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Generative models have become increasingly popular in various domains to solve chal-

lenging tasks, including image generation, dialogue generation, and story generation. Unlike

discriminative models, they can learn the underlying probability distribution of data and generate

new examples. In particular, image generative models have gained significant attention due to

their remarkable ability to produce images of unparalleled quality. However, while there has

been a lot of attention to biases in discriminative models, bias in generative models has received

little attention. The presence of biases in generative models, particularly related to race and

gender, can have significant consequences in downstream applications. Therefore, efforts to

address this issue are essential to promote fair and ethical use of generative models in various
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domains. To achieve this goal, this dissertation presents a comprehensive study of debiasing

image generative models by incorporating diversity and fairness constraints into the training

process.

In this dissertation, we investigate three different approaches to debiasing image gener-

ative models. In the first approach, a new task of high-fidelity image generation conditioned

on multiple attributes from imbalanced datasets is proposed. This task poses new challenges

for state-of-the-art GANs models, and a new training framework is proposed to address these

challenges. The second approach investigates bias in image-to-image translation models and

proposes debiasing using contrastive learning. Finally, the study highlights the prevalence of

bias in large-pretrained models like CLIP and its impact on text-to-image generative models.

Identity preserving losses are proposed to rectify the problem without retraining the pretrained

model. In all of these approaches, we evaluate the impact of debiasing on image generation

and the effectiveness of existing methods in reducing biases in generated images. We show the

proposed task and framework offer new avenues for further research in debiasing generative

models. Overall, this dissertation contributes to the field of generative models by providing a

comprehensive study of debiasing generative models and proposing a new task and framework

for high-fidelity image generation.
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Chapter 1

Introduction

Generative models have been recently gaining a lot of popularity in many domains to

solve various interesting and challenging tasks such as dialogue generation [40], review synthesis

[49], story generation [18], generating photorealistic images [32], super-resolution [39], etc. A

generative model is different from a discriminative network in the sense that a generative model

can learn the underlying probability distribution of the data (either implicitly or explicitly) to

synthesize new examples. Especially in the domain of images, generative models have shown a

lot of promise.

Figure 1.1. High-resolution photo realistic image generated by StyleGAN2 [33]. It is quite
difficult, even for a human, to tell whether these persons are fake or not.
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Earlier work on image generation was primarily focused on models with parametric

specification of the probability distribution. The most noticeable work in this direction are

PixelCNN [67] and Variational Autoencoders [38]. Generative Adversarial Networks or GANs

[19], on the other hand, do not explicitly parameterize the data distribution. Instead of learning

the parameters through maximum likelihood, GANs aim to sample new examples by learning

an approximation to a target data distribution by training two components: generators and

discriminators. The generators take random input and try to transform it to the data distribu-

tion while the discriminator tries to distinguish between generated samples and real examples.

Although training GAN models is relatively difficult compared to other models, the quality of

generated examples from GANs exceed any of the previous image generative models. Especially

with the availability of GPU resources and a large amount of data, GANs are able to achieve

unprecedented image quality, so much so it is now practically impossible for a human to discern

the difference between real vs fake images. For example, Figure 1.1 shows photo-realistic

high-resolution images generated by a state-of-the-art GAN model, StyleGAN2 [32]. As can be

seen from the figure, it is quite challenging to tell whether these persons are real or not.

While much research has been dedicated to enhancing the quality of generated images,

little attention has been paid to how biases in the training data or models can affect image

results. Such biases often revolve around race and gender, which can significantly impact various

downstream applications. As a result, debiasing generative models has become a critical area of

research as it helps to ensure that these models are more equitable and unbiased in their outputs.

This dissertation investigates different approaches to debiasing generative models and assesses

their efficacy. A brief overview of these approaches is presented below. Later, we describe each

of them in detail in their respective chapter.

2



1.1 Debiasing Image Search

In our society, generations of systemic biases have led to some professions being more

common among certain genders and races. This bias is also reflected in image search on stock

image repositories and search engines, e.g., a query like “male Asian administrative assistant”

may produce limited results. The pursuit of a utopian world demands providing content users

with an opportunity to present any profession with diverse racial and gender characteristics.

The limited choice of existing content for certain combinations of profession, race, and gender

presents a challenge to content providers. Current research dealing with bias in search mostly

focuses on re-ranking algorithms. However, these methods cannot create new content or change

the overall distribution of protected attributes in photos. To remedy these problems, we propose

a new task of high-fidelity image generation conditioning on multiple attributes from imbalanced

datasets. Our proposed task poses new sets of challenges for the state-of-the-art Generative

Adversarial Networks (GANs). In this work, we also propose a new training framework to

better address the challenges. We evaluate our framework rigorously on a real-world dataset and

perform user studies that show our model is preferable to the alternatives. This work is described

in Chapter 2.

1.2 Debiasing Image-to-Image Translation Models

Deep generative models have shown a lot of promise in various image-to-image transla-

tion tasks such as image enhancement and generating images from sketches. However, when

all the classes are not equally represented in the training data, these algorithms can fail for

underrepresented classes. For example, our experiments with the CelebA-HQ face dataset [30]

reveal that this bias is prevalent for infrequent attributes, e.g., eyeglasses and baldness. Even

when the input image clearly has eyeglasses, the image translation model is unable to create

a face with them. To remedy this problem, we propose a data and model agnostic, general

framework based on contrastive learning, re-sampling, and minority category supervision to
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debias existing image translation networks for various image-to-image translation tasks such

as super-resolution and sketch-to-image. Our experimental results from the real and synthetic

datasets show that our framework outperforms the baselines both quantitatively and qualitatively.

This work is described in Chapter 3.

1.3 Debiasing CLIP-based Text-to-Image Generative Mod-
els

Recently, CLIP (Contrastive Language-Image Pre-Training) [54] is gaining popularity in

various downstream applications, such as zero-shot image classifiers, text-to-image synthesis, etc.

However, despite being trained on a large dataset, the CLIP model suffers from biases against

protected attributes such as gender and race. While earlier work focuses on the implication of

such biases for image classification, to the best of our knowledge, no similar study has been done

for CLIP-based generative tasks. In this work, we first reveal the queries for which the CLIP

model biases the generated images in the text-to-image synthesis task. We also propose several

ways to mitigate the biases without retraining CLIP or the underlying generative model. This

work is described in Chapter 4.
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Chapter 2

Generating and Controlling Diversity in
Image Search

2.1 Introduction

Due to historic stereotypes that exist in our society, image search results can become

biased for certain sets of queries. This problem is particularly extreme for certain professions,

for example, Figure A.13 shows the top search results for the profession ‘plumber’ from Google

Image search1. As we can see, most top results are of young white men; this is a reflection of

societal stereotypes for this occupation. Similar types of results exist for other queries of various

professions such as ‘carpenter’, ‘machine operator’, ‘administrative assistant’, ‘cleaner’, and

so on, where the search results reveal biases in the gender, ethnicity, and age in the top results.

Unsurprisingly, due to such societal bias, some combinations of race and gender may have few

or no images in a content repository. For example, when we searched ‘female black (or African

American) machine operator’ or ‘male Asian administrative assistant’, we did not find relevant

images on Google Image search2 In addition, in rare instances, particular combinations of gender

and race can lead to individuals being portrayed inappropriately. We observed this behavior for

search queries like ‘female Asian plumber’ or ‘female Black (or African American) security

guard.’ This type of behavior is unwanted as it leads to dissatisfied consumers. This problem

1Search conducted in January, 2021 from California.
2When we first conducted this research. Search engines may have been updated since.
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Figure 2.1. Top image results retrieved from Google Image search for the query ‘plumber’ reveal
intrinsic biases.

affects both image search and stock platforms with paying customers.

In the presence of such paucity of content, current bias-mitigating re-ranking algorithms

are not helpful because they seek to re-order existing images relevant to a query [28, 8], but

cannot create new content nor increase the overall diversity within the results. For example,

if there is only one picture of a ‘male Asian administrative assistant’, existing strategies will

not help the user experience. Instead, imagine a machine that can generate photo-realistic high-

resolution images for such queries. Such engines would tremendously enrich the user experience

if end-consumers can access new content for any combination of attributes. Real images may

not exist, or if they do, there might be only a few images with little or no variation, or in the

worst case be inappropriate images. For such an application, generative models, in particular,

Generative Adversarial Networks (or GANs) [19], have great potential because of their ability to

produce photo-realistic images either unconditionally [32, 33] or conditionally [80, 41, 44, 42].

In light of these considerations, to address this bias and lack of diversity in image search,

we propose a new task: generating high-resolution images controlling for multiple attributes,

from imbalanced datasets. This task raises several new challenges. First, it is hard to define

specifically what to visualize when creating new content for different occupations. A real image

can be incredibly complex because of diverse backgrounds, various accessories, multiple people,
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Figure 2.2. High-resolution images generated for the set of keywords from our proposed model
‘Uniform+.’

and so on (which is apparent in Figure A.13). Therefore, directly collecting images from search

results using different queries will not lead to an optimal and clean dataset for training GAN

models. Second, for content to be consumable by the end-user, the generated images need to be

available in high-resolution. Unfortunately, current state-of-the-art GAN models for high-quality

(HQ) image generation, such as StyleGAN [32] or StyleGAN2 [33], learn image features without

any supervision and do not allow explicit control over attributes. While we can augment these

models with class-conditioning, trivial conditioning on attributes will not be sufficient for our task

because the imbalance in the training dataset across multiple classes (such as race, gender and

occupation) propagates to the generated images. Finally, we have observed that the automatic

metrics to evaluate the quality of the generated images, such as Frechet Inception Distance

(FID) [22] and classification accuracy, cannot sufficiently measure the image quality for our

proposed task. To rectify these challenges, we make the following contributions:

• To explicitly control the image generation process, we first augment the state-of-the-art

GAN model, StyleGAN2, with multi-class conditioning. To overcome the imbalance in

the dataset, we compare two training procedures: weighted loss and over-sampling the

minority class. Based on our finding from the comparison, we come up with a new training
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procedure that combines over-sampling with image augmentation which can effectively

handle the multiple-class imbalance. This training procedure is not specific to StyleGAN2

and thus can be applied to any generative model to combat bias in the dataset.

• As there is no existing dataset to train such models for debiasing image search results, we

also build a new high-quality dataset for this task (which we call Stock-Occupation-HQ)

and we describe the guidelines for the data collection, pre-processing, and annotation.

• Finally, we conduct both quantitative and qualitative evaluations to compare the perfor-

mance of all models. For quantitative evaluation, we calculate the widely used metric FID

[22] and classification accuracy (similar to [11]) which we call Attribute Matching Score.

