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Abstract

We analyze two high‐quality Southern Californian earthquake catalogues, 
one with focal mechanisms, to statistically model and test for dependencies 
of the earthquake‐size distribution, the b values, on both faulting style and 
depth. In our null hypothesis, b is assumed constant. We then develop and 
calibrate one model based only on faulting style, another based only on 
depth dependence and two models that assume a simultaneous dependence
on both parameters. We develop a new maximum‐likelihood estimator 
corrected for the degrees of freedom to assess models' performances. Our 
results show that all models significantly reject the null hypothesis. The best 
performing is the one that simultaneously takes account of depth and 
faulting style. Our results suggest that differential stress variations in the 
Earth's crust systematically influence b values and that this variability should
be considered for contemporary seismic hazard studies.

1 Introduction

The frequency‐magnitude distribution of earthquakes obeys a negative 
exponential model with increasing magnitude M, often referred to as the 
Gutenberg‐Richter (GR) law (Gutenberg & Richter, 1944), with the slope b of 
the decay (b value) ranging typically between 0.5 and 1.5 (Wiemer & Wyss, 
2000). This empirical relationship is one of the cornerstones of seismic 
hazard assessments, since it enables more frequent, smaller events (b > 1) 
to be related to infrequent, damaging events (b < 1). The b value has been 
empirically shown to be inversely related to differential stress Δσ. This 
finding has been confirmed in the laboratory (Amitrano, 2003; Goebel et al., 
2013; Kwiatek et al., 2014) but is also consistent with observations of natural
and induced earthquakes (Bachmann et al., 2012; Gulia et al., 2018; Gulia & 
Wiemer, 2010; Schorlemmer et al., 2005; Tormann et al., 2015).

There are two major gradients of differential stress in the Earth's crust, and 
both have been shown to also correlate with changes in the b value:

1. Differential stress increases with depth in the Earth's brittle crust, until 
it reaches more ductile regimes (Brace & Kohlstedt, 1980; Kirby, 1980).
Mori and Abercrombie (1997), Gerstenberger et al. (2001), and most 



recently Spada et al. (2013) have shown that the b value decreases 
with increasing depth, as expected, then increases again as one 
approaches the brittle ductile transition zone. Scholz (2015) has 
related this observation to the average stress gradient in the crust.

2. Differential stress changes systematically between faulting regimes. 
The classical theory of faulting (Anderson, 1905) assumes that various 
states of stress are associated with different tectonic regimes around 
the source volume, with higher stress for compressive environments 
and lower stress for extensional environments. Schorlemmer et al. 
(2005) firstly evidenced differences in b for different tectonic regimes 
on rake angle λ of the focal mechanisms (FMs). Recently, a functional 
trend of the b value with λ was statistically tested on a global scale 
(Petruccelli et al., 2018) and described by the harmonic trend b ≈ −sin 
λ, whereby the minimum value of b is for thrust faulting regimes (b ≈ 
90°), the maximum value for normal faulting regimes (b ≈ −90°), and 
intermediate values for strike‐slip (SS) faults (b ≈ 0, ±180°).

Despite the fact that b values in the lab are known to depend on stress, 
seismotectonic and hazard analyses are not yet using these important 
physical constraints as input. We believe that this is so because there is a 
lack of calibrated and validated models and a lack of trust in the robustness. 
Our paper addressed the gap and is the first to systematically evaluate and 
test the impact of each of these gradients, as well as the combination of 
both, on the b value. We first extend the method for likelihood estimation 
and then define and analyze four models, or hypotheses, of different b value 
dependencies, with different degrees of complexity (i.e., number of free 
parameters n for each model). We then test the performance of each model, 
adjusted for degrees of freedom, and interpret the results. Finally, we 
comment on implications for hazard assessment.

