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Abstract—This paper presents a spiking neural network (SNN)
accelerator made using fully open-source EDA tools, process
design kit (PDK), and memory macros synthesized using Open-
RAM. The chip is taped out in the 130 nm SkyWater process
and integrates over 1 million synaptic weights, and offers a
reprogrammable architecture. It operates at a clock speed of
40 MHz, a supply of 1.8 V, uses a PicoRV32 core for control, and
occupies an area of 33.3 mm2. The throughput of the accelerator
is 48,262 images per second with a wallclock time of 20.72 µs, at
56.8 GOPS/W. The spiking neurons use hysteresis to provide an
adaptive threshold (i.e., a Schmitt trigger) which can reduce state
instability. This results in high performing SNNs across a range
of benchmarks that remain competitive with state-of-the-art, full
precision SNNs. The design is open sourced and available online:
https://github.com/sfmth/OpenSpike

Index Terms—ASIC, accelerator, open source, OpenRAM,
spiking neural network

I. INTRODUCTION

The open source community has enabled advances in deep
learning (DL) to proliferate over the past decade. Much of
these advances have successfully been ported to biologically
plausible spiking neural networks (SNNs). SNNs have been
used to model brain function, and can perform DL using
gradient-based or Hebbian learning rules, often on a CUDA
backend [1]–[4]. To achieve this, the training methods that
have been popularized by DL (e.g., error backpropagation)
have also been adopted to training SNNs to much success
[4], [5]. The benefits of SNNs are limited when ported onto
CUDA-accelerated backends as the underlying instruction-
set is constrained to SIMD/SIMT (single-instruction multiple-
data/thread) processing.

Demonstrating the value of SNNs goes beyond measuring
test set accuracy on toy problems. Evaluating the performance
of SNNs extends to its efficiency, often in terms of energy,
latency, or synaptic operations per second. Hardware such as
Loihi and SpiNNaker offer power profiling tools to estimate
the overhead of SNN workloads, and programming packages
such as SpikingKeras can provide coarse estimates based on
the number of operations in a model [6]–[8]. These tools have
lowered the barrier to access neuromorphic algorithm develop-
ment and have provided promising empirical demonstrations
of spike-based computing.

Neuromorphic research is still highly exploratory, and de-
spite the various engineering benefits that have been demon-
strated, the research community remain uncertain with what

feature sets, neuron models, and neural computations should
be integrated on-chip. On the one hand, why should we
implement features in silicon that are not commonly used? On
the other hand, how do we know what benefits such features
have to offer without hardware baselines?

The recent expansion of open source electronic design
automation (EDA) and VLSI tooling is primed to do for
neuromorphic chip design what has already been done for DL
[9], [10]. The explosion of new DL methods as applied to
SNNs only keeps coming [11]–[19], and lowering the barrier
to develop ASICs can ultimately profile these workloads in
a way that can demonstrate or dispute energy and latency
advantages [20]–[22].

To guide the direction of neuromorphic research along an
open and reproducible trajectory, this paper presents a fully
open source SNN accelerator, including the process design
kit (PDK), the tooling used to synthesize the design, and
the memory macros used to store synaptic weights. Our
design was done in the SkyWater 130nm (SKY130) pro-
cess, cleared all pre-tape-out checks, and includes 1,059,840
synaptic weights, and operates at a clock speed of 40 MHz.
Small-scale SNNs (i.e., on the order of 1,000-10,000 neurons)
tend to be memory-limited in their performance, so we have
used OpenRAM macros in the design to promote further
optimization of near-memory compute tooling.

II. NEURON MODEL

The most common neuron model used in SNNs trained via
gradient descent is the leaky integrate-and-fire neuron model
[23], [24]. It offers a reasonable approximation of neurons
while retaining simplicity. A discrete-time version can be
represented by the following equation:

ut = βut−1 + xt−1w − zt−1uthr, (1)

where u is the membrane potential of the neuron, x is the input
to the neuron, w is the weight attached to x, β is the decay rate
of the membrane potential, and the subscript t refers to time.
When the membrane potential exceeds the threshold uthr, an
output spike is generated:

zt =

{
1, if ut > uthr

0, otherwise.
(2)

ar
X

iv
:2

30
2.