But our experimental results reveal a tradeoff between these two metrics and prove them

insufficient to gauge the comparative quality of images. So, for qualitative evaluation, we

perform user studies on Amazon Mechanical Turk (AMT) which show the strength of our

proposed approach.

Generated images from our best performing model, Uniform+, are demonstrated in Figure 2.2

which show exciting results for combating bias in image search.

2.2 Related Work and Background

2.2.1 Bias in Image Search

To characterize the gender bias in image search results for a variety of occupations, the

authors of [34] collected the top 400 image results for 96 occupations from Google images, and

used human annotators to label them. They showed that the percentage of images of women in

Google’s 2014 results was 37%, and the fraction of gender anti-stereotypical images was only

22%, a number lower than expected. Moreover, they showed that sometimes images from gender

minorities are portrayed unprofessionally. They call this the ‘sexy carpenter’ problem. A more

recent study [8] shows that diversity in search has improved in the last five years, but not too
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significantly. For example, they show that the percentage of female participants has risen to 45%

in 2019, but the fraction of anti-stereotypical images has remained low (30% in Google 2019).

To mitigate such bias in search results, current research mainly focuses on developing re-ranking

algorithms that can show diversity in the top search results. For example, [28] propose a Fairness

Maximal Marginal Relevance (FMMR) retrieval algorithm to reflect diversity in the top image

search results. Similar work is explored in [8]. However, these methods can only mitigate bias

in the top results by re-ranking if many diverse images relevant to the query exist. This may

not hold for combinations of racial and gender attributes that are less common for a certain

profession. When these images do not exist, or only a few of them do, these methods cannot

diversify the overall search results. This suggests the need for a generative solution, where we

can always generate new content for any mixture of attributes.

2.2.2 Attribute-to-Image Synthesis Models

In recent years, Generative Adversarial Networks or GANs [19] have become very

popular in the domain of image generation. Originally, GANs were proposed to unconditionally

generate images from random noise. To exert control over the generation process, GANs

conditioned on class labels [48, 44, 73, 6] or text input have been proposed [80, 42, 41]. As

these models allow the explicit control of generation conditional on attributes, we can potentially

apply them to our proposed task. However, a common limitation of these models is their lack of

ability to produce images at high-resolution, which is one of the requirements for platforms that

provide content, like image search providers or stock image platforms.

2.2.3 High-Quality (HQ) Image Generation

For content platforms, the resolution of attribute-controlled generated images needs to be

as high as possible (preferably 1024×1024). Generating such high-quality images, however,

is significantly difficult because, at high resolution, it becomes easier for the discriminator to

tell the fake images from real ones and training can easily become unstable. For example,
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one of the class-conditioned generative models, BigGAN [6], can produce results at 512×512

pixel. Even at this smaller resolution (half of what is required), they show their models undergo

training collapses. Additionally, results for BigGAN are shown in the balanced dataset setting

(where each image belongs to only one class). Without class-conditioning, there exist only a

handful of models that can generate images at such a high-resolution spectrum. For example,

to stabilize the training process at high-resolution, a progressive GAN is proposed in [30],

where they grow the resolution of both generator and discriminator progressively, from 4×4 to

1024×1024. However, a key problem of that architecture is feature entanglement: it represents

faces holistically, which makes it difficult to modify eyes, for example, independently from the

rest of the face. StyleGAN [32] and its improved version StyleGAN2 [33] both combat this

entanglement problem by introducing a mapping network and adaptive instance normalization

(AdaIN) [23] into the progressive GAN.

However, both StyleGAN and StyleGAN2 learn disentangled representations from images

without any supervision and do not allow explicit control over attributes, which is crucial for our

task. Furthermore, they do not have any built-in mechanism that allows them to train under class

imbalance, where only a few examples exist for certain combinations of attributes. In this work,

we overcome these new challenges in our proposed task.

2.3 Our Approach

Our objective for this section is to propose models suitable for our new task of generating

HQ images for a rare combination of attributes to mitigate bias.

2.3.1 Base Network Selection

For choosing a base network, our priority is to make sure the synthesis model can generate

high-quality images. Specifically, the model needs to generate faces in great details because

they have to reflect the sensitive attributes clearly, such as race and gender. For these reasons,

we have found in our early experiments that the current attribute-controlled image-to-image

10



translation systems such as STGAN[44] and text-to-image synthesis generative models such

as DMGAN[80], CPGAN[42], Obj-GAN[41] were not a good fit , as the quality of images

degraded at high resolution (i.e. 1024×1024), and the salient features of diverse faces were lost.

Our early experiments with StyleGAN[32] and StyleGAN2[33], however, showed promis-

ing results. Being style-based generators, they were able to map both macro (such as styles of

different uniforms or backgrounds) and micro (such as facial attributes) features to a disentangled

latent space. Also, by mixing the latent codes at both these levels, they were able to introduce

diversity in synthesized images, which are key to visualize people of minority races and genders

in different jobs. Therefore, these models hold significant promise to combat the bias problem

in images in a new way. More importantly, both of these models can generate images at high

resolution, which is a requirement for stock platforms. In our experiments, StyleGAN2 yielded

better results than StyleGAN. Hence, we choose StyleGAN2 as our base network.

2.3.2 Introducing Explicit Control

Originally, StyleGAN2 was proposed to capture styles without supervision. But in our

case, we would also like to exert some control over the generation process. Before we describe

how we augment StyleGAN2 with multi-class conditioning, let us first briefly describe the basic

structure of StyleGAN [32] the latent codes z ∈ Z are first transformed to intermediate latent

space w ∈ W by a non-linear mapping network f : Z → W . Then these w are transformed

to “styles“, v = (vs,vb), which control the scale and bias in adaptive instance normalization

operations (AdaIN) [23] after each convolutional layer of the generators of progressive GAN

[30]. That is, AdaIN(x,v) = vs[(x− µ(x))/σ(x)]+ vb where x is the feature map. Thus, the

latent space W essentially controls styles within convolutional layers at each resolution through

AdaIN. It is shown in [32] that these design choices for StyleGAN lead to a less entangled latent

space in W compared to the input latent space in Z . StyleGAN2 [33] further improves on this

by redesigning its generator architecture and introducing a path length regularization into it to

better learn the mapping from latent codes to images.
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Figure 2.3. Model architecture and training framework for Uniform+. In addition to class-
conditioning with regularization, we introduce new sampling techniques to handle the class
imbalance (uniform sampling with augmentation).

Now, to explicitly control the generation process, we first one-hot encode each type

of attribute (occupation, gender, and race) and concatenate them together into a single vector

y. That is: y = [yoccupation|ygender|yrace]. Then, we use a feedforward network to embed these

features along with latent codes z. The output of the embedding is then fed into the generator

of StyleGAN2, Gθ . In our experiments, we have found that any other significant architectural

changes to StyleGAN2’s carefully designed generator lead to poor quality of images. For

example, these following variations lead to mode collapse very early in the training procedures:

(1) conditioning on mapped distribution W instead of random noise Z , and (2) conditioning

at each mapping layer from Z to W . For the same reason, we do not apply any regularization

to the generators like BigGAN [6] does. Rather, we make changes to the discriminator Dφ

and apply the zero-centered gradient penalty from [47] to stabilize the high-quality conditional

image generation process. Specifically, if Dφ (x|y) is the discriminator score for an image

x with condition y, then the R regularizer is as follows: R(φ) = γ

2 ||∇Dφ (x|y)||2. Here, γ
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is a hyperparameter to control the regularization process. To calculate the score from the

discriminator, following their techniques, we have a separate real/fake discriminator for each

class, and we predict separate logits for them. These discriminators share layers except the

last layer, fφ (x), which outputs a score for each class (thus, fφ (x) has the same dimension as

y). Then, we perform an element-wise multiplication with our attribute vector to select the

corresponding index for calculating the logit in the loss function. That is:

Dφ (x|y) = ∑ fφ (x)⊙y (2.1)

We have also experimented using KL loss between attributes and predicted scores in the dis-

criminator but found that it quickly leads to divergence. For training, we use the following non

saturating loss [19] which is used in [33] for high-quality face generation from their Flickr-Faces-

HQ dataset (FFHQ) [32]:

L (θ ,φ) = Ep(z)[ f (Dφ (Gθ (z|y)))]+Ep(D(x))[ f (−Dφ (x|y))] (2.2)

where x is the input image, y is the attribute vector, and f (t) =− log(1+exp(−t)). This finalizes

the design of our core architecture. We refer to this model as ‘Vanilla.‘

2.3.3 Combating Class Imbalance

Our vanilla model does not address the bias in the dataset that is needed to generate more

examples with rare attributes. Unfortunately, similar to multi-class conditioning experiments, any

major deviation from StyleGAN2’s meticulously designed architecture to cope with bias leads

to either poor results or training divergence. This motivates looking for alternative options and

designing components that can be used to train any generative model to battle the bias problem.

Below we describe each of them.

Weighted: Our first idea for improvement comes from cost-sensitive losses [17], where scores
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for different classes are weighted to handle the imbalance of classes in the dataset in classifi-

cation tasks. For weighting, we make the following changes in the output of the discriminator

(Equation2.1) which is used in the loss function:

Dφ (x|y) = ∑ fφ (x)⊙ (m⊙y) (2.3)

where m is the weight vector and has the same dimension as y. If a class needs weighting, we set

its corresponding index in m to an appropriate weight (described in 2.5.1). Otherwise, it is set to

1. We call this variation ‘Weighted’.

Uniform: To explore another way to cope with bias, we note that the distribution of different

attributes in the dataset is not uniform, but we can oversample from the dataset to create a

uniform distribution during training. Another way to cope with rare categories in the data is to

oversample from the dataset to create a uniform distribution during training. This can lead to

better mapping of rare combinations of attributes. However, this may also lead to overfitting the

discriminator, as the same images from rare classes appear more times and potentially destabilize

the training. Our experimental results confirm this hypothesis. We observe that the FID score

drops initially, but at a certain point it starts to increase continuously, and training begins to

diverge. Nevertheless, we observed some improvement over Weighted. In the rest of the work,

this variation is called ‘Uniform.’

Uniform+: To stabilize Uniform, the key idea is to find a way of preventing overfitting due to the

repetition of the same images from minor classes. Therefore, we hypothesize that augmentation

can help if it can be applied appropriately within the discriminator. To overcome overfitting that

arises from limited data, StyleGAN2-ADA [31] was recently proposed. They introduce Adaptive

Discriminator Augmentation (ADA in short) which uses a wide range of augmentations with a

probability p < 1 to prevent the discriminator from overfitting. They show that as long as the

probability of a particular augmentation transformation is less than 1, the discriminator is still

able to recover the original distribution. Given the effectiveness such augmentation to prevent
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overfitting of the discriminator, we adapt it in our Uniform model to stabilize it. This leads to

our final variation ‘Uniform+’ (shown in Figure 2.3). Our experiments show the effectiveness of

this training procedure. We also adapt ADA in our vanilla architecture for comparison which

we refer to simply as ‘ADA.’ It should be noted that the training procedure in Uniform+ is not

specific to StyleGAN2 and can applied to other generative models as well.

