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Abstract

Essays on Environmental Policy in Energy Markets

by

Judson Paul Boomhower

Doctor of Philosophy in Agricultural and Resource Economics

University of California, Berkeley

Professor Severin Borenstein, Chair

Producing and consuming energy involves costly environmental externalities, which are
addressed through a wide range of public policy interventions. This dissertation examines
three economic questions that are important to environmental regulation in energy. The
first chapter measures the effect of bankruptcy protection on industry structure and envi-
ronmental outcomes in oil and gas extraction. The second chapter measures additionality
in an appliance replacement rebate program. Finally, the third chapter focuses on the envi-
ronmental impacts of subsidizing electricity production from forest-derived biomass fuels.

The first chapter measures the incentive effect of limited liability. When liability is limited
by bankruptcy, theory says that firms will take excessive environmental and public health
risks. In the long run, this “judgment-proof problem” may increase the share of small pro-
ducers, even when there are economies of scale. I use quasi-experimental variation in liability
exposure to measure the effects of bankruptcy protection on industry structure and environ-
mental outcomes in oil and gas extraction. Using firm-level data on the universe of Texas
oil and gas producers, I examine the introduction of an insurance mandate that reduced
firms’ ability to avoid liability through bankruptcy. The policy was introduced via a quasi-
randomized rollout, which allows me to cleanly identify its effects on industry structure. The
insurance requirement pushed about 6% of producers out of the market immediately. The
exiting firms were primarily small and were more likely to have poor environmental records.
Among firms that remained in business, the bond requirement reduced oil production among
the smallest 80% of firms by about 4% on average, which is consistent with increased inter-
nalization of environmental costs. Production by the largest 20% of firms, which account
for the majority of total production, was unaffected. Finally, environmental outcomes, in-
cluding those related to groundwater contamination, also improved sharply. These results
suggest that incomplete internalization of environmental and safety costs due to bankruptcy
protection is an important determinant of industry structure and safety effort in hazardous
industries, with significant welfare consequences.

The second chapter focuses on the importance of a regulator’s inability to distinguish be-
tween households responding to a subsidy, and households doing what they would also have
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done in the absence of policy. Economists have long argued that many recipients of energy-
efficiency subsidies may be “non-additional,” getting paid to do what they would have done
anyway. Demonstrating this empirically has been difficult, however, because of endogeneity
concerns and other challenges. In this paper we use a regression discontinuity analysis to
examine participation in a large-scale residential energy-efficiency program. Comparing be-
havior just on either side of several eligibility thresholds, we find that program participation
increases with larger subsidy amounts, but that most households would have participated
even with much lower subsidy amounts. The large fraction of inframarginal participants
means that the larger subsidy amounts are almost certainly not cost-effective. Moreover,
the results imply that about half of all participants would have adopted the energy-efficient
technology even with no subsidy whatsoever.

Finally, the third chapter addresses consequences of renewable energy subsidies in other
markets. Electricity generated from logging residues provides a large and growing share of
US renewable electricity generation. Much of the low-value wood used by biomass power
plants might otherwise be left in the field. This increased harvest can negatively affect forest
health. I investigate the supply of woody biomass fuel in Maine using a 15-year panel of
prices and quantities for whole tree wood chips. I find that doubling the price of woody
biomass increases harvest by about 64%. I also find that coal prices are a major determinant
of woody biomass harvest. This suggests that environmental policies that raise the price of
coal will affect forest health.
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Chapter 1

Drilling Like There’s No Tomorrow:
Bankruptcy, Insurance, and
Environmental Risk

1.1 Introduction

In almost all modern legal systems the debts of insolvent parties can be eliminated through
bankruptcy. Bankruptcy protection benefits society by improving insolvent actors’ work in-
centives and by mitigating coordination problems among creditors.1 However, bankruptcy
protection also distorts behavior by insulating actors from worst-case outcomes. For exam-
ple, financial firms may become excessively leveraged, consumers may accumulate excessive
personal debt, and governments may commit to unsustainable levels of public spending. A
range of private contract features and public policies exist to combat this incentive problem,
such as reserve requirements for banks, loan limits for consumers, and credit ratings for
governments. These policies in turn affect many aspects of the economy.

One important implication of bankruptcy protection is that firms in hazardous industries
will take excessive environmental and public health risks. In many countries, including the
United States, accident liabilities and regulatory judgments can be discharged in bankruptcy.
This limits firms’ liability to their current assets, and thus decreases the safety incentives
of firms with assets that are less than their worst-case liabilities. Economists call this the
“judgment-proof problem” (Shavell, 1986). In addition to distorting short-run incentives,
the judgment-proof problem may increase the share of small firms in the long run. Staying
small allows firms to avoid the consequences of accidents, and therefore the need to invest
in costly safety measures. The implication of the judgment-proof problem for society is
too many harmful accidents. In addition, if there are economies of scale in production, the
judgment-proof problem can inefficiently limit productivity.

This paper examines the effect of bankruptcy protection on market structure and envi-

1For a review of the economics of bankruptcy law, see White (2007).



CHAPTER 1. BANKRUPTCY, INSURANCE, AND ENVIRONMENTAL RISK 2

ronmental outcomes in the onshore oil and gas industry. This industry is an ideal setting for
this analysis. Extracting crude oil and natural gas involves a risk of severe environmental and
health damages through water pollution, toxic gas releases, and explosions. The industry in
the United States includes many small firms. In 2012, almost 5,000 firms reported produc-
tion in Texas alone (the largest oil- and gas-producing state, and the setting for my analysis).
The vast majority of these firms had less than two million dollars in annual revenue.

In order to credibly measure the market structure impacts of the judgment-proof prob-
lem, the empirical analysis exploits quasi-experimental variation in the required surety bond
amounts for oil and gas producers in Texas. Surety bonds are insurance contracts that obli-
gate the insurer to pay the state for environmental costs left behind by bankrupt oil and gas
producers. Bond mandates cause firms to internalize accident risk through the premiums
they pay to the insurer. Firms with poor safety records and financially weak firms with
little incentive to exercise environmental care will face high premiums. Surety bonds are
complicated by moral hazard, as I discuss later, but in general a bond requirement improves
firms’ safety incentives.

Texas introduced bond requirements for some oil and gas producers in 1991, and for all
producers in 2001. For both policy changes, firms were required to comply with the new
rules by the date of their annual operating license renewal. These license renewal dates are
determined by the anniversary of a firm’s first license application, and are thus distributed
throughout the year. This quasi-random variation in timing allows me to cleanly identify
the effects of the policy changes. The analysis relies on a novel dataset of firm entry and
exit, oil and gas production, and environmental outcomes for the universe of oil and gas
producers in Texas, created by merging several different administrative datasets. Texas is
the largest oil- and gas-producing state in the U.S. and keeps detailed records on production
and environmental outcomes. Thus, it is an ideal geographic setting.

I find that greater internalization of environmental costs changed the industry structure.
The 2001 universal bond mandate pushed about 6% of producers out of the market immedi-
ately. This was almost a 70% increase from the normal background rate of exit. The exiting
firms were primarily small and were more likely to have poor environmental records. Finally,
among firms that remained in business, the bond requirement reduced oil production among
the smallest 80% of firms by about 4% on average, while production by the largest 20% of
firms was unaffected. These results suggest that the ability to easily avoid environmental
responsibilities prior to bonding inflated the number of small firms and their production.

Environmental outcomes also improved. After the universal bond requirement, the num-
ber of firms leaving their wells unplugged at the end of production (which creates a serious
risk of groundwater pollution) decreased sharply. Well blowouts and violations of water
protection rules also decreased substantially. These results suggest that by screening out
firms with the least incentive to take care and increasing accountability for firms that re-
mained in business, the bond requirement mitigated the harmful incentive effects created by
bankruptcy protection.

The results of this study confirm the central predictions of a theoretical literature that pre-
viously has had little high-quality empirical validation. Existing empirical studies of liability
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and market structure are based on cross-sectional comparisons across states, industries, or
firm sizes. This study departs from previous work by providing credible quasi-experimental
evidence that the judgment-proof problem is an important determinant of industry struc-
ture and environmental outcomes in hazardous industries. In addition, the use of firm-level
administrative microdata allows for much more detailed analysis than has been possible
in previous work. For example, I am able to measure how firm-level output responds to
insurance requirements. The results bolster concerns among economists and policymakers
about judgment-proof issues in other sectors, including landfills, underground storage tanks,
small-scale manufacturing, and hazardous materials transportation.

This study also makes a theoretical contribution by extending existing models of the
judgment-proof problem to allow firms to vary in output. This formalizes the relationship be-
tween bankruptcy and industry structure. The model yields clear, testable predictions about
the effects of policy changes that mitigate the incentive problems created by bankruptcy, like
the bond requirements that I observe in the empirical analysis.

Finally, this study contributes to our understanding of safety regulation in one of the most
important industries in the world. Hydraulic fracturing has led to meteoric increases in oil
and gas development in the United States in the past ten years. More than 15.3 million
Americans have had an oil or gas well drilled within one mile of their home since 2000.2

The shale boom has motivated a great deal of empirical research on outcomes of energy
development such as environmental or wealth impacts (Allcott and Keniston, 2014; Darrah
et al., 2014; Muehlenbachs, Spiller, and Timmins, 2014). This study targets a different
question that has not been as widely explored: Is society, through regulation, successful in
inducing oil and gas producers to balance profits and environmental risk in a socially efficient
way? This study demonstrates one important reason that some firms depart from socially
desirable behavior. The results also suggest that there would be benefits from increasing
bond requirements in oil- and gas-producing states to at least the level required in Texas,
and possibly further.

The rest of the paper is organized as follows: The following section discusses liability,
bankruptcy, and market structure. Section 3 proposes a model for how bankruptcy protection
affects firm size, output, and safety effort. Section 4 discusses the oil and gas industry, the
empirical strategy, and the data. Sections 5 and 6 discuss the results. Section 7 concludes.

1.2 Background

Liability and Industry Structure

The classic Shavell (1986) model of the judgment-proof problem shows that individuals
whose potential liability exceeds their assets take inadequate care to prevent accidents (e.g.,
they drive their cars recklessly) and engage too often in activities that may harm others

2Gold, Russell and Tom McGinty. “Energy Boom Puts Wells in America’s Backyards.” Wall Street
Journal. October 25, 2013.
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(e.g., they drive too much). The same reasoning applies to firms in hazardous industries.
Because safety effort is costly, firms that cannot be compelled to pay for accident damages
will underinvest in accident prevention (Shavell, 2002). As I show in Section 1.3, they will
also produce too much.

In industries where accidents and safety effort are expensive, the ability to avoid liability
creates a cost advantage for financially weak firms. This means that firms may seek to
strategically limit their asset exposure. One simple strategy is to keep the firm small.3

Small firms have few assets to be seized after accidents. They can also be quickly dissolved
in anticipation of accident claims, as in Boyd and Ingberman (2003). And, as I propose
in Section 1.3, the probability that total accident damages will exceed total assets is larger
when firms have fewer projects. Limiting firm size limits liability exposure, at the expense
of economies of scale.

In the classic model of long-run competitive equilibrium, firm size is given by the unique
output level that minimizes the U-shaped long-run average cost (LRAC) function (Viner,
1932). However, a large body of empirical research has documented disparities in firm size
that are inconsistent with the Viner model (Bain, 1956; Bloom, Sadun, and Van Reenen,
2012). More recent models seek to explain firm size more directly. In Lucas (1978), firms
differ in “managerial technology.” Better-managed firms are more productive and grow
larger than poorly-managed firms, but span-of-control problems limit the growth of even the
best-managed firms. In Banerjee and Duflo (2005), imperfect capital markets prevent all
firms from adopting a capital-intensive technology with low per-unit production costs. The
“missing middle” literature in development economics asks whether imposing regulations
only on large firms keeps firms small (Rauch, 1991; Hsieh and Olken, 2014).

In industries with significant liability risk, bankruptcy protection may also affect firm
size by creating an incentive to stay small. Surprisingly, formal models of the judgment-
proof problem have had little to say about the choice of firm size. For example, Shavell
(2002) assumes that firms produce only a single unit, and Pitchford (1995) describes firms
as considering a single risky project.4

A few empirical studies have examined the judgment-proof problem. Alberini and Austin
(2002) compares toxic releases in states with strict liability rules vs. negligence standards.
They find that accidents are less likely in states with strict liability, except among the small-
est firms. Ringleb and Wiggins (1990) argues that the number of small firms in dangerous
industries in the United States increased during the 1970’s, at the same time that enforce-
ment of liability for latent hazards like workplace carcinogen exposure became more aggres-
sive. These and other existing empirical studies make cross-sectional comparisons across
jurisdictions, firm sizes, or industries. These types of comparisons are vulnerable to omitted
variables bias. For example, firm size may be correlated with experience or skill. In addition,

3Other strategies include contracting out risky activities to small firms (Brooks, 2002); premature dis-
solution (Boyd and Ingberman, 2003); and financing with securitized debt that is senior to accident claims
(Che and Spier, 2008). See LoPucki (1996) for a general review of these strategies.

4Similarly, Ganuza and Gomez (2011) and Che and Spier (2008) assume identical output across firms
while allowing for strategic choice of asset level and capital structure, respectively.
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data on firms and accidents are often only available at highly aggregated levels, which limits
the detail of many analyses. There is an opportunity for highly credible quasi-experimental
approaches using detailed, firm-level data to provide evidence on how bankruptcy protection
affects industry structure and safety effort.

Effects of An Insurance Mandate

One widely-used policy to mitigate the judgment-proof problem is to require firms to have
liability insurance or bonds.5 Firms comply with bond requirements either by depositing
valuable assets with the regulator, to be returned once production is completed safely; or
by purchasing a surety bond from an insurer. Surety bonds are a promise by the insurer to
pay the state up to the value of the bond if the insured firm goes out of business and leaves
some environmental cost.6 Firms with few assets typically choose surety bonds instead of
cash bonds.

Insurance and bond requirements are commonplace. Most U.S. states require taxi firms
to purchase liability insurance or surety bonds. Recently, the lack of a similar insurance
requirement for transportation network companies like Uber became a public policy issue.7

In construction, contractors must purchase bonds that will pay for project completion if they
go out of business. Bonds or liability insurance are also required for owners of landfills and
underground chemical storage tanks, both of which can cause serious pollution problems. In
oil and gas extraction, all of the major oil- and gas-producing states and the federal Bureau
of Land Management require bonds, although in many cases they are very small relative to
potential damages.

Insurance and bond requirements mitigate the judgment-proof problem because firms
internalize accident costs through premiums. Depending on how well insurers can observe
safety effort, these policies have both intensive- and extensive-margin benefits. If effort
is observable, then premiums will be conditioned on effort, the firm internalizes the full
expected costs of accidents, and safety effort and industry structure will both be socially
optimal. In the opposite extreme where safety effort is completely unobservable, the benefits
are all along the extensive margin. Mandated insurance changes industry structure but not
safety effort. Firms exercise the same safety effort as in the absence of the requirement,8

and pay insurance premiums that reflect expected damages contingent on this sub-optimal
level of safety effort. Insurance premiums act like a tax that discourages participation in the

5Other responses include direct regulation of safety (Shavell, 1984) and the extension of liability to firms’
business partners (Kornhauser, 1982; Pitchford, 1995; Boyd and Ingberman, 2003).

6Bond requirements often allow firms to purchase surety bonds (from insurers) or irrevocable letters of
credit (from banks). These instruments are very similar, and I follow the convention established by regulators
of referring to both as “surety bonds” or “bonds”.

7Dolan, Christopher. “Viewpoints: Uber should have enough insurance, just like anyone else”. Sacra-
mento Bee. August 8, 2014.

8In fact, Shavell (2005) shows that safety effort decreases since insurance premiums reduce the firm’s
assets and thus its liability exposure.
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activity, screening out some firms whose revenues before the policy exceeded private but not
social costs (Polborn, 1998).

Using state-level panel data on annual releases from underground storage tanks, Yin,
Pfaff, and Kunreuther (2011) finds decreased leaks in seven states after tank owners were
required to purchase private liability insurance. This cross-sectional evidence suggests that
insurance mandates can improve environmental outcomes. However, the highly aggregated
data limits conclusions about firm-level responses or industry composition.

1.3 Model

This section proposes a model of how bankruptcy protection leads small firms to undervalue
safety, and leads to too many small firms. It extends the Shavell (1986) model to allow for
endogenous selection of firm size and output. Previous models of judgment-proof firms treat
output or the number of projects as constant across firms, which ignores the stylized fact that
small producers are more likely than large producers to be judgment-proof.9 I use the model
to show how the judgment-proof problem inefficiently raises the number of small producers,
and leads each of the judgment-proof firms to produce more than is efficient while exerting
less-than-efficient safety effort. I also show how bond requirements partially mitigate this
market failure. In addition to formalizing the relationship between industry structure and
liability, the model yields a clear set of theoretical predictions to take to the data.

Profit Maximization in a Hazardous Industry

A homogeneous good is produced by risk-neutral firms in a competitive industry. Production
may cause accidents that harm others. When an accident occurs, the damages are a constant
h. Firms can reduce the likelihood of accidents by exerting costly safety effort. The level of
safety effort is a continuous variable x, and the cost is normalized to one, so that expenditures
on safety are also x. The probability that an accident will occur for any given unit of
production is γ(x), which is decreasing in x. When an accident occurs, a fine equal to h is
levied.

Accident risk and safety effort increase linearly per unit of output (q). For example, each
additional oil well or manufacturing plant presents a hazard and requires independent safety
effort.10 The function f(v; q, x) is the probability distribution of total accident damages v
for a firm. Damages are bounded by hq (i.e., an accident with every unit of production). I
assume that accidents are independent, so E[v] = γ(x)qh.

A firm chooses q and x to maximize the profit function,

pq − c(q)− xq − γ(x)qh (1.1)

9An exception that I became aware of after developing the model in this paper is Van ’t Veld (2006).
10A more complex model could also include fixed costs of safety. The primary implication would be that

only firms above some minimum efficient scale would find it profitable to invest in safety, reinforcing the
judgment proof problem.
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Profit-maximizing safety effort x∗ minimizes effort costs plus fines: q[1+γ′(x∗)h] = 0. At x∗,
the reduction in expected fines from increased safety effort equals the marginal cost, which is
one. Profit-maximizing output q∗ equates marginal cost, including safety effort and expected
fines, with price: p = c′(q∗) + x∗ + γ(x∗)h. Firms internalize accident costs through fines, so
(x∗, q∗) is also socially optimal.

The Judgment-Proof Problem With Output Choice

This section introduces a parameter y, which is the assets owned by the firm that can be
seized to pay fines. If y is less than damages, the difference is discharged in bankruptcy. To
begin, assume y is given exogenously. The profit function becomes,

pq − c(q)− xq −

{
γ(x)qh y ≥ hq[ ∫ y

0
vf(v; q, x)dv +

∫ hq
y
yf(v; q, x)dv

]
y < hq

(1.2)

When y is greater than or equal to maximum possible liability, the profit function is
unchanged. However, when y is less than maximum possible liability, the firm will not
consider the full expected costs of accidents. Instead, it considers the mean of a truncated
damage distribution, valuing damage outcomes greater than y at y. Expected damages are
replaced in the profit function by the probability-weighted sum of damages from zero to y,
plus y for all larger damage outcomes.11

A firm with y < hq is, to some degree, judgment-proof. For at least some realizations
of total damages, the firm’s assets will be less than the damages. It chooses safety effort
x(y) < x∗, increasing the risk of accidents. The intuition is simple. The benefit of accident
prevention is smaller for a judgment-proof firm than a responsible firm because the judgment-
proof firm does not internalize the full expected cost of accidents.

Judgment-proof firms also choose q(y) > q∗. Again, the reasoning is straightforward. If
the firm fully internalized accident costs, the safety cost of another unit of output would be
the cost of socially optimal safety effort plus expected accident damages at that effort level:
x∗+γ(x∗)h. For a judgment-proof firm starting from the same level of output, the safety cost
of another unit of output is the cost of suboptimal safety effort plus the change in the expected
private cost of total accident damages. This is x(y) + A, where A = d

dq
[
∫ y
0
vf(v; q, x)dv +∫ hq

y
yf(v; q, x)dv]. It was already established that x(y) < x∗. It is also clear that A < γ(x∗)h,

because for damage realizations greater than y, the firm will not bear the additional damages
imposed by this unit; and both firms face identical damages when damages are less than y.12

So, marginal private safety costs are smaller when firms are judgment-proof, leading to higher
production compared to a same-sized firm that was responsible for all damages.

11When accidents are independent, the number of accidents follows a binomial distribution, and expected
fines for the judgment-proof firm can be expressed more precisely as,∑ y

h

k=0 khφ(k) +
∑q

k=y/h yφ(k) where φ(k) is the binomial pmf,
(
q
k

)
γ(x)k(1− γ(x))q−k.

12The privately-optimal x for the judgment-proof firm may also increase with q. However, re-optimizing
x can only reduce marginal cost relative to the old x.
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The Judgement-Proof Problem and the Size Distribution of Firms

This section shows how the judgment-proof problem increases the number of small firms.
This requires some additional assumptions. I assume heterogeneity between firms in tech-
nology, represented by θ. A firm’s production cost for quantity q, exclusive of safety effort
and fines, is given by c(q; θ). Firms with larger θ have higher fixed costs, but lower minimum
average cost. This feature of the model can be motivated in several ways, as discussed in
Section 1.2. For example, in the Lucas (1978) model of firm size, larger θ would correspond
to more skilled management.

Secondly, I assume that small firms are more likely to have assets less than total damages.
This assumption is widely made in the accident economics literature, but is not often tied
to a formal economic model. One way to motivate this feature is to assume that y increases
linearly in q (for example, because every well or plant adds valuable physical assets). In
that case, the volatility of total damages relative to mean damages (i.e., the coefficient of
variation) decreases in q. A firm with many plants is less likely to have accidents at all of its
plants than a firm with one plant, when accidents are independent. So, the probability that
accidents will bankrupt larger firms is lower because pooling projects reduces the variability
of total damages.13 A second motivation for this assumption is that it is easier for small
firms to pursue a “fly-by-night” strategy of premature dissolution, as in Boyd and Ingberman
(2003). It is less costly for firms with few assets to quickly strip value out of the firm in
anticipation of liability claims for accident damages.

Figure 1.1 shows the potential for inefficient market structure. The thick solid curves
show long-run average cost curves for two types of firms with different θ, when firms fully
internalize expected accident damages. These curves represent the vertical sum of average
production costs, ac(q; θ), and average safety costs (effort plus expected damages), x∗+γ(x∗)h
. Because θ2 > θ1, the minimum average cost for Type 2 firms is below and to the right
of that of Type 1. When firms internalize accident damages, large firms are most privately
efficient and will dominate in a competitive market setting.

The dashed curves show how bankruptcy lowers private average costs for small firms.
When q is small, the firm is unlikely to pay the full costs of accident damages because
damages are likely to exceed assets. It chooses a low level of safety effort, and its overall
safety costs, shown by the dashed safety cost curve at the bottom of the figure, are low. As q
increases, the share of expected damages internalized by the firm increases, so that per-unit
safety costs approach x∗+γ(x∗)h. The dashed average cost curve shows overall average cost
for Type 1 firms when bankruptcy limits liability. Now small firms are the most privately
efficient and will dominate in a competitive market setting.14

13Technically, this requires the additional assumption that y is at least as large as expected per-unit
damages under socially optimal safety effort. If accidents are rare, this assumption is not restrictive.

14In this simple model, a single type of firm will dominate the market in equilibrium. In reality, without
infinite potential entry of each type, there would be a range of firm sizes in the market. However, which type
was most privately efficient would still be determined by the reasoning here, so that bankruptcy protection
would increase the number of small firms.
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This model demonstrates a tradeoff between economies of scale and the ability to avoid
accident costs. For Type 2 firms, economies of scale are large. These firms maximize profit
by producing a large amount of output, even though this large firm size means they must
fully internalize the expected costs of accidents. Type 1 firms are small enough to avoid
some accident costs, but economies of scale are limited. These types are two examples from
a range of possible firm sizes that depends on the management or other technologies available
in the market. The privately optimal firm size balances avoided liability and economies of
scale.

What are the welfare effects of the judgment-proof problem? The per-unit social cost
of the judgment-proof firm’s production is higher than under full cost internalization. This
is because, by definition, safety effort x∗ minimizes the sum of effort costs and accident
costs. Any other level of safety effort results in higher total social costs per unit of output.
The marginal unit of production by judgment-proof firms has negative net benefits due to
suboptimal safety effort and excessive production. In addition to this externality problem,
if output produced by judgment-proof firms would otherwise have been produced by large
firms, there are also foregone economies of scale.

Alternative Assumptions

It is worth briefly considering some of the assumptions in the previous sections. The model
ignores other well-known problems with liability regulation. For example, it assumes that
accidents are always detected and that penalties exactly equal social damages. A complete
model of liability regulation would include these features and several others described in
Shavell (2007) and related works. I have abstracted away from these issues to focus on
the judgment-proof problem. Adding these features to the model would not fundamentally
change the predictions.

The model also treats firms as risk-neutral, so that there is no private demand for liability
insurance. If firms are risk-averse, this may not be true. However, note that firms only have
incentive to purchase insurance for losses that they would otherwise pay. Judgment-proof
producers have no incentive to purchase coverage in excess of their assets, so the existence
of a private insurance market is insufficient to eliminate the judgment-proof problem.

The preceding section also does not address capital structure. One implicit assumption
is that firms cannot issue debt that is senior in repayment to accident damages. If this were
possible, firms of any size could eliminate liability exposure by issuing debt secured by all of
the firm’s assets, as in Che and Spier (2008). In the event of an accident, all assets would
already be pledged to senior creditors. For environmental damages in the United States,
the assumption that this is impossible mirrors reality. Several federal and state laws make
it difficult for lenders to foreclose on assets involved in environmental incidents, effectively
subordinating a secured creditor’s claim to environmental costs.15 In the specific case of

15Interpretations of the law have varied, but, for example, a creditor who takes ownership of a Superfund
site through foreclosure faces a non-trivial legal risk of being held liable as an owner (Harkins, 1994; Murray
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Texas oil and gas extraction, for certain types of clean-up costs the state has a lien against
insolvent producers’ assets that is senior to secured debt.16

When the firm is financed with debt, the owner’s incentives to operate safely are reduced
because some of the losses due to accidents will be borne by creditors. This raises the
question of why firm owners in hazardous industries do not seek to become highly leveraged
in order to fully externalize the potential loss of y. The answer is that, as long as debt is
junior to accident damages, borrowing costs for a firm with this strategy would be very high
because lenders would fear losses.

Finally, for the application to oil and gas extraction, it is worth considering how to treat
site reclamation in the model. Plugging wells and remediating waste storage pits is an im-
portant investment of safety effort that reduces groundwater contamination. In practice,
regulators do not only use a liability rule to regulate reclamation. Instead, reclamation is
mandated at all sites. For this element of safety effort, penalties to the firm are a determin-
istic function of effort. Firms pay fines with probability 0 if they remediate and probability
1 if they do not. What matters is that small firms can avoid both liability-based penalties
and effort-based penalties through bankruptcy.

