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STUDIES OF MULTIPEIPHAL INTEGRAL EQUATIONS " I. 
 

Peter D. Ting 

Lawrence Radiation Laboratory 
University of California 
Berkeley, California 94720 

April 30, 1970 

ABSTRACT 

The CGL trpe of multiperipheral integral equation has been 

derived in terms of invariant variables, without assuming subenergies 

to be large compared with momentum transfers and particle masses. 

Both forward direction and nonforward direction have been worked out 

in detail, and the muitiperipheral model with Toiler-angle-dependent 

vertex functions has been discussed. We have furthermore demonstrated 

that all the qualitative physical properties of the ABFST model remain 

true in this generalized multiperipheral model. 



1. INTRODUCTION 

Since early 196 the multi-Regge model, which is one kind of 

multiperipheral model, has been used with some success to describe 

production processes at high energies. Since 1968 two new developments 

have made this model more attractive; one is the "duality hypothesis" 

proposed by Dolen-l-Iorn-Schmid 2  and extended by Chew-Pignotti, another 

is the phenomenological model for production processes proposed by 

Chan-oskiewicz-Al1ison (Z). The "duality hypothesis" asserts that 

if we extrapolate the smooth high-energy Regge representation down to 

low energy, the Regge representation gives a certain semi-local average 

over the resonance peaks. This duality simplifies multiperipheral 

calculations enormously. The phenomenological CA model supplements the 

multi-Regge model with the assumption that the structure of nonresonant 

low mass clusters is governed only by phase space, The CA model has 
± 

been used to analyze data for it p - nit + p, K p nit + A, pp pp + flit, 

pp - nit, and some other reactions of multiplicities n ranging from 

two to nine, and at p 
lab  ranging from 2 to 28 GeV/c. 6 	The 

qualitative agreement with experiment is very good. Subsequently 

Bia3as, Michejda, and Turnau 6  used this model, incorporating the usual 

Regge phase factor, to calculate the absorptive part of the two-particle 

elastic scattering amplitude. Assuming the amplitude to be purely 

imaginary at high energy for small momentum transfer, their result gives 

a sharp momentum-transfer dependence of the elastic differential cross 

section. This result had not previously been achieved from a dynamical 

model. 
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Recently Chew, Goldberger, and Low (CGL) 7  and Halliday8  have 

proposed a multiperipheral model which contains the multi-Regge or C.?A 

models as a special case, and also leads to a unitarity integral 

equation for the elastic amplitude. The method of deriving this equation 

is very similar to the method used by Amati, Bertocchi, Fubini, 

Stangheilini and Tonin 9  in their 1962 papers (the ABFST model). 

However, in Ref s. 7 and 8 and also in later papers, almost 

,12 	•. 
all 

11
derivations have assumed subenergies to be large compared with 

momentum•transfers and particle masses (i.e., the weak coupling limit), 

either right at the beginning of the calculation or at the time of 

writing down explicitly the kernel and limits: of integration of the 

integral equation in terms of invariant variables. The assumption of 

high subenergies is unrealistic and hard to justify even if the duality 

concept is valid, because experimentafly we know that most of the time 

in production processes at least one subenergy is not large. 

In this paper we study the CGL type 7  of multiperipheral model 

in detail, using invariant variables. In both the forward and non-

forward cases, all the limits of integration and the kernel of the 

integral equation have been worked out explicitly, without assuming 

that any subenergies are large. Furthermore, we have demonstrated 

that all qualitative physical properties--the logarithmic increase with 

energy of average multiplicity, and the energy independence of both 

the inelasticity and the transverse secondary momentum spectrum--remain 

as in the ABFST model. 9  The only ingredient necessary to show these 

properties is the existence of an integral equation with ttshort  range'T 

'I 
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correlated kernel. Equally general is Regge asymptotic behavior for 

the solution of the integral equation. This point is crucial for 

bootstap theory. 

In Sec. 2, the CGL type of multiperipheral model is studied in 

detail for the forward-direction case, then the results are generalized 

to the nonforward direction in Sec. 5. In Sec. 4, we show that our 

results in Sec. 2 and Sec. 5 reduce to the previous weak coupling 

results when all subenergies become large. In Sec. 5, we demonstrate 

Regge asymptotic behavior and show that all the qualitative physical 

properties obtained from the ABFST model. continue to hold in the CGL 

model. In Sec. 6 we discuss the possibility that the internal vertex 

functions have Toller-angle dependence. The last section presents some 

concluding remarks about this general tnultlperipheral model. The 

detailed mathematical evaluation of certain boundary functions, defined 

in previous sections, is contained in the Appendices. 

.9 



- 

2. TEE INTEGRAL EQUATION AT FORWARD DIRECTION 

Let us parameterize the production amplitude T nab for the 

process'  (see Fig i) 

	

a + b 	0+1+2+...+(n+l) 	 (2.1) 

by the following multiperipheral model expression: 

Tab(Pa b' p0, p1, 	n+l 	Tb''(p, b' i' ' 	"n+j) 

G(p,Q,1) 	
a'1' 	 J " 

Gb(Q+l,Pb).. 	(2.2) 

In terms of invariant variables (see Fig. i), 

Tab(P5b3 1'''+l 	
= G a a 	1 (m 2,t ) f(€1,m 2,t1,t2 ) (t1,t2 ) 

. f(€2,t1,t2,t3 ) 	(t2, t3 ) 

n+i' 	+l tUb) Gb (t+1,  tub), 

(2.3) 

2 	
i 	

2 	 2 
where t. 	i 

	

= Q. 	s the th momentum transfer and 	= (p. 1  + p 1 ) 

is the ith subenergy squared, Ga  and  Gb  are the "external" áoupling 

constants,while P (t 1,t11 ) is the "internal" coupling constant at 

ith vertex. The function f depends on the specific model. 

The description "multiperipheral" means that either 

2 

	

or If(€1,t 1,t1,t.
+1

) 	decrease rapidly when anyone 
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of the tts  becomes large and negative. 

The unitaritr relation tells us that Ab(p,Pb;O),  the 

imaginary part of the ab forward elastic scattering amplitude, will 

be equal to 

00 

Ab(p , pb;O) 	 Ab(p,Pb;O) 
= f lTabn(p,;,,...,Q+l)12df, 

(2.14) 

where dJ3 is the phase space element for the n+2 particle system, 

1 	
-1 
	2 	214 	+ 	2 	214 	j-2 	2 

= (2 )3n_1 	 o )d p0  5  (p1  - 1 )d 	n+l - 

n+l  P)d14p1 514(1)a + b - 

(2 )fl+2 o[ l + a 
)2 - 	

21 d14Q1 	( 	- 1  )2 - 

5 [ ( Q3- 
	

)
2 - 2 	 - Q 

)2 - 

)2 
d n+1 	

2 
 -. n+i - n+l ' 

and Aab is the contribution to Ab  from the n+2-particle intermediate 

state. 

Just as in CGL let us introduce the modified absorptive  

function Ba(pa,pb;+l;o) by (see Fig. 2) 



Ab(p,Pb;O) = (2)
f d4Q.,, B(pa,Pb;Q+l;o)lGb(Q+l,)!2 

6n+i 
- 	

- 

(2.5) 

then from Eqs. (2,1), (2.2),and (2.4), we can deduce the recursion 

n 	n-i relation between B 	and B 	to be 

Bn(pa,pb,Q ~l,O) 	 B(P,Q+lQ,O)K(,Q+i,pb) 

(Qn• 2 ],  

(2.6) 

with 

K(%, n+i' 	= 	n' 	 'n+i' 	2 • 	 (2.7) 

If we define 
CD 

B(p,pb;Q";O) , 	 (2.8) 

we can derive the following integral equation for Ba  from Eqs. (2.6) 

and (2.8) (see Fig. 3): 

Ba(P,Pb;Q't;o) = Ba0(pa,PbQ?T;o)+

12 

(21T)
3 
 f 	 76, 

- 	 ??)2 - 

(2.9) 

with 
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Ba0 (P , pb;Q " ; o) = IGa (Pa ") 	a' ' 	1 	(2.10) 

and from Eqs. (2.4) and ( 2 .7), we get 

Ab(P,pb,0) = (2) fd 4Q B 	 IGb(",pb) 
I 2 1(?T_p )2 - 

(2.11) 

For practical. purposes, just as in ABFST9we wish to express 

these equations in terms of invariant variables. Let us then define 

the functions Aab(s" l 0;t" ',m2), Ba(s'T , 0;t" ',t,m2, 112), 
 and 

K(€t?,tIT!,tut,tT,il2,1t2) in terms of A
ab(p , pb; 0 ), 	Ba (P,Pb ;Q' t ;o), 

and K(Q:t ,Q IT,pb ) by (see Fig. 11.) 