2.4 Dataset

There is no existing dataset which we can use for our proposed task. Therefore, we have

built a new dataset. In the following, we discuss how we have collected, preprocessed, and

annotated the images in detail.

2.4.1 Collection

To obtain images for different occupations, we first construct our search query according

to [34]. They conducted a study of which professions show the most racial and gender bias.

From their list, we choose the following 14 professions: ‘executive manager’, ‘administrative

assistant’, ‘nurse’, ‘farmer’, ‘military person’, ‘security guard’, ‘truck driver’, ‘cleaner’, ‘carpen-

ter’, ‘plumber’, ‘machine operator’, ‘technical support person’, ‘software engineer’, ‘writer.’ We

have collected around 10 thousand HQ raw images for these 14 occupations using Adobe stock

API. We have chosen these 14 professions primarily because of their distinct styles or attires (we

observed around 95% accuracy for top-3 prediction when we trained a classifier on them).

Table 2.1. Data statistics of Stock-Occupation-HQ. The breakdown shows the imbalance in race
and gender across different professions.

Attributes Exec. Mangr. Admin. Asst. Nurse Farmer Military Security Truck Driver Cleaner Carpenter Plumber Machine Op. Tech. Support Soft. Eng. Writers

Male 447 68 297 659 164 374 488 211 379 582 338 127 199 195
Female 302 268 959 260 119 72 164 406 113 134 110 251 166 261
White 577 278 735 701 241 413 567 531 444 656 377 328 254 360
Black 96 12 263 59 26 25 40 50 12 37 25 22 42 41
Asian 38 38 163 106 10 6 35 29 17 12 32 17 30 38
Other 38 8 95 53 6 2 10 7 19 11 14 11 39 17
Total 749 336 1256 919 283 446 652 617 492 716 448 378 365 456
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Figure 2.4. Real images from each profession after preprocessing

2.4.2 Preprocessing

A lot of images in this dataset are not ideal for training a generative model. First of

all, many of the images do not have people in them. Even if an image contains humans, there

can be multiple persons. Moreover, an image may contain complex backgrounds or complex

foregrounds, which can make the task difficult for existing generative models to learn. Figure

A.13 shows this. To overcome these challenges, we first use dlib’s [37] face detector to detect

faces, and then we use a custom padding scheme to crop the image around the face to include

the upper body portion of each image. This overcomes the aforementioned challenges, i.e.,

keeping the problem simple while allowing critical information such as race, age, gender, and

accessories/attire of different occupations intact. Still, we have noticed that a lot of images are

not representative of the original occupation and contain generic photos. This required us to

manually inspect the images and pick the best ones. After curating, the final dataset contains

8,113 HQ (1024×1024) images in total. Figure 2.4 shows one example from each job, in the

same order as the list above3.

2.4.3 Annotating

To generate HQ images from attributes, we first need to label each image. For detecting

gender and race automatically, we use a ResNet32-based [20] classifier that has been pre-trained

3Image attribution: okrasiuk, michaeljung, Günter Menzl, Andrey Popov, Kadmy, Piotr Marcinski, Kurhan,
ronstik, michaeljung, and Al Troin on stock.adobe.com.
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on the recently proposed dataset on fairness tasks: FairFace [29]. Its average accuracy is 95.7%

for gender and 81.5% for race (Table 8 in [29]). Using it, we label each image for the following

attributes, Sex: Male, Female, Race: White, Black, Asian, and Other Races. The overall statistics

of our proposed dataset Stock-Occupation-HQ (SOHQ) is provided in Table 2.1. As can be seen

from the table, the original distribution is highly imbalanced across different variables. This

imbalance makes class conditioned image generation extremely difficult. Note that we do not

introduce generic photos to increase diversity in each profession.

2.5 Experiments

2.5.1 Setup

Implementation details: We build our models in TensorFlow and we use the correspond-

ing official codebase of StyleGAN24 and StyleGAN2-ADA5 for base networks. As there are

14 professions, 2 genders, and 4 races, the attribute vector is 20 dimensional. For pretraining,

we use two different datasets. First, we use StyleGAN2’s pre-trained weights on the FFHQ

dataset [32] in our Vanilla model, which we refer to as ‘Vanilla-FFHQ.’ However, images in

our dataset are more challenging than FFHQ. This is because in addition to faces, our images

contain various accessories, instruments, attires, and backgrounds related to the profession.

Therefore, for pretraining purposes, we collected a large number of images (around 34 thousand)

for 23 different professions and preprocessed them automatically (using our face detection and

alignment pipeline). We call this dataset ‘U-SOHQ,’ for Uncurated Stock-Occupation HQ. We

trained StyleGAN2 unconditionally on this dataset until convergence and use its pre-trained

weights in all our models except for Vanilla-FFHQ. For Weighted, we set a weight of 2 for the

‘Female’ class, and 4 for the ‘Black’ and ‘Asian’ classes, based on their aggregated frequency.

For ADA and the Uniform+ model, we set the probability of augmentation to 0.7. Finally, we set

γ to 10 in the R regularizer (see Section 2.3.2) for all models.

4https://github.com/NVlabs/stylegan2
5https://github.com/NVlabs/stylegan2-ada

17



Metrics: For our first metric, we use the popular FID [22] score to quantify the quality

of the generated images. FID measures the maximum distance between Gaussians fitted to the

distributions of real and fake images. As the original distribution is biased, for a fair comparison,

we sample attributes from the distribution of attributes in our dataset to generate images and then

compute the FID with the real data. To measure how well the generated faces align with the given

attributes, we measure the percentage of the time the given attributes match with the predicted

ones. We call this metric ‘Attribute Matching Score’ (AMS). This is similar to classification

error used in [11]. To predict the attributes from the generated images, we first generate 100

images each for all 112 combinations of race, gender, and occupation (11,200 images). Then,

we detect race and gender using the classifier trained on FairFace [29]. For detecting profession

we train a ResNet56 [20] on our dataset which achieves 80.28% top-1 accuracy (94.57% top-3).

Using them, we compute the AMS for each attribute.

2.5.2 Quantitative Results

Table 2.2 shows the quantitative results for all models for all metrics. Under AMS, we

show the matching scores for individual attributes (G/R/O) and the average of all three. On

average, Uniform+ achieves the best results, although its FID is relatively high. “All 3” refers

to the stricter criterion that all three attributes are correct simultaneously, and Uniform+ again

has the best score. The FID score improves significantly between the Vanilla models when

we use pre-trained weights from U-SOHQ instead of FFHQ. However, this results in lower

attribute matching scores. We observe similar results from ADA (our conditional version of

StyleGAN2-ADA [31]). While it achieves the lowest FID score, its combined AMS is the worst

among all models.

We can explain this phenomenon as follows: let us assume that one model faces ‘mode

collapse’ and thus outputs one image for each set of attributes. In this case, it is easy to generate

an image that is faithful to the given attributes, so the AMS score will be high, but due to low

variance in the images, the FID score will be high. On the other hand, imagine a model that
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Table 2.2. Experimental results. Van-FFHQ: Vanilla-FFHQ, G: Gender, R: Race, O: Occupation.
All models were pre-trained with U-SOHQ except Vanilla-FFHQ. The results show that Uniform+
achieves the best tradeoff between FID and AMS.

Model FID↓ AMS (%)↑

G R O Avg. All 3

Van-FFHQ 21.11 86.81 38.66 63.66 63.04 23.71
Vanilla 14.89 86.00 34.72 60.14 60.29 20.34
ADA 13.89 80.78 34.76 67.79 61.11 19.99
Weighted 15.59 85.25 41.55 62.70 63.17 23.57
Uniform 22.75 85.30 43.77 69.20 66.09 27.21
Uniform+ 17.34 83.33 51.81 63.48 66.21 27.50

produces diverse sets of background and styles of attires without being faithful to subtle facial

attributes. In this case, it is possible to achieve a lower FID but the AMS will also decrease.

Hence there is a tradeoff where a model has to achieve as low an FID as possible while keeping

the AMS high.

Interestingly, Weighted comes close to achieving this goal. Its FID is lower while

the attribute matching scores are higher. Uniform further improves on these matching scores.

Unfortunately, Uniform has training divergence issues due to the repetition of the same images -

that is, after reaching a minimum FID score, it starts increasing again as we continue training.

The lowest FID score we were able to achieve for Uniform is 22.75, which is the worst of all the

models. To rectify this, we introduced Uniform+, which uses augmentations from StyleGAN2-

ADA [31]. We can see it achieves the highest combined AMS while keeping the FID score much

lower than Uniform. Our training logs did not suggest any indication of divergence or mode

collapse for Uniform+. Although its individual scores for gender and occupation are lower than

Uniform, we will show in the following qualitative analysis that the performance gap is mainly

due to similar images generated by Uniform.
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Figure 2.5. Generated images from the four highest-scoring models show qualitative differences.
The qualitative inspection reveals that Uniform+’s images achieve a better balance in all aspects.

Figure 2.6. Random examples from Uniform & Uniform+ for ‘male white machine operator’
query. This figure shows Uniform often generates similar-looking images (due to mode collapse).
However, this is not the case for Uniform+.

2.5.3 Qualitative Results

For qualitative analysis, we use the best performing models under each metric, namely

Vanilla-FFHQ, ADA, Uniform, and Uniform+. We evaluate their generalization performance by

using the example queries from the introduction: ‘female Black machine operator’ and ‘male

Asian administrative assistant.’ In our dataset, there is no image of the former, and just one

image of the latter, so this is a strong challenge for the models. Figure 2.5 shows the results.

First, as can be seen in the Figure, all models struggle with these queries, as no model

gets them all right. The first model, Vanilla-FFHQ, has relatively low variability, especially in
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the female faces, as reflected in its FID score. It is able to generate correct ‘female’ and ‘male’

faces, reflecting its gender AMS. However, the generated faces (especially the males) are not

racially correct, and the clothes do not appear to fit the intended occupation. ADA, on the other

hand, shows a lot of variability in the generated images, but makes mistakes in all three attributes.

Uniform is able to generate racially correct faces for both queries in most cases, but does not

generalize well to the unseen query ‘female Black machine operator’ producing mostly male

faces. On the other hand, Uniform+ generates images that are faithful to the given attributes,

resulting in the highest combined AMS.