Insurance Requirements Mitigate the Judgment-Proof Problem

This section shows how a surety bond requirement leads small producers to internalize a
larger share of damages. Bonding increases care and reduces participation by judgment-
proof firms. I also discuss how setting the bond amount too high can limit participation by
firms whose operation would be welfare-improving.

Firms purchase surety bonds from insurers. These are contracts that obligate the insurer
to pay the state any positive difference between the firm’s damages and its assets. Maximum
payments by the surety are limited by the face value of the required bond, β, which is chosen
by the state. In a competitive market, insurers sell surety bonds at a price π that just covers
expected losses plus underwriting expenses.

π =

∫ β+y

y

(w − l)f(v)dv +

∫ hq

β+y

(β − l)f(v)dv + u (1.3)

The amount by which damages exceed the firm’s assets is w = max[0, v(q;x) − y]. Col-
lateral required by the insurer is l. If damages are less than y, the insurer pays nothing. The
first integral term represents the insurer’s losses when damages are between y and β + y,
so that the insurer pays the full difference between damages and assets. The second inte-
gral represents the insurer’s losses when damages exceed β + y, so that the insurer pays β
(so, unless the bond is set at or above worst-case damages, insurers do not fully internalize
expected damages). Underwriting expenses are u.

and Franco, 2011).
16Texas Natural Resources Code Section 89.083.
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A surety bond does not directly increase a firm’s liability exposure. Damages greater
than y are paid by the insurer, not the firm, so that there is moral hazard on the part of the
firm. However, the insurer will screen clients and design contracts to limit losses. Insurers
can directly monitor safety effort, adjust rates based on assets or accident history, use credit
reporting to punish firms who default, and/or demand collateral (sometimes from outside
the business). These measures will induce firms to expend some safety effort, although this
level of effort x̂ is likely to be below x∗. Since x̂ < x∗, the equilibrium surety bond price will
reflect a higher level of expected damages than under x∗.

The surety bond requirement also introduces transaction costs, which are borne by the
firm. I assume that collateral is invested at a rate lower than the firm’s opportunity cost
of capital, with the proceeds accruing to the firm. Collateral requirements cost the firm lr,
where r is the difference between the firm’s opportunity cost of capital and the rate at which
collateral is invested. Underwriting costs u are also borne by firms.

For a bond amount equal to β, a small firm’s expected profit is,

pq̂ − c(q̂; θ)− x̂q̂ −
∫ y

0

vf(v)dv −
∫ hq

y

yf(v)dv − lr − π(x̂, q̂, y) (1.4)

The bond requirement causes intensive and extensive margin improvements. On the
intensive margin, the bonded firm invests higher safety effort (x̂) and produces less (q̂) than
the unbonded firm because surety premiums improve incentives. On the extensive margin,
firms with few recoverable assets will face high bond premiums, since insurers know it is not
in those firms’ private interest to exercise adequate safety effort. This leads to a desirable
change in industry structure as financially weak producers are screened out.

A bond requirement may also exclude firms whose operations would be socially efficient.
Underwriting and collateral costs increase bond prices above expected losses, potentially
excluding some firms that would be barely profitable with full cost internalization and no
transaction costs. Other potential inefficiencies in insurance markets could also result in
coverage not being available to responsible firms. I return to this topic in Section 1.6.

Testable Predictions

This model makes several testable predictions about policy changes that reduce the ability to
avoid bankruptcy in industries with large potential liabilities. There should be exit by small
producers, as firms that had been privately profitable but not socially efficient are pushed out
of the market. These exiters should have had more accidents prior to the policy change than
firms that stay in the industry. Small firms that remain in the market should decrease their
output as they internalize a larger share of marginal safety costs. Finally, environmental
incidents should decrease due to increased safety effort per unit of production.
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1.4 Empirical Analysis and Data

The setting for the empirical analysis is the onshore oil and gas extraction industry in Texas.
This is an excellent industry in which to study liability and bankruptcy. There are signifi-
cant environmental risks and many small producers. Firms produce homogeneous products,
and the industry is essentially perfectly competitive due to extremely liquid international
markets. Finally, the size of the industry means that environmental incidents occur fre-
quently enough to allow for detailed empirical analysis. Texas is the largest producer among
the United States and keeps detailed data on production and accidents, making it an ideal
geographic setting.

Environmental Protection in Oil & Gas Extraction

Oil and gas extraction poses potential risks of water pollution, methane leaks, and releases
of toxic gases and radioactive materials. Historically, water pollution has been considered
the most serious risk. Crude oil, drilling chemicals, and saltwater produced along with oil
and gas can all have severe health and natural resource impacts.

Extracting crude oil and natural gas involves drilling and production phases. Wells are
drilled into underground formations thought to contain hydrocarbons. Successful wells will
produce for twenty years or more, with declining production over time. Water contamination
is a serious concern during both drilling and production.

During drilling, a cement and steel well casing is constructed around the well bore. Cor-
rect construction of this casing is important to prevent leaks into groundwater. In addition,
open pits for temporary storage of drilling wastes must be carefully sited and constructed.
Finally, if drillers lose control of well pressure, there may be a “blowout”, possibly spreading
oil or drilling fluids over a wide area. Blowouts can also cause fires, equipment losses, and
injuries or deaths. If a blowout damages the underground resource, nearby mineral owners
can claim damages. The total costs of a well blowout can be tens of millions of dollars (Jones,
2003).17

During production, crude oil or liquid wastes can leak from storage tanks, pits, pipelines,
or trucks. In addition, degraded well casings can develop leaks into groundwater. Producers
must monitor the integrity of aging wells. Once wells are no longer producing (or leaks are
detected), they should be plugged with cement below groundwater depth. Plugging wells
costs thousands of dollars per well, so operators have an incentive to avoid or delay it. In
the extreme, wells may remain unplugged after the firm is dissolved. These “orphan wells”
must be plugged with public funds. Because operators may hold inactive wells for years

17Because a firm’s demand for drilling services varies greatly in time and space, drilling is typically carried
out by specialized contractors. Well owners and drillers negotiate the legal responsibility for accidents as part
of their contracts. Typical contracts, such as the model contracts provided by the International Association of
Drilling Contractors, assign most liability to well owners. Ultimately, both firms face some liability exposure,
since the indemnities in these contracts are imperfectly enforceable. For example, either firm could become
a target for liability claims if the counterparty became insolvent (Anderson, 1989; Jones, 2003).



CHAPTER 1. BANKRUPTCY, INSURANCE, AND ENVIRONMENTAL RISK 13

before exiting, and because state agencies have limited budgets, state-funded plugging may
come too late to prevent groundwater contamination. Between 1983 and 2008, orphan wells
caused 17% of detected oil and gas groundwater contamination incidents in Texas, and 22%
in Ohio (Kell, 2011).18

Changes in Insurance Requirements

Credibly measuring the effects of the judgment-proof problem requires variation in firms’
ability to avoid liability that is exogenous with respect to unobserved determinants of the
outcome of interest. This is a difficult empirical challenge. A randomized control trial
assigning asset levels or bond requirements to firms is unlikely to prove feasible. Cross-
sectional comparisons of large vs. small firms, or across industries or jurisdictions, are
highly vulnerable to omitted variables bias. For example, deep-pocketed producers may be
more experienced or more skilled than financially weak producers.

This paper exploits variation over time in bond requirements. Stricter bond requirements
reduce small firms’ ability to escape environmental costs. Texas introduced a bond require-
ment for some oil and gas producers in 1991 and extended it to all producers in 2001. Both
of these policy changes became binding on firms at the time of their first annual operating
license renewal after the change. License renewal dates depend on the anniversary of the
firm’s creation, creating a quasi-random rollout. As I describe in detail in Section 1.5, this
variation allows me to separate the effects of the policy changes from other time-varying
determinants of industry composition.

Senate Bill 1103 in 1991 first introduced the bond requirement, but it required bonds for
only some producers. Firms with an acceptable compliance history could instead pay a small
annual fee called the “Good Guy Fee.”19 This option was chosen in 76% of license renewals
during 1992–2001. In 2001, Senate Bill 310 extended the bond requirement to all oil and
gas producers, eliminating the Good Guy Fee. This rule passed the legislature in June, 2001
and took effect in January, 2002. I focus the analysis primarily on the 2001 change because
prior to this, few firms were bonded.20

Under both the partial and the universal bond requirements, the bond amount depended
on the number and depth of wells. The formula was $2 per foot of well depth across all
wells. The mean depth of existing wells in 2001 was 3,300 feet.21 Alternatively, producers

18For Texas, 17% of cases came from orphan wells; 33% from production activities; 43% from waste
management and disposal; and 6% from drilling and well completion. For Ohio, 22% of cases came from
orphan wells; 21% from production activities; 14% from waste management and disposal; and 40% from
drilling and well completion.

19Firms with a four-year record of compliance with Commission regulations could pay the $100 per year
Good Guy Fee. Firms ineligible for the Good Guy Fee could also avoid bonding through an annual cash fee
equal to 3% of the required bond amount. For unbonded operators, the 1991 law also introduced a $100
annual fee for each inactive, unplugged well.

20S.B. 310 also allowed one final non-bond alternative, a sharply elevated annual fee equal to 12.5% of
the required bond amount, to persist as a temporary alternative until 2004.

21This is the total depth of wells operated in 2001 divided by the number of wells.
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could cover a number of wells with a “blanket bond.” Up to 10 wells could be covered with
a $25,000 blanket bond; 11 to 99 wells with a $50,000 blanket bond; and over 100 wells with
a $250,000 blanket bond.22

Ninety-seven percent of bonded producers chose to purchase a bond from an insurer
instead of posting their own assets as a cash bond.23 The annual premium for a surety bond
is typically 1-2.5% of the face value of the bond. However, for firms that are deemed to
be high-risk because they are financially weak or have a poor safety record, premiums can
exceed 10-15%. Bond issuers may also require collateral from firms deemed to be high risk
(Gerard, 2000; Boyd, 2002; Kaiser and Snyder, 2009; Gerard and Wilson, 2009). Thus, the
primary effect of the bond requirement was to substantially increase the operating costs of
firms for which the market perceived a high risk of insolvency and environmental damage.
A low-risk operator with five wells might pay $330 per year in bond premiums, while a high-
risk operator with the same number of wells might pay $2,475 per year while also facing
collateral requirements.24

The importance of the bond requirement to producers’ costs was reflected in the widespread
news coverage it received. Bonding was controversial because of a perception that it pushed
out small firms. An op-ed in the Midland Reporter Telegram stated, “Bonding is no prob-
lem for major oil companies and large publicly owned independent companies. The small
independent, however, is finding bonding very difficult at best... If the Railroad Commission
persists in its current bonding requirements it could put thousands of honest hardworking
Mom and Pop operators out of business.”25 Under the headline, “Can’t Afford the Bond?
Then Don’t Run a Well,” the San Antonio Express News editorialized, “Texas is better off
if only companies that can afford to be responsible environmental stewards stay in the oil
and gas business.”26

The policy was primarily intended to reduce orphan wells, but the required bonds were
conditioned on preventing all types of water pollution. The bond states that “all oil and
gas activities and operations shall be carried out so as to prevent pollution of any ground or
surface water in the state.”27 Unlike liability insurance, if the state makes a claim against
the bond, the insurer will seek repayment from the oil and gas producer. Thus, these bonds

22Between steps in the blanket bond schedule – at 10 to 11 wells and 99 to 100 wells – the marginal increase
in the required coverage level is zero. It is worth considering whether this introduced new economies of scale.
In practice, any effect was likely small. First, adding wells increased the surety’s risk exposure and so should
have increased premiums for a given level of coverage. Second, bond costs were small for low-risk firms.
Ignoring premium increases, a large firm acquiring a low-risk five-well firm would have saved about $165
per year for each of the firms’ owners, following the example calculation in the following paragraph. These
savings were likely small compared to other benefits and costs of merging. For high-risk firms, the benefits
of combining with a large producer with a good reputation were higher. But the main reason for the savings
was not the blanket bond; it was that the larger firm was a better insurance risk.

23This is the share of bonded license renewals from 2002-2005 with surety bonds or letters of credit.
24Low risk firm: 3,300 feet * 5 wells * 2%. High-risk firm: 3,300 feet * 5 wells * 15%.
25“PBPA members detailing problems getting bonds.” Midland Reporter Telegram. March 31, 2002.
26“Can’t Afford the Bond? Then Don’t Run a Well.” San Antonio Express News. August 9, 2002.
27Railroad Commission of Texas Blanket Performance Bond P-5PB(2). http://www.rrc.state.tx.us
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transfer default risk from the state to the surety.

Data

For this analysis, I construct a novel dataset on market structure and environmental out-
comes. The core of the analysis relies on several administrative datasets from the Railroad
Commission of Texas (RRC), the agency that regulates oil and gas production. Operator
entry and exit dates come from the RRC “Organization Report” dataset. All operators must
file an organization report annually by the anniversary date of the firm’s first filing. I define
a firm’s exit date as 365 days after its final organization report renewal, since the firm chose
not to renew its operating license as of this date.

Bond data were obtained through a public records request to the RRC. This dataset
includes, each year for every operator: the type of bond (surety bond, “Good Guy” option,
etc.); the required bond amount; and the number and depth of wells.

Oil and gas production data come from the RRC Production Database Query (PDQ)
dataset (for 1993–2010) and the RRC Final Oil and Gas Annuals (FOGA) dataset (for
1990–1992). Both datasets report monthly crude oil and natural gas production at the lease
level.28 A lease is a parcel of land on which the producer has negotiated the right to explore
for oil and gas, and may contain multiple wells. Each lease-month observation is matched
to an operator using unique operator identification numbers.

Drilling data come from the RRC “Drilling Permit Master and Trailer” dataset. That
dataset identifies “spud-in” and well completion dates for every well drilled between 1991
and 2010. Spud-in is the date that drilling began, and well completion is the date that the
well first produced oil or gas, which coincides with the conclusion of rig work.29 Wells are
matched to operators using the same operator identification numbers.

Environmental outcomes comes from several datasets. Orphan well data come from the
RRC Orphan Well Database. This is a snapshot of orphan wells that have not yet been
plugged by the state as of March 14, 2014.30 Information on environmental rules violations
comes from the RRC’s online Severance Query Database. I am primarily interested in
violations of Statewide Rules 8 and 14. Statewide Rule 8 (“Water Protection”) governs
water quality protection during drilling and production. Statewide Rule 14 (“Plugging”)

28I include casinghead gas (gas from wells that primarily produce oil) in natural gas production. I include
condensate (a liquid petroleum product from gas wells) in crude oil production. In practice, condensate is
a slightly different product and its market price can differ slightly. However, it is a small share of total
production, and excluding condensate does not meaningfully affect the results.

29The data extend back to 1976; however, Kellogg (2011) reports that spud-in dates were not reliably
recorded prior to 1991. Also following Kellogg (2011), I disregard completion dates for wells with reported
drilling times less than 0 or greater than 180 days. For wells with no valid completion date, I assume that
rig work took place for the average drilling time of 20 days.

30A comprehensive list of all wells that have ever been orphaned is not available from the RRC. Because I
am primarily interested in the change in the rate of well orphaning with bond policy changes, an incomplete
list does not affect my analysis as long as the state did not preferentially plug wells orphaned just before or
just after rules changes.
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requires that inactive wells be plugged promptly. Information on well blowouts comes from
the RRC “Blowouts and Well Control Problems” list. Oil and gas operators are required to
notify the Commission of all well blowouts. Orphan wells and rules violations are merged
to operators using operator identification numbers. The blowout data do not include these
numbers. I match blowouts to operators using unique lease identification numbers where
provided. For the remaining blowouts, I carefully match on lease name and operator name.

The final dataset includes all operators in the state with positive oil or gas production
between 1990 and 2010. This includes 17,672 firms.

Descriptive Evidence of the Judgment-Proof Problem

Before proceeding to the empirical results, this section summarizes descriptive evidence that
suggests the judgment-proof problem may have been important in this industry. In 2001, the
year before the expanded bonding requirement took effect, 5,302 firms in Texas reported oil
and gas production. Figure 1.2 shows the distribution of their revenues. Above $15 million,
the horizontal axis is truncated to show the five largest producers. The vertical axis shows
the number of firms in each 1 million dollar bin. While the largest firms produced over one
billion dollars worth of oil and gas, most firms had revenues below $1 million. Table 1.1 lists
the quintiles of the revenue distribution. The 80th percentile of the revenue distribution is
only $1.4 million dollars, and the 20th percentile is $33,000.

Figure 1.3 shows that environmental incidents were concentrated among small operators.
I calculate average annual production for all firms from 1990–2001. The x-axis shows the sum
of annual production across all firms. Producers are ordered left to right along this axis from
smallest to largest. The vertical axis shows the cumulative share of environmental incidents.
Almost 100% of orphan wells, 95% of field rules violations, and 40% of well blowouts are
associated with the 20% of total production that comes from the smallest firms.

Finally, there is also evidence of high bankruptcy rates. According to a 2003 report by
the State Review of Oil and Natural Gas Environmental Regulations (STRONGER), during
2001 and 2002 (before the bond requirement was fully implemented), the state was unable
to collect 68% of the penalties assessed for oil and gas rules violations. The most common
reason that these fines were uncollectible was bankruptcy.31

1.5 Results

There are three sets of emprical analyses related to industry composition, firm-level output,
and environmental outcomes. This section presents the results of each. As discussed in
Section 1.4, I focus the empirical analysis primarily on the introduction of the universal
bond requirement in 2001, because prior to this many producers were able to avoid bonding
through non-bond alternatives like the “Good Guy Option.”

31“The RRC assessed $5,183,832 in penalties and collected $1,728,595... Penalties are most often uncol-
lectible because the company has gone out of business and has no assets” (STRONGER, 2003).
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Industry Composition

The model in Section 1.3 predicts that increased bond requirements will cause some firms to
exit because they are no longer profitable after internalizing a larger share of environmental
costs. I measure the effect of the 2001 bond requirement on producer exit using a regression
discontinuity (RD) design. This design takes advantage of the twelve-month bond rollout by
comparing firms who renewed within a narrow window in time around the implementation
of the policy.32 I run the regression,

1[Exit]it = α + β11[Begin Rollout]t + β21[End Rollout]t + β3Tt +Xtβ4 + ψm + ηit (1.5)

The dependent variable 1[Exit]it is an indicator variable equal to one if firm i exits in month
t. I observe exit decisions once per year per firm, during the firm’s renewal month. Thus,
while the analysis is at the monthly level, there is one observation per firm per year. After
firms exit they are removed from the sample. 1[Begin Rollout]t is an indicator variable
equal to one in January 2002 and all later months. 1[End Rollout]t is an indicator variable
equal to one in January 2003 and all later months. Tt is a local polynomial in the running
variable, the number of months before or after January 2002. Xt includes monthly crude oil
prices.33 ψm is a set of month-of-year fixed effects. Controlling for output prices and month
of year improves precision and allows comparison of the effect of the policy to the effects of
short-term fluctuations in oil and gas prices. The constant term α gives the background level
of exit prior to the policy change. Tt is centered at January, 2002 and oil and gas prices are
centered at their sample means, so α gives the level of exit that would have been expected
immediately prior to the policy change, under average oil and gas prices (and in January
when month-of-year fixed effects are included).

The error term ηit includes unobserved determinants of 1[Exit]it. The identifying as-
sumption in this analysis is that ηit does not change discontinuously at the implementation
threshold. Under this assumption, the bond rollout allows for clean measurement of β1 by
comparing exit during a small number of months after implementation to exit during a small
number of months prior to implementation. As I show below, this identifying assumption is
bolstered by the pattern of exit observed at the beginning and end of the bond rollouts in
1991 and 2002. There are clear, symmetric discontinuous changes at each of these thresholds.
Thus, it unlikely that the increased exit at the time of the policy change was solely driven
by an unobserved idiosyncratic shock.

Industry Composition: Graphical Results

Figure 1.4 shows the raw data on producer exit. The dots represent the number of firms
leaving the market each month. Prior to the introduction of the partial bond requirement

32As suggested in Lee and Card (2008) for RD designs with discrete support, I cluster the standard errors
according to the running variable. The running variable is month; I cluster by quarter.

33Crude oil and natural gas prices are highly correlated during this period (correlation coefficient 0.8).
To simplify interpretation of the price effects, I include oil prices only. Appendix Table A.2 shows results
controlling for oil and natural gas separately.
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in September 1991, about 40 firms exited each month. With the bond requirement, the rate
of exit increases sharply to over 100 firms per month and stays high for 12 months. After
the 12 months, the level of exit decreases sharply. The same pattern of sharply increased
exit for twelve months accompanies the implementation of the universal bond requirement
in 2002. In 2002, the level of exit approximately doubles from about 60 to about 120 firms
per month. Appendix Figure A.1 shows a similar figure for net entry (entry minus exit) by
month. The pattern is very similar.

Figure 1.5 shows a graphical version of the RD estimator for the 2001 universal bond
requirement. The sample includes 1997–2006. The x-axis shows months before and after
January 2002. The dots are monthly means of the residuals from a regression of 1[Exit]it on
a constant term, month-of-year fixed effects, and monthly oil prices. The fitted curves are a
quadratic polynomial fit for 1997–2001, a separate linear fit for 2002, and a separate quadratic
polynomial fit for 2003–2006. There is a clear increase of about five percentage points in
the share of firms exiting in January, 2002. At the end of the twelve-month implementation
period, there is a discontinuous decrease in exit to approximately the pre-implementation
level.

Figure 1.6 shows the same figure, by quintile of firm-level average annual oil and gas
production. These quintiles are defined based on average production during 1996–2007 in
barrel of oil equivalents (BOE).34 The effect of the universal bond requirement is largest for
small firms. Among the smallest 20% of producers, there is a clear increase in exit of about
15 percentage points in January 2002. In the second quintile, the effect is about 10%; in the
third, it is about 5%, and in the fourth it is about 4%. In each of these middle quintiles the
effect is growing smaller, but is clearly visually distinguishable in every case. In contrast, in
the top quintile of firm size there is no distinguishable change in the share of firms exiting
in January 2002.

For robustness, Appendix Figure A.2 shows the number of firms with license renewal
dates in each month of the sample. These dates are assigned by the RRC and cannot be
manipulated by firms. The bond requirement was implemented according to firms’ assigned
renewal dates, so firms could not avoid it by submitting their renewal paperwork early. If such
manipulation had been possible, it may have introduced systematic differences between firms
up for renewal before and after implementation. As expected given the implementation rules,
however, the number of firms up for renewal is smooth across the implementation threshold.

Industry Composition: Estimation

Table 1.2 shows regression results for equation 1.5. As in Figure 1.5, each specification
includes a quadratic polynomial in time for 1997–2001; a separate linear polynomial for 2002;
and a separate quadratic polynomial for 2003–2007. In Column (1), the implementation of

34One BOE is one barrel of oil or 6,000 cubic feet of natural gas. One BOE represents the approximate
energy content of a barrel of oil, and is a commonly used metric for combining oil and gas into a single
measure. Results are similar if I use value of production instead of BOE; however, BOE is preferred because
changes in oil and gas prices over time affect the production value measure.
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the expanded bonding rule causes a discontinuous increase in exit of 6.8 percentage points.
This means that an additional 6.8% of the firms scheduled to renew their license each month
chose to leave. Over 12 months, this effect would decrease the total number of firms in the
industry by 6.8%. The baseline rate of exit before the policy change, given by the constant
term, is 9%. The specification in Column (2) controls for crude oil prices in each firm’s
assigned renewal month. This decreases the estimated effect of the bond policy slightly to
6.3 percentage points. The effects of price increases on exit are negative, as expected. Oil
prices are centered at their mean value in the panel, so the constant term in Column (2)
describes the baseline exit rate at average oil and gas prices. Finally, the specification in
Column (3) also includes calendar month fixed effects. Including the fixed effects has little
effect on the estimates, which suggests that there are not important systematic differences
in firms across assigned license renewal months.

These results suggest that the bonding requirement caused 6% of the firms in the industry
to exit immediately. This is about a 65% increase from the normal rate of exit. To further
contextualize this effect, it is interesting to compare the exit due to the bond mandate with
the amount of exit caused by month-to-month fluctuations in output prices. The spot price
of crude oil is one of the best predictors of future oil prices, even compared to futures prices
(Alquist and Kilian, 2010). Thus, by reducing expected future revenue for producers, output
price decreases play a similar role to generic cost shocks. Taking literally the estimates in
Column (3) of Table 1.2, a $10 decrease in the crude oil price would lead to a 0.5 percentage
point increase in exit probability across all firms. So, the immediate contraction caused by
bonding is about 12 times larger than the exit caused by a $10 decrease in the world oil
price.35

Table 1.3 presents regression results according to firm size. Again, the results are consis-
tent with the graphical evidence in Figure 1.6. The output quintiles are the same as in the
figure. The specification in each column matches Column (3) in Table 1.2. The effect of the
bond requirement is decreasing monotonically in firm size. In the first and second quintiles
exit increases by about 12%, while in the third and fourth quintiles it increases by about
5%. There is no effect of the policy change on exit for firms in the largest output quintile.
The background level of exit also decreases across the bottom four quintiles, from 17% in the
bottom quintile to 5%. The baseline level of exit for large producers is 9.7%. This relatively
high baseline level of exit in the largest quintile may be due to merger activity between large
producers during this period.

Characteristics of Exiting Firms

The model predicts that firms that shut down in response to increased insurance requirements
will have dirtier environmental records due to lower safety effort. Table 1.4 describes the

35Of course, using marginal effects to predict the results of non-marginal changes is problematic. Recent
work also suggests caution when comparing transitory price shocks with permanent policy changes (Li, Linn,
and Muehlegger, forthcoming). The goal is not to precisely compare these effects, but rather to emphasize
how large the effect of bonding was.
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difference in environmental performance between firms that exited during the bond rollout
and those that stayed.

The first column of Table 1.4 focuses on plugging of inactive wells. I do not observe
well-level production, which would allow me to identify non-producing wells. However, I do
observe the number and depth of wells owned and their total monthly production. For each
firm, I calculate the approximate cost to safely plug all of its wells using the RRC estimate
of two dollars per foot of well depth. Firms with a low ratio of revenue to expected plugging
costs are more likely to have inactive wells that should have been plugged (once wells are
plugged and remediated, they are no longer counted in the firm’s number of wells). A low
ratio of revenue to plugging costs also makes firms poor credit risks from the point of view
of a bond issuer. A firm is less likely to invest in safety effort if the expected future revenue
from the business is small. Particularly, it will be more attractive to exit and leave wells
unplugged. There is anecdotal evidence that firms with a low ratio of revenue to expected
plugging costs received high bond price offers (Texas House of Representatives, 2002). In
the first column of Table 1.4, the dependent variable is an indicator variable equal to one if
the firm’s expected plugging costs at its most recent license renewal were more than twice
its average annual revenue during 1996–2001. The sample contains firms in the industry
at the end of 2001. There is one observation per firm. 1[Exit]i is equal to one for firms
that exited during 2002. The constant term shows that 9.5% of firms that stayed in the
industry after the bonding rule had plugging costs more than twice their average annual
revenue. Among exiters, on the other hand, 22.1% of firms had these high plugging costs
(9.5% + 12.6% = 22.1%).

