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Background: Children born very preterm (VP) are at higher risk of emotional and behavioral 

problems compared with full-term (FT) children. We investigated the neurobiological basis of 

internalizing and externalizing symptoms in individuals born VP and FT by applying a graph 

theory approach.

Methods: Structural and diffusion MRI data were combined to generate structural connectomes 

and calculate measures of network integration and segregation at 7 (VP:72; FT:17) and 13 years 

(VP:125; FT:44). Internalizing and externalizing were assessed at 7 and 13 years using the 

Strengths and Difficulties Questionnaire. Linear regression models were used to relate network 

measures and internalizing and externalizing symptoms concurrently at 7 and 13 years.

Results: Lower network integration (characteristic path length and global efficiency) was 

associated with higher internalizing symptoms in VP and FT children at 7 years, but not 

at 13 years. The association between network integration (characteristic path length) and 

externalizing symptoms at 7 years was weaker, but there was some evidence for differential 

associations between groups, with lower integration in the VP and higher integration in the FT 

group associated with higher externalizing symptoms. At 13 years, there was some evidence 

that associations between network segregation (average clustering coefficient, transitivity, local 

efficiency) and externalizing differed between the VP and FT groups, with stronger positive 

associations in the VP group.

Conclusions: This study provides insights into the neurobiological basis of emotional and 

behavioral problems following preterm birth, highlighting the role of the structural connectome in 

internalizing and externalizing symptoms in childhood and adolescence.

Keywords

premature birth; connectivity; magnetic resonance imaging; psychopathology; childhood; 
adolescence

INTRODUCTION

Higher rates of clinically significant mental health problems appear to persist throughout 

life in those born very preterm (VP) compared with their full-term born counterparts 

(FT). Using dimensional scales of behavior problems, individuals born VP display more 

internalizing symptoms such as anxiety, depression and social withdrawal in early childhood 

(1–3) late childhood(2–4), and beyond (5–7) than individuals born FT. Conversely, rates and 

progression of externalizing symptoms, including conduct and hyperactivity problems, in 

this population are less clear. Some studies report elevated externalizing symptoms during 

early childhood, which decline relative to FT peers across childhood and into adolescence 

(2, 5) and others report no differences in externalizing problems in early or late childhood 

compared with FT peers (1, 4).

Socio-environmental factors may contribute to internalizing and externalizing symptoms in 

the preterm population (8–12), however, it is likely that there is a neurobiological basis for 

this psychopathology, given the risk of brain injury following VP birth and emerging body 

of literature linking early brain development with later mental health outcomes (13, 14). 

White matter injury is the primary neuropathology in preterm infants and is characterized by 
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premyelinating oligodendrocyte injury and subsequent impaired oligodendrocyte maturation, 

as well as microgliosis and astrogliosis (15). Individuals born VP display initial white matter 

and secondary gray matter volume reductions compared with FT peers in infancy (16) and 

childhood (17). Altered cingulum and uncinate fasciculi microstructure (18–23) and reduced 

orbitofrontal cortex (24), amygdalae (25, 26), and hippocampal volumes (26–28) in those 

born VP suggest a potential neurobiological basis for the psychopathology. However, the 

role of the global organization of white matter in internalizing and externalizing symptoms 

in the VP population has not yet been assessed.

Graph theory provides a framework to assess complex white matter organization (29–31), 

providing insight into disorganization of structural brain networks in various disorders (32). 

In this context, the brain is modelled as a graph, referred to as a structural connectome, 

consisting of parcellated gray matter regions (nodes) which are interconnected by white 

matter tracts (edges). These can be derived from diffusion MRI (dMRI)-guided whole-brain 

tractography. The strength of connection between each pair of nodes can be quantified in 

different ways (33–38), and various properties of network topology can be calculated (29, 

39–45).

Studies investigating structural connectomes in the wider preterm population suggest a 

reorganization of network architecture, consistent with preservation of a central core 

of highly interconnected nodes and modular organization at the expense of peripheral 

connectivity (46, 47). Features of the adult human connectome, including a rich-club 

architecture (defined by a central set of highly interconnected hub regions) (44, 45), 

modularity (division of the brain network into distinct sub-networks of highly interconnected 

regions) (29), and a small-world topology (simultaneous local specialization in sub-networks 

of high clustering nodes and global integration for efficient processing) (39) are present at 

30 weeks of gestation and appear to be retained in the preterm brain (46, 48–50).

Despite this relative sparing of central connections following preterm birth (46, 48, 50), 

evidence suggests that the typical developmental course of the structural connectome is 

affected in those born VP (48, 51, 52). Reduced global efficiency has been reported in 

preterm-born neonates compared with full-term peers (51), and is consistent with more 

rapid development of short-range, within-module connections compared with long-range, 

between-module connections from birth to term-equivalent age in the preterm brain (53). 