As we mentioned before, a model can perform better under AMS if it generates similar

types of representative images for a query. We will now show that this is the case for Uniform

but not for Uniform+. Figure 2.6 contrasts these two models. We observe that most images from

Uniform have some artifacts in them, and similar types of images appear more than once (e.g.,

similar faces with yellow hats in similar orientations). This is clearly due to the repetition of

images in its training set (note that we oversample in Uniform). This also shows early signs of

mode collapse. Second, even though images are similar, the attributes are generally correct, so it

has sacrificed diversity in the service of attribute accuracy. Unlike Uniform, Uniform+ is trained

with more diverse images (due to augmentation). As a result, its images do not have artifacts or

repetitions in them. This explains the performance gap we see between Uniform and Uniform+.

Human Evaluation. We have also performed a user study by hiring Amazon Mechanical

Turk (AMT) workers to qualitatively evaluate the performance of the models. For this purpose,

we choose ADA, Uniform, and Uniform+ and generate 100 examples for each of them using

different queries. Based on our quantitative and qualitative results, we designed three different

studies.

In the first study (called the Attribute Match Study), we ask evaluators to match the

attributes of a generated image with the query that generated it, akin to the AMS metric. Since
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Table 2.3. Human evaluation results (in percentage). For the last two studies, the percentage is
calculated among the considered models.

Study Type ADA Uniform Uniform+

Attribute Match Study↑

Gender 88.0 89.0 88.0
Race 39.0 62.0 69.0
Occupation 37.0 38.0 44.0
All 3 11.0 14.0 27.0

Preference Study↑ 20.2 23.0 56.8
Diversity Study↑ - 15.0 85.0

matching attributes does not capture the comparative quality of the images among the models

(for example, see Figure 2.5), we performed a Preference Study. Here, we take one image from

each of the three models, randomly shuffle them, and then we ask which image among the three

is preferred by the evaluator for a query. Finally, in order to check for diversity of responses,

we conducted a Diversity Study for Uniform and Uniform+ only. We presented a collage of 5

images from each of the models and we ask which one (after shuffling the order) generates more

diverse images for a given query. Illustrative examples of each of these studies are provided in

the supplementary material. We assign 5 unique Turkers for each task.

The results are presented in Table 2.3 and described below. For the Attribute Match Study,

we report the percentage match. The majority vote among evaluators is matched to the attribute

used in the query generating the image (this is similar to the automatic scores we calculated

for AMS in Table 2.2). For the Preference and Diversity studies, we report the percentage of

vote received by each of the models. The results from the human evaluation agree with our

quantitative evaluation on Attribute Match. We see that Uniform+ gets the highest percentage of

votes in most cases. As before, we can see Uniform has performed slightly better for matching

one of the attributes (namely Gender). Previously, it performed better under AMS for matching

Occupation. This indicates that Uniform performs better than Uniform+ in at least one aspect.

While the numbers here are roughly consistent with the AMS scores, the Race scores are much

higher and the Occupation scores much lower, revealing the inherent weakness of using automatic
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Figure 2.7. Curated collection of generated images from Uniform+ (from left to right, top to
bottom): ‘exec. manager’, ‘admin. assistant’, ‘nurse’, ‘farmer’, ‘military’, ‘security’, ‘truck
driver’, ‘cleaner’, ‘carpenter’, ‘plumber’, ‘machine op. ’, ‘tech. support’, ‘soft. eng. ’, ‘writer.’
Zoom in for a better view.

metrics to evaluate images for this task. When images from all three models are presented side by

side in the Preference Study, 56.8% of the time Uniform+’s images are preferred, which is more

than twice as frequent as the other two models, again demonstrating the strength of Uniform+.

Finally, when asked which model between Uniform and Uniform+ shows more diversity for

a given query, Uniform+ received 85% of the total votes. This confirms our hypothesis that

Uniform’s occasional better performance is mostly due generating similar-looking images. Thus,

based on our analysis, we find Uniform+’s performance strongest for our task. In Figure 2.7,

we show curated examples of HQ generated images from Uniform+ where we pick one image

across different combination of race and gender for each job.

2.6 Conclusion

In this work, we have proposed a new task of high-resolution image generation by

controlling multiple attributes from imbalanced datasets to combat bias in image search. Our

work makes several contributions to tackle new challenges for this task. First, we show how we

can leverage existing state-of-the-art models for high-quality image generation and introduce

explicit control over the generation process. Moreover, we show the challenges in training

conditional models under a biased setting and propose new frameworks which can be applied
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to any generative models by practitioners. We also produced a new, curated dataset as well as

a large uncurated dataset for pretraining for the proposed task. Finally, we perform rigorous

experiments that show the effectiveness of our proposed approach and reveal the weakness of the

automatic metrics to gauge the quality of generated images for our task. We hope our design

principles, as well as experimental studies, will benefit researchers to further improve on the

models and propose new evaluation metrics for similar tasks.

Chapter 2, in full, is a reprint of the material as it appears in IEEE Winter Conference

on Applications of Computer Vision (WACV), 2022. Md Mehrab Tanjim, Ritwik Sinha,

Krishna Kumar Singh, Sridhar Mahadevan, David Arbour, Moumita Sinha, Garrison W. Cottrell,

“Generating and Controlling Diversity in Image Search”. The dissertation author was the primary

investigator and author of this paper.
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Chapter 3

Debiasing Image-to-Image Translation
Models

3.1 Introduction

Generative Adversarial Networks (GANs) [19] have shown significant promise in syn-

thesizing high-fidelity images [32, 33]. As a result, they have been adapted to achieve stunning

results in many image-to-image translation (I2I) tasks, such as super-resolution [68, 39, 74],

sketch-to-image [57, 10, 9], image inpainting [15, 75], etc. In these tasks, most current work

focuses on the quality of generated results.

In this work, we study the capacity of existing image-to-image translation models to

generate attributes that are in the minority in the training set. Figure 3.1 shows examples from

the Pixel2Style2Pixel (pSp) model [55] network, which is one of the most popular and successful

I2I models. The results for super-resolution and sketch-to-image tasks show an incredible visual

quality of synthesized images, but also show an utter failure to generate minority visual attributes,

such as eyeglasses (about 5% of the data) or baldness (about 2%), despite being clearly visible in

the low-resolution or sketch input.

We have found that this problem is not limited to one particular architecture or dataset;

whenever there is class imbalance in the training set, existing I2I translation models exhibit

similar limitations. For example, we have trained the popular I2I translation model, pix2pix

[26], on two synthetic datasets and found that the generated images are biased towards majority
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Figure 3.1. Examples of how Pixel2Style2Pixel (pSp) [55] is biased against minority attributes
in the CelebA-HQ dataset [30]. We also show results from our debiasing framework (Ours).

attributes. This bias in I2I translation models can have a negative impact on various important

downstream applications (e.g., image enhancement by super-resolution).

Here, we identify the need to debias I2I translation models, and propose a general

framework to solve it. Normally used debiasing techniques, such as re-sampling [64, 7] and

auxiliary classifier loss [50, 60], have not been explored for I2I. In this work, we showcase

their success for I2I tasks. However, note that these methods only operate at the input level (re-

sampling), or at final generation (pre-trained classifier). Without additional constraint in between,

the latent features of biased classes can still become similar to the codes of the non-biased

classes at the encoding level. This can prevent the decoder from learning a proper mapping

between the latent codes and the output images from minority and majority classes during the

generation process. To overcome this issue, we apply supervised contrastive learning during

training to separate the encoded features of the minority from the majority, which helps the

decoder to capture the features necessary to generate images with the correct attributes for both

classes. We further conduct extensive experiments to show the effectiveness of our method on

super-resolution and sketch-to-image I2I tasks. Figure 3.1 also shows how our method overcomes

the bias problem for the pSp network. Note that our framework is agnostic to the particular

encoder/decoder architecture.
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Contributions:

1) We identify the bias problem in image-to-image translation and propose a new task

of debiasing these models. 2) We propose a novel contrastive learning-based approach which

outperforms the baselines both quantitatively and qualitatively. 3) Finally, we show that our

model generalizes well, we apply it to multiple image-to-image translation tasks and datasets.

3.2 Related Work

Image-to-Image Translation. The goal of image-to-image translation models is to

map images from a source domain (e.g., low resolution input) to images of a target domain

(e.g., high resolution output), i.e., conditional image generation. The most notable work in this

direction is pix2pix [26], where they show that conditional GANs can be used to solve a wide

variety of image-to-image translation tasks. Motivated by their success, researchers have adopted

specific conditional GAN architectures to solve specific image-to-image translation problems,

for example, super-resolution [68, 39, 74], sketch-to-image [57, 10, 9], semantic label-to-image

[52, 46, 81], unpaired translation [79, 45], or multi-modal image synthesis [12, 24]. However,

most of these models are application-specific and may not generate high-resolution outputs.

For this problem, Pixel2Style2Pixel (pSp) [55] achieves promising results. Motivated by

the capabilities of StyleGAN2 [33] to generate photo-realistic images, they train an encoder to

project source images into the latent space of a pre-trained StyleGAN2 to solve image-to-image

translation tasks. They show the effectiveness of their approach on tasks such as super-resolution,

sketch-to-image, face frontalization, etc. Hence, we have chosen their model for conducting our

experiments. Additionally, we have used popular pix2pix model [26] to test the generalizability

of our approach.

Debiasing Frameworks. Bias and fairness have recently received a great deal of attention

in the research community. Researchers have identified how the training datasets can suffer

from various biases [66, 35, 65] and how it can lead to undesired behaviors in various image

classification networks [61, 2, 21, 62, 14]. Some recent work explores using generative models
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to create more balanced datasets for recognition tasks. For example, [4] creates synthetic images

with latent space exploration so that bias in the classification network can be algorithmically

measured. Similarly, to mitigate bias in classification networks, [3] adapted a variational

autoencoder to learn the probability distribution of latent features. Based on the probability

distribution, they re-sample those latent images which have lower probability to balance the

dataset during training. There is limited work that aims to reduce bias for image generation

itself; mostly, work has focused on the unconditional generation task to generate less biased

distributions [58, 76]. All of these approaches focus on creating a balanced dataset, rectifying

problems in the classification network, or doing unconditional generation.

In the case of debiasing image translation models, very few frameworks exist. [27] pro-

posed debiasing I2IT models by using posterior sampling via gradient optimization, i.e., finding

the optimal latent codes given the input. However, their application is limited in the case of

reconstruction from noisy input, such as denoising or super-resolution. Furthermore, their debias-

ing method is not applicable to encoder-decoder architectures, which is the common architecture

for I2IT models. Similarly, other works [69, 25] are either specific to model architectures, thus

limiting the scope to apply their ideas to latest SOTA I2IT models, or need the generator to be

retrained for learning a debiased representation. In this work, we propose a framework that can

be applied to any I2IT tasks and models. Our proposed framework intercepts the encoding stage

and it can even work for frozen generators (e.g., a frozen StyleGAN2 generator). Additionally,

unlike all previous works, our framework can debias while maintaining high-quality. We describe

our proposed framework in the following section.

