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Abstract

Using individuals’ genetic data researchers can generate Polygenic Scores (PS) that are able to 

predict risk for diseases, variability in different behaviors as well as anthropomorphic measures. 

This is achieved by leveraging models learned from previously published large Genome-Wide 

Association Studies (GWASs) associating locations in the genome with a phenotype of interest. 

Previous GWASs have predominantly been performed in European ancestry individuals. This 

is of concern as PS generated in samples with a different ancestry to the original training 

GWAS have been shown to have lower performance and limited portability, and many efforts 

are now underway to collect genetic databases on individuals of diverse ancestries. In this 

study, we compare multiple methods of generating PS, including pruning and thresholding and 

Bayesian continuous shrinkage models, to determine which of them is best able to overcome these 

limitations. To do this we use the ABCD Study, a longitudinal cohort with deep phenotyping on 

individuals of diverse ancestry. We generate PS for anthropometric and psychiatric phenotypes 

using previously published GWAS summary statistics and examine their performance in three 
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subsamples of ABCD: African ancestry individuals (n=811), European ancestry Individuals 

(n=6,703), and admixed ancestry individuals (n=3,664). We find that the single ancestry 

continuous shrinkage method, PRScs (CS), and the multi ancestry method, PRScsx Meta (CSx 

Meta), show the best performance across ancestries and phenotypes.

Introduction

The study of human genetics has established that the vast majority of complex traits that are 

genetically influenced are polygenic – with many small effects being distributed across the 

genome (Visscher et al., 2021). Polygenic Scores (PSs) are a class of prediction methods that 

can aggregate these polygenic effects for a given phenotype (e.g. height, BMI, psychiatric 

risk) to explain a substantial amount of variation in phenotypes using genetic data (Sugrue 

& Desikan, 2019). While not useful as stand-alone diagnostic measures, previous research 

has shown that, when incorporated with other traditional risk measurements, PS can improve 

predictive model accuracy for common diseases like cancers (Jia et al., 2020; Kachuri et al., 

2020), Coronary Artery Disease (Inouye et al., 2018; Klarin & Natarajan, 2022), and Type 2 

Diabetes (Ashenhurst et al., 2022; Ge et al., 2022).

A major challenge facing the application of PS is their diminished performance when 

being trained and deployed in different ancestry groups. Thus far the majority of well-

powered Genome-Wide Association Studies (GWASs) have been conducted on individuals 

of European ancestry (Bitarello & Mathieson, 2020; Lewis & Green, 2021; Martin et al., 

2019; Peterson et al., 2019), limiting their utility in non-European ancestry groups. The 

over-representation of European ancestry individuals in genetic studies has led many to 

fear this may exacerbate health disparities (Martin et al., 2019). It is thought this drop 

in performance when deploying PS between ancestry groups is related to differences in 

linkage-disequilibrium (LD) and allele frequencies (Wang et al., 2020), which will likely be 

addressed by conducting GWAS in more diverse samples. While there have been efforts to 

improve the number of non-European GWAS samples by groups like the Hispanic/Latino 

Anthropometry (HISLA) Consortium (Fernández-Rhodes et al., 2022), the Population 

Architecture Using Genetics and Epidemiology (PAGE) Study (Matise et al., 2011), and 

the African Ancestry Anthropometry Genetics Consortium (AAAGC) (Ng et al., 2017) 

among others, European ancestry samples are usually the largest for a given phenotype and 

cross-ancestry PS methods are limited.

There exist multiple different methods for computing PS (Choi & O’Reilly, 2019; Ge et 

al., 2019, 2022; Ruan et al., 2022) which each attempt to address two issues of GWAS: 

1) distinguishing impactful and non-impactful variants and 2) LD correlations across the 

genome. The classic PS method, Pruning and Thresholding (P+T), addresses these issues 

by a) grouping genomic variants according to LD correlations (pruning), then b) restricting 

remaining variants to those meeting a p-value threshold (thresholding) (Choi et al., 2020; 

Choi & O’Reilly, 2019; Marees et al., 2018). An alternative PS approach tackles these issues 

by using shrinkage techniques which have been shown to achieve superior performance (Ge 

et al., 2019; Privé et al., 2020). Finally, PS methods exist which are specifically designed to 

be deployed across multiple ancestries (Ge et al., 2022; Ruan et al., 2022). Benchmarking 
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these methods in independent datasets of ancestral diverse individuals is of importance in 

evaluating their relative performance.

The Adolescent Brain Cognitive Development (ABCD) Study® is a longitudinal study with 

deep phenotyping of over 11,000 children from 9–11 years old, with wide sociodemographic 

and genetic diversity across the United States. This study provides an ideal opportunity to 

profile the performance of these recently developed PS methods in an ancestrally diverse 

cohort. In the present study, we deploy four PS methods: PRSice2, PRScs, PRScsx, and 

PRScsx Meta. For this analysis, we use PRSice2 as our P+T method (Choi & O’Reilly, 

2019). PRScs (Ge et al., 2019) has emerged as a particularly effective shrinkage PS method, 

and PRScsx and PRScsx Meta leverage information from multiple ancestries to improve 

PS generation trans-ancestrally (Ge et al., 2022; Ruan et al., 2022). We use each of these 

four methods to generate PS for four phenotypes in the ABCD sample: height, body mass 

index (BMI), schizophrenia risk, and depression risk. For each of these phenotypes, we 

utilize previous GWAS in five ancestral groups where possible: European (EUR), East 

Asian (EAS), South Asian (SAS), Hispanic (HIS), and African (AFR). The PSs from these 

methods are then evaluated, against relevant phenotypes, separately in European, African, 

and Mixed ancestry individuals in the ABCD cohort. We hope that the results from this 

analysis will help guide future work aiming to utilize PS in populations of diverse ancestries.

