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Technical Commentary/

Derivation Approaches for the Theis (1935) Equation
by Hugo A. Loáiciga

Introduction
The Theis (1935) equation, which is a solution of the

partial differential equation (pde) describing the draw-
down caused by radial flow to a well pumped at a con-
stant rate in a confined, homogeneous, isotropic, and
infinite aquifer, is one of the best known results of
groundwater hydraulics. C.V. Theis recognized the math-
ematical analogy between heat conduction in solids and
groundwater flow and derived his equation from a solu-
tion of the pde for the temperature distribution caused by
a line heat source. This commentary presents several
approaches that have been followed to derive the Theis
(1935) equation: (1) analogies to solutions of heat-
conduction problems, (2) solutions based on initial guess-
es, (3) the Laplace transform, and (4) a hybrid method of
separation of variables. The extension of the Theis equa-
tion to the case of a finite-diameter well is also included.

The Governing Equations
The two-dimensional pde for drawdown in a con-

fined, homogeneous, isotropic, and laterally infinite aqui-
fer caused by a well pumped at a constant rate is:

@2sðr; tÞ
@r2

1
1

r

@sðr; tÞ
@r

¼ S

T

@sðr; tÞ
@t

ð1Þ

where s(r,t) is the drawdown at distance r from the well and
time t since the start of pumping, and T and S are the aqui-
fer’s transmissivity and storage coefficient, respectively.

The initial condition is:

sðr; 0Þ ¼ 0 for r � 0 ð2Þ

There are two spatial boundary conditions that can
be specified conveniently. The first results from the fact
that the drawdown diminishes continuously with distance
from the pumped well, leading to:

sðr/N; tÞ ¼ 0 for 0 � t , N ð3Þ

The second boundary condition is a statement of the
mass balance at the well established between the pump-
ing rate (Q) and the removal of ground water by elastic
decompression of the aquifer (the well has negligible
radius rw and therefore negligible storage in this classical
formulation):

Q ¼ �2pTr
@sðr; tÞ
@r

jr/rw¼0 for 0 � t , N ð4Þ

Equations 1 through 4 were first formulated in an
analogous mathematical structure to that of the pde and
associated initial and boundary conditions describing the
temperature distribution in an infinite solid caused by
a line heat sink (e.g., Carslaw and Jaeger 1959). For
ground water, they appear to have been first published by
Jacob (1940). Muskat (1937) wrote the pde (Equation 1)
using fluid density as the dependent variable (instead of
drawdown) in compressible-fluid flow in porous media.

Solutions Based on Analogies to
Heat-Conduction Problems

The Case of a Well of Negligible Diameter
The similarity between the mathematical formulation

of a particular heat-conduction problem and that describ-
ing radial ground water flow was recognized by Theis
(1935), who exploited it to solve the latter problem. Spe-
cifically, Theis (1935) relied on a result by Carslaw
(1921) relating the change of temperature (d s) induced in
a solid of infinite dimensions (with thermal diffusivity k,
units of length squared over time) after a time t and a dis-
tance r from a (line) heat source (k, units of temperature
times length squared) applied over a time interval dt:

ds ¼ k
4p kt

e�
r2

4kt dt ð5Þ

Equation 5 was reported first by Fourier (1822). Sup-
porting Information Appendix A contains a derivation of
Equation 5 for drawdown using the Fourier transform. The
temperature distribution (s(r,t)) in the solid for a constant
heat source (k) follows from the convolution of Equation 5:
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sðr; tÞ ¼ k
4pk

Z t

0

e
� r2

4kðt�t9Þ

t � t9
dt9 ð6Þ

A change of variable v ¼ r2=4kðt � t9Þtransforms
Equation 6 into the following equation for the tempera-
ture distribution [noting that (1) v ¼ Nwhen t9 ¼ t, (2)
v ¼ r2=4kt when t9 ¼ 0, and (3) dv=v ¼ dt9=ðt � t9Þ]:

sðr; tÞ ¼ k
4pk

Z N

r2=4kt

e�v

v
dv

¼ k
4pk

�
�Ei

�
�u ¼ � r2

4kt

��
ð7Þ

in which the exponential integral function –Ei(-u) is
given by the following series (see equation 8.214.1 in
Gradshteyn and Ryzhik [1994]) and C ¼ 0.577215 . is
Euler’s constant:

�Eið�uÞ ¼ �C � ln ðuÞ �
XN
m¼1

ð�1Þmum
mðm!Þ ð8Þ

From Equation 7 it can be seen that sðr; 0Þ ¼ 0 and
sðr/N; tÞ ¼ 0; so, the analogous boundary conditions
(Equations 2 and 3) are satisfied. Also, taking the derivative
of Equation 7 gives �2prkð@s=drÞjr/0¼ k, which is the
boundary condition for temperature at the location of the
heat source, a statement of the conservation of heat relying
on Fourier’s (1822) law of heat conduction. This can be
seen to be analogous to the boundary condition (Equation 4)
in which drawdown replaces temperature, the thermal dif-
fusivity k plays the role of the hydraulic diffusivity T/S,
and the heat source k is the hydraulic equivalent Q/S.
Using this analogy to transpose Equation 7 to represent the
solution for drawdown in the case of radial groundwater
flow to a well leads directly to the Theis (1935) equation:

sðr; tÞ ¼ Q

4pT
W

�
u ¼ r2S

4Tt

�
ð9Þ

in which the well function W(u) equals the exponential
integral (Equation 8); that is, W(u) ¼ –Ei(–u).

The Case of a Well of Finite Diameter
The solution to the transient, radial, flow problem

(Equations 1 through 4) modified to account for a well
with finite radius rwwas reported by Papadopulos and
Cooper (1967). The mathematical structure of the tran-
sient, radial, flow problem to a well of finite diameter is
analogous to that of a heat-conduction problem solved by
Carslaw and Jaeger (1959). The latter authors solved the
problem of heat conduction in an infinite plate caused by
a constant heat source emanating from a cylinder of finite
diameter. Papadopulos and Cooper (1967) relied on the
Carslaw and Jaeger (1959) solution to arrive at their ex-
pression. Details of the solution to the finite-radius pro-
blem are provided in Supporting Information Appendix B
(Equations B15 through B22).

Solutions Based on Initial Guesses
Jacob (1940) guessed that the drawdown gradient

was (note: the time variable in Equations 10 through 12 is
represented by t9):

@sðr; t9Þ
@r

¼ �2c
e�

r2S
4Tt9

r
ð10Þ

in which c was a constant to be determined from the well-
boundary condition (Equation 4). Substitution of Equa-
tion 10 into Equation 1 leads to the following equation for
the change in drawdown with respect to time:

@sðr; t9Þ
@t9

¼ Q

4pTt9
e�

r2S
4Tt9 ð11Þ

Jacob (1940) integrated Equation 11 with respect to
time to determine the drawdown at a specified time t:

sðr; tÞ ¼ Q

4pT

Z t

0

e�
r2S
4Tt9

t9
dt9 ð12Þ

The change of variable v ¼ r2S=ð4Tt9Þtransforms
Equation 12 into the following expression [noting that (1)
v ¼ Nwhen t9 ¼ 0, (2) v ¼ r2S=4Tt when t9 ¼ t, and (3)
dv=v ¼ �dt9=t9]:

sðr; tÞ ¼ Q

4pT

Z N

u¼r2S=4Tt

e�v

v
dv ¼ Q

4pT
W

�
u ¼ r2S

4Tt

�
ð13Þ

which is the Theis solution (Equation 9).
Li (1972) reported a derivation of the Theis equation

based on an initial guess of the form of the solution in
a manner resembling the approach of Jacob (1940).

The Theis Equation Derived Using Laplace-
Transform Theory

Hantush (1964) demonstrates the use of the Laplace
transform to solve ground water problems, including the
problem of radial flow to a well in a leaky aquifer, which
is an extension of the Theis (1935) problem. Verruijt
(1982) reported the solution to the flow problem (Equa-
tions 1 through 4) (written in terms of hydraulic head) by
means of the Laplace transform.

