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Resolvent degree, Hilbert’s 13th Problem and geometry

Benson Farb and Jesse Wolfson ∗

January 23, 2020

Abstract

We develop the theory of resolvent degree, introduced by Brauer [Bra2] in order to
study the complexity of formulas for roots of polynomials and to give a precise formu-
lation of Hilbert’s 13th Problem. We extend the context of this theory to enumerative
problems in algebraic geometry, and consider it as an intrinsic invariant of a finite
group. As one application of this point of view, we prove that Hilbert’s 13th Problem,
and his Sextic and Octic Conjectures, are equivalent to various enumerative geometry
problems, for example problems of finding lines on a smooth cubic surface or bitangents
on a smooth planar quartic.
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1 Introduction

In a never-cited 1975 paper [Bra2], Brauer introduced for a field extension L/K an integer-
valued invariant RD(L/K) that we call resolvent degree. Applying RD to function fields
gives an invariant RD(Y 99K X) of rational covers 1 (e.g. finite branched covers) of complex
algebraic varieties. The resolvent degree RD(P̃n → Pn) of the root cover of the universal
family Pn of degree n polynomials has the interpretation:

RD(P̃n → Pn) = the least d for which there exists a formula in
algebraic functions of at most d variables for the
roots of a polynomial in terms of its coefficients.

While the formal definition seems to have waited until Brauer, the study of “reduction
of parameters” for polynomials was initiated by Tschirnhaus [Ts] in 1683. It was developed
and refined by Hamilton, Sylvester, Klein, Hilbert, Segre and others. As we explain below,
RD allows one to go beyond the solvable/unsolvable dichotomy provided by Galois theory;
in particular, it was introduced by Brauer to give a precise formulation of Hilbert’s 13th
Problem (see below).

In this paper we pick up where Brauer left off. We extend the scope of RD from
polynomials to classical enumerative problems, placing Hilbert’s 13th Problem in a broader
context and restoring the geometric perspective pioneered by Klein in his study of quintic
equations [Kl2]. One use of resolvent degree is that it gives a uniform framework for
stating and relating disparate classical results. As an example, we prove (Theorem 8.1) an
equivalence of Hilbert’s Sextic Conjecture to seven other problems, for example relating it
to finding lines on cubic surfaces and finding fixed points for hyperelliptic involutions on
genus 2 curves. We prove similar theorems for Hilbert’s 13th problem (Theorem 8.3), and
Hilbert’s Octic Conjecture (Theorem 8.4).

In [W], this viewpoint is used to extend a beautiful but little-known trick of Hilbert
(who used the existence of lines on a smooth cubic surface to give an upper bound on
RD(P̃9 → P9)) to improve the upper bounds on RD(P̃n → Pn) given by Hamilton, Sylvester,
B. Segre, Brauer and others.

1.1 Resolvent degree

We start with a problem central to classical (and modern) mathematics.

Problem 1.1. Find and understand formulas for the roots of a polynomial

P (z) = zn + a1z
n−1 + · · ·+ an (1.1)

in terms of the coefficients a1, . . . , an.

It is well known that if n ≥ 5 then no formula exists using only radicals and arithmetic
operations in the coefficients ai.

2 Less known is Bring’s 1786 theorem [Bri] that any quintic
can be reduced via radicals to a quintic of the form Q(z) = z5 + az + 1 (see [CHM] for

1See Definition 1.2 below.
2This was claimed by Ruffini in 1799; a complete proof was given by Abel in 1824.
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a contemporary translation). In 1836, Hamilton [Ham] extended Bring’s results to higher
degrees, showing, for example, that any sextic can be reduced via radicals to Q(z) =
z6 + az2 + bz + 1, making it a 2-parameter (a and b) problem. He also proved that any
degree 7 polynomial can be reduced via radicals to one of the form

Q(z) = z7 + az3 + bz2 + cz + 1, (1.2)

and that any degree 8 polynomial can be reduced via radicals to one of the form Q(z) =
z8+az4+bz3+cz2+dz+1. Hilbert conjectured explicitly that one cannot do better: solving
a sextic (resp. septic, resp. octic) is fundamentally a 2-parameter (resp. 3-parameter, resp.
4-parameter) problem. Of course we need to know the exact rules of the game here; that is,
we need to give a precise definition of what it means to reduce a problem to r parameters.
Surprisingly, a precise definition was only written down in 1975, by Brauer [Bra2], and a
year later by Arnol’d-Shimura [AS], apparently unaware of Brauer’s paper. For motivation,
let’s look at an example.

Let Pn ∼= Cn be the space of monic, degree n complex polynomials, and let P̃n be the
root cover of Pn:

P̃n := {(P, λ) : P (λ) = 0} ⊂ Pn × C.

The map (P, λ) 7→ P gives an n-sheeted branched cover P̃n → Pn, with branch locus
precisely the subset of Pn consisting of polynomials with a repeated root, given by the
zero-set of the discriminant ∆n(a1, . . . , an), a polynomial in the coefficients ai.

Recall that a rational map f : X 99K Y between irreducible varieties is dominant if the
image of f is Zariski dense in Y ; it is generically finite if the generic fiber is finite. For such
a map there are Zariski opens U ⊆ X,V ⊆ Y so that the restriction f : U → V is a finite
cover.

Definition 1.2 (Rational cover). Let X and Y be irreducible varieties.3 A rational cover
f : X 99K Y is a generically finite dominant rational map.

With this definition in hand, “solving an arbitrary degree n polynomial by radicals”
means precisely that there is a sequence of rational covers

Xr 99K · · · 99K X0 = Pn

such that Xr 99K Pn factors through a rational cover Xr 99K P̃n, and where each Xi+1 99K
Xi is birationally a pullback

Xi+1
//

��

P1

��

z_

��

Xi
// P1 zdi

The fact that each cover Xi+1 99K Xi is a pullback from P1 reflects the fact that it is specified
by dimC P1 = 1 parameter, namely taking a di-th root, and so “solving by radicals” is a
process involving only 1 parameter at a time. The final map Xr 99K P̃n is crucial. For
example, for Cardano’s solution in radicals of the cubic, this map has degree 2, reflecting

3See Convention 2.2 for the case of reducible varieties.
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the fact that Cardano’s formula actually produces 6 solutions (with multiplicity), not just 3.
While such towers of radicals exist only for n ≤ 4, Bring’s reduction of quintics mentioned
above gives for n = 5 a tower with each Xi+1 99K Xi either a radical, or the pullback of the
“Bring curve” C → P1 (see [Gr] for a beautiful treatment of this genus 4 curve); in particular
we see that solving a general quintic is also a 1-parameter problem. More precisely, we have
the following.

Definition 1.3 (Resolvent degree). Let k be a field of characterisitc 0 and let Y 99K X
be a rational cover of k-varieties. The essential dimension edk(Y 99K X) is the minimal d
so that Y 99K X is the “rational pullback” of a rational cover of d-dimensional varieties:
there exists a rational cover W̃ 99K W with dim(W ) = d, a Zariski open U ⊆ X, and a

morphism f : U →W such that f∗W̃ ∼= Y |U .
The resolvent degree RDk(Y 99K X) is the minimal d for which there exists a tower of

rational covers
Xr 99K Xr−1 99K · · · 99K X1 99K X0 = X (1.3)

with edk(Xi 99K Xi−1) ≤ d for all i and with a dominant map of X-schemes Xr 99K Y .

Definition 1.3 is equivalent to Brauer’s original, purely field-theoretic definition; see §2.1
below. One can easily check 4 that RD(P̃n → Pn) is the minimal number of parameters to
which one can reduce a general degree n polynomial in order to find a formula for the roots.
In this language, the results mentioned above on reduction of parameters can be restated
succinctly as:

RD(P̃n → Pn) = 1 ∀n ≤ 5, and RD(P̃n → Pn) ≤ n− 4 ∀n > 5.

Remark 1.4. The theory of essential dimension has been developed by Buhler–Reichstein,
Merkurjev and others into a beautiful and widely applicable theory; see Reichstein’s 2010
ICM paper [Re] for a survey. This disallowing of so-called “accessory irrationalities” cap-
tures more of the arithmetic of the function field of the base, whereas RD captures more of
the intrinsic complexity of the branched cover. For the problems we are considering, forcing
a solution in a single step does not give the correct measure. For example, there are finite
covers X̃ → X that are solvable (hence RD(X̃ → X) = 1) but with ed(X̃ → X) as large as
one wants; and for example ed(P̃4 → P4) = ed(P̃5 → P5) = 2, even though (as mentioned
above) it was known by 1786 that these problems reduce to 1 parameter.

1.2 Hilbert’s problems

As already noted by Brauer [Bra2], Hilbert’s conjecture (explicitly asked by Hilbert in [Hi1,
p.424] and [Hi2, p.247]) that Hamilton’s reduction of parameters for the general polynomial
of degree 6, 7, or 8 is optimal, can now be stated precisely, as can the problem for all degrees.
Both Klein and Hilbert worked on this general problem for decades (see [Kl3, Hi1, Hi2]).

Problem 1.5 (Klein, Hilbert, Brauer). Compute RD(P̃n → Pn). In particular:

Hilbert’s Sextic Conjecture ([Hi2], p.247): RD(P̃6 → P6) = 2.

4This is somewhat more clear via Brauer’s definition.

3



Hilbert’s 13th Problem ([Hi1],p.424): RD(P̃7 → P7) = 3.

Hilbert’s Octic Conjecture ([Hi2], p.247): RD(P̃8 → P8) = 4.

Amazingly, no progress has been made on any of these three conjectures since Hilbert
stated them. In 1957, Arnol’d and Kolmogorov proved (see [Ar]) that there is no local
topological obstruction to reducing the number of variables; however, as Arnol’d and many
others have noted, the global problem remains open. A lot of work has been done on finding
upper bounds on RD(P̃n → Pn). This includes (in other language) theorems of Tschirnhaus
(1683), Bring (1786), Hamilton (1836), Sylvester (1887), Klein (1888), Hilbert (1927), and
Segre (1945).

The best general upper bound on RD(P̃n → Pn), prior to the present, was given by
Brauer [Bra2]. He proved for n ≥ 4 that RD(P̃n → Pn) ≤ n − r once n ≥ (r − 1)! + 1.
Brauer’s method was to systematize the classical method of Tschirnhaus transformations. In
[W], the point of view developed here is used to give a significant improvement on Brauer’s
bound. One of the key ideas is to expand the context of resolvent degree.

1.3 Expanding the context

Since Hilbert, resolvent degree has been considered primarily for root covers of polynomials.
However, as Klein first realized [Kl3], RD is much more widely applicable. After all, many
algebraic problems can be reformulated in terms of a rational cover (P, s) 7→ P from the
space X̃ of pairs (P, s) of input parameters P and solutions s to the space X of parameters
P , and

RD(X̃ 99K X) = minimal number of parameters of any algebraic
formula for s in the coefficients of P .

As Klein himself realized [Kl1], this general setup includes not only roots of polynomials
P̃n → Pn (see §7), but also a second fundamental source of examples, namely incidence
varieties (see §6).

Incidence varieties. Problems in enumerative geometry are typically set up with the
following data:

1. a pair of moduli spaces M, C of algebraic varieties;

2. a subvariety M̃ ⊆ M × C, called an incidence variety, consisting of pairs (M,C)
satisfying a given incidence relation; and

3. a rational cover π : M̃ 99KM defined by π(M,C) := M .

We restrict to characteristic 0 throughout this paper. By the definition of a rational
cover, for each component M0 of M there exists n ≥ 1 so that π is an n-sheeted covering
space over some Zariski open U ⊆ M0. In particular for each M ∈ U there is a set
π−1(M) = {C1, . . . , Cn} of n varieties in C, satisfying the given incidence relation, varying
in an algebraic way with M . Here are some examples.

Examples 1.6. Let Hd,n denote the moduli space of smooth, degree d hypersurfaces in Pn.
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1. 27 lines on a smooth cubic surface:

H3,3(1) := {(S,L) : S a smooth cubic surface, L ⊂ S a line}

and π : H3,3(1)→ H3,3 is a 27-sheeted cover. See §4 for precise definitions.

2. 28 bitangents on a smooth planar quartic:

H4,2(1) := {(C,L) : C ⊂ P2 a smooth quartic, L ⊂ P2 a line tangent to C at 2 points}

and π : H4,2(1)→ H4,2 is a 28-sheeted cover. See §5 for precise definitions.

3. 3264 conics tangent to 5 given conics: Let W be the linear system of conics in P2 and
W0 ⊂W the Zariski open consisting of smooth conics. Then we can define

Y := {(C1, . . . , C5, C) : C is tangent to each Ci} ∈W 5 ×W0

and π : Y →W 5 is a 3264-sheeted dominant map.

A first goal of enumerative problems is to find such M̃ 99KM and then to compute the
degree n. One then wants to find points in π−1(M) in terms of the data needed to specify
M . “Find” can have several meanings.

Example 1.7 (Finding a line on a cubic surface). Cayley-Salmon proved in 1856
that a smooth cubic surface has 27 lines. How hard is it to find such a line? all 27 lines
given one of them? Let H3,3(r) (resp. Hskew

3,3 (r)) denote the moduli space of (r+ 1)-tuples
(S;L1, . . . , Lr) where S ∈ H3,3 and {Li} are lines (resp. disjoint lines) in S; see §4 for precise
definitions. Harris [Har] proved 5 :

• The monodromy group of the 27-sheeted cover H3,3(1) → H3,3 is the Weyl group
W (E6); in particular it is not solvable. Harris [Har, p. 718] deduces that “there does
not exist a formula for the 27 lines of a general cubic surface.”

• The monodromy group of H3,3(27)→ Hskew
3,3 (r) is solvable for r = 3 but not for r < 3.

Thus there is a formula in radicals for the 27 lines, given 3 disjoint ones, but no fewer.

The question remains: how hard is it to find a line on a smooth cubic surface? or 27
lines given 1? We just saw examples where a formula in radicals does not exist, and indeed
this is typical for enumerative problems; this is the main theme of [Har]. But, in contrast
to Harris’s conclusion, algebraic formulas not-in-radicals do exist, and indeed have been
an object of study since the 17th century. Resolvent degree allows us to move beyond the
solvable/unsolvable dichotomy to give a quantitative measure of the possible complexity of
such formulas. In particular it allows us to ask: what is RD(H3,3(r)→ H3,3(s))? Here is a
simple but illustrative example.

Example 1.8. RD(H3,3(27)→ H3,3(1)) ≤ RD(P̃5 → P5) = 1.

5The first statement was known to Camille Jordan.
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256 CHAPTER 10. APPLICATIONS TO CLASSICAL TOPICS

Figure 10.2: Portion of V 0 with its 27 lines (from below)

10.5.2 Relation with del Pezzo surfaces

A del Pezzo surface X (at least over an algebraically closed field) is either P1⇥P1

or the blow-up of P2 in m points (m = 1, . . . , 8), usually taken in general position.
(In comparison, recall that a rational elliptic surface is the blow-up of P2 in nine
points, but not in general position, since they are the base points of a cubic
pencil.) The degree d of X is defined to be

d = K2
X = 9�m.

For our purposes, the small degree cases d = 1, 2, 3 are of particular interest
since they naturally give rise to the root lattice E9�d by way of considering
the orthogonal complement K?

X inside NS(X) (which is even by the adjunction
formula from Theorem 4.9, and thus isomorphic to E9�d for classification reasons).
Indeed, one can obtain an elliptic surface from X by blowing up another d points.
Here a word of care may be in order; namely, these d points are not at all
independent of the others. For instance, if d = 1, then the 8 points blown-up in
P2 already determine a cubic pencil in P2. This pencil has one further base point
determined by the given 8 which we thus have to blow-up in order to obtain a
rational elliptic surface from X.

Here comes the easiest example of a del Pezzo surface not obviously given in
the above model: a smooth cubic surface V ! Indeed, it was classically known
that V is isomorphic to P2 blown-up in 6 points. Here is a rough idea how to

Figure 1: The projection π : Blp(S) → P2 of the blowup at a point p of a smooth cubic surface S is a
2-sheeted branched cover, branched over a smooth plane quartic C. The branching locus in S is the inner
rim of each of the four holes in S, two of which go off to infinity in the left-hand picture. The image π(C)
of each of the 27 lines in S is a bitangent of C. Here we see (the real points of) a branched cover given by
projection to the plane of the paper. The left part of the figure is taken from [SS]; the right from [PSV].

Example 1.8 follows from a beautiful classical trick: given a line L on a smooth cubic
surface S, each plane in the pencil containing L intersects S in L union a conic, and this
conic degenerates into a union of two lines at the roots of the discriminant ∆L of this pencil
of conics. ∆L is a one-variable polynomial of degree 5, which by Bring [Bri] has RD = 1.
One then gets 5 pairs of distinct lines on S, and gets the other 16 via radicals, by Harris’s
theorem.

Conjecture 1.9 (The line-finding conjecture).

RD(H3,3(27)→ H3,3) = RD(H3,3(1)→ H3,3) = 3.

The upper bound of 3 comes from work of Klein and Burkhardt [Kl3, Bur]. We give a
concise proof in Theorem 4.3 below.

In §6 we will see how theorems from classical geometry can be used to relate the resolvent
degrees of different problems. For example, we use the result described in Figure 1 to prove
the following.

