVD modes to solve the minimization problem as seen in equation

4.10. A represents the full matrix of
∼
A in where further manipulation is done as seen

by the end result of equation 4.10, reduced by a rank-r.
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After obtaining
∼
A, the eigendecomposition is performed to obtain the DMD spa-

tial modes and their dynamics as shown in equation 4.11 for
∼
A. The diagonal matrix

Λ contains the eigenvalues coinciding with the leading eigenvalues of
∼
A. The eigen-

vectors W corresponding to the eigenvectors of
∼
A as seen in equation 4.11. Finally,

the reconstruction of the eigendecomposition of A is done from Λ and W, with the
eigenvalues of A given by Λ and the eigenvectors of A (which are the DMD modes)
by columns of Φ as shown in equation 4.12. The reconstructed time series from the
DMD modes is obtained in equation 4.13, with Φ† representing the pseudo inverse
matrix of the DMD modes.
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∼
AW = ΛW (4.11)

Φ = X′VΣ−1W (4.12)

xk+1 = ΦΛkΦ†x1 (4.13)
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Chapter 5

Benchmarking and validation

5.1 Validation and benchmark for argon and

helium

A benchmark comparison between somaFOAM and published results is essential to
establish the reliability of the findings. Figures 5.1 and 5.2 depict the time-averaged
number density of active species obtained by Balcon, compared to the results obtained
by somaFOAM. Notably, the calculated number densities of e- and Ar2

+ exhibit a
correspondence with Balcon’s results. Although differences exist in the sheath region
due to the discretization and solution methods used, the overall trends show a high
level of agreement between somaFOAM and Balcon’s findings. However, for Ar+, the
correspondence is less explicit than that observed for e- and Ar2

+.
The observed discrepancy between the benchmark and somaFOAM for Ar+ can

be attributed to the chosen boundary conditions for the ions and the interactions with
processes involving electrons, as detailed in table 4.3. In comparison, the generation
of Ar2

+ in the argon plasma depends on the presence of Ar+ in reaction R5, which
is tied to the bulk background temperature and remains unaffected by electron en-
ergy. Conversely, the electron temperature influences the sink reaction R6 for Ar2

+.
While the sink reaction reduces the number density distribution of Ar2

+ within the
sheath region, the implications are more pronounced for Ar+ as Ar+ collision fre-
quency is larger than that of Ar2

+, where as such, the electric field effects on the
boundary condition of Ar2

+ becomes more pronounced. At the same time, the bulk
region number density is in agreement between models, further indicating the factors
mentioned above as the source of discrepancy.

Figure 5.3 displays the time-averaged electron energy for the helium case. The
electron energy was selected as the benchmark metric based on the data provided by
Lui et al. The results indicate a strong agreement between somaFOAM and Lui et al.
in the bulk region of the plasma. However, notable discrepancies are evident in the
sheath region, where the values derived from somaFOAM significantly diverge from
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Figure 5.1: Results obtained from somaFOAM for an argon plasma compared to the
numerical results of Balcon et al. e- and Ar2

+ timed-averaged profiles are compared.

Figure 5.2: Results obtained from somaFOAM for an argon plasma compared to the
numerical results of Balcon et al. Ar+ and Ar2

+ timed-averaged profiles are compared.
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Figure 5.3: Helium benchmark case using timed-averaged electron energy distribution.

those reported by Lui. These observed differences can be attributed to the distinct
models employed for comparison. somaFOAM is an FVM model crafted to simulate
plasma efficiently while conserving computational resources.

In contrast, Lui et al. adopted a hybrid model, combining a fluid model with a
PIC approach for electron modeling. This hybrid approach strikes a balance between
accuracy and computational efficiency. Consequently, directly comparing somaFOAM
with Lui’s numerical results in the sheath region is inappropriate due to the distinct
simulation methods employed. Nonetheless, indirect comparisons can be utilized to
assess somaFOAM’s performance. An examination of the RMS voltage and current
curves presented in figure 2 of Lui’s paper reveals that the plasma is categorized
as weak, indicated by a need of significant voltage increase before transitioning into
the unstable region (i.e., the γ region). Additionally, figure 5.4 corroborates the
classification of the plasma as weak, evidenced by the lower ionized species number
density, situated in the vicinity of 10−11 cm−3.

Other validation parameters, such as the input voltage at the electrode and the
peak current in the bulk plasma, were considered for the argon case in the bench-
mark. The values derived were 428 V and 103 mA/cm2, respectively. The percentage
differences were 0.46% and 7.0%, respectively, highlighting a high confidence level in
the somaFOAM algorithms’ accuracy. These parameters offer valuable insights into
the plasma system’s behavior and characteristics. The close agreement between the
input voltage and peak current values from somaFOAM and those provided by Bal-
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Figure 5.4: Timed-averaged number density of SOMAFOAM benchmark for a helium
feedstock gas. The following plots showcase a relatively weak plasma, with e-, He+2
and He+ number densities in the bulk plasma being 2×1011 cm-3 and 2×108 cm-3.

con bolsters confidence in somaFOAM’s foundational components. These validation
results firmly underpin the findings presented in this paper. In the case of helium,
a direct comparison of input voltage and bulk current density would not be suitable
since Lui only provided numerical data for the temperature profiles. However, the
input voltage of 218 V determined by somaFOAM following plasma breakdown can
be related to the experimental breakdown voltage of 375 V. While the breakdown
voltage is expected to be larger than the post-breakdown voltage, this comparison
provides insight into the post-breakdown voltage, suggesting an operating voltage
close to the input voltage calculated in the simulation.

Based on these benchmarking results, somaFOAM is suitable as a numerical pack-
age for analyzing argon and helium plasmas under RF and APGD conditions. While
discrepancies were present in the sheath region, overall, somaFOAM showed agree-
ment with the benchmarks in characterization and plasma behavior. This allows
somaFOAM to be utilized and relied upon for the analyses of interest in this paper.
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Figure 5.5: Validation of Balcon’s argon model compared to somaFOAM.

5.2 Validation of the external resistance circuit

While the validation provided by comparing somaFOAM against models developed
by Balcon [126] and Kong [58] shows good agreement utilizing the power-coupled al-
gorithm, the power-coupled algorithm is limited in accurately modeling the effects ex-
ternal system into the plasma because they do not account for the external impedance
due to the power supply coupled to the plasma. Alternatives, such as cycle-constant
voltage input, would cause divergence in the model as the number density would
increase without any resistive element limiting such growth. This is inaccurate in ex-
perimental setups since external power supplies are not ideal voltage sources, and the
external impedance effectively acts as a ballast. Therefore, as previously discussed,
an external, semi-implicit resistive element is considered. To validate that the imple-
mentation of Balcon’s algorithm matches the expected behavior, figure 5.5 and 5.6
compare the behavior to that of Balcon’s resistor-dielectric configuration and those
obtained experimentally by Kong.

It should be noted that Balcon’s configuration consists of a resistor-dielectric-
electrode-plasma-ground. In contrast, the configuration utilized for modeling the ar-
gon plasma utilizing somaFOAM is a resistor-plasma-ground, which will yield lower
number densities as the dielectric as an electrical element stabilizes the plasma and
allows for a larger generation of number densities. At the same time, because the
α-γ mode is dependent on the boundary conditions being utilized, the boundary con-
dition utilized for Balcon omits the electric field when considering the ions within
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Figure 5.6: Validation of Kong’s experimental data compared to somaFOAM in the
presence of a dielectric.

the plasma, causing overestimation of the density within the plasma at the critical
point. Nonetheless, it is observed that the same behavior is present for both, indi-
cating that the plasma in dielectric-plasma-electrode or electrode-plasma-electrodes
operates with a positive differential in the α mode of operation. In contrast, as the
plasma approaches the critical point and the γ mode of operation, the differential
conductivity changes to that of negative. To demonstrate that the SEE is responsible
for the mode of operation, figure 5.7 showcases the effects of a SEE of 0.1 to 0. In the
case of an RF-DBD configuration, the α-γ modes of operation are compared to exper-
imental results [58], where the behavior of the plasma in the simulation in comparison
to the experiment matches, indicating that the resistive algorithm in somaFOAM is
adequate to model DBD systems.

5.3 Validation of DMD model

Before utilizing the DMD method for assisting in the ignition of the plasma, a simple
validation was done comparing the evolution of the electron number density during
a cycle operated at 10 MHz and 1 Torr, utilizing the argon profile as shown in table
4.4. For the DMD model, nine data points corresponding to the ignition voltages
(150 V, 200 V, 225 V, 230 V, 240 V, 245 V, 250 V, 300 V, 450 V) at a time step of
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Figure 5.7: Investigation of the effects of SEE on plasma behavior.

Figure 5.8: Comparison of DMD model to somaFOAM for a sinusoidal-ignited plasma
operating at a voltage of 300 V, 1 Torr, 1 cm under an argon feedstock gas. The
different plots corresponds to different times within a cycle.



52

Figure 5.9: Percentage of differences between DMD and somaFOAM for figure 5.8.

5× 10−5 s and a mesh size of 1000 data points within the time step were utilized. For
the DMD itself, a monolithic fit was used [60]. As showcased in figure 5.8, while the
profiles show relatively good agreement, the percentage of difference of the mean is
13.79%, 20.32%, 13.79%, 20.18%, and 13.79%, respectively. While these percentages
might seem large, it must be considered that the DMD method reduces the data
being trained upon by the strength of the singular values to maximize efficiency at
the cost of some accuracy, which is acceptable in this instance. The spatial difference
is shown in figure 5.9. One common misconception of machine learning and artificial
intelligence is that they will provide results as accurate as traditional CFD methods.
This is not the goal; rather, the goal is to obtain an acceptable solution that showcases
the model’s behavior. If needed, the CFD model can be run to extract more details
from the solution. Otherwise, data-driven models allow for a solution to be obtained
in a fraction of the time, reducing hours to seconds in this instance.