2 Data and Methodology

2.1 Southern California Data Sets

FM catalogue: For our study, we used one of the largest, highest‐quality FM 
data sets available worldwide, namely, the one from Southern California (SC; 
Hauksson et al., 2012; Yang et al., 2012), including data from 1981 to the 
end of September 2016. SC FM quality is divided into four classes, ranging 
from A (best) to D (worst), according to the azimuthal gap and the mean 
nodal plane uncertainty. For our analysis, our choice to retain only the first 
two classes, A and B, resulted in a reliable analysis (Figure 1). For 
earthquakes occurring at the edge of the seismic network (Classes C and D), 
the quality factor can be systematically biased, resulting in a lower 
probability (less than 50%) of detecting well‐constrained mechanisms (Yang 
et al., 2012; see Figure 6).



In line with Yang et al. (2012), we considered normal faulting mechanisms 
(NR) to be events with a rake angle of −135° ≤ λ ≤ −45° (green dots in 
Figure 1a), thrust mechanisms (TH) to be events with a rake angle of 45° ≤ λ
≤ 135° (blue dots), and classified all other events as SS faults (red dots). 
Since most of planes of SS events are right lateral (λ ~ ± 180°), we 
computed the alternative plane for each earthquake and then stacked the 
rake angles to obtain a complete set of possible rakes λ. The rake 
frequencies stacking procedure (for which each earthquake was counted 
twice) for b value analysis—already applied on a global scale (Petruccelli et 
al., 2018)—lowered uncertainty, since it was always consistent with b 
analysis for principal/alternative planes. We considered the crustal depth 
range at which SC seismicity most frequently occurs (z = 5–15 km, Figure 
1b), excluding the shallowest earthquakes, as proposed by Spada et al. 
(2013), and also the deeper events, where a linear rheology, and thereby 
linearity between b and differential stress, might no longer be valid. The 
overall data set was complete for M above 2.5 (Yang et al., 2012). Since we 
needed to divide our original data set according to tectonic styles, we used a
higher completeness threshold, confirming each style‐data set to be 
complete over M = 3 (see frequency‐magnitude distribution in Figure 1c). We
tested our results for the sensitivity of this choice and also analyzed the 
influence of the quality criteria and missing events from faulting style (see 
supporting information Text S1).



To verify the consistency of the b value with depth gradient between 
catalogue subsets with FM and the full catalogue without FM, we also 
analyzed the SC data set of Hauksson et al. (2012; HS) from 1981–2016 for 
the same study region and cut at a conservative completeness of Mc = 2.5 
(Hauksson et al., 2012; Schorlemmer & Woessner, 2008). Accordingly, we did
not need to consider a potential bias from changing ML definitions that affect
lower‐magnitude events during this time period (Tormann et al., 2010). No 
quality criteria were applied, and for this catalogue we used the full depth 
range, that is, 0–20 km.

2.2 Likelihood Estimators for Model Evaluation

In statistical seismology, the maximum likelihood estimation (MLE) method is
the standard approach used to compute the GR b value. The b values are 
computed by maximizing the logarithm of the likelihood function

 (where f(M) is the probability density function) that is the log 
likelihood function  for the GR model (see supporting information Text 
S2). The result of this analytical computation leads to the widely used 
analytical formula for estimating b values (Aki, 1965) using the binning 
correction set out in of Bender (1983):

(1)

where  is the mean magnitude, MC is the minimum magnitude of 
completeness, and ΔM is magnitude binning. If b is expressed as a function 
of physical variables (see Text S2), the analytical formula 1 becomes 
unsuitable, since the number of parameters to estimate inevitably increases.
To overcome this problem, we developed a novel modified MLE application to
numerically estimate the “best fitting” point  from a general GR log 
likelihood function (see Texts S1 and S2):

(2)

where b is now a function with n free parameters pj. It is clear that if n = 1, 
the maximum of such a function can be obtained both analytically and 
numerically, and the two estimations coincide. An increase in the number of 
free parameters pj (j=1, 2 … , n) results in an increase in the complexity of 
the modeled b(p1, p2, …pn) used to explain the physical reality. So in equation
2 we could explicitly express varying b value dependence (on depth and 
tectonic styles separately or simultaneously) in equations b(p1, p2, …pn). 
Next, we could maximize the log likelihood and obtain a score for each 
model. Finally, we could evaluate how well each model fit (see next 
paragraph) and rank them according to some statistical criteria (Akaike, 
1974; Cavanaugh, 1997; Neyman & Pearson, 1933). Standard errors on the 
optimal parameters of each model were computed as the square roots of the
diagonal elements in the variance‐covariance matrix.