The final two columns of Table 1.4 examine the difference in environmental rules vio-
lations for exiting vs. staying firms. I compare the number of citations during 1996–2001,
normalizing by the number of wells operated during this period. Because of the count nature
of the data and the large number of zeros, a count model is most appropriate for estima-
tion. The middle column shows a negative binomial regression of rules violations on 1[Exit]i.
The estimated coefficient on 1[Exit]i is positive and statistically significant, indicating that
exiters were more likely to have had rules violations. The difference between exiters and
stayers in the expected count of rules violations per well is given by eβ − 1, where β is
the coefficient estimate for 1[Exit]i. This calculation shows that exiting firms had 42% more
rules violations per well than did firms that stayed in the industry. For robustness, I show an
OLS version of the same regression in the final column. The difference in expected violations
violations per well is very similar in the OLS and negative binomial specifications.

Oil and Gas Production

Another prediction of the theoretical model is that judgment-proof firms will reduce their
output in response to increased bond requirements. I measure the effect of the bond mandate
on firm-level oil and gas production using an event study design that compares firms that
have already purchased a bond to firms that have not yet had to purchase a bond. Unlike
exit, which is only observed once per year, oil and gas production are observed every month
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for every firm. This design leverages the panel nature of the data through firm and time
fixed effects, which reduce noise and allow me to better measure changes in production.

I run the following regression separately for oil and natural gas production,

ln(Production)it = γ + ψ1[Bonded] + δi + τt + νit (1.6)

The sample is limited to the 12 months during 2002, and to firms who stayed in the industry
after the bond mandate. 1[Bonded]it is an indicator variable equal to one for firm-month
observations where the license renewal date has already passed. δi is a firm fixed effect, and
τt is a month fixed effect. In my preferred specification, I interact 1[Bonded]it and the month
fixed effects with a categorical variable for firm size quintile. This estimates the effect of
bonding separately for each size group. It also allows for separate arbitrary time trends in
production within each output quintile.

The identifying assumption in this analysis is that νit is independent of 1[Bonded]it,
conditional on δi and τt. As I explained in Section 1.5, 1[Bonded]it is entirely determined
by the firm’s assigned license renewal date. So, under the assumption that license renewal
dates are exogenous with respect to oil and gas production, the regression above consistently
estimates the effect of bonding on output.

As a check on this assumption, Appendix Table A.1 compares the number and size of
firms with license renewal dates in each month. There does not seem to be any pattern
in mean output across months. In an F test of the null hypothesis of joint equality across
all 12 group means, the F statistic is 0.97 (p-value 0.47).36 Thus, there does not seem to
be any evidence of systematic differences in firms based on the month in which they renew
their operating licenses. As an additional robustness check, when I show the results of the
production analysis I also show results from a placebo analysis for the year prior to the
bond policy change. If differences between renewal month groups introduce bias, it should
be apparent in this placebo analysis.

Oil and Gas Production: Graphical Results

Figure 1.7 visually demonstrates the effect of the bond expansion on firm-level oil production
for the smallest 80% of firms. The plotted regression coefficients and 95% confidence intervals
correspond to months-from-license-renewal dummy variables. Month 0 is the firm’s assigned
license renewal month, which varies from January to December 2002; month -1 is the month
before, and so on. The sample is limited to firms that remained in the industry after
the bond requirement, and further limited to the the smallest 80% of producers, based
on firm-level oil and gas output (in barrel of oil equivalents) during 1998–2001. As in
Equation 1.7, firm fixed effects and month-by-revenue-quintile fixed effects are included.
The figure shows no apparent trend in production prior to license renewal. Once firms renew
their operating licenses, there is a clear decrease in production of about 5%. Individual

36Because the skewed nature of the data may reduce the power of the F-test, I also perform a nonpara-
metric Kruskal Wallis test. The p-value from this test is 0.86.
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event month estimates are not statistically different from one another; however, as I show
below, I can reject the null hypothesis that production during the post-event months equaled
production during the pre-event months for this group of firms.

Oil and Gas Production: Estimation

Tables 1.5 and 1.6 describe the results of equation 1.7 for firm-level oil and natural gas
production, respectively. Table 1.5 focuses on oil. Column (1) is a regression of logged
monthly oil production on 1[Bonded]it, with firm fixed effects. In this specification, bonding
reduces oil production by 4.7% on average across all firms. Column (2) adds month-by-
output quintile fixed effects to control for variation over time in other determinants of oil
production. This allows for different arbitrary trends for producers in different quintiles.
The time fixed effects reduce the estimated effect to 3.2%. In Column (3), I estimate the
effect of bonding separately by firm size. Output quintiles for this table are based on average
annual production of oil and gas (in barrel of oil equivalents) during 1997–2001. The quintile
breaks are given in the left column of the table. The largest effects are for firms in the
bottom two quintiles. Bonding reduces oil production among these three groups by 8%
and 7%, respectively. In the third and fourth quintiles, bonding has a small and statistically
insignificant negative effect. The effect of bonding in the largest quintile is positive, although
not statistically significant. A positive effect for large producers may indicate consolidation
of the industry as large producers acquire the wells of exiting small firms.

Columns (4) and (5) of Table 1.5 show a placebo test using data from the previous
year (2001) as a check on the identifying assumptions. If oil production were affected by
some feature of license renewal other than the bond rollout, or if systematic differences
between renewal month groups introduced correlation between 1[Bonded]it and unobserved
determinants of production, we would expect to see similar results in previous years as well.
There is no statistically significant effect of license renewal on oil production in the placebo
analysis.

Table 1.6 addresses natural gas production. Unlike for oil production, there is no esti-
mated effect of bonding on natural gas production in Columns (1) or (2). In Column (3),
there are no statistically significant effects and there does not seem to be any pattern across
quintiles in the effect of bonding. As with oil, the placebo analysis in Columns (4) and (5)
shows no effect.

One potential explanation for the different results for oil and gas may be that oil is more
amenable to “fly-by-night” production models. For example, gas wells must be connected
to gathering pipelines in order to deliver product to market, while some oil wells can simply
store oil in tanks at the lease to be picked up by truck. Consistent with that story (but not
exclusively that story) is the fact that firms that produce at least some gas are larger on
average than firms that produce only oil.
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Environmental Outcomes

The theoretical model predicts that increasing bond requirements will decrease environmen-
tal incidents. This section examines the effect of increased bond requirements on orphan
wells, violations of water protection rules, and well blowouts. I compare outcomes before
and after the 2001 policy change. The visual evidence suggests that there were decreases
that coincided in time with the increased bond requirement. In the econometric analysis, I
run regressions of the form,

Yit = ζ + φ1[After]t +Montht + uit (1.7)

Yit is an environmental outcome; for example, the monthly count of rules violations at
the firm level. 1[After]t is an indicator variable equal to one after the policy change. To
allow for anticipatory increases in safety effort by firms trying to lower their expected bond
premiums, 1[After]t becomes equal to one in June 2001, when the bill requiring the higher
bond amounts passed the Texas Legislature.37 Montht is a parametric time trend, and uit
is an error term capturing unobserved determinants of the outcome.

Because environmental incidents are rare, several years of outcome data are needed to
make empirically meaningful econometric comparisons. Relative to the analysis of producer
exit, which examined a small neighborhood around the implementation threshold, and of
output, which limited the sample to 2002 and compared already-bonded to not-yet-bonded
firms, the analysis of environmental outcomes requires stronger identifying assumptions. It is
not possible to definitively rule out other shocks that could have driven some of the observed
changes. However, I show that there do not seem to be other regulatory changes that would
explain these large changes in environmental outcomes. In addition, for one outcome where
similar data are available, I show that outcomes do not change similarly in a neighboring
state.

Environmental Outcomes: Graphical Results

Figure 1.8 shows the share of operators leaving the industry each quarter that left behind
orphan wells. Orphan wells are unplugged wells for which no registered operator exists.
Firms that exited prior to the end of the twelve-month rollout period would not have been
bonded, while firms exiting after the implementation period would have been. There is
also little reason to expect anticipatory safety effort in response to the policy change, since
orphaning occurs among firms exiting the industry. The vertical line represents December
2002, the end of the rollout period. The data are noisy, but there is an apparent decrease
in the share of operators leaving orphan wells at the same time that the increased bonding
requirement takes effect. The light gray horizontal lines represent the mean rate of orphaning
during five years before and five years after the policy change (in the estimation, I also allow
for time trends). The mean rate of orphaning after the policy change is lower by about 50%.

37Anticipatory safety effort may also affect firm-level oil and gas production. If so, this would lead me to
underestimate the effect of bonding on output in Section 1.5.
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Because firms may orphan different numbers of wells, Appendix Figure A.3 shows the total
number of wells orphaned each quarter before and after policy change. The total number of
wells orphaned falls substantially.

Figure 1.9 shows the total number of water protection rules violations each quarter. These
are violations of Statewide Rules 8 and 14, which govern water protection as described in
Section 1.4. The vertical dashed line shows the beginning of the policy implementation
period in January, 2002. The lighter dotted line shows the bill’s passage in June, 2001.
Again, the horizontal gray lines show the mean number of violations during five years before
and five years after the policy change. The data are noisy. The number of violations after
the policy change is lower, but it is difficult in the figure to separate discrete changes from
what may be a smooth downard trend across the implementation threshold.

Figure 1.10 shows well blowouts. Because blowouts occur most frequently during drilling,
in this figure I normalize the number of blowouts by the number of active drilling rigs each
quarter.38 As in the previous figure, the vertical lines represent the policy passage and
implementation, and the horizontal lines represent five-year averages before and after the
policy change. Before 2001, the time series of blowouts is noisy but relatively flat. There
are no clear discrete changes. In 2001, there is a sharp drop in blowouts coincident with the
passage of the universal bond mandate. The blowout rate stays low following this change
through the end of the panel.

The time series evidence in these figures is suggestive, but it does not rule out other
shocks to the oil and gas industry that could have caused these changes. It is not possible
to completely overcome this limitation of this portion of the analysis, but it is possible to
look for obvious alternative explanations. As one simple robustness check, Figure 1.11 shows
the time series of onshore blowout rates in Louisiana, a nearby state that is also a large oil
and gas producer. If blowout rates in Louisiana changed similarly to Texas blowout rates
in 2001, that would suggest that the change was related to national-scale shocks to the oil
and gas industry, as opposed to Texas regulations. The Louisiana blowout data are from the
Louisiana Department of Natural Resources, and, as in the Texas figure, the number of active
drilling rigs each month comes from the Baker Hughes Historical Rig Count dataset.39 The
vertical line shows June, 2001, and the horizontal gray lines show five-year mean blowout
rates before and after. Perhaps due to lower production, the data prior to 2001 are noisier.
There are more quarters with many blowouts, but also more quarters with no blowouts.
There may also be a smooth downward trend over time, although the mean blowout rate
during the post-period is relatively similar to the pre-period. However, there is not a visually
obvious discrete change in the blowout rate in 2001 like there is for Texas.

38Data on the number of active rigs each month come from the Baker Hughes Historical Rig Count
dataset, http://www.bakerhughes.com/rig-count.

39Louisiana blowout data are from the Department of Natural Resources SONRIS database:
http://www.sonris.com/dataaccess.asp. To focus on onshore production, I include all blowouts at wells
with a valid Public Lands Survey System “Township” designation. The number of active drilling rigs each
month comes from the Baker Hughes Historical Rig Count dataset (http://www.bakerhughes.com/rig-count).
I include rig activity for “land” and “inland water” areas.
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To consider whether improvements in environmental outcomes may have been caused
by other Texas regulatory changes, Appendix Table A.3 shows all of the rules that were
implemented or amended by the RRC in 2001 and 2002. I include these years to allow for
immediate responses to implementation of new regulations, as well as anticipatory responses
to regulations announced in 2001 but implemented in later years. The first column shows
the date that the proposed action was published for public comment in the Texas Register.
The second column shows the date that the regulation took effect. The other RRC actions
were primarily procedural, and it seems unlikely that any of them would have driven the
observed changes in environmental outcomes. In summary, there do not seem to be obvious
confounders that would explain the changes in environmental outcomes that I observe.

Environmental Outcomes: Estimation

Table 1.7 shows regression estimates of the change in environmental outcomes coincident
with the policy change. The first two columns show a linear probability model focused on
orphan wells. The sample in these two columns includes one observation per firm, in its
month of exit. The dependent variable is an indicator variable equal to one if any of the
firm’s wells appear on the March 2014 version of the RRC Orphan Well List. 1[After] is an
indicator variable equal to one in June 2001 and all later months. In Column (1), a simple
before/after comparison estimates a 4.4 percentage point decrease in the probability that
firms orphan wells upon leaving the industry. This is a 56% decrease from the pre-bonding
rate of well orphaning of 7.8%. Column (2) adds a quadratic time trend and month-of-year
fixed effects. This reduces the estimated effect slightly to 3.2 percentage points, or a 51%
decrease. This effect is consistent with the visual evidence in Figure 1.8.

Columns (3) and (4) address environmental rules violations. Because of the count nature
of the data, I use negative binomial regression.40 The dependent variable is the count of
rules violations each month. This is normalized by the number of wells operated by the firm
that month. Column (3) shows that a before/after comparison estimates a 14% decrease in
the frequency of rules violations per well after the policy change. In Column (4), including
an exponential time trend and month-of-year fixed effects increases the estimate slightly,
but decreases its statistical significance. Again, the estimated effects are consistent with the
graphical evidence in Fig 1.9.

Columns (5) and (6) address well blowouts. Again, I use negative binomial regression
because of the count nature of the data. In these regressions the count of well blowouts in
each month is normalized by the number of wells being drilled by the firm in that month.
There is a 44% decrease in blowouts in the before/after comparison, and a 67% decrease
after controlling for an exponential time trend and month-of-year fixed effects.

The theoretical model predicts that changes in environmental outcomes will result from
changes in industry composition (extensive margin changes) and increases in cost internal-
ization by firms that remain in the industry (intensive margin changes). It is interesting to

40For both rules violations and well blowouts, results are similar for poisson and negative binomial models.
The negative binomial is preferred because it accommodates overdispersion.
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compare the magnitudes of these effects. Table 1.8 measures the intensive margin effect for
rules violations and well blowouts (orphan wells, by definition, apply only to exiting firms).
This table repeats the regressions from Columns (3)–(6) of Table 1.7, limiting the sample to
firms that entered the industry before December 2001 and exited after January, 2003 (i.e.,
firms that stayed in the industry through the bond implementation period).

I focus on the specifications that include time trends and month-of-year fixed effects. For
rules violations, Column (2) shows that the intensive margin effect was about a 16% decrease
in the average rate of rules violations per well. This is less than the 19% overall decrease
when exiting firms are included, which means that exiters had more accidents during the
pre-period (This is consistent with the findings in Table 1.4). But the intensive margin
effect is still large. The results for blowouts are similar. Column (4) shows that the intensive
margin effect is a 62% decrease, which is smaller than the overall decrease of 67%, but still
large.

1.6 Discussion

The bond requirement reduced the number of small firms and their output, with no effect
on larger firms. At the same time, there were substantial improvements in environmental
outcomes. These results are consistent with greater cost internalization by judgment-proof
firms in response to the bond requirement. Prior to the policy change, financially weak
operators could produce oil and gas at a low private cost by exerting minimal safety effort
and avoiding any environmental costs through bankruptcy. Bonding made this business
model less attractive. Very weak firms had little incentive to exercise safety effort, since it
was clearly not in their private interest. Thus, they received high price offers from insurers
that effectively pushed them out of the industry. At the same time, operators who became
bonded were pressured by insurers to operate safely. Investing in safety reduced the private
cost advantage of small firms, so that many sold their assets and left the industry.41 These
changes in the composition of firms and the privately optimal level of safety effort led to
decreases in orphan wells, rules violations, and well blowouts.

Alternative Explanations

Credit Market Inefficiencies

If the surety bond market did not operate efficiently, firms may have received high bond
price offers for reasons unrelated to environmental risk. Given the environmental improve-
ments observed, it seems unlikely that bond prices and environmental risk were completely
unrelated. Nevertheless, it is worth considering to what degree credit market inefficiencies
also contributed to exit. Many insurers and banks offered bonds, so it is unlikely that in-

41Of the leases belonging to firms that exited in 2002, about 88% were transferred to other operators at
the time of exit.
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surer market power raised bond prices (Gerard and Wilson, 2009). Underwriting expenses
do introduce transaction costs, but the qualitative evidence does not suggest that under-
writing costs were a primary driver of producer exit. As discussed, newspaper accounts and
legislative records describe a small share of firms receiving very high bond price offers, while
typical price offers were only 1-3% of the face value of the bond.

The final potential source of credit market inefficiency is asymmetric information about
accident and default risk. Classic models of asymmetric information in credit and insurance
markets raise the possibility of excess demand in equilibrium (Jaffee and Russell, 1976;
Rothschild and Stiglitz, 1976). The intuition behind these models is that the inability to
distinguish high-risk and low-risk types leads the bank or insurer to not offer contracts that
would be profitable with the low-risk type, but would be particularly attractive to high-
risk types. More recent empirical work has found that supply-side responses to asymmetric
information can allow lenders and insurers to serve risky client groups. Adams, Einav, and
Levin (2009) and Einav, Jenkins, and Levin (2013) document how sophisticated credit scoring
systems and down payment requirements allow lenders to operate in the market for subprime
car loans. Analogous strategies in oil and gas surety bond markets that likely mitigated
credit market inefficiencies include credit scoring, availability of detailed information on
firms’ compliance histories from the RRC, and collateral requirements.

Inefficiently High Bond Requirements

As discussed in Section 1.3, when bond requirements are high, transaction costs created by
collateral requirements can prevent participation by responsible firms. In this case, however,
bonds were set far below maximum possible damages. The required bond face values were
several thousand dollars per well, or less. While it is difficult to value the damages from
a worst-case groundwater or surface water contamination event, they are almost certainly
much larger than that.42 And the costs from a bad well blowout can reach tens of millions
of dollars (Jones, 2003). With bond levels so far below maximum possible damages, it is
unlikely that collateral costs kept out firms that otherwise would have operated safely.

Welfare

The model in Section 1.3 provides a framework for evaluating the welfare effects of the
expanded bond requirement. The precise welfare impacts depend on several highly uncertain
parameters, such as the cost of a groundwater contamination incident. Nevertheless, it is
relatively clear that the sign of the welfare effect is positive. This policy change caused

42Some studies have reported cleanup costs for groundwater contamination incidents, but these values
are highly uncertain and highly variable. National Research Council (2013) finds that the average cost to
remediate a contaminated groundwater site under the US Resource Conservation and Recovery Act is $11.4
million dollars, and that the average cost to remediate a leaking underground storage tank is $125,000.
Greenstone and Gallagher (2008) report that the average cost to remediate a “Superfund” site is $43 million
(but that the average value of cleanups is lower).
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firms to internalize a negative externality to a greater extent than they had previously. This
reduced the frequency of costly environmental damages. It also appears to have re-allocated
production from small judgment-proof producers to potentially more efficient producers,
since 88% of the leases belonging to exiting firms were transferred to other producers.

The primary costs created by the policy were increased private costs of safety effort for
oil and gas producers. If fines for environmental incidents are set at or below true social
damages, profit maximization implies that the net difference of environmental benefits and
effort costs is positive. If the marginal cost of safety effort exceeded the expected benefit in
terms of reduced environmental costs, firms would not invest further in safety. In practice,
expected fines are likely lower than the true social costs because of difficulties in detection,
attribution, and enforcement discussed in Section 1.3 and Shavell (2007).

There are additional costs due to underwriting expenses and collateral requirements.
These should be subtracted from the benefits of increased safety to calculate the true net
welfare change. However, they are unlikely to outweigh the environmental benefits. Collat-
eral requirements for firms perceived to be safe producers are small.

In another industry, the welfare calculation might be affected by competitiveness concerns
or by the fact that some judgment-proof producers had lower true production costs. In
oil and gas, neither of these is likely to play a large role. Crude oil and natural gas are
commodities, and even after the bond mandate, producers in Texas faced essentially perfect
competition both within the state and from the world market. There is also no reason to
think that exiting firms were more efficient than producers that remained; instead, as argued
previously, they were likely to have been higher-cost firms.

In fact, there is an argument to be made that bond requirements in Texas are still below
the optimal level. Calculating the optimal bond amount requires estimates of the value of
damages, h, the effort elasticity of damages, γ′(x), and the capital costs imposed on firms by
tying up collateral, r. These are highly uncertain. However, the empirical analysis showed
that the elasticity of environmental damages over the observed change in bond requirements
was large. The effect on total production was small, as output was re-allocated to other
(potentially more efficient) producers. If further modest increases in bonds were to yield
similar environmental improvements, the benefits would likely be larger than the costs.

1.7 Conclusion

This paper focuses on a historical case study, but the results are relevant today. Between
2006 and 2013, U.S. oil production increased by 65% and natural gas production by 40%,
largely due to hydraulic fracturing. In 2015, U.S. crude oil production is expected to be at
its highest level since 1970.43 The oil and gas boom has had economy-wide benefits. At the
same time, it presents environmental challenges on a massive scale. The large number of

43Oil and gas production growth are calculated from U.S. Energy Information Administration (EIA) “U.S.
Field Production of Crude Oil” and “U.S. Natural Gas Gross Withdrawals” data. The 2015 forecast of 9.5
million barrels per day is from the EIA Short-Term Energy Outlook, October 2014.
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projects being developed creates more risk of accidents, and the deployment of new chemicals
and techniques creates novel risks.

The U.S. oil and gas industry still includes many small firms. Davis (2015) demonstrates
the lack of concentration in onshore natural gas drilling. A back-of-the-envelope calculation
suggests that the majority of firms drilling new gas wells in 2012 had annual revenues of
several million dollars or less. This means that their effective liability exposure is much less
than the damages from a major groundwater contamination incident, well blowout, or spill
into surface water.

At the same time, bond requirements in most jurisdictions remain very low. The mini-
mum bond requirements for oil and gas production on federal lands have not been increased
since 1960, even to adjust for inflation. The Texas requirements examined in this paper
are some of the highest among major oil- and gas-producing states (Appendix Figure A.4),
and they are still small compared to maximum potential damages. The results of this study
support arguments to increase bonds in other jurisdictions at least to the amounts required
in Texas. While it is impossible to extrapolate beyond the observed bond levels, it also seems
likely that somewhat higher bond requirements would yield further benefits given that Texas’
requirements are still well below potential damages.

More broadly, this paper extends our understanding of bankruptcy and market structure
in dangerous industries. The theoretical model extends existing models to formalize the rela-
tionship between the judgment-proof problem and industry structure. The empirical analysis
validates the theoretical predictions. The judgment-proof problem inflated the number of
small producers, and led them to produce more than was efficient while exerting less-than-
efficient safety effort. The analysis departs from existing cross-sectional studies through its
credible quasi-experimental research design and its use of detailed firm-level administrative
data.

The results suggest that bankruptcy should be taken seriously as a determinant of market
structure in industries with substantial liability exposure. Within the energy sector, this has
implications for transportation of oil, natural gas, and gasoline and other refined products
by pipeline, road, and rail.44 Other examples of sectors with small firms and high liability
risk include chemical manufacturing, transportation network companies, and retail gasoline.
More work in other settings will help to gauge the generality of these results, but the find-
ings of this study demonstrate the important incentive effects of bankruptcy in dangerous
industries. Continuing to evaluate and address this market failure will be an important
component of efficient safety regulation in some of the world’s most important industries.

44In July 2013, a train carrying crude oil derailed and exploded in Lac-Mégantic, Quebec, killing 47
people. The total damages were estimated at $200 million. The railroad, which had a $25 million liability
insurance policy, declared bankruptcy. Morris, Betsy. “Fiery Oil-Train Accidents Raise Railroad Insurance
Worries.” Wall Street Journal. January 8, 2014.
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Figure 1.1: Long-Run Average Cost Functions In a Hazardous Industry
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Figure 1.2: Size Distribution of Oil and Gas Producers in Texas
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Notes: This figure shows the distribution of production revenues in 2001 for the 5,302 oil and gas producers
that were in the industry for the full year. Revenues are calculated using EIA Texas first purchase prices for
oil and EIA Texas wellhead prices for natural gas. Dollar amounts are in 2010 dollars. The horizontal axis
between 15 million and 957 million dollars is not shown; there are 239 firms in this range.
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Figure 1.3: Cross-Sectional Comparison of Environmental Incidents and Firm Size
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Notes: This figure shows that environmental incidents are concentrated among the smallest firms. The figure
uses data from 1990 to 2001. For each firm, I calculate average annual oil and gas production in barrel of
oil equivalents (1 BOE = 1 barrel of oil or 6,000 cubic feet of natural gas). The horizontal axis represents
the sum of average annual production for all firms. Producers are ordered from left to right on this axis,
so that, for example, 0.2 represents the 20% of total annual production that comes from the smallest firms.
The vertical axis represents the total number of environmental incidents during this period. So, 0.4 on the
vertical axis corresponds to 40% of total incidents during 1990–2001. The gray dashed line has a slope of 1.
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Figure 1.4: Number of Firms Exiting by Month
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Notes: This figure shows the number of firms leaving the industry each month. Exit date is defined as 365
days after the firm’s final annual operating license renewal. The sample includes all firms with oil or gas
leases from 1990 to 2010. The initial rollout of the partial bond requirement occurred during September, 1991
to August, 1992. The initial rollout of the universal bond requirement occurred during January–December,
2002.
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Figure 1.5: The Effect of the 2001 Bond Requirement on Exit
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Notes: This figure shows the effect of the 2001 bond requirement on exit. The sample includes all firms that
produced oil or natural gas during 1997–2006, and that reported at least six months of production during
1996–2007. There is one observation per firm per year, in the firm’s assigned license renewal month. The
dots are monthly means of the residuals from a regression of an indicator variable for exit on month-of-year
fixed effects and monthly crude oil prices. The red curves represent a quadratic polynomial fit for 1997–2001,
a separate linear polynomial for 2002, and a separate quadratic polynomial fit for 2003-2006.
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Figure 1.6: The Effect of the 2001 Bond Requirement on Exit, by Firm Size
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(b) 2nd Quintile
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(c) 3rd Quintile
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(d) 4th Quintile
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(e) 5th Quintile
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Notes: This figure shows the effect of the bond requirement on exit by quintile of firm size. The sample
and analysis are the same as in Figure 1.5. Each panel shows results from a single quintile of the output
distribution. Output is calculated as average annual production for 1997 to 2006 in barrels of oil equivalent
(BOE). One BOE equals one barrel of crude oil or six MCF of natural gas. Average annual production is
12 times the average monthly production across all non-zero months.
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Figure 1.7: Oil Production By Small Firms Before and After Bonding
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Notes: This figure shows the effect of bonding on monthly oil production for the smallest 80% of firms. The
horizontal axis shows time relative to the firm’s assigned license renewal month (which ranges from January
to December 2002). The sample is limited to firms that remained in the industry after the bond requirement,
and to the bottom four quintiles of the output distribution. See text for details. The plotted points represent
regression coefficients on indicator variables equal to one when the firm is a corresponding number of months
away from license renewal. Vertical bars represent 95% confidence intervals. The omitted category is t=-1,
the month before renewal. These regressions include firm and month-of-sample-by-revenue-quintile fixed
effects. Revenue quintiles are defined as in Table 1.5. Standard errors are clustered at the firm level.