As the solution is analyzed during its cycle, two main behaviors are observed.
First, at a quarter of the cycle, the DMD model overestimates the electron density
of the sheath region. Second, the symmetry of the plasma at the half cycle, end, and
finish does not exactly match, with the DMDmodel skewing towards the sheath region
where the electric field is the strongest. However, taking this into consideration, it can
be said that the DMDmodel for the electrons still maintains the main characterization
of the plasma profile as a function of time, despite the discrepancies. While this
model was trained using voltages that do not break down the gas, voltages that do
break down the gas (245 V) were also included in the training of the DMD algorithm
to distinguish between regions where the gas does not break down and where it
does. While other data could have been trained, such as ions, electrons were selected
because they represent the strongest non-linearity effects within the system, pushing
the envelope with DMD. It must be mentioned that while DMD has been able to
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accurately model the general behavior of the plasma, it struggles with accurately
modeling the sheath regions. In this particular instance, the small dataset could have
contributed to the overestimation and the mentioned asymmetry. However, running
a large dataset could hamper one of the advantages of using DMD, which is relatively
accurate results with minimal downtime, as the results are data-driven independent
of the physics of the problem itself. Nonetheless, a trend in the characterization of
the sheath region for the DMD algorithm still follows somaFOAM results, showing
good agreement in the trend of the sheath characterization.
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Chapter 6

Diagnostic of helium and argon
plasmas

6.1 Setup of simulations

The operating conditions for the argon and helium plasma cases consist of the chem-
ical profiles shown in tables 4.3 and 4.5. A one-dimensional mesh is utilized for the
geometrical considerations, consisting of 800 cells with an electrode area of 78.15 cm2

for the argon plasma and 3.14 cm2 for the helium plasma. A power of 3 W and 915 W
was applied in the waveforms described in figure 3.11, ensuring that the waveforms
are ignited under the same power conditions. The goal is determining whether differ-
ent number densities are obtained at constant power. The power-coupled algorithm
is described in figure 3.8, showcasing its utilization.

The boundary conditions for argon match those of Balcon [39], with a SEE of
0.1 and secondary electrons provided with an energy of 0 eV. The background gas
temperature is 300 K, with an operating pressure of 760 Torr. A SEE of 0.1 is utilized
for the helium plasma, coupled with an energy of 5 eV, a background temperature
of 350 K, and an operating pressure of 760 Torr, following Lui’s boundary conditions
[38]. A Courant-dependent time step ranges from 1 × 10−10 to 1 × 10−15 seconds,
depending on a maximum Courant number of 0.7. The discretization schemes and
solution of the numerical model are described in section 3.2.

6.2 Results for helium

While argon is a low-cost alternative to helium [56], helium has been the bench-
mark when studying plasma characterization basics because of its ease of ignition
and stability [41]. Thus, studying the parametrization of helium gas is important
as it provides a starting point. Time-averaged, spatially averaged profiles for helium
plasmas using sinusoidal, pulsed, and sinusoidal decay ignition waveforms are shown
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Figure 6.1: Spatio-temporal averaged number densities for e− under different ignition
waveforms.

in figure 6.2. The bulk number densities of e− are 1.01 x 1011 cm−3, 1.16 x 1011 cm−3,
2.72 x 1011 cm−3, 2.96 x 1011 cm−3, and 1.95 x 1011 cm−3 for plasma ignited using
sinusoidal, bipolar, unipolar, and sinusoidal decay waveforms with damping factors of
0.25 and 0.1, respectively. In other words, the sinusoidal decay waveform (ξ = 0.25)
generates the strongest plasma, followed by unipolar, sinusoidal decay waveform (ξ
= 0.1), sinusoidal, and bipolar. From an efficiency standpoint, aiming to generate
the strongest plasma, the sinusoidal decay waveform (ξ = 0.25) is the most effec-
tive. Nevertheless, a more comprehensive understanding of operational mechanisms
is required, extending beyond mere number densities. A thorough electrical and elec-
tron characterization will provide deeper insight into plasma properties and resultant
intensity.

Figures 6.2, 6.3, and 6.4 depict the electrical characterization of sinusoidal decay
waveforms (ξ = 0.25, 0.1) and sinusoidal waveforms at the midpoint of the gap, corre-
sponding to the bulk plasma. By measuring the phase shift between the bulk voltage
and current, shifts of 63.59o, 56.63o, and 79.14o were obtained. While the sinusoidal
waveform operates in the α mode, the sinusoidal decay waveform shift angle suggests
operation in the γ mode [22, 127], characterized by a decreased shift angle, indicating
a transition from a capacitive to a resistive mode. The bulk electron evolution in
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Figure 6.2: Voltage, current density, and number density of electrons for plasmas
driven by a sinusoidal decay waveform (ξ = 0.25). vb, vi, ib and e- correspond to the
bulk plasma voltage, input plasma voltage, bulk plasma current and electron number
density, respectively.

figures 6.2, 6.3 suggest this. Comparing the sinusoidal and bipolar electron profiles to
the damped profiles shows an uptick in electron activity in the bulk plasma after the
input voltage is cut off, indicating domination by SEE as even without an external
source, because of the energy within the system, the SEE is still dominant.

Notably, although operating plasmas in the γ mode are often considered ineffec-
tive due to the risk of arcing, the fact that the ignition waveforms utilized operates
at the same power indicates that the sinusoidal decay waveforms can operate more
efficiently than both sinusoidal and pulsed waveforms. Additionally, the shift angle of
the sinusoidal decay waveform (ξ = 0.25) is observed to be larger than that of its (ξ
= 0.1) counterpart. This suggests that a stronger damping factor, while allowing for
higher plasma number density, also provides greater stability than a plasma driven by
a lower damping factor. Therefore, higher damping is favorable. However, operating
the plasma at the same power does not provide insight into its stability, with further
investigation into the waveforms’ stability necessary to optimize plasma density and
prevent constriction and arcing. While both sinusoidal decay waveforms operate at
a frequency of 13.56 MHz, they fundamentally function at 50 MHz. This higher fre-
quency allows for more nuanced control over plasma characterization since increasing
the frequency appears to raise the critical point between the α and γ modes [38, 31].
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Figure 6.3: Voltage, current density, and number density of electrons for plasmas
driven by a sinusoidal decay waveform (ξ = 0.1). vb, vi, ib and e- correspond to the
bulk plasma voltage, input plasma voltage, bulk plasma current and electron number
density, respectively.

The operating mode of the unipolar pulsed waveform resembles a DC discharge,
especially when observing the cathode fall in figure 6.5 [37, 128, 129, 130, 131]. How-
ever, the characterization cannot be fully equated to a DC discharge due to the sheath
region in the anode. Nevertheless, similarities exist. In the case of the bipolar pulsed
discharge, a behavior similar to a sinusoidal glow discharge is characterized by the
symmetry of the sheaths. Figure 6.6 displays the electrical characterization of both
unipolar and bipolar ignited plasmas. When comparing the bulk electron density for
plasmas driven by a unipolar waveform to a bipolar waveform, a notable observation
is the continuous increase in the bulk electron density after the pulsed event. In
contrast, the bipolar pulse discharge’s bulk electron number density decreases after
the input and bulk voltage match, or 17.57 nanoseconds (ns) following this event.
Another disparity lies in the bulk voltage: the voltage of unipolar-driven plasma
climbs with a positive differential until it matches the input voltage. Meanwhile, the
bipolar-driven plasma’s voltage initially aligns with the bulk and input voltages at
the pulsed event. However, it fluctuates after the pulsed event until the bulk voltage
synchronizes with the input voltage 31.20 ns post-pulsation. These variations in bulk
voltage evolution are ascribed to the capacitive nature of plasmas operating in the α
mode, contrasting with the resistive plasma when operating in the γ mode.



58

Figure 6.4: Voltage, current density, and number density of electrons for plasmas
ignited using a sinusoidal waveform. vb, vi, ib and e- correspond to the bulk plasma
voltage, input plasma voltage, bulk plasma current and electron number density,
respectively.

As such, the bulk voltage evolution from unipolar and pulsed discharges can be
described as a consequence of their modes of operation. While the unipolar pulsed
discharge bulk voltage increment is positive throughout the event, the bulk voltage in
the bipolar discharge experiences a decrease followed by an increase until it matches
the input voltage. This behavior could indicate that in the α mode, despite a sudden
surge of energy, the plasma structure resists sudden changes, as the conductivity
is less than that in the γ mode. Such is not the case with the unipolar discharge
due to the dramatic increase in conductivity because of its operation in the γ mode,
where the impedance encountered is minimized. While the plasmas being analyzed
are essentially capacitive due to the frequency of operation, the unipolar and bipolar
voltage waveforms illustrate these effects best. As seen in the figure 6.6, the increase
in bulk voltage coincides with the drop in bulk current, effectively confirming the
nature of the plasma analyzed.

When considering plasma parameters such as displacement current, electron tem-
perature, and sources/sinks within the gap, the spatio-temporal profiles can further
verify the modes of operation for the plasma. For the sinusoidal and bipolar pulses,
both cases present a clear electron temperature profile with maximum electron ener-
gies of 3.63 and 3.40 eV, respectively, and a time-averaged bulk electron energy of 0.50
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Figure 6.5: Number densities of the helium reaction profile for a unipolar and bipolar
ignited plasma.

eV. A sheath/bulk ratio of 7 and 6 is encountered, with the spatio-temporal profiles
for both plasmas in the figure 6.7 showing a volumetric distribution. However, in the
case of the sinusoidal decay and unipolar waveforms, the maximum electron energy
for the sinusoidal decay waveforms (ξ = 0.25, 0.1) and the unipolar-driven plasma
corresponds to 5, 4.75, and 4.50 eV, with time-averaged bulk electron energies of 0.25,
0.35, and 0.30 eV, respectively, and sheath/bulk ratios of 20, 14, and 15, respectively.
Comparing both ratios, it is evident that the ratios for the plasmas operating in the
γ mode are three times that of those in the α mode.

At the same time, figure 6.7 showcases the sinusoidal decay and unipolar-driven
plasmas’ electron energy distribution localized to the sheath region, in stark con-
trast to the volumetric distribution shown for the sinusoidal and bipolar plasmas
[47]. The electron source/sink spatio-temporal distribution, shown in figure 6.8,
highlights significant differences in the intensity of electron activity within the bulk
plasma. For the sinusoidal and bipolar plasmas, the bulk region where electron gen-
eration occurs has widths of 244.67 µm and 676.13 µm, respectively, with averaged
source rates of 1015 and 1016 cm−3 s−1. However, for the sinusoidal decay (ξ = 0.25,
0.1) and unipolar plasmas, the widths of the bulk region where electron generation
occurs are 1025.09 µm, 867.36 µm, and 701.51 µm, with averaged source rates of
1018, 1017, and 1017 cm−3 s−1, respectively. These differences, marked by an increase
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Figure 6.6: Voltage, current density, and number density of electrons for plasmas
driven by unipolar and bipolar waveforms. vb, vi, ib and e- correspond to the bulk
plasma voltage, input plasma voltage, bulk plasma current and electron number den-
sity, respectively.

