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CRISPR-directed mitotic recombination enables genetic 
mapping without crosses

Meru J. Sadhu*, Joshua S. Bloom*, Laura Day, and Leonid Kruglyak*

Department of Human Genetics, Department of Biological Chemistry, and Howard Hughes 
Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA

Abstract

Linkage and association studies have mapped thousands of genomic regions that contribute to 

phenotypic variation, but narrowing these regions to the underlying causal genes and variants has 

proven much more challenging. Resolution of genetic mapping is limited by the recombination 

rate. We developed a method that uses CRISPR to build mapping panels with targeted 

recombination events. We tested the method by generating a panel with recombination events 

spaced along a yeast chromosome arm, mapping trait variation, and then targeting a high density 

of recombination events to the region of interest. Using this approach, we fine-mapped manganese 

sensitivity to a single polymorphism in the transporter Pmr1. Targeting recombination events to 

regions of interest allows us to rapidly and systematically identify causal variants underlying trait 

differences.

Identification of DNA sequence differences that underlie trait variation is a central goal of 

modern genetic research. The primary tools for connecting genotype and phenotype are 

linkage and association studies. In these studies, co-inheritance of genetic markers with the 

trait of interest in large panels of individuals is used to localize variants that influence the 

trait to specific regions of the genome. The localization relies on meiotic recombination 

events that break up linkage between markers on a chromosome. Therefore, the spatial 

resolution of genetic mapping is limited by the recombination rate. In practice, the 

recombination rate in most settings is too low to resolve mapped regions to individual genes, 

much less to specific variants within genes. Increasing mapping resolution requires 

construction of ever-larger panels of individuals and/or additional generations of 

recombination, and these approaches are laborious to the point of often being impractical. 

As a consequence, the genes and variants underlying trait variation remain unidentified for 

the vast majority of regions implicated by linkage or association mapping.

To address this problem, we have devised a new method for genetic mapping that precisely 

targets recombination events to regions of interest. The method uses recombination events 

that occur during mitosis rather than meiosis. Rare mitotic recombination events occur 

naturally when a chromosomal double strand break (DSB) is repaired by homologous 

recombination (HR) that leads to the formation of a recombined chromosome (1). In a 

heterozygous individual, cell division can then generate daughter cells with a new genotype 
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that is completely homozygous from the recombination site to the telomere and unchanged 

heterozygous everywhere else (Fig. 1A); such an event is termed “loss of heterozygosity” 

(LOH). Individuals with LOH events at various locations in the genome have been used to 

construct a genetic map (2), and this and related approaches (3) can, in principle, be used to 

map the genetic basis of trait variation (Fig. 1B). However, this approach has been limited in 

practice by the very low frequency of natural mitotic recombination events.

We have leveraged the CRISPR-Cas9 system to produce targeted mitotic recombination 

events at high frequency and at any desired location, allowing facile construction of LOH-

based mapping panels. In the CRISPR (clustered, regularly interspaced, short palindromic 

repeats) system, the endonuclease Cas9 creates a DSB at a site specified by the targeting 

sequence of a bound guide RNA (gRNA) (4). Successful cutting requires the targeted 

sequence to be followed by an invariant protospacer-adjacent motif (PAM). In a 

heterozygous diploid individual, an LOH event can be generated by cutting only one 

chromosome, leaving its homolog intact to serve as a template for repair by HR. This is 

accomplished by using polymorphic heterozygous PAM sites.

To demonstrate that LOH events can be targeted to precise loci using CRISPR, we designed 

95 gRNAs targeting the bacterial Streptococcus pyogenes Cas9 to sites distributed across the 

left arm of the yeast Saccharomyces cerevisiae chromosome 7 (Chr 7L). The gRNAs 

targeted heterozygous sites in a diploid yeast strain generated by crossing a lab strain (BY) 

and a vineyard strain (RM), using PAMs polymorphic between the two strains. After cutting, 

repair, and mitosis, cells in which the DSB repair led to an LOH event were isolated by 

fluorescence-activated cell sorting (FACS) through their loss of a telomere-proximal green 

fluorescent protein (GFP) gene. We picked approximately four GFP(−) lines per targeted 

site, for a total of 384 lines. Whole-genome sequencing demonstrated that CRISPR-induced 

recombination was highly effective, with LOH events in more than 95% of lines and few off-

target effects (5). 75% of LOH recombination events occurred within 20 kb of the targeted 

site (Fig. 2A), consistent with previous measurements of LOH gene conversion tract length 

(6). LOH events were generated at sites across the entire targeted chromosome arm (Fig. 

2A), demonstrating that our method is not limited to certain genomic contexts.