Methods

ABCD Sample

Our sample consisted of 11,178 children from the 4.0 of the Adolescent Brain Cognitive 

Development (ABCD) study (http://dx.doi.org/10.15154/1523041) with qualified genetic 

data. The ABCD cohort was recruited to ensure the sample was as close to nationally 

representative as possible, and therefore exhibits large sociodemographic diversity (Garavan 

et al., 2018). There is an embedded twin cohort and many siblings.

ABCD Phenotypes

Dependent variables in this analysis come from the baseline visit from ABCD release 4.0. 

Two anthropomorphic traits were used in our analysis: height, calculated as the mean of 3 

measurements, and body mass index (BMI), calculated as weight/height2. Two behavioral 

metrics were used in our analysis: KSADS Total Symptoms as reported by the participant’s 

caregiver and CBCL Total Problems based on an extensive battery of questionnaires 

and interviews. The Kiddie schedule for affective disorders and schizophrenia (KSADS) 

measure represents the combined outcome of a self-administered version of the K-SADS-5 

assessment filled out by the caregiver of the child enrolled in the ABCD study. The 

KSADS assessment is a diagnostic tool commonly used to identify symptoms, behaviors, 

and impairments potentially related to psychiatric disorders, and our variable represents a 

normalized total of all responses to a participants K-SADS-5 assessment and is used in 

this analysis as a single metric of the level of presence or absence of psychiatric disorders 

(Kaufman et al., 1997). The KSADS variable used in our analysis was normalized using a 

rank-based inverse normal transformation. The K-SADS-5 assessment has been shown to be 

valid, reliable, and replicable for children of diverse cultural and national backgrounds (de la 
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Peña et al., 2018; Dun et al., 2022; Kaufman et al., 1997; Kim et al., 2004; Nishiyama et al., 

2020; Shahrivar et al., 2010).

The child behavioral checklist (CBCL) is a caregiver-reported assessment of their child on 

eight syndrome scales: anxious/depressed, withdrawn/depressed, somatic complaints, social 

problems, thought problems, attention problems, rule-breaking behavior, and aggressive 

behavior which are then combined into a single score for this analysis representing the 

normalized total number of behavioral problems reported in the CBCL assessment. The 

resulting combined score was normalized using a rank-based inverse normal transformation. 

The CBCL Total Symptoms (Achenbach & Rescorla, 2004). The CBCL is a portion of 

the Achenbach System of Empirically Based Assessment (ASEBA) designed to be used on 

school-aged children between the ages of 6 and 18 (Achenbach & Rescorla, 2004) and it has 

been found to be valid and reliable for children of diverse cultural and national backgrounds 

(Albores-Gallo et al., 2007; Dutra et al., 2004; Hartini et al., 2015; Leung et al., 2006).

Summary Statistics Data Access

Our analyses were limited by the public availability of large and diverse GWAS of mental 

phenotypes. Furthermore, our trans-ancestry method required that our summary statistics 

be easily separable into distinct continental ancestries which prevented us from using some 

large trans-ancestry meta-analyses. The phenotypes height and BMI were selected to show 

the efficacy of these methods across some of the most well-powered anthropomorphic 

phenotypes. Depression was chosen because of its prevalence among adolescence (Goodwin 

et al., 2022) and because of its availability as summary statistics in multiple ancestry 

groups. Schizophrenia was chosen despite its low prevalence in an adolescent population 

sample because of its availability of summary statistics in non-European ancestries and 

because previous studies have found differential experiential and mental phenotypic 

manifestations in adolescents with high genetic load for schizophrenia before clinical 

manifestation of the disorder (Jones et al., 2016; Woolway et al., 2022). Data were collected 

from publicly available GWAS summary statistics found through GWAS Catalog (https://

www.ebi.ac.uk/gwas/home) and Google scholar. Additional information regarding existing 

and available GWAS summary statistics was also gathered from the GWAS catalog (https://

www.ebi.ac.uk/gwas/home). A full list of data sets used can be found in Supplementary 

Table 1. All summary statistics were aligned to genome build GRCh38.