Theorem 1.10. Any minimal algebraic formula for the 27 lines on a smooth cubic surface
(in terms of its coefficients) has the same number of parameters as any minimal algebraic
formula for the 28 bitangents on a plane quartic curve, given one of them:

RD(H3,3(27)→ H3,3) = RD(H4,2(28)→ H4,2(1)).

We discuss in depth lines on smooth cubic surfaces and bitangents on smooth plane
quartics in §4 and §5, respectively. We focus on these examples because of their richness
and their close relationship to Hilbert’s problems (see below). In §6 we discuss RD of some
other enumerative problems. It is our hope that others will work out the resolvent degree
story for these problems (and many more).
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Remark 1.11 (Explicit formulas). Part of the usefulness of the Galois criterion for
solvability in radicals is that one can prove it without finding such a formula explicitly.
Similarly, one can give an upper bound for the resolvent degree of a problem without
finding an explicit formula. At the same time, the answers given by non-explicit methods
can sometimes help indicate where to look for explicit formulas.

1.4 The scope of Hilbert’s problems

As with many of Hilbert’s problems, the 13th Problem and the Sextic and Octic Conjec-
tures are meant to indicate a fundamental phenomenon whose understanding should have
implications far beyond the original problem. Hilbert was clearly interested in, and worked
on (see, e.g., [Hi1, Hi2]), the general problem of determining RD(P̃n → Pn), the cases n = 6,
n = 7, and n = 8 being the first open cases. In §8 we prove the equivalence of the Sextic
Conjecture with seven other statements, the equivalence of Hilbert’s 13th Problem with four
other statements, and the equivalence of the Octic Conjecture with six other statements.

The point is both to exhibit how rich these problems are, and also to recast them in
ways that may be more amenable to solution. As a sample, here is an abridged version of
Theorem 8.1 below; for definitions see §8.

Theorem 1.12 (The geometry in Hilbert’s Sextic Conjecture). The following state-
ments are equivalent:

1. Hilbert’s Sextic Conjecture is true: RD(P̃6 → P6) = 2.

2. RD = 2 for the problem of finding the 27 lines on a cubic, given a “double six” set of
lines (unordered) (see §4.1 and Figure 2):

RD(H3,3(27)→ H3,3(6, 6)) = 2.

In fact, the resolvent degrees of the above problems coincide.

For further equivalences, as well as for problems aboutG-varieties withG = W (E6), S7, S8

or W (E7), see §8.

Our approach to proving Theorem 1.12 (and the versions for other G) is to define RD as
an intrinsic invariant of a finite group, in this case S6 and S2 × S6 respectively. We do this
in §3. We then show that each of the specific covers in the theorem realizes the resolvent
degree of their Galois group. Finally, we show that if a group contains as subgroups all the
simple factors in its Jordan-holder decomposition, then its resolvent degree is the maximum
of these simple factors (Theorem 3.3). From a classical perspective, a G-variety X gives an
algebraic function expressing X in terms of coordinates on X/G. The proof of Theorem 1.12
proceeds by showing that RD(G) = RD(X → X/G) when X is a “versal” G-variety, for
an appropriate notion of “versal”, and then to prove the versality of the varieties listed
above. What “versality” means, in this context, is that, up to accessory irrationalities, all
G-varieties are birationally pullbacks of any versal one. See §3.2 for details. We give a
similar treatment for Hilbert’s 13th Problem and S7, Hilbert’s Octic Conjecture and S8, as
well as for various W (E6) and W (E7)-varieties. For a more detailed treatment of versality
in connection with modular functions, see [FKW].

7



Figure 2: A double-six of lines on (the real points of) a smooth cubic surface. The intersection pattern is
given in (4.3), with the ai colored blue and bj colored red. One can ask for a formula for the other 15 lines
on a smooth cubic given a double-six. The resolvent degree of this problem is 2 if and only if Hilbert’s Sextic
Conjecture is true. Figure taken from https://www.mathcurve.com/surfaces.gb/clebsch/doublesix.shtml.

1.5 Lower bounds

Theorems on resolvent degree to date have exclusively concerned providing upper bounds.
As Dixmier concludes in his 1993 paper [Di] (using ‘s(n)’ for RD(P̃n → Pn)):

Terminons sur une note dramatique, qui prouve notre incroyable ignorance.
Bien que cela paraisse improbable, il n’est pas exclu que s(n) = 1 pour tout
n! . . . Toute minoration de s(n) serait un progrès sérieux. En particulier, il
serait temps de savoir si s(6) = 1 ou s(6) = 2.” 6

In fact, we still cannot solve the following problem, implicit in Klein, Hilbert and Brauer,
and stated more explicitly by Arnol’d-Shimura [AS].

Problem 1.13 (Arnol’d-Shimura). Prove that there exists X̃ 99K X with

RD(X̃ 99K X) > 1.

In fact, we believe that the following stronger statement should hold.

Conjecture 1.14. RD(P̃n → Pn)→∞ as n→∞.

Along with Hilbert’s Sextic and Octic Conjectures and Hilbert’s 13th Problem, these
are clearly among the most important conjectures about resolvent degree. While we make
no definite progress in this paper toward solving these problems, we hope that with renewed
attention to them, and to the broader framework of resolvent degree, future progress may
be more forthcoming.

6In English: “Let’s end on a dramatic note, which proves our incredible ignorance. Although this seems
unlikely, it is not excluded that s(n) = 1 for all n! . . . Any lower bound for s(n) would be serious progress.
In particular, it’s time that we know whether s(6) = 1 or s(6) = 2.”
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1.6 Historical Remarks

The concept of resolvent degree originates with the classical problem of solving polynomials.
It emerged in the 17th century with the work [Ts] of Tschirnhaus.7 In 1786, Bring [Bri]
proved RD = 1 for the problem of solving the quintic, and in 1836 Hamilton [Ham] gave
a general sequence of upper bounds on RD(P̃n → Pn) for increasing n. Hamilton’s work
was picked up by Sylvester and his student Hammond [Sy, SH1, SH2], by Klein [Kl3, Kl2],
and by Hilbert [Hi1, Hi2]. Sixty-four years after Hamilton’s work, Hilbert brought to the
fore the fundamental issue: no lower bounds for RD(P̃n → Pn) had ever been shown.
Hilbert’s Sextic Conjecture, Hilbert’s 13th Problem 8, and Hilbert’s Octic Conjecture pose
the challenge of proving that RD(P̃6 → P6) = 2, RD(P̃7 → P7) = 3, and RD(P̃8 → P8) = 4
respectively.

Resolvent degree was first defined explicitly in 1975 by Brauer [Bra2] in order to make
precise Hilbert’s 13th Problem. Brauer also gave new upper bounds on RD(P̃n → Pn) for
all n; see §7 below. A year later Arnol’d-Shimura [AS], apparently unaware of Brauer’s
paper, gave an equivalent definition of RD, also in order to make precise Hilbert’s 13th.
The definition of RD seems to have lain dormant until the paper [Di] of Dixmier, who
helped publicize the concept of resolvent degree. This concept was also discussed in passing
by Buhler-Reichstein [BuRe2] and Chernousov–Gille–Reichstein [CGR]. The present paper
is the first to cite [Bra2]. The problem of finding any extension L/K with RD(L/K) > 1
remains open.
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2 The resolvent degree of a rational cover

In this section we study the basics of resolvent degree RD. After giving the definition of RD
of a rational cover, we establish some basic properties of RD, we prove that our definition
is equivalent to Brauer’s original definition in [Bra2] of the resolvent degree of a finite
field extension, and we prove a number of technical foundational results that are useful for
computations. More specifically, we relate RD of an extension to that of its Galois closure,
and we prove a crucial result on “accessory irrationalities”, a classical concept studied by
Kronecker, Klein and others, that is a key feature of RD.

2.1 Definitions of resolvent degree

For expositional reasons, we state the results in this paper in the language of k-varieties.
For the reader who prefers to work with schemes, we will signal when a result or proof does
not trivially extend to this case.

Convention 2.1.

1. Unless otherwise specified, throughout this paper we take the base field k to be an
arbitrary field of characteristic 0.

2. By a k-variety we mean a reduced, possibly reducible k-scheme of finite type.

3. When the ground field k is clear we will generally omit the subscript k and simply
write RD(−).

4. A solid arrow X → Y denotes a regular map of varieties; a dashed arrow X 99K Y
denotes a rational map of varieties.

5. Given a rational cover X̃ 99K X, we will refer to a tower (1.3) as in Definition 1.3
as a “tower solving X̃ 99K X in d variables”, or as a “tower solving X̃” for short.

6. We say that f : X 99K Y is a “rational pullback” of g : W 99K Z if there exist dense
opens U ′ ⊂ X, U ⊂ Y , V ′ ⊂W , V ⊂ Z and a pullback square of regular maps

U ′ //

f |U
��

V ′

g|V
��

U // V

7. The “domain” of a rational map f : X 99K Y is the largest U ⊂ X for which f |U is a
regular. map. The “image” of f is defined to be f(U).
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Convention 2.2 (Rational cover of a reducible variety). Let X̃ and X be a (possibly
reducible) varieties. By a rational cover X̃ 99K X we mean a rational map X̃ 99K X
with which restricts on each irreducible component X̃i ⊂ X̃ to a dominant rational map
X̃i 99K Xj for some irreducible component Xj ⊂ X; some Zariski open of each Xj lies in

the image of some X̃i; and for each j the generic fiber of X̃ over Xj is finite. In particular,
we want to avoid pathologies such as X

∐{x} → X (where dim(X) > 0 and x ∈ X(k)).

Recall that we defined in Definition 1.3 the resolvent degree of a rational cover. We can
also define it in terms of field extensions.

Definition 2.3 (Resolvent Degree of a field extension). Let K ↪→ L be a finite
extension of fields over k. The resolvent degree RDk(L/K) is the minimal d for which there
exists a finite sequence of finite extensions

K = L0 ↪→ L1 ↪→ · · · ↪→ Lr

with L ↪→ Lr (as extensions of K) and for all i = 1, . . . , r,

Li = Li−1 ⊗Fi F̃i

where Fi ↪→ Li−1 is a subfield with tr.degk(Fi) ≤ d and where Fi ↪→ F̃i is a finite extension.
Here tr. degk(Fi) denotes the transcendence degree of Fi over k.

The definition of resolvent degree in terms of rational covers and in terms of field ex-
tensions are equivalent.

Proposition 2.4 (Equivalence of definitions). If X̃ 99K X is a rational cover of irre-
ducible k-varieties then

RD(X̃ 99K X) = RD(k(X̃)/k(X)).

We defer the proof until we have assembled basic properties of RD (as defined in Defi-
nition 1.3) in the next section.

Comparison with essential dimension. Essential dimension has its origins in work of
Hermite [He], Kronecker [Kr], Joubert [Jou] and Klein [Kl2]. The theory was revived, and
definitions made explicit, around twenty years ago by Buhler-Reichstein in [BuRe1]. It has
been studied intensively ever since. See [Re] and [Me2] for recent surveys.

A central feature of the theory of essential dimension are the invariants edk(−; p). These
measure the prime-to-p essential dimension; that is, any auxiliary tower of covers of degree
prime to p is allowed before one finds a dominant map to a variety of minimal dimension.
One could define the analogous invariant RDk(−; p) by saying that in the tower giving a
solution, one allows arbitrary prime-to-p covers, but for covers whose degree is divisible by
p, only those of edk(−) ≤ d. Field theoretically, this amounts to working over the prime-to-p
closure of the function field of the base; that is, base-changing to Spec of the fixed field of a
p-Sylow of the absolute Galois group of k(X). Since p-groups and pro-p groups are solvable,
we immediately see that RDk(−; p) ≡ 1 for all k and all p. This is in strong contrast to the
case of essential dimension, and shows that the study of resolvent degree is a strictly “Type
2” problem in the dichotomy of [Re, §5].
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2.2 Basic properties

In this subsection we establish some of the basic properties of RD.

Lemma 2.5 (Easy upper bounds). Let X̃ 99K X be a rational cover of k-varieties.

1. RD(X̃ 99K X) ≤ ed(X̃ 99K X) ≤ dim(X).

2. Let k ↪→ k′ be any field extension. Then

RDk′(X̃ ×k k′ 99K X ×k k′) ≤ RDk(X̃ 99K X).

3. Let Y 99K X be any dominant rational map of k-varieties. Then

RD(X̃ ×X Y 99K Y ) ≤ RD(X̃ 99K X).

4. If the rational map X̃ 99K X is birational over k to Ỹ 99K Y ; that is, if

X̃
∼ //

��

Ỹ

��

X
∼ // Y

for some birational horizontal maps, then

RD(X̃ 99K X) = RD(Ỹ 99K Y ).

Proof. The first statement is immediate from the definitions. The second, third and fourth
statements follow from base change: e.g. given a tower solving X̃ 99K X over k, by base
change we obtain an analogous tower over k′ solving X̃ ×k k′ 99K X ×k k′. This shows that
any upper bound for towers over k immediately gives one over k′ as well. The argument for
the third and fourth is analogous.

Many natural branched covers are reducible; indeed such covers arise in Cardano’s
solution to the cubic; these components are responsible for so-called “parasitic roots” in
the solution. The following lemma allows us to reduce the study of RD to irreducible
components.

Lemma 2.6 (Irreducible components). Let X̃ 99K X be a rational cover. Let {Xi ⊂ X}
be the set of irreducible components of X, and let {X̃i,j ⊂ X̃|Xi} be the set of irreducible

components of X̃|Xi 99K Xi. Then

RD(X̃ 99K X) = max
i,j
{RD(X̃i,j 99K Xi)}.

Proof. From the definition of resolvent degree, if X =
∐
iXi, then

RD(X̃ 99K X) = max
i
{RD(X̃|Xi 99K Xi)}.
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Let X =
⋃
Xi, and let Xσ =

⋃
i 6=j Xi ∩Xj be the set of points contained in more than one

irreducible component. Then X − Xσ is a disjoint union of irreducible components, and
X −Xσ is birationally equivalent to X. Because resolvent degree is a birational invariant
(Lemma 2.5), it suffices to assume that X is irreducible, and that X̃ =

∐
i X̃i.

The inequality
RD(X̃ 99K X) ≤ max

i
{RD(X̃i 99K X)}

is clear. Indeed, given a tower solving X̃i 99K X for each i, we construct a tower solving
X̃ 99K X as follows, first if r is the length of the longest tower solving one of the X̃i 99K X,
we extend all the other towers (for j 6= i) to towers of length r by adding identity maps
after the final stage. Next, we form a tower over X whose `th stage is the disjoint union of
the `th stages of the towers for the X̃is. By construction, each stage of this tower is pulled
back from something of dimension at most maxi{RD(X̃i 99K X)}. It remains to show that

RD(X̃ 99K X) ≥ RD(X̃i 99K X)

for any i. This follows from a standard argument in covering space theory (equivalently
the étale fundamental group). Without loss of generality, take i = 1. A simple induction
reduces us to the case where X̃ is the disjoint union of two irreducible components. Write
X̃ = X̃1

∐
X̃2. Shrinking X as necessary, we can further assume that X and X̃ are regular

(since, here and throughout this paper, we work in characteristic 0). Suppose now that we
have a tower of rational covers

Yr 99K · · · 99K Y0 = X

solving X̃ 99K X in functions of at most d variables. Let Ui ⊂ Yi be smooth dense opens
such that we have a tower of regular étale maps

Ur → · · · → U0 ⊂ X,

a dominant regular map p : Ur → X̃, and for each i, a pullback diagram

Ui //

��

Z̃i

��

Ui−1
// Zi

where dimZi ≤ d. Let Ur,i be the union of irreducible components mapping dominantly

onto X̃i. Let s be the greatest integer for which Us is irreducible (note that by assumption,
U0 ⊂ X is irreducible). We induct on r − s. For the base, r − s = 1, we have a pullback
diagram

Ur //

��

Z̃r

��

Ur−1
// Zr

where Ur−1 is irreducible, and without loss of generality Zr is too. If the branched cover
Z̃r can be partitioned as Z̃r,i with Ur,i ∼= Ur−1 ×Zr Z̃r,i, then, by replacing Ur with Ur,1,
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we obtain a tower solving X̃1 in the same number of variables as the tower solving X̃.
Suppose therefore that Z̃r is connected. Therefore, the connected generically étale map
Z̃r → Zr splits when pulled back along Ur−1 → Zr. Equivalently, fixing a geometric point
Ω→ Ur−1 → Zr, the image

πet1 (Ur−1,Ω)→ πet1 (Zr,Ω)→ Perm(Z̃r|Ω)

lies in a subgroup of the form Perm(A1)×Perm(A2) ⊂ Perm(Z̃r|Ω). Let H ⊂ πet1 (Zr,Ω) be
the pre-image of Perm(A1)× Perm(A2), and let

Z̃H → Zr

denote the corresponding étale map. Because πet1 (Ur−1,Ω) factors through the inclusion
H ⊂ πet1 (Zr,Ω), the map Ur−1 → Zr factors through Z̃H . By construction, the pullback
Z̃r ×Zr Z̃H splits as

(Z̃r ×Zr Z̃H)1

∐
(Z̃r ×Zr Z̃H)2

with (Z̃r ×Zr Z̃H)i ×ZH Ur−1
∼= Ur,i. Because dim(ZH) = dim(Zr), we have reduced to the

case where the cover Z̃r → Zr is disconnected, and thus have exhibited a tower solving
X̃1 → X with the same bounds as the tower solving X̃ → X. This completes the base of
the induction. The inductive step follows from the same construction. If r − s > 1, then
applying the above construction in sequence, we obtain a tower

U ′r → · · ·U ′s+1 → U ′s = Us → · · · → U0 ⊂ X

solving X̃1 → X, which agrees with the tower solving X̃ → X for i ≤ s, and in which
U ′i → U ′i−1 for i > s is pulled back from a variety of the same dimension which Ui → Ui−1

is. We conclude that RD(X̃ 99K X) ≥ RD(X̃1 99K X).