CHAPTER 1. BANKRUPTCY, INSURANCE, AND ENVIRONMENTAL RISK 37

Figure 1.8: Share of Exiters Orphaning Wells, by Quarter of Exit
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Figure 1.9: Water Protection Rules Violations by Quarter
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Figure 1.10: Well Blowouts by Quarter
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Figure 1.11: Well Blowouts in Louisiana by Quarter

0
.0

2
.0

4
.0

6
.0

8

B
lo

w
ou

ts
 P

er
 A

ct
iv

e 
D

ril
lin

g 
R

ig

1995q1 1998q1 2001q1 2004q1 2007q1 2010q1



CHAPTER 1. BANKRUPTCY, INSURANCE, AND ENVIRONMENTAL RISK 41

Table 1.1: Quintiles of Annual Production Revenue Per Firm in 2001

5 $2,510,918,000

4 $1,391,000

3 $344,000

2 $114,000

1 $33,0000

Notes: This table lists quintiles of production revenue in 2001 for the 5,302 oil and gas producers that were in the
industry for the full year. Revenues are calculated using EIA Texas first purchase prices for oil and EIA Texas
wellhead prices for natural gas. Dollar amounts are in 2010 dollars.



CHAPTER 1. BANKRUPTCY, INSURANCE, AND ENVIRONMENTAL RISK 42

Table 1.2: Effect of the Bond Requirement on Exit

(1) (2) (3)

Begin Rollout 0.068∗∗∗ 0.063∗∗∗ 0.060∗∗∗

(0.010) (0.010) (0.010)

End Rollout −0.082∗∗∗ −0.084∗∗∗ −0.083∗∗∗

(0.011) (0.013) (0.013)

Oil Price −0.044∗∗ −0.051∗∗

($100/bbl) (0.020) (0.021)

Constant 0.090∗∗∗ 0.089∗∗∗ 0.093∗∗∗

(0.006) (0.005) (0.006)

Month-of-year FE No No Yes

Local Time Polynomial Yes Yes Yes

N 71,826 71,826 71,826

Firms 10,978 10,978 10,978

Notes: This table reports the results of 3 separate OLS regressions. The sample includes 1997–2007 and includes
all firms with at least six months of oil or natural gas production during 1996–2007. The data are a monthly panel
with one observation per firm per year, in the firm’s assigned license renewal month. The dependent variable is an
indicator variable for exit in a given year. Begin Rollout is an indicator variable equal to one starting in January 2002.
End Rollout is an indicator variable equal to one starting in January 2003. All specifications include a quadratic
polynomial in time for 1997–2001; a separate linear polynomial for 2002; and a separate quadratic polynomial for
2003–2007. Oil prices are monthly average Texas first purchase prices in the month of license renewal, in hundreds
of 2010 dollars. Standard errors are clustered by quarter. *** indicates statistical significance at the 1% level; ** at
the 5% level; * at the 10% level.
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Table 1.3: Effect of the Bond Requirement on Exit by Output Quintile

(1) (2) (3) (4) (5)

Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5

Begin Rollout 0.121∗∗∗ 0.120∗∗∗ 0.056∗∗∗ 0.045∗∗∗ −0.011
(0.014) (0.025) (0.017) (0.013) (0.013)

End Rollout −0.158∗∗∗ −0.114∗∗∗ −0.095∗∗∗ −0.049∗∗ −0.014
(0.029) (0.022) (0.018) (0.019) (0.015)

Oil Price −0.115∗∗ −0.083∗∗ −0.081∗∗ −0.030 0.025
($100/bbl) (0.048) (0.033) (0.033) (0.023) (0.033)

Constant 0.170∗∗∗ 0.094∗∗∗ 0.079∗∗∗ 0.050∗∗∗ 0.097∗∗∗

(0.013) (0.020) (0.012) (0.008) (0.010)

N 11,903 13,267 14,667 16,197 15,792

Firms 2,129 2,185 2,202 2,226 2,236

Notes: This table reports estimates separately by output quintile for the regression specification shown in Column 3 of
Table 1.2. Each column shows results from a regression that includes one quintile of the output distribution. Output
is calculated as average annual production during 1996–2007 in barrels of oil equivalent (BOE). One BOE equals one
barrel of crude oil or six MCF of natural gas. Average annual production is 12 times the average monthly production
across all non-zero months. All regressions include month-of-year fixed effects and the same local polynomial in time
as in Table 1.2. Standard errors are clustered by quarter. *** indicates statistical significance at the 1% level; ** at
the 5% level; * at the 10% level
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Table 1.4: The Relative Environmental Performance of Exiting Firms

Plugging Costs > Water Protection
2 Years Revenue Rules Violations

OLS Neg. Binomial OLS

1[Exit] 0.126∗∗∗ 0.348∗∗ 6.999
(0.015) (0.143) (4.319)

% Difference in 133% 42% 38%
Expected Count

Constant 0.095∗∗∗ 2.775∗∗∗ 18.329∗∗∗

(0.005) (0.067) (1.415)

Normalization None Thousand Thousand
Wells Wells

Firms 4,868 4,868 4,868

Notes: This table reports the results of three separate regressions. The sample includes firms active at the end of 2001
with at least 6 months of production during 1996–2001. There is one observation per firm. 1[Exit] is an indicator
variable equal to one for firms that exited during the bond rollout in 2002. In the first column, the dependent variable
is an indicator variable equal to one if the estimated cost to plug all of the firm’s wells at its most recent license
renewal was more than twice the firms’s average annual production revenue during 1996–2001. In the second and
third columns, the dependent variable is the count of violations of Statewide Rules 8 or 14 during June 1996–June
2001. This is normalized by the average number of wells operated during the same period (in thousands of wells). For
OLS, the normalization is implemented by dividing by the number of wells; for the negative binomial, the log of wells
is included as a regressor with coefficient constrained to one. For OLS specifications, the % difference between groups
is the regression coefficient β divided by the mean outcome for the non-exiting firms. For the negative binomial, the
% difference is exp(β) − 1. See text for details. Standard errors are Eicker-White heteroscedasticity-consistent. ***
indicates statistical significance at the 1% level; ** at the 5% level; and * at the 10% level.
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Table 1.5: Effect of Bonding on Oil Production for Remaining Firms

Implementation Year Placebo Year

(1) (2) (3) (4) (5)

1[Bonded] −0.047∗∗∗ −0.032∗∗∗ 0.001
(0.009) (0.010) (0.011)

1[Bonded]*Quintile 1 −0.079∗∗∗ 0.006
(1,800 BOE) (0.030) (0.034)

1[Bonded]*Quintile 2 −0.074∗∗∗ −0.024
(5,700 BOE) (0.025) (0.023)

1[Bonded]*Quintile 3 −0.011 0.028
(16,100 BOE) (0.022) (0.022)

1[Bonded]*Quintile 4 −0.027 −0.009
(60,200 BOE) (0.020) (0.018)

1[Bonded]*Quintile 5 0.014 0.005
(60,000,000 BOE) (0.021) (0.022)

Constant 6.071∗∗∗ 6.059∗∗∗ 6.052∗∗∗ 6.037∗∗∗ 6.054∗∗∗

(0.005) (0.013) (0.013) (0.009) (0.012)

Firm Fixed Effects Yes Yes Yes Yes Yes

Mon-by-Quint FE No Yes Yes Yes Yes

N 48,600 48,600 48,600 49,990 49,990

Firms 4,571 4,571 4,571 4,583 4,583

Notes: This table reports the results of 5 unweighted OLS regressions. The dependent variable is the log of monthly
oil production in barrels at the firm level. In Columns (1) – (3), the sample is limited to 2002, and to firms who
renewed their annual operating license in that year (i.e., who became bonded) and had positive oil production during
1997–2001. 1[Bonded] is an indicator variable equal to one in all months after a firm’s license renewal month, and
equal to zero in all earlier months. Output quintiles are based on average annual production of oil and gas (in
barrel-of-oil equivalents) during 1997 – 2001. See text for details. Standard errors are clustered at the operator level.
*** indicates statistical significance at the 1% level; ** at the 5% level; * at the 1% level.
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Table 1.6: Effect of Bonding on Natural Gas Production for Remaining Firms

Implementation Year Placebo Year

(1) (2) (3) (4) (5)

1[Bonded] −0.017 −0.007 −0.001
(0.012) (0.012) (0.014)

1[Bonded]*Quintile 1 −0.027 −0.022
(1,800 BOE) (0.035) (0.040)

1[Bonded]*Quintile 2 0.042 −0.007
(5,700 BOE) (0.032) 0.036)

1[Bonded]*Quintile 3 −0.028 0.039
(16,100 BOE) (0.027) (0.036)

1[Bonded]*Quintile 4 −0.034 −0.017
(60,200 BOE) (0.028) (0.023)

1[Bonded]*Quintile 5 0.011 −0.003
(60,000,000 BOE) (0.017) (0.024)

Constant 7.374∗∗∗ 7.343∗∗∗ 7.341∗∗∗ 7.311∗∗∗ 7.309∗∗∗

(0.007) (0.015) (0.015) (0.015) (0.016)

Firm Fixed Effects Yes Yes Yes Yes Yes

Mon-by-Quint FE No Yes Yes Yes Yes

N 41,493 41,493 41,493 43,180 43,180

Firms 4,067 4,067 4,067 4,082 4,082

Notes: This table reports the results of 5 unweighted OLS regressions. The dependent variable is the log of monthly
natural gas production in MCF at the firm level. In Columns (1) – (3), the sample is limited to 2002, and to firms
who renewed their annual operating license in that year (i.e., who became bonded) and had positive gas production
during 1997–2001. 1[Bonded] is an indicator variable equal to one in all months after a firm’s license renewal month,
and equal to zero in all earlier months. Output quintiles are based on average annual production of oil and gas (in
barrel-of-oil equivalents) during 1997–2001. See text for details. Standard errors are clustered at the operator level.
*** indicates statistical significance at the 1% level; ** at the 5% level; * at the 1% level.
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Table 1.7: The Effect of Increased Bond Requirements on Environmental Incidents

Orphan Water Protection Well
Wells Rules Violations Blowouts
(OLS) (Negative Binomial) (Negative Binomial)

(1) (2) (3) (4) (5) (6)

1[After] −0.044∗∗∗ −0.032∗∗ −0.148∗∗ −0.212 −0.576∗∗∗ −1.107∗∗∗

(0.007) (0.015) (0.067) (0.142) (0.159) (0.299)

% Change in -56% -51% -14% -19% -44% -67%
Expected Count

Constant 0.078∗∗∗ 0.063∗∗∗ −8.054∗∗∗ −8.087∗∗∗ −6.666∗∗∗ −6.164∗∗∗

(0.005) (0.016) (0.048) (0.103) (0.080) (0.196)

Time Trend None Quadratic None Exponential None Exponential

Month-of- No Yes No Yes No Yes
Year FE

Normalization None None Wells Wells Wells Wells
Operated Operated Drilled Drilled

N 5,307 5,307 593,891 593,891 56,771 56,771

Firms 5,307 5,307 9,809 9,809 5,043 5,043

Notes: This table reports the results of six separate regressions. In each case, the sample period covers June 1996 to
June 2006. Columns (1) and (2) show OLS regressions where the dependent variable is an indicator variable equal
to one if the firm orphaned any wells that appear on the March 2014 version of the RRC Orphan Well list. All firms
that exited during the sample period are included. There is one observation per firm in its month of exit. Columns
(3) and (4) show negative binomial regressions where the dependent variable is the monthly count of violations of
Statewide Rules 8 or 14. The sample includes all firm-months with positive oil or gas production. Columns (5) and
(6) show negative binomial regressions where the dependent variable is the monthly count of well blowouts. The
sample includes all firm-months with drilling activity. In Columns (3)–(6), the dependent variable is normalized
by including the log of the normalizing quantity as a regressor with coefficient constrained to one. For OLS, the
percentage change in expected count is the regression coefficient (φ) divided by the sample mean prior to the policy
change. For negative binomial, the percentage change in expected count is eφ − 1. During the sample period, there
were 299 firms that orphaned wells, 5,417 water protection rules violations, and 212 well blowouts. Standard errors
are clustered by quarter. *** indicates statistical significance at the 1% level; ** at the 5% level; and * at the 10%
level.
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Table 1.8: The Effect of Increased Bond Requirements: Intensive Margin Effects

Water Protection Well
Rules Violations Blowouts

(Negative Binomial) (Negative Binomial)

(1) (2) (3) (4)

1[After] 0.056 −0.180∗∗ −0.677∗∗∗ −0.964∗∗∗

(0.084) (0.170) (0.160) (0.277)

% Change in 6% -16% -49% -62%
Expected Count

Constant −8.388∗∗∗ −8.223∗∗∗ −6.602∗∗∗ −6.297∗∗∗

(0.072) (0.155) (0.089) (0.244)

Time Trend None Exponential None Exponential

Month-of- No Yes No Yes
Year FE

Normalization Wells Wells Wells Wells
Operated Operated Drilled Drilled

N 455,566 455,566 44,128 44,128

Firms 5,026 5,026 2,826 2,826

Notes: This table reports results for the specifications in Columns (3) – (6) of Table 1.7, after further limiting the
sample to firms that entered the industry prior to December, 2001 and exited after January, 2003. See text for details
on each regression. Standard errors are clustered by quarter. *** indicates statistical significance at the 1% level; **
at the 5% level; and * at the 10% level.
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Chapter 2

A Credible Approach for Measuring
Inframarginal Participation in Energy
Efficiency Programs

2.1 Introduction*

Global energy consumption is forecast to increase 56% by 2040. While the energy mix
is becoming somewhat less carbon-intensive, carbon dioxide emissions are still forecast to
increase by 45% over the same period.1 There is wide agreement among economists that
the best policy to reduce carbon dioxide emissions and other negative externalities from
energy use would be a Pigouvian tax. Although there has been some recent progress, the
vast majority of carbon dioxide emissions worldwide remain untaxed and there are many
countries, including the United States, where it seems unlikely that there will be large-scale
carbon policy in the near term.

Instead what is receiving much attention is energy efficiency. Electric utilities in the
United States, for example, spent $34 billion on energy-efficiency programs between 1994
and 2012.2 Energy-efficiency measures like appliance replacement, industrial process changes,
and weatherization have the potential to greatly reduce energy consumption (National Academy
of Sciences, National Academy of Engineering, and National Research Council, 2010). Pro-
ponents of energy-efficiency policies argue that these savings are available at very low cost

*The material in this chapter is from co-authored work with Lucas Davis that was published in Journal
of Public Economics: “A Credible Approach for Measuring Inframarginal Participation in Energy Efficiency
Programs”, 2014, vol. 113, issue C, pages 67-79.

1These statistics come from U.S. DOE, EIA, International Energy Outlook, released July 2013, Figures
1 and 10. Global energy consumption increased from 350 quadrillion Btu in 1990 to 520 in 2010, and is
forecast to increase to 820 by 2040. Energy-related carbon dioxide emissions increased from 20 billion metric
tons in 1990 to 30 billion in 2010, and are forecast to increase to 45 billion by 2040.

2U.S. Department of Energy, Electric Power Annual, 1995-2013. All dollar amounts in the paper are
reported in year 2010 dollars. Spending increased every year from 2004 to 2012, with $4.2 billion in 2012.
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(McKinsey and Company, 2009). Thus, energy-efficiency policies are promoted as “win-win”
policies that reduce both private energy expenditures and the externalities associated with
energy use.

Despite all of the resources aimed at energy-efficiency programs, there is a surprisingly
small amount of direct evidence evaluating their effectiveness. A recent review paper em-
phasizes this lack of evidence and goes on to argue that there is, great potential for a new
body of credible empirical work in this area, both because the questions are so important
and because there are significant unexploited opportunities for randomized control trials
and quasi-experimental designs that have advanced knowledge in other domains. (Allcott
and Greenstone, 2012).

We are particularly interested in the question of additionality. Many energy-efficiency
programs work by subsidizing households and firms to adopt energy-efficient technologies.
A fundamental question in evaluating the cost-effectiveness of these programs is how many
of the participants would have adopted these technologies with a lower subsidy, or even
with no subsidy at all. Economists have long argued that many participants in energy-
efficiency programs may be non-additional or “free riders” (Joskow and Marron, 1992), but
demonstrating this empirically has been difficult.3

Determining the causal relationship between subsidies and technology adoption is chal-
lenging because one must construct a credible counterfactual for adoption in the absence of
the policy. Cross-sectional comparisons are misleading because places with generous subsi-
dies are different from places with less generous subsidies. For example, “green” communities
like Berkeley, California have more generous subsidy programs but also more eager adopters.
Similarly, although programs change over time, it is difficult to separate the causal effect
of these changes from other time-varying factors. Changes over time in energy-efficiency
subsidies are correlated with changes in technology, pricing, and consumer preferences.

In this paper we address these challenges using a regression discontinuity (RD) analysis.
Many energy-efficiency programs have eligibility cutoffs and our paper illustrates how these
thresholds can be used to measure inframarginal participation. We apply this approach to a
national appliance replacement program in Mexico. We first examine the eligibility thresh-
olds carefully, demonstrating clear discontinuous changes in subsidy amounts and testing
for manipulation of the running variable. We then turn to the main analysis, finding that
program participation increases noticeably with larger subsidy amounts. For example, when
a refrigerator subsidy increases from $30 to $110 (both in U.S. 2010 dollars), the number of
participants increases by 34%. Thus, the participation elasticity is substantial. However, it
is also evident that there are a large number of inframarginal participants. At this threshold,
for example, our estimates indicate that about 75% of households would have participated in
the program even with the lower subsidy amount. For the four main thresholds in our anal-

3The term “free rider” has long been used in the context of energy-efficiency programs to describe
participants who receive a subsidy for doing something they would have done anyway. This is distinct from
the use of the term in economics. The well-known “free rider problem” in economics is that individuals
underinvest in public goods because they do not internalize the benefits to others. To avoid confusion we
use the term “non-additional” throughout the paper.
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ysis we find that 65%+ of households are inframarginal. This large fraction of inframarginal
households means that the larger subsidy amounts are almost certainly not cost-effective
because each actual increased participant costs a large amount in additional program funds.

We next use the observed changes in demand at these four thresholds to infer what frac-
tion of participants would have participated with no subsidy whatsoever. Under reasonable
assumptions, the estimates imply that about half of all participants would have replaced
their appliances with no subsidy. We then discuss the implications of non-additionality for
cost-effectiveness and welfare. These non-additional participants add cost to the program
without yielding any actual reductions in energy consumption. When the marginal cost of
public funds is larger than one or when there are indirect program costs then it does not
make sense to think of these payments as pure transfers. Our results also demonstrate the
potential for cost savings if program designers can target subsidies towards groups where the
number of likely non-additional participants is low.

Our paper is the first that we are aware of to use RD to study participation in an
energy-efficiency program. We see broad potential for applying this approach in evaluating
similar programs. Although eligibility requirements vary widely across programs, the desire
to simplify program design often results in the kind of discrete thresholds that we exploit
here.4 In addition, energy consumption is typically carefully measured for large numbers
of participants and non-participants. Both of these features make RD a natural approach
for causal inference in this context. Relative to the alternative of randomized control trials
(RCTs), RD is limited by its focus on specific thresholds. However, RD is easier and less
expensive. In addition, RD analyses with administrative datasets have more power and thus
can measure smaller effects than typical RCTs.

Most previous studies of additionality in similar programs have been of a much smaller
scale (see, e.g., Hartman, 1988), or based on stated-choice experiments (Revelt and Train,
1998; Grosche and Vance, 2009; Bennear, Lee, and Taylor, 2013). Several related papers
look at the impact of subsidies on adoption of energy-efficient vehicles (Chandra, Gulati,
and Kandlikar, 2010; Gallagher and Muehlegger, 2011; Sallee, 2011; Mian and Sufi, 2012).
There is also a small literature which addresses additionality indirectly by comparing realized
aggregate savings at the utility level to engineering estimates (Loughran and Kulick, 2004;
Auffhammer, Blumstein, and Fowlie, 2008; Arimura et al., 2012). Our paper differs from all
of these previous studies because of the RD research design. Probably the closest existing
study is Ito, Forthcoming, which uses an RD analysis to examine a California policy that
paid households to reduce their electricity consumption in Summer 2005.

4For instance, the two largest utilities in California offer rebates for energy-efficient heating and cooling
equipment that vary across 16 climate zones. These zones were established by California law in 1978
as a function of climate characteristics. Cities can straddle multiple climate zones, and there are large
discontinuous changes in rebates at climate zone boundaries. For example, during 2013 Southern California
Edison offered three different subsidy amounts ($550, $850, and $1100) for central air conditioners. Other
eligibility thresholds that would be amenable to RD analyses include requirements about the vintage of the
home, size or characteristics of the households current equipment, and, for needs-based programs, household
income.
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The paper is also related to a broader literature that examines government programs
that subsidize socially-beneficial behavior. A key issue with these programs is the need to
distinguish between additional and non-additional participants. Examples include tax subsi-
dies for charitable giving (Feldstein and Clotfelter, 1976), subsidies for building low-income
housing (Sinai and Waldfogel, 2005), conditional cash transfer programs (De Janvry and
Sadoulet, 2006), pollution offset programs (Schneider, 2007), and environmental conserva-
tion programs (Snchez-Azofeifa et al., 2007).5

2.2 Conceptual Framework

Technology Adoption With Externalities

In this section we propose a simple framework for thinking about the costs and benefits of
energy-efficiency subsidies. We illustrate the welfare loss introduced by transfers to infra-
marginal participants and show how the optimal subsidy amount depends on the relative
shares of marginal and inframarginal participants. We focus on adoption of an energy-
efficient technology, but the same basic framework applies to many other types of government
programs that subsidize socially-beneficial behavior.

We begin with a simple graphical partial equilibrium analysis. Figure 2.1 describes
the market for an energy-efficient technology. Along the x-axis is the number of adopters.
Demand is given by the downward-sloping private marginal benefits curve. The benefits of
adoption vary across potential adopters due to differences in expected utilization and other
factors. Supply is described by the private marginal cost curve.

The privately optimal level of adoption is labeled in the figure as Q0. These consumers
adopt the technology purely on the basis of private benefits, even with no subsidy or other
form of government intervention. If there are no externalities, then Q0 is socially optimal.
Once externalities are introduced, however, this is no longer the case. The figure illustrates
the case in which there is a positive marginal external benefit from adoption, so the social
marginal benefit exceeds private marginal benefit. The socially optimal level of adoption
is labeled in the figure as Q∗. This optimum is defined as the intersection of the social
marginal benefit and private marginal cost curves. The optimal subsidy is s∗. With this
subsidy, adopters between Q0 and Q∗ are additional. They adopt under the subsidy and do
not adopt without it.

The total amount paid in subsidies is indicated by the rectangle A/B/C. Rectangle A
is a transfer to non-additional participants, i.e. consumers who would have adopted the
energy-efficient technology even with no subsidy whatsoever. Triangle B is excess payment

5In this broader literature there are a few studies that use RD. Baum-Snow and Marion (2009) examines
the effect of tax credits for building low-income housing, exploiting a discontinuous increase in the credit
amount in census tracts where more than 50% of households qualify for means-tested government housing
assistance. Filmer and Schady (2011) studies a conditional cash transfer program in Cambodia where
program eligibility is limited to households scoring below a specified level on a government poverty index.
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to consumers who are induced to adopt because of the subsidy. Most adopters receive a
subsidy that is more than the minimum amount necessary to induce them to adopt. And
triangle C is the payment required to make adopters between Q0 and Q∗ indifferent between
adopting and not adopting.

Before proceeding it is worth highlighting a couple of important assumptions. First, we
have assumed that the external benefits from adoption are the same for all potential adopters.
When external benefits differ there can be gains from targeting energy conservation policies
toward high value participants (Allcott, 2015; Allcott, Mullainathan, and Taubinsky, 2014).
We have also assumed constant marginal costs. With increasing marginal costs the analysis
is similar but the incidence of the subsidy is partly on sellers. As a result there are “non-
additional recipients” on both sides of the market. Subsidies increase the equilibrium price
of the good, leading to higher revenues for sellers even for transactions which would have
occurred anyway.

Incorporating Pre-Existing Taxes and Other Distortions

This partial equilibrium analysis ignores interactions with taxes and other pre-existing dis-
tortions. Consider the following welfare function,

W = U(Q(s))− C(Q(s)) + τQ(s) +Q(s)s− ηQ(s)s. (2.1)

Here Q(s) is the quantity of technology adoption, which is a weakly increasing function of the
subsidy s. U(·) and C(·) are private benefits and costs from the energy-efficient technology.
In the graphical analysis, these correspond to the areas under the private marginal benefit
and private marginal cost curves to the left of Q. τ is the constant external benefit of
technology adoption derived from, for example, reduced carbon dioxide emissions.

The final two terms reflect general equilibrium effects. The subsidy payments are a
transfer from taxpayers to adopters in the amount Q(s)s. The efficiency cost of interactions
with pre-existing distortions is denoted η. If η is one, then there is no efficiency loss associated
with the transfers, and the gains by adopters exactly offset the costs to taxpayers.

The welfare change from a marginal increase in the subsidy is given by,

dQ

ds

[
U ′(Q(s))− C ′(Q(s)) + τ − (η − 1)s

]
− (η − 1)Q(s). (2.2)

The additional adoption induced by the subsidy increase is dQ
ds

. The left-hand term gives
the welfare effect of bringing these marginal participants into the program: private marginal
benefits minus private marginal costs, plus external benefits, minus the efficiency cost of
financing the subsidy payments to new participants. The right-hand term gives the welfare
cost of increased payments to inframarginal participants: The Q(s) participants already
adopting the technology each receive an infinitesimal increase in subsidy payment, financed
at a cost of η. The welfare effects of increasing the subsidy depend on the relative numbers
of marginal and inframarginal participants. If dQ

ds
is large relative to Q(s), then the left-hand
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term matters more than the right-hand term. As the subsidy level increases, Q(s) becomes
larger and payments to inframarginal participants become more and more important.

If η is equal to one then equation (2.2) simplifies considerably and it is optimal to set
the subsidy equal to marginal external benefits (τ). This is exactly what we described in
Figure 2.1 with s∗ and Q∗. However, if η is greater than one then the optimal subsidy level
is below marginal external benefits. The optimal subsidy amount balances the benefits of
increased adoption with the full welfare costs, including the general equilibrium efficiency
costs of larger transfers.