01
01

5v
1 

 [
cs

.A
R

] 
 2

 F
eb

 2
02

3



Introducing a Schmitt trigger to the thresholding action of
the neuron has the following effect:

zt =

{
1, if ut > uhthr and it = 0

0, otherwise.
(3)

where it refers to spike inhibition:

it =

{
0, if zt = 0 and ut < ulthr
1, otherwise.

(4)

As shown in Refs. [15], [25], [26], SNNs are highly tolerant
to weight quantization. In the extreme, the trainable weights
of an SNN can be binarized to w ∈ {−1,+1} with small
performance degradation as performance is ‘propped up’ by
non-binarized variables, including membrane potential and
time.

III. ARCHITECTURE OF THE ACCELERATOR

We propose a time-multiplexed accelerator designed for the
SKY130 process with an open-source PDK, synthesized and
hardened using fully open-source EDA tools. The accelerator
core is illustrated in Figure 1. When carrying out neuro-
morphic computations, the memory complexity of DL and
SNN workloads scales with O(n2) where n is the number
of neurons, which is dominated by the network parameters.
Fully-integrated accelerators on a monolithic substrate tend to
be bottelenecked by weight access.

To address this in our OpenSpike core, spiking neuron
modules are re-used and time-multiplexed by parallelizing
neuronal computations with the loading of weights, along with
time-multiplexing inter-neuron computations. Neuron re-use
optimizes for area with a marginal impact on latency. This
is possible due to the parallelization of weight access and
neuronal computations (i.e., state update, and spike triggering).
Furthermore, using binarized weights balances the cost of
weight reads from memory with neuron computations.

A. Network Architecture

To implement a neural network, our accelerator uses 1,024
hardware neurons to process the network one layer at a time.
For example, in an SNN with an architecture of 1024-1024-10
dense connections across three layers, a total of 1,024 neurons
would be needed on chip. A drawback to this approach is the
need to save and load neuron data for each layer, but this can
be performed in parallel with weight read-out with a marginal
impact on performance.

B. Neuron Processor

Each of the 1,024 neurons consists of a multiply-accumulate
(MAC) unit and a potential adder. The MAC unit sums the
product of inputs x with weights w over time, and stores
the result in a register. The final result is then passed to
the potential adder which accumulates present time membrane
potential ut with the previous time decayed potential βut−1.

While the MAC unit is computing the incoming potential
for the current layer, the potential adder holds the accumulated
potential from the previous layer. The membrane potential

Fig. 1: System architecture: Data flow between different modules of
the OpenSpike core.

arithmetic unit (MAU) computes the decayed potential, and
then loads the result in the potential adder. As decayed
potentials are loaded to the potential adder, the result is used
to calculate the spike responses which are saved and re-read at
a slower rate for MAC units, as they need the previous layer’s
spikes. Upon completion of reading decayed potentials, the
new membrane potential values for each neuron are written as
a neuron selector addresses into necessary neurons. The reset
status is determined by the spike response from the Schmitt
trigger module. This response determines whether a spike has
occured, which determines whether the membrane potential
has to be reset prior to saving or not.

Each MAC unit can accumulate up to four incoming con-
nections at once. This process is repeated for all fan-in spikes.

C. Control Unit

The control unit is a state machine that has three main states:
1) Input Layer State: The input layer state consumes only

3 clock cycles, as the input layer neurons each have only 1
input. It only takes one accumulation cycle for MAC units to
calculate the accumulated potential, as the input spike cache
is already loaded in the output layer state. Saving results from
the output layer also takes one cycle since it only has 10 output
neurons and the accelerator core is designed to save up to 16
neurons in each cycle. Initialization of the state in the control
unit takes one cycle to complete.