Proof of Proposition 2.4. The inequality RD(X̃ 99K X) ≥ RD(k(X̃)/k(X)) follows from
pulling back any tower solving X̃ 99K X along the map Spec(k(X))→ X, and then applying
Lemma 2.6.

For the reverse inequality, let

k(X) = L0 ↪→ L1 ↪→ · · · ↪→ Lr

be any tower solving k(X̃)/k(X). For each i, pick varieties Yi, Zi and Z̃i such that k(Yi) =
Li, k(Zi) = Fi and k(Z̃i) = F̃i respectively. Then we obtain a tower of rational covers

Yr 99K · · · 99K Y1 99K Y0 = X

such that Yr 99K X factors through a rational cover Yr 99K X̃ 99K X, and such that each Yi
sits in a birational pullback diagram

Yi //

��

Z̃i

��

Yi−1
// Zi
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Because dim(Zi) = tr.deg(Fi), the upper bound on RD(k(X̃)/k(X)) provided by the tower
over k(X) carries over to give an identical upper bound on RD(X̃ 99K X). Taking the
minimum over all such towers gives

RD(X̃ 99K X) ≤ RD(k(X̃)/k(X))

as desired.

Lemma 2.7 (RD of a composition). Let Z 99K Y 99K X be a pair of rational covers of
k-varieties. Then

RD(Z 99K X) = max{RD(Z 99K Y ),RD(Y 99K X)}.

Proof. The definition immediately implies that RD(Z 99K X) ≤ max{RD(Z 99K Y ),RD(Y 99K
X)} and RD(Z 99K X) ≥ RD(Y 99K X). To see that RD(Z 99K X) ≥ RD(Z 99K Y ), note
that

RD(Z 99K X) ≥ RD(Z ×X Y 99K Y )

and, because Z 99K Y embeds as a collection of components of Z ×X Y 99K Y , Lemma 2.6
implies

RD(Z ×X Y 99K Y ) ≥ RD(Z 99K Y ).

Definition 2.8. A rational cover X̃ 99K X is generically n-to-1 if n = [k(Xi) : O(X̃|Spec(k(Xi)))]
for each irreducible component Xi ⊂ X.

While the resolvent degree RD(P̃n → Pn) of the root cover of the space of degree n
polynomials is a specific example, it is universal in the following sense.

Lemma 2.9 (Universality of P̃n → Pn). Let X̃ 99K X be a generically n-to-1 rational
cover. Then

RD(X̃ 99K X) ≤ RD(P̃n → Pn).

Proof. By the Theorem of the Primitive Element (using that we are in characteristic 0),
there exists α ∈ k(X̃) such that

k(X̃) ∼= k(X)(α) ∼= k(X)[z]/pα(z)

where
pα(z) = zn + a1z

n−1 + · · ·+ an

is a minimal polynomial for α. Let U ⊂ X denote the largest Zariski open for which all the
coefficients ai ∈ k(X) are regular functions. The polynomial pα determines a map

U →pα Pn
u 7→ (a1(u), . . . , an(u))
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and this map determines a pullback square

X̃|U //

��

P̃n

��

U
pα
// Pn

Therefore, by Lemma 2.5,

RD(X̃ 99K X) = RD(X̃|U → U) ≤ RD(P̃n → Pn).

This universal property will show up in many of the examples and computations below.

2.3 Galois closures and resolvent degree

In this subsection we will relate the resolvent degree of L/K with the resolvent degree of
various related extensions, for example the Galois closure of L over K. This often will allow
us in practice to reduce to the case of Galois covers.

Definition 2.10 (Galois theory terminology for rational covers). Let X̃ 99K X be
a rational cover of k-varieties.

1. If X̃ is irreducible, then the map X̃ 99K X is Galois if the associated extension of
function fields k(X) ↪→ k(X̃) is Galois. We write Gal(X̃ 99K X) for the Galois group
of the associated extension of function fields.

2. If X̃ is irreducible, we say that a map X̃ ′ 99K X is a Galois closure of X̃ 99K X if it
factors as X̃ ′ 99K X̃ 99K X and if k(X) ↪→ k(X̃ ′) is a Galois closure of k(X) ↪→ k(X̃).

3. Given Z 99K Y 99K X irreducible, with Z 99K X Galois, the Galois closure of Y 99K X
in Z 99K X is any integral model of the Galois closure of k(X) ↪→ k(Y ) in k(Z).

4. If X̃ is reducible, we say X̃ 99K X is Galois if the restriction of the map to each
irreducible component of X̃ is Galois. Similarly, we say X̃ ′ 99K X is a Galois closure
of X̃ 99K X if there is a bijection between the set of irreducible components of X̃ ′ and
of X̃ such that the restiction of the map X̃ ′ 99K X realizes each component of X̃ ′ as
a Galois closure of the corresponding component of X̃. Given Z 99K Y 99K X with Z
Galois, a Galois closure of Y in Z 99K X is union of Galois closures of the components
of Y .

The following lemma will allow us to pass to Galois closures when computing RD. The
analogous lemma for ed is Lemma 2.3 of [BuRe1].

Lemma 2.11 (RD is preserved under Galois closure). Let X̃ 99K X be a rational
cover of k-varieties. Let X̃ ′ 99K X be a Galois closure of X̃. Then

RD(X̃ 99K X) = RD(X̃ ′ 99K X).
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Proof. By Lemma 2.6, it suffices to prove this in the case where X̃ is irreducible. For this,
we induct on the degree of the map X̃ 99K X. For the base case, n = 2, every quadratic
extension (in characteristic 0) is already Galois, so the lemma holds trivially.

For the induction step, assume the lemma holds for all rational covers of k-varieties of
degree less than n.

Let X̃ 99K X be a rational cover of degree n. Consider the composition

X̃ ×X X̃ 99K X̃ 99K X

The fiber product X̃×X X̃ splits as X̃
∐
X̃1 (at the level of function fields, this follows from

the Primitive Element Theorem), where X̃ → X̃ is the identity, and X̃1 99K X̃ is a rational
cover of degree n− 1. By the inductive hypothesis,

RD(X̃ ′1 99K X̃) = RD(X̃1 99K X̃)

for any Galois closure X̃ ′1 99K X̃ of X̃1 99K X̃. By Lemma 2.6,

RD(X̃1 99K X̃) ≤ RD(X̃ 99K X).

Therefore, by Lemma 2.7,

RD(X̃ ′1 99K X) = max{RD(X̃1 99K X̃),RD(X̃ 99K X)} = RD(X̃ 99K X).

But, by construction, we see that X̃ ′1 99K X is a Galois closure of X̃ 99K X, and this
completes the induction step.

2.4 Accessory irrationalities

We now give two results about resolvent degree of field extensions; we defer stating the cor-
responding results for rational covers of k-varieties to below. We adopt this presentation to
make use of constructions such as compositum and intersection of subfields which are easier
to state in the setting of field extensions than for covering spaces, where they correspond
to greatest lower bounds and least upper bounds in a lattice of covering spaces.

The following allows one to pass to towers of Galois covers when analyzing RD.

Lemma 2.12 (Improving towers). Let K ↪→ L be a finite extension of k-fields. Then
without loss of generality, in any tower realizing RD(L/K), we can assume that the exten-
sion at each stage is Galois. More precisely, for any d > 0 (e.g. d = RD(L/K)), let

K = K0 ↪→ K1 ↪→ · · · ↪→ Kr

be any sequence of extensions with L ↪→ Kr (as fields over K) and such that ed(Ki/Ki−1) ≤
d for all i. Then there exists a diagram of sequences of extensions

K �
�

// K1
� � //
� _

��

K2
� � //
� _

��

· · · � � // Kr� _

��

K �
�

// K ′1
� � // K ′2

� � //
� _

��

· · · � � // K ′r� _

��

K �
�

// K̃1
� � // K̃2

� � // · · · � � // K̃r

(2.1)
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such that for all i,

1. K ′i is Galois over K ′i−1,

2. K̃i is a Galois closure of Ki over K,

3. ed(K ′i/K
′
i−1) ≤ d for all i, and

4. RD(K̃i/K) = RD(Ki/K) ≤ d for all i.

Proof. Because we work in characterstic 0, all extensions are separable. Therefore, for the
bottom row of (2.1), define K̃r to be a Galois closure of Kr over K, and for i < r, let K̃i

denote the Galois closure over K of Ki in K̃r. Lemma 2.11 implies that

RD(K̃i/K) ≤ RD(Ki/K) ≤ d.

To construct the middle row, we prove by induction that for any 1 ≤ j ≤ r there exists a
diagram of sequences of extensions of the form (2.1) in which ed(K ′i/K

′
i−1) ≤ ed(Ki/Ki−1)

for all i, and in which K ′i is Galois over K ′i−1 for i ≤ j. For the base case j = 1, let K ′1 = K̃1.
This is Galois over K0. For the induction step, suppose that we have defined K ′j for j ≤ i.
Define K ′i+1 to be the Galois closure (in K̃r) of the compositum (in K̃r) of Ki+1 with K ′i
over Ki. Then the definition of essential dimension and [BuRe1, Lemma 2.3] imply that

ed(K ′i+1/K
′
i) ≤ ed(Ki+1/Ki)

as required to complete the induction step.

The following proposition is quite useful when analyzing the resolvent degree of G-
covers (and their subcovers) for G simple. In particular, it shows that a general solution
can always be put into a reduced form where the monodromy of the original rational cover
occurs precisely at the last stage.

Proposition 2.13 (Accessory irrationalities). Let G be a finite simple group. Let
K ↪→ L be a Galois extension of k-fields with Gal(L/K) = G. Fix d ≥ 0. Let

K = K0 ↪→ K1 ↪→ · · · ↪→ Kr (2.2)

be a sequence of extensions such that

1. ed(Ki/Ki−1) ≤ d for all i, and

2. L ↪→ Kr as fields over K.

Then, there exists s < r and a modified tower

K = K0 ↪→ K1 ↪→ · · · ↪→ Ks ↪→ K ′s

such that

1. K ′s is a subfield of the Galois closure of Ks+1 over Ks,
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2. ed(K ′s/Ks) ≤ ed(Ks+1/Ks) ≤ d,

3. L ↪→ K ′s as K-fields, and under this embedding, Ks ⊗K L→∼= K ′s.

Proof. Define s to be the maximum i such that the absolute Galois group of Ki surjects
onto G, i.e.

s := max{i | Gal(K/Ki)� G}.
Let K̃s+1 denote the Galois closure of Ks+1 over Ks. Then

Gal(K/K̃s+1)EGal(K/Ks)

and, by Lemma 2.11

ed(K̃s+1/Ks) = ed(Ks+1/Ks).

Because Gal(K/Ks)� G is a surjection, it must take Gal(K/K̃s+1) to a normal subgroup
of G. By the definition of s, Gal(K/K̃s+1) ⊂ Gal(K/Ks+1) does not surject onto G.
Therefore, because G is simple, Gal(K/K̃s+1) must be in the kernel of the map to G. This
implies that L is contained in K̃s+1, because

L = K
Gal(K/L)

= K
ker(Gal(K/K)→G) ⊂ KGal(K/K̃s+1)

= K̃s+1.

Therefore, we have L ↪→ K̃s+1 but L is not contained in Ks. Define

N := ker(Gal(K̃s+1/Ks)� G).

Define
Ks′ := (K̃s+1)N .

Observe that ed(Ks′/Ks) ≤ ed(Ks+1/Ks) = ed(K̃s+1/Ks), because if K̃s+1 = Ks ⊗F F̃ ,
then Ks′ := Ks ⊗F F̃N . Finally, because Gal(K/Ks) surjects onto G = Gal(L/K), we
conclude that

Ks′ = Ks ⊗K L.

Corollary 2.14. Let G be a finite simple group. Let L/K be any finite extension of k-fields
for which the Galois closure has Galois group G. Then RD(L/K) equals the minimal d for
which there exists a tower

K = K0 ↪→ K1 ↪→ · · · ↪→ Kr−1 ↪→ Kr

for which

1. ed(Ki/Ki−1) ≤ d, and

2. Kr
∼= Kr−1 ⊗K L.
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Proof. For any tower solving the Galois closure L̃ of L over K, we can apply Proposi-
tion 2.13. Let H ⊂ G be the subgroup such that L = L̃H . Applying Proposition 2.13 and
Lemma 2.11, RD(L/K) is the minimal d for which there exists a tower

K = K0 ↪→ K1 ↪→ · · · ↪→ Kr−1 ↪→ Kr

for which

1. ed(Ki/Ki−1) ≤ d, and

2. Kr
∼= Kr−1 ⊗K L̃.

Replacing Kr by KH
r
∼= Kr−1 ⊗K L, we obtain a tower of the desired form.

Remark 2.15. An accessory irrationality to a rational cover X̃ 99K X is any rational
cover E 99K X which does not factor through X̃. If RD(L/K) 6= ed(L/K), then accessory
irrationalities are intrinsic features of any solution of L/K in d < ed(L/K) variables. The
notion of accessory irrationality first appeared in work of Kronecker and received intensive
study in Klein’s lectures on the icosahedron [Kl2] (see also the appendix to [DoMc]). In
particular, Klein proved that

ed(P̃5 → P5) = 2 6= RD(P̃5 → P5) = 1

and thus that accessory irrationalities are an inescapable feature of solutions of the quintic
in one variable.

Question 2.16. Let K ↪→ L be a finite extension of k-fields. Among towers solving L/K
in the minimal number of variables, can we always find one in which the stages of the tower
have monotone increasing essential dimension?

The geometric statement of Lemma 2.12 is the following.

Corollary 2.17 (Improving towers, geometric version). Let X̃ 99K X be a rational
cover. Then without loss of generality, in any tower solving X̃ 99K X in d variables, we
can assume that the map at each stage is Galois. More precisely, for any d > 0 (e.g.
d = RD(X̃ 99K X)), let

Yr 99K · · · 99K Y1 99K Y0 = X

be a tower of rational covers with Yr 99K X factoring through X̃ and such that for all i,
Yi 99K Yi−1 is pulled back from a rational cover of varieties of dimension at most d. Then
there exists a diagram of sequences of rational covers

Ỹr //

��

· · · // Ỹ2
//

��

Ỹ1
// X

Y ′r //

��

· · · // Y ′2

��

// Y ′1 //

��

X

Yr // · · · // Y2
// Y1

// X

(2.3)

such that for all i,
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1. Y ′i 99K Y
′
i−1 is Galois,

2. Ỹi 99K X is a Galois closure of Yi 99K X,

3. ed(Y ′i 99K Y
′
i−1) ≤ d, and

4. RD(Ỹi 99K X) = RD(Yi 99K X) ≤ d.

The geometric statement of Proposition 2.13 is the following.

Corollary 2.18 (Geometric accessory irrationalities). Let G be a finite simple group.
Let X̃ 99K X be a rational cover for which the Galois closure has Galois group G. Then
RD(X̃ 99K X) equals the minimal d for which there exists a tower

Yr 99K · · · 99K Y1 99K Y0 = X

for which

1. Yr ∼= Yr−1 ×X X̃, and

2. for each i, Yi+1 99K Yi is pulled back from a map of varieties of dimension at most d,
i.e. there is a rational pullback square with dimk(Zi) ≤ d

Yi+1
//

��

Z̃i

��

Yi // Zi

3 The resolvent degree of a finite group

In this section we define the resolvent degree RD(G) of a finite group G. This intrinsic
invariant of G gives a uniform upper bound on the complexity of all G-covers of all varieties.
Just as with the theory of essential dimension from which it was inspired, RD(G) will be
quite useful.

3.1 Definition and basic properties

Throughout this section we fix a ground field k of characteristic 0. We will consider finite
groups G with G-actions by automorphisms on varieties X, so that X/G is a variety. We say
that a G-variety X is primitive if G acts transitively on the set of irreducible components
of X. We say that X is faithful if the representation G→ Aut(X) is injective.

Definition 3.1 (Resolvent degree of a finite group). Let G be a finite group. The
resolvent degree RD(G) of G is defined to be

RD(G) := sup{RD(X → X/G) : X is a primitive, faithful G-variety over k}.
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While RD(G) gives a universal upper bound on any RD(X → X/G), it does not in
general provide any lower bound on any particular G-cover; see below. On the other hand
we will prove that RD(G) = RD(V → V/G) for any faithful linear G-variety V , and
more generally for any “versal” G-variety. Replacing RD by ed in Definition 3.1 gives the
definition of Buhler-Reichstein [BuRe1] for the essential dimension of a finite group. Indeed,
the two invariants of G-varieties compare as follows.

Lemma 3.2. Let G be any finite group. Then

RD(G) ≤ ed(G) <∞.