Ab(p,Pb;0) 	f A 
ab 

 (s 0 ;  t m a 2) 	 - sI[ 	- 

- m 2 ] ds 	dt tt .' 	a2  

(2.12) 

Ba (Pa, Pb;Q " ; 0 ) 	fBa(snY,sH0;ttT!,tu;m2,??2) 	
+ 	)2 - SfIll 

- 	
]8[pb - tt

? ]ö[ 2  - t11][(p2Tt)2 - 

. f[( 	
- 
	

112]dt?t ds"dt''dt 1ldm 2  d"2  

and 	
(2.13) 

•2 	t 2 )6{ (' 	
)2 -ell f 	b 

	

- t 1
Y][Q t12  - t]ö[2 - tt][(tt - 

	
tt2] 

• 5+[(Q - Qfl)2 - Lt2]d€ dt" t dt"dt' d"2  d' 2  

(2.111.) 



in 

For simplicity, we further wish to introduce three simpler notations 

Ab(S', t", 0), B 
(5Ttt, 

 s";t' T  ',t"; 0), and K(€TT,ttt', tti, t ) by defing 

Aab (s IIT ,O;t tTT ) 	A b (s uTT ,o;t uut ,m 2 ),  

	

_ 	2 U2 

	

( U I 	U 	IT I 	it 	- ns ,s ,0; 	,t ) = B (suul,sfl,0;t 
, 	, 	,,.. 	), 	(.16) a 

and 

K(€ ",t "'  ,t ,t ) 	K(€ IT 
,

._ It I 
,t

it 	 2 
,t ,u ,f 	 (2.17) 

By using the definition of B s ttt 
 ,s IT 

 , ,; t It? ,t tt' 
a

( 	

" 	

A  ab' Ut Ot Ut 
 ), and 

K(€Tt,tI,tfl,tT), Eqs. (2,9), (2.10),and (2.11) can be expressed in 

terms of, invariant variables. These equations then assume the following 

forms (see Fig. l.): 

	

aSS ,s ,0;t 	= Ba (s ,s ,0;t ,ttt) + 	fB (sut,sT,o;ttt,t. ( UTU UI, tti 	0 	t 	ITT

3 a 

• K(€ tT,t" T,tII,tI )1(5tu, stT,sT;tTtt,tuT,t? ; €tT)dsvdtTdetT, 

(2.18) 

f UT 	Ti 

	

It 	IT 

	

Aab(stII,0;ttTI) 	
1 	

B(s ,s ,0;t ? ,t ut )lGb (t ,t 	)J 2  

TI 	5 Tt ;t Ttt ,t Tt)dshTdtht 

(2.19) 

and if we assume that the produátion amplitude T ab n 
 has the form 

given by Eq. (2 .3), then Ba O (s tTt ,s tT,0;t tti ,t Tt ) and K(eTt,tTtt,tui,tt) 

have the following corresponding forms: 



MOM 

BaO(sflTs0jt?tttll) = 	ka(ma2,t") 
111)12  

(t",t' ) 	f(€ h?,tt,t e?,t lhl ) 1 2  
with 

• 
s= 	

+ 
2 2 

ma 
2 

Pa 

= 	a + 
= 

= 	a 
+ 2 = 

en 
 )2 = 

(2.20) 

(2.21) 

The functions 	and IT, in Eqs. (2.18) and (2.19) are boundary 

functions defined as follows: 

J1(sut, s";t"t,t") 
= f dQ" 61 Q?12 - t"]o[ a + 

- 	)2 - 

(2.22) 

and 

f tt! I 	!ll 	ItIt 
,S S ;•f• .t t;€ 	

= f d' 5[Q'2 - t'][(Pa + QT) 2  

	

- 
Q il)2 - 	 - 	)2 - 

(2.23) 

We have worked out the functions 	and 	in detail in 

Appendices A and B. If we assume S tt1 5 " S >> tttt , tfl, tt ;m 2, 2 ,  

(see the justifiction of this approximation in Appendix B), we can 

derive the following asymptotic forms: 
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2s7 T 
0 [(uT)1I2  - (u) (2 . 

[ (t " 	- t)(t." - t " . )J max 	 nun 
(2.2 1i) 

and 

1 (s hTI , s;t thI , t TT, tI , ) 	= ®[(s")1 	- 	(1)h/2 - 

IT 
- 

TI'! 	Ti € 	je 	- € 
U.X miii 

max 	. mm 	{(€" 	- €uT)(€hT 	
- € 	

)]1/2 
max mmxi 

- 	€')(€" - 	 € 	)] 

1 i I 	TI 

	

JQ,S 	S 
it ;t 	,t 	1 	

. 
flhifl 

1 2 
€TT)(€TI 	

- E ll 	)) max mm 

(2.25) 

An attractive form is 

= 	 d8 -€"+C+D cos 

(2.26). 

with . / 	 12  
/ 	S 
---Tn- I - i-,  

I 	iii  + 
S ii! 	if 

1-s /s. 

(2.27) 
.mx 

nun S  

00 

- 
+ 1 	

SIISTT) 

(2.28) 
max 
mm 

-00 

max 4 ; t"',t' t,t) 	= 	C 	D (2.29) 

mlxi 
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and. 

 
= 	c( 	4,- , 

st 
; 

t' + 
+ 	

(t' - t" - t')( 	.,,- ) 	+ 	- 	ttT' 	- 	ttt)( 
St 

+ 2t"( 	-)( 	—), (2.50) 

D 	D( 4r , 4 
2uh/2  

2 
+ (t2 

- 	t"'-  	t't)( 	-- 	 ) + t"(4L) J 

1/2 

It 	+ (2 
- t')( 	) + t"()2 

] 
• 	• 

(2.51) 

By using Eq. 	(2.24) to Eq. 	(251), we can rewrite Eqs. (2.18) 

and (2.19) 	as 

B 	(sfh,stt,O;tttt,ttt) 
a 

B 	O(sI??,s?t0.tltt,ttl)  
a 

+ 
1 	

fo 
i6r5 S 

 

• 
+ 1 

j 

dtt 

oO 

L it  

f
max 

dEll K1t!h',t",tt) 
(2.52) 

J 	[( 	- tT)(it 	- 	€ 	)] 1/2 
max mm 

min 

or 



-12- 

S "  

Ba(S"' s",O;t"',t") 	B 0(.s",s",O;t"',t") + 	fo 

s t 

- 	

(
t + 

f .  dt' B(s",s,O;t",t') 
TC 

-00 

 fo 
d$ K(€"(Ø),t"',t",t') 

(2.32') 

with €"(Ø) = C + D .cos 5, and 

S I'?  

Ab(s"',P;t"') 	l62f 

I, 

--#- (_ttr 

I0dt t'B a (S it ' S I?, 0;t11',t11) l Gb( t TT,t flt) 1 2 

( , 33) 

in high-energy collisions, if we are only studying the 

Regge asymptotic behavior' of B and Ab,  we can neglect. 

the Ba0(s",s",t",t";O)  term in (2.32)  or (2.32') that corresponds 

to the total elastic cross section a 
e2

(s u 
 ). 

We expect, at least in 

ei 
Regge theory, tl.kat a 	will decrease to zero at extremely high energy 

(at present accelerator accessible energies a/at0t .1/5). 

Equation (2.32)  or Eq. (2.32')  then becomes 
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+ i 
B(sTtt,s,O,t?t?,tfl) 	 f 	J 	dt' 

att,st,tht,t?)cc, 	y;ttt,tTt,tt), 

(2.) 

where 

€ 	( S 
	5' 

;t"',t',t') = 	

n 
;t " 	" ,t,t') 

K(  

J
dE tt  

€ 	
(SS 

	

T 	
t 

mjn 	-r;t'",t",t') 

K(€";t"',t",t') 

	

- 	

€ IT • )] 17 
max 	 nan 

(2.37) 

or 

K( 	, 	;t"',t",t') = f do K[€tt();ttht,tt?,th] , 	 (2.35') 
o 

with 

= c( 	, 	; tt",t') + D( 	, 	; tftt,tfl,tt)cos 

The kernel of Eq. (2 .314.), together with the limits of integration, has 

the important sôaling property of being. invariant under the group of 

multiplicative transformations 



S"' -4. 
CSir 	c s", 	s  -* c 

As in ABFST, 9  this suggests that the solution of Eq. (2.34) can be 

expressed by the irreducible representation of the group. So we write 

Ba'(STtT sht,o:tuT, tTT) = 	( ._ ) 	b( 	, O;t tTt ,t"), 

(2.36) 

where•s0  is a constant. Furthermore if we set 

171 = 
	nt/ThT 	 and 	y '  = S'/S "  , 

we find from Eqs. (2.34) and (2.33)  the integral equation for ha  to 

be 

)l-y' 

baa(yTI,o;tTTf,tIT) 	
16 	

(l?)°) fd1 	f 	dt' 

b a (y 1 ,O;t tt,t ?  )K(y TT,y';t Tt1 ,t tT,t' 

	

a 	 ), 

(2.37) 

with 	 1,2 
+ 12  

) 

	

ITT a(o) 	( 	

co  f 
l-y 

Aab(S'TT,o;tTTT) = 12 	
dy t ' 	 at tt  

It aa (y ,O;t",t) IGb(t
TI ,t ) 

12 

(2.38) 
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Equations (2.36), ( 2 .37),and. (2.38 ) are the most important 

results of this section. For a specified kernel K(€tt;tttt,ttr,tt)  and 

externalcoupling G we can use these equationsto solve for the 

leading output Regge pole a(o). For exaniple if we let 
a(t.) 

±

in  
f(€1;t11,t.,t11) = (€. 

	

a)  

then 
2ain t 

K( H,tu?,thl,tt ) 	= 	J(tt?,t1) 	
(€± 

a)  
E   

and by using Eq. (2.), we can easily get 

2a. 
in 

 (t") 
7" \  

= 	1(t",t')I2 	
max) 

0 

I 	 €". +a 
l 	f 	 maii 

p 	D-s, 

	

2 ii Cin \t L' •,l, 	- € 	+ a 
L 	 max 

( 2 .39) 

where 
2  F  1  is the usual hrpergeometric function. 

We are not attempting to solve (2.37)  for any specified kernel 

in this paper; what we do in the next section is to generalize this 

result to the nonforward. direction. In Sec. 5, we will use Eqs. (2.36), 

(2 .37), and  (2 .38 ) to study production processes at extremely high 

energy to show that many of the properties of the ABFST mode1 9  are 

preserved in this more general model. 



3. THE INTRAL EUATION AT NONFORWARD DIRECTIONS 

We wish to generalize this model to the nonforward direction. 

The unitarity relation tells us (see also Fig. 5) 

00 

Aab a' b' 	
A 	

a' b' 	' 	
i) 

with 

Ab(P, b' 	
= f T(P4 +A; +4 	. •,  ab 

Tb(p, b' 	'n+l 
iJ , 	(3.2) 

where 

Tab(Pa_L\ p,D±L; Q1-i-, Q+ 	• , Q1+L) = Ga (Pa_4 

Q1+t Q+L) 	Q+L) 

f(Q1 , Q2+ 	+) ••• (- 	+i 

f( - 	 pb+t) Gb( + +L pb+L). 