3.3 Approach

In order to tackle the bias problem in the image-to-image translation models, we follow

the common setting for the most of the debiasing work (e.g. [61, 2, 21, 62, 14]): we assume the

bias is known or can be measured. In this section, we first discuss how we measure bias in the
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Table 3.1. Bias analysis in the CelebA-HQ [30] dataset. The least three values in Percentage
and F1 Score on Generated are shown in bold.

Attribute Bald Wearing Hat Eyeglasses Blond Hair Bangs Black Hair Male Heavy Makeup High Cheekbones Smiling

Percentage ↓ 2.37 3.57 4.89 17.09 18.08 21.97 36.86 45.69 46.16 46.97
F1 Score on Real 0.8142 0.8908 0.9825 0.8483 0.8756 0.8186 0.9791 0.8906 0.8576 0.9333

F1 Score on Generated ↓ 0.7216 0.2500 0.0984 0.8288 0.8393 0.7725 0.9653 0.8444 0.8235 0.9089

Celeb-HQ dataset for the image-to-image translation task. Next, we introduce our debiasing

framework.

3.3.1 Measuring the Bias

We use two main criteria to detect bias. The first criteria is simple and straightforward:

sort the attributes by the fraction of images in which they occur and select the attributes with

lower fractions. Naturally, if images for a particular attribute are rare, then generation can

become skewed against it. The second criteria is based on the ability to detect the attribute. This

is important because we would like to reliably evaluate the performance of the model, and thus,

we should select the attributes for which the classifiers show high accuracy.

To apply these criteria, we first train a ResNet152 classifier [20] on the same training

set as Pixel2Style2Pixel [55] (pSp) and filter any attribute that shows a low F1 score (using

a threshold of 0.8). For example, we observed an F1 classifier score higher than 0.95 for

‘Eyeglasses’ but a score of 0.0 for ‘Blurry’ which indicates ‘Eyeglasses’ clearly has better image

feature representation than ‘Blurry.’ We therefore choose attributes that have high F1 scores and

are rare in the dataset, providing us with rare attributes that are easily labeled automatically. To

validate that being a minority in the training dataset can pose a bias problem for I2I task, we

calculate the classifier F1 scores on generated images and assess the performance on minority

classes. Table B.2 shows F1 scores on generated images along with the percentage of biased

class and classifier F1 scores on the ground truth. Unsurprisingly, the under-performance is most

pronounced in the attributes that are rare. There is a significant drop in the F1 scores between

the real and generated images, when the attribute is in less than 5% of the images. We also see
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this qualitatively in Figure 3.1. Additional examples are shown in the supplementary material.

Here, we can see that none of the generated images from the pre-trained pSp network for either

of the tasks faithfully reconstruct the attributes, although they are clearly visible in the input

images. We also run the classifier on the input images to verify this (scores are included in the

supplementary). This indicates the input images have information about the attributes and the

pSp network should be able to reconstruct them. In the presence of bias, the model can also

undesirably add some features. We can see from Figure 3.1, this is the case for ‘Bald’, where the

model is hallucinating hair. These errors can have a detrimental impact on various downstream

applications. Therefore, in this work, we address this problem and propose a general debiasing

framework. For debiasing, we select the first 3 attributes from Table B.2, i.e.,‘Bald’, ‘Wearing

Hat’, and ‘Eyeglasses.’ It is worth mentioning, although different tasks might require different

ways of measuring bias, our debiasing framework is designed to be agnostic of how the bias is

measured. In the following, we discuss our proposed debiasing framework.

3.3.2 Our Debiasing Framework

To mitigate bias in existing image-to-image translation models, the first insight comes

from the exploration of images in the latent space. When the images from a certain group (e.g.,

images with eyeglasses or bald) are rare, their representation in the latent space can become

similar to the majority group. As a result, the model becomes biased to frequent patterns. To

remedy this problem, the key idea is to separate the latent codes for minority and majority groups,

allowing the model to generate from their respective distributions independently.

A simple way to solve this during training is to over-sample the minority. Over-sampling

the minority forces the network to see more instances of rare images and helps it encode the

attributes. This is our first step towards debiasing is Step I in Figure 3.2. Although re-sampling

is considered a general-trick for class imbalance problems, its effectiveness in image translation

tasks has not been explored before. In some cases, it has been shown to not be effective [64, 63].

To improve on this, we propose using metric learning based losses [13, 71] to further separate
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Figure 3.2. Our proposed debiasing framework. We first start by creating a balanced batch for a
given attribute/class (Step I). Then, we apply supervised contrastive loss on the latent features
(Step II). Finally, we apply an auxiliary classifier loss on the generated images (Step III).

the latent codes from different groups or classes. Here, we apply supervised contrastive loss [36].

This loss pulls together the representation of images from the same class (whether minority or

majority) in the latent space and pushes them apart if from different classes. Mathematically,

Ls =− ∑
i∈I

1
|P(i)| ∑

p∈P(i)
log

exp(zi·zp)/τ

∑x∈X (i) exp(zi·zx)/τ
(3.1)

Here, i ∈ I ≡ 1, . . . ,N (N is the batch size) is the index of an arbitrary sampled image Ii from

the set of all images I , X (i)≡ I / {i}, P(i)≡ {p ∈ X (i) : yp = yi} (y is the binary label or

class of that image), zi = E(Ii) is the latent feature representation of the ith image, Ii after it goes

through the encoder E, and τ is a scalar temperature parameter. The positive pairs zp in the

supervised contrastive loss are obtained from the images that belong to same class and negative

pairs are the images that belong to different classes. For example, images for ‘Eyeglasses’ will

have positive pairs among themselves and images without ‘Eyeglasses’ will be the negative pairs

in this case (shown as positive and negative examples in Figure 3.2). We should mention that

we L2 normalize the latent features to get the corresponding directions for applying supervised

contrastive loss. However, the unit vectors or directions may not be suitable for generation. For

this purpose, we pass the latent codes, zi, through a multi-layer perceptron (MLP) layer, φ , after

we have applied the Ls loss. The decoder or generator G then takes φ(zi) as inputs for generating

the target images. This is the second step in our framework (Figure 3.2 Step II).
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Although we apply the contrastive loss in a supervised manner, and we are separating

the latent codes of minorities and majorities, this may not always give the generator, G, enough

incentive to focus on generating the particular attribute. So, to enforce this constraint further

during the generation process, we use an auxiliary classifier A to predict the desired attribute on

the generated images, G(φ(zi)), from the decoder and apply binary cross entropy loss:

Lc =− 1
|I | ∑

i∈I

yi · log(ŷi)+(1− yi) · (1− log(ŷi)), (3.2)

where ŷi = A (G(φ(zi))). This can further assist the supervised contrastive loss, Ls, to separate

the latent codes such that the desired attribute can be generated more easily. The final loss

function is as follows:

L = Lo +λs ∗Ls +λc ∗Lc, (3.3)

where Lo is the original loss function used to train the image-to-image translation model without

our changes, Ls is the supervised contrastive loss, and Lc is the auxiliary binary cross entropy

loss. The hyperparameters λs and λc balance the different losses. One thing to note from

our debiasing steps is that our framework has no dependency on a specific encoder-decoder

architecture. Thus, our approach generalizes to any image translation model.

3.4 Experiments

Dataset. We experiment on datasets where the bias occurs naturally. We also create two

synthetically biased datasets.

1) CelebA-HQ. For experiments with human faces, we have selected the CelebA-HQ

[30] dataset. As mentioned previously, in this dataset, the bias occurs naturally. The details on

our train-validation-test split are described in the supplementary. 2) Bags and Shoes. Our first

synthetic dataset consists of images of bags from ‘edge2bags’ [26] and shoes from ‘edge2shoes’

[26]. We have selected a total of 5000 images, where 4950 images belong to ‘Shoes’ category,

and the remaining 50 are from ‘Bags’ (99:1 bias ratio). We call this dataset ‘Bags and Shoes.’
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We separately keep 200 images in total for both validation and test set. 3) Cats and Dogs. For

this dataset, we select animal faces from AFHQ [12]. Specifically, we have selected faces of

Cats and Dogs. The training, validation, and testing split follow the same strategy as ‘Bags and

Shoes.’ In this dataset, the majority class is ‘Cats.’

Tasks and Models. For experiments with faces, we select two popular image-to-image

translation tasks, namely, super-resolution and sketch-to-face. For performing these translation

tasks on human faces, we have selected one of the recently proposed image-to-image translation

models, Pixel2Style2Pixel (pSp) [55]. As debiasing the image-to-image translation task is new,

there are no existing baselines. Hence, for comparison, we created our own baseline and variants

of our model: 1) Vanilla. Original pSp network without any changes. We train the network from

scratch on our dataset for each of the attributes. 2) Sampling Baseline. This is a trivial baseline

where images from the minority class are resampled to create a balanced batch (our Step I). We

also apply data augmentations (e.g. shifting, shearing, scaling, horizontal flipping, etc.) to all

images when re-sampling. 3) Ours (I+II) In this model, we take the first two steps from our

pipeline, that is re-sampling and applying supervised contrastive loss (Equation 3.1), Ls, during

the encoding-decoding phase. 4) Ours (I+III) Here, we only consider re-sampling and applying

auxiliary loss (Equation 3.2), Lc. 5) Ours (I+II+III) All three components in our debiasing

framework.

For all of our experiments with pSp, we use the same frozen StyleGAN2 as the decoder,

pre-trained on FFHQ (which has good coverage for accessories like eyeglasses, hats, etc.). Using

this network, we were able to generate rare features in Celeb-HQ such as eyeglasses, hats,

etc. (Figure 3.1, 3.3). This shows that the latent codes are already available in the pre-trained

StyleGAN2 generator network. Any problems, therefore, lie in pSp’s encoder, which becomes

biased during training with a biased dataset (e.g. Celeb-HQ).

Our debiasing framework is not only limited to the pSp network and human faces. We

can apply it to different I2I translation architectures, and images from domains other than human

faces. To show this, we have chosen another popular image-to-image translation network, pix2pix
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[26], and perform edge-to-image task on our synthetic datasets, namely ‘Bags and Shoes’, and

‘Cats and Dogs.’ Similar to pSp, we create different variants of our model for pix2pix. More

details of our data augmentations and training procedures for both models can be found in the

supplementary.