Proof. For any rational cover X 99K Y we have by definition RD(X 99K Y ) ≤ ed(X 99K Y ).
In particular, if X is any faithful G-variety then

RD(X → X/G) ≤ ed(X → X/G)

≤ ed(AG → AG/G) (by Theorem 3.1 of [BuRe1])

= ed(G) <∞

where AG denotes the regular representation of G viewed as a faithful linear G-variety.

Theorem 3.3. Let G be a finite group, and let {Gi}ni=1 denote the set of simple factors in
its Jordan–Hölder decomposition. Then

RD(G) ≤ max
1≤i≤n

{RD(Gi)}.

Moreover, if Gi ↪→ G for all i, then

RD(G) = max
1≤i≤n

{RD(Gi)}.

The analogue of Theorem 3.3 for essential dimension is false, even in simple examples:
take G1 = G2 = Z/2Z and G = G1 × G2. Note too that ed(G/H) can be much larger
than ed(G) for normal subgroups H CG; see Theorem 1.5 of [MR]. We do not know if the
hypothesis in Theorem 3.3 that Gi ⊆ G for all i is necessary.

Proof. If Gi ↪→ G for all i, then by Lemma 3.13 below, RD(G) ≥ maxi{RD(Gi)}. To
show the opposite inequality in general, we induct on the number of simple factors (with
multiplicity). For the base of the induction n = 1, there is nothing to show. Assume
therefore that we have shown it for n− 1. Let

0EH1 E · · ·EHn = G

be a composition series for G with Hi/Hi−1 = Gi. Let X be a primitive faithful G-variety.
The map X → X/G factors as

X → X/Hn−1 → X/G.

If X is not primitive as an Hn−1-variety, then the set of Hn−1-orbits on the set of irreducible
components of X partitions X into a union of primitive Hn−1-varieties. Moreover, because
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the G-action is primitive and Hn−1 E G, the union of the Hn−1-quotients is a primitive
Gn = G/Hn−1-variety. Lemma 2.6 implies that

RD(X → X/Hn−1) = max
j
{RD(Xj → Xj/Hn−1)}

where the maximum is taken over the set of primitive Hn−1-varieties in the above partition
of X. In particular,

RD(Hn−1) ≥ RD(X → X/Hn−1).

Therefore

max{RD(Gn),RD(Hn−1)} ≥ max{RD(X → X/Hn−1),RD(X/Hn−1 → X/G)}
= RD(X → X/G) (by Lemma 2.7.)

Passing to the supremum and invoking the induction hypothesis, we obtain the desired
inequality

max
1≤i≤n

{RD(Gi)} ≥ RD(G).

As a simple application of Theorem 3.3, we have the following.

Corollary 3.4. Let G be an “almost solvable” group, i.e. a group whose simple factors are
cyclic or A5. Then RD(G) = 1.

Proof. By Theorem 3.3,

RD(G) ≤ max{{RD(Z/nZ)}n∈N,RD(A5)}.

Because G is nontrivial, there exists a faithful, geometrically connected G-variety X of di-
mension ≥ 1. Because X is geometrically connected, there is no faithful G-equivariant ratio-
nal map X 99K Z for Z any faithful 0-dimensional G-variety. We conclude that RD(G) ≥ 1.

By Bring’s bound and item 1 of Corollary 3.17 1 below,

1 = RD(P̃5 → P5) = RD(S5) = RD(A5)

where the last equality follows from Theorem 3.3. The result now follows from the equality

RD(Z/nZ) = 1 for all n ≥ 2

which follows from the classical fact that any characteristic 0 field extension with solvable
Galois group is solvable in radicals.

Corollary 3.4 follows from the primary cases of simple groups where RD is currently
known exactly (i.e. cyclic groups and A5).9 In general, we have at best upper bounds, e.g.
RD(A6) ≤ 2 and RD(A7) ≤ 3. Theorem 3.3 indicates the importance of computing the
resolvent degree of finite groups.

Problem 3.5 (RD(G) for G finite simple). Compute the resolvent degree of all finite
simple groups G.

9Klein also proved that RD(PSL2(F7) = 1). See [FKW, Proposition 4.2.4] for a contemporary treatment.
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3.2 Versal G-varieties

It is useful to have a model (not always unique) G-variety to which all other G-varieties can
be compared. Such varieties, called “versal G-varieties”, play a crucial role in the theory of
essential dimension. After recalling the definition (cf. [DuRe1]) and some variations that
arise naturally when studying resolvent degree, we give some examples.

Definition 3.6 (Versal G-variety). A faithful G-variety X is versal if for every G-
invariant Zariski open U ⊂ X and every faithful G-variety Y , there exists a G-equivariant
rational map Y 99K U .

Our interest in versality comes from the following.

Proposition 3.7. Let X be a versal G-variety. Then

1. ed(X → X/G) = ed(G).

2. RD(X → X/G) = RD(G).

Proof. The proof for essential dimension is standard; we recall it here as we will use it. LetX
be a versal G-variety. Recall that ed(G) = sup{ed(Y → Y/G)} where the supremum is over
all faithful G-varieties Y . Let U ⊂ X be a dense G-invariant Zariski open which admits a G-
equivariant dominant map U → Z to a faithful G-variety Z with dim(Z) = ed(X → X/G).
By the definition of versality, there exists aG-equivariant rational map Y 99K U . Composing
with U → Z, we obtain a G-equivariant rational dominant map Y 99K Z, which implies

ed(Y → Y/G) ≤ dim(Z) = ed(X → X/G).

Therefore ed(X → X/G) = ed(G).
We now prove the statement for resolvent degree. By definition, RD(X → X/G) ≤

RD(G). It remains to prove that RD(X → X/G) ≥ RD(Y → Y/G) for any faithful
G-variety Y . Let

X

��

Xr

44

// · · · // X1
// X/G

be a solution of X → X/G. Let Ū ⊂ Image(Xr 99K X/G) be a Zariski open, and let U ⊂ X
be its preimage under the map X → X/G. By the definition of versality, there exists a
G-equivariant map

V → U

for some dense Zariski open V ⊂ Y . Since both G-varieties are faithful, this determines a
pullback diagram

V //

��

U

��

V/G // U/G

and we can pull back the above solution of X → X/G to V → V/G. Since every solution
in d-variables of X → X/G gives rise to a solution in d-variables of V → V/G, and since
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V → V/G is birational to Y → Y/G, we conclude, from the definition, that RD(X →
X/G) ≥ RD(Y → Y/G)).

The notion of versal is stronger than we strictly need for resolvent degree.

Definition 3.8 (Solvably-versal, RD-versal). Let G be a finite group. A faithful G-
variety X is:

1. solvably-versal if, for every G-invariant Zariski open U ⊂ X and any faithful G-variety
Y , there exists a rational cover

Ỹ 99K Y/G

with k(Y/G) ↪→ k(Ỹ ) a solvable extension, and a G-equivariant rational map

Ỹ ×Y/G Y 99K U ;

2. RD-versal if, for every G-invariant Zariski open U ⊂ X and any faithful G-variety Y ,
there exists a rational cover

Ỹ 99K Y/G

with RD(Ỹ 99K Y/G) ≤ RD(X → X/G) and a G-equivariant rational map

Ỹ ×Y/G Y 99K U.

Note that solvably-versal implies RD-versal; we do not know if the converse is true or
not.

Example 3.9 (Klein). Klein [Kl2] proved a “Normalformsatz” for the group A5, showing
that perhaps after passing to an intermediate degree 2 cover, every A5-cover is pulled back
from the canonical A5-cover of P1 → P1/A5

∼= P1. In our language, this shows that P1 with
its standard A5 action is solvably versal.

RD-versal G-varieties realize the resolvent degree of G.

Proposition 3.10. Let G be a finite group, and let X be an RD-versal G-variety. Then

RD(X → X/G) = RD(G).

Proof. The proof is similar to that of Proposition 3.7. It suffices to show that RD(X →
X/G) ≥ RD(Y → Y/G) for any faithful G-variety Y . Let

X

��

Xr

44

// · · · // X1
// X/G

be a solution of X → X/G. Let Ū ⊂ Image(Xr 99K X/G) be a Zariski open, and let U ⊂ X
be its preimage under the map X → X/G. By the definition of RD-versality, there exists a
rational cover

Ỹ 99K Y/G
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with RD(Ỹ 99K Y/G) ≤ RD(X → X/G) and with a G-equivariant map

V → U

for some dense Zariski open V ⊂ Ỹ ×Y/G Y . Since both G-varieties are faithful, this
determines a pullback diagram

V //

��

U

��

V/G // U/G

and we can pullback the above solution of X → X/G to V → V/G. Since every solution
in d-variables of X → X/G gives rise to a solution in d-variables of V → V/G, and since
V → V/G is birational to Ỹ ×Y/G Y 99K Ỹ , we conclude, from the definition, that RD(X →
X/G) ≥ RD(Ỹ ×Y/G Y 99K Ỹ ). By Lemma 2.7,

RD(Ỹ ×Y/G Y 99K Y/G) = max{RD(Ỹ ×Y/G Y 99K Ỹ ),RD(Ỹ 99K Y/G)}
≤ RD(X → X/G).

3.3 Criteria for versality

In this subsection we give some basic properties of versality, as well as criteria for detecting
it. To start, a G-compression (i.e. G-equivariant dominant rational map) of a versal G-
variety is versal.

Lemma 3.11 (Compressions of versal are versal). Let X be a faithful G-variety,
and let Y be a versal G-variety. If there exists a G-equivariant dominant rational map
f : Y 99K X, then X is versal.

Proof. Let U ⊂ X be a G-invariant Zariski open, and let Z be any faithful G-variety. Then
f−1(U) ⊂ Y is a G-invariant Zariski open, and by the definition of versality, there exists a
G-equivariant rational map Z 99K f−1(U). Composing with f , we obtain a G-equivariant
rational map Z 99K U as desired.

Versal G-varieties are also versal for subgroups.

Lemma 3.12 (Versality descends). Let G be a finite group. If X is a versal G-variety,
then X is also a versal H-variety for any subgroup H ⊆ G.

Proof. By the definition of versal, we must show that for every H-invariant Zariski open
U ⊂ X and every faithful H-variety Y , there exists an H-equivariant rational map Y 99K U .
Given U , let U ′ ⊆ U be the maximal G-invariant Zariski open contained in U (i.e. U ′ =⋂
g∈G g · U). Consider the G-variety

G×H Y := G× Y/ ∼
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where ∼ is the equivalence relation given by (g, hy) ∼ (gh, y), and the G-action given by

g′ · [(g, y)] := [(g′g, y)].

It is straightforward to check that because Y is a faithful H-variety, the variety G×H Y is
a faithful G-variety. Because X is versal, there exists a G-equivariant rational map

G×H Y 99K U ′ (3.1)

One can check explicitly that the map

Y → G×H Y

y 7→ [(e, y)]

is H-equivariant. Composing this with (3.1), we obtain an H-equivariant rational map

Y 99K U ′ ⊂ U

as required.

Lemma 3.12 has the following consequence.

Lemma 3.13. Let H ⊂ G be a subgroup. Then RD(H) ≤ RD(G).

Proof. Let X be a versal G-variety. Then X is a versal H-variety by Lemma 3.12. By
Proposition 3.7 and Lemma 2.7,

RD(G) = RD(X → X/G)

= max{RD(X → X/H),RD(X/H → X/G)}
= max{RD(H),RD(X/H → X/G)}
≥ RD(H).

There exist criteria to check whether a given G-variety is versal.

Lemma 3.14 (Versality criterion). Let X be a faithful G-variety. Suppose both of the
following statements hold.

1. For every faithful, closed G-invariant subvariety Z1 ⊂ X, and any closed (not neces-
sarily faithful) G-invariant subvariety Z2 ( X, there exists a G-equivariant rational
map α : X 99K X such that Z1 is not contained in the indeterminacy locus of α and
such that α(Z1) * Z2.

2. For any faithful G-variety Y , there exists a G-equivariant rational map Y 99K X.

Then X is versal.
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Proof. Let U ⊂ X be a G-invariant Zariski open. Denote by Z2 := X − U . Let Y be a
faithful G-variety. By Assumption 2, there exists a G-equivariant rational map f : Y 99K X.
Let Z1 := f(Y ). By Assumption 1, there exists a G-equivariant rational map α : X 99K X
such that the restriction of α to Z1 is defined, and such that α(Z1) * Z2. Then α ◦ f
restricts to a G-equivariant rational map Y 99K U as desired.

Example 3.15. Let AG denote the regular representation of G. Then AG is a versal G-
variety. Indeed, Lemma 3.1(b) of [BuRe1] shows that AG satisfies Assumption 1 of Lemma
3.14, while Lemma 3.4 of [BuRe1] shows that AG satisfies Assumption 2.

3.4 Examples of versal G-varieties

In this subsection we use the tools from §3.3 to give examples of versal G-varieties. We
begin with a result essentially proven by Buhler-Reichstein in [BuRe1]; we include a proof
for completeness.

Proposition 3.16 (Linear varieties are versal). Let G be a finite group. Let V be any
faithful linear G-variety. Then V is versal.

Proof. Because AG is versal, it suffices to prove that for any proper G-invariant closed
subvariety Z ⊂ V , there exists a G-equivariant map f : AG → V such that f(AG) * Z. Let
v ∈ V − Z be any point such that |G · v| = |G|. Define

fv : AG → V∑
g∈G

cgg 7→
∑
g∈G

cg(g · v).

Then fv is a G-equivariant linear embedding, and f(AG) * Z as claimed.

We highlight a specific instance of the above: while Hilbert asked about the resolvent
degree of the permutation representation C7 of S7, Proposition 3.16 implies that that one can
equivalently consider any faithful representation of S7. This gives an equivalent rephrasing
of Hilbert’s 13th problem, one for each faithful Sn-representation.

Corollary 3.17. The following statements are true.

1. Let n ≥ 1. Let V be any faithful representation of Sn, n ≥ 2. Then

RD(Sn) = RD(V → V/Sn) = RD(P̃n → Pn).

In particular, RD(P̃n → Pn) ≤ RD(P̃n+1 → Pn+1).

2. (Universality of RD(Sn)) Let X̃ 99K X be a generically n-to-1 rational cover. Then

RD(X̃ 99K X) ≤ RD(Sn).

Proof. Proposition 3.16 gives the first equality of item 1, and shows that RD(V → V/Sn) =
RD(W → W/Sn) for any two faithful representations V and W . In particular, we can
take W = An to be the standard permutation representation. Since An → An/Sn is the
normalization of the branched cover P̃n → Pn, the second equality of Item 1 follows from
Lemma 2.11. Item 2 now follows from Lemma 2.9.
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Another equivalent restatement of the problem of computing RD(P̃n → Pn) comes from
the following. Denote byM0,n the moduli of n distinct ordered points in P1. More generally,
let Cn(Pm) := ((Pm)×n −∆)/PGLm+1, where ∆ ⊂ (Pm)×n denotes the “fat diagonal”, i.e.
the locus of n-tuples in which at least two points coincide.

Corollary 3.18. For n ≥ 5, the moduli of marked, genus 0 curves M0,n is a versal Sn-
variety. In particular,

RD(Sn) = RD(M0,n →M0,n/Sn).

More generally, Cn(Pm) is a versal Sn-variety for all n ≥ max{5,m+ 3}.
Proof. There exists a dominant Sn-equivariant rational map An 99KM0,n. More generally,
consider the m-fold direct sum (An)m of the permutation representation of Sn. This admits
a dominant Sn-equivariant rational map (An)m 99K ((Pm)×n − ∆)/PGLm+1 =: Cn(Pm).
The corollary now follows from Lemma 3.11 and Proposition 3.16 once we verify that the
Sn-action on Cn(Pm) is faithful, but this follows from the assumptions that n ≥ max{5,m+
3}.

4 Lines on smooth cubic surfaces

Since the problem of finding lines on smooth cubic surfaces connects with so many other
problems, we devote an entire section to it. We also look at this one example in depth
because it demonstrates how resolvent degree can be an organizing principle that gives a
single framework for many classical results.

4.1 The moduli space of smooth cubic surfaces, and its covers

Let H3,3 denote the moduli space of smooth cubic surfaces. This is a 4-dimensional quasi-
projective variety, the quotient of a hypersurface complement (P19 − Σ) by the action of
PGL4 induced from its action on P3. Let Gr(2, 4) denote the Grassmannian of projective
lines in P3. Let

H3,3(1) := {(S,L) ∈ (P19 − Σ)×Gr(2, 4) : L ⊂ S}/PGL4

be the moduli space of smooth cubic surfaces S equipped with a line; here PGL4 acts
diagonally. Cayley and Salmon proved that the projection π : H3,3(1) → H3,3 given by
π(S,L) := S is a 27-sheeted covering, and so its monodromy is a subgroup of S27. However,
the mondromy must preserve the intersection pattern of the 27 lines. Camille Jordan
proved (see, e.g., [Dol] or [Har] for a modern treatment) that the monodromy group of
π : H3,3(1)→ H3,3 is isomorphic to the Weyl group W (E6). Recall that this is the reflection
group given by the Dynkin diagram :

E6

Here each vertex represents (reflection in the hyperplane perpendicular to) a root, and
W (E6) has presentation with a generator sα for each vertex of the diagram, with relations
given by :
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• s2
α = 1 for all α.

• (sαsβ)2 = 1 if α and β are not connected by an edge.

• (sαsβ)3 = 1 if α and β are connected by an edge.