(3.3) 

Just as in the forward case (Sec. 2), we introduce the modified 

absorptive rt Ba(PaPb3 %+i 	
by 

Abn(pa, 
b' 

 A) 	 B(p,Pb; n+i 	Gb n+l 

Gb(Q ~l, 	
)2 

- 

(3.14.) 
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Then from Eqs. (3.1)  to (3.4),  we can easily see that the following 

recursion relation holds for Ba'(pa,pb; 

B
a' ' n+1' 	 a' 	

) K(, n+i' ' 

	

(Qn- 	- 	 ( 5) 

with 

K(, 	l' rb" 	
= *n+4 n+1 
	 Q . ) f  (+ 	n+14 

	

' n+i' 	
(3.6) 

By defining 

OD 

B(p , pb ,  0 t7 	 B(p , pb ,  Q" 	), 

we get the following equations (see Fig. 6): 

Ab(Pa,Pb; ) 	fc, Qtt aa' 	t7 	G(Q"+4 	+) 

Gb(Q't,pb) 5+[(Q?t - 
	)2 - 	

21 , 	()  Pb 

B(Pa,Pb; t?; ) = Ba° (Pa, Pb; Q"; ) + 	fdQt Ba(P,";
87T3 

K('Q ", pb; 	
) +{(t 	n)2 	1 2 

(3.8) 

BaO(Pa,Pb;?f;L) = G(p-4 Q"+) G(p,Q") 

a' Q"%) 	 (3.9) 



and 

• 	* 	 * 
pb; z.) (Q ! ,Q) f (Q'+t, Q"+i, pb+L)f(Q t ,Q ? ,pb ). 

(310) 

• Just as in Sec. 2, we wish to translate these formulas into 

I  invariant variables. If we introduce the functions Abs
itt  ,T,t it?  5t tt?  

+ ) 

Ba(5"'3"T t" T ,t"; 	and K(€',T; t"',t',t'; t,t,t) • in a 

ay similar to that of Sec. 2, we can get the following results: 

Aab(s,T; tTu,tt) = 	fBa (s uT? ,s fl,T; t"'jt"; 	 tTI Gb(t,t) 

	

Gb (t u,t tu  ) 	(sttt,su,T, tTIftIf 

	

• ds" dt" dt 	 (3.11) 

Ba(s"T,s",T; t"',t"; t t ,t) = Ba°(s'Y,s",T; t"',t"; t,t) 

+ fd  s l  dt' dt d€" B( s ", s T,T,tui,tt,tU,tt) 

K(€t1,T; tfl',tfl,tt; ttfljtlf 

(s u'',s fl,s?,T; t u? ,t ui,tt; 

with 
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BO(strf,sTr,T, t l ,t u , t,t) =G ( m 2 tu)G(m 2 tt?) f(s Ttt t Tt t T?? ) 

• f(stht,tT!,tfl? ) , 	( 3.13) 

K(€",T; t",t",t'; tit 	
*(tfl) 	

(t',t") f* ( € ?!tttu tt?I) 

• f(€",t',t' t,t ttt ), 	(3.1) 

and 

t iff =+ )2 	tit = 
	 t = 	

+ 

The functions 
12

and 	are boundary functions defined by 

2 (s"',s",T t't,t"; 	 t.71 	 - t") +[(Q ?? + )2 - 

pa + Q")2 	
HI 

- s J 3+{(QtT)2l 

and 

(s,-s", s t,T; t',t",t'; t',t,t; €') 

4 	2 
- t') 6[(Q' + )2 - t] 6[(P + Qt) 2  - 

- 	)2 -. fl] 	
QH)2 - 

(3.16) 

As shown in detail in Appendices C and D, if 

s it t ' s',s' >>t 't? ,t fl,t l ; t,t,t; m 2, 2,'2  , we can 

get the following expressions for 	and 12 
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12 (s"T, sU,T;  t" t , ttt; tt,t) 	2s" ®E (s"' )1(2 	(?r)1/2 - 

e[(t tT ' 	- 	 - t". )] max 	 mm 

e[(t" 	- +max 	+ + 

{ 1 t" 	-  t ITt
II  

+max  

- +min 
try 

1/2 ' 

t" 	)1 -Him 
(3.17) 

and 

(s" 	"t ,s ,st,T; tttT,ttT,t?;  t',t,t; €") 

= 

 

12(s?t,st,T; t 71,t'; t,t) ö[€" - C - D cos(Ø' 
- 

(3.18) 

with 	
= t T  + T 

- ( 	+ 	- tY 	
1/2 Cos

2[Tt l  + u'T( y ) + t"T(y )2 ] 
tit 	

it + T - t it'  - ( 	)(T + t" - t) 
COSØb 	

2 	2

2[tT+u'T_)+tt'T 

or 

	I l/  
2 (s,s,s,T, t"',t",t'; t"',t,t; €") 

= 1 (s"', s", s?,tul?,tt,tt; &') 	t 1_ t~ T- ()(T ~ tttf 	t') 

	

- 2fTt f  + utT( yr ) + tttT(y)2 ]1/2[1(€n 
	C) 

(3.18') 
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with , 1 t" 	, max t". 	, mm t' max' 
t'. 	, mm C, and 	D defined as in Sec. 2, and 

u' = - t' 	- t"; u" = - t" - 

t" 	t" + T - (4,-)(T + t"' - t11 max
min 

.11/2 
±2 [tIlT + u tT(_,) + ttTtT(4r)2 J (3.19) 

and 
1/2 

t i 	= t' 1  - T - (-)(T + til - t) ± 2 It IT + utT(y) + t"T(y)2 } 

min 
(3.20) 

Using Eqs. (3.17) to (3.20), and assuming that we can, neglect the 

inhomogeneous term B °  at high energy, we can rewrite Eq. (3.11) and 

Eq. (3.12)  in the following approximated forms: 

112 
_(sth/s??t)(_ttht +  

Ab(sThl,T; tthl,tl) 	1 

 f 	
ds't 	f 	

1 - S 5 	

dtt' 

If 	/ 	S 	 I?? 	III 	IT 

-fulax" ,rr , , 	, + , 

dt" f 	II 	 + 

I? .f 	S 	III 	I!? 	IT 
-- ,T,t ,t ,t 

• Ba(S'ttS'iT; t"',t"; t',t 	) 

Gb(t,t) Gb  il  (t,t f ) 

[(t" 	- t")(t" - 	)]1/2 
+max 	+ 	-Hflifl 

(3.21) 
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-(s"/s"-' )(t"' + ) 

Aab (S ttf T t"',t') 	f ds 	f 	-dt 

(JT 

j dØ Ba(S"S"T t f ,t t?, t',t) 

0 

Gb(t,t ' ) Gb (t flt ,t ?? ) 

with 

+ P - ( -4r)(T + t" - t") + 2[t"T + u"T(-4r) 

fl2h/2  
+ t'T(4r) ] 	cos 

1 2 
and 	

1 	
' 	

_(sh/str)(_tu + 1-s 

Ba (s Tt js t? T; t",t"; t',t) 
 

16 	 f 	dt' 

t(,T;tt,t') 
max

dt f + 

K(€",T; t ht? , t tt,tT; ttTt,tfl,tt) 

Ba(S"5'T3 t",t'; t,t 4 ) 	 -+ 	
1/2 ' 

+max 	+ + 	+tna.n 

(.22) 

with 

T?( 	771 
€ 7'  = € t ,t",t'; t',t,t; T) = C + D cos (' - 

or 
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or 
+ 	, 	H ) 

Ba(StTts"T t",t", t',t) 	
1  f 	f 

	

If 7 SS 	tit 	n 
€ 	 —Yr  

• ftf 	/ S 	S 	• 	iii 	I, 
'rr , 	t  

	

• Ba",sI,T; t",t'; t,t) K(€",T; t" 
	" ',t,t'; tIII 

	

- 	- € 	)] 1/2 	' 
max mm 

(3.22') 

tt 	t( --r, - r,T; t",t",t'; t,t) 

=t'+ T - (s'/s")(T + t" - t) - 2[t?T +u lT( s h/ s ?l) + tT( s h/ s T 1 )1 1/2  

-. 
cos[cos \ D j + 

Let us investigate the situation when A approaches zero, i.e., 

in the forward direction; then 

t" ?- t'", 	t' - t", 	t t  - t', jP 	 + 	 + 	 + 

and Eq. (3.21 1 ) and Eq. (3.22 1 ) will beredüced to Eq. (2.31) and 

Eq. (2.30) respectively, i.e.,reduced to the forward direction case. 

Also, we can easily verify that the kernel and integration 

limits of Eqs. (3.22) and (3.22 1 ) still have the important scaling 



property, of invariance under the transformation. 

st!t 	c s"', 	it - c sU,  

This suggests that Ba  can be written as 

a"" s t,T t"',t"; t',t) = (
61?I/5)a(T) 

baa(T, T;t'tt ,t tt ;t',t). 

(.23) 

If we set 

tt U 
/
I U? 	 t 	I / 	? 

,y =ss 	, 	y. =s /s 	, 

we will get the following integral equation for b aa  

+ 

baa(y ??,T, t",t", t,t) = 
	

( U)a(T) 	
dy 	f 	dt' 

Ell 	 ;t'Tt, tU, t t)  
max 

• I 	 dEn 

K(€ tt,T; t" 1 ,t",t'; t',t,t 4 ) 
baa(yt,T; t",t'; t,t) 	

?I) (U - 

max 	 min 

(.2) 

or 
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1 

b a(Itt 	t' If ,t"; t",t't) 	1 	 f 
 J 

	

t' 	(y',T;t' t,t';t) 

1 
• t(y?,T;th',tt;t) 

+Min

K(€tt,T; tiff 	tflt,tut,tT ) 
b 	y ?,T;t",t?;tU,t?) 	 + 	

+ 12 a 	
+ + [(t" 	- 	- 	)] 

	

-H1X 	 + 	+min 

V 	 (.2!') 

and 	
V 

112 

	

f
11(t 

Aab(sT11,T; t" 1 ,t' 	 f dy" 

	

dt" 

fo baa(y,T; t,t' t; t,t) b (t,t ) 

	
(3.27) 

or 
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UI 	UT 	P. - 	+ 1-y" 

Aab(S1TtT) t"',t') 	
(5ttT/50)T) f 	f 

I dt 

TI 	I 	U 	ITT 	TI 	ITT ,T;t ,t ;t. 
+Min 

.ba(yTT,T; thtI,ttT; t,t) 	
Gb*(t,t) Gb(tTt 

a 	
,tTTT) 

- t'T)(t'T - 

(3.25') 

EqatiOns (3.23) tbrough(3.25 1 ) are the essential results of this 

section, and we have shown that both Aab and Ba  have Regge asyniptotic 

behavior. 