Evaluation. To measure how well the models faithfully generate the attribute (or absence

of it), we report the classifier prediction scores on the generated images. We convert all scores to

the same scale (between 0 and 100). A model is better if it obtains high scores on the minority

group while maintaining the majority group performance. For fairness, we keep the classifiers

for evaluation different from our models (more details in the supplementary). For the super-

resolution task with pSp, we also report Learned Perceptual Image Patch Similarity (LPIPS) [77]

and MSE in order to evaluate whether our generated images overall match the target images. For

experiments with pix2pix, we perform edge-to-image synthesis; given the loss of information in

this task, we do not consider there to be a ‘ground truth’ image, so LPIPS/MSE do not apply. In

this case, we report Fréchet Inception Distance (FID) [22] to measure if the generated images

match the actual distribution of their respective classes.

3.4.1 Quantitative and Qualitative Results

Table 3.2 shows the results. Our model and its variations always outperform the Vanilla

and Sampling baselines for the minority groups. In terms of majority performance, Vanilla’s

performance is often better, as one would expect since it is biased to the majority class. The

table also reveals the individual contribution of all three components of our model. For example,

applying only supervised contrastive loss on top of re-sampling (I+II) helps in almost all cases.

Applying the auxiliary classifier loss (I+III) helps even more in 11 out of 18 cases. But when

supervised contrastive loss is applied with the auxiliary classifier (I+II+III), it improves the

minority class scores for almost all cases, with a negligible difference in the remaining case. For

example, it leads to about 30% and 57% improvement in super-resolution and sketch-to-face,

respectively, for the ‘Wearing Hat’ minority class compared to the sampling baseline. In this new
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Table 3.2. Comparison of classifier prediction scores on all groups among the models across
different tasks and attributes.

Task Attribute Group Vanilla Sampling Baseline Ours (I+II) Ours (I+III) Ours (I+II+III)

Su
pe

r -
R

es
ol

ut
io

n Eyeglasses
Minority 15.27 89.95 91.55 92.35 92.85
Majority 98.52 98.21 98.6 97.8 98.7

Both 56.89 94.08 95.08 95.08 95.77

Bald
Minority 63.91 88.89 90.41 90.12 91.60
Majority 98.18 97.53 98.01 98.01 98.01

Both 81.04 93.21 94.21 94.06 94.81

Wearing Hat
Minority 23.19 60.71 61.95 78.31 80.84
Majority 98.4 97.62 97.93 97.95 98.21

Both 60.8 79.17 79.94 88.13 89.52

Sk
et

ch
-t

o-
Fa

ce

Eyeglasses
Minority 30.32 92.73 93.30 94.10 94.06
Majority 98.65 96.05 97.99 98.7 98.84

Both 64.48 94.39 95.64 96.39 96.45

Bald
Minority 46.88 85.26 81.03 86.80 89.12
Majority 98.3 95.47 97.09 96.46 95.53

Both 72.59. 90.36 89.06 91.63 92.32

Wearing Hat
Minority 15.58 32.38 50.49 78.61 79.50
Majority 98.37 98.07 97.69 97.01 97.19

Both 56.98 65.22 74.09 87.81 88.34

Table 3.3. Quantitative results for image reconstruction in the super-resolution task. Our
approach does not compromise image quality.

Metric Vanilla Sampling Baseline Ours (I+II) Ours (I+III) Ours (I+II+III)

LPIPS↓ 0.25 ± 0.06 0.24 ± 0.06 0.25 ± 0.06 0.24 ± 0.06 0.25 ± 0.06
MSE↓ 0.06 ± 0.03 0.05 ± 0.03 0.06 ± 0.03 0.05 ± 0.03 0.06 ± 0.03

task, general tricks like re-sampling and auxiliary classifier help a lot, which is not always the

case in many debiasing tasks [63, 70, 64, 72], but adding the contrastive loss generally improves

on these.

For tasks like super-resolution, it is also important to match the quality of generated

images with the ground truth. Therefore, we report LPIPS [77] and MSE in Table 3.3. We can

see our framework performs debiasing without compromising the image quality. For further

qualitative comparison, we show the generated images from each of the models for each attribute

and task in Figure 3.3. We also show the ground truth images for super-resolution in the right

most column of 3.3 (a). We can see, in all cases, the Vanilla model does not produce the desired

outputs. Compared to other alternatives, we can see our methods produce much better results.
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(a) Super-Resolution

(b) Sketch-to-Face

Figure 3.3. Results of our debiasing framework compared to the Vanilla and Sampling Baseline
model. Here, we show one example for each of the considered tasks across all attributes. Our
generated results better capture the attributes compared to baselines.
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Table 3.4. FID scores show the effectiveness of our approach in a different image-to-image
translation architecture, using images from different domains.

Group
Bags and Shoes Cats and Dogs

Vanilla Sampling Baseline Ours (I+II) Ours (I+III) Ours (I+II+III) Vanilla Sampling Baseline Ours (I+II) Ours (I+III) Ours (I+II+III)

Minority 202.30 135.22 140.26 130.73 122.77 241.98 189.35 181.29 183.04 177.22
Majority 233.92 159.33 151.63 152.66 116.89 64.32 70.40 76.22 65.82 68.42

Both 195.29 130.16 128.51 124.66 105.18 136.86 116.92 116.24 111.99 110.7

Sketch Vanilla
Sampling 
Baseline

Ours 
(I+III)

Bags and  Shoes Cats and Dogs

M
in

or
ity

M
aj

or
ity

Ours
(I+II)

Ours 
(I+II+III)

Sketch Vanilla Sampling 
Baseline

Ours 
(I+III)

Ours
(I+II)

Ours 
(I+II+III)

Figure 3.4. Our debiasing framework is not only limited to a particular model. Here, we show
how our idea can be applied to pix2pix [26] to improve the quality of synthetic images in the
presence of bias.

For example, ‘Wearing Hat’ appears to be the hardest attribute to reconstruct, for both tasks.

Even for this attribute, we can see our contrastive model (I+II+III) is producing hat-like shapes

and textures. Additionally, we can see the quality of the images from our model is similar

or better than Vanilla in all cases, which suggests that our framework is an important tool for

image-to-image translation models in the presence of bias.

3.4.2 Generalization to a Different Architecture

Here we discuss our results when we apply our framework to pix2pix [26] on datasets

other than human faces. Figure 3.4 shows the qualitative results among the models. For both

datasets, a common pattern is that the quality of the majority does not change by much. The

quality of the minority, however, varies a great deal. For ‘Bags and Shoes’, we can see both

Vanilla and the Sampling Baseline model try to fill the gap between the body of the bag and

strap. This is because most of the images from this dataset are shoes, and the contour of shoes

are always filled. Therefore, to resemble the majority ground truth images, the generative model

tries to fill the gap. The contrastive learning based approaches, especially (I+II+III), do not

fill up the space between strap and bag as much, and show minimal changes compared to the
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other models. Similarly, for ‘Cats and Dogs’, the majority class is ‘Cats,’ and a frequent pattern

is images having cat-like fur. As a result, both Vanilla and Sampling Baseline’s outputs have

cat-like fur in the minority group’s (‘Dog’) images. However, as can be seen from this figure, our

(I+II+III) model’s coloring is more authentic for the ‘Dogs’ class. We have also quantitatively

evaluated the performance of all the models by calculating FID scores between the generated

images and ground truth. Table 3.4 shows the results. As we can see, our model achieves the

lowest scores, especially for the minorities, indicating better quality of images for the selected

task. For example, adding contrastive loss to re-sampling with auxiliary classifier leads to 18%

reduction of overall FID for ‘Bags and Shoes’ dataset.

Overall, our contrastive-learning based framework leads to consistent improvement for

both pSp and pix2pix (Table 3.2 and 3.4, Figure 3.3 and 3.4).

3.5 Discussion and Limitations

Our debiasing framework achieves better performances compared to other alternatives

across different categories, different architectures, and different domains. However, so far, we

have made an assumption that the bias is known, which is the most common assumption in many

debiasing work [61, 2, 21, 62, 14]. This is because as long as there are attributes in the dataset,

we will always be able to know if the dataset has class imbalances and whether that might lead

to bias in the model. There can be various ways to measure the bias, and in Section 3.3.1, we

explored one way of measuring it.

In this work, there is another inherent assumption that the dataset is biased towards only

a single attribute/class. In reality, bias can appear in multiple attributes/classes simultaneously.

For example, Figure 3.5 shows minority attributes, namely ‘Bald’ and ‘Eyeglasses’, appear in

the same image. The figure also shows how focusing on only one attribute might not necessarily

debias it for the other one (i.e. debiasing for ‘Bald’ does not debias for ‘Eyeglasses’, and vice

versa). One simple, straightforward way to tackle this problem will be to merge multiple labels

into single classes and apply our debiasing framework. However, doing so might not be scalable
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Input pSp Output Debiasing for Bald Debiasing for Eyeglasses Ground Truth

Figure 3.5. An example case where dual bias can appear. In this example, the ground truth
image has both ‘Bald’ and ‘Eyeglasses’ attribute, and debiasing for only one attribute does not
necessarily debias for the other one.

if the labels are large in number. We would like to explore this direction in future.

3.6 Conclusion

In this work, we propose the new task of debiasing image-to-image translation models.

Using Pixel2Style2Pixel and pix2pix, we have demonstrated that minority attributes are poorly

reconstructed whenever there is an imbalance in the dataset. To solve this problem, we have

proposed a novel contrastive-learning based approach to separate the latent codes of minority

classes from the majority classes. From the experimental results from both pSp and pix2pix,

we have shown that this contrastive learning approach, when coupled with general tricks like

re-sampling and auxiliary classifiers, leads to consistent improvements across all the tasks. Our

framework does not depend on any particular translation model or dataset, making our solution

model and data agnostic.

Chapter 3, in full, is a reprint of the material as it appears in British Machine Vision

Conference (BMVC), 2022. Md Mehrab Tanjim, Krishna Kumar Singh, Kushal Kafle, Ritwik

Sinha, Garrison W. Cottrell, “Debiasing Image-to-Image Translation Models”. The dissertation

author was the primary investigator and author of this paper.
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Chapter 4

Discovering and Mitigating Biases in
CLIP-based Text-to-Image Generation

4.1 Introduction

Original

Original

Face of a carpenter

Face of a nurse
After DebiasingBefore Debiasing

After DebiasingBefore Debiasing Original After DebiasingBefore Debiasing

Original After DebiasingBefore Debiasing

Face of a software engineer

Face of an administrative assistant

Figure 4.1. Biases in the CLIP model [54] can bias CLIP-based text-to-image generation. Here,
examples are shown from a CLIP-based generator, StyleCLIP [53]. We also show our debiasing
results using our proposed techniques.