2.3 Goodness‐of‐Fit and Significance in Different Models



In general, the higher the number of model parameters, the better the model
fit the data, hence the larger the likelihood (see Table 1). However, to select 
the best out of an available set of possible models, we had to account for the
number of free parameters for each model by considering an appropriate 
penalty term for more complex models as opposed to simpler ones. This was 
achieved by applying the second‐order Akaike information criterion (AIC), 
often referred to as “corrected” AICc (Akaike, 1974; Cavanaugh, 1997):

(3)

which, in addition to the log likelihood score (positive), also takes account of 
sample size N by increasing a relative penalty term for complex models (with
a high number of free parameters n) for small data sets (low N). The AICc 
scores were such that the best model had the lowest AICc (see Table 1).

Generally, two candidate models with different degrees of complexity (e.g., 
MA and MB, where A has less free parameters than B) could be evaluated 
based on the performance of a null hypothesis H (MA) with respect to the 
alternative H (MB). This concept can be expressed using the log likelihood 

ratio  (Neyman & Pearson, 1933). If the LR criterion 
test was passed, the null hypothesis, under which the “simple” MA performed
better than the “complex” MB, if L (MB) was sufficiently larger than L (MA) (LR 
< k, where k is a certain significance threshold) could be rejected. To 
determine whether such a difference in likelihood scores was statistically 
significant, assuming that the LR statistic approximately followed a χ2 
distribution (Wilks, 1938), we could then compute the critical value (p value) 
of the test statistic from standard statistical tables making the degrees of 



freedom equal to the difference in the number of free parameters for the two
candidate models (see Table 1, right‐hand columns).

Furthermore, even AIC differences could be turned into log likelihood ratios 
according to (Burnham & Anderson, 2002) by computing the weight of 
evidence in favor of ith model as the actual best model for the situation at 
hand:

(4)

3 Models and Results

We develop, calibrate, and subsequently evaluated three categories of 
models: a no‐variable model, single‐variable models (Figures 1 and 2) and 
multivariable models (Figure 3). The no‐variable was Number 0, the single‐
variable models were Numbers 1 and 2 (see Table 1 and Figure 2), and the 
multivariable models were Numbers 3.0 and 3.1 (see Table 1, Figure 3, and 
supporting information Text S3). We then analyzed the performance of each 
model and ranked them accordingly. For single‐variable models, we also 
reanalyzed the b value using depth and faulting style dependencies 
established in the literature for both our data sets against the null hypothesis
of a single, constant b value.





Model 0 (M0). This model assumed a constant b value for the entire data set 
and served as the null hypothesis. M0 estimates only one parameter and can
be represented in Figures 2a and 3a as a straight line. The numerically 
estimated value for FM, b = 0.91, coincides with the analytical value 
obtained using the method presented by (Aki, 1965; Figure 1c), with similar 
errors, illustrating that the two approaches are interchangeable. The lowest 
log likelihood, highest AICc and a very low weight make this the worst 
performing model.

3.1 Single‐Variable Models

Model 1 (M1). This model assumed that b values depend linearly on depth (or
differential stress), in line with Scholz (2015) and Spada et al. (2013), and 
can be illustrated as a line with a negative gradient in Figures 2a and 3a. M1 
has two free parameters to estimate, the intercept and the slope with 
respect to depth. On FM data, compared to M0, the log likelihood increases, 
AICc decreases, and the LR p value is significant. Accordingly, M1 significantly



improves the description of the data set. The depth slope is similar to the 
one that would arise from the dependence on differential stress hypothesis 
by Scholz (2015; see supporting information Text S4 and Table S1).