Figure 6.7: spatial-temporal distribution for the electron energy within the helium
plasma with different ignition waveforms. (A) sinusoidal, (B) bipolar, (C) sinusoidal
decay: ξ = 0.25, (D) unipolar, (E) sinusoidal decay: ξ = 0.1.
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Figure 6.8: spatial-temporal distribution for the source/sink terms for the electron
within the helium plasma with different ignition waveforms. (A) sinusoidal, (B)
bipolar, (C) sinusoidal decay: ξ = 0.25, (D) unipolar, (E) sinusoidal decay: ξ = 0.1.

in the bulk region and intensity of the sources within the bulk region consistent with
the decrease in the sheath length as the plasma transitions from the α to γ mode, also
match with the increased activity of the bulk region, independently of whether the
mode of operation changes from being dominated by the bulk plasma to the sheath
region.

While the plasmas analyzed operate with the same average power, their modes
of operation and power distribution within a cycle differ depending on the driving
waveform. Understanding the power distribution within the plasma is, therefore,
important. Figure 6.9 provides insight into the spatio-temporal power distribution
within the plasmas. For the sinusoidal case, the generation and consumption of power
alternate as the sheath alternates within each half cycle, with power consumption
associated with the sheath bias at that moment of the cycle. A similar distribution
is observed for its counterpart operating in the α mode, the bipolar-driven plasma.
At each pulsed event, the bulk of the power consumption occurs in the sheath region,
dependent on the input voltage.

A distinction from the bipolar plasma is that the bulk plasma region increases
to an average power of 27 W/cm3 but quickly dissipates to a power consumption
of less than 10 W/cm3. In contrast, the sinusoidally driven plasma’s average power
consumption in the bulk region never increases beyond 10 W/cm3. This discrepancy
is due to the pulsed nature of the bipolar discharge, where an instantaneous increase
in voltage is encountered, briefly increasing the power distribution across the entire
plasma.

In the case of the unipolar pulsed discharge, a higher intensity in the power dis-
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Figure 6.9: spatial-temporal distribution for the power density within the helium
plasma with different ignition waveforms. (A) sinusoidal, (B) bipolar, (C) sinusoidal
decay: ξ = 0.25, (D) unipolar, (E) sinusoidal decay: ξ = 0.1.

tribution across the entire gap is observed, with sheath consumption reaching values
close to 500 W/cm3 at each pulsed event, which then decreases as the ignition pro-
gresses. A notable distinction from the bipolar discharge is the quasi-uniformity in
power consumption observed in the bipolar sheath, in contrast to the time-dependent
changes in the unipolar-driven plasma. During the γ mode of operation, secondary
electrons become the dominant source of electron generation due to secondary emis-
sions, as evidenced by the power consumption exceeding 500 W/cm3 at the onset of
the pulsed event. An interesting aspect of unipolar-driven plasma is its lower energy
consumption of bulk electrons following the pulsed event, when compared to the si-
nusoidal decay waveform (ξ = 0.1), despite a higher number density in the unipolar
waveform. This phenomenon might be attributed to the fact that bulk electron en-
ergy is converted more efficiently to joule heating as frequency increases [38]. Such
phenomenon is substantiated by sinusoidal decay waveforms operating at an effective
frequency of 50 MHz, which display a bulk power of 125 W/cm3 compared to the
average bulk power of 2.5 W/cm3 seen in unipolar plasma after the pulsed event [38].

As such, the increase in power in the bulk region at the voltage surge event for
the sinusoidal decay and pulsed-driven plasmas manifests differently. For unipolar
and bipolar waveforms, power consumption is minimized after the pulsed event. At
the same time, the sinusoidal decay plasmas exhibit high power consumption in the
bulk region after the voltage surge event. Although the sinusoidal decay waveforms’
bulk region is more likely to exhibit enhanced joule heating, the increased activity
in the bulk region, while enhanced by the increase in frequency, is also a result
from the plasma operating in the γ mode. Figure 6.10 showcases the displacement
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Figure 6.10: spatial-temporal distribution for the displacement current within the
helium plasma with different ignition waveforms. (A) sinusoidal, (B) bipolar, (C)
sinusoidal decay: ξ = 0.25, (D) unipolar, (E) sinusoidal decay: ξ = 0.1.

current of the plasma from a spatio-temporal perspective. It can be seen that while
the bulk plasma displacement current is minimal for the sinusoidal waveform due
to the quasi-neutrality of the bulk plasma, this is not the case for the sinusoidal
decay waveforms, with current densities of 25 mA/cm2 and 15 mA/cm2 for the decay
waveforms with damping factors of 0.25 and 0.1, respectively, suggesting a deviation
from quasi-neutrality.

However, the spatio-temporal electric field distribution for the unipolar and sinu-
soidal decay discharges, showcased in figure 6.11, indicates that electric field intensity
does not significantly increase compared to the sinusoidal and bipolar driver plasmas.
While it has been established that the unipolar-driven plasma operates in the γ mode,
the displacement current in the bulk plasma remains very low as seen in figure 6.10.
This could indicate that while the unipolar-driven plasma operates in an unstable
regime, the sinusoidal decay plasmas have effectively arced in the system.

The spatiotemporal electric fields in figure 6.11 establish a relationship between
the sheath length of both electrodes and the ignition waveform. The following
methodology is utilized to measure the sheath length [45, 130]. While the sinusoidal
waveform, due to its operation in the α mode, possesses a sheath length of 0.61 mm,
the sinusoidal decay waveforms (ξ = 0.25, 0.1) show sheath lengths of 0.35 mm and
0.31 mm, respectively, due to their operation in the γ mode. Simultaneously, figure
6.8 also serves to establish the structure of the plasma, with the sinusoidal waveform
having a defined bulk, sheath, and presheath regions, while for the sinusoidal decay
waveforms, their mode of operation is that of a plasma operating in the γ mode as
these regions are more intertwined, the same being for the unipolar waveform. For
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Figure 6.11: spatial-temporal distribution for the electric potential within the helium
plasma with different ignition waveforms. (A) sinusoidal, (B) bipolar, (C) sinusoidal
decay: ξ = 0.25, (D) unipolar, (E) sinusoidal decay: ξ = 0.1.

the bipolar-driven plasma, while the gradient distribution is similar to that of the
unipolar-driven plasma, its intensity is not the same, nor is its sheath length, with
a defined sheath region on both electrodes compared to the unipolar-driven plasma.
At the same time, sheath length of the unipolar waveform is almost half the gap
despite effectively operating in the γ mode, indicating the pulsed discharge operates
like a DC glow discharge [37, 128, 129, 130]. Further evidence can be gathered by
comparing the plasma distributions in figure 6.5 to typical DC discharges, where the
sheath length is biased towards the ground electrode.

Although establishing a definitive difference between a DC and unipolar pulsed
discharge is beyond the scope of this paper, the parametrization of frequency could
provide insights. The bipolar pulsed discharge, while operating in α mode, generates
the weakest plasma. Additionally, due to the symmetry of the waveform compared
to the unipolar waveforms, both sheath lengths at the two electrodes from a time-
averaged perspective are identical, similar to the sinusoidal waveform. However, be-
cause of the symmetry in the sheath region, the bipolar pulsed waveform does not
operate like a DC glow discharge, in contrast to the unipolar waveform. The sinusoidal
decay waveforms do not exhibit this sheath symmetry, biasing towards the ground
electrode because of the charge disparity throughout the entire cycle, stemming from
the asymmetrical nature of the waveform. Further studies on the parametrization of
the frequency of the unipolar decay waveforms would need to be performed to assess
a proper operational distinction between a DC and a unipolar pulsed waveform.
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6.3 Results for argon

One of the main advantages of argon is that it is a low-cost alternative to helium.
As plasma processes become more ubiquitous, expensive gases such as helium might
not be viable except for resource intensive industries. Therefore, there is a strong
interest in understanding argon characterization at atmospheric pressure. For argon,
an operating power of 915 W over an area of 78.15 cm2 is employed to initiate the
argon plasma, the same power utilized to validate the argon simulation compared
to the Balcon model [126]. Time-averaged spatial profiles for argon plasma using
sinusoidal, pulsed, and sinusoidal decay waveforms are shown in figure 6.12. The
bulk number densities of e− are 6.42 x 1011 cm−3, 7.51 x 1011 cm−3, 5.40 x 1011

cm−3, 1.27 x 1012 cm−3, and 9.28 x 1011 cm−3 for plasma ignited using sinusoidal,
bipolar, unipolar, and sinusoidal decay waveforms with damping factors of 0.25 and
0.1, respectively. In other words, the sinusoidal decay waveform with a damping factor
of 0.25 generates the strongest plasma, followed by the sinusoidal decay waveform
with a damping factor of 0.1, bipolar, sinusoidal, and unipolar. From an efficiency
standpoint, aiming to generate the strongest plasma, the sinusoidal decay waveform
(ξ = 0.25) is the most effective. However, compared to the helium plasmas, some
differences exist, as the strength of the plasmas as a function of their waveforms
does not follow the same order. In this instance, the sinusoidal decay waveform
with a damping factor of 0.1 discharge is the second strongest plasma compared
to the unipolar-driven plasma for the helium case. While different feedstock gases
and reactor configurations are present, a possible explanation could be the feedstock
gas utilized and the plasma characterization of such feedstock gas. Nevertheless, a
more comprehensive understanding of operational mechanisms is required, extending
beyond mere number densities. A thorough electrical and electron characterization
will provide deeper insight into plasma properties and resultant intensity.

Following a methodology similar to that used when analyzing helium plasmas, the
shift angle for the sinusoidal waveforms is calculated. Figures 6.13, 6.14, and 6.15
depict the electrical characterization of the sinusoidal decay waveforms (ξ = 0.25,
0.1) and sinusoidal waveforms at the midpoint of the gap, which corresponds to the
bulk plasma. By measuring the phase shift between the bulk voltage and current,
phase shifts of 61.54◦, 53.46◦, and 82.12◦ are obtained. These results are similar and
comparable to those obtained for the helium waveform. This suggests that for the
sinusoidal decay waveforms, the shape of the ignition wave has a more pronounced
effect on the electrical characterization of the plasma than the feedstock gas studied.