Genetic Data

Genetic data was collected using blood or saliva samples from participants of the ABCD 

study (Uban et al., 2018). 656,247 genomic markers were measured using the Smokescreen 

array (Baurley et al., 2016). Genetic principal components were calculated from these 

genetic data using PC-Air (Conomos et al., 2015) with default settings. We calculated 

participants’ continental genetic ancestry as calculated using SNPweights (Chen et al., 

2013) and precompiled external genomic reference panels from the 1000 Genomes Project 

(Auton et al., 2015), and Indigenous reference panels (Reich et al., 2012). Participants 

were categorized into groups depending on if they had an inferred genetic ancestry at 

least 80% consistent with a continental reference panel (African continental ancestry, East 

Asian continental ancestry, European continental ancestry, or indigenous North and South 
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American ancestry) or admixed meaning that their genetic ancestry did not meet the 80% 

threshold for any of the ancestries due to a genetic admixture of two or more of the 

aforementioned continental ancestral components. We chose to use inferred genetic ancestry 

as opposed to other methods as this enabled us to not only define individuals of continental 

ancestries but also to define an admixed ancestry group (i.e., those that did not meet criteria 

for a single continental ancestry). Genetic PCA plots of our sample (see Supplementary 

Figure 1) show that inferred ancestries labels individuals as would be expected. Due to 

the relatively small portion of the participants of genomic indigenous ancestry (n= 53) and 

participants of continental East Asian ancestry (n=158) were left out of our total testing 

sample. Our total testing sample consisted of an African ancestry group (AFR, n=811), a 

European ancestry group (EUR, n=6,703), and an admixed ancestry group (MIX, n=3,664)

To increase the overlap of genetic variants in ABCD with summary statistics from previous 

GWAS we imputed markers measured from the Smokescreen array using the TOPMED 

imputation server (Taliun et al., 2021). These imputed variants were fractional dosages 

that were converted to an integer number of alleles using a best guess threshold of 0.9. 

This resulted in 280,850,795 imputed variants aligned to genome build GRCh38. After 

imputation target genetic data was restricted to only autosomal variants with a minor 

allele frequency of 1% (0.01) or greater leaving just under 11 million Single Nucleotide 

Polymorphisms (SNPs) in the target data.

Polygenic Score Methods

As some methods required hyperparameter tuning we generated 100 50/50 cross-validation 

splits within each ancestry group. We ensured that family members were not split across 

training and testing folds (with families being defined using the ‘rel_family_id’ variable). 

This provided training folds, for hyperparameter tuning, and testing folds for the evaluation 

of PS performance.

We provide a brief description of each PS method used in this analysis:

1. P+T: PRSice2

a. PRSice2 is an LD-informed pruning and P-value thresholding method 

meaning that it groups and thins SNPs according to LD and P-value and 

then limits these SNPs to only those that exceed a given P-Threshold 

(Choi & O’Reilly, 2019). For our analysis, we used default parameters 

with a range of P-value thresholds (0, 0.001, 0.01, 0.05, 0.1, 0.2, 

0.3, 0.4, 0.5, 0.6, 0.7, 0.8 0.9 and 1) where we applied the threshold 

maximizing R2 in the training fold to the test fold. Reported R2 values 

were calculated in the testing fold.

2. CS: PRScs

a. PRScs is a Bayesian calculation method that uses GWAS summary 

statistics and LD reference information as well as a continuous 

shrinkage prior to infer posterior SNP effect sizes which is found 

to be both reliable and computationally efficient in varying genetic 

architectures (Ge et al., 2019). For our analysis, we used base 
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parameters except with regards to MCMC and burnin where we used 

a slightly higher threshold of 10,000 MCMC iterations and 5,000 

burnin. These values were chosen as they have been shown to help 

increase stability of posterior effects between runs without being too 

computationally intensive (Schultz et al., 2022). LD references were 

based on data from 1000 Genomes Phase 3 to match respective 

summary statistics (AFR, AMR, EAS, EUR, or SAS). PLINK 2.0 was 

used to generate Polygenic Risk scores from PRScs posterior effect 

sizes (Purcell et al., 2007).

3. CSx: PRScsx

a. PRScsx is a Bayesian polygenic modeling method that integrates 

GWAS and LD information from multiple ancestrally diverse 

populations to improve the estimation of posterior SNP effects (Ruan 

et al., 2022). For our analysis, we used recommended parameters (apart 

from MCMC iterations and burnin) and the appropriate provided LD 

references from 1000 Genomes Phase 3 for a given summary statistic 

(AFR, AMR, EAS, EUR, or SAS). PLINK 2.0 was used to generate 

ancestry-specific PSs from PRScsx posterior effect sizes (Purcell et al., 

2007). We used 10,000 MCMC iterations and 5,000 burnin to increase 

stability (Schultz et al., 2022) and to be constant with other methods. 

Ancestry-specific PSs were combined using a linear combination of 

ancestry-specific PSs as advised by the authors of the method. Weights 

were learned in training folds using linear regression to predict the 

phenotype of interest as:

PRS = wAncestry1PRSAncestry1 + wAncestry2PRSAncestry2… + wAncestryNPRSAncestryN

Where w represents the relative weight. R2 values were reported in the 

validation fold after applying weights learned in training folds.