The value of η is informed by a large literature on the general equilibrium effects of envi-
ronmental taxes and subsidies, which we quickly summarize here. See, e.g., Bovenberg and
Goulder, 2002 and references therein. These policies create “tax interaction” and “revenue
recycling” effects. Environmental taxes exacerbate pre-existing distortions in the economy,
for example, by further decreasing the real wage in the presence of a labor tax (the tax
interaction effect). At the same time, environmental taxes also generate revenues, allowing
labor and other distortionary taxes to be lower than they would be otherwise (the revenue
recycling effect). A series of analytical and numerical studies have concluded that, for taxes,
tax interaction is more important than revenue recycling, so that optimal tax rates on ex-
ternalities are generally below marginal damages (Bovenberg and Goulder, 1996; Bovenberg
and Goulder, 2002). One reason for this is that environmental taxes discourage consumption
of the taxed good, which erodes the tax base and undermines revenue recycling.

A symmetric set of results holds for environmental subsidies. Subsidies for “clean” goods
increase real wages, thereby decreasing the distortionary effects of labor taxes (the tax in-
teraction effect). However, subsidies also require labor and other taxes to be higher than
they would be otherwise, exacerbating distortions (the “revenue-financing” effect). In our
framework, η represents the net of these two effects. The literature suggests that, for sub-
sidies, the revenue-financing effect exceeds the tax-interaction effect (Parry, 1998). Thus, η
is greater than one and the optimal level of subsidy is positive, but below marginal external
benefit, just like the optimal level of tax is positive, but below marginal external damages.
Throughout the paper, we refer to η as the efficiency cost of transfers.

The preceding analysis assumes that the government must pay all adopters the same
subsidy. Targeting subsidies to different groups based on expected benefits and costs could
increase welfare substantially. In the extreme, perfect price discrimination would pay each in-
dividual adopter the minimum amount they require to adopt. There would be no payments
to inframarginal participants and the right-hand term in equation (2.2) would disappear.
However, in practice, equity concerns, imperfect information, and other factors prevent per-
fect price discrimination and limit group-level targeting.

The main takeaway from this section is that, in general, the optimal subsidy amount is
lower than marginal external benefits. The welfare effects of a subsidy depend critically on
the effect of the subsidy on program participation. If dQ

ds
is small relative to the number of

existing participants, then the benefits from increased adoption will be small relative to the
efficiency costs of the payments to inframarginal participants. Accordingly, this is where we
focus our attention in the empirical analyses which follow.
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2.3 Program Background and Construction of

Dataset

Background

Our empirical analysis focuses on a large-scale energy-efficiency program in Mexico. The
program was launched in March 2009 and ended in December 2012. During this period,
the program subsidized the replacement of 1.9 million refrigerators and air conditioners with
energy-efficient models. Davis, Fuchs, and Gertler (2014) compare electricity consumption by
program participants before and after appliance replacement, finding that realized savings
were considerably smaller than what was predicted by ex ante analyses. There was no
attempt in this previous work, however, to distinguish between additional and non-additional
participants, nor was there any examination of the programs eligibility thresholds or RD
analysis.

To participate in the program a household had to have a refrigerator or air conditioner
that was at least 10 years old and agree to purchase a new appliance meeting Mexican
energy-efficiency standards. The old appliances were transported to recycling facilities and
disassembled. The refrigerator subsidies were available nationwide. For the air conditioner
program, a household needed to live in one of four officially-designated climate zones with
a mean summer temperature of at least 30◦C (86◦F); this included about one-quarter of all
households.

Table 2.1 describes the subsidies available under the program. The direct cash payments
came in three different amounts, approximately corresponding to $30, $110, and $170 (all in
U.S. 2010 dollars). Eligibility for the different subsidy amounts depended on a household’s
average historical electricity consumption, calculated over the previous year. There was a
minimum consumption level below which households were ineligible for subsidies. Above
this minimum, the cash payment amount decreased with a household’s consumption level.
This structure was designed to target the larger subsidies to lower-income households.

The program also offered on-bill financing at an annual interest rate of 13.8%, repaid
over four years. At the first two thresholds, the increase in maximum loan amount exactly
equals the decrease in cash. If households would otherwise have financed the purchases
using credit cards, the increase in maximum loan amount offsets about 18% of the decrease
in cash subsidies at these thresholds.6 At the highest consumption threshold, the increase in
maximum loan amount greatly exceeds the decrease in direct cash payments. For households
with a typical cost of borrowing who take the full loan amount, the economic value of the
program actually increases at this threshold.

6According to Banco de Mexico, Indicadores Básicos de Tarjeta de Crédito, October 2012, Table 1, credit
cards in Mexico charged an average interest rate of 25.3% in 2011. This is not a perfect measure. On the
one hand, not all households have access to credit cards, and the interest rates on other forms of borrowing
will vary. On the other hand, collateralized loans for durable goods purchases typically can be made at lower
rates. Most participants took out at least some loans, suggesting that the market cost of borrowing exceeds
13.8% in most cases.
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There are several features of this program that make it particularly conducive to an
empirical analysis. First, retailers did not have any discretion in assigning subsidy amounts.
Participating retailers determined which subsidy a household was eligible for by entering
the household’s account number into a website designed for this purpose, and this online
record became part of the paperwork necessary for the retailer to be reimbursed. This lack
of scope for retailer discretion is important because even a small amount of selection at these
thresholds would have been a threat to our identification strategy.

Another nice feature of the program is that participants received these subsidies immedi-
ately. In order to participate, a household was required to show a recent electricity bill and
an identification card, but there was no paperwork required and no delay in receiving the
subsidy. This differs from appliance subsidy programs in the United States which typically
require participants to fill out and mail application forms and proofs of purchase, and then
wait for a rebate check to arrive in the mail. In programs for which there are “hassle” costs
like these, not all eligible households will participate. And the amount of selection depends
on the size of the subsidy, making it difficult to interpret differences in participation across
subsidy levels.

Construction of the Dataset

A key feature of our analysis is the use of high-quality, household-level microdata, both about
program participants and about the entire pool of potential participants. The fact that we
observe eligibility for non-participants is important because, as usual, the objective in the
empirical analysis is to construct a credible counterfactual, and this is hard to do without
information about the broader pool.

The first component of this database is a two-year panel dataset of household-level elec-
tric billing records describing bimonthly electricity consumption for the universe of Mexican
residential customers from May 2009 through April 2011. The complete set of billing records
includes data from 25,786,609 households. This represents the entire pool of potential par-
ticipants in the program.

The second component of this database is a record of all households who participated
in the program between March 2009 and June 2011. In the complete dataset there are a
total of 1,162,775 participants. We merged this list with the electric billing records using
customer account numbers. We used our database to calculate average historical electric-
ity consumption for each household according to the program rules. For details see the
Appendix.

We focus on the 237,552 participants in 2011 because calculating average historical elec-
tricity consumption for earlier participants would require data from before May 2009, the
first month in our billing records. For each participant, we know the exact dates of purchase
and replacement, whether the appliance was a refrigerator or an air conditioner, and the
amount of direct cash payment and loan received.



CHAPTER 2. ADDITIONALITY IN ENERGY EFFICIENCY PROGRAMS 57

2.4 Empirical Strategy

Estimating Equation

Our empirical strategy exploits the discrete eligibility thresholds that determined whether a
household was eligible for zero subsidy, $30, $110, or $170. There are six total thresholds;
three for air conditioners and three for refrigerators. At each of these thresholds, we use a
standard RD estimating equation (Lee and Lemieux, 2010):

1[Participate]i = α + f(Xi) + ρ1[Below Threshold]i + ηi (2.3)

where 1[Participate]i is an indicator variable equal to one if a household participated in the
program and zero otherwise. We include in the regression f(Xi), a polynomial in average
historical electricity consumption, and 1[Below Threshold]i an indicator variable equal to
one if the household’s average historical electricity consumption was below the given thresh-
old. The coefficient of interest is ρ, which measures the discontinuous change in program
participation at the threshold. Moreover, we normalize Xi to be equal to zero at the thresh-
old so the coefficient α corresponds to the predicted probability of participating just below
the threshold, and α + ρ corresponds to the predicted probability just above the threshold.
In terms of the conceptual framework described in Section 2.2, ρ is the empirical analog of
dQ
ds

, and α is the empirical analog of Q(s).
The error term ηi captures unobserved determinants of the participation decision. An

important advantage of RD is that it requires a considerably weaker identifying assumption
than other approaches. Hahn, Todd, and Klaauw, 2001 show that identification with RD
requires that the conditional mean function E[ηi|Xi] is continuous at the discontinuity. In
the limit, one is comparing outcomes within an arbitrarily small neighborhood around each
threshold and the identifying assumption requires only that there not be a discontinuous
change in these other factors that occurs exactly at the eligibility thresholds. Of course, in
practice there are few observations within an arbitrarily small neighborhood around these
thresholds, and so there is a trade-off between bias and efficiency. Flexibly parameterizing
the polynomial f(Xi), allows us to expand the sample to include households farther away
from the threshold.

We report results using several different bandwidths. In our preferred specification, we
include all households within 100 kilowatt-hours of the thresholds for air conditioners, and
within 50 kilowatt-hours of the thresholds for refrigerators. The wider bandwidth for air
conditioners reflects that these thresholds were much higher (500, 750, and 1000 kilowatt-
hours compared to 175, 200, and 250) and the density of households in that part of the
distribution is lower. With refrigerators, the thresholds are close enough together that, in
some cases, the bandwidth includes more than one threshold. In the results which follow we
use one estimating equation per threshold, but we include intercept terms for any additional
thresholds.
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Validity of Research Design

The Discontinuity in Subsidy Amounts

Figure 3.4 plots the fraction of participants who received the larger subsidy as a function
of average historical electricity consumption. The dots represent mean values for three
kilowatt-hour bins. In all six cases there is a clear discontinuity at the threshold. Almost
all households with average historical consumption below the threshold receive the higher
subsidy amount and almost all households with average historical consumption above the
threshold receive the lower subsidy amount. Figure 3.4A is typical of all three air conditioner
thresholds. The share of participants receiving the larger subsidy falls from near one to near
zero. Even within very narrow bandwidths around these thresholds, we are able to correctly
predict subsidy levels for 99%+ of all participants (see the Appendix for details).

The discontinuities are less sharp for refrigerators. Figure 3.4D is typical of the three
refrigerator thresholds. Near the threshold, a small number of participants receive a dif-
ferent subsidy than we would have predicted. This is due to measurement error in our
reconstruction of average historical electricity consumption. As we explain in more detail in
the Appendix, the program rules for refrigerators were especially complicated, introducing a
small amount of measurement error for some observations. Battistin et al. (2009) show that
this type of measurement error biases sharp RD estimates downward in proportion to the
fraction of observations measured with error, but that the fuzzy RD estimator is unbiased as
long as the measurement error is uncorrelated with the subsidy amount. In practice, because
a small share of observations are measured with error, sharp RD and fuzzy RD produce very
similar estimates.

Checking for Manipulation of the Running Variable

A standard concern with RD analyses is manipulation of the running variable. If participants
could completely or partially manipulate their treatment status, this would represent a
substantial threat to the identifying assumption. Understanding any strategic behavior in
response to eligibility thresholds is also of significant independent interest because it may
introduce inefficiencies, as agents alter their behavior to qualify for more generous subsidies
(Sallee and Slemrod, 2012).

Figure 2.3 plots the frequency distribution of average historical electricity consumption for
all households. We use three kilowatt-hour bins and include separate plots for air conditioners
and refrigerators because the measure of average historical electricity consumption used to
determine eligibility was different for the two appliance types. Examining the smoothness of
the running variable is a valuable first test for manipulation (McCrary, 2008). If households
were changing their behavior to qualify for the more generous subsidy, we would expect to see
bunching to the left of the thresholds. For both appliance types, the frequency distributions
appear smooth across all eligibility thresholds. This lack of evidence of manipulation is
perhaps not surprising given that it is difficult for a household to control its average historical
electricity consumption. Perhaps most importantly, this is historical consumption, so at the
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time of participating in the program, there is no scope for the household to go back and
change its electricity consumption patterns in the past.

Another standard RD specification test is to look for changes at the threshold in covari-
ates unrelated to the treatment variable. If manipulation of the running variable leads to
systematic sorting of households around the threshold, we would expect to see discontinuous
differences in household characteristics at the threshold. In our dataset, we do not have
any household-level covariates. Instead, we merged our dataset with municipality-average
household income from the 2010 Census. Figure 2.4 shows that municipality-average income
is smooth across all eligibility thresholds, suggesting that there is no discontinuous change
at the threshold in the affluence of the places where participants live.

Finally, we consider a more subtle form of strategic behavior. If a household somehow
learned that they just missed qualifying for a larger subsidy, they could in theory wait one or
more billing cycles, perhaps while intentionally reducing electricity consumption, and then
reapply. In practice the program structure made this unlikely.7 Moreover, in the Appendix
we test for this explicitly by comparing participants’ historic average electricity consumption
in the months before participation to nonparticipants’ historic average electricity consump-
tion over the same months. We find no evidence that participants were more likely than non-
participants to become eligible for larger subsidies immediately before participating. Thus,
there is no evidence of strategic delay.

2.5 Results

Graphical Evidence

We now turn to our main results, first presenting graphical evidence and then reporting
regression estimates in Section 2.5 and alternative specifications in Section 2.5. Figures 2.5A
and 2.5B plot program participation against average historical electricity consumption for
air conditioners and refrigerators, respectively. We again use three kilowatt-hour usage bins.
The y-axis in these figures is the percentage of households in each bin that participated in
the program during our sample period. For refrigerators the denominator is all Mexican
households. For air-conditioners the denominator is all Mexican households living in climate
zones that were eligible for the air conditioner program.

It is first worth noting that there is essentially no participation by households who used
less than the minimum levels of electricity required for participation. This is reassuring,
though not surprising given the way the program was administered. The small number of
participating households to the left of the minimum eligibility thresholds for refrigerators
reflects a small amount of measurement error in average historical electricity consumption.

7Participating retailers determined whether a household was eligible by entering the household’s account
number into a website designed for this purpose. Households could not access this site without a retailer’s
login and password. The website reported the subsidy level for which a household qualified, but did not
describe the intermediate calculations which determined eligibility or let a household know when it was close
to a more generous subsidy level.
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For air conditioners, participation increases steadily between 250 and 500 kilowatt-hours,
levels off between 500 and 750, and then declines slowly after 750. Our main interest is
in behavior at the 500, 750, and 1000 kilowatt-hour thresholds. In the first two cases,
there appears to be a discontinuous decrease in participation at the threshold. The second
decrease is particularly visible and appears to occur exactly at the threshold in which the
subsidy amount decreases from $110 to $30. It is difficult to make strong statements based
on this graphical evidence because the participation rate moves around across bins, but at
this threshold the participation rate appears to drop from about 1.5% to about 1%. At the
final threshold, where the cash subsidy amount falls from $30 to zero, there does not appear
to be any discontinuous change in participation.

For refrigerators, participation follows a similar inverted “U” pattern, peaking at about
1.8% near 150 kilowatt-hours and then decreasing steadily between 150 and 300. At both
the 175 and 200 kilowatt-hour thresholds there are visible discontinuous decreases in par-
ticipation. At the 250 kilowatt-hour threshold there is no apparent decrease. This general
pattern is similar to what is observed for air conditioners, with decreases at the first two
thresholds and no visible decrease at the third threshold.

For both appliance types, there is no observed change in participation when the subsidy
falls from $30 to $0. As we discussed in Section 2.3, this threshold was different from the
others in that there was a large offsetting increase in the maximum loan amount. We were
expecting to see a much smaller change in participation at this threshold, and the data
appear to bear this out. The near zero change in participation implies that, on average,
the increase in maximum loan amount had about the same value to households as the $30
decrease in cash. We find this very interesting, but in the regression analysis which follows
we focus on the four other thresholds where there is a clear and unambiguous change in the
value of the program.

Regression Estimates

Table 2.2 reports RD estimates and standard errors from four separate regressions. For each
threshold we report the percentage of households participating at each side of the threshold as
well as the percent change in participation. Because we have normalized the running variable
to be equal to zero at the threshold, these statistics come right out of our estimating equation.
From each regression, column (2) reports the estimated intercept, column (3) reports our
estimate of the intercept plus our estimate of the discontinuous change at the threshold, and
column (4) reports the percent change between the two. Columns (5) and (6) report the
implied linear slope of demand and price elasticity at each threshold.

Consistent with the graphical evidence, participation increases at all four thresholds. All
four changes are statistically significant (three at the 1% level, one at the 5% level). With
air conditioners, the increases are 21% and 45%. For refrigerators the estimated changes
in participation are similar, 19% and 34%. As with air conditioners, the larger increase
corresponds to the subsidy increase from $30 to $110. The estimates for refrigerators are
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more precisely estimated because of the large number of households with average historical
electricity consumption near these thresholds.

The increases are clear, but the estimates also imply that a large number of participants
are inframarginal. Most households who just barely qualified for the $170 subsidy would
have participated even if they had only received $110 and most households who just barely
qualified for the $110 subsidy would have participated even if they had only received $30. The
percent inframarginal can be calculated by dividing column (2) by column (3). For example,
when the air conditioner subsidy increases from $110 to $170, our estimates imply that 83%
(1.45
1.75

= 0.83) of households are inframarginal. Across thresholds the percentage inframarginal
ranges from 69% to 84%. The estimates are similar for air conditioners and refrigerators,
suggesting that the results are not driven by idiosyncratic features of a particular appliance
market.

In column (5) we report the implied slope of demand at the threshold. These are cal-
culated for each threshold by dividing the percent change in participation by the subsidy
change in dollars. For each $1 of subsidy change, the share of households replacing air con-
ditioners increases 0.0054 to 0.0069 percentage points and the share of households replacing
refrigerators increases 0.0044 to 0.0047.8 These slopes appear quite small but it is important
to keep in mind that the base participation rates are very low.

In column (6) we report the implied price elasticities. These are calculated for each
threshold by dividing the percent change in participation by the percent change in the price
of appliance replacement net of the subsidy. In calculating this net price we use the average
appliance price paid by program participants at the threshold.9 For air conditioners, the
elasticity is 0.88 at the first threshold and 1.76 at the second. For refrigerators, the elasticity
is 0.90 at the first threshold and 1.51 at the second.10

It is important to interpret these elasticities carefully. They describe how demand would
change in response to a market-wide price change, not the elasticity of demand for a particular
appliance model or for all appliances made by a particular manufacturer. It is also worth
emphasizing that this is the elasticity of demand for appliance replacement, which is different
from demand for initial purchase. Still, the estimates appear quite large. They imply that

8For the calculations in columns (5) and (6) we calculate the change in the value of the subsidy incor-
porating both direct cash payments and the implied cash value of the on-bill financing (assuming a 25.3%
annual interest rate on private borrowing; see Section 2.3).

9Specifically, we use the average price paid by participants at the low-subsidy side of each threshold.
For air conditioners, these prices were $402 at the 175 kWh threshold and $402 at the 200 kWh threshold.
For refrigerators the prices were $425 at the 500 kWh threshold and $427 at the 750 kWh threshold. We
calculate all elasticities as arc elasticities, and thus use for the denominator in these calculations the midpoint
between the high-subsidy and low-subsidy prices.

10We are reporting uncompensated elasticities, but compensated elasticities are likely to be very similar.
These subsidies represent a tiny share of the total household budget for these households so income effects
are likely negligible. One approach for assessing the potential magnitude of income effects is to test for
changes at the thresholds in the price of the appliance that is purchased. We observe no significant change
in the price of the appliance purchased at three of the four thresholds. At the fourth, the average price
increases by about 2%, and the increase is only weakly statistically significant.
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appliance replacement is price-responsive, and that the program caused a large number of
appliance replacements that otherwise would not have happened.

These estimates are valuable not only in assessing energy-efficiency subsidies, but also
for predicting appliance replacement more broadly. Wolfram., Shelef, and Gertler (2012)
argues that demand for residential appliances will have an enormous influence on future
energy consumption growth in low- and middle-income countries. Appliance prices have been
falling for decades and our estimates imply that continued decreases will accelerate the rate
at which appliances are replaced. If households are more quickly replacing appliances this
means that improvements in energy-efficiency will more quickly be reflected in the appliance
stock.

Alternative Specifications

Table 2.3 reports regression estimates from five alternative specifications. For each speci-
fication we report the estimated percent change in participation at each threshold. In the
first three columns, we vary the size of the bandwidth used with the cubic polynomial. The
second column reports our baseline estimates, identical to the estimates reported in Table
2.2. The first and third columns assess the sensitivity of our estimates to larger and smaller
bandwidths. In the fourth column, we use local linear regression with a uniform kernel
and a small bandwidth. Overall, the results are similar across all four columns. Moreover,
there is no consistent pattern. As we move across bandwidths and specifications, some point
estimates increase while others decrease.

The last column reports estimates from a fuzzy RD specification. In this specification,
we scale the estimates by the size of the discontinuity at the threshold following Hahn, Todd,
and Klaauw, 2001 and Battistin et al., 2009. Specifically, we run a first stage regression of
an indicator for the larger subsidy (1[Larger Subsidy]) on (1[BelowThreshold]) and a cubic
polynomial of average historical consumption, g(X),

1[Larger Subsidy]i = φ+ g(Xi) + γ1[Below Threshold]i + εi. (2.4)

We then divide our baseline estimates by γ to remove any bias caused by measurement
error (see section 2.4 and the Appendix). The estimates are very similar with the fuzzy
RD specification. The air conditioner estimates are essentially identical to the sharp RD
estimates, consistent with the near perfect discontinuity observed in Figures 3.4A, 3.4B, and
3.4C. For refrigerators, the scaling increases the point estimates modestly, consistent with
the graphical evidence in Figures 3.4D, 3.4E, and 3.4F, which exhibit a somewhat less perfect
discontinuity.
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2.6 Discussion

Inferring the Fraction Non-Additional

These estimates are directly relevant for program design because they show how adjust-
ments in program generosity would have changed participation levels. We are also interested
in what program participation would have been with no subsidy whatsoever. Table 5 re-
ports estimates of the fraction of participants that are non-additional under two different
assumptions about the shape of the demand curve.

In Column (1) we calculate the fraction of participating households who are non-additional
by using the slope estimates from Table 2.2 to predict appliance replacement at the un-
subsidized price. For participants who received the $170 cash payment, we use the slope
corresponding to the threshold between $110 and $170, and for participants who received
$30 or $110, we use the slope corresponding to the threshold between $30 and $110. The
implied slopes are quite similar across thresholds, however, so the results are not particularly
sensitive to which slope we use. Under these assumptions our estimates imply that 54% of
participants were non-additional, in that they would have replaced their appliances even with
no subsidy whatsoever. With this level of non-additionality, the average payment amount
per induced replacement is $328, a little more than twice the average subsidy amount ($152).

In Column (2), we infer the fraction of participants that are non-additional by using the
estimated elasticities, rather than the estimated slopes. With this approach our estimates
imply that 43% of participants are non-additional, so that the average payment per induced
replacement is $269. Of the two alternatives we prefer to use the estimated slopes because
this assumption about the demand curve better fits the observed behavior at the thresholds.
Whereas the estimated slopes are similar across thresholds, the estimated elasticities are not.
For both appliance types the estimated elasticities are considerably larger at the $30 to $110
threshold than at the $110 to $170 threshold, which is what one would expect with linear
demand.

It is worth emphasizing that both of these approaches rely on strong assumptions about
demand. By using our estimates of these slopes and elasticities to predict behavior away
from the thresholds, we are assuming that behavior at the thresholds is representative of
all households. This is a mild assumption for participants who are close to thresholds but
is a considerably stronger assumption for participants far away from a threshold like those
at the beginning of the $170 tier. We find it somewhat reassuring that the slope estimates
are similar across thresholds. Nonetheless, these projections should be viewed with more
caution than the RD estimates from which they are derived.

Implications for Cost-Effectiveness and Welfare

Depending on whether one uses the slopes or the elasticities, we find that 43 – 54% of
participants are non-additional. So it costs on average $269 to $328 in subsidies per induced
replacement, instead of $152 in a naive analysis that treats all participants as additional.
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Thus, accounting for non-additional participants approximately doubles the program cost
per unit of reduced energy consumption. Related measures of cost-effectiveness such as the
program cost per ton of carbon dioxide abated would also approximately double.

Non-additionality also affects the full welfare calculation. In this section we provide a brief
sketch of such a calculation, following the framework outlined in Section 2.2. To calculate
the benefits of appliance replacement, we value the reductions in greenhouse gases and local
air pollutants from each appliance replacement. As we explain in detail in the Appendix,
we use the pre-program engineering estimates of 2,900 kilowatt-hours in lifetime electricity
savings per replacement. This is equivalent to 1.6 tons of avoided carbon dioxide emissions
so applying a $34 social cost of carbon as in U.S. IAWG (2013), the climate benefits are
$53 per replacement. We also include $54 per replacement of benefits from reduced local air
pollution.

The program costs can be divided into categories A, B, and C, as indicated in Figure
2.1. Rectangle A represents payments to non-additional participants. Private costs are zero
for these participants, since they are doing something they would have done anyway. But
there is still the efficiency cost associated with financing the subsidies, which we called η in
Section 2.2. This parameter η represents the net welfare cost of the revenue financing and tax
interaction effects. For this simple back of the envelope calculation, we assume that η equals
1.3, following Goulder, Parry, and Burtraw (1997) and other studies in the literature (see
the Appendix for details). We find that about half of the participants are non-additional and
the average subsidy amount was $152. So, transferring funds to non-additional participants
imposed an efficiency cost of about $46 per induced replacement.

Rectangle BC represents payments to induced participants. Financing these payments
cost an additional $46 per replacement, again using 1.3 for the efficiency cost. In addition,
there are the private costs of adoption. These costs are shown as Triangle C. If demand is
linear, then this area is half the total amount of subsidies paid to induced participants. The
average subsidy amount was $152, so the private cost of replacement averaged $76. Summing
up these back-of-the-envelope benefits and costs, we find that each induced replacement
yielded benefits of $107 at a cost of $168.

These calculations highlight the importance of distinguishing between additional and non-
additional participants. This can be seen most starkly by comparing these numbers to what
one would have calculated with a naive analysis that assumes all participants are additional.
In the naive analysis, the efficiency cost of financing the program is much smaller: $46 per
replacement rather than $92. Private costs are the same ($76), so the total cost is $122 per
replacement. This is much closer to the benefits of $107. Thus, in the naive analysis, the
program appears much closer to welfare-improving.