We next used the LOH panel to map quantitative traits to loci on Chr 7L. We measured 

growth of the 384 LOH lines in 12 different conditions, chosen because we previously 

mapped quantitative trait loci (QTLs) for growth in these conditions to Chr 7L (7). In 

parallel, we measured growth of 768 segregants from a cross between BY and RM. One of 

the traits, growth on 10 mM manganese sulfate, mapped to a large-effect QTL with a 

maximum logarithm-of-odds (LOD) score of 109.4 in the LOH panel (Fig. 2B). The 

confidence interval obtained with the 384 LOH lines overlapped with and was narrower (2.9 

kb) than that obtained with 768 segregants (3.9 kb). The LOH-based interval contained two 

genes and 12 polymorphisms between BY and RM. We identified concordant QTLs of 

smaller effect in the two panels for eight other traits (fig. S1). Two traits mapped to a QTL of 

small effect in just one panel, likely due to low statistical power (fig. S2). One trait lacked a 

Chr 7L QTL in both panels.
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To rapidly fine-map the causal variant for manganese sensitivity, we generated a second 

panel of LOH lines whose recombination events were all targeted to the mapped manganese 

sensitivity interval. We took advantage of the fact that LOH gene conversion tracts vary in 

length, which means that in different individuals, DSBs generated by the same gRNA can 

lead to slightly different LOH crossover sites, typically within 10 kb of the DSB (6). We 

isolated 358 GFP(−) lines generated with three gRNAs that target sites near the mapped 

interval. Sequencing revealed that 46 lines (13.1%) had a recombination event within the 2.9 

kb QTL interval; together, the recombination events separated almost all the variants in the 

interval (Fig. 3A). In contrast, only 0.7% of segregants had recombination events in the 

interval (7). To obtain a comparable number of recombination events at this locus by random 

meiotic segregation, a segregant panel would require more than 7,500 lines. Thus, with 

targeted LOH events, we can generate very strong mitotic recombination hotspots at any 

region of interest (fig. S3).

We measured manganese sensitivity in this fine-mapping panel (Fig. 3B). Comparison of the 

panel phenotypes with the breakpoint locations pinpointed a single polymorphism as 

responsible for increased sensitivity in BY. The variant encodes a phenylalanine in BY and a 

leucine in RM at position 548 of Pmr1, a manganese transporter. Six lines had 

recombination events between Pmr1-F548L and the closest polymorphism to the right, 402 

bp away, and were either fully sensitive or resistant to manganese, depending on which 

Pmr1-F548L allele was homozygous in the line. One line had a recombination between 

Pmr1-F548L and the closest polymorphism to the left, 125 bp away, and showed the 

intermediate manganese sensitivity phenotype expected for a heterozygote at the causal 

variant. LOD score analysis of the fine-mapping panel also identified a support interval 

containing only Pmr1-F548L (Fig. 3B).

To directly test the effect of Pmr1 variants on manganese sensitivity, we individually 

engineered into BY the RM alleles of Pmr1-F548L, the two neighboring polymorphisms, 

and the two remaining nonsynonymous Pmr1 polymorphisms, using a CRISPR-based 

variant replacement approach. As expected from the LOH fine-mapping, changing 

phenylalanine-548 to leucine conferred significant manganese resistance, whereas none of 

the other four polymorphisms had a significant effect (Fig. 4).

PMR1 encodes an ion pump that transports manganese and calcium into the Golgi (8). Pmr1 

is a member of the P-type ATPase family of ion and lipid pumps found in all branches of 

life, and many other P-type ATPases have a conserved leucine at the position homologous to 

phenylalanine-548 of Pmr1. Solved structures of P-type ATPases with this leucine (9) (10) 

show it directly contacting ATP (fig. S4). Furthermore, mutating the homologous leucine of 

the rabbit calcium pump to phenylalanine decreases its function by affecting ATP binding 

(11). Thus, the F548L polymorphism is expected to reduce the ability of Pmr1BY to 

transport manganese into the Golgi, relative to Pmr1RM, consistent with BY's manganese 

sensitivity.

Pmr1 leucine-548 is conserved across fungi, with some species having an isoleucine or 

valine at the homologous position, and none with phenylalanine (fig. S5). In the S. cerevisiae 
population, almost all sequenced PMR1 alleles have leucine-548, with phenylalanine-548 
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found only in BY and other laboratory strains (12, 13) whose PMR1 alleles are likely 

directly related to BY (14). BY is derived from EM93, a diploid strain isolated from a fig 

(15). Sequencing of PMR1 in EM93 revealed that EM93 is heterozygous for Pmr1-F548L 

(fig. S6), suggesting that either the mutation is not laboratory-derived or that it occurred 

between EM93's isolation and its entry into a stock collection.

Decades of mapping studies have uncovered loci for myriad traits, but identification of the 

underlying genes and variants has lagged. Our CRISPR-assisted mapping approach promises 

to close this gap. In contrast to previous strategies, our method generates a higher density of 

recombination events, is easily targetable to any region of the genome, and does not require 

time-consuming extra generations of crossing to increase recombination frequency. 