With the basic structural layout of the connectome largely in place by 2 years of age 

(54), further connectome development is primarily driven by modulations in the strength 

of connections. Across childhood and adolescence, the connectome appears to follow a 

trajectory of increasing integration and decreasing segregation (54, 55), likely driven by 

increases in axon diameter and myelination of long-range connections during this period 

(54, 56). Such developmental changes in topology support more integrated information 

processing across the brain to facilitate higher-order cognitive functions (57). We have 

previously reported higher local efficiency (segregation) and lower global efficiency 

(integration) in VP children at 7 years of age compared with FT peers (52), which is 

suggestive of immature white matter organization (54).
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Based on previous findings indicating that individuals born VP display a less integrated 

and more segregated topology (48, 51, 52), we have applied connectomics to determine 

whether aberrant brain organization may relate to concurrent internalizing and externalizing 

symptoms at 7 and 13 years. We hypothesized that lower integration and small-worldness 

would be associated with higher internalizing and externalizing symptoms at 7 and 13 years, 

while higher segregation would be associated with higher internalizing and externalizing 

symptoms at 7 and 13 years, respectively.

Previous studies have demonstrated that preterm and term children display differential 

associations between some white matter measures and executive functioning, cognitive 

functioning and motor outcome (58, 59). Therefore, as an exploratory analysis, we sought to 

assess whether associations between connectivity metrics and internalizing and externalizing 

symptoms differed by birth group (VP, FT).

METHODS AND MATERIALS

Participants

227 VP infants (< 30 weeks’ gestation and/or birthweight < 1250 g) admitted to the Royal 

Women’s Hospital in Melbourne, Australia between July 2001 and December 2003 were 

recruited into the Victorian Infant Brain Study (VIBeS; 65% of eligible VP infants admitted 

during recruitment period). 77 FT individuals (born between 37 and 42 weeks’ gestation and 

birth weight > 2500 g; 45 at birth and 31 at 2 years) were recruited from the Royal Women’s 

Hospital postnatal wards or via response to advertising in maternal and child health centers. 

Infants with congenital abnormalities likely to affect development were excluded from the 

study. Participant recruitment and loss at 7- and 13-year time points are presented in Figure 

1. Data from 72 VP and 17 FT children at 7 years and 125 VP and 44 FT children at 13 

years were included in the current study. The study was approved by the Royal Children’s 

Hospital and Royal Women’s Hospital Research Ethics committees and informed consent 

was obtained from children’s parents/legal guardians.

Behavior Problems

During the 7- and 13-year follow-up, parents completed the Strengths and Difficulties 

Questionnaire (SDQ; (60)) consisting of 25 items scored on a 3-point response scale (‘Not 

true’ = 0, ‘Somewhat true’ = 1, ‘Certainly true’ = 2). The 5-item emotional symptoms 

and 5-item peer problems subscales were combined to measure internalizing symptoms. 

Externalizing symptoms were measured by combining the 5-item conduct problems and 

5-item hyperactivity subscales. Higher scores on both internalizing and externalizing scales 

indicate a greater degree of behavior problems, with each scale demonstrating good 

convergent validity, discriminant validity and internal consistency (61).

Social Risk

Family disadvantage was assessed at 7 and 13 years using a social risk index (62). Scores (0 

– 2) were given for each domain (family structure, education of primary caregiver, primary 

income earner employment status and occupation, language spoken at home and maternal 
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age at birth) and summed to provide an overall risk score (0 – 12). Overall scores ≥2 were 

categorized as higher social risk, with scores <2 indicating lower social risk (62–64).

MRI Acquisition

At both time points, MRI data were acquired using a 3T Siemens Trio Scanner. Participants 

were not sedated during scans. At 7 years, T1-weighted images were acquired using a 

MP-RAGE sequence (repetition time (TR) = 1900 ms, echo time (TE) = 2.27 ms, voxel 

size = 0.8 mm isotropic) and dMRI data were acquired using a twice-refocused echo planar 

imaging sequence (45 gradient directions at b = 3000 s/mm2, six b = 0 volumes, TR = 7400 

ms, TE = 106 ms, voxel size = 2.3 mm isotropic). At 13 years, T1-weighted images were 

acquired using a 3D multi-echo MP-RAGE sequence with prospective motion correction 

(TR = 2530 ms, TEs = 1.77, 3.51, 5.32, 7.2 ms, voxel size = 0.9 mm isotropic) and dMRI 

data were acquired using a multiband accelerated echo planar imaging pulse sequence (60 

gradient directions at b = 2800 s/mm2, four b = 0 volumes, TR = 3200 ms, TE = 110 ms, 

voxel size = 2.4 mm isotropic, multi-band acceleration factor = 3).