These values should be interpreted carefully because they are based on many strong
assumptions. These calculations also ignore some components of benefits and costs, such as
the benefits of properly disposing of refrigerants and the administrative costs of the program.
They also rely on engineering estimates of electricity savings, which recent work suggest may
have been overly generous (Davis, Fuchs, and Gertler, 2014). The goal of this simple back-
of-the-envelope calculation is to tie our empirical results to the economic model and provide
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an example for how to think about welfare analysis in this setting.
Two of the most important uncertain parameters are the social cost of carbon (SCC)

and the efficiency cost of financing the subsidies (η). The program becomes more attractive
with a high SCC and low η. Still, it would have taken values near the extremes of the range
of available estimates in the literature in order to make the program welfare-improving.
Holding constant our other assumptions, the program benefits would exceed the costs only
if the SCC were greater than $73 per ton or if η were less than 1.1.11

These results raise questions about whether energy-efficiency programs could be designed
differently to target payments based on expected additionality. For example, if immutable,
verifiable household and firm characteristics could be determined to predict adoption with
and without the subsidy, payments could be made conditional on these characteristics.12 The
scope for this type of targeting will differ widely across contexts and there are important
constraints that may limit targeting in practice. Income-based targeting, for example, can be
difficult and expensive to enforce, and geographic targeting may be unacceptable politically.
Still, even in programs where explicit targeting is limited, softer versions may be possible.
As a simple example, perhaps program advertisements can be tailored towards demographic
segments where adoption in the absence of the program would be low.

Program-Wide Effects

RD is well-suited for highly-localized predictions about how participation would have changed
under alternative subsidies. But we have also stressed that RD is not a panacea and cannot
answer all of the questions that could be answered, for example, with a large-scale RCT.
A particularly important weakness is the inability of RD to measure broader program-wide
effects. In providing subsidies the government is providing information and an explicit en-
dorsement of particular energy-efficient technologies. This focuses attention on these prod-
ucts, potentially influencing replacement decisions above and beyond the direct impact of
the subsidies themselves.

Through program-wide effects even non-participants may have their behavior influenced
by a program. For example, potential participants may investigate a program only to learn
that they are ineligible for a subsidy. However, in learning about the program they focus
their attention on energy-efficiency, potentially becoming more likely to adopt the subsidized
technology even if they do not end up receiving any monetary incentive whatsoever.

11An SCC of $73 per ton is above the central range of values presented in U.S. IAWG (2013), but less
than the 95th percentile estimate of $129. For η to be less than 1.1, the MCPF would have to be at the
bottom of the range of estimates of 1.11 to 1.56 for the United States (Bovenberg and Goulder, 2002), or
the tax interaction effect would have to be large.

12De Janvry and Sadoulet (2006) propose such targeting for a conditional cash transfer program in Mexico.
Using experimental data, they conclude that making school attendance subsidies a function of child’s gender,
birth order, and distance traveled to school could decrease the program cost per additional child attending
school by about 23%.
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These broader program impacts are difficult to measure empirically. Ideally, one would
measure program-wide effects using a large-scale RCT in which randomization was done not
over households, but over geographic areas with subsidy generosity varied across areas. This
has been done with cash transfer programs (Baird et al., 2012), and given sufficient resources
and public cooperation could be implemented with energy-efficiency programs. Experiments
could also be designed to directly measure spillovers through social networks, as in Miguel
and Kremer (2004) and similar studies.

2.7 Conclusion

It is hard to provide incentives for socially-beneficial behavior without substantial transfers to
those who would have done these behaviors anyway. Subsidies for energy efficiency are a key
example, both because the potential external benefits are large and because first-best policies
seem, for the moment, to be impossible politically. Empirical estimates of additionality are
critical, however, because if a large enough fraction of participants are non-additional then
a program will not be welfare improving.

Our RD analysis avoids many of the measurement and endogeneity problems in previ-
ous studies by focusing on behavior within narrow windows around eligibility thresholds.
Although these thresholds make RD a natural approach to causal inference, we are not
aware of any previous RD analyses of additionality in this context. We see broad potential
for applying our conceptual framework, estimating equations, and tests of strategic behav-
ior in evaluating similar programs. Although the exact eligibility requirements vary across
programs, it is typical to see discontinuous thresholds of the type observed here.

The results are striking. We find that most households would have participated even for
much lower subsidy amounts. Across thresholds, more than two-thirds of participants are
inframarginal and the estimates imply that about half of all participants would have replaced
their appliances even with no subsidy whatsoever. These non-additional participants add
substantial cost to the program without yielding any real reduction in energy use.

These findings are relevant to current energy policy around the world, which is focusing
increasingly on energy efficiency. Billions of dollars are spent each year on programs like this
one that provide subsidies for households and firms who adopt energy-efficient technologies.
Reliable empirical estimates of the benefits and costs of these policies are essential and using
RD to measure changes in behavior at eligibility thresholds can be an important part of
these analyses.
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Figure 2.1: The Market for an Energy-Efficient Technology
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Figure 2.2: The Discontinuities
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(b) Air Conditioners, 750 kWh Threshold

Subsidy falls from $110
to $30 at 750 kWh
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(c) Air Conditioners, 1000 kWh Threshold

Subsidy falls from $30
to $0 at 1000 kWh
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(d) Refrigerators, 175 kWh Threshold

Subsidy falls from $170
to $110 at 175 kWh
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(e) Refrigerators, 200 kWh Threshold

Subsidy falls from $110
to $30 at 200 kWh
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(f) Refrigerators, 250 kWh Threshold

Subsidy falls from $30
to $0 at 250 kWh
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Figure 2.3: Smoothness of Running Variable Across Subsidy Thresholds
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Figure 2.4: Smoothness of Household Income Across Subsidy Thresholds
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Figure 2.5: Program Participation
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Table 2.1: Subsidy Amounts

Program Direct Cash Maximum Loan Consumption Levels, Consumption Levels,
Tier Payments Amount Air Conditioners Refrigerators

1 2,200 Pesos ($170) 3,400 Pesos ($270) 251 – 500 76 – 175

2 1,400 Pesos ($110) 4,200 Pesos ($330) 501 – 750 176 – 200

3 400 Pesos ($30) 5,200 Pesos ($410) 751 – 1,000 201 – 250

4 No cash payment 8,700 Pesos ($690) 1,000+ 250+

Notes: This table describes the direct cash payments and maximum loan amounts available to house-
holds with different levels of average historical electricity consumption (in kilowatt-hours per month).
For further details, see Appendix. Dollar amounts are reported in U.S. 2010 dollars using the average
exchange rate for 2010 (12.645 Pesos per dollar). For expositional clarity, we rounded all dollar amounts
to the nearest $10. Households with consumption below the first tier were ineligible for subsidies.
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Table 2.2: RD Estimates of the Effect of Subsidies on Program Participation

Subsidy
Increase

Percent of Households Participating Percent
Change in
Participa-
tion at the
Threshold

Implied
Slope

Implied
Price

ElasticityAt Lower
Subsidy
Amount

At Higher
Subsidy
Amount

(1) (2) (3) (4) (5) (6)

Panel A. Air Conditioners

$110 to $170 1.45 1.75 20.6 0.0054 0.88
(0.23) (0.29) (8.7) (0.0023) (0.38)

$30 to $110 1.07 1.55 44.6 0.0069 1.76
(0.23) (0.31) (11.6) (0.0019) (0.49)

Panel B. Refrigerators

$110 to $170 1.37 1.63 19.1 0.0047 0.90
(0.11) (0.13) (2.7) (0.0007) (0.13)

$30 to $110 0.89 1.20 34.1 0.0044 1.51
(0.08) (0.10) (4.7) (0.0006) (0.21)

Notes: This table reports sharp RD estimates of the effect of increased subsidies on program partic-
ipation from four separate regressions. In each regression, the sample includes all households within
our preferred bandwidth. We use a 100 kWh bandwidth for air conditioners, and a 50 kWh band-
width for refrigerators. All regressions include a cubic polynomial in average historical electricity
consumption, normalized to zero at the threshold. Column 2 reports the estimated intercept. Col-
umn 3 reports the estimated intercept plus the estimated coefficient on an indicator variable equal
to one for households below the eligibility threshold. Column 4 reports the percent change between
the previous two columns. Column 5 reports the change in the percent of households participating
(as a fraction of all households at the threshold) per dollar of subsidy change. Column 6 reports the
implied price elasticities evaluated using the net change in the cost of replacement at each threshold.
Standard errors are clustered at the municipality level.



CHAPTER 2. ADDITIONALITY IN ENERGY EFFICIENCY PROGRAMS 74

Table 2.3: Alternative Bandwidths and Specifications

Panel A: Air Conditioners

Subsidy Increase
Sharp RD Fuzzy RD

Cubic Cubic Cubic Local Cubic
Polynomial Polynomial Polynomial Linear Polynomial

125 kWh 100 kWh 75 kWh 50 kWh 100 kWh

$110 to $170 20.7 20.6 29.4 30.7 20.9
(8.4) (8.7) (9.8) (8.9) (9.1)

$30 to $110 56.1 44.6 38.2 49.4 45.7
(13.4) (11.6) (11.9) (13.4) (12.9)

Panel B: Refrigerators

Subsidy Increase
Sharp RD Fuzzy RD

Cubic Cubic Cubic Local Cubic
Polynomial Polynomial Polynomial Linear Polynomial

75 kWh 50 kWh 25 kWh 15 kWh 50 kWh

$110 to $170 22.5 19.1 15.7 15.0 22.6
(2.3) (2.7) (3.2) (3.2) (3.1)

$30 to $110 35.2 34.1 37.5 40.6 41.0
(4.5) (4.7) (6.2) (6.1) (5.7)

Notes: This table reports the estimated percent increase in program participation from 20 separate
regressions, corresponding to the four main eligibility thresholds. The specification and bandwidth
used are indicated at the top of each column. The cubic polynomial estimates using a 100 kWh
bandwidth for air conditioners, and a 50 kWh bandwidth for refrigerators are identical to our esti-
mates in Table 2.2. The columns on either side report estimates from two alternative bandwidths.
The fourth column reports estimates using local linear regression with a uniform kernel. The final
column reports estimates from a fuzzy RD specification which scales the estimated change in par-
ticipation by the size of the discontinuity at the eligibility threshold. Standard errors in the first
four columns are clustered at the municipality level and in the last column are block bootstrap by
municipality with 5,000 repetitions. See text for details.
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Table 2.4: Inferring the Fraction Non-Additional

Projection Based on Projection Based
Linear Demand on Elasticities

(1) (2)

Fraction 53.6% 43.3%
Non-Additional (4.8) (6.0)

Average Payment $328 $269
Per Induced Replacement (36.7) (30.2)

Notes: In this table we use the RD estimates from the thresholds to
infer what fraction of participants would have replaced their appliances
with zero subsidy. For the average payment per induced replacement we
divide total subsidy payments by the implied total number of additional
participants. See text for details.
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Chapter 3

The Effect of Biomass Electricity
Generation on Forest Harvest in
Maine

3.1 Introduction

Electricity produced by burning biomass, especially waste wood and farm residues, supplies
a major share of renewable generation in the United States. Biomass provided 34% of
non-hydroelectric renewable generation in 2010.1 Much of the expected future growth in
renewable electricity generation is also expected to come from biomass (Figure 3.1). These
optimistic projections are driven by low costs relative to other renewable technologies, in
large part because of the abundance of forestry and agriculture residues available to fire
biomass generators.2

While biomass electricity is a promising source of low-cost renewable energy, its growth
presents environmental challenges for forests. Demand for energy fuels may increase removals
of low-value wood during harvests of other forest products. These increased wood removals
often come through increased “whole-tree” harvesting, where the tops and branches of cut
trees are collected instead of being left in the field. Demand for biomass fuel may also
encourage the harvest of standing dead trees (which have low timber value) and “downed
woody material” (DWM), which is woody material on the ground (Manomet Center for
Conservation Sciences, 2010). If this additional harvest is not well-managed, it can damage
forest health. The main concerns are reduced nutrient inputs to soils, increased erosion,
and loss of habitat for sensitive species (Benjamin, 2010). In addition, if biomass generation
encourages greater removals of standing trees, the medium-run carbon neutrality of biomass

1Energy Information Adminsitration. 2011. Renewable Energy Consumption and Electricity Preliminary
Statistics 2010. http://www.eia.gov/renewable/annual/preliminary/

2Energy Information Administration. 2012. EIA projects U.S. non-hydro renewable power generation
increases, led by wind and biomass. http://www.eia.gov/todayinenergy/ detail.cfm?id=5170
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electricity may be in question (Manomet Center for Conservation Sciences, 2010).
This study’s main contribution is to estimate an empirically-grounded price elasticity of

supply for forest-derived biomass fuel in the US state of Maine. This parameter is central
to understanding how increased demand for woody biomass fuel will affect forests. Figure
3.2 shows a simplified example of how increased demand for biomass fuels increases harvest,
and how the amount of the increase demands on the slope of the supply curve. Estimates
of the quantity of biomass removals due to energy demand can be combined with ecological
models to understand the environmental impacts of biomass electricity generation on forests.
The results of this study are also relevant for understanding the future potential of biomass
electricity. The supply elasticity of wood fuels will affect the fuel prices faced by biomass
power plants as the industry grows. These fuel prices are an important driver of the overall
supply elasticity of biomass electricity.

I draw on an unusually detailed dataset that I compiled from annual forestry reports
published by the Maine Division of Forestry. The data include 15 years of county-level
quantity and prices for forest residues sold for biomass energy use. The availability of price
data for biomass fuels is a distinguishing characteristic of this dataset that enables this
analysis. To my knowledge, it is the most detailed publicly available data on biomass fuel
prices in the United States.

I find that doubling the price of woody biomass in Maine increases harvest by about 64%
on average. In the reduced form analysis, I also find that coal prices are a major determinant
of woody biomass harvest, suggesting that environmental policies that raise the price of coal
will affect forest health through increased biomass harvest. I do not find a statistically
significant effect of subsidies to biomass power plants on biomass harvest.

Biomass energy and forest harvest

Most of the fuel used in biomass generators in the United States comes from forests.3 Woody
biomass fuels are byproducts of forest harvest operations for higher-value sawlogs and pulp-
wood. Sawlogs are used to make boards, furniture, and other wood products. Pulpwood is
made into pulp and paper at paper mills. Sawlog and pulpwood harvests generate other-
wise unmarketable residues - for example, the tops and branches of cut trees.4 Landowners
and loggers decide between leaving these residues and other low-value woody materials (like
standing dead trees), or collecting and selling them as biomass fuel. If they are to be sold,
they are typically processed into wood chips and then trucked to power plants and industrial
facilities with wood boilers.

The ecological impacts of woody biomass removals are complicated and site-specific. In
some areas, including public lands in the Western US, increased removals may improve
environmental outcomes by reducing wildfire risk. Removing low-value standing trees may

3Other fuel sources include farm residues, municipal waste, construction and demolition waste, and
landfill natural gas

4In an informal interview, one logger suggested that the volume of wood in a typical cut in Maine is 50%
pulpwood, 25% sawlogs, and 25% low-value residues.
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also aid in stand management if debris or small trees slow forest regeneration. However, in
some regions, particularly in the Eastern US, unregulated removals of low-value wood may
harm the environment. Foliage and branches are a small share of a tree’s volume, but can
contain up to half of the stored nutrients, so that whole-tree harvesting may deplete soil
nutrients (Benjamin, 2010). A number of threatened wildlife species are also thought to be
impacted by removals of woody material and standing dead trees (Janowiak and Webster,
2010). Finally, if woody biomass harvest removes residues that would otherwise stabilize
soils, water quality can be damaged by increased erosion (Janowiak and Webster, 2010).

These scientific findings have prompted regulatory responses. Massachusetts suspended
support for biomass electricity in its renewable portfolio standard program in 2009, and is
currently revising its wood harvest rules (North Carolina Clean Energy Technology Center,
2012). The European Union is also formally examining the environmental sustainability of
woody biomass energy. Member states have proposed to rapidly increase biomass generation
to meet an EU-wide target of 20% of electricity consumption from renewables by 2020
(European Commission Directorate General For Energy, 2011). There has also been vigorous
debate in the Australian Parliament about whether to extend clean energy subsidies to
generators that burn forest waste.5 At the same time, forestry regulators in the US and
elsewhere have begun to develop guidelines or regulations for woody biomass harvest (Evans
and Perschel, 2009).

The supply of woody biomass fuels

Green wood chips are bulky for the amount of energy they contain, making transportation
expensive. In fact, transportation is often the largest share of the marginal cost of delivered
biomass fuels. This means that markets for woody biomass fuels are local.

Most studies of markets for woody biomass fuels have used engineering simulation meth-
ods. In general, these studies conclude that there should be a large pool of readily available
waste products from forestry and agriculture, making supply highly elastic with respect to
price. The most prominent engineering study is the “Billion Ton Vision” from Oak Ridge
National Laboratory (Perlack and Erbach, 2005; Department of Energy, 2011). This study
finds that up to 555 million dry tons of biomass fuels are available nationally today, which
is more than double what is currently used. For forestry residues, the supply curve is linear
from about $2 per dry ton to $45 per dry ton6, with an implied US-wide price elasticity of
roughly 4.75. Above $45 per dry ton supply becomes inelastic, reflecting the constraints in
their model (e.g., that 30% of residues must be left in the forest for environmental reasons).
For Maine, the implied supply elasticity of forest residues is about 0.5 – 0.6.

These engineering studies depend on untested assumptions about the behavior of forest
owners and farmers. This literature would benefit from empirical economic work using real

5Watt, J. 2012. Bid to use ‘forestry waste’ in biomass energy projects fails by one vote. Australian
Broadcasting Corporation. March 20, 2012. http://www.abc.net.au/local/stories/2012/03/20/3459509.htm.

6Woody fuels are sometimes reported in dry tons and sometimes in green tons. An accepted approximate
conversion factor is that green wood chips are 40-50% moisture by weight.
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market data. To my knowledge, no econometric estimates of the supply of forest and farm
residues for energy use exist. This is partly due to the scarcity of detailed price information.

While there have been few or no formal econometric studies of energy wood chip supply,
there is a rich literature on the supply of other timber products. A major theme of many
recent studies has been that the supply of timber on private lands is very price inelastic
(Newman and Wear, 1993; Liao and Zhang, 2008). In contrast to the results found in
engineering simulations, these results for other timber products have led some to question
whether woody biomass production will respond significantly to increased prices (Manomet
Center for Conservation Sciences, 2010).

Policies related to woody biomass electricity generation

The market for woody biomass fuels is affected by two types of policies. The first is subsidies
that affect consumers of woody biomass fuel - power plants and industrial facilities. The
second is regulations governing suppliers of woody biomass fuels. This section discusses both
types of policies in the US.

Biomass electricity generation has been supported by significant state and federal subsi-
dies. Since beginning on January 1, 2005, the federal Producer Tax Credit (PTC) has paid
1.1 cents per kilowatt-hour (kWh) of electricity produced by “open-loop” biomass genera-
tors.7 The subsidy is only for generation sold through the grid to an unrelated party, so
industrial plants that generate their own electricity are not eligible.8 It is illegal for indus-
trial facilities to sell biomass power to collect the subsidy while simultaneously purchasing
grid power to run the plant.

Several states also subsidize biomass electricity generation. The most common form of
support is Renewable Portfolio Standards (RPS) that require utilities to procure a minimum
fraction of their generation from renewables, including biomass. Several US states have
RPS programs. In most programs, renewable generators are granted Renewable Energy
Credits (RECs) in the amount of their generation. They can sell these RECs to utilities,
who comply with the RPS by holding RECs equal to the required amount of renewable
generation. RECs are traded in competitive markets, and prices have varied widely over
time. In 2005, Massachusetts RECs were trading at over $50 per megawatt-hour (MWh).
In 2010 the market price was close to $10/MWh (Wiser and Smith, 2007; Wiser, 2010).

On the supply side, biomass harvest on private lands is generally under the authority of
state forestry regulators. Until recently, few states had addressed biomass harvest. Forestry
regulations have principally been concerned with protecting water quality (e.g. protecting

7Closed-loop biomass electricity is made from dedicated energy crops grown specifically for electricity
generation. Open-loop biomass is all other types of biomass electricity generation, including generation from
wood waste.

8The subsidy program is described on IRS Form 8835: Renewable Electricity, Refined Coal, and Indian
Coal Production Credit (2011). In practice, some industrial facilities do sell excess generation to the grid
and collect the subsidy on those units. However, as I show below, the primary use of wood energy fuels at
the industrial facilities in this study is to generate electricity for on-site use.
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streams and limiting erosion). Many states, including Alabama, California Maine, Michi-
gan, Minnesota, Missouri, New Hampshire, Pennsylvania, and Wisconsin, have begun to
develop voluntary best practices for sustainable biomass harvest. Most states suggest that
a certain percentage (e.g. 20%) of tops and branches and standing dead trees be left (Evans
and Perschel, 2009; Manomet Center for Conservation Sciences, 2010). For purely private
costs like reduced nutrient input on private land, information provision may be sufficient to
achieve an efficient outcome. However, if biomass harvest creates external costs by harm-
ing water quality, biodiversity, or public lands, then binding policy interventions may be
welfare-increasing.

The forest products and electricity industries in Maine

The forest products industry is a major component of Maine’s economy. A large number of
sawmills and paper mills produce a wide variety of wood products and employ thousands of
people (Innovative Natural Resource Solutions, 2005). Maine also has nine biomass power
plants with capacities ranging from 20 – 45 MW (Figure 3.3) and capacity factors in the
range of 65% - 85%.9 In addition to wood chips from forests, these plants may also burn
construction debris and municipal woody waste. In general, however, they tend not to burn
fuels other than wood. Several of these plants have been approved to sell RECs into the
Massachusetts and Connecticut RPS markets.10

Besides power plants, the largest consumers of waste wood for energy are paper mills and
sawmills. Maine has 12 large paper mills and dozens of sawmills as of 2010 (Lilieholm and
Trosper, 2010). Unlike biomass power plants, these facilities consume the majority of the
electricity they generate on-site, which makes them ineligible to receive the PTC subsidy on
most of their generation. These plants can generally burn a wide variety of fuels and actively
manage their fuel sources to minimize cost. A quote from Verso Paper about their paper
mill in Bucksport exemplifies the flexibility with which paper mills substitute a wide variety
of fuels:

“At Bucksport we use natural gas, oil, coal, biomass and tire-derived fuel (TDF)...
We have the ability to adjust our fuel mix hourly in order to achieve the best
result at the lowest cost.”11

Wood chips are also used in Maine to produce heat or electricity for large institutional
facilities like schools. There is little published information about the prevalence of these

9A capacity factor is a measure of how much electricity a power plant produces relative to the maximum
amount it could produce during that period.

10There is also a growing pellet industry in Maine that manufactures densified wood pellets for residential
heating or for sale to large-scale electric generators in Europe, where carbon emissions regulations make
wood an attractive generator fuel. These pellet mills use the same paper-grade pulpwood that goes to paper
mills. The low-grade residues sold as wood chips are not suitable to their production process.

11Verso Paper Corporation. 2009. Maine on paper: An industry we can’t afford to lose.
http://www.versopaper.com/OurCompany/Mills/TimeForAction/
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systems or about their ability to co-fire alternative fuels such as coal. The “Governor’s Wood-
to-Energy Task Force Report” (State of Maine, 2008) describes a number of applications of
wood chip heating in commercial and institutional facilities.

The environmental impacts of harvesting woody biomass fuel for these facilities are similar
to the rest of the US. Benjamin, Lilieholm, and Coup (2010) find that increased use of biomass
in Maine merits more careful regulation, especially wildlife protection. In a small study of 12
Maine sites, Briedis et al. (2011) find that whole-tree harvests in 2007-2008 complied with
best practice guidelines for the quantity of residuals left in the field. However, the amount of
large-diameter woody material and standing dead trees were consistently below best practice
recommendations for wildlife protection.12

The state of Maine has also studied woody biomass harvesting. The Maine Forest Ser-
vice commissioned a consultant report that used engineering models to show that biomass
harvests could increase substantially while still leaving some material in the field (Maine
Forest Service, 2008). The state issued voluntary, qualitative guidelines for woody biomass
harvest in 2010 (Benjamin, 2010).

3.2 Model and instruments

To motivate possible instruments for price in the supply equation for wood chips, this section
presents a highly simplified model of demand and supply for woody biomass fuels in Maine.
I discuss demand and supply in this market, propose two candidate instruments, and then
present a proposed regression model.

Demand for woody biomass at power plants, paper mills, and
sawmills

Wood chips are an input to production in power plants, paper mills, sawmills, and other
facilities with wood-fired boilers. I assume that these firms choose output to maximize profit
from their facilities:

πd = (pg + s)Qg − Cf (pw, psubst, Qg)− Cr(Qg, pp, pl) (3.1)

Qg is the facility output (electricity for power plants, paper for paper mills, etc). pg is
the exogenous per-unit price of this output. s is the per-unit output subsidy (for example,
subsidies for biomass electricity generation on a per-kWh basis). Cf is the cost of fuel used by
the facility. This is a function of output and the prices of the fuels which the facility can use.
For any given facility, this is some subset of wood chips (pw) and substitute fuels, including
coal and oil. I assume that the facility chooses the fuels compatible with its generating
equipment that minimize its cost of output. I do not address long-run modifications to

12The study is unable to attribute this deficiency to recent biomass harvests vs. previous harvesting
activities at these sites.
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generating equipment to burn different fuels. I also assume that the firm is a price taker in
the output and wood chip markets. Cr(·) captures all other costs besides wood fuel. For
paper mills and sawmills, this includes the cost of pulpwood or sawlog inputs that are made
into paper and wood products. These prices are pp and pl, respectively.

Under this extremely simple model, the firm maximizes profit by producing where marginal
cost equals the market price of the output plus the per-unit subsidy. This suggests that
demand for wood chip fuel should be a function of output prices for paper, boards, and
electricity; of the level of subsidies to biomass generation; of the prices of pulpwood and
sawtimber; and of the prices of wood chips, coal, and oil.

Supply of woody biomass by forest owners

I assume that forest owners maximize profit from production of sawlogs, pulpwood, and wood
chips. Wood chips are a byproduct of harvesting the first two products. After producing
any amount of sawlogs and pulpwood, the owner chooses how much otherwise unmarketable
leftover wood to chip and sell for energy. For simplicity, I assume that forestry firms are price
takers for wood chips. I abstract away from the dynamic optimization problem of optimal
timber rotation (e.g., the Faustmann model) because my main interest is in motivating
instruments for the wood chip byproduct, not in describing the supply of timber.

The profit function for wood chip production is:

πs = Qwpw − C(Qw, T (poil, d), Ql, Qp) (3.2)

As above, l indexes sawlogs, p indexes pulpwood, and w indexes wood chips. The cost of
wood chip production C(·) depends on the amount of wood chips produced, the amount of
primary products (logs and pulpwood) produced, and transportation costs T . T is a function
of fuel costs, which vary in time with the price of oil poil and distance d from the harvest
site to the biomass energy user. This distance does not vary in time.13.

This very simple model suggests that wood chip supply should be increasing in wood
chip prices; increasing in pulpwood and sawlog quantity; and decreasing in gasoline prices,
labor costs, and other harvest costs.

Market clearing

The final equation to complete the model is the market clearing condition:

Qdemand = Qsupply (3.3)

Candidate instruments

I am interested in the effect of pw on Qw in the supply equation (equation (3.2)). As described
by Working (1927), price and quantity are endogenous but the true effect can be recovered

13As I show below, at least for power plants, capacity is fixed during the study period
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by instrumenting for price with demand shifters. The simple model above suggests several
possible instruments.