4. TEE WEAX COUPLING LIMIT (IGH-BUBENERGY. APPROXIMATION) 

• Now let us assume that all the subenergies €. are also large 

compared with s 	l(GeV/c)2  and with all the t's and the particle 

masses. We will call this condition the weak coupling limit or the 

high-subenergy approximation. Even though at present we know this 

approximation to be unrealistic (i.e., experimentally most production 

events have at least one subenergy smaller or comparable to the t t s 

and ,L2ts), nevertheless the weak coupling limit was the original 

motivation for inventing the multi-Regge model, 7 8,jo, li-i- which is one 

kind of multiperipheral model. Because of this history and also because 

many papers have investigated dynamical properties under this approxi-

mation, it is worthwhile to show that our equations in Sec. 2 and Sec. 

can be reduced to those simplified equations which have been derived 

in Ref. (7) and Ref. (10) under the weak coupling approximation. 

When 	>> s,t's, 2  s, one can easily show that 

s' t/s' >> 1, 	 >> 1, and if we assume the multi-Regge model, 

then the function f(€, t 1, t1, t +1 ) takes the simple form 

(€/s) in i , where we have thrown the Regge phase factor into the 

coupling constants Ga  G, and the 	s , and 	is the inputin  

exchange trajectory. From Eqs. (2.27) and (2.28), we know that both 

t" 	and t T 	will approach zero, so from Eq. (2.29) to (2.1) we max 	max 

will get 

€ 11 	 (12 - tTT - t)(sTth/su) + 2(t t ti 1/2 	" ' 	" ) 	(s/s) max 

	

+ [(_t)1/2+ (_tU)1/2J1 (s"'/s") 	 (.l) 
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and. 

- t' - tt)(s"'/s") - (ttt)h/2 (s"'/s") 

	

= - (_t)h/2 2 
	

(s"'/s") 	 (2) 

(i) The Forward. Case A = 0 

By using Eqs. (4.1), (4.2), (2.37),and ( 2 .39), we obtain the 

following results: 

a(o)-2a. (t") 
b a(y tT, 0 ;  tilt 	

= --- f 

	

dy' / 	at' (y") 
a 	 16rr 	 I 

0 	- 00 

(. 
, '-I, 

where 

2a ( -t i 	") 

7(t " t') 	

{ 

1 2 + [(_tt)h/2 + (_ tT)l/2]2J 	
n 	

2 (t f,t H)  

	

r 	i 	( t1tT?)2 
2F1 

12 
 a.(t"), - 	

12 + [(_tt)h/2 + (_t Tt )1/2 r 

If we make the ansatz 

a(o)-2a ( -t i 	tT) 

	

baa (y tt,o; t",ttt) 	(TI) 	 n 	ba(tT) , 

then from Eq. 	we get 

fco 	 i

0 b a ( , )y(t",t') 
b a() = 	 a 	 (l..6) 

a 
	a(o) - 2 a (t') + 1 n 
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for 
a(o) 	> 	2 a(t t ) - 1 

in 

Now if wéfurther assume tl-iat 	y(t",tt) 	can be factorized as 

y(t",t') 	= 	b(t') i(t"), (Ii. 	7) 

where 	b1 	and 	h2  are some arbitrary functions, then we can let 

= 	cb2(tTT) , (ii. 8) 

where 	c 	is an arbitrary constant, and Eq 	(4  6) will be reduced to 

b1(t') h(t') 
l.•= 	1 	dt' (•9) 

j 	a(o) - 2 ain(tT) + 
-00 

If we define 

h1 (t') i(t') 
2 

g (o) 	= [a(o) -2 	+1] 	I 	dt T  , 
in 	

j 	
a(o) - 2 a(t') + 1 

(Li..1o) 

we will get 

a(o) 	= 	2 am 	- 1 + g2 (0) (4.11) 

Furthermore, if we assumean(t) 	to be a flat trajectory then 

a(0) 	= 	2-l+92 , () in 

with 

2  g 	

= 	f 	dt' 	(tt)  
14 

which is just the Chew-Pignotti 	result 





5. THE AVERAGE MULTIPLICITY, THE INELASTICITY, MID TUE SPECTRA 

• 	OF SECONDARIES IN tTLTRAffEGI-I-ENERGY COLLISIONS 

As in ABFST, 9  we are going to use the model described in Sec. 2 

to study the quantities which can be measured in ultrahigh-energy 

production processes. What we want to demonstrate in this section is 

that all the qualitative properties of the ABFST mo4ei 9  remain true 

in this generalized multiperipheral model. 

(i) Average Multiplicity of Secondaries (n) 

We know the reaction 

a+b -'O+l+2+  -- - +(n+l) 	 (2.1) 

will contribute n secondary particles; 17  this means that the average 

number of secondary particles (n) in the final state at an energy 

will be given by 

W ( 

nI  IT ab 
n 12 

d 	 n A fl(stht,o; 	2) 
ab n 

___________ n 
xi () = 	 = co

f 	

•Oo 
2 n 	

0; 	
2) ITnI 	 A 	(s, 

ab 	xi 	 ab 
(5.1) n=O  

We call (n) the average multiplicity. 

Now let us replace 	(t1,t 1 ) by g T(t,t .1 ); then Eq. (2.3) 

becomes 

n 
= 

fl Ga(ma2,ti) f(€1,m2 Tab 	
g 	

,t1,t2 ) '(t1,t2 ) f(€2,t1,t2,t3 ) 

? (t2, t3 )• 	"(t t 1 ) 	tn t ~ 	2) Gb(tn+l, 2
)  , 

(5.2) 
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so 

f IT 2 dJ = g2  • 	f Ta 2  Fn 

and 

(n) = 92 	[n Aab (s T?l io; mb
2 )] 

 
69 

From Eq. (2.36), we can write 

Ab(stTt,O;mb2) = C (0) ( 22 ) (s/se), 	 (5.) 

where ,2 
-y (_tnb + l-y" 

C (0)  (g2 2) = 12 
	

dy" _L 	dt 

b(O3 2 t 77 )IG(t 112 )1 2  , 

(5.5) 

so 

(n) = 	g2 	[n + 92 	
a(o) 	n(stTh/sU)  

At very high energy we can neglect the first term to get 

2 a(o) 	, 	ITT / 
g 	 ISO ) ' 

/ 
'L5.7) 2 

so we have shown that at very high energy the average multiplicity 

(n) 	wiU increase as.n(sThh/s0)  in our model. 

(ii) The Inelasticity 	T 

Now let us consider the spectrum of the "primary" particle 

which is directly connected with the incident particle. If we choose 



-35- 

the "a" particle to be the target, and the "b' t  particle to be the 

incident particle, then the "primary" particle will be the (n+l)th 

n 
particle in the Tab  amplitude. 

Let the momentum of the "primary" particle be p" (see Fig. 7). 

Then the spectrum of the "primary" particle will simply be 

dn(") = Ba (Pa,Pb;Pb_P"; 0) IG(pb_p.", b) 1 
1 2  + (p'-i') dp" 

/ 

(5.8) 

or 

ti 	Ut U 	I?? \ j2 	•- (s "' , s ; t ,t")d.s"dt". d.n(p") = B ( 	 Ut 
a\S ,5 ,0; t ,t") IGb(t ,t 	

—1 

(.8') 

Now let us use this spectrum to calculate the average energy 

carried away by the "primary "  particle. If E" is the energy of the 

"primary" particle, then in the rest frame of ma 

p".p 

	

= 	m a , 	 (•) 

but 

s" = a + Q 	= a + 	- " 2 = 
	+ 	- .p".p - 2p"•pb  

and 

2 	2 	,,2 
= b - 

pU) = 
m.b + i 	- 2pPb ' 

so 	

-  
E " 	

+ 	- 	2 	
- S " 

 
 = 	2m 

Then the inelasticity Tj can be defined as 



2m 
a 

I! 

2rn 	Baa(stTf,stt,o;2,t)JGb(t!t,n2)Ifl(st1,sIt;n1b2,tTt)ds??dttt 

Baa (s t ! t ,s tt,o; 2,t It ) IGb (t ?T, 2 j 2 JI (s t1 ,s u; 2 ,t.u )ds fl  at" 

2 	i "  

fo
f 	+ l-y" 	 2 

	

(i-y)dy. 	J 	dt ba (y 11,Oj;t tt )Gb (t ht,m.b I 
 -00 

- 

-y 	
11b 	l• 	 2 

f dy 	 dt " ba(et,o;2,t) 

0 	-00 

so we have proved that. the inelasticity r is independent of the 

incident energy in the high-energy limit. 