Conversely, the strength of a traditional meiotic mapping panel is the ability to scan the 

entire genome. Complex traits, with multiple small-effect QTLs, pose a greater challenge for 

any mapping method. Importantly, in LOH mapping the rest of the genome outside the 

region targeted for LOH is held constant when a given QTL is being queried, thus effectively 

reducing the complexity of a trait by eliminating variance due to other segregating QTLs.

We anticipate that trait mapping with targeted LOH panels will aid efforts to understand the 

genetic basis of trait variation. In addition to applications in single-celled organisms, LOH 

panels could be generated from cultured cells, enabling in vitro genetic dissection of human 

traits with cellular phenotypes. In multicellular organisms, mapping resolution could be 

enhanced with CRISPR-directed meiotic recombination events. Indeed, the mutagenic chain 

reaction system developed in vivo in fruit flies (16) and mosquitos (17, 18) uses CRISPR to 

generate gene conversion events in meiosis with high efficiency. Additionally, LOH in early 

development could generate chimeric individuals. The targeted LOH method also has the 

potential to be applied to viable interspecies hybrids that cannot produce offspring, allowing 

trait variation between species to be studied genetically beyond the few systems where it is 

currently possible (19, 20).

In addition to their research applications, targetable endonucleases hold promise for gene 

therapy (21, 22). Certain disease alleles may be difficult to directly target by CRISPR 

because of their sequence complexity, such as the expanded trinucleotide repeats that 

underlie Huntington's disease. In these cases, directing a DSB to occur in the vicinity of a 

pathogenic allele so that it is replaced with its nonpathogenic counterpart by LOH may 

represent a more feasible alternative.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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One Sentence Summary

We report a method that uses CRISPR to generate targeted recombination events for rapid 

and systematic identification of causal variants that underlie trait differences.
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Fig. 1. 
DSBs generated by Cas9 in diploid mitotic cells can lead to mitotic recombination and loss 

of heterozygosity (LOH). (A) LOH can result from repair after a DSB in mitotically dividing 

cells, which is generated by CRISPR. (The Streptococcus pyogenes Cas9 protein is depicted 

as a green cartoon.) Individuals with LOH events are isolated via the loss of a heterozygous 

dominant marker, denoted with a green bar. The orange and purple chromosomes are 

homologs. (B) By measuring trait values in a panel of individuals with LOH events 

distributed across a region of interest, we can map genetic variants that contribute to trait 

variation. The process can be iterated to increase mapping resolution.
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Fig. 2. 
LOH events generated at sites across a chromosome arm mapped manganese sensitivity. (A) 

For each individual in the panel with a Chr 7L recombination event, the site of its 

recombination event is plotted against the site targeted for DSB formation in that individual. 

Individuals targeted to gain BY and RM homozygosity are plotted in orange and purple, 

respectively. The dashed lines enclose individuals with recombination events within 20 kb of 

the targeted site. The location of the Chr 7 centromere is denoted by “cen”. (B) Sensitivity to 

manganese vs. observed LOH recombination location. For each individual in the Chr 7L 

panel, the site of the LOH recombination event is plotted against manganese sensitivity, 

measured as colony radius after growth on 10 mM manganese sulfate plates. Orange and 

purple points denote individuals that are homozygous BY and RM to the left of their 

recombination events, respectively. (All individuals are heterozygous BY/RM to the right of 

their recombination events.) The gray line plots the LOD score by position along Chr 7L for 

manganese sensitivity. Dashed vertical lines denote the QTL support interval.
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Fig. 3. 
Targeted high-resolution mapping of manganese sensitivity. (A) Ratio of recombination rate 

(in centimorgans; cM) to physical distance (in kilobases; kb) near the manganese sensitivity 

QTL, for the manganese fine-mapping LOH panel (black line) and a segregant panel (red 

line) (7). The ratio is plotted for every interval between adjacent BY/RM polymorphisms 

that are at least 300 bp apart. The fine-mapping panel contains recombination events 

between all such pairs of polymorphisms in the interval, as indicated by the observation that 

the ratio does not drop to zero. The 2.9 kb QTL interval is denoted with dashed lines. (B) 

Recombination sites of individuals in the fine-mapping panel plotted against their 

manganese sensitivity, as in Figure 2B, near the manganese sensitivity QTL. Dashed blue 

lines denote the QTL support interval for the fine-mapping panel and dashed black lines 

denote the QTL support interval for the whole-Chr 7L panel. Shown below the plot are all 

BY/RM polymorphisms in the region (black bars), as well as all open reading frames (red 

lines).
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Fig. 4. 
Direct introduction of Pmr1-F548L into BY enhances manganese resistance. Boxplots of 

manganese sensitivity for strains with single PMR1 variants introduced from RM into BY, 

along with the BY and RM parental strains (first and second leftmost boxes). n ≥ 10 for all 

genotypes. * p < 0.001 in comparison to BY, Welch's two-sided T-test.
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