One possible instrument is subsidies to biomass electricity generation. In my simple
model, subsidies will be positively correlated with woody biomass prices. Assuming plants
are not already operating at full capacity, output subsidies will increase electricity produc-
tion, increasing their demand for wood chip fuel. The exclusion restriction is also clear.
Because the subsidy is introduced exogenously and goes directly to power plants for their
output of electricity, it should not be correlated with any unobserved determinants of wood
chip supply.

The subsidy program with the most promise as an instrument is the federal Producer Tax
Credit. Unlike RECs, which require firms to self-select into “treatment” (the opportunity to
receive subsidies), the PTC applies automatically to all biomass facilities that sell electricity
over the grid. In addition, the level of the subsidy is known, unlike in REC markets where
prices are usually not available.

Because some counties contain paper mills and sawmills but no biomass power plants,
and transportation costs for wood chips are high, there is quasi-experimental variation in
eligibility for the Producer Tax Credit subsidy between local wood chip markets. Table 3.1
confirms that power plants sell a much larger share of their generation to the grid than in-
dustrial plants. This cross-sectional variation is another reason that the PTC is an attractive
instrument.

A second promising set of instruments is the prices of substitute fuels for electricity
generation. Paper mills, sawmills, and other facilities that burn wood for energy typically
have boilers that can burn multiple fuels. These mills choose their fuels based on current
prices and availability (Pinkerton, 2007). This means that the price of wood chips should be
positively correlated with the prices of these other fuels.

The exclusion restriction for substitute fuels requires that fuel prices do not affect wood
chip supply by changing input demand for pulpwood and sawtimber. A sufficient condition
would be that fuel prices only affect choices between fuels, not the overall output of the
facility. There is strong support for this assumption. Output from Maine’s paper mills was
relatively flat during the study period, with the exception of a decrease in 2009. Industry
leaders generally agree that paper and log output is exogenously determined by global de-
mand (Price Waterhouse Coopers, 2011). Even if energy prices in Maine did depress mill
operations in some years, it is typical to ship pulpwood and sawlogs long distances to mar-
kets, likely reducing any impact of local processor demand on local pulpwood and sawlog
quantities. For all of these reasons, I argue that there is a valid exclusion restriction and
that substitute fuel prices are a good instrument.

To decide which substitute fuels would make good instruments, I used data from the US
Energy Information Administration Generator Operations Reports from 2001 to 2010 (as far
back as the data are available in a consistent format) to identify all of the fuels used at power
plants and paper mills in Maine larger than 1 MW that burn wood.14 As Figure 3.4 shows,

14Energy Information Administration. 2001 – 2010. Form 923: Generator Operations Reports [10 separate



CHAPTER 3. BIOMASS ENERGY AND FORESTS 84

the primary alternatives to wood chips at these facilities during the study period were black
liquor, coal, and oil.15 Black liquor is spent liquids from the pulping process at paper mills.
It is used by the plants that create it, so there is no price data to use as an instrument. Oil
price is not a good instrument either because it enters the supply equation through gasoline
costs. The price of coal, however, is a good candidate. It is traded in a national market, so
its price can plausibly be considered exogenous. Table C.1 in the Appendix shows that coal
prices are uncorrelated with two other possible determinants of wood chip supply that are
not included in my regressions.

A third category of instrument suggested by equations (3.1) and (3.2) is the wholesale
price of electricity. However, biomass power plants often sign long-term, confidential power
purchase agreements with electric utilities, making it difficult to observe the output price
faced by the plant. I avoid instrumenting with electricity prices for that reason.

Proposed Regressions

First, I propose the following reduced form model where I regress the outcome variable on
the instruments and other exogenous covariates:

ln(Qw
it) = β0 +β1ln(pcoalit )+β2PTCi ∗aftert+β3aftert+β4ln(poilit )+β5time+di+ εit (3.4)

In this regression, i indexes counties and t indexes year. Qw is annual wood chip quantity
per unit of land area in the county. pw is wood chip price. pcoal and poil are coal and oil
prices. PTC is an indicator for whether the county contains a biomass power plant eligible
for the Producer Tax Credit. After is an indicator for years after the subsidy took effect. di
is a set of county dummies. εit contains an unobserved year-specific shock across counties
and unobserved idiosyncratic variation at the county-by-year level.16

Time is a vector of time trends estimated separately for treatment and control counties.
In my preferred specification I include the year of the panel interacted with an ‘ever-treated’
indicator (so, time ∗ PTC and time ∗ control). Because the dependent variable is in logs,
this estimates an exponential time trend for each group.

My discussions with industry participants indicate that biomass plants source most of
their wood from within 25 miles of the plant. In my main specification, I consider counties
within 25 miles of a biomass power plants to be treatment counties for the Producer Tax
Credit and the remaining counties to be control counties. This distance is an important

annual reports]. http://www.eia.gov/
15One facility used a large amount of natural gas, but I dropped it from the analysis because it was

the only facility using natural gas and because its wood consumption was very small relative to its gas
consumption.

16In the appendix, I also include annual sawlog and pulpwood production as covariates. I do not include
them in my main specification because of endogeneity concerns: the prices and quantities of pulpwood and
sawlogs processed at industrial facilities are determined in the same market as the prices and quantities of
the wood chips that those facilities burn for energy.



CHAPTER 3. BIOMASS ENERGY AND FORESTS 85

identifying assumption for the difference-in-differences model. In Table C.5 I show how the
results for the effect of the PTC change with different distance assumptions.

To estimate the price elasticity of wood chip supply, I use two stage least squares with
the price of coal and the Producer Tax Credit as instruments. The first stage is

ln(pwit) = γ0 + γ1ln(pcoalit ) + γ2PTCi ∗ aftert + γ3aftert + γ4ln(poilit ) + γ5time + di +uit (3.5)

and the second stage is

ln(Qw
it) = α0 + α1

ˆln(pwit) + α2ln(poilit ) + α3aftert + α4time + di + vit (3.6)

This model is identified by time-series variation in the price of coal and by cross-sectional
and time-series variation in output subsidies to power plants.

Because the price of coal does not vary between counties, there is a good reason to cluster
my standard errors by year to allow for arbitrary patterns of correlation within years. At the
same time, there is a strong rationale for clustering by county to allow for arbitrary patterns
of serial correlation within counties. I cluster at the county level because this approach
generates the larger standard errors and is thus more conservative. In future drafts I plan to
explore the method of two-way clustering proposed by Cameron, Gelbach, and Miller (2011).

3.3 Data

Data on wood chips and other forest products

This study uses panel data on forest products prices and quantities for Maine’s 16 counties
from 1996 to 2010. This is an unusual level of detail for forestry residues, which makes this an
attractive dataset for understanding supplier behavior in these markets. To my knowledge,
it is the only publicly-available dataset that includes detailed information on woody biomass
prices across time and space. I compiled these data from the annual Wood Processor Reports
and Stumpage Price Reports published by the Maine Forest Service.17 The state gathers
these data from the major wood producers and processors in each county. At the end of
each calendar year, all major wood processors, including paper mills, sawmills, and biomass
power plants, are required to submit a record of the wood that they have used by county
of origin. Landowners are required to report the prices at which they have sold dozens of
species and varieties of wood products. The state then aggregates this information in these
annual reports.

The data include price and quantity for several woody biomass fuels, including biomass
chips, “hog fuel” (mill residues), wood pellets, and construction and demolition waste.
Biomass chips represent 90% of the production and are the only product for which prices are
reported. The definition of biomass chips given in the annual reports is chips “produced in

17The individual annual reports are available from the Maine Forest Service at
http://www.state.me.us/doc/mfs/pubs/annpubs.htm.
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the woods using entire tree, stem or bole, branches and tops. These chips usually go to wood
to energy facilities; however they are suitable for sludge composting, play ground padding,
and mulch.”

The price data are stumpage prices, which are the prices received by landowners for
harvested timber. For wood chips, stumpage prices are typically well below delivered prices.
The mean price value observed in my data is $1.90/ton, while delivered prices may be closer
to $15/ton. This is due to the costs of hauling biomass to the road, chipping it, and trucking
it to wood chip consumers. Ideally this study would also use data on delivered prices in
order to understand the contracting dynamics between landowners, logging firms, and final
customers of wood chips. In the absence of such data, I assume that landowners sell wood
residues into competitive markets.

The 15 years of panel data for 16 counties total to 240 observations. They are complete
for quantity. There are 35 missing values for price in county-year observations where three
or fewer firms reported wood chip transactions (these are not reported for confidentiality
reasons). Because these are likely to represent lower-demand observations, I replace the
missing values with the minimum price observed in that year for the corresponding PTC
treatment category (power plant or no power plant). In Table C.3, I show that my results
are robust to different ways of dealing with missing values, including dropping all observations
without price data. I drop one outlier observation in 2004 with a reported price more than
double the price reported in any other county that year. This leaves me with 239 total
observations.

Figure 3.5 plots the wood chip production data. The left axis describes mean wood chip
output per square mile in counties with and without biomass power plants. The dotted
vertical line represents the first year of the Producer Tax Credit to biomass plants. As I will
discuss below, the dashed red line corresponding to the right axis is the annual average coal
price.

I do not observe wood chip storage. However, storage is unlikely to affect my annual
production estimates. Biomass generators typically receive multiple fuel deliveries every
day. Most biomass power plants store 15 - 60 days worth of fuel supplies (Wiltsee, 2000).
Storage is constrained by the amount of land required for the wood chip pile, and by the fact
that wood chips begin to decay and lose energy value after about two months. In addition,
plants have an incentive to avoid depleting their reserves to buffer against unexpected supply
disruptions.

One important question for the PTC portion of this study is whether the counties without
biomass power plants are good “controls” for the counties that do have them. Table 3.2
compares power plant and control counties. As shown in the top panel, both types of counties
contain facilities that use woody biomass for energy (paper mills, sawmills, and pellet mills).
The second panel compares price and quantity of forest products in these counties before
the introduction of the subsidy. The price and production of wood chips is not significantly
different between power plant counties and controls during this period. However, the levels
of production of other forest products are higher in power plant counties.
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Data on power plant locations and capacity

Data on the locations and capacities of biomass power plants eligible for the Producer Tax
Credit subsidy come from the US Energy Information Administration (EIA). Biomass power
plants for this study were considered to be plants whose primary fuel was “wood waste and
wood chips” (“WDS” in the EIA fuel system) and whose primary purpose was electricity
generation according to the North American Industry Classification System. This definition
excludes plants whose primary purpose was generation for on-site industrial use.

I used EIA form 860 data to locate biomass plants meeting this definition. I found 11
total plants. To investigate whether capacity was fixed over the panel, I examined form 860
data for all available years (2001 - 2009). Nine of the 11 plants are continually present with
the same nameplate capacity in the data, and all of them began operation prior to 1996,
the first year of the panel. The other two plants were retired prior to the introduction of
the Producer Tax Credit (in 2001 and 2003) The list of biomass power plants selected using
this procedure matches the list of “stand-alone biomass-fired electrical generating facilities”
provided in the official Directory of Maine Wood Processors (Lilieholm and Trosper, 2010).

Data on substitute fuel quantities and prices

The data on fuel use at individual facilities are from the US Energy Information Adminis-
tration (EIA). I compiled annual data from EIA Form 923, the “Power Plant Operations
Report”. This report is filed by all facilities with greater than 1 MW of generation capacity.
To create Figure 3.4, I used data for all facilities that used “wood and wood waste solids.’
Data on coal prices are also from EIA. I used the “Total” price history for coal from the 2011
Annual Energy Review. This is the average annual price of U.S. coal at the point of first
sale, excluding transportation costs (also called the free-on-board price). Figure 3.5 shows
the coal price over time.

3.4 Results

This section presents my main results. I first show the results of a formal test of parallel
trends in the pre-PTC period to support the identification for the PTC instrument. I then
show a reduced form regression using both proposed instruments. Finally, I proceed to
estimate the price elasticity of wood chip supply via two stage least squares. I present
estimates using both instruments and also using coal price as the only instrument, since I
find that the PTC instrument is relatively weak.

Specification Test

Because the PTC instrument relies on a difference-in-difference identification strategy, I
perform a formal test of parallel trends in the pre-treatment period. Table C.2 in the Ap-
pendix shows a regression of wood chip quantity on year*treatment dummies, year dummies,
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and county dummies for the years 1996 - 2004. None of the year*treatment dummies are
statistically significant.

Reduced form regressions

Table 3.3 reports the regression of the log of wood chip quantity on the exogenous variables,
exponential time trends, and county fixed effects. I find that the price of coal has a large
effect on wood chip harvest. This effect is statistically significant at the 10% level. I do not
find a statistically significant effect of the Producer Tax Credit subsidy on the quantity of
wood chips sold. As I explore in the Robustness Checks section below, the estimated effect
of the PTC depends somewhat on assumptions about the distance from which processors
source wood.

First stage regressions

Table 3.4 reports the regression of the log of wood chip price on the instruments, covariates,
exponential time trends, and county fixed effects. The price of coal has a very strong first
stage, and the PTC is weakly significant (at the 10% level). The joint F statistic for the two
instruments is 72.

Coal prices have a very large effect on wood chip prices. As discussed previously, gener-
ators in industrial and commercial facilities trade off between coal and wood chips based on
price. Additionally, since the marginal costs of coal and wood chip-fired generators in this
region are very similar (Gan and Smith, 2006; Northeast Energy Solutions, 2008), rising coal
prices could cause some coal and biomass generators to swap places in the industry supply
curve. Figure C.1 in the Appendix shows suggestive evidence that generation from some
biomass plants increased as coal prices rose.

I also find that the PTC may have had a small positive effect on the price of wood
chips, but this result is only statistically significant at the 10% level once I include county
fixed effects. My noisy results for the PTC subsidy in both the reduced form and the first
stage could be explained in several ways. One possibility is that power plants source wood
from greater distances than I have assumed. There are anecdotal reports of power plants
purchasing woody biomass fuel from up to 100 miles away in some cases. At this distance, all
counties in Maine would be affected by the policy, including the ones that I have considered
control counties in this analysis.

Two stage least squares regressions

Table 3.5 shows my price elasticity estimates. Because the price of coal seems to be a much
stronger instrument than the PTC subsidy, I report results from using both instruments and
from using only coal. I also report the OLS estimate for comparison.

OLS underestimates the price elasticity relative to the IV models. Using both instru-
ments, the estimated elasticity is about 0.43. The advantage of using both instruments is
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that the PTC includes cross-sectional as well as time-series variation. However, coal prices
have much stronger first stage and reduced form effects than the PTC, so that my preferred
specification is the “IV, coal only” model. This gives a supply elasticity of about 0.64.
This estimate is similar to the engineering estimates for Maine from the Billion Ton Report
(Department of Energy, 2011).

Robustness checks

This section explores the sensitivity of these main results to different ways of handling missing
price data, alternative time trends, and different assumptions about the distance from which
power plants source wood chips. In general, the results are robust to changing assumptions.

Table C.3 in the Appendix shows that the results are stable with changes in how I
handle missing data. Dropping 35 observations with missing price observations decreases
the precision of my first-stage estimate for the PTC.

Table C.4 in the Appendix explores an alternative time trend specification. My main
results include exponential time trends for treatment and control counties. Here, I do the
regressions in levels and include a linear time trend. The mean price elasticity implied by
the 2SLS model is about 0.67, which is close to the result from my main specification.

Table C.5 in the Appendix shows how changing assumptions about the distances from
which power plants purchase wood affects my the reduced form estimate of the effect of the
Producer Tax Credit subsidy on the quantity of wood chips produced. I try distances up
to 40 miles (at greater distances, essentially all counties become treatment counties). In no
case do I find a statistically significant effect of the program on the quantity of wood chips
sold.

Table C.6 in the Appendix shows how the results change when I include pulpwood and
sawlog production as covariates. Adding sawlog production does not change my elasticity
results; adding pulpwood production decreases the price elasticity estimate slightly. In the
reduced form, conditioning on pulpwood and sawlog production does not increase the preci-
sion of my estimates enough to draw conclusions about the effect of the PTC (analysis not
shown).

3.5 Conclusion

I find that the price elasticity of supply for woody biomass is about 0.64. On average,
doubling the price of woody biomass increases harvest by about 64%. This is similar to
engineering estimates (Department of Energy, 2011). This elasticity estimate can be used in
a number of interesting and important ways. However, it is important to note that this esti-
mate applies to the range of prices and quantities observed during this study. Extrapolating
far from this range could lead to incorrect projections. The true marginal cost of wood chips
is likely non-linear, with a rapid increase once available waste products are exhausted.



CHAPTER 3. BIOMASS ENERGY AND FORESTS 90

Combined with estimates of demand elasticities, the results of this study can be used
to understand how shifts in demand for woody biomass affect the quantity and price of
woody biomass harvested. Geographically-specific ecological models can be used to describe
the environmental impacts of the predicted harvest quantity. Similarly, policymakers and
power plant owners can use these estimates to better understand their future fuel costs. This
combination of economic and scientific analyses should be an important part of the policy
discussion around expanding biomass generation capacity in forest regions.

I use an instrumental variables strategy to measure the biomass supply elasticity. The
instruments themselves are also of independent interest. I find that the price of coal is an
important determinant of woody biomass harvest. On average, doubling the price of coal
causes the quantity of woody biomass harvested to rise by 110%. The mechanism for this
effect is either fuel-switching by commercial and industrial plants or increased competitive-
ness of biomass power plants in the electricity market. This finding is interesting in itself
because it suggests that taxes on coal (for example, a carbon tax) would indirectly affect
forests. I also find a small positive impact of the Producer Tax Credit subsidy, but these
estimates are very imprecise.
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Figure 3.1: EIA projections showing growth in biomass electricity

This figure is taken from: Energy Information Administration. 2012. EIA projects
U.S. non-hydro renewable power generation increases, led by wind and biomass.
http://www.eia.gov/todayinenergy/ detail.cfm?id=5170
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Figure 3.2: Effect of a parallel shift in woody biomass demand

This figure shows the effect of a parallel shift in woody biomass demand under different
supply elasticities (for example, in response to a subsidy for renewable energy generation).
In Panel A, supply is relatively elastic (line S). A demand shifts from D to D’ results in a
relatively large change in woody biomass harvest. In Panel B, supply is relatively inelastic.
The same demand shift causes a smaller change in woody biomass harvest. Both panels
take the slope of the demand curve as given. As explained in the text, demand for woody
biomass fuel should be expected to be price elastic.
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Figure 3.3: Map of biomass plants in Maine

This map shows the locations of the nine active biomass power plants in Maine, all of which
have capacities between 20 and 50 MW. White lines indicate county boundaries.
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Figure 3.4: Primary fuels at Maine facilities that burn wood

This figure shows the net generation from different fuels at power plants, paper mills, and
other large industrial facilities in Maine that burn at least some wood waste. The data are
from EIA Form 923: Power Plant Operations Report. This excludes Verso Paper, which
was the only facility to burn natural gas (and which had a very small usage of wood relative
to its gas usage). ‘Other’ includes municipal waste, tire-derived fuels, purchased steam, and
landfill gas.
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Figure 3.5: Wood chip production by year

The left axis of this figure shows annual average wood chip production for counties within
25 miles of biomass power plants vs. other counties in Maine. The right axis shows the
annual average price of coal. The vertical line represents the last year before introduction
of the federal Producer Tax Credit for biomass power plants on Jan. 1, 2005. Wood chip
data were compiled from annual Wood Processor Reports from the Maine Forest Service.
Coal price data are the “Total” coal series from the US EIA Annual Energy Review.
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Table 3.1: PTC eligibility at power plants and industrial facilities

Power plants Industrial facilities
Mean (SD) N Mean (SD) N p-value

Share of generation sold to the grid 0.90 (0.02) 28 0.20 (0.28) 35 0.00

This table shows the average share of electricity generation sold to a third party from wood-
burning power plants and industrial facilities in Maine. This is calculated as “resale” divided
by “total sources.” The data are available for 2007 - 2010 from EIA Form 923.
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Table 3.2: Comparing counties near biomass power plants with control counties

Treatment Control
Mean (SD) N Mean (SD) N p-value

Non-power plant users of wood energy
Number of Sawmills in 2010 16.3 (7.0) 9 11.3 (5.9) 7 0.15
Number of Paper Mills in 2010 1.1 (1.5) 9 0.3 (0.5) 7 0.20
Number of Pellet Mills in 2010 0.4 (0.17) 9 0 (0.0) 7 0.04

Pre-treatment forest products output
Wood Chip Price ($/green ton) 1.49 (0.73) 80 1.28 (0.55) 63 0.07
Wood Chips (’000 tons/sq. mile) 39.6 (27.8) 80 42.9 (30.7) 63 0.50
Pulpwood (’000 tons/sq. mile) 105.4 (37.7) 80 70.8 (25.3) 63 0.00
Sawtimber (’000 tons/sq. mile) 31.5 (11.1) 80 21.7 (10.4) 63 0.00

Demographic information (2010)
Population density (per sq. mile) 56.3 (73.4) 9 135.3 (97.6) 7 0.10
Median HH income ($000) 39.5 (4.0) 9 49.7 (5.3) 7 0.01

This table compares counties near biomass power plants (‘treatment’) to the other coun-
ties in Maine (‘control’). The top panel reports the average number of industrial facilities
that could use wood chips for energy in treatment and control counties. These num-
bers are for 2010 (the only year for which comprehensive statistics are available), and
come from the Directory of Maine’s Primary Wood Processors (Lilieholm and Trosper,
2010). The middle panel show forest products statistics from the years before the federal
Producer Tax Credit for biomass power plants. The bottom panel includes demographic
information from the 2010 US Census. ‘p-value’ is the the p-value of a t-test of similarity
of means.
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Table 3.3: Reduced Form: Effect of coal price and the PTC on wood chip quantity

Dependent variable: ln(wood chips per square mile)

ln(Coal Price) 1.16 (0.61)* 1.16 (0.61)* 1.15 (0.60)*
PTC*after 0.03 (0.18) 0.04 (0.21) 0.04 (0.21)
PTC -0.04 (0.21)
after 0.21 (0.22) 0.22 (0.26) 0.25 (0.28)
ln(Oil Price) -0.06 (0.12)
Constant -0.27 (1.74) -0.29 (1.70) -0.08 (1.65)
Exponential time trends Yes Yes Yes
County Fixed Effects No Yes Yes
Counties 16 16
Observations 239 239 239

This table reports OLS regressions of the log of wood chip quantity on the instruments
and covariates. Standard errors are clustered at the county level. The data are a 15-
year panel created from Maine Forest Service annual reports. ‘Coal Price’ is the annual
average price of coal. ‘PTC*after’ is an indicator for counties near biomass power plants
in years the Producer Tax Credit was available. ‘PTC’ is an indicator for counties near
biomass power plants. ‘After’ is a dummy for years after introduction of the PTC.
All regressions include separate time trends for counties with and without the PTC.
Legend for significance stars: * 10%; ** 5%; *** 1%.
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Table 3.4: First stage: Effect of coal prices and the PTC on wood chip prices

Dependent variable: ln(wood chip price)

ln(Coal price) 2.61 (0.22)*** 2.61 (0.22)*** 2.64 (0.23)***
PTC*after 0.11 (0.08) 0.17 (0.08)* 0.16 (0.08)*
PTC 0.14 (0.06)**
after -0.26 (0.13)* -0.29 (0.12)** -0.39 (0.12)***
ln(Oil price) 0.21 (0.12)*
constant -7.54 (0.66)*** -7.46 (0.67)*** -8.18 (0.80)***
Exponential time trends Yes Yes Yes
County fixed effects No Yes Yes
Counties 16 16
Observations 239 239 239
Instruments Joint F 68.26 71.86 72.40

This table reports OLS regressions of the log of wood chip prices on the instruments and
exogenous covariates. Standard errors are clustered at the county level. The data are a
15-year panel created from Maine Forest Service annual reports. ‘Coal Price’ is the annual
average price of coal. ‘PTC*after’ is an indicator for counties near biomass power plants
in years the Producer Tax Credit was available. ‘PTC’ is an indicator for counties near
biomass power plants. ‘After’ is a dummy for years after introduction of the PTC. All
regressions include separate time trends for counties with and without the PTC. Legend
for significance stars: * 10%; ** 5%; *** 1%.
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Table 3.5: Main results: The effect of wood chip price on wood chip quantity
supplied

Dependent variable: ln(wood chip quantity per square mile)

OLS IV, both IV, coal only

ln(Price) 0.23 (0.11)* 0.43 (0.23)* 0.64 (0.24)***
ln(Oil Price) 0.20 (0.12) -0.15 (0.15) 0.03 (0.14)
after 0.40 (0.19)**
Exponential time trends Yes Yes Yes
County fixed effects Yes Yes Yes
Counties 16 16 16
Observations 239 239 239
Overidentification (p-value) 0.86

This table reports regressions of the log of wood chip quantity on log prices. Standard
errors are clustered at the county level. “IV, both” instruments with coal price and the
PTC subsidy. This regression includes separate exponential time trends for treatment
and control counties with respect to the PTC. “IV, coal only” instruments with coal
price. The overidentification p-value is the p-value for Hansen’s J statistic. The data
are a 15-year panel created from Maine Forest Service annual reports. ‘Coal Price’ is
the annual average price of coal. ‘PTC*after’ is an indicator for county/year observa-
tions where the Producer Tax Credit was available. ‘After’ is a dummy for years after
introduction of the PTC. Legend for significance stars: * 10%; ** 5%; *** 1%.
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Figure A.1: Net Entry (Entry - Exit) by Month
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Notes: This figure shows the net change in the number of firms in the industry each month. Entry date is
defined as the date of the firm’s first annual operating license filing. Exit date is defined as 365 days after the
firm’s final annual operating license renewal. The sample includes all firms with oil or gas leases from 1990
to 2010. The initial rollout of the partial bond requirement occurred during September, 1991 to August,
1992. The initial rollout of the universal bond requirement occurred during January–December, 2002.
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Figure A.2: Number of Firms Up For License Renewal Each Month
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Notes: This figure shows the number of firms required to renew their annual operating license (or exit the
industry) in each month. These months are assigned by the Texas Railroad Commission and cannot be
manipulated by firms. The sample includes firms with oil or gas production during 1997–2006. The vertical
dashed line indicates the implementation of the increased bond requirement in January 2002.
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Figure A.3: Number of Orphan Wells By Operator’s Quarter of Exit
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Figure A.4: Bond Requirements By State
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Notes: This figure shows the maximum required bond per firm in the 20 U.S. states with the most drilling
activity in 2012, and the federal Bureau of Land Management. Information on bond requirements is from
Penn Environment Center 2013. “Who Pays the Cost of Fracking?” http://pennenvironmentcenter.org.
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Table A.1: Comparing Firms by License Renewal Month

(1) (2) (3)

Number Mean Annual Std. Dev. Annual
Month of Firms Production ($) Production ($)