(iii) Spectra of Secondaries 

Let N(k)d
4
k be the number of final states, such that one of 

the secondary particles has its four momentum between k and k + 

then 	

N(k) 	 if(T ab n)* (T ab n 	Qi+i -

OD 

=J(Tbn)*(Tbn) 6(Q
+1  - 	

- k)dtn  
Zn=i  

-36- 
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From the definitions of T 	and. cIJ , we can write N(k). as 
ab 	 n 

(see Fig. 8) 

N(k) 	
(2 	f 

n-i=O i-1=0 

2 
- 	 2 ]  

d 1 	 - ) - 

	 2]d 	dQ. 1 	 - 

1 1,Q1~1 )12  8[(Q-)2 	 • i+1 

- 

n+1 	
2]ã 	

. •dQ.2 	
i+2i+1 	- +1] j 

(5.13) 

By using the definition of the function Ban, 	
m 

Ba  
=

B , and 	= 	 ,. just as in the AFST mode19 



Offrew 
RZA 

we can easily show that (see Fig. 9) 

= (2f Ba(p,t;Q;o)[(QtQ)2 - 	21 (Q'k)Q dQ' 

-Q; - Q'; 0) 

If we translate this equation in terms of invariant variables, Eq. (5.1 11.) 

will become (see Fig. 9) 

N(k) = fB(w'wo';t't)dt dw j(t,t')t2  at' dv 

• 	(v',v,o; t,t') I(w,v'; t',t k) 5(k2 - 	2 )  

(7.15) 

where 

w 	
2 a' 	v = 	 t = 

= 	
a + Q?)2, 	v'= (p - Q)? , 	

= 

and 

I(w,v; t',t; k) 	d  4 Q dQ' 8(Q2  - t) 	- t') [(p)2  - w] 

- v] 8 (' - 	- k) 

(.i6) 

This boundary function I has been evaluated in Ref. 9 	and in 

Appendix E . We are able to show the following result (for details see 

Appendix E): 



- 39-  

a(o) 
• N(k) = 	(s/s0 ) 	'F 	 •• 	 (5.17) 

F 

	

I(t,t')I2  dt dtffdx dZ[(1+X)(l+Z)] 

b 	 ,O; t i ,t) bba( l 	, O; 

T[-t - (pk 
	
x(1+z); -t' 

(.i8) 

where T(a; b; c) is the usual triangle function given by 

8(-a2 - b2  - c2  + 2ab + 2bc + 2ac) 
T(a;b;c) = 	2 	2 	2 	 112 ' (-a - b - c + 2ab + 2bc + 2ac) 

where kT  and  kL are the transverse and longitudinal components of 

the four-momentum k with respect to the incident direction, both 

defined in c.m, frame of a and b. And k o  is the time component of 

k. 

The limits of integration of Eq. (.18) have been analyzed in 

Ref. 9, and the 11 nportant fact demonstrated that, when the energy of 

the secondary (k0 ) is small compared with the total energy (s ) 1/2 

the function F is independent both of the incident and the secondary 

energy, i.e., 

F = F(p,2, 	
2) 	

(5.19) 



The reason is simply that the function T in Eq. (5.18) is different 

from zero only in a region of the xy plane which is independent of 

s" t  and k0  But 

(ic - 	2)dL4.k = 	1 	+ (k2 - 
	

2 )2 d2kT dk, 

d2 di 
= - 	. 	 ., 	(5.20) 

so 

clN(k) = N(k).(ç2 - k2 )dk 

= 	+ 2 - k2 ) F (k2, 	
2 
 )dk2 d2kT L 

= 	F(2, 	2) 	
d2d 	

. 	(5.21) 

k 

This means the spectra of the transverse momenta and longitudinal 

"Ti! momenta are independent of the initial energy (s ) 	, so the average 

transverse momentum of the secondary is independent of s"' also. All 

the properties which we have shown in this section (and also shown by 

ABFST9 ),will be preserved by any. multiperipheral model with ''finite 

range" correlated kernel (which may include Toller-angle dependence 

or even more complicated kernels). 
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6. THE INTEGRAL EQUATION WHEN TOLLER-ANGLE 

DEPENDENCE IS INCLUDED 

For the same process as described by Eq. (2.1), if we want to 

include the Toiler-angle dependence in the internal vertex function 	, 

we need to allow a dependence of 	on four different Qs. In this 

situation the production amplitude T br  can be written as (see 

Fig. i) 

Tb 	G(p,Q1) 	a'1'2 

f(Q1,Q2,Q3) (Qi ,Q2 ,,) f(Q2 ,Q ' Q 4 ) 

n-i' f(Qn' Qn+l' pb )Gb (Qfl+l ,pb )  

= F(p,Q1 ,Q2 ) F(-p ,Q,1 ,Q2 ,Q3 ) F(Q1 ,Q2 ,Q3 ,Q) 

F(Qn_iQn Qn+lPb ) Gb(Q+i,pb) 	 (6.1) 

where 

F(p,Q1 ,Q2 ) = G(p,Q) "a'IL'2 , 	 (6.2) 

F(Q1,Q.,Q.1,Q.2) = 
	 ' 

(6.3) 

or 



-)-i2- 

Tabn (Pa ,Pb ; 

= G a (m  a  2 t) f(€1 ,m 2 ,t1 ,t2 ) (t1 , 1 ,t2 )f(e2 ,t1 ,t2 ,t) 

.f3 (t2 , 2 ,t3 )...(t ''t l 
	 n+l' mb 

Gb(tn+l , 2) , 	 (6.) 

where 9. is the ith Toiler angle defined in the rest frame of - 

particle "i" by 

i+2 

i+2 
cos 

X 	i+i 
X 	i±1'1i+l  

i-1 

K 
i -1 	

i=l,2,3,".,n ,(6.5) 

with 

Pa = 	0' 

Q. and p. being the three momenta of 	and p in the rest frame 

of particle "i." The Toiler angle 0, here is in one-to-one correspond-

ence with the "Toiler angle" w defined in a different way through an 

0(2,1) group variable by Bali, Chew, and Pignotti, 17  when all the 

particles are spinless. 

For the forward case; just as in Sec. 2, let us introduce a 

function Ban(pa,pb; %+% 0) by 

Aab(Pa,.Pb; 0) 	6 fd 
4 Qn+l dQn  Ba°(P 'pb 	 0) 

(2) 

X Gb(+l,pbI2  )[(1 - 
	)2 - 
	

2] 	
- n+l 	- 

(6.6) 



1* 

then the function Bn(p,pb; n+i'n 0) will satisfy a recursion 

relation 

B(Pa,Pb; n'n+i 0) = 	Jd_.1 
 Banl a'n+1 n'n-1 0) 

	

- 	)2 - n l2  K(Ql,,Q+l,pb), 	 (6.7) 

where 

K(Qfl i , Qfl , Qfl+l,pb) = (F(l,,Q+l,pb)j2 . 	 ( 6.8) 

By defining 

00 

Ba (P,Pb; Q' T ,Q'; 0) 	B(p,pb; 	0) 	 (6.9) 

with 

Ba° (Pa ,Pb; 	','; 0) = IF (p ,Q"Pb)I2 	
(p + Q1) , 	( 6.10) 

we can getthe following integral equation for B 
a a (p ,p,0 ; Q",Q; 0) 

(see also Fig. 10): 

Ba (Pa , Pb; Q",Q'; 0) = Ba°(Pa,Pt; 	0) + 	f 
d 4 Q 

	

Ba 	Q',Q; 0) 6[(Q - 	)2 - 
	K(Q,Qt,QtT,p)  

and 

Ab(p,pb; 0) 	)6J 	
dQ" Ba (P ,Pb ; 	0)IGt(Q", pb)1 2  (2  

- 	- 	
2] +[( 	- 

	

- 	] 	. 	(6.12) 



As in Sec. 2, we want to translate theseequations into 

invariant variables. Let us introduce Ba(sI" , s , s t; t'  ,t,tr ; €"; 

' 11 	and K('; t,t,t,t; 	12' 222) by 

(see also Fig. 11) 

Ba(Pa,Pb; QtT,Q 
	0) 	fBa(s TV?  ,s",s ; t" ,t",t'; €"; 

+ 	- s] • [(p + 	 - s"] 	 -t") 5(Q" 2  

i 	(q' 	
a2 	

m 2). [(Q.' 
- 	

- €"] 	 T 	
)2 	2 ] 

 Pb 

- 	
) - 	 ds" ds" ds' dt'' dt" dt' 

d€" dra
a  d

~i' d"2 	 (6.1) 

and 

K(Q,Q',Q",pb) a fK(; ttY,t?t,t,t; 	
12 	

222) 

' 	
- tt) 	(Qtf2 

- t"). (Q'2 - t') 5(Q2  - t) 

- 	

- 

* 5[( 	- 	
- 	2 ]  + 

0
b 

- 	b ' 	 b 

8[(Q - 	

- 2
1 

 

- 	

- ~I i ,2 	
- 	

- £12 

")]. [ 	x (-. 	)] 
X ( - 9)I 

do dt" dtu  dt' dt. d€" d€' de12  d 2  d'2 dtT 2  . 	(6.1) 

However, for simplicity of writing, we define. 



B a(s'',s",s' 	
.4"1 

,L 
It 

, L 
4_ 

,

t . (. 

B (s"' ,s",s' ; t"' t" t' 	€"; m2 	
2

,  112 
a 	

) 
, 	 , 	 , 	 ,i 	 , 	(6.1) 

t 	tt ,t €€ •€_) 

2 
K('; t"' t", t' t•, • 	

2
1' 	

,, 2 
i , 	) . 	(6.16) , 	 ,  

By using Eq. (2.12), Eq. (2.15), and the definitions of 

Ba (S ttt  ,s",s' 	t t , 	, t' 	€") 	and K(' 	,- t"' t.'' , 	, t' . €",€' , E1 ), 
,  

Eq. (6.11) and Eq. (6.12) will become the following forms 	(see also 

Fig. II): 

B(S"'S"S' ; 	 ; €") 	
= B°(SIT, 's"St . 	t T  t ; 

+ ._ 	fds dt d€ 2  d€' • Ba(s",s',s; t",t',t.; €') 

K(' ; tT'' , 

	

, t t  t. €",€' ) . 3 (s,s",s' ,s; t 	t" t' t; €' 
, 

, 	 ,  

(6.17) 

Aab(s",o; t") = 	) 6 
fds" ds' d€" dt" dt' 

(2 TO  

B a 	 , (s" ' , s",S' 	t"' t" t' 	E)IGb(t"t"' )12 

(s"',s"; t"' ,t") !1 (s" t  ,s li ,st ; t t  t i?  t i  , . €") 	 (6.18) 

with 
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3 ( s t?t 	,s ;  t"' ,t',t' ,t; €' ,€,€12) 

fd4Q 5 E  (pa + 
Q) 2 _ s ]  6( . Q2 _. t ) 

• 	
-. qH)2 - e'] o[(.- 	- 12 	

- Qi)2 - 2 ]  

(6.19) 

BaO (s t?f  ,s",s ; t' ,t",t ; 

IGa (ma2 ,tTT) f(e",ma2 ,t",t"' ) 2  (tl - ma2) • 	- s'll 	6(s") 

(6.20) 

and 	
a + 	 = 	 12 	- 	t = 

K(Of 	t" ,t'1,t',t.; €.",€') 	= 	( t' 	f(€",t',t,t tt1 )12 	(..21) 

where 	is a function of c12 , " €,€',t 	tlt 	and t. 