CLIP (Contrastive Language-Image Pre-Training) [54] is a neural network trained on a

large set of pairs of images and texts. It has excellent zero-shot capabilities, e.g., it matches the

performance of the original ResNet50 [20] on ImageNet without explicitly getting trained on the

original labels. Due to its rich learned features between text and image modalities, recently it has
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been showing significant promise in text-to-image synthesis as well. For example, StyleCLIP

[53] leverages the text-image associations of CLIP models and the generative power of StyleGAN

[32] to develop a free form text-based interface for image editing.

Despite being trained on a large dataset, it has been shown that CLIP models suffer from

various biases [1]. However, these studies have focused on the biases in classification tasks. To

the best of our knowledge, no studies have been done on how biases in CLIP impact generative

models. In this work, using StyleCLIP as a case-study, we reveal biases in CLIP and show

how these biases negatively impact the generation process. Figure 3.1 shows some illustrative

examples. Here we show the original images as well as the manipulation by StyleCLIP for the

given text prompts. The images clearly show the generated images suffer from gender and racial

biases, which have negative societal impact.

In this work, we also propose several ways to mitigate the biases. We have identified that

the text CLIP embedding has learned correlations between different occupations and gender or

race. For example, ‘a nurse’ has high similarity with ‘a female’. To debias the text embedding,

we remove the gender and race component from the text queries. We have found such techniques

can debias simple cases such as face editing. However, it does not sufficiently debias complex

cases (e.g., change of occupation-related clothing). For such cases, we introduce a gradient-based

optimization which provides resistance against biases based on identity preserving losses (by

calculating LPIPS [78] score or the cosine similarity between two faces using ArcFace [16])).

Our optimization still provides enough incentives to make necessary changes for the given text

prompt (based on the CLIP loss). Our debiasing framework does not require retraining CLIP or

the generative model (e.g., StyleGAN in case of StyleCLIP). Also, our techniques do not depend

on particular query words (e.g., occupations) and can be generalized to debias other cases of

biases. Images shown as ‘After Debiasing’ in Figure 3.1 demonstrate the debiasing capabilities

of our framework.
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Contributions:

1) We discover the biases in the CLIP model and, using StyleCLIP, we show their

negative impact on text-to-image generation. 2) We propose several techniques to debias without

retraining CLIP or the generator.

4.2 Related Work

Bias and fairness have recently received a great deal of attention in the research commu-

nity. A common way to tackle the bias problem is to train on a large balanced dataset. So, one

can imagine the bias will not be prevalent in large, pretrained models like CLIP [54]. However,

researchers have audited this model for various classification tasks and discovered biases [1].

These studies focused on the bias problem with respect to classification. However, CLIP models

are being widely used to train various generative models as well. Any bias in CLIP models can

therefore negatively impact the generation process. For this reason, here we focus on discovering

biases in CLIP models for generative tasks. For the generative model, we have chosen one of the

most popular CLIP-based generators, StyleCLIP [53]. To the best of our knowledge, ours is the

first work to discover any biases in CLIP-based models for generative tasks.

4.3 Approach

Discovering Biases. To discover biases, similar to other recent work [64], we collect stock

images for different occupation-related queries. We chose the following professions: ‘Plumber’,

‘Nurse’, ‘Administrative Assistant’, ‘Farmer’, ‘Security Guard’, ‘Executive Manager’, ‘Military

Person’, ‘Maids & Housekeepers’. For each of them, we add Male/Female/White/Black in the

beginning to construct search queries. In this way, we have two sets: one for gender (total 332

images) and one for race (total 379). Then we rank these separate sets of images according the

CLIP score using these different professions as queries. Ideally, images belonging to a profession

should be ranked higher than others if that profession is used as a query, regardless of race and
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ROC curve for gender subset ROC curve for race subset

Original Image

“An image of a plumber” “An image of a farmer”

GradCAM

MisrankedProperly Ranked

Original Image GradCAM Original Image GradCAM

MisrankedProperly Ranked

Original Image GradCAM

Misrank comparison for race subsetMisrank comparison for gender subset

Figure 4.2. (Top) We show the ROC curves and percentage error comparison in ranking stock
images using CLIP scores for different occupation-related queries. (Bottom) GradCAM shows
where the CLIP model focuses for a given text prompt.

gender. However, that was not always the case. In Figure 4.2, we show the ROC curve for both

the gender and race image set. We can see the performance is quite low for most of the queries,

despite the fact that the CLIP model usually has excellent zero-shot performance. We also show

the percentage of times the model misranks for a specific gender/race. These figures show, when

it misranks the images, certain genders and races are misranked more than others. For example,

we can see for plumbers, female plumbers are often misranked. Figure 4.2 also shows some

examples with GradCAM visualization [59]. GradCAM shows, for the male plumber image,

the CLIP model correctly focuses on instrument but for the female plumber, it focuses on her

face, resulting in a misrank. Similarly, for farmer, in both cases the model focuses on the green

background. However, it gives an additional focus on female faces, causing a misrank. This has

a negative impact on text-to-image generation (Figure 3.1).

Our Debiasing Framework. We have identified that most of the occupation queries have high

similarities to a particular gender or race in the text embedding space in CLIP. So, taking out

the gender/race component from the text can potentially debias the generation. To do so, we

follow similar approach as [5]: we take commonly used male-female words and perform PCA to

find gender directions. Then for any text embedding, we project it onto the gender direction and

take the orthogonal direction to it to remove the gender component. This technique proves to be
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quite effective. For example, the images for ‘Face of a carpenter’ and ‘Face of an administrative

assistant’ from Figure 3.1 are debiased in this fashion.

Unfortunately the previous method does not work well for all cases, especially where

there are complex changes required for the given text prompts. For example, in Figure 4.3, we

show a generated image of a nurse using the StyleGAN-based occupation generator from [64]

(shown as ‘Original’ in leftmost). This is a complex image as it has the uniform and equipment

of a nurse, unlike images of only faces. For this image, we load the generator from [64] into

StyleCLIP and prompt it with ‘A plumber’ text. The output from StyleCLIP is shown next to

the original image. We can see the impressive capability of StyleCLIP to modify the attire and

background of the original image to portray a plumber. Unfortunately, due to bias in CLIP, the

generated image shows an image of a male plumber. In this complex case, we can also see

our previous text-based debiasing did not produce a satisfactory result (shown as ‘Text-based

Debiasing’). We can see, except for the face, everything else remained almost the same as the

original image. To improve on the text-based debiasing in these cases, we introduce a gradient-

based latent code optimization. Mathematically, if s is the original latent code, G is the generator,

then we find a new latent code by G(s±α). Here, the α is initialized with zeros and optimized via

back-propagation from the following loss: L = LCLIP +β1 ∗LGender +β2 ∗LID +β3 ∗LLPIPS

. Here we use the CLIP model to determine the similarity of the generated image with given text

prompt, and subtract it from 1 to get the CLIP loss, LCLIP. For LGender, we use a gender classifier

to determine the difference between gender prediction scores between the original image and

the generated image. We calculate the ID loss, LID, by calculating the distance between the

original face and generate face using ArcFace [16]. LPIPS loss, LLPIPS, is calculated using [78].

The β values are hyperparameters to control the effect of different losses. In Figure 3.1, for

‘Face of a nurse’ and ‘Face of software engineer’, we have used our gradient-based optimization

to debias as text-based debiasing did not produce satisfactory results for these prompts. For

these examples, using CLIP and ID loss was sufficient. For the image in Figure 4.3, we show all

combinations of losses and using 3 out of the 4 losses appears to work best. From both Figure 3.1
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CLIP + ID CLIP + LPIPSOutput of StyleCLIPOriginal CLIP + Gender + ID CLIP + Gender + LPIPS CLIP + LPIPS + ID CLIP + Gender + LPIPS + IDText-based Debiasing CLIP + Gender

Figure 4.3. Our gradient-based debiasing framework with different combinations of identify
preserving losses. Here, the text prompt for StyleCLIP is: ‘A plumber’.

(bottom row images) and 4.3, we can see our proposed gradient-based latent code optimization

successfully debiases the difficult examples. Note that our proposed framework does not require

retraining the CLIP or the StyleGAN generator model.

4.4 Conclusion

The CLIP model is widely being used for various tasks. It is therefore important to

address if any bias in CLIP negatively impacts the given task. In this work, we have discovered

such biases in text-to-image generation. We have also demonstrated methods that mitigate these

biases without retraining CLIP or the generative model.

Chapter 4, in full, is a reprint of the material as it appears in Responsible Computer

Vision at European Conference on Computer Vision (RCV@ECCV), 2022. Md Mehrab Tanjim,

Krishna Kumar Singh, Kushal Kafle, Ritwik Sinha, Garrison W. Cottrell, “Discovering and

Mitigating Biases for CLIP-based Text-to-Image Generation”. The dissertation author was the

primary investigator and author of this paper.
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Chapter 5

Conclusion

Generative models have shown a lot of promise, especially in the domain of images. The

quality of generated examples from GANs exceeds any of the previous image generative models,

and with the availability of GPU resources and a large amount of data, GANs are able to achieve

unprecedented image quality. However, little attention has been paid to how biases in the training

data or models can affect image results. Debiasing image generative models is therefore a critical

area of research as it helps to ensure that these models are more equitable and unbiased in their

outputs.

This dissertation focused on exploring various approaches to debiasing image generative

models and evaluating their effectiveness. Initially, our research delved into the systemic biases

that have led to certain professions being more prevalent among specific genders and races. These

biases are also apparent in the search results of stock image repositories and search engines,

presenting a challenge for content providers. Given the limited choices of existing content for

particular combinations of profession, race, and gender, it is crucial to provide content users with

the ability to depict a broad range of professions with diverse racial and gender characteristics.

Our research aims to address these issues and contribute to a more impartial and equitable future.

As a result, we introduced a new task of high-fidelity image generation from imbalanced datasets

that takes multiple attributes into account.

In our second study, we explored the issue of bias in image-to-image translation models
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when they are trained on imbalanced datasets. Our research demonstrated that using contrastive

learning, in addition to other commonly used techniques like sampling and auxiliary classifier

loss, can help to alleviate this problem. While our current findings pertain to a single attribute at a

time, it is possible to extend this approach to address biases for multiple attributes simultaneously

by creating distinct classes for each attribute.

In our last study, we focused on examining biases in large pretrained models like CLIP,

and demonstrated how such biases can adversely affect text-to-image generative models like

StyleCLIP. To address this issue, we put forth identity-preserving losses that can effectively

mitigate the problem without the need for retraining the pretrained model.