4. CSx Meta: PRScsx Meta

a. PRScsx Meta uses the same Bayesian polygenic model as PRScsx, but 

instead of needing hyperparameter tuning, it uses an inverse-variance-

weighted meta-analysis to produce a single set of posterior effects (Ge 

et al., 2022). For our analysis, we used recommended parameters (apart 

from MCMC iterations and burnin) and the appropriate provided LD 

references from 1000 Genomes Phase 3 for a given summary statistic 

(AFR, AMR, EAS, EUR, or SAS). We used 10,000 MCMC iterations 

and 5,000 burnin to increase stability (Schultz et al., 2022) and to 

be constant with other continuous shrinkage methods. PLINK 2.0 was 

used to generate Polygenic Risk scores from PRScsx posterior effect 

sizes (Purcell et al., 2007)
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Statistical Analysis

To assess the association between each PS method and the relevant dependent variable 

Generalized Additive Mixed Models (GAMMS) were fitted using the gamm4 package 

in R (Wood & Scheipl, 2022) in each test fold. Each model predicted a different 

mental or anthropomorphic feature, depending on the PS of interest. Each model was 

corrected for participants’ age in months, sex, ABCD study site, and the top ten generic 

principal components calculated using PC-AIR (Conomos et al., 2015)as fixed effects and 

a participants’ family id as a random effect. Nagelkerke R2 (Nagelkerke, 1991) values 

were calculated between reduced (covariates only) and full (covariates + PS) models. 

Supplementary Tables were generated using the t-tests functions and False Discovery Rate 

(FDR) correction from the R package ‘stats’ (R Core Team 2022).

Genome-wide Complex Trait Analysis (GCTA)

For some traits we unexpectedly found higher performance in non-European ancestry 

cohorts. In attempt to understand this further we conducted GCTA (Yang et al., 2011) each 

ancestry subsample separately to estimate snp-heritability (ℎsnp
2  for each analyzed measure in 

ABCD to quantify the genetic variability contributing to each trait – independent of previous 

GWAS summary statistics or any specific polygenic score method. For this we constructed 

a GRM (genetic relatedness matrix) using ‘gcta –make-grm’ for each ancestry individually. 

We then filtered this GRM to unrelated individuals using a threshold of --grm-cutoff=0.025 

as recommended. This resulted in 5133, 683 and 414 individuals in European, African and 

Admixed ancestry cohorts, respectively. We then performed GCTA on this pruned GRM, 

using covariates described above to obtain point estimates of ℎsnp
2 . With the small sample 

sizes for this analysis we observe large error bars and so use point estimates as an indication 

of differences and interpret with caution.

Results

The results in this analysis utilize the full baseline visit data from ABCD data release 4.0, 

an ancestrally diverse longitudinal cohort of children from 21 different data acquisition sites 

around the United States (http://dx.doi.org/10.15154/1523041). We restricted our analysis 

to the three largest ancestral groups of the ABCD sample: African (AFR), European 

(EUR), and Admixed (MIX). Membership within each ancestry group was defined as an 

individual having greater than 80% inferred continental ancestry for the given group. We 

inferred participants’ continental genetic ancestry as calculated using SNPweights (Chen 

et al., 2013) and precompiled external genomic reference panels from the 1000 Genomes 

Project (Auton et al., 2015), and Indigenous reference panels (Reich et al., 2012). Genetic 

ancestry estimates for each group are shown in Figure 1. Assignment into each of these 

three ancestral groups covers 98% of the full ABCD baseline sample. Sample sizes and 

demographic information of these groups are presented in Table 1.

Height Polygenic Score

Figure 2 shows the predictive performance of different PS models in predicting height. The 

single ancestry continuous shrinkage method based on European ancestry LD and summary 

statistics from a large European GWAS (Yengo et al 2022), CS EUR, outperformed 
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other methods in the European and African ancestry groups with a mean variance 

explained of 14.5% and 13.2% respectively. In the admixed ancestry group the best 

performing method was the trans-ancestry, continuous shrinkage, meta-analysis method, 

CSx Meta, which accounted for a mean variance explained of 10.9%. CS EUR was roughly 

comparable to CSx Meta (RCS EUR
2/RCSx Meta

2 = EUR:1.05, AFR:1.03, MIX:0.96) and 

was an improvement on CSx (RCS EUR
2/RCSx

2 = EUR:1.11, AFR:3.42, MIX:1.11) and the 

best performing P+T Method, P+T EUR (RCS EUR
2/RP+T EUR

2 = EUR:1.21, AFR:1.59, 

MIX:1.65).

Although CSx achieved worse but comparable performance in EUR and MIX groups, 

it showed particularly low performance in the AFR group (see Figure 2). This may be 

explained by the wide variability in weightings of ancestry-specific PS across training 

folds used to calculate CSx for the AFR group: compare panel A with panels B and C 

in Supplementary Figure 6. P+T (using PRSice2) showed the lowest performance across 

all ancestry groups except the African ancestry sample where PRScsx showed the lowest 

performance. Numeric summaries of these results are available in Supplemental Tables 2–4.

BMI Polygenic Score

When comparing the performance of PS methods in predicting Body Mass Index (BMI), 

we found that the trans-ancestry, continuous shrinkage, meta-analysis method, CSx Meta, 

performed best in all ancestries. CSx Meta accounted for a men variance explained of 11.7% 

in the European ancestry sample, 11.9% in the African ancestry sample, and 9.9% in the 

admixed ancestry sample. Numeric summaries of these results are available in Supplemental 

Tables 5–7.