A stark difference emerges when analyzing the electron number density in the
bulk region as a function of time: the electron energy decreases as the pulse discharge
diminishes in strength. This behavior suggests that the feedstock gas significantly
affects the plasma characterization. Specifically, such outcomes are anticipated be-
cause argon plasma requires a larger ignition energy than helium plasma [38, 126].
However, the assumption that electron number density increases post-discharge is



66

Figure 6.12: Spatio-temporal averaged number densities for e− under different ignition
waveforms.

valid only for the helium plasma under the given ignition conditions. While similar
behavior might be observable in argon plasma, it might necessitate a higher power
input. This assumption is because electrons in argon plasma lose their energy more
rapidly than helium plasma.

The plasma distribution for unipolar and bipolar pulsed waveforms in argon does
not resemble that of helium, as illustrated in figure 6.16. Although the unipolar-driven
helium plasma is similar to DC discharges, this is not true for the argon-driven pulsed
waveforms. For helium, examining the frequency modulation of its plasma might be
used determine when the waveform ceases to act like a DC waveform. However,
changing the feedstock gas and the power used to ignite the argon plasma alters
this characterization. While the electrical characterization remains consistent for
sinusoidal decay waveforms, this consistency does not hold for the pulsed waveforms.

A notable similarity between pulsed-driven argon plasma and bipolar-driven he-
lium plasma is observed in the temporal evolution of the bulk plasma following the
ignition event. For the bipolar waveform, the bulk plasma voltage matches the input
voltage during ignition. It then decreases to its minimum before rising again to align
with the input voltage. Figure 6.17 depicts this behavior: the bulk voltage hits its
lowest point, 7.83 ns post-ignition, and matches the input voltage, 22.57 ns, after
ignition. Apart from the temporal evolution of the bulk voltage, a similarity is also
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Figure 6.13: Voltage, current density, and number density of electrons for plasmas
driven by a sinusoidal decay waveform (ξ = 0.25). vb, vi, ib and e- correspond to the
bulk plasma voltage, input plasma voltage, bulk plasma current and electron number
density, respectively.

observed in the electron temporal evolution for bipolar ignition waveforms. Thus,
plasma behavior driven by the bipolar waveform seems largely independent of the
feedstock gas, at least for argon and helium.

However, an anomaly is evident with the unipolar pulsed voltage: despite having
a higher input voltage and bulk voltage, its number density is less than that of the
bipolar pulsed waveform. This discrepancy can be attributed to the bulk voltage not
matching the input voltage compared to the bipolar pulsed discharge and what, indi-
rectly, the data in the helium cases suggest. This leads to the bulk electron temporal
characterization diminishing just as the bulk voltage rises, which occurs at 11.12 ns
post-pulsed event. Consequently, electron number density increases at 36.78 ns when
the input voltage drops to zero upon completion of the duty cycle. In the case of he-
lium, where both unipolar and bipolar waveforms match the input voltage, the power
supplied to the argon plasma—although adequate for the bipolar waveform—might
be insufficient for the unipolar waveform. This inconsistency can be attributed to
argon losing energy more rapidly than helium, causing it to struggle to sustain the
intra-plasma reactions. While the expectation of the temporal electron evolution of
the argon unipolar-driven plasma might also be possible in helium, to achieve such
similarity, less power needs to be supplied to the helium plasma. Nonetheless, a
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Figure 6.14: Voltage, current density, and number density of electrons for plasmas
driven by a sinusoidal decay waveform (ξ = 0.1). vb, vi, ib and e- correspond to the
bulk plasma voltage, input plasma voltage, bulk plasma current and electron number
density, respectively.

consistent observation for both argon and helium plasmas is that the bulk voltage
should match the input voltage to optimize the number of densities. However, it is
imperative to exercise caution to prevent a transition from the α mode to the γ mode.

Figure 6.18 is utilized to determine whether the mode of operation observed in
the argon plasma aligns with the electrical characterization and to gain a deeper
understanding of the temporal bulk electron behavior in the plasma. Consistent with
the electrical characterization, the sinusoidal and unipolar waveforms operate in the
α mode, showing a volumetric spatiotemporal distribution in the sheath region. For
the sinusoidal decay and unipolar waveforms, the energy distributions within the
sheath are concentrated in what can be termed ”hot spots” of heightened activity
[47]. Comparatively, the argon plasma operates at a higher electron energy baseline
than the helium plasma: from an average of 1 eV in the bulk plasma region for all
waveforms in helium to 2.5 eV for all waveforms in argon. Simultaneously, the energy
in the sheath region significantly increases, from an average of 3 eV in helium to 6 eV
in argon—a twofold increment. However, the helium plasma remains more efficient in
electron generation, requiring less energy to sustain and amplify the electron energy
than the argon plasma.

Examining the bipolar waveforms, 7.83 ns post-ignition, we observe the electron
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Figure 6.15: Voltage, current density, and number density of electrons for plasmas
ignited using a sinusoidal waveform. vb, vi, ib and e- correspond to the bulk plasma
voltage, input plasma voltage, bulk plasma current and electron number density,
respectively.

temperature falling from 4.50 eV to a low of 1.25 eV in the bulk region. This decrease
in energy aligns with the electron losses as the source reactions become dominated
by sink reactions, as seen in table 4.3, effectively reducing electron number densities.
In contrast, for the unipolar pulsed discharge, which is more active in the bulk region
temporally, the electron number density starts declining 11.12 ns post-pulse, with
electron energy dropping from 4.75 eV to 3.75 eV. However, despite observing an
uptick in electron energy to 4.25 eV after the input voltage drops to zero at 36.78 ns,
the energy in the bulk electron is insufficient to sustain rises in electron number density
since its temperature is below 4.75 eV. Concurrently, at this juncture, an increase in
electron energy to 5.25 eV is evident in the pre-sheath region of the plasma near
the ground electrode. This increase of energy at the pre-sheath facilitates a surge in
electron energy, boosting the number density of the bulk plasma as electrons transition
from the sheath to the bulk, as seen in figure 6.17. For both unipolar and bipolar
waveforms, the sheath plays a pivotal role in plasma generation and its intensity.

Regarding the sinusoidal decay waveforms, the shorter phase shift and reduced
stability of the sinusoidal decay waveform with a damping factor of 0.1, compared to
the one with a damping factor of 0.25, can be attributed to its heightened activity in
the bulk region, both in terms of intensity and spatiotemporal distribution as seen in
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Figure 6.16: Number densities of the argon reaction profile for a unipolar and bipolar
ignited plasma.

figure 6.18. A similar behavior is noted for helium, suggesting a consistency, at least
between argon and helium plasmas, in the stability of the sinusoidal decay waveform
based on its damping factor, favoring a larger damping ratio. Although increased
frequency, as observed in helium, augments electron activity in the sheath region and
thus joule heating, the damping factor ultimately dominates the observed outcomes.

Figure 6.19 displays the electron sources and sinks for argon. This figure shows
distinct bulk, sheath, and presheath regions for sinusoidal and pulsed discharges. In
contrast, a noticeable difference emerges when compared with the helium distribution:
the electron sources in helium’s bulk plasma are more intense than in argon, suggesting
that helium plasma ignition is more efficient than argon’s at a lower electron energy
level.

The displacement current in argon when compared to helium, as seen in figure 6.20,
for the sinusoidal decay waveform (ξ = 0.25) which generates the most intense plasma
for both feedstock gas, it is observed that for argon an increase in displacement current
by 40 mA/cm2, with the sheath values increasing of 100 mA/cm2, further confirming
that the operational requirements of argon are larger than those of helium. At the
same time, when assessing the electric field via figure 6.21, an increase in the electric
field in the bulk region is observed for the sinusoidal decay waveforms (ξ = 0.25) at
each ignition event, diverging from the behavior of helium plasma.
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Figure 6.17: Voltage, current density, and number density of electrons for plasmas
driven by unipolar and bipolar waveforms. vb, vi, ib and e- correspond to the bulk
plasma voltage, input plasma voltage, bulk plasma current and electron number den-
sity, respectively.

Figure 6.18: spatial-temporal distribution for the electron energy within the argon
plasma with different ignition waveforms. (A) sinusoidal, (B) bipolar, (C) sinusoidal
decay: ξ = 0.25, (D) unipolar, (E) sinusoidal decay: ξ = 0.1.
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Figure 6.19: spatial-temporal distribution for the source/sink terms for the electron
within the argon plasma with different ignition waveforms. (A) sinusoidal, (B) bipo-
lar, (C) sinusoidal decay: ξ = 0.25, (D) unipolar, (E) sinusoidal decay: ξ = 0.1.

Figure 6.20: spatial-temporal distribution for the displacement current within the
argon plasma with different ignition waveforms. (A) sinusoidal, (B) bipolar, (C)
sinusoidal decay: ξ = 0.25, (D) unipolar, (E) sinusoidal decay: ξ = 0.1.
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Figure 6.21: spatial-temporal distribution for the electric field within the argon
plasma with different ignition waveforms. (A) sinusoidal, (B) bipolar, (C) sinu-
soidal decay: ξ = 0.25, (D) unipolar, (E) sinusoidal decay: ξ = 0.1.

6.4 Conclusion

This study of argon and helium plasmas driven by various ignition waveforms has
facilitated the optimization and maximization of number densities. For certain ap-
plications, factors like electrical characterization are crucial considerations. A finding
of interest was the presence of plasmas operating in the γ mode, identified in both
helium and argon plasmas. A consistently observed behavior, irrespective of the feed-
stock gas employed, was the increased stability of the plasma with a rising damping
factor and the stability of pulsed-driven plasmas, as determined by the bulk electron
temporal evolution and bulk voltage temporal evolution.

Despite these similarities, differences arise due to the unique properties of the
feedstock gases. Helium plasma ignites more easily than argon, requiring a less ener-
getic system for achieving high electron activity in the form of sources and sinks. This
distinction results in diverse behaviors in bulk electron temporal evolution, with the
argon plasma electron density dropping as the electron energy decreases. Moreover,
the argon plasma’s higher power demand means that to equate to an area of 78.15
cm2, a power input of 74.67 W for helium would be necessary — a staggering 12-fold
power increment compared to helium. This discrepancy offers insights into the re-
lationship between unipolar and bipolar discharges, emphasizing the importance of
aligning bulk voltage with input voltage to maximize number densities.