The Laplace method of solution starts by taking the
Laplace transform of the drawdown with respect to time
(with h . 0Þ:

Fðr; hÞ ¼
Z N

0

e�htsðr; tÞdt ð14Þ

Taking the Laplace transform of Equations 1 through
4 produces an ordinary differential equation (ODE) with
two boundary conditions (see Supporting Information
Appendix B):
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d2Fðr; hÞ
dr2

1
1

r

dFðr; hÞ
dr

¼ S

T
hFðr; hÞ ð15Þ

Fðr/N; hÞ ¼ 0 ð16Þ

r
dFðr; hÞ

dr
r/0

¼ � Q

2pTh

����� ð17Þ

The second step in the Laplace-transform method is
to solve the problem constituted by Equations 15 through
17 to obtain Fðr; hÞ using standard theory for ODEs (see
Supporting Information Appendix B), and letting
zðr; hÞ ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2Sh=T

p
, i2 ¼ �1):

Fðr; hÞ ¼ Q

2pTh
K0

h
jzðr; hÞj

i
ð18Þ

where K0½zðr; hÞ� is the modified Bessel function (see
Gradshteyn and Ryzhik [1994], equation 8.447.3) and:

jzðr; hÞj ¼
ffiffiffiffiffiffiffiffiffiffi
r2Sh
T

r
ð19Þ

The final step in the Laplace-based method of solu-
tion is to apply the inverse Laplace transform to Fðr; hÞ
and obtain the drawdown s(r,t). The inverse Laplace
transform of Equation 18 has been tabulated in equation
5.16.41 of Erdélyi (1954):

sðr; tÞ ¼ Q

2pT

 
1

2pi

Z c 1 iN

c�iN

eht
K0

h
jzðr; hÞj

i
h

dh

!

¼ Q

4pT

�
�Ei

�
�u ¼ �r2S

4Tt

��
ð20Þ

This completes the derivation of the Theis equation,
because W(u) ¼ –Ei(–u) (see Equation 9). Hantush (1964)
also tabulates the inverse Laplace transform of Equation
18, but in a more general form (position 12 of table on p.
303 of Hantush [1964]).

Solution by a Hybrid Method of Separation of
Variables

The method of separation of variables expresses the
field variable (drawdown or hydraulic head) as a linear
combination of the product of functions of the radial
coordinate times functions of time. By separating varia-
bles in Equation 1, the proposed drawdown equation be-
comes (see Supporting Information Appendix C):

sðr; tÞ ¼
XN
n¼0

h
An J0ðanrÞe�a2n/t 1 BnY0ðanrÞe�a2n/t

i
ð21Þ

in which / ¼ T=S; An;Bn; an;n ¼ 0, 1, 2, 3,., are co-
efficients to be determined from the initial and boundary
conditions (Equations 2 through 4), and J0; Y0 are Bessel
equations of the first and second kind, respectively (see

equations 8.441.1 and 8.444.1 in Gradshteyn and Ryzhik
[1994]). The reduction of Equation 21 to the Theis equa-
tion (Equation 9) does not appear feasible, but Hermance
(1999) introduced a hybrid version of the method of sepa-
ration of variables in which the sum involving the Bessel
function Y0 was dropped from Equation 21, and the
remaining sum involving the Bessel function J0 was
replaced by an integral. Specifically, Hermance (using
hydraulic head instead of drawdown) proposed the fol-
lowing integral representation of the hydraulic head:

hðr; tÞ ¼
Z N

0

AðaÞJ0ðarÞe�a2/tda ð22Þ

Thereafter, Hermance (1999) applied Hankel trans-
forms and convolution theory to reduce Equation 22 to the
Theis equation (Equation 9). The main justification for
Hermance’s hybrid method appears to have been an intui-
tion that it could lead to the Theis equation. In this respect,
the inspiration of this approach and its mathematical princi-
ples lack the rigor of methodological approaches that have
wide applicability, the Laplace method being one of them.

Conclusion
Several solution approaches that have been used in

the past to derive the Theis (1935) equation have been
reviewed in this commentary. The most rigorous of
these appears to be the approach based on the Laplace-
transform method.
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