The third kind of boundary function 	has been worked out in 

detail in Appendix F; the result is 

,s",s',s; t" t" t l  t. €f €,€12) , 	 , 	 , , 	 , 

=12 - 	+ ") V1(s",s',s; tU,t?,t; €), 	 (6.22) 

with 

-1 ) 	 1 	 1 

CII 
_ t +

tIll 
+ u(4) 	+ 	

+ 2t'(.r) 
(sIll

S) 

21 - '2 1 
D" 	2[t + u(.r) + t t (r) ]2[t?Vl 

+ 	
+ t' (---) ] 

• cos[cos 
( 	

C?) - 



- - 

+ 	+  
rs  

 u 	+ u 	+ 2t' 
(• ) O f

) . 

"2 1 
2 [t + u( .T) + t'(r) 2 ] lit" + u(r_) + t'(r) ], 

U = ,12_t_tl , 	 € I! _t ,  _t ?Tl , 

,I? at high energy, and assuming 	s >> t ,t iv  ,t ,t ; ma 	
Ti 	U 

 

So if we neglect the inhomogeneous term Ba°  in Eq. (6.17) 

at extremely high energy, then the kernel and limits of integration 

of the homogeneous integral equation of Ba  still have the scaling 

property 

	

S1TT —cs"', 	S "  — cs 11 , 	s' -.cs', 	s —cs 

so we still, can prove that Aab  and  Ba  have Regge asymptotic 

behavior, i.e., 	(T)0)• In this section we have demonstrated 

that we can easily include the Toller-angle dependence in our scheme 

at forward direàtion, but there is in principle no difficulty in 

generalizing to the nonforward case. Furthermore, this kind of scheme 

will also work for any correlation kernel of finite length. That is, 

we can always write down an integral equation for the modified absorp- 

tive function Ba  and we can also prove that Ba  and  Aab  have Regge 

asymptotic behavior for any multiperipheral model whose kernel only 

involves a finite correlation interval. 



7. CONCLUSION 

In this paper we have explicitly derived the CGL type7  of 

multiperipheral integral equation in terms of invariant variables, 

without making the high -energy approximation, and we have demonstrated 

that the absorptive part Ab  and the modified absorptive part Ba 

will have Regge asnnptotic behavior as a result of the high-energy 

scaling invariance of the kernel. This property will always be obtained 

so long as the kernel only involves a finite-link correlation, and 

this is also the only requirement to prove those qualitative properties 

that have been shown by ABFST9to be true in high-energy production 

collisions. The form of our general integral equations is more 

complicated than that resulting from the kinematic approximation that 

all subenergies are large compared with the momentum transfers and the 

masses involved. . However, it is hard to justify the latter kinematic 

approximation, and the general equation derived in this paper is still 

not hopeless to solve numerically with presently existing computers. 

For example, one specific model, that of CZA, has been adopted 

to describe the 1N annihilation process, and by the arguments of 

Ting1 	we may hope to generate an output w trajectory from pure 

nucleon-trajectory exchange. Because in the CJA  model the subenergies 

are not all large compared with the t's, the integral equations described 

in Sec. 2 and Sec. 3 of this paper have to be used in order to get a 

realistic result. This calculation is in progress. 
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APPENDIX A. THE BOUNDARY FUNCTION 

In this appendix we discuss the boundary function 0 which 

is defined by Eq. (2.22), that is 

1 (s'' ,s"; tlyl'ttf ) 

f d'Q, 	[Q"2 - t"] 	+ 	- SI5 c(Pb - 	
- 	

.(A.l) 

We know 

- 	Tt] 	
= 	[( 

	
172] e[(pb - 	") o - 

= 	- 	- "2].e[Eb - E 	
- 

(A.2) 

but 

o(Eb - EQ?l - 	 o[(E + E 
b  ) -. (Ea + EQII ) 	t " ] , 	(A.3) 

and because e(Eb - E QU  - ii") is an invariant, we can evaluate in 

any frame. Let us calculate in the c.m. frame of particle "a" and 17b"; 

then 

	

= 	a + 	= (E 
a 	b 

+ E )2 

and 

3" 	
= 	a + "2 = (Ea + EQ??)2 - 	

a + k, 7 ) 2  

so 

Ea  ± Eb = (s"' ) 	and 	E + EQY? > (s") 

Equation (A.2) can be rewritten as 

(pb -- 	= 	- Q)2 - 
	

2] ®[(s"' ) - (s")  

	

Q7I 
2 	

u 
 

(A.) 
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so from (A.1) and (A.4), we get 

(Silt 	t t tt ,t tl) 	= 	®{(s"' ) 	- (s") 	- 	"] 	( s ??, s T? ;  t"',t"), 

(A.5) 

where 

, t"' t")  , 

L 	I . (A.6) = TdQ 	(Ql?2 - t") 	
+ 	

- s"] 	
- 	)2 - 

Now let us concentrate on the function Dj. Because it is 

also an invariant, we can evaluate in any frame. Let us go to the 

rest frame of particle "a" so that 

Pa  = (ma,O,O,O) , 

(Eb,0,0,) and kb
> 0 

= 	(E",k" sin Q T  cos 0", k" sin @" sin 0", k" cos 9") 

and 

2 
with 	a 

2 	2„, 
= in 	= t 	. Because 

2 
= (p + p ) = m + t” + 2m E 

ab 

and 

tiff= E 2  

	

b_. k 	, 

we can get 

	

slit _ma 	_t
TT, 

 

	

2m 	= 2m 
a 	 a 

and 
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2 	(s"' - m 
a 2 	

t"')2 	
2 	[X(sttT,ma2,t)12 

= 	 2 -  "b 	I 	2m 4m 	 L 	a a 

where 

= s" '  - m 	- t"' 

and 

2 	22 
7.(a,b,c) = (a + b - c - 2ab - 2bc - 2ca) 2 . 

Now we can rewrite Eq. (A.6): 

c5' 	= 	(S 	jS 	u
„ . 	t' 4.?? - 	1 \ 	 , L 

= 1k2T?j 	d cbs f-00 

 

d E” 	d" (E 12  k"2  

Jo. 	-1  

X' b(m 2  + t" - s" + 2mE") 3(t" + ttt .,,2 - 2E"Eb + 2k" cos 

(A.7) 

If we define 

sit= s" - m 2 	 " and 	u a 	
=. 	,,2 - 
	- 

then Eq. (A.7) will become the following expression after we integrate 

over d": 

= 2fk?T2 dk f 	d cos 9

_00 

	[E" 2  - (k"2  ± t" f)] 
x(s'" ,m 2,t"' 

) 	 1 
+ 2m E") i-u" - - E ,, + 	a 	

k" cos ty  
a 	L 	ma  Q 	 rn 

Equation (A.8) Continued 
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quation (A.. 8) Continued. 

Co 

= 2i 	k2 	
d cos 	[—" + 	(k"2  + 

J 	2(k'1 + t!)2J1 	 L 	a 

r 	-,, 	i 	( s!.,m 2,tnit ) 

_

u ff — a.— (k" 2  + t") 2  + 	a 	
k" cos Gil m 	 m a 	 a 

— 2ma(k"2 + 

[u" + 	(k" 2  + tTI)f -F 
X(

tit  s ,m 2 
a ' 	k" cos 

m 
a 

JTM 
 a 	 dk 	 2 = 	

2 	 2 	( 
[t!  + 2m (k" + 

2X(s ",ma  mb ) 
fOOO  

(ic" + t") \\ . 
	a 

(2 	2 	 1 
J (s ,ma 2 " 	2 	1 2 

$ 81 	
2 	

k" — fuft + 	
(k" + t) 2 } 

m 	 a a 

+ 	— 2m.(k" 2  + 

. 8fx2 ":2t") ktt
2  — [u — 	(k!? 2  + 

	

JT 

= 2(s',m2,2) 0[(?a)2

2(stTt,:2,tt) — 	+ 

m 
2 

 u 
,2 
 -t 	— 	 — S S U + 11-m 

2 
 t"'t"),if

- 	 2 	2 	a 	 a 2srT?,m ,m.b ) 	. 	
(A.8) 
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for i". >0 and ( 1l/2m ) 2  > t". If we assume s' > ma2 , ? ,t tlt , we 

get 

,s"; t"' ,t") 

= 2s 	
- -t tt )(t" .- t..)1, 	(A.9)

max 

with 

= -ks"'- s" 	- s)2  - 	 t? 	- s ?1)] 2 .  tly 

mm 	 (A.10) 

1 
Because (5t )2 > ( s") 2  + p", we know 

s"' - 5 "  > 2"(S"') 2  + " >> ma2,t"',' 

at high energy. It follows that 

-(r)  E" till 	 (A.n) 
max 
lTlifl 	-(s"' - s") 	-00.  



-55 - 

APPENDIX B. THE BOUNDARY FUNCTION T(s" ,s",s' ; t" t  ,t",t' ; 

Inthis Appendix we discuss the boundary function 	which 

is defined by Eq. (2.23), that is 

, • 4"' t",t' ; €") t. 