Image Pre-processing

An overview of the structural connectome workflow is presented in Figure S1. Bias-

corrected (65) and brain-extracted (66) T1-weighted images were parcellated into 66 cortical 

regions based on the Desikan-Killiany atlas (67) and 14 subcortical regions based on the 

‘aseg’ subcortical segmentation tool (68) using FreeSurfer version 6.0 (69) to define nodes 

in the connectome matrices. Intracranial volume (ICV; combined white matter + gray matter 

+ cerebrospinal fluid volumes) used for secondary analysis was obtained with Statistical 

Parametric Mapping version 12 (http://www.fil.ion.ucl.ac.uk/spm/). All structural image 

output was visually inspected and participants with severe levels of movement artefact were 

excluded. Manual editing was performed according to FreeSurfer guidelines as required.

dMRI data were pre-processed predominantly using MRtrix3 (70), MRtrix3Tissue 

(https://3Tissue.github.io, a fork of MRtrix3), and the FSL package (71). Preprocessing 

included Gibbs-ringing correction (72), motion (between-volume, within-volume and outlier 

correction) and distortion correction (73–76) and brain extraction (66). Quality assessment 

was performed by visual inspection and automatically using the Quality Assessment 

for dMRI (QUAD) and Study-wise Quality Assessment for dMRI (SQUAD) tools (77). 

Participants whose diffusion images had severe levels of movement artefact were excluded. 

Quality control metrics generally did not differ between VP and FT groups (Table S1). 

3-tissue response functions were estimated and averaged (78), images were upsampled to 

1.5mm isotropic voxels, and Single-Shell 3-tissue Constrained Spherical Deconvolution 

(SS3T-CSD; (79)), and global intensity normalization and bias field correction (80) were 

performed.

The b = 0 data were aligned to the T1-weighted images (intensity inverted to better match 

the b=0 contrast for the purpose of registration) using the FSL Linear Image Registration 

Tool (FLIRT) (81) and Advanced Normalization Tool (ANTS) (82). Cortical and subcortical 

regions were aligned to the dMRI data by applying the inverse of the transformation 

matrices.
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Whole-brain tractography was performed (83) (iFOD2, step size = 0.75 mm, curvature 

radius threshold = 1.9 mm [30° per mm;(84)], min streamline length = 10mm) based on 

white matter fiber orientation distributions from SS3T-CSD. Dynamic seeding within the 

white matter was performed (85) with cortical and subcortical regions as inclusion regions. 

A series of anatomical constraints were applied to improve the biological plausibility of 

reconstructed tracts to ensure streamlines did not enter the cerebrospinal fluid or propagate 

through and beyond the gray matter. Streamlines were terminated upon reaching the gray 

matter or exiting the brain mask. Spurious interhemispheric connections between deep 

gray matter regions were also discarded. Spherical deconvolution Informed Filtering of 

Tractograms (SIFT2) (85) was performed on the whole brain tractograms.

Connectivity Matrix Construction

Following pre-processing, streamlines were assigned to the relevant nodes. This resulted 

in an undirected, weighted 80 × 80 connectivity matrix for each subject (ωij) (7 and 13 

years separately). In the matrix, each node was represented along rows (i) and columns 

(j) and each matrix element represented an edge or the connectivity between each node 

pair (sum of streamline weights). Connectome edge weights were multiplied by the SIFT2 

proportionality coefficient for inter-subject normalization (85).

Graph Metrics

The Brain Connectivity toolbox (brain-connectivity-toolbox.net) in MATLAB was used to 

calculate weighted versions of global efficiency, local efficiency, characteristic path length, 

average clustering coefficient, transitivity and small-worldness. Descriptions and formulas 

for each metric used are presented in Table S2 (31, 39, 42, 86–89).

Statistical Analysis

Statistical analysis was conducted using Stata 15.0 (StataCorp, TX). At both 7 and 13 years, 

associations between connectivity measures and concurrent internalizing and externalizing 

symptoms were assessed using linear regressions fitted via generalized estimating equations 

(GEEs) to allow for clustering for multiple births (90). A group-by-connectivity interaction 

term was included to examine whether associations varied by group; if there was strong 

evidence that associations varied by group (interaction p < .05), associations were presented 

separately for each group, otherwise the groups were collapsed. All models were adjusted 

for sex, age at assessment and higher social risk based on the assumed causal diagram 

showed in Figure S2. Where there was strong evidence of an association, the following 

secondary analyses were conducted: i) adjusted for ICV to determine if associations were 

driven by brain size, and ii) excluding participants with an IQ < 70 (n = 9 at 13 years) 

to determine if findings were driven by a small proportion of children with intellectual 

impairment. A false discovery rate correction was applied via the Benjamini and Yekutieli 

method (91) for all analyses to account for multiple comparisons across graph theory 

metrics.
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RESULTS

Participant characteristics.