Once again, we observed particularly low performance of the CSx method in the AFR 

and observed wide variability in ancestry specific PS weights in training for this method 

(Supplementary Figure 7). Once again, the P+T methods (PRSice2) exhibited the lowest 

performance across ancestry groups, except in the AFR group where the CSx method had 

the lowest performance.

Depression Polygenic Score

In predicting CBCL total problems from depression GWAS, we found the CS EAS method 

trained on an East Asian GWAS (Giannakopoulou et al., 2021) achieved the highest 

performance in the African ancestry sample, the CS EUR methods trained on a European 

GWAS (Howard et al., 2019) achieved the highest performance in the European ancestry 

sample, and CSx Meta performed best in the admixed ancestry sample- see Figure 4. The 

mean variance explained by CS EAS was 10.1% in the African ancestry sample, 1.1% in 

the European ancestry sample, and 2.0% in the admixed ancestry sample. The mean variance 

explained for the CS EUR method was: 9.8% in the African ancestry sample, 1.7% in the 

European ancestry sample, and 2.2% in the admixed sample. The mean variance explained 

by CSx Meta was 10.0% in the African ancestry sample, 1.6% in the European ancestry 

sample, and 2.2% in admixed ancestry sample. Numeric summaries of these results are 

available in supplemental tables 8–10.
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In predicting KSADs total problems from depression GWAS, we found the CS EAS 

method trained on an East Asian GWAS (Giannakopoulou et al., 2021) achieved the highest 

performance in the African ancestry sample, the CS EUR methods trained on a European 

GWAS (Howard et al., 2019) achieved the highest performance in the European ancestry 

sample, the CSx Meta method achieved the highest performance in the admixed ancestry 

sample - see Figure 4. Mean variance explained for the CS EAS method was 10.7% in the 

African ancestry sample, 1.1% in the European ancestry sample, and 2.1% in the admixed 

ancestry sample. Mean variance explained for the CS EUR method was 10.1% in the 

African ancestry sample, 1.5% in the European ancestry sample, and 2.3% in the admixed 

ancestry sample. Mean variance explained for the CSx Meta method was 10.2% in the 

African ancestry sample, 1.4% in the European ancestry sample, and 2.3% in the admixed 

ancestry sample.

We observe low performance of the CSx method in predicting both CBCL total problems 

and KSADS total problems across all ancestry groups, this once again may be due to 

unstable weightings of ancestry-specific PS that make up the CSx method across cross-

validation folds (Supplementary Figures 8–9 Numeric summaries of these results are 

available in supplemental tables 11–13.

Schizophrenia Polygenic Score

In predicting CBCL total problems from schizophrenia GWAS, we find that the CS EAS 

method trained on the large East Asian GWAS (Trubetskoy et al., 2022) performed best in 

the African and admixed ancestry samples and the CS EUR method trained on the large 

European GWAS (Trubetskoy et al., 2022) performed best in the European ancestry sample. 

Mean variance explained for the CS EAS method was 9.5% in the African ancestry sample, 

1.0% in the European ancestry sample, and 1.9% in the admixed ancestry sample. Mean 

variance explained for the CS EUR method was 9.2% in the African ancestry sample, 

1.0% in the European ancestry sample, and 1.8% in the admixed ancestry sample. There 

is not a significant difference between the results from CS EAS, CS EUR, and CSx Meta 

which all accounted for a mean variance of approximately 1.0% (pCS EAS-CS EUR=0.39, 

pCS EAS-CSx Meta=0.88, pCS EUR-CSx Meta=0.08). Numeric summaries of these results are 

available in Supplemental Tables 14–16.

In predicting KSADS total problems from schizophrenia GWAS, we find that the CS EAS 

method trained on the large East Asian GWAS (Trubetskoy et al., 2022) performed best in 

the African ancestry sample, the CSx Meta method performed best in the European ancestry 

sample, and the CS EUR method trained on the large European GWAS (Trubetskoy et al., 

2022) performed best in the admixed ancestry sample. Mean variance explained for the 

CS EAS method was 9.5% in the African ancestry sample, 1.0% in the European ancestry 

sample, and 1.9% in the admixed ancestry sample. Mean variance explained for the CSx 

Meta method was 9.0% in the African ancestry sample, 1.0% in the European ancestry 

sample, and 1.8% in the admixed ancestry sample. Mean variance explained for the CS 

EUR method was 9.3% in the African ancestry sample, 1.0% in the European ancestry 

sample, and 1.9% in the admixed ancestry sample. It is worth noting that the results of 

CS EAS and CS EUR are not significantly different in the MIX group (p=0.87). Numeric 
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summaries of these results are available in Supplemental Tables 17–19.As with depression 

PSs, schizophrenia PSs predicting CBCL total problems and KSADS total problems, we 

observe particularly poor performance of the CSx method; this may be due to unstable 

weightings of ancestry-specific PS that make up the CSx method across cross-validation 

folds (Supplementary Figures 9–10).