January 769 1,450,156 5,388,415

February 791 1,409,704 5,358,007

March 874 1,451,261 5,476,291

April 784 1,156,730 4,729,774

May 760 1,157,181 4,271,193

June 807 1,429,897 5,545,757

July 763 1,037,615 4,085,928

August 773 1,165,920 4,312,536

September 673 1,414,795 5,316,751

October 734 1,001,681 3,812,794

November 609 1,334,588 4,806,508

December 684 1,487,344 5,198,563

F statistic 0.97

p-value 0.47

Notes: This table reports summary statistics for firms according to the month which contains their annual
license renewal date. This table covers firms from their 1996 to 2000 license renewals. Annual production
is twelve times the average value of monthly oil and natural gas production, calculated using oil and gas
prices in each month. To reduce the noise caused by a few very large firms, I drop firms larger than the 99th
percentile of annual average production value (for this table only). The F statistic and p-value are for a test
of the null hypothesis that the mean of average annual production is the same in every group.
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Table A.2: Controlling Separately for Crude Oil and Natural Gas Prices

(1) (2) (3) (4) (5)

Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5

Begin Rollout 0.110∗∗∗ 0.122∗∗∗ 0.046∗∗ 0.047∗∗∗ −0.018
(0.017) (0.028) (0.019) (0.014) (0.014)

End Rollout −0.153∗∗∗ −0.114∗∗∗ −0.091∗∗∗ −0.050∗∗ −0.011
(0.032) (0.022) (0.019) (0.019) (0.015)

Oil Price −0.080 −0.088∗∗ −0.050 −0.037 0.047
($100/bbl) (0.057) (0.033) (0.036) (0.029) (0.031)

Natural Gas Price −0.508 0.072 −0.436∗∗ 0.095 −0.331∗∗

($100/mcf) (0.354) (0.272) (0.179) (0.166) (0.139)

Constant 0.177∗∗∗ 0.093∗∗∗ 0.085∗∗∗ 0.049∗∗∗ 0.102∗∗∗

(0.015) (0.022) (0.013) (0.009) (0.010)

N 11,903 13,267 14,667 16,197 15,792

Firms 2,129 2,185 2,202 2,226 2,236

Notes: This table is identical to table 1.3, except that crude oil and natural gas prices, which are highly correlated
during this period, are both included in the regressions.
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Table A.3: Texas Railroad Commission Regulations Implemented in 2001 and 2002

Action Proposed Implemented

Allows electronic filing of drilling permits March 2001 June 2001
(TXR 26 2257) (TXR 26 4088)

Clarifies wording of hazardous waste rules1 May 2001 September 2001
(TXR 26 3431) (TXR 26 6870)

Extends existing tax credit for high-cost gas June 2001 August 2001
(TXR 26 4015) (TXR 26 6009)

Extends existing tax credit for marginal wells July 2001 September 2001
(TXR 26 3431) (TXR 26 6869)

Implements Senate Bill 310 (bonding)2 August 2001 January 2002
(TXR 26 5919) (TXR 27 139)

Clarifies rules for assigning acreage to pooled units October 2001 January 2002
(TXR 26 7721) (TXR 27 150)

Clarifies rules for requesting end to unitization November 2001 February 2002
(TXR 26 9480) (TXR 27 906)

Clarifies rules for transporting oil and gas January 2002 May 2002
(TXR 27 547) (TXR 27 3756)

Clarifies rules for “swabbing” existing wells3 April 2002 September 2002
(TXR 27 2666) (TXR 27 9149)

Notes: This table lists all rules changes for oil and gas producers implemented by the Texas Railroad Commission
during 2001 and 2002. It is based on all rule introductions or amendments listed in the RRC Oil and Gas Division
rules (Texas Administrative Code, Title 16, Part 1, Chapter 3). “TXR” refers to volume and page number in the
Texas Register. The date proposed is the date that the rule was published as a “Proposed Rule” to allow for public
comment. The date implemented is the date that the regulation was published as an ”Adopted Rule”.
1This was a technical change in wording to match federal law, changing the word “facility” to “site.” The proposed rule
states, “The language change is consistent with the way the commission has applied the rule in that the commission’s
intent and policy, since the initial adoption of 3.98 in 1996, has been to apply the provisions of subsection (e) to oil
and gas waste generators. Therefore, no one will be affected that was not affected under the previous rule.”
2SB 310 passed the Texas legislature in June 2001; the RRC rule implementing SB 310 was first published as a
proposed rule in August, 2001. This version was withdrawn and a second proposed rule was published in November,
2001 (TXR 26 8937).
3 Swabbing is a technique that involves pulling fluid through the well bore using a wire and cup assembly. This rule
clarifies that swabbing is prohibited as an ongoing production method to extend the life of very old wells.
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Calculating Historical Consumption

This appendix describes the program rules that were used in calculating average historical
electricity consumption for each household. As described in the text, participating retailers
determined subsidy amounts for households using a specially-designed website. In determin-
ing the subsidy amount, the website calculated the average historical electricity consumption
for each household as of the date they were applying. These calculations were not archived,
but we have used our database of electric billing records to recreate these calculations as
accurately as possible.

Before making these calculations we first merged the program data with the database of
electric billing records. For 86% of program participants, there was a household with the
identical account number in the electric billing records. We exclude the remaining 14% for
whom there is no perfect match, leaving us with 998,930 total program participants. We also
drop a small number of records (less than one-tenth of one percent) which were improperly
formatted.

Using billing cycle codes, we determined as accurately as possible the exact days cor-
responding to all 300+ million billing cycles in our data. This was important because we
needed to determine which bills were in the system as of each potential date of application.
Nationwide 93% of residential electricity customers are billed in two-month cycles. Half
of these households have their meters read during odd-numbered months (January, March,
etc.) and half have their meters read during even-numbered months. An additional 5% of
households have their meters read every month. The remaining 2% have billing periods of 3
months or longer. These irregular periods arise for a variety of reasons. For example, some
households in extremely rural areas have their meters read less than six times per year.

It is important for our RD analysis that we recreate the eligibility calculations as closely
as possible. The calculation is simplest and most transparent for households who were
billed regularly throughout the sample period. Therefore, we drop 6,028,939 households
(23%) where the billing cycle length is not constant or is greater than two months. For
the refrigerator analysis, because exact billing dates are important (as described below), we
drop an additional 2,417,350 households (9%) where the data do not provide the exact billing
dates.

Program rules differed between air conditioners and refrigerators. For air conditioner
replacements, average historical electricity consumption was calculated using all summer
bills during the previous calendar year. “Summer” is defined as the six months of the year
which have historically had the highest average temperature. This differs across locations.
The four possibilities are February - July, March - August, April - September, and May -
October.

For refrigerator replacements, the average was calculated using the most recent 12 months
of bills that were available in the online eligibility system. In practice, it seems to have taken
about 60 days on average between the day a meter was read and the day that information
became available in the system. So, for example, a household whose meter was read in
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odd-numbered months and who bought a refrigerator in May 2011 would have had their
eligibility calculated using bills from April 2010 through March 2011.

For refrigerators the calculation also depended on the household’s electricity rate struc-
ture. Residential customers in hot parts of the country have electric rates which vary sea-
sonally, while customers in cool parts of the country have rates which are the same all year.
For households whose electric rates do not vary seasonally, all of the bills during the most
recent 12 months are included when calculating eligibility. For households whose electric
rates vary seasonally, only the subset of non-summer bills during that period were used to
calculate baseline consumption.

For participants, we calculate historical average electricity consumption on the day the
appliance was purchased. For non-participants, we calculate historical average electricity
consumption as of a date randomly chosen from the distribution of observed replacement
dates in that non-participant’s state.

For households participating in the program near the end of a billing cycle, a few days can
change average historical consumption considerably depending on whether or not that last
cycle was included in the average or not. In reconstructing average historical consumption
for refrigerators we did the best we could, but we do not know exactly the date in which each
billing cycle was included in the billing system, and thus cannot reconstruct this perfectly.

Appendix Table B.1 shows the number of total households and number of participants
within our preferred bandwidths above or below each threshold. It also shows the number
of participants within that range for whom we incorrectly predict historical usage. For
air conditioners the predictions are extremely accurate, with correct predictions for 99% of
participants at all thresholds. For refrigerators the predictions are less accurate but still
very good. For refrigerators we correctly predict subsidies for at least 97% of participants
at all thresholds. Moreover, the incorrect predictions are approximately symmetric, with
near-equal numbers of participants receiving higher and lower subsidy amounts than we
predict.
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Addressing Measurement Error

This section describes how we address measurement error in average historical electricity
consumption. This variable is measured with error for a subset of observations, as described
in the text. This is an issue only in the refrigerator program; in the air conditioner program
there is essentially no measurement error. Eligibility for the air conditioner subsidies was
calculated using summer consumption during the previous calendar year, regardless of when
during the year the appliance was purchased. Eligibility for refrigerators, in contrast, was
based on non-summer consumption during the most recent 12 months of billing history.

We observe the dates for each billing cycle, but not the dates when meter readings were
entered into the central system. Consequently, it is impossible for us to be sure which bills
were in the system at the moment a household participated in the program. In other words,
we cannot be sure for each household which billing cycles were used when calculating eligi-
bility for refrigerators. This means that for some observations we measure average historical
consumption with error because we use a different set of billing cycles than those that were
actually used. The direction and magnitude of this error will vary across households. Im-
portantly, however, for most households we measure historical consumption with no error
because we use the same billing cycles that were actually used to calculate eligibility.

For the set of observations where average historical electricity consumption is measured
with error, the subsidy received will not change discontinuously at the observed threshold.
Random noise in the running variable instead leads to a smooth “S”-shaped relationship be-
tween subsidy amount and historical average electricity consumption for these observations.
Thus, for the full sample, the observed discontinuity in subsidy amounts at the threshold
is reduced by the fraction of households for whom the running variable includes measure-
ment error. At the three refrigerator thresholds, the observed change in the probability of
receiving the higher subsidy ranges from 0.83 to 0.85.

(Battistin et al., 2009) shows that the fuzzy RD method consistently estimates the true
treatment effect when the running variable is measured with error for only some observations,
as long as the measurement error is independent of treatment and outcomes, conditional on
the true value of the running variable. In our case, this is a reasonable assumption given
that it seems unlikely that uncertainty about bill delivery dates would be correlated with a
household’s electricity consumption. To formalize this, let Xobs = ZX∗ + (1 − Z)X, where
Xobs is observed historical average electricity consumption, X∗ is true historical average
electricity consumption, and X is equal to X∗ plus random error. Let Z take the values 0 or
1 and Pr[Z = 1] = p. In other words, p is the probability that we observe the true value of
historical average electricity consumption for any observation.

Let Y represent the binary outcome variable, program participation. As in Hahn, Todd,
and Klaauw (2001), let Y + = lim

x→0+
E[Y |X∗ = x] and Y − = lim

x→0−
E[Y |X∗ = x]. With no

measurement error, the sharp RD estimator Y + − Y − yields the true treatment effect ω.
However, with the type of measurement error described above, the sharp RD estimator is
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biased downwards. Let Ỹ + = lim
x→0+

E[Y |Xobs = x] and Ỹ − = lim
x→0−

E[Y |Xobs = x]. Battistin

et al. (2009) shows that

Ỹ + − Ỹ − = p
[

lim
x→0+

E[Y |X∗ = x]− lim
x→0−

E[Y |X∗ = x]
]

= pω.

The sharp RD estimator underestimates the treatment effect ω by a factor p.
Define S̃+ and S̃− analogously for the treatment, receiving a higher subsidy offer. The

true change in the probability of receiving the higher subsidy offer at the threshold is 1. But
the estimator S̃+ − S̃− underestimates the change in probability of treatment by a factor p:

S̃+ − S̃− = p
[

lim
x→0+

E[S|X∗]− lim
x→0−

E[S|X∗]
]

= p.

The fuzzy RD estimator Ỹ +−Ỹ −

S̃+−S̃− consistently estimates the true treatment effect by canceling
out the downward bias p.

Accordingly, we estimate S̃+− S̃− using the following first stage regression, as explained
in the text:

1[Larger Subsidy]i = φ+ g(Xi) + γ1[Below Threshold]i + εi.

Because we do not observe what subsidy non-participants were (or would have been)
offered, the first stage regression includes only the households within the chosen bandwidth
who participated in the program. Because uncertainty about bill delivery dates is unlikely
to be correlated with program participation, this first stage relationship is likely to be the
same for participants as for the full population.

Finally, to calculate the fuzzy RD estimates of the increase in participation at the thresh-
old, we divide the coefficient ρ from section 2.4 in the text by the estimated coefficient γ and
we calculate standard errors using a block bootstrap with 5,000 repetitions. In addition to
reporting the implied slope (change in share participating per dollar) and the implied price
elasticities, we report the percentage change in participation.

For this last calculation, we divide this estimated increase in participation by α, the share
of households participating at the threshold without the larger subsidy. Ideally one would
also adjust α to correct for measurement error. We ignore this issue, however, and instead
emphasize the slope estimates which do not require estimating α. Moreover, our fuzzy RD
estimates are very similar in magnitude to the sharp RD estimates, suggesting that failing
to address measurement error in our estimates of α only introduces a modest amount of bias
into our estimates of the percentage change.
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Testing for Strategic Behavior

In this section we perform a final test aimed at a more subtle form of strategic behavior. In
particular, we test whether households strategically delayed participation when they were
close to a threshold. Suppose a household applies for the program and somehow learns that
they just narrowly missed eligibility for one of the more generous subsidies. At least in
theory, this household could wait for a billing cycle (or more), perhaps while simultaneously
taking steps to reduce electricity consumption, and then reapply. This kind of strategic
delay would lead us to find more participants just on the generous sides of these thresholds
relative to a program for which eligibility was assigned only once.

We test for strategic delay for refrigerators but not air conditioners. Subsidy amounts
for air conditioner replacement were based on summer consumption in the previous calendar
year, so a household would have to wait much longer on average before changes in electricity
consumption could affect their subsidy eligibility. To test for strategic delay in the refrig-
erator program, we examine the subsidies that households would have been eligible for one
billing cycle before participating in the program. If there is no strategic delay, the probability
of a household’s average historical electricity consumption falling enough during this interval
to increase their subsidy eligibility should be the same for participants and non-participants.
In contrast, if participants are more likely than non-participants to be eligible for larger
subsidies at purchase than sixty days earlier, this may indicate strategic delay.1

We implement this test using households within 15 kWh below the 175 kWh and 200
kWh thresholds (i.e., households who just barely qualified for the larger subsidy at each
threshold). We calculate average historical electricity consumption for participants on the
day that they participated, and for non-participants on a random date drawn from the
empirical distribution of participation dates in each state. Then, for both groups, we also
calculate average historical electricity consumption sixty days earlier.

Appendix Table B.2 reports the results. Overall, about one quarter of these households
would have qualified for a less generous subsidy during the previous billing period. The
similarity between participants and non-participants suggests that these changes were not
driven by strategic delay. For households barely qualifying for the $170 subsidy, 22.7% of
participants and 22.6% of non-participants were eligible for smaller subsidies one billing
period earlier. Using a two-sample t-test, we test the null hypothesis that these shares are
equal for participants and non-participants. We find no statistically significant difference.
For households barely qualifying for the $110 subsidy, 23.2% of participants and 24.5% of
non-participants would have been eligible for a smaller subsidy one billing period earlier.

1Another possible test would consider only participants. If there were no time-varying shocks to electricity
consumption and no strategic delay, the share of smaller-subsidy recipients who were previously eligible for
the larger subsidy should equal the share of larger-subsidy recipients who were previously eligible for the
smaller subsidy. In practice, weather and other shocks complicate this comparison. For example, if the
billing cycle before participation included many hot days, this would tend to increase consumption for all
households and make decreases in subsidy eligibility more likely. Thus, we prefer the test that compares
participants and non-participants.
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The difference between these shares is small, but statistically significant at the 5% level.
However, the effect is the opposite of what would be expected if participants were acting
strategically: among this group, program participants were slightly less likely than non-
participants to have experienced an increase in the subsidy for which they were eligible. In
short, we find no evidence of strategic delay.
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Back-of-the-Envelope Welfare Calculation

Electricity Savings Per Replacement

Electricity savings come from Johnson, Todd M., Claudio Alatorre, Zayra Romo, and Feng
Lui. 2009. ”Low-Carbon Development for Mexico,” World Bank, Conference Edition (re-
ferred to as ”Johnson 2009” from here on). We use the participation-weighted average of 481
kWh per year for refrigerators and 1,200 kWh per year for air conditioners. Following (Davis,
Fuchs, and Gertler, 2014), we assume the program accelerates appliance replacement by five
years. This yields an average lifetime electricity savings of 2,885 kWh per replacement.

Greenhouse Gases

In Mexico 0.538 tons of carbon dioxide are emitted per megawatt hour of electricity genera-
tion, according to Johnson 2009, page 26. So 2,885 kWh of electricity consumption implies
1.55 tons of carbon dioxide.

(Greenstone, Kopits, and Wolverton, 2013) present a range of values for the social cost of
carbon dioxide emissions according to different discount rates and for different time periods
that is intended to capture changes in net agricultural productivity, human health, property
damages from increased flood risk, and other factors. These estimates were then updated by
(U.S. IAWG, 2013). With a 3% discount rate the central value for the social cost of carbon
dioxide is $34 per ton. Thus reducing carbon dioxide emissions by 1.55 tons generates
benefits worth $53.

Local Air Pollution

We are not aware of any estimates of these benefits for Mexico, but (Muller, Mendelsohn,
and Nordhaus, 2011) estimates the external damages from sulfur dioxide, nitrogen oxide, and
particulates for different forms of U.S. power generation. Coal-fired power plants are the most
damaging (2.8 cents per kilowatt hour), while oil (2.0 cents) and, in particular, natural gas
(0.2 cents) are less damaging. Taking into account that Mexican plants emit higher levels of
criteria pollutants than U.S. plants, and using the mix of electricity generation in Mexico,
the estimates from Muller, Mendelsohn, and Nordhaus, 2011 imply that the benefits from
reduced emissions of criteria pollutants are 1.9 cents per kilowatt-hour.

We calculated average emissions factors for Mexico and the United States using total
electricity generation and emissions levels from Commission for Environmental Cooperation,
2011, Tables 2.2 and Table 2.4. Mexican plants emit per kilowatt hour 2.4 times as much
sulfur dioxide, 1.7 times as much nitrogen oxide, and 2.2 times as much particulates (PM10).
According to Muller, Mendelsohn, and Nordhaus, 2011 sulfur dioxide is the most damaging
criteria pollutant so we scale damages by 2.4.
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According to SENER, “Prospectiva del Sector Eléctrico, 2010-2025”, Figure 37, net gen-
eration in Mexico in 2010 was 52% natural gas, 17% oil, 12% coal, 11% hydroelectric, and
7% nuclear and non-hydro renewables. For criteria pollutants as well as for carbon dioxide
emissions, what matters for benefits is marginal emissions, not average emissions. The two
are likely similar in Mexico’s case, however, because generation is dominated by natural gas
and neither coal nor hydro are likely to be marginal.

Efficiency Costs of Subsidies Due to Pre-Existing Taxes

For this parameter we relied on studies of the United States because we are unaware of
any studies of Mexico. The number 1.3 comes from a study of sulfur dioxide cap-and-trade
regulation that considers both the revenue recycling and tax interaction effects (Goulder,
Parry, and Burtraw, 1997). They find that the total cost of achieving the 1990 US Clean Air
Act Amendment targets with a revenue-neutral cap-and-trade system was 1.3 times higher
than in a first-best world with no pre-existing labor tax.

The number 1.3 is also consistent with Parry (1998), who finds that the net revenue-
financing and tax interaction effects of environmental subsidies are greater than zero but
below the costs implied by the revenue-financing effect alone. For subsidies that induce large
percentage increases in consumption (like the one we are focused on), (Parry1998) finds
that the difference between the revenue-financing effect and the net efficiency cost is small.
Using estimates of the marginal cost of public funds (MCPF) from (Browning, 1987), the
revenue-financing effect by itself would make the policy 1.32 to 1.47 times more expensive
than in a world with no pre-existing distortions. Bovenberg and Goulder (2002) report a
somewhat wider range.
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Figure B.1: The Effect of Subsidy Size on Participation, RD Estimates
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(d) Refrigerators, 175 kWh Threshold
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(e) Refrigerators, 200 kWh Threshold
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Table B.1: Number of Participants Close to Thresholds

Subsidy Increase Number of
Households

Within
Preferred

Bandwidth

Number of
Participants

Within
Preferred

Bandwidth

Number of
Participants
Incorrectly

Predicted to
Receive Low

Subsidy

Number of
Participants
Incorrectly

Predicted to
Receive

High
Subsidy

Percent
Correctly
Predicted
Within

Preferred
Bandwidth

(1) (2) (3) (4) (5) (6)

Panel A. Air Conditioners

$110 to $170 626,397 9,699 15 24 99.6
$30 to $110 241,218 3,213 7 10 99.5
$0 to $30 110,572 986 3 4 99.3

Panel B. Refrigerators

$110 to $170 4,794,466 73,462 844 697 97.9
$30 to $110 3,218,317 41,953 487 307 98.1
$0 to $30 1,416,691 10,320 162 125 97.2

Notes: This table describes the number of households near each of the eligibility thresholds used
in the RD analysis. In column (2), we report the number of households with average historical
electricity consumption above or below each threshold by less than our preferred bandwidth of
100 kilowatt-hours for air conditioners and 50 kilowatt-hours for refrigerators. Column (3) gives
the number of program participants in the same range. We then report in columns (4) and (5) the
number of participants for whom our reconstruction of average historical electricity consumption
incorrectly predicts the subsidy amount received. Column (6) reports the percentage of partici-
pants for whom we correctly predict the subsidy amount.
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Table B.2: Testing for Strategic Delay

Percent who would
have been eligible for a

smaller subsidy two
months earlier

Percent who would
have been eligible for

the same or larger
subsidy two months

earlier

χ2 test, H0: identical
distributions for
participants and
non-participants

(p-value)

(1) (2) (3)

Panel A. Households Barely Qualifying for $170 Subsidy

Participants 22.7% 77.3%
0.62

Non-participants 22.6% 77.5%

Panel B. Households Barely Qualifying for $110 Subsidy

Participants 23.2% 76.8%
0.02

Non-participants 24.5% 75.5%

Notes: This table tests for strategic delay in the refrigerator replacement program. For households
who just barely qualified for the $170 and $110 subsidies (i.e., within 15 kWh), we determine what
subsidy each household would have qualified for one billing cycle earlier. See text for details.
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Figure C.1: Annual generation from biomass plants increases as coal prices rise

The left axis of this figure shows total annual electricity generation at five biomass power
plants in Maine. These data come from EIA Form 923. The right axis shows the annual
average price of coal from the EIA Annual Energy Review. This figure suggests the
possibility that rising coal prices may have contributed to additional operation of biomass
power plants, perhaps by changing the order of marginal costs in the electricity industry
supply curve.
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Table C.1: Coal prices are uncorrelated with natural gas and housing starts

Annual natural gas price Annual housing starts
Annual coal price 0.001 (N=62) -0.021 (N=52)

This table shows correlation coefficients for annual coal prices with annual nat-
ural gas prices and annual residential construction. The coal prices are the
Energy Information Administration coal price series from the Annual Energy
Review 2011, which extends from 1949 - 2010. The natural gas data are Energy
Information Administration wellhead price data, which are available for 1922
- 2011. The construction data are the “New Privately-owned Units Started”
series from the Census Bureau, which are available for 1959 - 2010. The obser-
vation numbers in the table are the number of years in which data are available
for coal and the variable of interest.
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Table C.2: Difference in differences specification test

Dependent variable: ln(wood chips per square mile)

Treatment*1997 0.24 (0.28)
Treatment*1998 -0.29 (0.22)
Treatment*1999 -0.14 (0.23)
Treatment*2000 -0.24 (0.37)
Treatment*2001 0.28 (0.83)
Treatment*2002 0.03 (0.33)
Treatment*2003 0.08 (0.60)
Treatment*2004 -0.09 (0.48)
Constant 3.40 (0.13)***
Year fixed effects Yes
County fixed effects Yes
Observations 143

For years before the PTC, this table shows a regression of
the log of wood chip quantity on year*treatment dummies,
year dummies, and county dummies. Standard errors are
clustered at the county level. The excluded year is 1996.
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Table C.3: Robustness to different ways of dealing with missing price
observations

Drop missing Min year
Supply elasticity (both instr.) 0.43 (0.3) 0.41 (0.2)*
Supply elasticity (single instr.) 0.60 (0.3)** 0.61 (0.2)***
First stage coeff. for coal price 2.40 (0.2)*** 2.77 (0.2)***
First stage coeff. for PTC*after 0.2 (0.1)** 0.16 (0.1)
N 204 239

This table shows how the main result for the price elasticity of wood fuel
supply is robust to different ways to dealing with missing observations on
price. “Drop missing” removes observations with missing values. “Min
year” replaces missing observations with the lowest value observed in that
year regardless of PTC treatment status. Legend for significance stars:
* 10%; ** 5%; *** 1%.
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Table C.4: Alternative time trend specification

First stage 2SLS
Dependent variable Wood chip price Wood chip quantity

Coal price 0.18 (0.02)***
Wood chip price 26.1 (6.2)***
Linear time trends for treatment and control Yes Yes
County fixed effects Yes Yes
N 239 239

This table shows the results from estimation in levels with a linear time trend. The 2SLS
model uses both coal price and PTC*after as instruments. Standard errors in parentheses are
clustered at the county level. Legend for significance stars: * 10%; ** 5%; *** 1%.
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Table C.5: Sensitivity analysis for area from which power plants source wood chips

2 miles 25 miles 40 miles

Additional treated counties Kennebec, Oxford Somerset Waldo, Hancock
Effect of PTC program -0.01 (0.2) 0.04 (0.2) 0.15 (0.2)

This table shows how the list of “treated” counties and the estimate of the effect of the
PTC change as the area from which power plants are assumed to source wood increases.
Distances on tops of columns are radii from the power plant. The counties listed in each
column are counties that do not contain biomass power plants, but that are added to the
treatment group as this distance grows. The numbers for ”Effect of PTC program” are the
coefficients on PTC*after in equation (3.3), including county fixed effects, all covariates,
and exponential time trends for treated and control counties. In all cases, the program
does not have a statistically significant effect on wood chip quantity.
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Table C.6: IV results including pulpwood and sawlogs as covari-
ates

Dependent variable: ln(wood chips per square mile)

ln(Price) 0.64 (0.25)** 0.48 (0.26)*
ln(Sawtimber per square mile) 0.02 (0.16) 0.03 (0.16)
ln(Pulpwood per square mile) 0.22 (0.15)
ln(Oil price) 0.03 (0.15) 0.08 (0.14)
Exponential time trends Yes Yes
County Fixed Effects Yes Yes
Counties 16 16
Observations 239 239

This table reports 2SLS regressions of the log of wood chip quantity
on wood chip prices and covariates, using coal prices as the instru-
ment. Standard errors are clustered at the county level. Legend for
significance stars: * 10%; ** 5%; *** 1%.