W (E6) is a group of order 51840; it contains the unique finite simple group of order 25920
as an index 2 subgroup; we denote this group by W (E6)+. Let H3,3(27) denote the Galois
closure of π : H3,3(1) → H3,3; this is the (connected) Galois cover of H3,3 with deck group
W (E6), corresponding to the kernel of the monodromy representation π1(H3,3) � W (E6).
We use the notation H3,3(27) since this cover corresponds to the moduli space of 28-tuples
(S;L1, . . . , L27) of smooth cubic surfaces equipped with 27 lines with a choice of labelling
of the intersection graph of the set of 27 lines.

Let

Hskew
3,3 (r) := {(S;L1, . . . , Lr) ∈ (P19 − Σ)×Gr(2, 4)r : Li ⊂ S, Li ∩ Lj = ∅ ∀i 6= j}/PGL4 .

(4.1)
denote the moduli space of smooth cubic surfaces S with a choice of r ≤ 6 skew (i.e. disjoint)
lines on S. We remark that Hskew

3,3 (6) is connected; this follows for example from the fact

that it is isomorphic to the moduli of 6 generic points in P2 (cf. Section 4.4 below). There
is a cover Hskew

3,3 (r)→ H3,3 given by (S;L1, . . . , Lr) 7→ S. This projection gives a (typically

non-Galois) finite covering map Hskew
3,3 (r)→ H3,3.

The action of W (E6) on H3,3(27) is free on a Zariski open. W (E6) ∼= Aut(Pic(S)), and
for any class [L0] of a line we have:

Stab([L0]) ∼= W (D5) ∼= (Z/2Z)4 o S5

where the S5 action on (Z/2Z)4 is given by the standard 4-dimensional irreducible permu-
tation representation of S5. The action of S5 on a marking is given by permuting the divisor
classes of the 5 lines L1, . . . , L5 disjoint from L0. Further, W (D5) is generated by this S5

together with a Cremona transformation. Since the monodromy W (E6) acts transitively
on the set of lines of any basepoint cubic, this implies that

H3,3(1) = H3,3(27)/W (D5). (4.2)

We will see throughout this paper how many classical problems about smooth cubic
surfaces can be rephrased as understanding various (branched) covers of H3,3; for problems
about lines the covers are intermediate between H3,3(27) → H3,3. For now we give one
example.

Schäfli’s double sixes. One of the more well-studied types of configurations of lines on a
smooth cubic surface S is the so-called (Schläfli) double six: it consists of two pairs {ai} and
{bj} of 6 disjoint lines on S with intersection pattern given (in Schläfli’s original notation):

{ a1 a2 a3 a4 a5 a6

b1 b2 b3 b4 b5 b6
} (4.3)

where any line does not meet any of the lines in the same row or column, but does meet
the other 5 lines. See Figure 2.
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The group W (E6) acts transitively on the set of 6-tuples of disjoint lines on S, with
stabilizer the symmetric group S6. There are thus [W (E6) : S6] = 51840/720 = 72 choices
of such 6-tuples. Each such 6-tuple determines a unique double-six, and since any double-six
contains 2 such 6-tuples, there are 72/2 = 36 double-sixes. Denote the moduli of smooth
cubic surfaces equipped with a double-six by

H3,3(6, 6) := {(S,D) : S ∈ H3,3 and D is a double-six in S.}.

The stabilizer of a double-six is the maximal subgroup S6 × Z/2Z ⊂ W (E6) (cf. [Dol,
Proposition 9.4, Theorem 9.5.2]). We can thus make the identification

H3,3(27)/(S6 × Z/2Z) = Hskew
3,3 (6)/(S6 × Z/2Z) = H3,3(6, 6) (4.4)

where the first equality comes from (4.6) below.

4.2 Finding 27 lines from a given line

In this subsection we consider the following problem: given a single line on a smooth cubic
surface, how hard is it to find more lines? We will prove that given one line, the problem
of finding the other 27 lines has resolvent degree 1, by which we mean RD(H3,3(27) →
H3,3(1)) = 1. This result is essentially 100 years old. For a nice modern reference, see
Dolgachev’s book [Dol], page 480.

Proposition 4.1 (Finding lines on a cubic surface, given a line). With notation as
above :

RD(H3,3(27)→ H3,3(1)) = 1.

This is in contrast to Harris’s Theorem [Har] that H3,3(27)→ H3,3(1) is not solvable by
radicals.

Proof. We take the argument from the classic [Hil], page 349. Suppose that we are given a
smooth cubic surface S = V (f) and a line `0 on S. The line `0 is given as a zero set of two
linear forms : `0 = V (A1, A2). Since `0 ⊂ S this gives

f = A1Q1 +A2Q2

for quadratic forms Q1, Q2. Consider the pencil of planes

Π(λ1, λ2) = V (λ1A1 − λ2A2)

through the line `0. Each plane in this pencil intersects S in the union of `0 and a conic
C(λ1, λ2) on S. One can check that the discriminant of each C(λ1, λ2) is a homogeneous
polynomial P (λ1, λ2) of degree 5, and that the general P (λ1, λ2) has 5 distinct roots. Each
of these solutions gives a reducible conic on S. Since S is smooth none of these is a double
line.

We thus have found five distinct pairs of distinct lines `i, `
′
i, 1 ≤ i ≤ 5, and in fact all 10

of these lines are distinct from each other and from `0, giving 11 lines on S. The important
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thing for us is to observe that the `i are pairwise disjoint for 0 ≤ i ≤ 5. Since we obtained
these with a degree 5 polynomial it follows that

RD(Hskew
3,3 (5)→ H3,3(1)) ≤ RD(P̃5 → P5) = 1.

We can repeat the above procedure with `0 replaced by any `i or `′i to find the remaining
27 lines; that is, to prove

RD(H3,3(27)→ Hskew
3,3 (5)) ≤ 1 (4.5)

Alternately, Harris proves in [Har] that the monodromy of the cover H3,3(27)→ Hskew
3,3 (3) is

in fact solvable, hence so is the monodromy of H3,3(27) → Hskew
3,3 (5), giving (4.5). Lemma

2.7 (on RD of a tower) then implies

RD(H3,3(27)→ H3,3(1)) ≤ max{RD(H3,3(27)→ Hskew
3,3 (5)),RD(Hskew

3,3 (5)→ H3,3(1))

= max{1, 1} = 1

giving the proposition.

4.3 Finding a single line

The following fundamental problem still remains. As we will see throughout this paper, it
relates to many other problems about resolvent degree.

Problem 4.2. Determine RD(H3,3(1)→ H3,3).

While there is a vast literature on lines on smooth cubic surfaces, and while much of it
concerns relationships between various intermediate covers of H3,3(27)→ H3,3, there are far
fewer results on Problem 4.2. The best results of which we are aware are due to Burkhardt
[Bur], following a suggestion of Klein (see [Hu, Ch. 4.3.2] for a modern treatment).

Theorem 4.3 (Burkhardt, Klein). Let k be any field of characteristic 6= 2, 3. Then

RDk(H3,3(1)→ H3,3) ≤ 3.

The proof of Theorem 4.3 will use the following proposition, the first part of which we
learned from [DuRe1, Lemma 6.1].

Proposition 4.4 (Finding the 27 lines is versal). For any G ⊂ W (E6), the k-variety
H3,3(27) is a versal G-variety. In particular

RDk(W (E6)) = RDk(H3,3(27)→ H3,3).

Proof. Let h denote a Cartan subalgebra of any simple Lie k-algebra of type E6. Let W (E6)
act on h via the defining representation, and let A(h) denote the corresponding faithful linear
W (E6)-variety. Then by [DuRe2, Lemma 6.1], there exists a W (E6)-equivariant dominant
rational map

A(h) 99K C′6(P2) 99K H3,3(27).

Applying Proposition 3.16 and Lemma 3.11, the proposition follows.
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Proof of Theorem 4.3. Recall that W (E6) ∼= W (E6)+ o Z/2Z. By Theorem 3.3,

RD(W (E6)) = max{RD(W (E6)+),RD(Z/2Z)} = RD(W (E6)+).

The group W (E6)+ has an action on P3 defined over Z[
√
−3] (see, e.g., [Atl]); therefore

after adjoining
√
−3 to k (RD = 1), this action is defined over k. By Proposition 3.10, it

suffices to prove that P3 is solvably-versal for W (E6)+. Note that there is an isomorphism
Sp4(F3)/F×3 ∼= W (E6)+ and the W (E6)+-action on P3 lifts to a faithful linear action of
Sp4(F3) on A4 defined over Z[

√
−3].

Given any W (E6)+-variety X, the obstruction to realizing it as a quotient of a faith-
ful Sp4(F3)-variety is the associated Brauer class in H2

et(k(X/W (E6)+);µ2). However, by
Merkurjev’s Theorem [Me1], any class in H2

et(k(X)W (E6)+ ;µ2) trivializes over some multi-
quadratic extension of k(X/W (E6)+). We conclude that there exists a faithful Sp4(F3)-
variety X̃ such that X̃/Sp4(F3) 99K X/W (E6)+ is a generically 2-to-1 rational cover. By
Proposition 3.16, A4 is a versal Sp4(F3) variety, and by the definition of versality, there
exists an Sp4(F3)-equivariant rational map X̃ 99K A4. Composing with the projection
A4 99K P3, we obtain a W (E6)+-equivariant rational map X̃/Z/2Z 99K P3. But this shows
that P3 is W (E6)+-solvably versal as claimed. We conclude

RD(H3,3(1)→ H3,3) = RD(H3,3(27)→ H3,3) (by Lemma 2.11)

= RD(W (E6)) (by Proposition 4.4)

= RD(W (E6)+)

= RD(P3 → P3/W (E6)+) ≤ dim(P3) = 3.

4.4 Moduli of 6 points in P2

Let Σ ⊂ (P2)6 denote the subvariety of 6-tuples of distinct points in P2 that are non-generic;
that is, with either 3 colinear or with all 6 points lying on a conic. Let

C′6(P2) := ((P2)6 \ Σ)/PGL3

be the moduli space of generic 6-tuples in P2. For any (orbit representative of) (z1, . . . , z6) ∈
C′6(P2), blowing up P2 at each zi gives a smooth cubic surface S(z1,...,z6) equipped with a
6-tuple (L1, . . . , L6) of 6 skew lines corresponding to the exceptional divisors. Every smooth
cubic surface arises in this way, and indeed it is classical that the map

ψ : C′6(P2)→ Hskew
3,3 (6)

defined by ψ(z1, . . . , z6) := (S(z1,...,z6);L1, . . . , L6) is birational, where Hskew
3,3 (6) is defined

in 4.1. It is classical that 6 skew lines L1, . . . , L6 on a smooth cubic surface S determine
via explicit formulas the other 21 lines on S; see, e.g., §4 of [Hu]. The ordering on the Li
determines an ordering on the set of all 27 lines, from which we deduce that there is an
isomorphism

τ : Hskew
3,3 (6)

∼=→ H3,3(27). (4.6)
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Composition thus gives an isomorphism

τ ◦ ψ : C′6(P2)
∼=→ H3,3(27).

The permutation action of S6 on (P2)6 leaves invariant Σ and induces a well-defined
action of S6 on C′6(P2). As explained in e.g. [Se, §3], this action extends (via adding a
birational automorphism induced by an explicit Cremona transformation) to an action by
birational automorphisms of W (E6) on C′6(P2) for which the isomorphism τ ◦ ψ is W (E6)-
equivariant. We remark that the W (E6) action on C′6(P2) is not regular.

As a corollary to Proposition 4.4 and Theorem 4.3, we have the following.

Corollary 4.5. Let k be a field of characteristic 6= 2, 3. For any G ⊂W (E6), the k-variety
C′6(P2) is a versal G-variety. In particular,

RD(C6(P2) 99K C′6(P2)/W (E6)) = RD(W (E6)) ≤ 3.

4.5 Pentahedral form

Pentahedral form is a classical normal form for smooth cubic surfaces. We now consider
this form from the point of view of resolvent degree.

For any fixed [a0 : · · · : a4] ∈ P4 the equations

a0X
3
0 + a1X

3
1 + a2X

3
2 + a3X

3
3 + a4X

3
4 = 0

X0 +X1 +X2 +X3 +X4 = 0
(4.7)

determine a cubic surface in P3. Any permutation of the ai gives an isomorphic cubic
surface. We thus have a family P4/S5 of cubic surfaces. The elementary symmetric functions
σ1, . . . , σ5 in the ai give coordinates on P4/S5. The open subset

P := {[σ1 : · · · : σ5] : σ5 6= 0} ⊂ P4/S5

is the family of smooth cubic surfaces admitting a (proper) pentahedral form, and the
classifying map τ : P → H3,3 is an open embedding (see, e.g.[EJ, Lemma 3.5]). The
hyperplane complement

P̃ := P4 −
4⋃
i=0

{ai = 0} = P4 ×P4/S5
P

is the space of smooth cubic surfaces in proper pentahedral form. We can pull back the
cover H3,3(27)→ H3,3 along the map

P̃ → P →τ H3,3

to obtain a cover P̃(27)→ P̃.

Proposition 4.6. Pentahedral form is an accessory irrationality: the cover P̃(27)→ P̃ has
Galois group W (E6). Further, the total space P̃(27) has two connected components, each
component is preserved by the index two subgroup W (E6)+ ⊂ W (E6), and the components
are permuted under the action of the full group W (E6).
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Proof. The cover
H3,3(27)/W (E6)+ → H3,3

corresponds to adjoining a square-root of the discriminant of the cubic. Note that the
discriminant of the cubic equals the discriminant of each of its pentahedral forms (cf. [Dol,
§9.4.5]). As a consequence, the map P̃ → H3,3 factors through the cover

P̃ → H3,3(27)/W (E6)+.

The map P̃ → H3,3(27)/W (E6)+ is a Galois A5-cover of its image. On the other hand,
because W (E6) only has proper, nontrivial quotients of order 2; in particular A5 is not such
a quotient. We conclude that P̃ → H3,3(27)/W (E6)+ and H3,3(27) → H3,3(27)/W (E6)+

share no intermediate covers, and thus

H3,3(27)×H3,3(27)/W (E6)+ P̃ → P̃

is a connected Galois W (E6)+ cover. From the above, each of the two components of P̃(27)
is isomorphic to this connected W (E6)+ cover, with the full group W (E6) interchanging
the two components.

4.6 Hexahedral form

The following is taken from Example 3.7 of [EJ]. Let H ∼= P4 be the hyperplane in P5 given
by a0 + · · · + a5 = 0. The group S6 acts on H with quotient isomorphic to the weighted
projective space P(2, 3, 4, 5, 6). The key thing is a sequence of maps (using our notation as
above):

H3,3(27)
t1→ H

t2→ H/S6
t3→ H3,3 (4.8)

where t1 is an unramified 2-sheeted cover, t3 is an unramified 36-sheeted cover, and t2
is a generically 720-to-1 branched cover. Note that the fact that t1 is 2-sheeted, so that
RD(H3,3(27)→ H) = 1, corresponds to the classical fact that, given a smooth cubic surface
S in hexahedral form, one can write down explicitly (as a linear function in the coefficients
of S) a formula for 15 of the lines on S (see, e.g. [Dol], section 9.4). One can obtain the
remaining 12 lines by adjoining a square root. By the classification of maximal subgroups
in W (E6) (see [Dol, Theorem 9.5.2]), the stabilizer of an unordered hexahedral form is
isomorphic to S6 × Z/2Z. As a consequence, the moduli of unordered hexabedral forms
H/S6 is isomorphic over H3,3 to the moduli of cubics equipped with a double-six:

H/S6
∼= //

##

H3,3(6, 6)

yy

H3,3

.

Moreover,

RD(H3,3(27)→ H3,3) = max{RD(H → H/S6),RD(H/S6 → H3,3)}
≤ max{2,RD(H/S6 → H3,3)}
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where the last inequality follows from

RD(H → H/S6) = RD(S6) (by Proposition 3.16 and Lemma 3.11)

≤ 2. (by Hamilton’s bound)

5 Bitangents to plane quartics

The story of 28 bitangents on a smooth plane quartic is analogous to that for the 27 lines
on a smooth cubic surface, and indeed the two are directly related, as we will see in §5.3
below.

5.1 The moduli space of smooth planar quartics, and its covers

Let H4,2 denote the moduli space of smooth quartic curves in P2. This is a 6-dimensional
quasi-projective variety, the quotient of a hypersurface complement (P14−Σ) by the action
of PGL3 induced from its action on P2. Let Gr(2, 3) denote the Grassmannian of projective
lines in P2. Jacobi proved in 1850 that any smooth plane quartic C has precisely 28 bitan-
gents; that is, lines T ⊂ P2 that are tangent to C at two points (counted with multiplicity).
Let

H4,2(1) := {(C,L) ∈ (P14 − Σ)×Gr(2, 3) : L bitangent to C}/PGL3

be the moduli space of smooth plane quartics equipped with a bitangent; here PGL3

acts diagonally. The map (C,L) 7→ C is a 28-sheeted covering space. Let H4,2(28) denote
the Galois closure of π : H4,2(1) → H4,2; this is a (connected) Galois cover of H4,2. We
use the notation H4,2(28) since this cover corresponds to the moduli space of 29-tuples
(C;L1, . . . , L28) of smooth plane quartics equipped with 28 lines with a choice of labelling
of the intersection graph of the set of 28 lines.