GCTA Analysis

For psychological traits the polygenic prediction in the African ancestry group showed 

surprisingly high performance. To further explore these results we performed Genome-wide 

Complex Trait Analyses (GCTAs) to see if there were significant differences in SNP 

heritability (ℎsnp
2  estimates for our mental health traits between our different samples (Yang 

et al., 2011).

We observed higher point estimates for ℎsnp
2  the African ancestry cohort vs European and 

admixed ancestry cohorts for CBCL Total Problems (AFR: ℎsnp
2 =0.34, SE=0.88; EUR: ℎsnp

2

=0.19, SE=0.08; MIX: ℎsnp
2 =0.06, SE=0.82) and for KSADS Total Problems (AFR: ℎsnp

2 =1.00, 

SE=0.93; EUR: ℎsnp
2 =0.00, SE=0.08; MIX: ℎsnp

2 =0.00, SE=0.09). This is consistent with 

greater genetic variability in this trait for African ancestry individuals – which may explain 

our unexpected result of higher polygenic prediction in this sample. However, with small 

sample sizes we observe wide error bars and so we advise caution in overinterpreting this 

result. Full results of GCTA Analysis can be found in Supplementary Tables 20–25.

Discussion

In ABCD, we find PRScsx Meta (CSx Meta) and PRScs (CS), especially those run on 

large European ancestry sample, provide improved polygenic prediction over pruning and 

thresholding methods. Also, the addition of multiple non-European ancestry reference 

panels and summary statistics seemed to provide greater predictive utility to models in 

African and Admixed populations than to European Populations.

Our results showed that PS for height and BMI explained between 9.8% to 14.5% of 

variance across all ancestry groups. For anthropometric traits, the methods used in this 

analysis perform best in the European ancestry sample. Differences in performance are 

likely due to differences in GWAS sample sizes for different ancestries (Karunamuni et 

al., 2020; Wu et al., 2022). Additionally, for the admixed cohort proportion of European 

ancestry may be a factor; previous research has shown that in ancestrally diverse populations 

the predictive validity of PS increases linearly with the individual’s proportion of European 

genetic ancestry (Bitarello & Mathieson, 2020). Unexpectedly, despite PRScsx being a 

trans-ancestry method it didn’t show as strong of performance in this sample compared to a 

previous study (Ruan et al., 2022). This relatively poor performance could be due to a lack 

of homogeneity in the United States (Adhikari et al., 2017) or the high degree of genetic 

diversity within continental ancestry groups (Adhikari et al., 2016; Campbell & Tishkoff, 

2008). Indeed, the weighting of the different ancestral components making up PRScsx 

appeared unstable in our analysis, particularly for psychiatric PS, (see Supplementary 

Figures 6–11) which may be driven by these factors and likely explains this method’s 
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low performance in our sample. Additionally, the two best-performing methods (PRScs 

and PRScsx-Meta) do not require hyperparameter tuning which negates the requirement 

for cross-validation in the target population making them much easier to deploy. In mental 

health traits we found uncharacteristically high performance in our African ancestry sample. 

GCTA analysis showed there were differences in heritability between our samples that 

could potentially account for the improved performance; however, the wide-error bars 

of the results prevent us from drawing any definitive conclusions. Additional research 

is needed to understand the potential factors that underlie this result. There was also 

surprising predictive power of the CS methods based on GWAS in East Asian Populations 

(Giannakopoulou et al., 2021; Trubetskoy et al., 2022) on our mental health phenotypes, 

despite their smaller discovery sample sizes. While the true difference between the results 

analysis is small and sometimes even not significant, we propose a potential explanation. 

First there may be differences in environmental factors or confounding diagnostic practices 

for schizophrenia or depression in different regions in which the discovery GWAS were 

conducted. Previous research has highlighted geographic differences in diagnostic criteria 

of psychiatric conditions (Mitchell et al., 2011; Saito et al., 2022). Because we are 

associating polygenic scores with measures of behavior and symptomology instead of 

formal diagnoses, it is possible that diagnostic criteria for schizophrenia and depression 

used in East Asia happens to be more related to variability in CBCL total problems and 

KSADS total problems than criteria for these same disorders in Europe. Such effects may 

explain differences in genetic correlations between eastern and western countries observed 

for psychiatric disorders (Saito et al., 2022; THE BRAINSTORM CONSORTIUM et al., 

2018). In any case, given the generally low performance of these models in the majority of 

our participants we again caution the reader from over interpreting our results. Additional, 

more targeted research is needed to fully understand the association between genetics and 

any behavioral or psychiatric outcome.

There is potential that PS performance on anthropometrics traits in our analysis may be 

low due to the age of our sample. Previous research has shown that genetic factors exert 

a particularly strong influence on body height between the ages of 14 to 18 (Silventoinen 

et al., 2008) and that PRSs of BMI increase in efficacy as an individual’s age passes 

adolescence into adulthood (Sanz-de-Galdeano et al., 2020). Additionally, age may play 

a role in the efficacy of our polygenic models based on GWAS of schizophrenia as, in 

most cases, schizophrenia is diagnosed in late adolescence and early adulthood (Walker et 

al., 2004), and premorbid declines in cognition are normally assessed during the onset of 

puberty between the ages of 13 and 16 years (Fuller et al., 2002). Because symptoms related 

to schizophrenia may not have begun to fully manifest in our population it is possible that 

our estimates of the genetic variance explained are underestimates of associations at later 

time points.