This dissertation primarily focused on conditional generation, specifically attribute,

image, and text-to-image generation, and proposed a debiasing framework. However, beyond

these conditional settings, it is also possible to extend the proposed debiasing framework to

unlabeled data. One approach to achieving this would involve learning latent variables during

generation using mutual information maximization [51] and resampling based on the learned

probabilities, thereby increasing the likelihood of generating rare images with distinct latent

features [3]. Our debiasing framework can also be extended to generative models beyond GANs,

for example, Stable Diffusion Models [56]. However, this remains a topic for future research.

In conclusion, this dissertation presents numerous promising avenues for debiasing

generative networks. Our proposed techniques for debiasing image generative models offer the

potential to ensure that their downstream applications across various products, such as Image

Stock platforms or photo-editing software, do not produce any unwanted outcomes.
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Appendix A

Generating and Controlling Diversity in
Image Search- Supplementary Material

A.1 Human Studies

We show one illustrative example from each of our human study types in the next page.

Specifically, we show an example task from our Attribute Match Study in Figure A.1, an example

from our Preference Study in Figure A.2, and an example from our Diversity Study in Figure

A.3.

Figure A.1. An example task from our Attribute Match Study. Here, the image is generated
from Uniform+.
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Figure A.2. An example task from our Preference Study. Here, the models are as follows-
First:Uniform, Second:Uniform+, Third:ADA.

Figure A.3. An example task from our Diversity Study. Here, the models are as follows-
First:Uniform+, Second:Uniform.

A.2 Additional Generated Images

We also show one generated image from our strongest model Uniform+ for each combi-

nation of races and genders for each of the 14 professions in the following pages (Figure A.4 -

A.17). These images show the potential of Uniform+ to combat the bias in image search. For

generating pictures, we used the truncation trick, where the center of mass in the latent codes

w is first calculated, and then samples are chosen randomly within a deviation ψ (called the

truncation value) from this center. Mathematically: w′ = w̄+ψ(w− w̄), where w̄ is the center

and the w’s are the latent codes. We observed good results when we set ψ = 0.7.
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Figure A.4. Executive Manager
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Figure A.5. Administrative Assistant
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Figure A.6. Nurse
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Figure A.7. Farmer
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Figure A.8. Military Person
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Figure A.9. Security Guard
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Figure A.10. Truck Driver
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Figure A.11. Cleaner
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Figure A.12. Carpenter
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Figure A.13. Plumber
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Figure A.14. Machine Operator
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Figure A.15. Technical Support Person
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Figure A.16. Software Engineer

Black 

F
e
m

a
le

M
a
le

 

White Asian 

Figure A.17. Writer
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Appendix B

Debiasing Image-to-Image Translation
Models - Supplementary Material

B.1 Train-Validation-Test Split CelebA-HQ

For experimentation with the CelebA-HQ [30] dataset, we make separate datasets for

each of the attributes, namely ‘Eyeglasses’, ‘Bald’, and ‘Wearing Hat.’ For fair comparison,

we hold out an equal number of images from majority and minority classes for both validation

and testing. Note that the number of images from the minority classes are quite low in number

(e.g., 700 images for ‘Bald’). Therefore, we take 50 images from each class for validation (100

in total) and 150 images for the test set (total 300 images). From the rest of the images, we adjust

the training dataset such that the original bias ratio remains unchanged for our selected attributes.

The exact number of images for each of the training dataset along with validation and test is

given in Table B.1.

B.2 Training Procedure

Data Augmentations. We apply data augmentations to both majority and minority

classes. Specifically, these augmentations are shifting 10% (both vertically and horizontally),

shearing 10%, scaling 10%, and mirror flipping.

Classifiers. For training, we replace the last fully connected layer of a pretrained

57



Table B.1. Train-validation-test splits for specific attributes.

Attribute Group Train Validation Test

Bald
Minority 512 50 150
Majority 21,062 50 150

Both 21,574 100 300

Wearing Hat
Minority 870 50 150
Majority 23,523 50 150

Both 24,393 100 300

Eyeglasses
Minority 1,268 50 150
Majority 24,645 50 150

Both 25,913 100 300

ResNet50 [20], and re-train it again on our training dataset. This classifier is used for applying

auxiliary classifier loss, Lc. We train three separate classifiers, one for each attribute. Their

performances on the test sets are as follows:

• Bald. F1 score: 0.8889, Prediction scores: 87.13%, Accuracy: 90%

• Eyeglasses. F1 score: 0.9899, Prediction scores: 95.99%, Accuracy: 99%

• Wearing Hat. F1 score: 0.951, Prediction scores: 90.65%, Accuracy: 95.33%

To train the classifier for evaluation, we train a deeper network, ResNet152 [20], on

the same training sets. This improves the accuracy for prediction for ‘Bald’ (94%) and ‘Eye-

glasses’(99.33%), which makes it reliable for prediction. This also keeps our evaluation classifier

network architecture and weights separate from ResNet50 network which was used for Lc

during training. This is critical for fair evaluation as we do not want to evaluate using a classifier

which was used for training since the network is optimized to perform well for it. Training the

evaluation classifier follows the same procedure. Their performances are:

• Bald. F1 score: 0.9362, Prediction scores: 90.16%, Accuracy: 94%

• Eyeglasses. F1 score: 0.9933, Prediction scores: 94.67%, Accuracy: 99.33%

• Wearing Hat. F1 score: 0.951, Prediction scores: 91.44%, Accuracy: 95.33%
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Figure B.1. Example cases of bias for both super-resolution and sketch-to-face. Here, for both
tasks, the attributes are visible in the inputs images (i.e. Eyeglasses, Hat, Baldness) but they are
missing in the generated images.

Measuring Bias. We use CelebA-HQ [30] to demonstrate how we can measure bias in

image-to-image translation tasks. We use CelebA-HQ for two reasons. First, it has 40 labeled

binary attributes (e.g. ‘Eyeglasses’, ‘Bald’, etc.), making detecting bias easier compared to

unlabeled data (such as Flicker-Face-HQ or FFHQ [32]). Second, it is widely used to train both

conditional and unconditional generative models [30, 12, 33, 75, 55], making it an ideal dataset

for bias analysis. Some additional examples of biases are showed in Figure B.1.

For measuring bias, we generate images for the super-resolution task. We down-sampled

the ground truth test images by a factor of 8 and applied the super-resolution pSp network (which

has been pre-trained on the same dataset as our classifier). We use a ResNet152 classifier (trained

on pSp training set) to calculate the F1 scores on real and generated images for measuring biases.

These numbers are reported in Table 1 in the main chapter. Note that having a low F1 score

means either 1) low recall: the model failed to generate the desired attribute in the generated

images (for example, not generating images with eyeglasses where the ground truth images have

this attribute), or 2) low precision: the model generated an attribute where it should not have

(e.g., producing hair when the person is bald). Both cases represent a bias problem. Therefore,

low F1 score on the generated images can reveal the biases for the attribute.

Here, we report the F1 scores on the low resolution inputs and sketches. The numbers

appear in Table B.2. The numbers for most of the attributes, especially for ‘Eyeglasses’ and
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Table B.2. F1 scores on low-resolution and sketch input images.

Attribute Bald Wearing Hat Eyeglasses Blond Hair Bangs Black Hair Male Heavy Makeup High Cheekbones Smiling

Percentage 2.37 3.57 4.89 17.09 18.08 21.97 36.86 45.69 46.16 46.97
Low-Resolution Inputs 0.6488 0.8523 0.6613 0.5891 0.6280 0.8173 0.9414 0.2988 0.4641 0.7595

Sketches 0.2234 0.7215 0.8747 0.0000 0.3366 0.0311 0.7615 0.5590 0.1606 0.5848

‘Wearing Hat’, show that there is enough information in the input images to generate the attributes

in question.

Training. Here we describe our changes to Pixel2Style2Pixel [55] (pSp) and pix2pix.

In the case of pSp, it encodes the input images using a feature pyramid backbone [43] and

maps them to the extended latent space of a frozen StyleGAN2 [33] generator (pre-trained on

FFHQ [32]), W +, which is consists of 18 different 512-dimensional feature vectors, one for

each StyleGAN2 layer. We apply our contrastive loss (mentioned in the main chapter), Ls, to the

latent codes of each of the layers in W + separately. The latent codes then are followed by MLP

layers, which consists of two linear feed-forward networks with 512 hidden units and a ReLU

activation in between (one MLP for each of 18 input layers in StyleGAN2). The temparature

parameter in Equation 1 is set to 0.07 for all experiments. Finally, we apply auxiliary classifier

loss (Equation 2), Lc, on the outputs of the decoder.

For pix2pix, we apply the U-Net architecture for the sketch-to-image translation model.

Similar to pSp, we refer to the original pix2pix model as ‘Vanilla’ and re-sampling the minority

during training as ‘Sampling Baseline.’ For our model (I+II+III), we make similar changes

to pix2pix. Specifically, on top of re-sampling, we apply the supervised contrastive loss, Ls

(Equation 1) to the output of bottleneck layer of the encoder. After applying Ls, we pass the

features through MLP layer, φ , and add an auxiliary classifier loss (Equation 2), Lc, at the end.

We also experiment on other two variations of our model (I+II and I+III).

For training our model for both pSp and pix2pix, we follow a curriculum learning

procedure. We introduce our losses (supervised contrastive loss, Ls, and auxiliary classifier loss,

Lc) after k iterations. We start with a small value of m for both hyperparameters for supervised

contrastive loss, λs, and auxiliary classifier loss, λc. These hyperparameters are then increased
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Figure B.2. Results for super-resolution task on ‘Eyeglasses’.

by m every k iterations.

For pSp, k = 10,000, and m = 0.001. We apply similar curriculum training procedure

for pix2pix as well. Here, m = 0.01. Instead of k iterations, we apply the losses after the first

epoch. The values of the hyperparameters are increased by the same value, m, after each epoch.

For both pSp and pix2pix, Ours (I+II) and (I+III) follow the same training steps, except the

hyperparameter for a specific loss is set to zero. For example, for Ours (I+II), λc = 0, and for

Ours (I+III), λs = 0.

B.3 Additional Results and Examples

We show additional examples for the Vanilla and Our Model (I+II+III) from our human

face experiments in Figure B.2-B.7.
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Figure B.3. Results for super-resolution task on ‘Bald’.

Input Vanilla Ours Ground Truth

Figure B.4. Results for super-resolution task on ‘Wearing Hat’.
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Figure B.5. Results for sketch-to-face task on ‘Eyeglasses’.

Input Vanilla Ours

Figure B.6. Results for sketch-to-face task on ‘Bald’.
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Input Vanilla Ours

Figure B.7. Results for sketch-to-face task on ‘Wearing Hat’.
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