The deck group of the Galois coverH4,2(28)→ H4,2 is the same as the monodromy group
of the cover H4,2(1)→ H4,2. This group is isomorphic to the unique simple group of order
1, 451, 520, which we denote W (E7)+. There exists a split injection W (E7)+ ↪→W (E7), the
Weyl group of type E7. Recall that W (E7) is the reflection group with Dynkin diagram :

E7

It is given by order 2 generators sα, one for each vertex, satisfying the same relations
as W (E6) given above. W (E7) has order 2, 903, 040, and is a direct product of Z/2Z
with W (E7)+. The action of W (E7)+ on H4,2(28) is free on a Zariski open. W (E7)+ ∼=
Aut(Pic(C)[2]), and for any class [L0] of a line we have:

Stab([L0]) ∼= W (E6)

This action is most easily seen as follows (cf. [DoOr, Chapter IX.2]). The moduli H4,2(28)
is the target of a generically 2-to-1 dominant rational map

C7(P2) 99K H4,2(28).
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Concretely, given 7 points {x1, . . . , x7} ⊂ P2 in general position, form the degree 2 Del
Pezzo surface V (x1, . . . , x7) by blowing up P2 at these points. The anti-canonical map

V → P2. (5.1)

realizes V as a 2-fold branched cover, branched over a quartic curve C, and takes every
exceptional curve on V to a bitangent of C. By Proposition 1 of [DoOr, Chapter IX.2], this
gives a 2-fold covering map

U → H4,2(28) (5.2)

where U ⊂ C7(P2) is the locus of points in general position, and the map sends V with its
exceptional curves to C with its 28 bitangents. The Weyl group W (E7) acts on C7(P2) (via
the Coble representation) and this action factors through the projection

W (E7) ∼= Z/2Z×W (E7)+ �W (E7)+.

The map (5.2) is equivariant for this action (see [DoOr, Chapter IX], esp. p. 194, for a
verification of this equivariance). Under the map (5.2), the stabilizer of a bitangent lifts to
the stabilizer of a marked point on C7(P2), i.e. to W (E6) ⊂W (E7)+ ⊂W (E7).

Just as for lines on cubics, we will see throughout this paper how many classical problems
about smooth quartic curves can be rephrased as understanding various (branched) covers
ofH4,2; for problems about bitangents the covers are intermediate betweenH4,2(28)→ H4,2.
We now give several examples.

Aronhold sets. One of the more well-studied types of configurations of bitangents on a
smooth plane quartic curve C is the so-called Aronhold set. Recall that a collection of n ≥ 3
bitangents on a smooth plane quartic is asyzygetic (resp. syzygetic) if the collection of 2n
points of contact of the bitangents with the quartic are not (resp. are) contained in a conic.

Definition 5.1 (Aronhold set of bitangents). An Aronhold set A on a smooth plane
quartic C is an asyzygetic, unordered set of seven bitangents {T1, . . . , T7} on C. An Aronhold
basis is an Aronhold set with an ordering of its elements.

Let H4,2(Ã) denote the moduli of smooth plane quartics equipped with an Aronhold ba-
sis, and let H4,2(A) denote the moduli of smooth plane quartics equipped with an Aronhold
set. Note that the forget-the-ordering map is a Galois S7-cover

H4,2(Ã)→ H4,2(A).

Aronhold sets have been studied for over a century (for recent treatments, see e.g. [DoOr]
or [Dol, Chapter 6.1.2]). One of the reasons is that an Aronhold basis on C determines the
other 21 bitangents to C, i.e. we have an W (E7)+-equivariant isomorphism

H4,2(Ã)→∼= H4,2(28).

Perhaps even more surprising, an Aronhold basis in fact determines the equation for C
itself [Le]. The group W (E7)+ acts simply transitively on the set of Aronhold bases, and
thus acts transitively on the set of Aronhold sets, with stabilizer the symmetric group S7.
There are thus [W (E7)+ : S7] = 288 choices of Aronhold sets. The complexity of finding
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an Aronhold basis, given an Aronhold set, as measured by resolvent degree, is equivalent
to Hilbert’s 13th problem, as we show in Theorem 8.3.

Steiner Complexes. A second well-studied type of configuration of bitangents on a smooth
quartic curve is the Steiner complex (cf. [Hil, Chapter XIX.3] and [Dol, Chapter 6.1.2]).

Definition 5.2 (Steiner complex of bitangents). A Steiner complex of bitangents on
a smooth plane quartic C is an unordered collection of six unordered pairs of bitangents
{(α1, β1), . . . , (α6, β6)} such that any two pairs give a syzygetic collection of bitangents.

Any two bitangents determine a Steiner complex, and any one of the six pairs of a
Steiner complex determine the same complex, so there are

(
28
2

)
/6 = 378/6 = 63 Steiner

complexes. Denote the moduli of smooth plane quartics equipped with a Steiner complex
by

H4,2(S) := {(C, S) : C ∈ H4,2 and S is a Steiner complex for C.}.
The group W (E7)+ acts transitively on the set of Steiner complexes, and the stabilizer of a
Steiner complex is isomorphic to W (D6) ∼= (Z/2Z)×5 oS6, where the action of S6 is via its
standard 5-dimensional permutation representation. We can thus make the identification

H4,2(S) = H4,2(28)/W (D6) = H4,2(Ã)/W (D6). (5.3)

where the second equality comes from the fact that an Aronhold basis determines the
remaining 21 lines.

Cayley Octads. A third configuration of classical interest is the Cayley octad (cf. [Dol,
Chapter 6.3.2]).

Definition 5.3. A Cayley octad is a collection of 8 distinct unordered points in P3 that
arises as a complete intersection of 3 quadrics. Denote the moduli space of Cayley octads
by Cay.

There is a close relationship between Cayley octads and smooth plane quartics, which
is summed up in the [Dol, Chapter 6.3] (especially Corollary 6.3.12). In particular, the
moduli of plane quartics equipped with an Aronhold set H4,2(A) admits an 8-to-1 covering
map to the moduli space of Cayley octads, which is in turn birational to the moduli space
of smooth plane quartics equipped with an even θ-characteristic:

H4,2(A)→8:1 Cay ' H4,2(θev).

Moreover, the group W (E7)+ acts transitively on the set of Cayley octads, respectively even
θ-characteristics, and the stabilizer of an octad, respectively even θ-characteristic, is S8.

5.2 The resolvent degree of finding bitangents to plane quartics

In this subsection we consider the resolvent degree of the problem of finding bitangents on
smooth plane quartics.

Proposition 5.4 (Finding 28 bitangents, given 2). With the notation as above:

RD(H4,2(28)→ H4,2(2)) = 1.
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The proof of Proposition 5.4 that we now give should feel similar to the proof of Propo-
sition 4.1, and indeed we formalize this similarity as a precise statement in §5.3. We include
the proof here for its beauty and historical interest.

Proof. Now, since the Ti are distinct, any two intersect in a single point. Let

H′4,2(2) := {(C;T1, T2) ∈ H4,2(2) : T1 ∩ T2 6∈ C}.
This is a Zariski open subset of H4,2(2). It is enough to prove the theorem for the

pullback cover H′4,2(28) → H′4,2(2). The advantage of H′4,2(2) is that it gives us 4 points
of contact, 2 each from T1 ∩ C and T2 ∩ C. We can then perform a classical construction,
which we take from the 1920 book [Hil], which posits (see p.334 of [Hil]):

“Through the four points of contact of two bitangents of a non-singular quartic pass five
conics each of which passes through the points of contact of two more bitangents.”

More precisely, let (C;T1, T2) ∈ H′4,2(2) be given. We consider P2 with coordinates
[x : y : z]. By picking representatives in the PGL3 orbit of (C;T1, T2), we can assume that
T1 and T2 are given by the equations x = 0 and y = 0, respectively. The assumption that
C has a bitangent given by x = 0 and a bitangent given by y = 0 puts the equation of C in
a very special form, namely:

C := {[x : y : z] ∈ P2 : xy(U + 2kV + t62xy)− (V + txy)2 = 0} (5.4)

for some t, where U = 0 and V = 0 are conics. Consider the condition that U + 2kV + t2xy
factors as a product of linear forms p(x, y, z) and q(x, y, z). One can check that this condition
is a degree 5 polynomial in t. For such t the equation (5.4) for the quartic C then becomes

xyp(x, y, z)q(x, y, z)−W 2 = 0

where W := V + txy. It is then clear that the lines given by p = 0 and q = 0 are both
bitangent to C. Further, the conic W = 0 passes through the eight points of contact of the
four bitangents x = 0, y = 0, p = 0, q = 0. We have thus proven that

RD(H′4,2(4)→ H′4,2(2)) ≤ RD(P̃5 → P5) = 1 (5.5)

where H′4,2(4) is the pullback to H′4,2(2) of the cover H4,2(4) → H4,2(2). Although we will
not need it, we remark that there are 5 distinct roots of the degree 5 polynomial determining
such t, and so this gives us 5 additional pairs of bitangents to C, for a total of 2 + 5 · 2 = 12
bitangents.

Harris [Har] proves the following: given any three bitangents whose points of contact
lie on a conic, or any four whose points of contact do not, we can solve for the remaining
ones in radicals; further, no smaller sets suffice. This in particular gives that the cover
H′4,2(28)→ H′4,2(4) is solvable by radicals, and so has resolvent degree equal to 1. Combining
this with (5.5) thus gives

RD(H4,2(28)→ H4,2(2)) = 1

as desired.

Proposition 5.4 naturally suggests the following fundamental problem.
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Problem 5.5 (Finding bitangents on smooth quartics). Compute the following:

1. RD(H4,2(28)→ H4,2(1)).

2. RD(H4,2(1)→ H4,2).

In the next section, we relate this to the problem of finding lines on cubic surfaces, and
in Section 8, we put this problem in the context of Hilbert’s 13th problem and Hilbert’s
Octic Conjecture.

5.3 Relating lines on cubic surfaces to bitangents on plane quartics

In this subsection we relate the resolvent degrees of two classical problems: finding a line
on a smooth cubic surface and finding a bitangent on a smooth quartic curve in P2. We
then relate these to the resolvent degrees of other problems.

Theorem 5.6. For any subgroup G ⊂W (E6) ⊂W (E7)+,

RD(G) = RD(H3,3(27)→ H3,3/G) = RD(H4,2(28)→ H4,2/G).

In particular:

1. RD(W (D5)) = RD(H3,3(27)→ H3,3(1)) = RD(H4,2(28)→ H4,2(2)) = 1.

2. RD(W (E6)) = RD(H3,3(27)→ H3,3) = RD(H4,2(28)→ H4,2(1)) ≤ 3.

Similarly, for any other subgroup G ⊂W (E7)+,

RD(G) = RD(H4,2(28)→ H4,2/G)

In particular:

1. RD(S7) = RD(H4,2(28)→ H4,2(A)) ≤ 3.

2. RD(S8) = RD(H4,2(28)→ H4,2(θev)) ≤ 4.

3. RD(W (E7)+) = RD(H4,2(28)→ H4,2).

We will deduce Theorem 5.6 from the following, which should be compared with Propo-
sition 4.4 above.

Proposition 5.7 (Versality of the bitangents problem). For any G ⊂ W (E7)+, the
k-variety H4,2(28) is a versal G-variety.

Proof. We recall a construction due to Dolgachev–Ortland [DoOr, Chapter IX], which in its
essentials dates to Coble. We claim there exists a sequence of W (E7)-equivariant dominant
rational maps

A(h) 99K P(h) 99K C7(P2) 99K H4,2(28) (5.6)

where A(h) denotes the variety given by a Cartan subalgebra of a simple Lie group of type
E7, with its canonical W (E7)-action. By Proposition 3.16, A(h) is a versal W (E7) variety,
and in fact a versal G-variety for all G ⊂W (E7). By Lemma 3.11, all the varieties in (5.6)
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dominated by A(h) are also versal G-varieties for all G ⊂ W (E7) which act faithfully on
them. Since the action of W (E7) on all but A(h) factors through the projection W (E7) ∼=
Z/2Z×W (E7)+ �W (E7)+ (cf. [DuRe2, Remark 7.2]), we conclude the result.

It remains to construct the diagram (5.6). The rational map

C7(P2) 99K H4,2(28)

was constructed above as (5.2). The map

A(h) 99K P(h)

is just the projectivization, and is thus manifestly W (E7)-equivariant. It remains to con-
struct the map

P(h) 99K C7(P2)

We again follow [DoOr, Chapter IX]. We begin by identifying P(h) with the set of ordered
points {x1, . . . , x7} in the non-singular locus of a fixed cuspidal cubic, up to projective
equivalence (cf. Pinkham [Pi]). Since there are 21 cuspidal cubics through a general collec-
tion of 7 points in P2, forgetting the cubic gives the above 21-sheeted map. This concludes
the construction of (5.6) and the proof.

Proof of Theorem 5.6. By Proposition 5.7, the variety H4,2(28) is versal for any G ⊂
W (E7)+. By Proposition 4.4, the variety H3,3(27) is versal for any G ⊂W (E6) ⊂W (E7)+.
Proposition 3.7 therefore implies that for any G ⊂W (E6)

RD(G) = RD(H3,3(27)→ H3,3(27)/G) = RD(H4,2(28)→ H4,2(28)/G)

and that for any subgroup G ⊂W (E7)+ not contained in W (E6),

RD(G) = RD(H4,2(28)→ H4,2(28)/G).

The special cases above now follow from the discussions of the quotients of H3,3(27) and
H4,2(28) of classical interest in Sections 4.1 and 5.1.

The bound

RD(W (D5)) = RD(H3,3(27)→ H3,3(1)) = RD(H4,2(28)→ H4,2(2)) = 1

now follows alternately from Theorem 3.3, Proposition 4.1, or Proposition 5.4. The bound

RD(W (E6)) = RD(H3,3(27)→ H3,3) = RD(H4,2(28)→ H4,2(1)) ≤ 3

follows from Theorem 4.3. The bounds

RD(S7) = RD(H4,2(28)→ H4,2(A)) ≤ 3,

RD(S8) = RD(H4,2(28)→ H4,2(θev)) ≤ 4

follow from Corollary 3.17 1, and the Bring-Hamilton bounds RD(P̃7 → P7) ≤ 3 and
RD(P̃8 → P8) ≤ 4.
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We now use a classical construction to give a more explicit proof of the first equality of
Theorem 5.6.

The classical construction. Let S be a smooth cubic surface containing lines L1, . . . , L27.
A choice of a point p ∈ S − ∪27

i=1Li determines via projection a morphism

πp : Blp(S)→ P2

from the blowup Blp(S) to the plane P2. This setup has the following remarkable properties:

1. πp is a 2-sheeted branched cover, branched over a smooth quartic curve Cp ⊂ P2.

2. The 27 images πp(Li), 1 ≤ i ≤ 27 are 27 of the 28 bitangents of Cp, with the 28th
bitangent to Cp being the image under πp of the exceptional divisor in Blp(S).

3. For every smooth quartic curve C in P2 there exists S and p ∈ S as above so that C
is the branch locus of πp, as above.

See Figure 1.

Modular interpretation. We can interpret this classical construction in terms of Del
Pezzo surfaces of degree 2 and 3, and thus of maps of moduli spaces and their covers.

Consider the universal family
S // U3,3

π

��

H3,3

of smooth cubic surfaces. Note that U3,3 can also be thought of as the moduli space of pairs
{(S, p) : S ∈ H3,3, p ∈ S} and the projection π(S, p) := S.

We now give a second presentation of U3,3. Recall that

H3,3(27) ∼= Hskew
3,3 (6) ∼= C′6(P2)

Adding the data of a point on a cubic, we get birational maps

C7(P2) 99K' U skew
3,3 (6) ∼= U3,3(27)

where U skew
3,3 (6) (resp. U3,3(27)) denotes the space of cubic surfaces equipped with an ordered

set of 6 skew lines (resp. an ordered set of 27 lines) and a point on the surface. These
isomorphisms are equivariant with respect to the W (E6) ⊂ W (E7) action on C7(P2) and
the W (E6) actions on U skew

3,3 (6) (resp. U3,3(27)). In particular there is an open embedding

C7(P2)/W (E6) ⊆ U3,3

onto the cubics equipped with a point not lying on any of the 27 lines.
On the other hand, as discussed above, we have a generically 2-to-1 W (E7)-equivariant

dominant map
C7(P2) 99K H4,2(28).
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Therefore, for any G ⊂W (E6), we obtain a pullback diagram in which the horizontal maps
are generically 2-to-1 rational covers

U3,3(27) //

��

H4,2(28)

��

U3,3(27)/G // H4,2(28)/G

This diagram shows that, at the cost of adjoining a square root, any explicit solution for
H4,2(28)→ H4,2(28)/G determines one for U3,3(27)→ U3,3(27)/G, and vice versa.

It remains to relate this to solutions of

H3,3(27)→ H3,3(27)/G.

One direction is trivial: because we have a pullback diagram in which all maps are dominant

U3,3(27) //

��

H3,3(27)

��

U3,3(27)/G // H3,3(27)/G

any solution to H3,3(27) → H3,3(27)/G immediately pulls back to give one for U3,3(27) →
U3,3(27)/G. For the other direction, given an explicit tower solving U3,3(27)→ U3,3(27)/G

U3,3(27)

��

Xr
//

33

· · · // X1
// U3,3(27)/G

(5.7)

Let Z ⊂ U3,3(27)/G be the closure of the complement of the image of Xr in U3,3(27)/G.
Because Xr 99K U3,3(27)/G is dominant, Z is a proper subvariety.