This paper also represents an important step in the use of PSs in admixed individuals. There 

has been research into particular GWAS methods in admixed populations that have had some 

success in improving PSs (Bitarello & Mathieson, 2020; Hou et al., 2022) these analyses 

often only look at two-way admixture between African ancestry and European ancestry. 

Our analysis of our admixed population shows encouraging performance in our admixed 

population agnostic of the degree of admixture and the component ancestry pieces.

Ahern et al. Page 11

Behav Genet. Author manuscript; available in PMC 2023 November 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



While the precise causal mechanisms that underlie these interactions are yet poorly 

understood, and many traits, especially cognitive and psychiatric traits, are strongly 

influenced by environmental factors, this article shows the current potential that Bayesian 

continuous shrinkage PS methods display higher prediction of complex traits across 

ancestries. If PSs are to achieve clinical validity it is important that they show equitable 

performance across diverse populations and within populations of individuals that do not fit 

categorically into continental ancestries (Lewis & Green, 2021). More work must continue 

to be done to improve the power and validity of diverse GWAS summary statistics, as well 

as to develop genomic datasets in individuals of diverse ancestry.

Limitations

It must be acknowledged that PSs only account for genetic influences. Any sort of 

modeling based on PS should account for other known non-genetic causal factors. For 

many traits, genetic factors only account for a portion of the variance in trait outcomes. 

It is especially important to acknowledge that, for essentially all cognitive and psychiatric 

traits, environmental factors and gene-environment interactions will be major components 

in outcomes. ABCD has very rich phenotyping, but this analysis was limited by the public 

availability of GWAS summary statistics in non-European populations, as the majority of 

large public GWAS studies have been performed on European populations (Martin et al., 

2019). Moreover, while ABCD is a diverse cohort, the majority of participants are of 

European ancestry.
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Figure 1: 
Genetic ancestry proportion for individuals of each ancestry subpopulation in ABCD 

categorized into African, East Asian, European, and Indigenous North and South American 

ancestry portions. Panels A, B, and C represent European, African, and Admixed ancestry 

populations respectively. Panel D shows the mean genetic ancestry components of the 

admixed population.
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Figure 2: 
Variance Explained of PS methods in predicting height across 100 folds of 50/50 

cross-validation. Panels A, B, and C represent performance in AFR, EUR, and MIX 

ancestry populations respectively. Methods marked ‘CSx Meta’ and ‘CSx’ represent the 

meta-analysis and hyperparameter-weighted trans-ancestry outputs from the continuous 

shrinkage method PRScsx. Methods marked ‘CS’ represent the single ancestry outputs of 

the continuous shrinkage method PRScs (both LD reference and summary statistics from a 

single ancestry). Methods marked ‘P+T’ represent the single ancestry outputs from the linear 
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pruning and thresholding method PRSice2. The three letter abbreviations included in some 

methods represents the sample ancestries as follows: European ancestry (EUR), African 

ancestry (AFR), East Asian ancestry (EAS), North or South American ancestry (AMR), 

and South Asian ancestry (SAS). Additional information about the summary statistics 

can be found in Supplementary Table 1 and additional phenotype data can be found in 

Supplementary Figure 2.
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Figure 3: 
Variance explained of PS methods in predicting BMI across 100 folds of 50/50 cross-

validation. Panels A, B, and C represent performance in AFR, EUR, and MIX ancestry 

populations respectively. Methods marked ‘CSx Meta’ and ‘CSx’ represent the meta-

analysis and hyperparameter-weighted trans-ancestry outputs from the continuous shrinkage 

method PRScsx. Methods marked ‘CS’ represent the single ancestry outputs of the 

continuous shrinkage method PRScs (both LD reference and summary statistics from a 

single ancestry). Methods marked ‘P+T’ represent the single ancestry outputs from the linear 
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pruning and thresholding method PRSice2. The three letter abbreviations included in some 

methods represents the sample ancestries as follows: European ancestry (EUR), African 

ancestry (AFR), East Asian ancestry (EAS), North or South American ancestry (AMR), 

and South Asian ancestry (SAS). Additional information about the summary statistics 

can be found in Supplementary Table 1 and additional phenotype data can be found in 

Supplementary Figure 3.
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Figure 4: 
Variance explained of PS methods applied to depression in predicting CBCL total problems 

scores across 100 folds of 50/50 cross-validation. Panels A, B, and C represent performance 

in AFR, EUR, and MIX ancestry populations respectively. Methods marked ‘CSx Meta’ 

and ‘CSx’ represent the meta-analysis and hyperparameter-weighted trans-ancestry outputs 

from the continuous shrinkage method, PRScsx. Methods marked ‘CS’ represent the single 

ancestry outputs of the continuous shrinkage method PRScs (both LD reference and 

summary statistics from a single ancestry). Methods marked ‘P+T’ represent the single 
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ancestry outputs from the linear pruning and thresholding method PRSice2. The three 

letter abbreviations included in some methods represents the sample ancestries as follows: 