While helium plasma driven by a unipolar waveform exhibits quasi-DC plasma
characteristics, the same cannot be said for argon due to its greater power require-
ments. This variance underscores the inefficiency of argon plasma relative to helium
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in harnessing the delivered power for plasma ignition. Challenges remain, particularly
in identifying the boundary between stable and unstable modes of operation for the
analyzed waveforms. The aim is to define the operational limits for these plasmas
without risking constriction and arcing. Nevertheless, this research offers an exhaus-
tive understanding of the impact of plasma waveforms independent of feedstock gas,
providing valuable insights for optimizing plasma processes in various applications.
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Chapter 7

α-γ mode of operation

7.1 Setup of simulations

In order to determine the limit between the α and γ modes of operation, an external
circuit is set up to model operating conditions consistent with voltage drops after
breakdown, as the RF power supply is not an ideal voltage source [126, 54]. If the
input voltage at the electrode remains constant, there is a risk of divergence since
the operating voltage drops after the breakdown voltage is achieved. Section 3.4
details the setup of the resistor boundary condition, with section 6.1 showcasing the
boundary conditions. A resistance value of 50 Ω is used. In this instance, only argon
is utilized due to the interest in studying argon as an alternative to helium, given the
benefits of using argon over helium. The reactor gap for these simulations is the same
as described in section 6.1, with the pressure, background gas temperature, and other
conditions remaining constant. For the dielectrics, a dual dielectric configuration, as
seen in figure 4.6, is utilized, with a length of 2 mm for each electrode.

For the bare electrodes using sinusoidal, unipolar, bipolar, and sinusoidal damped
waveforms (ξ = 0.25), as seen in figure 3.11, voltage ranges from 500V to 1000V,
500V to 1000V, 300V to 1000V, and 1500V to 2500V are utilized, with an increment
of 20V. For the dielectric case, using the same waveforms as the bare electrodes, the
voltage ranges are 500V to 1850V, 500V to 1750V, 500V to 2200V, and 1500V to
4000V, with an increment of 100V for the sinusoidal damped waveform (ξ = 0.25)
and 50V for the other waveforms.

7.2 Comparison of different ignition waveforms

with bare electrodes

One of the main interests in studying the different waveforms is the relationship be-
tween power supplied by an external power supply and the critical point of operation
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Figure 7.1: Sinusoidal driven plasma voltage and current in gap and resistor.

Figure 7.2: Unipolar driven plasma voltage and current in gap and resistor.



77

Figure 7.3: Bipolar driven plasma voltage and current in gap and resistor.

Figure 7.4: Sinusoidal damped (ξ = 0.25) driven plasma voltage and current in a
DBD configuration.
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within a plasma. It is important to minimize power consumption within the system
while maximizing plasma number density to achieve power savings and extend the
range of operations within a stable plasma. Figures 7.1, 7.2, 7.3, and 7.5 showcase the
results for the different waveforms utilized. For the sinusoidal, unipolar, bipolar, and
sinusoidal damped (ξ = 0.25) waveforms, the number densities at the critical point
are 3.84 × 1011 cm−3, 1.76 × 1011 cm−3, 4.07 × 1011 cm−3, and 8.26 × 1011 cm−3,
respectively.

It is observed that the sinusoidal damped (ξ = 0.25) waveform produces the plasma
with the largest number density, allowing for a high range of control from the power
supply before instabilities occur. However, power supplies to generate bipolar pulsed
waveforms are more readily available compared to those for sinusoidal damped wave-
forms, which would require custom power supplies, thereby streamlining the plasma
process and minimizing operational costs [132, 133, 134, 135]. Additionally, an added
benefit of utilizing such waveforms is the granular control over the plasma, as the in-
put voltage, duty cycle, and frequency can be parametrized as needed. Nevertheless,
a comprehensive study of the different parameters within the plasma for the various
waveforms is still necessary to understand their response to increases in voltage and
their overall behavior.

As shown by Balcon and Kong [39, 58], the expected voltage-current profile
matches that of figure 7.1, where the voltage gap in the sinusoidal-driven plasma
increases until it reaches the critical point, effectively switching the differential con-
ductivity to a negative one, where a decrease in voltage is observed. The same behav-
ior is observed for the unipolar, bipolar, and sinusoidal damped waveform (ξ = 0.25),
where an increase in voltage within the gap is observed until a critical point is reached,
indicating a basic mode of operation regardless of the waveform. Likewise, when op-
erating in the γ mode, the plasma mode of operation changes to one driven by the
SEE, where arcing of the system is possible due to the surplus of electrons generated.
However, this risk is not as apparent in the lower ranges of the plasma operated in the
γ mode. For example, for the sinusoidal waveform, despite operating in the γ mode,
the plasma can be pushed up to an input voltage of 720V (Vgap,rms = 189.2V) before
arcing effects are seen, identified by a sudden increase in the differential conductivity
[45]. Figure 7.5 showcases the differential of the voltage-current plots, where a steep
increase in the slope is seen as the input voltage in the gap decreases. Similar results
when studying the transition within the γ mode were also obtained by [45].

For figure 7.5, for the sinusoidal and bipolar waveforms, the plasma in the γ mode
is considered stable until a minimum is encountered, from where the plasma starts
to become unstable as the current density increases significantly. For the bipolar
waveform, the point where the increment in current induces plasma instabilities for an
input voltage is 520V (Vgap,rms = 186.7V). In the case of the unipolar pulsed waveform,
while the decrease from a minimum to a maximum is not encountered, this could
be due to the voltage stepping in the power supply being too large after the critical
point, indicating a need for more data points. On the other hand, the unipolar pulsed
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Figure 7.5: γ mode critical stable and unstable point of operation.

discharge reaches the critical point with the lowest number density, indicating that
the unipolar pulsed discharge is quite unstable. At an input voltage of 600V (Vgap,rms

= 272.5V), a step increase of 20V is enough to destabilize the plasma, making it
unstable. Referring to the previous study on argon and helium plasma in chapter 6,
it was seen that operating at a defined constant power, while the sinusoidal helium
discharge would generate a plasma in the α mode, the unipolar pulsed waveform
would be operating in the γ mode of operation. The same operation regime was
encountered in the argon plasma, indicating that the unipolar pulsed waveform is
ineffective when igniting APGD plasmas due to their inherent instabilities. For the
sinusoidal damped waveform, it seems there is a drop in the differential as the gap
voltage is reduced, flatlining and rising to flatline again, suggesting that for this
type of waveform, a very large input voltage from the power supply is required to
observe constriction within the plasma. Figure 7.6 showcases the different modes
of operation for a time-averaged electron profile. When comparing the sinusoidal
damped waveform to the other waveforms, it is clear that the electron profile operating
in the γ mode corresponds to a stable plasma in the γ mode of operation. The other
plasmas, as seen in figure 7.6, can be distinguished by how they change from a stable
plasma at the critical point to a plasma operating at the critical point of the γ mode
to an unstable plasma in the γ mode of operation. All these plots can be distinguished
by the increase of the electron density in the sheath region for the unstable γ mode
of operation, indicating that SEE processes dominate the plasma [45, 47, 126].
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Figure 7.6: Time-averaged spatial profiles of electrons under different operational
regimes under the operation of different waveforms. Note that γ for the sinusoidal
damped waveform does not indicate instability of the plasma in comparison to the
other plots, rather, it indicates operation in the γ mode.

While it was established that the relative instability of the unipolar pulsed dis-
charge is due to the bias in sheath activity towards the ground electrode due to the
nature of positively biased discharges [131], previous research also indicates a rela-
tionship between the difference in voltage of the bulk and the input electrode at the
end of the duty cycle and the intensity of the discharge and mode of operation, as
discussed in chapter 6. Although it was established that a bulk voltage matching the
input voltage is optimal for maximizing number density, there were limitations with
previous observations, particularly the limitation of the power-coupled algorithm,
which matches the input voltage to the period-averaged power but fails to consider
the effects of external circuits and power supplies as ideal systems. While the power-
coupled algorithm provided important insights and agreed with the characterization
of the waveforms and the critical number density in terms of constant power and
number density obtained, the study was limited in scope regarding the relationship
between the input and bulk voltage and its difference at the end of the cycle. Hence,
there is a need to study both the electrical characterization of the pulsed waveforms
and their bulk/input relationship.

Figure 7.7 and figure 7.8 showcase the plasma’s bulk, electrode input voltage,
and bulk current for unipolar and bipolar waveforms. A noted difference compared
to the unipolar and bipolar electrical characterization from the previous study is
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Figure 7.7: Unipolar pulsed discharge electrical characterization at the α-γ transition.

the rise of the input voltage. In the previous study, the input voltage responded
instantaneously. In contrast, in this case, due to the presence of a resistive element,
the input voltage increases exponentially and later tapers off as it stabilizes. A similar
observation is seen with the bulk voltage, where instead of flatlining after the pulsed
event, the bulk voltage follows that of the input voltage very closely. This indicates the
importance of the resistive element algorithm in improving the modeling conditions
of the plasma compared to a direct, power-coupled algorithm operating in an ideal
fashion. Nonetheless, the unipolar pulsed discharge maintains a similar behavior to
that of the previous study, where the input voltage rapidly stabilizes, and an inverse
relationship exists as the bulk voltage matches that of the input voltage, effectively
constricting the current density to 0 mA/cm2 as the plasma, acting as a capacitor,
becomes fully charged.

However, a distinctive difference with the power-coupled model is that the cur-
rent density, when the input voltage is cut off to 0V, increases to the same magnitude
as when the ignition event occurred. In contrast, the current response of the power-
coupled model is rather weak. By carefully analyzing the plots from both the resistive
and power-coupled driven plasmas, it can be seen that the resistance plays an im-
portant role, as the bulk voltage response is delayed after the input voltage is cut
off to 0V, a byproduct of the input voltage also dropping to a value close to zero
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Figure 7.8: Bipolar pulsed discharge electrical characterization at the α-γ transition.

as the resistance delays such a response. As such, a more accurate representation is
obtained that closely matches what is observed in experimental setups. In particular,
for figures 7.7 and 7.8, which correspond to the critical point of operation before tran-
sitioning to the γ mode for both unipolar and pulsed discharges, the input voltage
closely matches that of the bulk voltage, as needed to maximize number density for
unipolar and bipolar discharges. However, for these two cases, the mode of operation
is in the γ mode and the α mode for the bipolar and unipolar pulsed discharges when
utilizing the power-pulsed algorithm as done in chapter 6, lacking the discernment
if that is the case for the α or γ mode. However, such case is expected as they are
operating at different power inputs.