Fix a line L ⊂ P3 and let U ⊂ H3,3(27)/G be the Zariski open consisting of cubic
surfaces which intersect L transversely. Define

ŨL := {(S̃, p) : S̃ ∈ U ⊂ H3,3(27)/G, p ∈ S ∩ L}

By Bezout’s Theorem, the projection

ŨL → U

is a 3-to-1 dominant map. Because Z ⊂ U3,3(27)/G is a proper closed subvariety, for a
generic choice of L ⊂ P3, the embedding

ŨL ⊂ U3,3(27)/G

is not contained in Z. We can therefore pull back the solution (5.7) along this embedding
to get a tower solving

ŨL ×H3,3(27)/G H3,3(27)→ ŨL
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We conclude from Lemma 2.7 and Corollary 3.17 2 that

RD(H3,3(27)→ H3,3(27)/G) ≤ max{RD(ŨL ×H3,3(27)/G H3,3(27)→ ŨL),RD(ŨL → U)}
≤ max{RD(U3,3(27)→ U3,3(27)/G), 1}
= RD(U3,3(27)→ U3,3(27)/G).

Remark 5.8. The construction above using Bezout’s theorem suggests a general method.
We develop this further in Section 6.2 below.

The proof of Theorem 5.6 also implies the following.

Corollary 5.9 (RD for Double-Sixes and Steiner Complexes). The resolvent de-
gree of finding an ordered sixer given a double-six equals the resolvent degree of finding an
Aronhold basis given a Steiner complex equals the resolvent degree of S6, i.e.

RD(S6) = RD(Hskew
3,3 (6)→ H3,3(6, 6)) = RD(H4,2(Ã)→ H4,2(S)).

Proof. By Theorem 5.6,

RD(S2 × S6) = RD(Hskew
3,3 (6)→ H3,3(6, 6))

and, because H4,2(Ã) ∼= H4,2(28) as W (E7)+-varieties, Theorem 5.6 also gives

RD(W (D6)) = RD(H4,2(Ã)→ H4,2(S)).

Because W (D6) = (Z/2Z)×5 o S6, Theorem 3.3 gives

RD(W (D6)) = max{1,RD(S6)} = RD(S2 × S6) = RD(S6).

6 The resolvent degree of some enumerative problems

Consider an enumerative problem M̃ 99KM as in the introduction. As mentioned there, a
typical first goal is to prove that this is a branched cover. One then tries to find its degree.
The third step is to compute the Galois group of (the normal closure of) the covering.

Computing RD(M̃ 99K M) can be interpreted as computing the number of parameters

needed to specify a point in M̃ given a point of M. This seems to us like a fundamental
problem. We worked through the explicit examples of lines on a smooth cubic surface and
bitangents on a smooth quartic in Sections 4 and 5. In this section we present a few more
examples.
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6.1 Tangency problems for plane curves

Steiner’s 5 conics problem. A classical problem of Steiner asks how many conics in
P2 are tangent to 5 given conics. After many incorrect answers and a long, rich history,
the problem was answered around 40 years ago; see, e.g. [EH] and the references contained
therein. The answer is 3264. But how to find these conics given the original 5, given by the
coefficients of their defining equations?

Harris proves in [Har, IV] that this problem is not solvable by radicals, as follows. Let
W ∼= P5 denote the linear system of conics in P2, and let W0 denote the Zariski open subset
of smooth (i.e. non-degenerate) conics. Let

Y := {(C1, . . . , C5, C) ∈W 5 ×W0 : C is tangent to each Ci}.

Consider the map π : Y → W 5 be π(C1, . . . , C5, C) := (C1, . . . , C5). Then π is a 3264-
sheeted branched cover. Harris (see §IV of [Har]) computes the monodromy group of this
cover to be the full symmetric group S3264. As this group is not solvable, Harris deduces
that there is no formula in radicals for the coefficients of C in terms of the coefficients of
the Ci.

Problem 6.1 (Refinements of Steiner’s problem). Determine the monodromy of the
natural branched covers of W 5 lying between Y and W 5. Determine which if any are
solvable by radicals. For these, determine explicit formulas.

Problem 6.2 (Resolvent degree of the 5 conics problem). Compute RD(Y →W 5).

There are many generalizations of Steiner’s Problem, for many of which the associated
monodromy group has been computed; see, e.g. [EH, HS]. It would be interesting to work
out bounds on the resolvent degree for these problems.

Curves through specified points. There are many more such enumerative problems.
For example, we have the following. Let Pd ⊂ (P2)3d−1/S3d−1 be the parameter space of
(3d − 1)-tuples of distinct points in P2 in general position. A dimension count gives that
the number nd of degree d rational curves that pass through 3d − 1 such points in P2 is
finite. It was known classically that n2 = 1, n3 = 12 and n4 = 620. In the early 1990’s the
following recursive formula for nd was given by Kontsevich-Manin and Ruan-Tian (see, e.g.
[EH] and the references contained therein):

nd =
∑

d1+d2=d,d1,d2>0

nd1nd2

(
d2

1d
2
2

(
3d− 4

3d1 − 2

)
− d3

1d2

(
3d− 4

3d1 − 1

))
.

Let Xd := PGL2 \Ratd(P1,P2)/PGL3 denote the moduli space of degree d rational
curves. Let

Yd := {(p1, . . . , p3d−1, C1, . . . , Cnd) : pj ∈ Ck ∀j, k} ⊂ Pd ×Xnd
d .

Denote by πd : Yd → Pd the natural projection. Then πd is an nd-sheeted branched
cover.
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Problem 6.3. Compute the monodromy of πd, as well as of the intermediate covers. Com-
pute RD(πd).

Among many other variations, we mention the following.

Problem 6.4. All general degree n curves through 1
2n(n+ 3)− 1 fixed points pass through

1
2(n− 1)(n− 2) other fixed points (see,e.g., p.191 of [Hil]). Compute RD for the problem of
finding one of the 1

2(n− 1)(n− 2) other points, as well as its monodromy.

6.2 Finding a point on a projective subvariety

In relating different problems about varieties in projective space, it will sometimes be useful
to pick a basepoint on a variety in a way that varies algebraically over a parameter space.
The following proposition, which we isolate because it might be useful in other contexts,
states that to compute RD for any algebraic problem for degree d varieties of a fixed
dimension in Pn, one can add the data of a basepoint at the cost of finding a root of a
degree d polynomial.

Proposition 6.5 (Finding a point on a subvariety of Pn). Let X be any variety over
k, and let

S

##

// X × Pn

��

X

be any family of r-dimensional, degree d varieties in Pn such that S → X is a dominant
map. Let

Y //

��

X̃

��

S // X

(6.1)

be any pullback diagram with vertical maps being rational covers. Then

RD(Y 99K S) ≤ RD(X̃ 99K X) ≤ max{RD(Y 99K S),RD(Sd)}.
Proof. The first inequality follows from Lemma 2.5. We now prove the second inequality.
Fix an n−r-dimensional linear subspace L ⊂ Pn. Let U ⊂ X be the Zariski open consisting
of all x ∈ X such that the variety Sx intersects L transversely. Define

U1 := (U × L) ∩ S.
By Bezout’s theorem, the map U1 → U given by projection is a generically d-to-1 rational
cover. Therefore, by Lemma 2.9,

RD(U1 → U) ≤ RD(P̃d → Pd) = RD(Sd).

By construction, we have a commuting triangle

S

��

U1
//

>>

X
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Form the pullback
U1 ×S Y //

��

Y

��

U1
// S

By construction,
U1 ×S Y 99K U1 → X

is a tower solving X̃ 99K X. The definition of resolvent degree and Lemmas 2.5 and 2.7
imply that

RD(X̃ 99K X) ≤ RD(U1 ×S Y 99K X)

≤ max{RD(U1 ×S Y 99K U1),RD(U1 → X)}
≤ max{RD(Y 99K S),RD(P̃d → Pd)}

as claimed.

6.3 Resolvent degree and Bezout’s theorem

Recall that Hr,2 denotes the moduli space of smooth degree r curves in P2. Fix r, s ≥ 1.
Bezout’s Theorem gives that for each pair of curves C,C ′ ⊂ P2 of degrees r and s, the
intersection C ∩ C ′ has rs points, where each p ∈ C ∩ C ′ is counted with the intersection
multiplicity Ip(C,C

′). Let

H(r,s),2 :=
(

(P(r+2
2 )−1 − Σr)× (P(s+2

2 )−1 − Σs)
)
/PGL3

denote the moduli of pairs of smooth plane curves (C,C ′) with deg(C) = r, deg(C ′) = s
(where Σr, and Σs denote the loci of singular curves). Let Ur,s denote the Zariski open

Ur,s := {(C,C ′) : Ip(C,C
′) = 1 ∀p ∈ C ∩ C ′} ⊂ H(r,s),2

and consider the covering

Ũr,s := {(C,C ′, p) : p ∈ C ∩ C ′} ⊂ Ur,s × P2

π
y
Ur,s

given by π(C,C ′, p) := (C,C ′). Note that π−1(C,C ′) = C ∩ C ′ ⊂ P2. Bezout’s Theorem
implies that π : Ũr,s → Ur,s is an rs-sheeted cover. It is known that the monodromy of this
cover is the full symmetric group Srs; see, for example [HS, Corollary 1]. Thus there is a
formula in radicals for the intersection of two curves of degrees r, s ≤ 2, but there is no
such formula when rs > 4. It is natural to ask for the minimal number RD(Ũr,s → Ur,s)
of parameters for any formula for an intersection point of two smooth curves, given the
coefficients defining those curves. By the computation of the monodromy, we have

RD(Ũr,s → Ur,s) ≤ RD(Srs). (6.2)

Problem 6.6. For which r and s does equality hold in (6.2)?
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6.4 Finding flexpoints

Let C be a degree d ≥ 2 plane curve. For a generic point p ∈ C, the tangent line `p to
C at p intersects C with multiplicity mp(C · `p) = 2. Recall that p is a flex point of C if
mp(C · `p) ≥ 3; it is a simple flex if mp(C · `p) = 3. It is known that any degree d curve C
has 3d(d − 2) flex points, counted with multiplicity. Recall that Hd,2 denotes the moduli
space of smooth degree d curves on P2. Let Hd,2(flex) ⊂ Hd,2 × P2 be the moduli space
of pairs (C, p) where p ∈ C is a flex point. The projection map Hd,2(flex) → Hd,2 given
by (C, p) 7→ p is a 3d(d − 2)-sheeted covering when restricted to the Zariski open in Hd,2
consisting of those degree d curves C all of whose flex points are simple.

The monodromy of H3,2(flex)→ H3,2 is solvable (see [Har, II.2]), so that

RD(H3,2(flex)→ H3,2) = 1.

In contrast, Harris proves in II.3 of [Har] that for d ≥ 4, the monodromy ofHd,2(flex)→ Hd,2
is S3d(d−2), which is not solvable if d ≥ 4. While Harris concludes from this that there is
no formula in radicals for the flex points of a general degree d ≥ 4 smooth plane curve, the
basic question remains as to how complicated any formula not-in-radicals actually is.

Problem 6.7 (Finding flexpoints). Compute the resolvent degree for the problem of
finding a flexpoint on a smooth degree d ≥ 4 plane curve; that is, compute RD(Hd,2(flex)→
Hd,2).

It is a classical fact that for a degree d curve C, the flexpoints of C are precisely the
intersection points of C with its associated Hessian curve HC , which has degree 3(d − 2).
However, Problem 6.7 is quite different than the situation considered in §6.3. Indeed, while
the map

Hd,2 →H Ud,3(d−2)

C 7→ (C,HC)

fits into a pullback square

Hd,2(flex) //

��

Ũd,3(d−2)

��

Hd,2 H // Ud,3(d−2)

,

the codimension of H(Hd,2) ⊂ Ud,3(d−2) is always positive and grows quadratically in d.

7 The resolvent degree of the roots of a polynomial

While the problem of simplifying the formulas needed to solve a general polynomial has
been central to the mathematical tradition since the Babylonians, the study of the resol-
vent degree of polynomials essentially originates with work of Tschirnhaus [Ts] in the 17th
century. Tschirnhaus introduced the Tschirnhaus transformation, which remains essentially
the only method for providing general upper bounds on RD(P̃n → Pn). We review Tschirn-
haus transformations from a geometric standpoint below, and then we treat several of the
classical upper bounds from this perspective.
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7.1 Tschirnhaus tranformations and classical solutions of polynomials

Elementary perspective. Consider the general degree n polynomial

p(x) := xn + a1x
n−1 + · · ·+ an = 0,

with roots x1, . . . , xn. A Tschirnhaus transformation T (b0, . . . , bn−1) (for some b0, . . . , bn−1)
sends the roots xi to

T (b0, . . . , bn−1)(xi) := b0x
n−1
i + b1x

n−2
i + · · ·+ bn−1.

The Tschirnhaus transformation of the polynomial p(x) is defined by

T (b0, . . . , bn−1)(p)(x) :=
∏
i

(x− T (b0, . . . , bn−1)(xi)).

Because the assignment xi 7→ T (b0, . . . , bn−1)(xi) is symmetric in the roots, the coefficients
of T (b0, . . . , bn−1)(p) are polynomials in the ai and the bj . Accordingly, by solving polyno-
mials in the bj whose coefficients are polynomials in the ai, we can find special Tschirnhaus
transformations which convert our original polynomial p(x) into a polynomial whose coef-
ficients satisfy special conditions, e.g. some collection of the coefficients are zero.

Note that, given the roots of T (b0, . . . , bn−1)(p), we can recover the roots of p by a
rational transformation. See [Hu, Lemma 4.2.1] for a clear treatment.

As covariants. Tschirnhaus transformations can also be defined as Sn-equivariant maps

T : An → An

In the setting above, we have an auxiliary affine space parametrizing Tschirnhaus transfor-
mations

AnT := {(b0, . . . , bn−1)}
and a map

AnT → AlgSn(An,An)

from the affine space parametrizing Tschirnhaus transformations to the space of maps of
Sn-varieties An → An.

Geometric perspective. Equivalently, we have an Sn-equivariant “evaluation” map

An × AnT →ε An

where Sn acts trivially on the AnT factor, and via the permutation representation on each
An. Passing to the quotients, we obtain a commuting square

An × AnT
ε //

��

An

��

Pn × AnT
ε̄ // Pn

To bound the resolvent degree of P̃n → Pn via a Tschirnhaus transformation, one now
specifies
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1. a Zariski closed Sn-invariant subvariety V ⊂ An, and

2. a rational cover U 99K Pn along with a section

ε−1(V )

��

U

<<

// Pn

Given these data, one obtains

RD(P̃n → Pn) ≤ max{RD(U 99K Pn), dim(V )}.

Remark 7.1. Standard examples of V are given by

V1···i :=
i⋂

j=1

{σj = 0} ⊂ An,

where the σj are the elementary symmetric functions. Finding U 99K Pn with a map
U 99K ε−1(V1···i) over Pn is just to find a Tschirnhaus transformation which sets the first i
coefficients of the general degree n polynomial to 0.

We now illustrate this procedure in several classical examples.

7.2 The Bring-Hamilton 4-parameter reduction

In 1786 Bring [Bri] proved the following, which was independently discovered by Hamilton
[Ham].

Theorem 7.2 (Bring-Hamilton 4-parameter reduction). For any n ≥ 5 :

RD(P̃n → Pn) ≤ n− 4.

From the above perspective, Bring’s proof is as follows.

Proof. First, restrict to the space of quartic Tschirnhaus transformations, i.e.

T (b0, . . . , b4)(xi) = b0x
4
i + · · ·+ b4.

Next, observe that the fiberwise projectivization of ε−1(V1) → Pn is a trivial P3 bundle,
since the condition that the first coefficient vanish is linear in the bj , and this 3-plane bundle
admits a rational section. Therefore, the fiberwise projectivization of ε−1(V12) → Pn is a
bundle of quadric surfaces in P3. Denote by H2,3 the moduli of quadric surfaces and let
H2,3(L) ⊂ H2,3 × Gr(2, 4) be the moduli of quadric surfaces equipped with a line, so that
the two connected components of H2,3(L) (corresponding to the two rulings of the quadric)
each give a P1-bundle over H2,3. We have a map

Pn → H2,3

p 7→ ε−1(V12)|p
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By the classical theory of quadratic forms (for a detailed contemporary treatment, see e.g.
[W, Lemma 5.2]), after passing to a branched cover U1 → Pn of degree 24 (i.e. by adjoining 4
square roots of polynomials in the coefficients), we can diagonalize the associated quadratic
form, i.e.

V12|U ∼= V (

3∑
i=0

L2
i )

for rational hyperplanes Li ⊂ P3
U . Then {L0 +

√
−1L1 = 0, L2 +

√
−1L3 = 0} defines a line

on the quadric. In other words, there exists a lift of the map U1 → H2,3

H2,3(L)

��

U1
//

L
;;

H2,3

By intersecting the family of cubics ε−1(V3) with this line, we obtain a map

U1 → P3

u 7→ L(u) ∩ ε−1(V3)|u
Forming the pullback

U2
//

��

P̃3

��

U1
// P3

we obtain a branched cover U2 → Pn and a section

ε−1(V123)

��

U2
//

::

Pn
By construction,

RD(U2 → Pn) = max{RD(U2 → U1),RD(U1 → Pn)}
≤ max{RD(P̃3 → P3), 1} = 1.