M1 was also evaluated for the full HS catalogue (Figure 2a) with comparable 
results: Its M1 log likelihood (−2,327.1) is better than M0 (−2,369.6), M1 AICc

(4,658.2) is lower than the M0 (4,741.3), and the p value is very small, which
makes a highly significant difference. Because the HS data were very rich, 
we also evaluated the temporal stability of the results (Figure 2b) by 
subdividing the data set into a first period (75% of the data) and second 
period (the remaining 25%), and ended up with almost identical equations 
for both data sets (Figure 2b). The equations also remained consistent when 
changing the partition sizes of the training and testing data sets (even at 50 
÷ 50). The overall depth gradient of b does not depend on temporal 
selections. Applying a pseudoprospective approach (i.e., using the learning 
period to make forecasts, then evaluating the likelihood for the testing 
period), we found that L(M0) = −552.98, L(M1) = −547.15, giving Model 1 a 
relative weight of 99.2%.

Model 2 (M2). This model assumed that the b value is constant with respect 
to depth but varies for different faulting styles. M2 has three free parameters
to estimate: the b values for the three styles. The three faulting styles' b 
values are represented in Figure 3a as straight lines. The values we obtained
were consistent with the estimations provided by Yang et al. (2012): The AICc

was lower than for M0 and M1, and the difference carried a significant p 
value, so faulting style proved to be a more relevant parameter than depth 
determining b values.

3.2 Multivariable Models

Multivariable models assume that b depends on both faulting style and depth
(Figures 3a and 3b). As a first step, we investigate for the first time 
simultaneously the depth and faulting style dependency of the b value in the
FM catalogue. In a Euclidean rake‐depth (λ, z) space (Figure 3c), we used 
polar parametrization (see Figure 3d) to find the closest 500 events (Figure 
3e) and computed the corresponding b value (Figure 3f). The results are 
presented in Figure 3c, clearly showing both rake and depth dependence. 
Building on this finding, we develop the first multivariable models to describe
these dependencies.

Model 3.0 (M3.0). Each tectonic style can be described by taking a different 
equation of decreasing b value as a function of depth (or differential stress) 
for a total of six free parameters. This is represented in Figure 3a as three 
lines with different slopes. This model generates the highest L value overall, 
the lowest (and hence best) AICc, a significant LR p value with respect to all 
other models and a relative weight in excess of 60%, making it the best 
predictive model. In line with faulting theory (Anderson, 1905), a steeper 
depth gradient was found for TH, an intermediate depth gradient for SS, and 
a lower depth gradient for NR. According to our equations (see supporting 



information Text S5), the b value decreases by about 0.04 every 10 km for 
NR, by about 0.15 every 10 km for SS, and by about 0.2 every 10 km for TH.

Model 3.1 (M3.1). This model assumed a sinusoidal dependence of b on rake,
similar to that proposed by Petruccelli et al. (2018) but we now add the 
depth dependency with b stress gradient κ, modulated by sin λ:

(5)

Equation 5 offers a generalized view of the simultaneous dependencies of b 
value on tectonic styles (i.e., rake angle λ) and depth and is plotted in Figure 
3b. M3.1 has three free parameters to estimate (offset b0, overall stress 
gradient κ, and friction μ). The estimated value for the “overall” stress 
gradient κ is in line with the SS stress gradient ks of M3.0 (see supporting 
information Text S4). The estimated best friction value  of Model 3.1 was 
somewhat lower than the assumed value usually assumed (0.6–1.0) but 
consistent with previous estimations (Carpenter et al., 2011; Zoback et al., 
1987). However, recent advances infer that the fault zones may actually 
present much lower frictional coefficients (Collettini et al., 2019). M3.1 fit the
data only slightly worse than M3.0, making it the second‐best model. 
However, in line with Burnham and Anderson (2002), the low likelihood ratio 
between M3.0 and M3.1 (1.92) indicated a weak support for Model 3.0 being 
best. In other words, uncertainty in choosing between Models 3.0 and 3.1 is 
likely to be high. Conversely the high‐likelihood ratios between M3.0 and 
M3.1 and the other models (larger than 12 and 6, respectively) permit the 
conclusion that other models (0, 1, and 2) are very unlikely to perform best.

Since Models 3.0 and 3.1 are not independent, we can also compute the 
relative weights between Models M0, M1, M2 and only M3.0 (around 0.0%, 
0.1%, 7.0%, and 93.0%) as well as only M3.1 (0.0%, 0.1%, 12.0%, and 
88.0%). These could be used as weightings in a probabilistic seismic hazard 
analysis (PSHA) logic tree where models are assumed to express epistemic 
uncertainties and should be ideally mutually exclusive and cumulatively 
exhaustive.