Figure 7.9 and 7.10 showcase the ratio of the bulk and input voltages as the input
voltage from the power supply is increased. As seen in both figures, the highest ratio
of the RMS bulk and electrode voltage is at the critical point, where the bulk voltage
and the input voltage before the end of the duty cycle are closest to each other, as
shown in part (b) of Figure 7.9 and 7.10. Revisiting previous studies from chapter 6
for the unipolar pulsed discharge, considering the bulk voltage to the input voltage
gap and referring to Figure 7.9, the voltage gap of the plasma operating in the γ mode
of operation can be explained. Figure 7.9 shows that the electrode and bulk voltage
difference diminishes as it approaches the critical point, with the difference between
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Figure 7.9: Unipolar pulsed waveform voltages at bulk and input electrode.

the voltages increasing as the plasma power input voltage increases in the γ mode, as
seen in part (a) of Figure 7.9. While this behavior does not match the helium case
from the previous study, where the bulk voltage matches the input voltage despite
being in the γ mode of operation, this study should suffice to provide a comprehensive
understanding of the argon plasma operating in the α and γ modes and how the
relationship between the bulk voltage and the electrode voltage is coupled. At the
same time, it was established in chapter 6 that the modes of operation of the argon
and helium plasmas are strongly determined by the feedstock gas utilized.

For the bipolar pulsed discharge, as seen in figure 7.8, when comparing the rise
and decay of the input voltage to the unipolar waveform seen in figure 7.9, it can be
distinctly observed that the input voltage increases in a sloped manner alongside the
bulk voltage for the bipolar waveform. In contrast, the input voltage tapers off for
the unipolar waveform. At the same time, the sloped increase of the electrode and
the bulk voltage difference remains constant for the duty cycle, allowing the current
to taper off to a value of 21.13 mA/cm2, indicating that the bipolar pulsed discharge,
when viewed as a capacitor, does not charge completely compared to the unipolar
pulsed discharge.

The reasons for such sloping in the input have to do with the bipolar nature of the
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Figure 7.10: Bipolar pulsed waveform voltages at bulk and input electrode.

discharge, where the operation gap for the pulsed event between peaks is 750V. This
large gap and polarity cause a delay in the development of the input voltage on the
electrode. At a duty cycle of 50%, the bipolar pulsed discharge electrode input voltage
does not taper off as in the case of the unipolar pulsed discharge. Hence, the current
density of the bipolar pulsed discharge tapers off at 21.13 mA/cm2 rather than 0
mA/cm2, explaining both the bulk and electrode voltage increase, which allows for a
higher peak current density. After the duty cycle, the stored charge for the unipolar
and bipolar pulsed discharge manifests as a current peak. For the bipolar pulsed
discharge, the bulk voltage diminishes to almost 0V.

In contrast, the voltage diminishes to 125V for the unipolar pulsed discharge,
indicating from the bipolar pulsed discharge that the voltage drop to almost 0V
results in a high current flow in the plasma compared to its unipolar counterpart.
Additionally, while the voltage drop from the bulk plasma is larger in the unipolar
waveform per duty cycle, the time it takes for the bipolar bulk voltage to drop is 22
ns compared to the unipolar waveform, which does not fully taper off at the end of
the cycle at 37 ns, as seen in figures 7.7 and 7.8. However, when comparing the drop
in the input voltage, the bipolar pulsed drop is larger, allowing the bulk voltage to
drop completely. Besides the bias of the sheath region in the unipolar-driven plasma,
its electrical characterization is more conducive to stability in the bipolar pulsed
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Figure 7.11: Shift angle for sinusoidal and sinusoidal damped waveform (ξ = 0.25) as
function of input voltage.

waveform than its unipolar counterpart.
For the sinusoidal and sinusoidal damped (ξ = 0.25) waveforms, as seen in figure

7.11, the shift angle variation corresponds to whether the plasma is operating in the
α or γ mode. Referencing the work by Atanasova et al. [136], it can be determined
that the shift angle matches closely in the stable mode of operation for the frequency
of operation. Specifically, as seen by Atanasova et al. [136], the shift angle decreases
as a function of frequency and number density, which, in the case of the sinusoidal
damped waveform, the frequency of operation is 50 MHz, agreeing with the findings of
Atanasova. However, as the plasma transitions to the unstable mode of operation, the
shift angle decreases significantly as the current increases, showcasing the transition
mode where a CCP is encountered to a resistive plasma. Such insights are important
as that is the expected mode of operation for an AGPD CCP, where the capacitive
mode dominates the α mode.

However, differences in behavior can be seen in the sinusoidal and sinusoidal
damped waveform. For the stable mode of operation, the shift angle remains more or
less constant until the critical point, when the shift angle starts to decrease. On the
other hand, the sinusoidal damped waveform (ξ = 0.25) shift angle linearly decreases
until the critical point is encountered. Factors such as the frequency of operation
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Figure 7.12: Operating power of different ignition waveforms.

and number density of the plasma at the stepped voltage influence such results, as
seen by the maximum number density of the plasma at the critical point. A twofold
increase in number density is observed when comparing the number density to the
sinusoidal waveform. As such, this difference also affects the shift angle in a reduced
manner, as the magnitudes of number densities are larger than that of the sinusoidal
counterpart, which affects the shift angle in the α mode of operation.

A point of interest in utilizing different ignition waveforms is the power required
to ignite the plasma and maximize the plasma number density while minimizing
power consumption to generate an efficient plasma and minimize instabilities and
arcing. Figure 7.12 showcases the power curves as a function of the voltage gap
for bipolar, sinusoidal, and sinusoidal damped waveforms (ξ = 0.25). The operating
values are very close to each other before arcing events occur, with the sinusoidal
waveform operating at a power input of 68.7 W less than the sinusoidal damped
waveform, while at the same time, that difference allowing for a twofold increase in
the plasma density for the sinusoidal damped waveform. Also, the sinusoidal damped
and bipolar waveforms show a difference of 11.3 W before operating in the γ mode,
with the bipolar waveform having a slight increase in the number density. However,
consideration of the power losses of the external circuit is also required to accurately
determine the load on the system. For the sinusoidal, bipolar, unipolar, and sinusoidal
damped waveforms, the average power losses per cycle due to an external circuit with
a resistance of 50 Ω, referencing figures 7.1, 7.2, 7.3, and 7.5, are 2371.57 W, 798.86
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Figure 7.13: Time-averaged spatial profiles of electron temperature under different
operational regimes under the operation of different waveforms. Note that γ for the
sinusoidal damped waveform does not indicate instability of the plasma in comparison
to the other plots, rather, it indicates operation in the γ mode.

W, 192.34 W, and 3207.23 W, respectively. While in hindsight, the sinusoidal pulsed
waveform is the most inefficient when considering the high power losses within the
resistance, the nature of plasmas driven at a higher frequency, which the sinusoidal
damped waveform is at 50 MHz, explains the aforementioned phenomenon where
higher power is required to drive the plasma at a high number density [38]. At the
same time, the power required to ignite the sinusoidal plasma indicates that such
a waveform is not the most efficient way to ignite the plasma. This has become
an issue when trying to ignite APGD CCP. Hence, there is a need for alternatives
that can minimize power usage while maximizing the plasma number density. As
such, the bipolar-driven plasma strikes the best balance between an adequate number
density and power utilization, with a total power utilization of 1525.86 W, lower
than the sinusoidal waveform. Therefore, unless an application requires a number
density larger than that of the bipolar pulsed waveform at its critical point, the
aforementioned waveform should be able to strike a balance between the reactivity
of the plasma and power utilization. The unipolar waveform is not considered due
to its inherent instability caused by the bias of the sheath at the ground electrode,
which accelerates the transition of the plasma to the γ mode of operation.

Figure 7.13 showcases the differences in the electron energy distribution using
different ignition waveforms. The sinusoidal waveforms follow a behavior where, while
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Figure 7.14: Time-averaged spatial profiles of plasma electric field under different
operational regimes under the operation of different waveforms. Note that γ for the
sinusoidal damped waveform does not indicate instability of the plasma in comparison
to the other plots, rather, it indicates operation in the γ mode.

the bulk constant density more or less stays the same, the energy of the electrons in
the pre-sheath regions decreases as the intensity of the plasma increases. The electron
energy is considered the highest in the sheath region due to the large electric fields
and the contribution of SEE. However, because of the energy losses of the electrons in
the pre-sheath region, the maximum electron energy peaks at the critical point and
decreases as the current increases.

For the unipolar pulsed discharge, the changes in the temperature profile are sig-
nificant as it reaches the γ mode compared to the α mode, where the pre-sheath
region losses become substantial as the generation of charged species increases. Due
to the very high electric field found in the unipolar pulsed discharge, as seen in figure
7.14, the unipolar pulsed waveform is inherently unstable. In the case of the bipolar
pulsed waveform, the duality of the bipolar waveform prevents the effects observed
in the unipolar waveform. However, unlike the sinusoidal waveform, where the bulk
voltage decreases as the current increases, for the bipolar waveform, the bulk plasma
energy increases with the current. This can be explained by the duality of the pulses
in the bipolar waveform, where the sheath region does not bias towards a particular
region, and the voltage does not drop to 0V as in the unipolar waveform, allowing
for stable plasma but also, as the bipolar waveform is not continuous, allowing for
an increase on the energy in the bulk region as the electrons are contained within
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the bulk region. While electron trapping is already an effect operating at the RF
frequency regime, these effects are stronger due to the bipolar waveform. In the case
of the sinusoidal pulsed waveform, the electric field, as seen in figure 7.14, while bi-
ased towards the ground electrode, is not as intense as that of the unipolar waveform,
further showcasing the benefits of varying the voltage potential. An important ob-
servation is the slight variation in the electron profile, as seen in figure 7.13, where
the profile shape essentially does not change. Notably, while the electron energy at
the ground electrode is as large as that of the unipolar waveform, the number density
at the critical point is almost five times larger than that of the unipolar waveform.
Highlighting the frequency of operation of the sinusoidal damped waveform and how
a plasma operating at a higher frequency can operate with higher input power while
remaining stable, for applications requiring maximum number density, the sinusoidal
damped waveform would be utilized to achieve such goals. While this study does
not compare the sinusoidal damped waveform to a sinusoidal waveform operating at
50 MHz, figure 7.13 suggests that the sinusoidal power drive would be even greater
than what was observed with the sinusoidal damped waveform, making the sinusoidal
damped waveform an efficient way to drive a plasma at a high frequency.