2) Hidden Layer State: In this state, the MAC units iterate
through 1,024 input connections for each neuron 4 connections
at a time, such that 256 cycles are required to compute the



Fig. 2: Spike emission process.

potential values. While MAC units are processing, the neuron
selector activates the potential adders 16 at a time, and it
therefore takes 64 cycles to finish processing and storing the
hidden layer potentials.

3) Output Layer State: In this state, only 10 MAC units
are needed to compute over 256 cycles. At the same time,
the input spike cache is loaded from the input spike SRAM
in 8 cycles. Additionally, the potential adders will complete
generating results from the hidden layer. This completes the
operations needed for a single time step.

D. Spike Processor

The spike processor has two functions: i) spike emission
using the Schmitt trigger as a neuron selector reads the updated
membrane potential (Figure 2), and ii) to act as a 128-byte
cache for MAC units to be used in the input layer and to be
pre-loaded in the output layer state.

E. Membrane Potential Arithmetic Unit

The MAU receives the final potential value from the neuron
selector and resets the potential if that neuron has triggered a
spike in the present time step. The final value is stored, and the
decayed potentials are loaded into the potential adder, where
the membrane potential and the decay rate β are read from
SRAM and multiplied with a combinational circuit and routed
to its respective potential adder using the neuron selector.
To decrease latency, a combinational circuit was used for
multiplication where the membrane potential is divided into
smaller fractions using shift operations, and then they are
added back together in different combinations based on the
decay rate to compute the final decayed membrane potential
value (Figure 3).

F. OpenRAM Macros

Memory macros have classically been highly proprietary
and manually optimized circuits, as memory cells rely on
layouts that are so dense they must often bypass design
rule violations. Designs are often limited by the availability
of memory designs and arrays, and memory compilers are

Fig. 3: Membrane potential arithmetic unit uses shift-and-add to
implement varying decay rates with low computational cost.

TABLE I: Network Timing for a Dense SNN

Process Latency

Input Layer 0.120 µs
Hidden Layer 10.3 µs
Output Layer 10.3 µs

Total 20.72 µs

* Network architecture: 1024-
1024-10 Dense SNN.

scarcely available with existing PDKs. OpenRAM is an open-
source memory compiler that helps with addressing these
issues [27]. By using a high-level Python configuration file,
the layout and netlists of SRAMs can be generated by passing
in data word size, the number of words in memory, for a
given PDK. Process, voltage and temperature corners can also
be specified for SRAM characterization.

The proposed design uses approximately 154 kB worth of
dual-port 2 kB SRAM macros that consume a total area of
21.89 mm2 for storing spikes, adaptive thresholds from the
Schmitt triggers which enables inhibition, membrane potential,
the decay rate, weights, and incoming spikes. The SRAMs
operate at 40 MHz while the core is clocked at 20 MHz. The
memory controller addresses spikes to all fan-out weights, and
interfaces all SRAMs to the core. The weight read lines are
multiplexed within one clock cycle of the accelerator core to
increase bandwidth.

IV. RESULTS

A. Backend Flow

The OpenLane flow was used to harden the accelerator
core, turning synthesized Verilog into a GDSII layout [28].
Logic synthesis, floorplanning, placement, clock routing and
optimization, global and detailed routing are performed within
this flow. Hardening the accelerator core took 10 hours with a
peak of 42.5 GB of RAM utilized, generated 128,776 physical
cells, and the resulting GDSII layout is illustrated in Figure 4.

B. Timing

The critical path of the core is 24.56 ns due to the neuron
state calculation in the MAU. To optimize the MAU, the
throughput of the membrane potential decay step is doubled
by including a pair of adders. The maximum clock frequency
is 24.39 MHz. The SRAMs can operate at 40 MHz and take
two cycles per memory access, and so to balance weight access
with computation, the core is driven at 20 MHz.