European ancestry (EUR) and East Asian ancestry (EAS). Additional information about the 

summary statistics can be found in Supplementary Table 1 and additional phenotype data 

can be found in Supplementary Figure 4.
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Figure 5: 
Variance Explained of PS methods applied to depression in predicting KSADs total 

problems scores across 100 folds of 50/50 cross-validation. Panels A, B, and C represent 

performance in AFR, EUR, and MIX ancestry populations respectively. Methods marked 

‘CSx Meta’ and ‘CSx’ represent the meta-analysis and hyperparameter-weighted trans-

ancestry outputs from the continuous shrinkage method PRScsx. Methods marked ‘CS’ 

represent the single ancestry outputs of the continuous shrinkage method PRScs (both 

LD reference and summary statistics from a single ancestry). Methods marked ‘P+T’ 
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represent the single ancestry outputs from the linear pruning and thresholding method 

PRSice2. The three letter abbreviations included in some methods represents the sample 

ancestries as follows: European ancestry (EUR) and East Asian ancestry (EAS). Additional 

information about the summary statistics can be found in Supplementary Table 1 and 

additional phenotype data can be found in Supplementary Figure 5.
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Figure 6: 
Variance explained of PS methods applied to schizophrenia in predicting CBCL total 

problems scores across 100 folds of 50/50 cross-validation. Panels A, B, and C represent 

performance in AFR, EUR, and MIX ancestry populations respectively. Methods marked 

‘CSx Meta’ and ‘CSx’ represent the meta-analysis and hyperparameter-weighted trans-

ancestry outputs from the continuous shrinkage method PRScsx. Methods marked ‘CS’ 

represent the single ancestry outputs of the continuous shrinkage method PRScs (both LD 

reference and summary statistics from a single ancestry). Methods marked ‘P+T’ represent 
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the single ancestry outputs from the linear pruning and thresholding method PRSice2. The 

three letter abbreviations included in some methods represents the sample ancestries as 

follows: European ancestry (EUR), African ancestry (AFR), East Asian ancestry (EAS), 

and North or South American ancestry (AMR). Additional information about the summary 

statistics can be found in Supplementary Table 1 and additional phenotype data can be found 

in Supplementary Figure 4.
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Figure 7: 
Variance explained of PS methods applied to schizophrenia in predicting KSADs total 

problems scores across 100 folds of 50/50 cross-validation. Panels A, B, and C represent 

performance in AFR, EUR, and MIX ancestry populations respectively. Methods marked 

‘CSx Meta’ and ‘CSx’ represent the meta-analysis and hyperparameter-weighted trans-

ancestry outputs from the continuous shrinkage method PRScsx. Methods marked ‘CS’ 

represent the single ancestry outputs of the continuous shrinkage method PRScs (both LD 

reference and summary statistics from a single ancestry). Methods marked ‘P+T’ represent 
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the single ancestry outputs from the linear pruning and thresholding method PRSice2. The 

three letter abbreviations included in some methods represents the sample ancestries as 

follows: European ancestry (EUR), African ancestry (AFR), East Asian ancestry (EAS), 

and North or South American ancestry (AMR). Additional information about the summary 

statistics can be found in Supplementary Table 1 and additional phenotype data can be found 

in Supplementary Figure 5.
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Table 1:

Size and demographic information of the ancestry subsamples used in this analysis. Additional graphics 

showing the distributions of our phenotypes of interest can be found in Supplementary Figures 2–5.

Ancestry Group African Ancestry (AFR) European Ancestry (EUR) Admixed Ancestry (MIX) All Samples

Total N 811 6703 3664 11178

Mean (SD)

Age in years 9.9 (0.59) 9.9 (0.63) 9.9 (0.63) 9.9 (0.92)

Height in inches 56.19 (3.62) 55.16 (3.19) 55.28 (3.39) 55.27 (3.30)

BMI 20.73 (5.16) 17.99 (3.41) 19.93 (4.84) 18.82 (4.21)

CBCL Total Problems 20.02 (21.21) 17.81 (17.14) 18.89 (18.75) 18.33 (18.01)

KSADS Total Problems 23.32 (30.25) 18.37 (24.03) 19.14 (26.69) 18.98 (25.45)

Sex %

F 51.30% 47.30% 47.90% 47.80%

Parental Education

< HS Diploma 10.10% 0.60% 10.60% 4.60%

HS Diploma/GED 24.10% 3.70% 16.50% 9.40%

Some College 39.20% 19.80% 36% 26.50%

Bachelor’s Degree 12.50% 30.90% 18.70% 25.60%

Post Graduate Degree 14% 44.90% 18.20% 33.90%

Household Income

less than $50,000 70.30% 13.70% 51.80% 29.40%

between $50,000 and $100,000 20.10% 30.70% 26.10% 28.60%

greater than $100,000 9.60% 55.60% 22.00% 42.00%

Race and Ethnicity (self-report)

Asian 0% 0.10% 2.50% 0.90%

Black 97.50% 0.10% 28.40% 16.30%

Hispanic 0.60% 7.40% 47.40% 20%

White 0.10% 94.50% 27.00% 65.50%
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