Title
Temporary axial-flow mechanical circulatory support and intravenous treprostinil in a patient with D-transposition of the great arteries and atrial switch: A case report

Permalink
https://escholarship.org/uc/item/05g1c9k5

Authors
Bravo-Jaimes, Katia
Venkatesh, Prashanth
Lluri, Gentian
et al.

Publication Date
2022-06-01

DOI
10.1016/j.ijcchd.2022.100361

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed
Temporary axial-flow mechanical circulatory support and intravenous treprostinil in a patient with D-transposition of the great arteries and atrial switch: A case report

Katia Bravo-Jaimes a, b, Prashanth Venkatesh a, b, Gentian Lluri a, b, Leigh Reardon a, b, c, Daniel Cruz b, Darko Vucicevic b, Eric H. Yang b, Ali Nsair b, Raj Saggar d, Richard Channick d, Murray Kwon e, Glen Van Arsdell f, Jamil Aboulhosn a, b, *

a Ahmanson/UCLA Adult Congenital Heart Disease Center, University of California, Los Angeles, United States
b Division of Cardiology, Department of Medicine, University of California, Los Angeles, United States
c UCLA Mattel Children’s Hospital, Department of Pediatric Cardiology, University of California, Los Angeles, United States
d Division of Pulmonary & Critical Care, Department of Medicine, University of California, Los Angeles, United States
e Department of Surgery, University of California, Los Angeles, United States

ARTICLE INFO

Keywords:
atrial switch
pulmonary hypertension
transplantation
right ventricle
mechanical circulatory support

A 43-year-old woman with D-transposition of the great arteries (D-TGA) with Mustard atrial switch repair, pulmonary venous baffle repair presented with advanced kidney and heart failure (HF). A transthoracic echocardiogram (TTE) showed a severely enlarged systemic right ventricular (RV) size with severely reduced systolic function, normal left ventricular (LV) size with severely reduced systolic function, mild to moderate systemic tricuspid regurgitation (TR) (Video 1) and patent pulmonary venous and systemic venous baffles on cardiac magnetic resonance. Supplemenary data related to this article can be found at https://doi.org/10.1016/j.jjchd.2022.100361.

Cardiac catheterization on hospitalization day (HD) 10 after milrinone-assisted diuresis showed severe pulmonary hypertension (left pulmonary artery (PA) pressure 95/52 mmHg, mean 65 mmHg, pulmonary capillary wedge pressure (PCWP) 30 mmHg), systemic right ventricular end-diastolic pressure (sRVEDP) of 17 mmHg, cardiac index of 2.1 L/min/m² on milrinone (0.2 mcg/kg/min) and pulmonary vascular resistance (PVR) of 12.6 Woods units (WU) using sRVEDP. With administration of inhaled nitric oxide (iNO) 40 ppm, PA pressure was 100/50 mmHg with mean of 69 mmHg, PCWP increased to 40 mmHg and cardiac index and PVR improved to 2.3 L/min/m² and 9 WU respectively. This was consistent with both intrinsic precapillary pulmonary arterial hypertension (PAH) and post capillary pulmonary hypertension due to restrictive systemic RV function.

Milrinone and diuretic doses were increased and repeat hemodynamics on HD 21 (Table 1) showed decreased PA pressures and PVR by 40 and 50% respectively. At this point, intravenous treprostinil was started and uptitrated with increasing PA and PCWP by HD 31. With iNO administration, cardiac output increased by 40% and PVR decreased by 70% from baseline. However, the sRVEDP increased from a baseline of 17–30 mmHg indicating pulmonary vasoreactivity with restrictive systemic RV physiology. A CardioMEMSTM HF system was placed during that procedure to allow for close hemodynamic monitoring.

Given increasing sRVEDP despite decreasing PVR, we pursued systemic RV offloading with a temporary axial-flow mechanical circulatory support (MCS) device (Impella 5.5®) via right axillary approach on HD 35. After this, PVR decreased to 2 WU, subpulmonic LV function improved (Video 2) and PCWP decreased from 34 to 24 mmHg (Fig. 1). Orthotopic heart transplantation (OHT) and deceased-donor kidney transplantation were performed on HD 43 and 44, respectively.

* Corresponding author. 100 Medical Plaza Drive, Suite 630E, Los Angeles, CA, 90024, United States.
E-mail address: jaboulhosn@mednet.ucla.edu (J. Aboulhosn).

https://doi.org/10.1016/j.jjchd.2022.100361
Received 18 February 2022; Received in revised form 18 March 2022; Accepted 22 March 2022
Available online 5 May 2022
2666-6685/© 2022 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Intravenous treprostinil was weaned off on POD 4 and vasopressors on POD 5. Following this, the mean PA pressure progressively increased to 42 mmHg associated with RV enlargement with mildly reduced systolic function and severe TR. In consequence, milrinone was increased, and iNO and intravenous treprostinil were restarted on POD 7, achieving regression in RV dilatation and degree of TR by POD 15. She was discharged on POD 30 on subcutaneous treprostinil. On POD 50 she was transitioned to oral treprostinil with stable RV imaging. The patient granted consent for this publication.

Supplementary data related to this article can be found at https://doi.org/10.1016/j.ijcchd.2022.100361.

Patients with unpaillated D-TGA had a mortality rate of 90% in the first year of life until the atrial switch operation (via Senning or Mustard techniques) became widespread in developed countries in the 1970s [1].

Table 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>HD 10</th>
<th>HD 21</th>
<th>HD 31</th>
<th>HD 35</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systemic venous baffle</td>
<td>14 mmHg</td>
<td>–</td>
<td>–</td>
<td>15 mmHg</td>
</tr>
<tr>
<td>Subpulmonary left ventricle</td>
<td>95/17 mmHg</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Pulmonary artery resistance</td>
<td>30 mmHg</td>
<td>22 mmHg</td>
<td>34 mmHg</td>
<td>24 mmHg</td>
</tr>
<tr>
<td>Pulmonary vascular resistance</td>
<td>103/17 mmHg</td>
<td>60/30/42 mmHg</td>
<td>88/37/52 mmHg</td>
<td>14 mmHg</td>
</tr>
<tr>
<td>Cardiac output</td>
<td>3.8 L/min</td>
<td>5.5 L/min</td>
<td>5.5 L/min</td>
<td>4 L/min</td>
</tr>
<tr>
<td>Cardiac index</td>
<td>2.1 L/min/m²</td>
<td>3 L/min/m²</td>
<td>3.1 L/min/m²</td>
<td>4 L/min/m²</td>
</tr>
<tr>
<td>Pulmonary vascular resistance</td>
<td>12.6 WU</td>
<td>4.5 WU</td>
<td>3.3 WU</td>
<td>2 WU</td>
</tr>
</tbody>
</table>

Fig. 1. Hemodynamic changes over time before and after OHT.

*OHT: orthotopic heart transplantation; HD: hospitalization day; mPAP: mean pulmonary artery pressure (mmHg); PCWP: pulmonary capillary wedge pressure (mmHg); CI: cardiac index (L/min/m²); PVR: pulmonary vascular resistance (WU Woods units). Red arrow indicates day of orthotopic heart transplant (performed on HD 43).
Declaration of competing interest

None declared.

Acknowledgements

None.

References