7.3 Dielectric barrier discharge

The analysis of ignited plasmas in the processes of a DBD should provide insights into
whether it is appropriate to use them to increase the number density when using an
ignition waveform compared to bare electrodes. As seen in figures 7.15, 7.16, and 7.17,
there is an increase in the reactivity of the plasma in the presence of the dielectric
compared to using only bare electrodes. For figure 7.18, which corresponds to the
sinusoidal damped waveform, there is a decrease in number density. At the same
time, the α-γ critical point is not seen as in the case of the bare electrodes, where the
differential conductivity becomes negative after the critical point. Kong’s [58] studies
on experimental RF DBD plasma match the behavior shown in the simulations, where,
as the transition in the plasma reaches the γ mode, its slope changes rather than
changing the differential conductivity. Compared to the bare waveforms, there was an
increase in the number density of 24.47%, 22.15%, and 6.63% for sinusoidal, unipolar,
and bipolar, respectively.

In contrast, there was a decrease of 10.72% for the sinusoidal decay waveform.
A reason for the decrease in number density can be ascribed to the presence of the
dielectrics, which affects the temporal characterization of the sinusoidal damped wave-
form. The dielectric, acting as a ballast, collects charge within the system, increasing
the voltage such that the dielectric plasma voltage is larger than that of the voltage-
resistance interface. While this indicates that a larger voltage is utilized to ignite the
plasma, the charge accumulation in the dielectric, as the damping factor attenuates
the input voltage, also affects the voltage characterization on the plasma-dielectric
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Figure 7.15: Sinusoidal driven plasma voltage and current in a DBD configuration.

interface. This reduces the effectiveness of the waveform, as the damping factor char-
acterization of the sinusoidal damped waveform is indirectly affected by the charge
accumulation in the dielectric. Effectively, the damping factor is reduced as the charge
accumulated in the dielectric acts to stabilize the plasma, making the attenuation in
the voltage within the plasma less forceful. The dielectric’s presence also makes the
plasma’s operation consume more power, with the potential gap increasing by an
average of 5 to 7 times compared to the bare electrodes.

However, when comparing the power consumption of the dielectric to that of the
bare electrode, these values are very similar. By analyzing figure 7.19, a decrease of
3.06%, 1.69%, and 26.80% and an increase of 113.74% were obtained for sinusoidal,
bipolar, sinusoidal damped, and unipolar waveforms, respectively. This indicates a
similar operation power input except for the sinusoidal damped and unipolar wave-
forms, which can be explained by the effects of the dielectric presence on the charac-
terization of the waveforms within the plasma. What is of interest is that the minimal
power variation is seen for the bipolar and sinusoidal waveforms, indicating that the
symmetry of the ignition waveform disallows for variation in power, compared to the
unipolar and sinusoidal damped waveforms, which are asymmetric in comparison to
the former, and a power difference is seen.

This can be explained by the biases at each half period and the effects that have
on the electric field, which can be seen in figure 7.14 for the sinusoidal damped and
unipolar waveforms, which have similar behavior to that of the dielectric cases. As



91

Figure 7.16: Unipolar driven plasma voltage and current in a DBD configuration.

Figure 7.17: Bipolar driven plasma voltage and current in a DBD configuration.
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Figure 7.18: Sinusoidal damped (ξ = 0.25) driven plasma voltage and current in a
DBD configuration.

Figure 7.19: Operating power of different ignition waveforms under the presence of a
dielectric.



93

such, this indicates that for waveforms that are not symmetric, there is a larger
range of play with the waveform to optimize the operating parameters compared
to those that are symmetric, as is the case for sinusoidal and bipolar waveforms.
Nonetheless, the limitations for obtaining a larger plasma density are seen in the
sinusoidal damped waveform, where a lower number density was obtained, requiring
investigation of different parameters to optimize the ignition waveform to that of its
bare electrode configuration.

7.4 Conclusion

The study of α and γ modes of operation within various plasma ignition wave-
forms—sinusoidal, unipolar, bipolar, and sinusoidal damped—has provided significant
insights into optimizing plasma characteristics for different applications. By imple-
menting an external circuit to model realistic operating conditions, we observed dis-
tinct behaviors in the voltage-current profiles and number densities at critical points,
particularly noting the advantages of the sinusoidal damped waveform in achieving
higher plasma densities with relatively stable operation. The unipolar pulsed dis-
charge exhibited inherent instability, primarily due to the bias in the sheath activity
towards the ground electrode. In contrast, the bipolar pulsed discharge offered a more
stable operation due to its balanced nature.

The presence of dielectrics further complicated the plasma dynamics, particularly
affecting the sinusoidal damped waveform by altering the temporal characteristics due
to charge accumulation. Despite these complexities, dielectric configurations generally
enhanced the plasma’s reactivity compared to bare electrodes, though at the cost
of increased power consumption. Symmetric waveforms like sinusoidal and bipolar
showed minimal power variation with dielectrics, whereas asymmetric waveforms like
unipolar and sinusoidal damped exhibited significant changes.

Overall, the findings highlight the critical role of waveform symmetry and external
circuit considerations in optimizing plasma performance. The study underscores the
necessity of a tailored approach in selecting and tuning ignition waveforms based on
the specific application requirements, balancing the need for high plasma density and
stable operation against power efficiency and system complexity. Future research
should continue to explore these dynamics, particularly in refining the sinusoidal
damped waveform and further investigating the impact of dielectric materials on
plasma behavior.
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Chapter 8

Dynamic mode decomposition for
plasma modeling

8.1 Setup of simulations

The modeling parameters for generating the database to train the dimensional reduc-
tion algorithm are as follows: 1 Torr, 1 cm, one dimension, argon feedstock gas with
the reaction set shown in table 4.4. A SEE of 0.01 is utilized for the electrons, along-
side a SEE energy of 5 eV. A background temperature of 300 K is used. An external
circuit with a resistance of 50 Ω is utilized for the input voltage. These conditions
were selected to simplify the argon model to evaluate the viability of the DMD algo-
rithm in predicting and parametrizing plasma operating conditions and because they
reflect typical operating conditions found in the semiconductor industry [41, 43, 19].
Given the interest in reducing computational downtime while optimizing solutions,
the pressure was chosen based on expected operating conditions in the industry. A
Courant condition is utilized to control the time step. Data is saved every 5× 10−10

s as DMD requires equal time steps. After the simulation using a sinusoidal voltage
of a determined value, the Gaussian pulsed effects, as seen in figure 3.12, are applied
by superposing the sinusoidal waveform to increase the number density of the plasma
up to 16 cycles, where the simulation is stopped.

For the operating conditions of the sinusoidal ignited plasma, voltages of 150V,
200V, 225V, 230V, 240V, 245V, 250V, 300V, and 450V are applied. The following
voltages are applied for a sinusoidal input of 300V with a single positive pulse in
the next cycle: 750V, 1000V, 1250V, 1500V, 1750V, 2000V, 2250V, and 2500V. The
same voltage conditions are provided for a single negative pulse, except with a sign
change for the pulse with a sinusoidal input of 300V. For a sinusoidal input of 300V
followed by a positive pulse cycle and a negative pulse cycle, the following voltages
are used: 750V, 1000V, 1250V, 1500V, 1750V, 2000V, 2250V, and 2500V. The same
parameters are used for a sinusoidal input of 300V, followed by negative and positive



95

Figure 8.1: Different superposition of the gaussian pulse over the sinusoidal waveform
to train the data according to a set of voltages utilized.

pulse cycles. For a dual pulsed sequence, where a sinusoidal voltage of 300V is followed
by positive, negative, sinusoidal, positive, and negative pulses, each representing a
cycle, the voltages used are 750V, 1000V, 1250V, 1500V, 1750V, 2000V, 2250V, and
2500V. Figure 3.12 showcases these conditions for a pulsed voltage superposed on an
input voltage of 300V. The same values are used for the reverse. Figure 8.1 represents
the waveforms of the conditions bound by the trained data. A frequency of 10 MHz
is utilized in all instances, with the gaussian pulsed superposition of 10% of the duty
cycle present.

For the case studies, three cases are examined with the trained DMD algorithm:
one within the bounds of the data and two edge cases. All cases except for the
sinusoidal case are run at a default sinusoidal value of 300V, with case 3 running at a
default sinusoidal value of 150V, as shown in figure 8.2. The other edge case tests the
boundary of the pulse discharges from the minimum positive and maximum negative
values, as seen in figure 8.2 for case 1. Case 2 of figure 8.2 represents a case within
the boundary of the data used to train the model. The values for the cases are as
follows:

• case 1: 300 sinusoidal, dual pulsed, 750, -2500

• case 2: 300 sinusoidal, dual pulsed, 1500, -1250
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Figure 8.2: Voltage input utilized to compare somaFOAM to DMD algorithm

• case 3: 150 sinusoidal, dual pulsed, 1500, -1250

These case parameters generated with the DMD-trained model are also run in
somaFOAM to compare the DMD algorithm to that of somaFOAM. The DMD al-
gorithm utilizes a multidimensional input variable, a monolithic variant [60], to train
the model. In this instance, the electron number density in the gap is utilized as in
comparison to the argon ionized species, the electron dynamics are highly non-linear,
making it ideal as to test the capabilities and limitations of the DMD algorithm as a
predictive tool.

8.2 Utilization of DMD for predictive modeling

Case 1 - 300 sinusoidal, dual pulsed, 750, -2500

The first case corresponds to an edge case, where the minima and maxima of the
voltage ranges are used for the positive and negative pulsed discharge, respectively.
From a quick inspection of the data, it can be seen that DMD overestimates the
electron bulk at cycle time 2.2T. At 2.2T, as the first pulsed event occurs, the elec-
tron dynamics are highly nonlinear, with rapid changes in the electron profile. The
percentage of the average difference between somaFOAM and DMD values is 57.71%,
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Figure 8.3: Comparison of somaFOAM to DMD generated prediction for the first
case.

indicating a large discrepancy at this time step. Since the DMD prediction runs on an
edge case where these predictions become less accurate than predictive cases within
the bounds of operation, such a result is not unexpected. At cycle time 3.3T, as the
pulsed effects start to have less impact on the increase of number density compared
to that initial pulse, despite the larger negative pulse, the percentage difference of
the average decreases to a value of 16.72%, showcasing better agreement with the
data provided by somaFOAM. Further development of the data for cycle time 5.3T,
matching the last pulsed cycle of the plasma, shows a percentage difference of the
average of 0.44%, showcasing very good agreement.