4 Discussion and Conclusions

What is the best predictor of the b value of the frequency‐magnitude 
distribution in SC (Figure 1): depth, faulting style, or a combination of both 
these parameters? To address this important yet until today unanswered 
question, we first needed to create a generalized MLE enabling model 
parameters to be estimated, then develop and calibrate adequate models, 
and finally compare the models' performance. We defined and compared 
four different models (Figures 2 and 3 and Table 1), or—with varying degrees
of freedom—hypotheses that expressed different dependencies. We also 
compared them to the null hypothesis of a constant b value.

All models rejected the null hypothesis (M0), so it can be assumed that b = 
const. is a comparatively poor model and should not be considered in hazard



studies. A very clear and statistically highly significant depth dependence for
b values (M1) emerged from both the FM and HS data and also persisted 
over time. More hazard studies should take account of this b depth gradient, 
which has previously only rarely been considered. An even better predictor 
of b values was faulting style (M2), which significantly outperformed depth 
dependence. For hazard‐related studies, faulting style was sometimes linked 
to different ground‐motion prediction equations but never explicitly to b 
values. However, our findings cannot be immediately applied in hazard 
assessment because we assessed faulting style dependence for regional sets
of earthquakes, not individual source zones. It is worth noting that depth and
faulting style are usually correlated. The Anderson's (1905) theory of faulting
relates the faulting style to the differential stress and consequently to depth.
Indeed, globally but also for California, thrust faulting requires large 
differential stress and it occurs usually at greater depth than normal faulting.
Another limitation of our work is that the subset of events with high‐quality 
FM we analyzed is relatively small, and FM quality itself may depend 
systematically on magnitude, faulting style and depth, potentially biasing our
analysis. Our quality check (see Text S1) and the overall consistency of the 
results with other data sets, other regions and a physical theory suggested 
no such bias, though.

The best predictor by far was found to be a combination of both faulting style
and depth (M3.0 and M3.1). In Figure 3c, a first ever depiction of dependence
on depth and rake neatly illustrates that while rake is a dominating factor, 
depth also plays a role. The difference between M3.0 and 3.1 is quite small 
so either one is a feasible approach for modeling depth and rake 
dependence. To the best of our knowledge, this study was the first to 
simultaneously model and examine both depth and faulting style 
dependence. It also provided yet further confirmation that b values' 
laboratory‐observed stress dependency also applies in the Earth's crust. We 
used the so‐called Akaike weights to quantify the relative importance 
(equation 4) but also to suggest how our model results could be employed in 
a logic tree‐approach common in PSHA to express epistemic uncertainties 
(Woessner et al., 2015). While M0 received zero weight, both Models 3 
scored weightings of 95%, suggesting that they presented data in the best 
way by far. There are different ways to include our results in future PSHA 
studies. For example, the a priori, overall b value often assigned to a region, 
or a so‐called super zone (Woessner et al., 2015) can be dependent on the 
preferred faulting style, or on depth. Contemporary hazard studies will 
compare the a priori value to local (area source or zoneless) estimates and 
update the prior using the uncertainty in the local estimate in a Bayesian 
sense (e.g., Broccardo et al., 2017; Wiemer et al., 2009; Woessner et al., 
2015). Likewise, hazard calculations commonly use a depth‐dependent 
activity rate, and this could be readily extended to also use a depth‐
dependent b value.



We did not analyze spatial or temporal variations in b values, which are often
subject to steep gradients (Tormann et al., 2012, 2015) that can be 
predictive (Schorlemmer, Wiemer, & Wyss, 2004, Schorlemmer, Wiemer, 
Wyss & Jackson, 2004; Hiemer & Kamer, 2016; Gulia et al., 2018). Our goal 
was to investigate the most basic gradients but in a statistically rigorous 
way. Future work should consider even more complex space‐time‐depth‐rake
dependencies, ideally in a conceptual framework of stresses in the Earth's 
crust.
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