= 
 

fdQI 5(Q'2 -. t') 	~ '2 - s']h[(Q' 
- 	 -' 

• 	 - 
Q it) 2 	, 

- tL
2 
 I 	, 	 (B.l) 

so 

71 (s"' ,s",s' ; t tT ' ,ti,,t, ; €") 

	

- (s' ) - 	] r(s" ,s",s'; t" t",t'; c") 	, 	 (B.2) 

with 

•• 	 ' •. r(s"' ,s",s 	
t7, 

, 	, 	, 

- t') 	
+ 	)2 

- S'] 	- a 2   f 	a 	
- 

	

- 	11)2 - 	
• 	 (B.3) 

Let us concentrate on the function 	evaluated in the 

rest frame of particle a, such that 

Pa =  (ma ,O,O,O) , 

(E",o,o,k"), 	 k" > 0 

b = 	 sin 	 cos b 
	

b > 0 

= (E',k sin Q' cos ',k' sin Q'sin Q',k' cos 

and k'>O 
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Just as in Appendix A, we can easily show the following: 

, 	2 t tt 
_?, 	 /\.\5 ,m 	, 

- 	 k" 2m ' 	 2m a 	 a 

E 	
- 	 x (s , m 2 

b - c' 	= 	2m: 

Furthermore 

= 	- 	
+ 2 

2EbE "  + 2k"kb cosGb ,mb 

so 

(ut' + 2E tTEb) 	 (2m2u" - 
cos 	= -

= - b 	2k k b 	
%(S",m 	

(sTt,m 2  

Now from Eq. (B.),e can rewrite 	as 

1 1 	(s"' ,s",s' ; t"' ,t",t' ; €") 

00 

= 	k' 2 
	

f+l 

cos Q f- 00

'

o 	l  

- (k' 2  + t')](m2 + tl 	5' ± 2mE') 

fo

2'
(t' + 	

-,2 
- 2E'E" + 2k'kY cos Q' 
	

dØ' 

[•t' + mb 2 -  € IT - 2E'Eb 

(B. )4) 

(B.5) 

+ 2k'k1 [cos Q ,  C05 9 + Sill G 	9b  cos 0')] . 	(B.6) 
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According to the definition of V, the first three integrals 

and delta Thnctions will give us (1/2)(s",S'; t",t) so Eq. (B.) 

can be rewritten as 

' (s",s' ; t",t' 
= 

	

2jT 	
d' 	(H). 	 (B.7) 

fo 
or 

	

®(-m 2,2 	tISIT2- t"' 	- 	+ 4m 2t't") 
a 	

2 	
a 

)(s ,ma  ,t ) 

	

f 2 d' (H) , 	 (B.7) 

where 

H 	- 2E 1Eb +b COS 9 COS 9b + 2k'k sin G  sin 9b 

(B.8) 

with 

= s' - in 2  - t' , 	u' 	
= 	2 

- 	- 	
=Cit - t? - 	, 

2m a 	
= 	, and 
	

(B .9) 

p 

(u" + 2E") 
cos 9, = 	2k7 

We rewrite H in the form 

H = - 	+ 	+D cos 	= -€" + C + D cos 
	

(B.lo) 
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with 

= -2E'E + 2k 1 k cos G' Cos b 
	

(B.11) 

C = t'. ± t 17 ' + 	 ( B.1l') 

= 2k'kb  sin ' Sfl Qb 	 (B.12) 

From Eq. (B.), Eq. (B.9),andEq.  (B.10), we canget 

k..(u' + 2E'E") 	(u" + 2E"E ) 

k" 	 2k" 	
b 

2m a 

,, , 	2m  
= 	

22 + 2 - m2t" E 	
- 

+ a2 E . + 	2 	. 	(B .13) 

	

We ll rther assume that s" ,s",s' >> t' ,",t" 	 then 

S' 	S "  s", i" 	s". The first part of this approximation• 

s"s"s' >> m 22,"2, can be easily justified because we are only 

interested in high-energy collisions. Even though there exists a part 

of the phase space where S
I T and s' are comparable to ma 2 2 ,,2  

the percentage is very small if s 'TV  is very large, and the percentage 

will decrease as s" increases. The second part of the approximation--

5 " S"5' >> t??V,t?,tV__ can  be justified only if we invoke the 

dynamical assumption of the multiperipheral model that. the general 

production amplitude Tb'  falls off very fast as any of the tTs 

become large. This condition has been confirmed experimentally in 

many 2-to-2 and 2-to-3 amplitudes. If such is generally true then in 

that part of the phase space where s's and t's are comparable and 
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large, the kernel and Gb (t hT ,t ?Tl ). will be very small and will not 

contribute significantly to Ba  and  Ab. Therefore the approximation 

sTYt,s,st >> tI ll 	is reasonable. 

Under this approximation, Eq. 
( 
B.13) becomes 

	

:2E~ 

t) 

+_ 	+_ s 
I 

s")(u  I 
s 

IT 

SIT) 

(B. 14) 

rs 	u  17 ~'s 	

(S;) (S  

+ 	 + 

and 

D 	2k'kb sin Q' 

[k'k" - (u'+ 2E'E") 2 ]2 	1k122 
- (u" + 2E")2 ] 

[X2 (s',ma2 ,t t ) 2(s",ma2,t") - (2ma2u l  

2 
 ma \.(s  ,ma  2 ,t ) 

[2 ( s',ma2,t" ) X2(s"',ma2,t'') 
- 	

m 

a 
 2u l

+ 

ma .( s' , ma2 , t" ) 

1 [(2 
- m2tt)(sT2 

- m 2t ' ) - 4m2u's's - 

2 	 m 5" 
a 

[(s" 
- 

m2t")(s" 
- 

mt"' 	
- 

m 2u t ss tT?  - 

m s a 

2f[t' + U' 
() 

+ t")2 	+ 	
)+ 	

?7?) 2 J  . 

(B.15) 
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Then 

;tIff ttl,tf
€") 

1(T,s'; t,tt)

fo
2it 

• 	
= 	 2it 	

d 	6(-€"+ C + D cos 

 

• 	 2 

= fo 
d 	5(-€" + c + n cos 

• 	- 	1 (',s'; t",t') e[D
2  - (- 	+ 0 2] 

E D2 - (_t? + 

- 	1 e[D - .(-€" + C) 2 ] 

ID - (-€" •+ 

(s",s.' 	t 11 , t ,  ) e[(€" 	- - 

	

max 	 mm 	
B16) 

- El'. )] 

	

max 	 • mm 

where 

= C + D max 	- 
mm 

(B.1) 

c 	t' + t" + (') + u"() + 2t h'()(). (B.18) 
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APPENDIX C. 	THE BOUNDARY FUNCTION T2 (s",8 11 ,T; 	t" t ,t."; 	t',t) 

The boundary function 11 2 	is 
defined. by Eq. 	(3.21) as 

t tt ',t"; t t ,t) 

= - 	t") 	[(tT 
+ + 	)2 	

- 	tt] 
- a 

- 
	(c.i) 

so 

2(s",s t',T; t" t ,t' t ; t t ,t) 

e[ 

 

(S TY 	) - 	(s " ) 	- n"] O f (s'' ,s Tt ,T;. t" ,t"; 	t 	,t") , 	(C.2) 

with 

	

(s",s",T; t"',t' t ; t',t tt ) 	 fdQ tT  8(Q."2  - t") 	[('t + ) 2 - 

' 	a + 	- s"] 	
[(Q?? 	- 	TT2] 	

(C.3) 

Just as in Appendix A, let us evaluate 	in a special frame 

such that 

Pa  = (ma,O,O,O) , 

Pb = (Eb,o,o,) 	
kb 
 > 

A = 	 , 	A > 	 (c.) 

= (Eu,k? sin Q cos Ø,kVt sin G ly  sin 0" k' cos Q') 

T 

Because (see Fig. 5) 

Pa  = Pa_AsPb= 
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it follows that 

• m 2  = 	= in 	+ T - 2mL 0 , 	z=— 	 (c.5) 

till =(p) 	= t"' + T + 2Eb 	2 A , 

	

=*(T+2EbAO+tHt -t') 	 (c6) 

and from 

T=A
0 2  

x - (AO  

I 	• 	(c.7) 

Now we can rewrite Eq. (c.i) as 

	

+1 

	 +00 

= O[(s"' ) - (Tt) - ?t ]f kt?2dkJ 	d cos 

	

• 8(E" 2  - 	- t' t ) (m 2  + t" -  s" + 2mE")a. 

2. 

	

+ 	- 12 - 2E"Eb + 2k" cos Q.tt)f 	dØ 

+ T - t + 2E"z - 2k" cos Q" A - 2k" sin @" 	cos Øtv) 

Equation (c.8) continued. 
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Equation (c.8) continued. 

1 (s"' ,s"; t"' ,t") 

	

= 	 J dØ  
0 

• 5(-t" + t" + T + 2E" 	- 2k" cos Q" 	- 2k" sin Q" 	cos 0) 

	

(Dl  f  

= 	

ãØ (-t" + C' - D' cos 0) , 	 (c.8) 

or 

e[n' 2. - (c' - t") 2 ] 	e[(t" 	- t")(t" - t" 	)J 1 	 + 	1 	+max 	+ + 	+min 

[ 2  - 	- t") 2 j 	= 	[(t" 	- t")(t" - t" 	)] ' + 	 +max 	+ + 	+min 

(c.9) 

with 

(c.io) 

(C .11) 

0 

C' = t" + T + 2E"A. - 2k" 	A cos Q" 
U 	 z 

= 2k" sin 9" A x 

and 

= C' + +max 
mm 

From Appendix A, Eq. (C.5), and Eq. (c.6), we can rewrite C' as 

- t" + T + s"T 	
2(u" + 2E") (T + 2A0 + t 

C' 	
1' - 

- 	 2m2 	2kb 	 2kb 

(c.12) 

Equation (c.13) continued 



Equation (c.13) continued. 

22 

	

2in 	/ 
t" 	+ S 

T - a ( + a + T  
2m2 	

,,,2 

It 	I?t 	It 
S 	 S 	

(T+t"' -t') 
2m 

•a 	a 

+ T - 	(T + 	- 	. 	 (c013) 

Also we can rewrite Eq. 