While the average percentage difference provides a rough idea of the predicted
values, it does not fully characterize the differences between both models. Figure 8.4
provides more complete insight into these differences within the profile.

As seen in figure 8.4, the percentage difference is consistently high in the sheath
region. This can be accounted for when considering cycle times 2.2T, 3.3T, 5.1T,
and 5.3T due to the non-steady state nature of these pulses from either an instant or
cycled-average perspective [62, 114, 124]. Furthermore, for cycle times 6.2T, 12.0T,
15.4T, and 15.8T, the discrepancies in the sheath region can be attributed to the
relatively coarse dataset used to output the DMD results. A dataset with higher data
resolution would be required in highly nonlinear systems to achieve a better char-
acterization that more closely approximates somaFOAM. Nonetheless, it is observed
in the bulk region, where the nonlinearities are less intense than those in the sheath
region, that there is good data agreement as the solution develops.
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Figure 8.4: Percentage of differences between DMD and somaFOAM for the first case.

Case 2 - 300 sinusoidal, dual pulsed, 1500, -1250

For the second case, as seen in figure 8.5, there is already a better sense of agreement
between the DMD prediction and somaFOAM, with a cycle time average percentage
difference of 13.78% and 12.62% for cycle times 2.2T and 3.3T, respectively. Further
development of the data for cycle time 5.3T, matching the last pulsed cycle of the
plasma, shows a percentage difference of the average of 3.38%, showcasing very good
agreement. However, the discrepancies at a similar percentage difference as seen in
the first case for the sheath region remain, explained by the non-steady-state nature of
the pulsed voltage Gaussian superposition in the sinusoidal waveform and the coarse
dataset utilized. Figure 8.6 shows the percentage of difference in the profile, where
while the bulk electron number density shows very good agreement, the sheath region
still presents issues.

Besides increasing the number of cases within the boundary of operating condi-
tions, a possible workaround for the sheath region discrepancies would be to decrease
the captured time when generating the data in somaFOAM to a lower value. It might
be the case that the Gaussian distribution resolution is not being captured appropri-
ately. The default frequency of operation is 10 MHz, but the Gaussian pulse acts for
only 10% of the cycle, i.e., a data point capture of 20 points if the capture time is
5 × 10−10 s. However, such an increase in the sampling rate would significantly en-
large the datasets utilized, posing a problem regarding the generation of the dataset
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Figure 8.5: Comparison of somaFOAM to DMD generated prediction for the second
case.

and processing time when running the DMD algorithm. Nonetheless, exploring this
option is not discarded, as the potential benefits could outweigh these drawbacks.

Case 3 - 150 sinusoidal, dual pulsed, 1500, -1250

As the DMD algorithm is explored to its edge cases to determine the limitations
of the algorithm, a sinusoidal voltage of 150V is applied, changing the background
sinusoidal voltage of 300V on which the data was trained. As seen in figure 8.7, the
profile screenshots during the pulsed event at 2.2T, 3.3T, 5.1T, and 5.3T showcase
different profiles that do not match each other. While the plasma stabilizes at cycle
times 12.0T, 15.4T, and 15.8T, the profile underestimates the number density by a
magnitude of 2 × 1010 1/cm3 to 4 × 1010 1/cm3, indicating a disagreement between
somaFOAM and the DMD prediction. Figure 8.8 shows a large discrepancy between
somaFOAM and the DMD algorithm for both the sheath and bulk regions, indicating
that the database used to train the DMD algorithm is inadequate for predicting such
parameters.

To obtain a better prediction, it is recommended that the model be trained with
somaFOAM simulations utilizing a sinusoidal voltage of 150V rather than 300V to
achieve a better prediction than the one shown. Nonetheless, this serves as a cau-
tionary exercise on the reliance and limitations of predictive algorithms, where the
resolution, data points, and parameters of interest are crucial for developing a data-
driven predictive model that can accurately predict modeling conditions to reduce
computational downtime of CFD tools such as somaFOAM.
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Figure 8.6: Percentage of differences between DMD and somaFOAM for the second
case.

Figure 8.7: Comparison of somaFOAM to DMD generated prediction for the third
case.



101

Figure 8.8: Percentage of differences between DMD and somaFOAM for the third
case.

8.3 Conclusion

The first test case, an edge case with extreme voltage values, highlighted the limita-
tions of DMD in highly nonlinear regions, particularly during the initial pulsed events.
The large discrepancies observed, especially in the sheath region, indicate the chal-
lenges in capturing rapid electron dynamics with a coarse dataset. However, as the
plasma evolved, the agreement between DMD and somaFOAM improved, showcasing
DMD’s capability in more stable conditions.

The second case, representing conditions within the trained data bounds, showed
significantly better agreement between DMD predictions and somaFOAM results.
This indicates that DMD performs well within its training parameters but still faces
challenges with the sheath region’s non-steady-state nature. The potential to improve
predictions by increasing data resolution and sampling rate suggests avenues for future
research, balancing the trade-off between dataset size and computational feasibility.

The third case further explored the limits of DMD by applying a sinusoidal voltage
different from the training conditions. The observed discrepancies underscore the
importance of training data closely matching the intended application conditions.
This case is a cautionary example of the limitations of predictive algorithms when
extrapolated beyond their trained boundaries.

Overall, the study illustrates the promising potential of DMD as a tool for reducing
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computational overhead in plasma modeling. While the algorithm performs well
within trained conditions, it highlights the need for comprehensive and high-resolution
datasets to capture complex plasma behaviors accurately. Future work should focus
on expanding the training datasets, optimizing sampling strategies, and exploring
hybrid approaches that combine DMD with traditional CFD methods to enhance
predictive accuracy and efficiency. The insights gained from this research contribute
to advancing the field of plasma modeling, offering a pathway toward more efficient
and scalable computational methods.
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Chapter 9

Conclusion

The diagnostic study of helium and argon plasmas under different ignition wave-
forms was critical to this research. The operating conditions, including using a one-
dimensional mesh and specific chemical profiles, were carefully selected to simulate
realistic plasma environments. The study revealed that helium plasmas, due to their
ease of ignition and stability, serve as a benchmark for understanding basic plasma
characteristics. The comparison of sinusoidal, pulsed, and sinusoidal decay waveforms
demonstrated that the sinusoidal decay waveform with a damping factor of 0.25 pro-
duced the strongest plasma for both helium and argon. This waveform consistently
generated higher electron number densities and provided greater stability than other
waveforms.

The sinusoidal decay waveform (ξ = 0.25) was the most effective for helium plas-
mas, followed by unipolar, sinusoidal decay (ξ = 0.1), sinusoidal, and bipolar wave-
forms. Electrical characterization of the waveforms showed phase shifts indicating
different modes of operation, with the sinusoidal decay waveforms operating in the
γ mode, characterized by a transition from capacitive to resistive behavior. The
study also highlighted the importance of understanding electron profiles and their
distribution, which varied significantly with different waveforms. Similar trends were
observed in argon plasmas, with the sinusoidal decay waveform (ξ = 0.25) produc-
ing the highest number of densities. However, differences between helium and argon
plasmas were noted, particularly in the waveforms’ effectiveness and the ignition’s
power requirements. Argon plasmas required higher power inputs to achieve electron
number densities similar to helium plasmas. These findings underscore the need for
tailored approaches when working with different feedstock gases and highlight the
complexities of plasma diagnostics.

The investigation into the α-γ mode of operation provided crucial insights into the
stability and efficiency of plasmas under different ignition waveforms. The study ex-
amined the voltage-current profiles and identified the critical points where the plasma
transitions from the α mode to the γ mode. This transition is marked by changes
in differential conductivity and the onset of instabilities. The sinusoidal and bipolar
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waveforms exhibited stable γ mode operation up to specific voltage thresholds before
becoming unstable. The unipolar pulsed waveform, however, demonstrated inherent
instability, transitioning to the γ mode at lower voltage thresholds and exhibiting sig-
nificant electron activity in the sheath region. This instability was attributed to the
bias in sheath activity towards the ground electrode, which accelerates the transition
to the γ mode.

The sinusoidal damped waveform (ξ = 0.25) showed a unique behavior, maintain-
ing stability even in the γ mode. This stability was linked to the waveform’s ability
to distribute power efficiently and manage the electron dynamics within the plasma.
The study emphasized the importance of considering the external circuit’s resistive
elements, which play a crucial role in the plasma’s electrical characterization and
stability. These findings are critical for optimizing plasma processes in applications
where maintaining stable operation is essential.

DMD was applied as a data-driven technique to reduce computational overhead in
plasma modeling. The DMD algorithm was trained using a comprehensive database
generated from somaFOAM simulations under various operating conditions. The al-
gorithm’s predictive capabilities were evaluated through multiple case studies, demon-
strating its potential to capture the main characteristics of plasma behavior. The first
test case, which represented an edge case with extreme voltage values, highlighted the
limitations of DMD in highly nonlinear regions. The discrepancies observed during the
initial pulsed events indicated challenges in capturing rapid electron dynamics with
a coarse dataset. However, the agreement between DMD and somaFOAM improved
as the plasma evolved, showcasing DMD’s effectiveness in more stable conditions.
Within the trained data bounds, the second case showed significantly better agree-
ment between DMD predictions and somaFOAM results. This indicated that DMD
performs well within its training parameters but still faces challenges in the sheath
region’s non-steady-state nature. The potential to improve predictions by increasing
data resolution and sampling rate suggests avenues for future research.

The third case explored the limits of DMD by applying a sinusoidal voltage differ-
ent from the training conditions. The observed discrepancies underscored the impor-
tance of training data closely matching the intended application conditions. This case
highlighted the limitations of predictive algorithms when extrapolated beyond their
trained boundaries, serving as a cautionary example for future applications. These
findings offer valuable insights for optimizing plasma processes, particularly in the
semiconductor industry, where precise control over plasma characteristics is crucial.
Future research should focus on expanding the training datasets for DMD to improve
its predictive accuracy, especially in highly nonlinear regions. Additionally, exploring
hybrid approaches that combine DMD with traditional CFD methods could enhance
plasma simulations’ predictive capabilities and efficiency.

Overall, this research provides a robust framework for plasma modeling, offering
significant contributions to understanding and optimizing plasma processes. The
insights gained pave the way for future plasma physics and engineering advancements,
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promoting more efficient and scalable computational methods for various industrial
applications.
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