TABLE II: Power consumption at the fastest corner

Group Internal Switching Leakage Total %

Sequential 31.4mW 2.32mW 0.37 µW 33.9mW 28.5%
Combinational 44.1mW 40.7mW 2.37 µW 84.8mW 71.5%

Total 75.5mW 43.2mW 2.74 µW 119mW 100.0%
% 63.6% 36.4% ∼0.0% 100%

TABLE III: Accuracy of OpenSpike across different datasets com-
pared to full precision counterparts

Accuracy Accuracy
Dataset (OpenSpike) (Full precision)

MNIST 99.12% 99.42%
FashionMNIST 88.12% 91.02%

DVSGesture 92.36% 93.06%

Fig. 4: GDSII of the accelerator core.

The timing of various stages of the network are provided in
Table I, noting that this is only for one case out of any number
of possible architectural configurations. Initialization involves
loading firmware onto the PicoRV32 processor to configure
on-chip logic analyzers, 38 general purpose IOs (maximum
bandwidth of 50 MHz), and a wishbone bus to interface the
accelerator with the firmware. The input layer takes 0.12 µs
to complete, where input images pre-loaded on a 16kB bank
of SRAM. The input is treated as a flattened single-channel
32×32 image. The input is then passed to the hidden layer,
where each input is weighted by 1,024 weights and takes a
total of 10.3 µs. The final layer has almost the same latency,
as the same number of neuron inputs must be processed.
The wallclock time for a forward-pass is 20.72 µs. The total
throughput without pipelining is therefore 48,262 images per
second.

C. Power

The OpenSpike core and its SRAM macros consume about
the same amount of energy. SRAM macros during read and
write operations of the core consume 106.54 mW of power

in total. The dominant portion of power consumption of the
core arises from dynamic power in combinational logic. A
power breakdown at the fastest corner is provided in Table II.
Internal power refers to dynamic power in standard cells, and
switching power accounts for dynamic power across routing
and capacitances external to cells. The dynamic power is the
total of the internal and external switching power, and amounts
to 119 mW for a fully activated network (i.e., all inputs are
spiking) in the worst-case. This can be significantly reduced
by training sparse networks, e.g., by using sparse input data
from event cameras [29], and by imposing objectives that aim
to reduce spike count [4], [5], [12], [30].

D. Accuracy

The accuracy of SNNs with binarized weights, where the
network weights w ∈ {−1,+1}, has been measured on
several image datasets, including MNIST, FashionMNIST,
and DVSGesture [29]. We tested the performance of small
convolutional SNN architectures (16Conv5-64Conv5-10) on
classification tasks in a supervised learning setup where the
best performance for the MNIST dataset was 99.12%, the
FashionMNIST dataset was 88.12%, and for DVSGesture
92.36% was achieved (16Conv5-32Conv5-11). These represent
very small performance hits when compared to their full pre-
cision counterpart networks, where MNIST only degraded by
0.3%, FashionMNIST by 2.9%, and DVSGesture by 0.7%. The
same hyperparameters and surrogate gradients as in Ref. [26]
are adopted, where the binarization operator is replaced with
a straight-through-estimator during the backward-pass.

V. DISCUSSION AND CONCLUSION

The proposed SNN accelerator core based on OpenRAM
memories aims to drive neuromorphic hardware research in the
direction of reproducibility, in much the same way algorithms
and software development has gone. The work gone into mak-
ing neuromorphic accelerators available for broad, public use
are extremely useful for applications engineers in the pursuit
of applied neuromorphic research, though is of less use in the
chip design flow outside of algorithms exploration. Frenkel
et al. moved towards open-sourcing a neuromorphic chip for
online learning, and though it relies on closed-source PDKs
and memory macros, making all other aspects of the design
available can help the neuromorphic community with both
education and expanding the reach of custom hardware [31].
Our accelerator addresses the challenges of open hardware by
using a fully open-source design flow. While open flows are
presently constrained to legacy nodes, industry involvement
and more advanced technologies have already become better
integrated within open-EDA toolchains within the past year,
including GlobalFoundries 180 nm and SkyWater’s RRAM-
CMOS process. Open neuromorphic accelerators have the
potential to do what the open-source community has achieved
for DL.
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