2(-T) 2  

(-T) 	[(tt2 
2 

2m 
a kb  

as 

- (u" + 2EbE ?t ) 2 ] 2  

- m2ttt)(tt2 - m 2t') 	(2m 2u" + s"s"t )2] 

(_m2thtsttt2 - m2ttttstt2 a 	- 

= 
	) 2 1 1 

 21Tt" + u' tT() + ttttT( 	. 	 (c.i) 
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APPENDIX D. THE BOUNDARY FUNCTION 

2(stT ,s",s ,T 	 ,t,t; €") 

The boundary function 
	

is defined by Eq. (5.22) as 

(5fT ,s",s,T; 
	

t',t,t; €") 

f dQT 	
,2 - 	

+ 	 + 	- s'] 

Pb)81N,- 	- 	- 	- 	(rni) 

if we evaluate 2  in the same frame as chosen in Appendix B, i.e., 

in a rest frame of particle a such that 

= (ma,O,O,O) - 

= (E",o,o,k") , 	 k" > 0 

(Eb,kbsin 9b 	b' kb sin b  sin b,kb 	' 

kb>O 	 (D.2) 

= (Ev,kl sin Q' cos Ø',k'. sin @' sin Ø',k' cos Gt) 

k' >0 

A 	(A,A,o,A) 	 Ax > 0 , 

then from the definition of T21 2' and 	, and after manipulations 

similar to those in Appendix C, we will get 
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t",t'.; t,t) 	
- 	c"] 

(D.3) 

t",t'; t,t) 	[e" - C- D cos(.' - 

with 
S,  X  

Cos •= 
	t + T - 	 + t" -. 

 t) 
2[Tt' + utT() + t'fT(Sf 	

, 	(D.) 

7f! 	 - 

t" + T - t 	- -ff--(T ± t" - t") 
COS 	

= 2[t t"T + u"T(l: ) + Tt"(_)2] 	
, 	(D.5) 

or 

= 	1(s".,s",s'; t" ,t",t'; €") • 	+ )2 - t] 

= 	1(s"' ,s",s' ; t"' ,t",t' ; 

-+ T - t I + 2E' 	* 2k' cos Q 	- 2k' sin 	cos 

= 	(st1 ,s",s' ; t"' ,t",t' ; 	€") 

'- t + T - () (T + t" - t) 

- 2[Tt' + u'T(-r) - t n'T().] 2  

. cos[cos_1(EhtD_ c) + 	, 	(D.6)  Ob 

where 0 2 and 71 have been discussed in Appendix C and Appendix 

B, respectively. 
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APPENDIX E. THE SPECTRUM FUNCTION F(k2,kT2) 

Let N(k)&k be the number of final states, such that one of 

the secondary particles has its four momentum between k and. k + dk. 

According to Eq. (7.16), (see Fig. 9) 	.. 

N(k) = 
f B 

 a (W
1 
 ~
W .? O; tt,t)dt dwl(t,tl)I 2  dt dvBa(v';v,o; t,tt) 

k) (k2  - 	
2 

I(w,v, 4-1 , 4-. , 	
) 

, 	 (E.1) 

where 

2 	 ,2. 	2 	2 	2.
Ilk W•=(Pa +Q) 	Vz(pb_Q),. tQ, 	k 

= 	a 
+ QV)2 	

Y1 = 	b 	tt = 

and 

0 	
I(w,v; t 1 ,t; k) = fd  4  Q  dQl 5(2 - t) (2 - t) 	+ 

)2 

[(p - l 

 )2 
- vi 6 (Q' - 	

- k) 	. 	 (E.2) 

The boundary function I(w,v; t',t; k) has been evaluated 

in Ref. 9; the result is 

I(w,v; tT,t; k) 

= 	1 	T[-t 
- 	 + kT) x(l 

+ z); -t'- 	+ 	
2

kT 	z(l + x); T' 

(E.3) 

1 	 where T is the usual triangle function given.by 

- b - c + 2ab + 2bc + 2ac) 
T(a; b; c) = - 	 (E.4) 

(-a - b - c + 2ab + 2bc + 2ac) 



and 

x = 	, 	z = 	 (E.7) 
Si 	 S2  

(we will define 
s1  and s2  later), and kT  is the c.m. transverse 

component of the four-momentin k with respeqt to the incident 

direction. Now let kL  and k be the c.m. longitudinal component 

and the time component of k, respectively; we furthei define 

k.k ± kL, 	k 	= 	- 	 (E .6) 

and 

s1 	+ k)2 , 	s 2. = (p + k) 2  . 	 (E.7) 

Then, as shown in Ref. 9, we get 

	

s1  = k(s" ), 	s2 	k(s" ), 	s1s2  = .kks"' = 	+ T)S 

(E.8) 

and 

+ 	a + q' - 	= w + t - w + ma - t + 

_ w -w. 

So 

	

s1  + w = s1 (l + x) . 	 (E.9) 

Similarly we can prove 

s2  ±v = s2 (l + z) . 	 (E.lO) 
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By using Eqs. (2.56),' (E.5), (E.8), (E.9),  (E.10) together •with. 

Eq. (E..1) we get 

N(k) = 8sTTff()
0) 

baa (,v; 	baa(,0; t,')  

T[-t - 	+ 	
x(1 + z); -t' - 	+ 	

z(i + x); 

e dt dt?  dw dv . 	 (E.11) 

Ifwedefine 

s tit a(o) 
N(k) 	

(;-) 	
F, 

-then 

a (0) +1 

F 	2s: kT2) 	ff 1p(j't,)12. dt dt' 

U  ff dx dz[(1+ x)(1 + )]a( 0 ) +1  

ba,O; tt,t)  bba (l 	t,t') 

(E.12) 

• T[-t - 	+ 	
x(1 + z); t' 	

±T 	
z(1 + x); 

(E.15) 
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APPENDIX F. THE BOUNDARY FUNCTION 

t?tt,t?!,t,t; E,€,€12) 

The boundary function 	is defined by Eq. (6.19) as 

3 (s"' ,s",s' ,s; t' ,t",t' ,t; €' ,€,e12) 

f Q 	2 - t) 	+ 	- si [( - Q)2 - 

- 	- 2 	
- b 2  - 12 	

(F.1) 

Let us evaluate this in the rest frme of particle a, where 

= (ma, 0 , 0 , 0 ) , 

= (' ,O,0,k') , 	 k' > 0 , 

Q t'= (E",ic" sin Q",O,k" cos Q") , 	k". > 0 

= (Eb,k b 5fl 	COS 0 b kb  sin 9 sin b' 

Q = (,k sin Q cos 	sin Q sin ç, k cos Q) , 

k>0. 

Now Eq. (F.1) can be written as 

+1••• 	 2i 

- (s) - 	k2 	d cos Qf dEJ d 

f000   
•[E2  -(k2  + t)] (m 2  + t - s + 2maE') 

•. 	(t + 
V  - 2 - 2EE' + 2kk'cos9) 

[t + t" - & - 2EE" + 2lUc"(cos G" cos G +.sin Qt? sin 9 cos 0)] 
Equation (F.2) Continued. 
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Equation (F.2) Continued. 

• 	[t+thht_€l2_2EEb+2k(cos 9b 	
Q+sin Qsin @ cos(_b)] 

= 	1 (s's',s; t",t',t; E') 	12 + C +D), 	 (F.2) 

with 

C" = t ± t"' 
- 

2EE + 2kk cos Q cos Q, 	 (F.) 

= 2kkb sin Q sin Gb
cos 	- 	(F.1) 

Just as in Appendix B, at high energy, we can show that 

C" 	t + 	+  
Silt 

 + 	 + 2t' (-)  /'~—) 

(F.5) 

= 
+ .+  G-) () + 	

+ 2tt( () ()r 	" 	 ( 

and 

D ly 	2[t 
+ 	

+ t,()2I[tT 
± 

+ E
lf 

, 	 cos[cos_1( C' ) 	- 	 b]' 	(F.6) Dt 

with 

Cl 	= 	t + tT 	- 2EE" + 2kk" cos 9 cos 9" 

(F.7) 

t + t" + 	0 1—  ) 
+ u' 

(,s,,) 	
+ 2t 

' 

(-r) 
(-) 	 , 
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= 2kk" sinG sin G" 

2ftt + u()+tt()2J 	
+ 	

+ tt(')2j 

 

s 	 s 2t' 
 c 

cos 	

2[t + 
	

+ t)2}{t1l1 + 
	

+ 

 

and 	 •. 

2 - -t 
-tly

,
U ff = W12 -  

• 	 (F.lo) 

= 	- t - 	 =
E ll- • t - 	. 	(F.11) 
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FIGURE CAPTIONS 

Fig. 1. The production process a+ b 	O ± 1 + ... + (n + 1). 

FIg. 2. (a) A(pa,pb;  0): the contributiofl to the absorptive 

part Ab  at forward direction from the n+2-particle 

intermediate state. 

Ban (Pa) pb ; Q +1 ; 0): the contribution to the modified 

absorptive part B at forward direction from the n+2-

particle intermediate state. 

IGb(Qfl+1,Pb)12: the absolute value squared of the 

external coupling constant Gb. 

Fig. 3. The schematic representations of (a) B a (Pa ,Pb ; • 	0), 

(b) Ba° (Pa , Pb; Q"; 0), (c) Ba(pa,'; Q';O), and 

K(Q',Q")pb). 

Fig. t.  The unitarity diagram in terms of invariant variables, where 

s 	a+Pb) 2 
	

s 	
2 	 2 

= 	a +Q') 

= 	b' 	 - 	ft" 	= Q1112 

= 	 = Q, m 	a 2 = 	2 	
2 

' and 	
,  

Fig. 5. Schematic representation of A ab nl (pa ,pb ; A) and Eq. (3.2). 

Fig. 6. Schematic representation of (a) B a'b 

(b) B°(Pa,Pb;  Q",A), (c) Ba(Pa,Q,Q';  A), and (d) 

A). 	-. 

Fig. 7 . Diagram used in calculating inelasticity in Sec. V. 

Fig. 8. Diagram used in calculating the spectra of secondaries. 

Fig. 9. Diagram used in calculating the spectra of secondaries. 
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Fig. 10. Schematic representation of (a) B(p,pb; 

(b) Ba° (pa , pb; Q',Q"), (c) Ba(pa,Q'T; Q,Qt), and 

(d) K(Q,Q,Q",p). 	 : 

Fig. 11. The modified absorptive part 	a (S
lIf  ,s',s' ; t"' t",t' ; €"), 

and the definitions :  of s = 	+ Q)2 	E' = ( -

2. 
= ( - 	-t = 	and 	= 	- 
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Neither the United States, nor the Commission, nor any person acting on 
behalf of the Commission: 

Makes any warranty or representation, expressed or implied, with 
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this rport, or that the use of any information, 
apparatus, method, or process disclosed in this report may not in-
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