Therefore

RD(P̃n → Pn) ≤ max{RD(
√
−),RD(P̃3 → P3),RD(V123 → An−3)}

where the final space An−3 is the moduli space of all monic degree n polynomials of the
form

xn + a4x
n−4 + · · ·+ an−1x+ an = 0.

Restricting to locus U ⊂ An−3 where an−1 6= 0 6= an, we can define a linear Tschirnhaus
transformation

T (xi) :=
an−1

an
xi
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to set the last two coefficients to be equal. This defines a pullback diagram

V123|U T //

��

V123,(n−1)=n

��

U
T̄ // An−4

where An−4 denotes the space of all polynomials of the form

xn + b4x
n−4 + · · ·+ bn−1x+ bn−1 = 0.

We conclude that, for n ≥ 5,

RD(P̃n → Pn) ≤ max{RD(
√
−),RD(P̃3 → P3),RD(V123,(n−1)=n → An−4)} ≤ n− 4

as desired.

As a consequence of the Bring/Hamilton theorem, we obtain the upper bounds in
Hilbert’s Sextic and Octic Conjectures Hilbert’s and 13th Problem.

Corollary 7.3. RD(P̃6 → P6) = RD(S6) ≤ 2, RD(P̃7 → P7) = RD(S7) ≤ 3, and
RD(P̃8 → P8) ≤ 4.

7.3 Brauer’s bounds

Hamilton [Ham] was the first to show that

lim
n→∞

n− RD(P̃n → Pn) =∞.

More precisely, he showed the existence of a function H : N → N, such that for n ≥ H(r),
n− RD(P̃n → Pn) ≥ r, and he computed the initial values of H:

r 4 5 6 7 8 9

H(r) 5 11 47 923 409, 619 83, 763, 206, 255

By the mid-20th century, Hamilton’s work appears to have been forgotten. Segre [Seg1],
building on Hilbert’s work on the degree 9 equation, proved that RD(P̃n → Pn) ≤ n− 6 for
n ≥ 157. He further conjectured that

lim
n→∞

n− RD(P̃n → Pn) =∞;

that is, he conjectured precisely what Hamilton had shown over a century earlier. Shortly
after, in 1945, Brauer [Bra1] and Segre each reproved this statement, but without giving
effective bounds. Three decades later, Brauer [Bra2] proved the following theorem, which
provides the best general upper bounds on RD(P̃n → Pn) to date.

Theorem 7.4 (Brauer [Bra2]). Let n > 3. For any r ≥ 2

RD(P̃n → Pn) ≤ n− r for all n ≥ (r − 1)! + 1.
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We include a streamlined version of Brauer’s proof of Theorem 7.4 for completeness.

Proof. We prove this by induction on r. The base case r = 1 follows from the Babylonians:
RD(n) ≤ n− 1 for all n ≥ 2, via a linear translation of the roots.

For the inductive step, consider the full space of Tschirnhaus transformations Pn−1
T .

Observe that
ε̄−1(V1···(r−1))→ Pn

is a bundle of (n−r+1)-dimensional , degree (r−1)! subvarieties of Pn−1
T . By construction,

there is an isomorphism of varieties over ε̄−1(V1···(r−1)) :

P̃n ×Pn ε̄−1(V1···(r−1)) ∼= ε̄−1(V1···(r−1))×An−(r−1) P̃n|An−r−1

where An−(r−1) ⊂ Pn denotes the space of all monic polynomials with the first (r − 1)
coefficients vanishing. Therefore

RD(P̃n ×Pn ε̄−1(V1···(r−1))→ ε̄−1(V1···(r−1))) ≤ RD(P̃n|An−(r−1) → An−(r−1)).

Proposition 6.5 then implies

RD(P̃n → Pn) ≤ max{RD(P̃n ×Pn ε̄−1(V1···(r−1))→ ε̄−1(V1···(r−1))),RD(P̃(r−1)! → P(r−1)!)}
≤ max{RD(P̃n|An−(r−1) → An−(r−1)),RD(P̃(r−1)! → P(r−1)!)}.

An analogous linear Tscirnhaus transformation to that in Bring and Hilbert shows

RD(P̃n|An−(r−1) → An−(r−1)) ≤ n− r.

The inductive hypothesis then gives

RD(P̃(r−1)! → P(r−1)!) ≤ (r − 1)!− (r − 1) ≤ n− r,

completing the proof of the induction step.

Remark 7.5. Note that Brauer’s proof does not make use of the Bring/Hamilton idea.
Moreover, Hilbert [Hi2] sketched an approach using lines on cubic surfaces to show that
RD(9) ≤ 4. Brauer needs n ≥ 25 in order to conclude RD(P̃n → Pn) ≤ n − 5. In [W], an
extension of Hilbert’s argument leads to a substantial improvement over Brauer’s bounds
for general n.

8 The equivalence of Hilbert’s conjectures to classical geom-
etry problems

As with many Hilbert problems, the specific statement of Hilbert’s Sextic Conjecture, 13th
Problem and Octic Conjecture (see Problem 1.5) turns out to be much broader and more
widely connected to other problems than one might at first glance guess. The goal of this
section is to use the theory we have developed so far to prove the equivalence of each of
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these problems with many other natural problems of both geometric and arithmetic natures.
We give each statement in English form, and name the corresponding problem in terms of
moduli spaces when we have already named them explicitly.

We organize things into five groups of examples, according to the group that is acting.
The five classes of examples are ordered in complexity via:

RD(W (E6))
RD(S6) ≤ ≤ RD(W (E7))

RD(S7) ≤ RD(S8)

8.1 S6-varieties and Hilbert’s Sextic Conjecture

We start with the Sextic Conjecture.

Theorem 8.1 (RD of S6 varieties). The following statements are equivalent:

1. Hilbert’s Sextic Conjecture is true: RD(P̃6 → P6) = 2.

2. RD(S6) = 2.

3. RD(V → V/S6) = 2 for any faithful, linear S6-variety V .

4. RD(M0,6 →M0,6/S6) = 2.

5. RD = 2 for the problem of finding a fixed point for the Z/3Z action on a genus 4
curve of the form y3 = P (x), where P (x) is a square-free polynomial of degree 6 :

RD(C̃3,6 → C3,6) = 2.

6. RD = 2 for the problem of finding a fixed point for the hyperelliptic involution on a
genus 2 curve:

RD(M2(∆̃)→M2) = 2.

7. RD of finding the 27 lines on a cubic, given a double-six:

RD(H3,3(27)→ H3,3(6, 6)) = 2.

8. RD of finding the 27 lines on a smooth cubic surface S given the unordered hexahedral
form of S:

RD(H3,3(27)→ H/S6) = 2.

In fact, the resolvent degrees of all of the above problems coincide.

Proof. We prove the theorem via chains of equivalences.

Equivalence of 1, 2, 3, and 4: The equivalence of the first four follows from Corollary
3.17 1 together with Corollary 3.18.

Equivalence of 4, 5: Consider the moduli space C3,6 of isomorphism classes of algebraic
curves of the form y3 = P (x) where P has is a square-free polynomial of degree 6. These
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are genus 4 curves equipped with a Z/3Z action, the quotient giving a branched cover

Σ4 → P1 branched over 6 points, each of order 3. Let C̃3,6 denote the moduli of curves in
C3,6 equipped with an ordering of the Z/3Z-fixed points. The forgetful map

C̃3,6 → C3,6

is a Galois S6-cover. By mapping the fixed points to P1 under the Z/3Z-quotient, we obtain
the commutative diagram

C̃3,6
//

��

M0,6

��

C3,6
//M0,6/S6

(8.1)

in which the horizontal arrows are birational, equivariant with respect to the S6 actions,
and the bottom row is the quotient of the top row by the S6 action. The stabilizer of a
fixed point is S5 ⊂ S6, and thus C̃3,6 → C3,6 is the Galois closure of the cover parametrizing
curves in C3,6 with a single choice of fixed point. Together with Lemma 2.11, this proves
the equivalence of 4, and 5.

Equivalence of 4 and 6: The Segre cubic threefold X3 is the threefold in P5 given by

X3 := {[x0 : · · · : x5] ∈ P5 :
5∑
i=0

xi = 0 =
5∑
i=0

x3
i }.

The permutation action of S6 on P5 leaves invariant X3, permuting its 10 nodes. It’s
classically known that X3

∼=M0,6 as S6-varieties.
Hunt proves in [Hu, Theorem 3.3.11] that the dual variety to X3 is the so-called Igusa

quartic I4, which is the moduli space of 6 points on a conic in P2. The two varieties X3

and I4 are S6-equivariantly birational. The Igusa quartic I4 is the Satake compactification
of the moduli space M2(∆̃) of hyperelliptic curves of genus 2 with a marking of the 6
branch points. The group S6 acts by permuting these marked points. We thus obtain a
commutative diagram in which all horizontal arrows are birational equivalences

M0,6
∼ //

��

I4

��

M2(∆̃)
∼oo

��

M0,6/S6
∼ // I4/S6 M2

∼oo

(8.2)

Thus each of the rational covers in (8.2) have equal resolvent degree.

Equivalence of 2, 7 and 8 : As explained in (4.4), the moduli space of pairs (S,D)
where S ∈ H3,3 and D is a double-six in S can be identified with H3,3(27)/S6. Thus the
problem of finding all 27 lines on a smooth cubic surface given a double-six is RD(H3,3(27)→
H3,3(27)/S6). By Proposition 4.4, H3,3(27) is versal for any G ⊂ W (E6). Therefore, by
Proposition 3.7,

RD(H3,3(27)→ H3,3(27)/S6) = RD(S6),
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proving the equivalence of 2 and 7 .
Now recall from §4.8 that the moduli space of unordered hexahedral forms for smooth

cubic surfaces fits in to the sequence of branched covers (see (4.8)) :

H3,3(27)
t1→ H

t2→ H/S6
t3→ H3,3

where t1 is an unramified 2-sheeted cover, t3 is an unramified 36-sheeted cover, and t2 is a
generically 720-to-1 branched cover. The composite is a Galois branched cover, with deck
group S2 × S6 ⊂W (E6), i.e.

H/S6 = H3,3/(S2 × S6)

Proposition 4.4 therefore implies

RD(H3,3(27)→ H/S6) = RD(S2 × S6) = RD(S6),

proving the equivalence of 8 and 2.

8.2 W (E6)-varieties and lines on a smooth cubic surface

In this subsection we summarize the equality of the resolvent degree of different W (E6)-
varieties proven above.

Theorem 8.2 (RD of W (E6) varieties). The following are equal:

1. RD(W (E6)).

2. RD(V → V/W (E6)) for V any faithful representation of W (E6).

3. RD of finding all 27 lines on a smooth cubic surface:

RD(H3,3(27)→ H3,3).

4. RD of finding a line on a smooth cubic surface:

RD(H3,3(1)→ H3,3).

5. RD of finding 28 bitangents on a smooth plane quartic, given one of them:

RD(H4,2(28)→ H4,2(1)).

Further, all of the above are at most 3.

Proof. We prove the theorem in chains of equivalences.

Equivalence of 1, 2, 3 and 4: This follows from the proof of Theorem 4.3. Moreover,
from Theorem 4.3, we obtain the upper bound of 3.

Equivalence of 3 and 5 : This is the statement of Theorem 5.6 above.
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8.3 S7-varieties and Hilbert’s 13th Problem

We now prove the equivalence of Hilbert’s 13th problem with various other problems. Recall
that Cn(Pm) denotes the moduli space of ordered n-tuples of distinct points in Pm modulo
the action of PGLm+1.

Theorem 8.3 (RD of S7 varieties). The following are equivalent:

1. Hilbert’s 13th problem: RD(P̃7 → P7) = 3.

2. RD(V → V/S7 = 3) for any faithful linear representation V of S7.

3. RD(S7) = 3.

4. RD(C7(Pn)→ C7(Pn)/S7) = 3 for n ≤ 4; in particular

RD(M0,7 →M0,7/S7) = 3.

5. RD = 3 for the problem of finding the 28 bitangents on a smooth quartic C, given an
Aronhold set on C:

RD(H4,2(28)→ H4,2(A)) = 3.

In fact, the resolvent degrees of all of the above problems coincide.

Proof. Equivalence of 1, 2, 3 and 4: This follows from Corollary 3.17 1 together with
Corollary 3.18.

Equivalence of 3 and 5 The equivalence of 3 and 5 follows from Theorem 5.6.

8.4 S8-varieties and Hilbert’s Octic Conjecture

We now prove the equivalence of Hilbert’s Octic Conjecture to several problems about plane
quartics and genus 3 curves.

Theorem 8.4 (RD of S8 varieties). The following are equivalent:

1. Hilbert’s Octic Conjecture: RD(P̃8 → P8) = 4.

2. RD(V → V/S8 = 4) for any faithful linear representation V of S8.

3. RD(S8) = 4.

4. RD(C8(Pn)→ C8(Pn)/S8) = 4, for n ≤ 5; in particular

RD(M0,8 →M0,8/S8) = 4.

5. RD = 4 for the problem of finding the 28 bitangents on a smooth quartic C, given an
even θ-characteristic:

RD(H4,2(28)→ H4,2(θev)) = 4,
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6. RD = 4 for the problem of finding an Aronhold set on a smooth plane quartic C given
an even θ-characteristic:

RD(H4,2(A)→ H4,2(θev)) = 4,

7. RD = 4 for the problem of finding the 28 bitangents on a quartic, given a Cayley
octad:

RD(H4,2(28)→ Cay) = 4.

In fact, the resolvent degrees of all of the above problems coincide.

Proof. The equivalence of (1), (2) and (3) follows from Corollary 3.17 1.
For the equivalence of (3), (4), and (5), observe that there exists a diagram of W (E7)+-

equivariant maps
A(h) 99K P(h) 99K C7(P2) 99K H4,2(28) (8.3)

Indeed, the sequence
A(h) 99K P(h) 99K C7(P2) 99K H4,2(28)

was constructed as (5.6) in the proof of Proposition 5.7. Because W (E7)+ is simple, all the
varieties in (8.3) are faithful W (E7)+-vareties. By Proposition 3.16 and Lemma 3.11, we
conclude that all of these varieties are versal G-varieties for any G ⊂W (E7)+, in particular
for G = S8. The equivalence of (3), (4), and (5) now follows from Proposition 3.7. The
equivalence of (5) and (6) follows from Lemma 2.11 and the fact that

H4,2(28)→ H4,2(θev)

is a Galois closure of the cover

H4,2(A)→ H4,2(θev).

Finally, the equivalence of (3) and (7) follows from the classical fact that there is a birational
map

H4,2(28)/S8 ' Cay

from the S8 quotient of the moduli of smooth plane quartics with an ordering of their 28
bitangents to the moduli of Cayley octads.

8.5 W (E7) and bitangents to a planar quartic

In this subsection we prove the equality of the resolvent degree of different W (E7)+-varieties.

Theorem 8.5 (RD of W (E7) and bitangents to a planar quartic). The following
are equal:

1. RD(W (E7)).

2. RD(W (E7)+)

3. RD(V → V/G) for G = W (E7)+,W (E7) and V any faithful representation of G.
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4. RD(C7(P2)→ C7(P2)/W (E7)+).

5. RD(H4,2(28)→ H4,2).

Proof. As noted above, there is an isomorphism

W (E7) ∼= W (E7)+ × Z/2Z;

Theorem 3.3 implies that

RD(W (E7) = max{RD(Z/2Z),RD(W (E7)+)} = RD(W (E7)+).

In the proof of Theorem 8.4, we constructed a diagram (8.3) of varieties which are versal
for every G ⊂ W (E7)+, in particular for G = W (E7)+. By Proposition 3.7, we conclude
that

RD(X → X/W (E7)+) = RD(W (E7)+)

for all X in the diagram (8.3). The theorem now follows.
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9 Appendix

Versal covers for subgroups of W (E6) and covers related to lines on cubics.

A(h6) // P(h6) // C′6(P2)
∼= //

S×4
2

��

H3,3(27)

S×4
2
��

S6

''

W (E6)+

++

M0,7/S2
∼ //

S5

��

H3,3(27)/S×4
2

S5

��

Hskew3,3 (6)/S6

S2

��

H3,3(
√

∆)

S2

��

P̃A5oo

M0,7/S2 × S5
∼ // H3,3(1)

27:1

((

H3,3(6, 6)

36:1

��

H3,3

The diagram above shows the relation between many covers of classical interest of the
moduli space H3,3 of smooth cubic surfaces. The column involving M0,7 was constructed
by Doran [Dor].

Versal covers for subgroups of W (E7)+ and covers related to bitangents on
plane quartics.

A(h7) // P(h7) // C7(P2)
2:1 //

W (D5)

��

H4,2(28)

W (D5)

��
S7 &&

S8

��

W (D6)

**

U3,3(1)
2:1 //

27:1

��

H4,2(2)

27:1
��

H4,2(A)

8:1
��

H4,2(S)

63:1

��

U3,3
2:1 // H4,2(1)

28:1
&&

H4,2(θev)

36:1

��

H4,2

The diagram above shows the relation between many covers of classical interest of the
moduli space H4,2 of smooth plane quartics.
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