Characteristics of participants included in the study are summarized in Table 1. As expected, 

VP participants at 7 and 13 years were less likely to be a singleton, more likely to have 

had bronchopulmonary dysplasia or infection, and more likely to have been administered 

antenatal corticosteroids than FT participants. Groups were similar in all other perinatal 

characteristics. On average, the VP group displayed slightly higher internalizing symptoms 

compared with the FT group at 7 and 13 years. VP children also displayed slightly 

higher externalizing symptoms compared with FT children at 7 years, while externalizing 

symptoms at 13 years were similar between birth groups. The VP group had smaller ICV 

and lower IQ at 7 and 13 years than the FT group. A greater number of the VP group had an 

IQ < 70 than the FT group at 13 years. On average, VP participants included at 7 years were 

less likely to be a singleton, have had infection or moderate/severe white matter abnormality 

(WMA) and had lower externalizing symptoms compared with VP children excluded at 7 

years because they did not have high quality MRI data available for connectome analysis 

(Table S3). VP participants included at 13 years also had less infection and moderate/severe 

WMA than VP children excluded at 13 years (Table S3).

Relationship between the structural connectome and concurrent internalizing symptoms

At 7 years of age, there was strong evidence that lower global efficiency was associated 

with higher internalizing symptoms (Figure 2a; Table S4) and that higher characteristic 

path length was associated with higher internalizing symptoms (Figure 2b; Table S4). The 

evidence for these relationships persisted after adjusting for ICV (Table S4). There was 

also evidence that lower local efficiency was associated with higher internalizing at 7 years 

(Figure 2c; Table S4) which further weakened after adjustment for ICV (Table S4). There 

was little evidence that associations differed by group (group-by-connectivity interaction’s p 
> 0.466; Table S4).

At 13 years of age, there was little evidence that structural connectivity metrics were 

associated with internalizing symptoms or that these relationships varied by birth group 

(combined p > 0.242; group-by-connectivity interaction’s p > 0.179; Table S5).

Relationship between structural connectome and concurrent externalizing symptoms

At 7 years, there was little evidence that connectivity metrics were associated with 

externalizing symptoms or that these relationships varied by groups (combined p > 

0.625; group-by-connectivity interaction’s p > 0.057; Table S6). The exception was 

for characteristic path length and externalizing symptoms, whereby there was a weak 

positive association in the VP group and a weak negative association FT group (group-by-

connectivity interaction p = 0.013; Figure 3 and Table S6). This finding was similar after 

adjusting for ICV (Table S6).

At 13 years, there was strong evidence that associations between connectivity metrics 

(average clustering coefficient and transitivity) and externalizing symptoms differed 

by group (group-by-connectivity interaction: average clustering coefficient p = 0.034; 
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transitivity p = 0.043). Higher average clustering coefficient and transitivity were related 

to higher externalizing symptoms in the VP group, but not in the FT group (Figure 4; 

Table S7). These findings were similar after adjusting for ICV and following exclusion of 

participants with an IQ < 70 (Table S7). There was weak evidence of a positive association 

between local efficiency and externalizing symptoms in the VP group and weak evidence of 

a negative association in the FT group (group-by-connectivity interaction p = 0.016; Figure 

4; Table S7), however the evidence for this interaction did not persist after adjusting for ICV 

(Table S7).

DISCUSSION

In a large prospective longitudinal cohort of infants born VP and FT, we found that 

regardless of birth group, lower network integration was associated with higher concurrent 

internalizing symptoms at 7 years. However, this relationship was not evident at 13 years. 

There was also evidence for associations between network integration and externalizing 

symptoms at 7 years, and between network segregation and concurrent externalizing at 13 

years differing by group.

For all children (VP and FT), higher characteristic path length and lower global efficiency 

were associated with higher internalizing symptoms at 7 years, even after adjusting for 

brain size. Both measures assess the integration between sub-networks of local, functionally 

specialized regions and are influenced by long-range connections (31, 54). Maturation 

of long-range white matter fibers, which include increases in fiber density and myelin 

thickness, reshape the structural connectome across development, increasing integration 

between brain regions to support higher order functioning (54). Therefore greater path 

length between regions and lower global efficiency may reflect weaker, or less mature long-

range connections in those with internalizing problems and thus less efficient information 

transfer across the brain. While VP and FT children displayed similar associations between 

measures of network integration and internalizing symptoms, poor network integration 

reported in VP children in the current cohort (52) and in other preterm cohorts (48, 51) 

may provide a mechanism by which internalizing symptoms are increased in this population. 

Whether network topology is associated with internalizing symptoms in children in the 

general population remains to be seen. In adults, one study has found lower network 

integration in those with generalized anxiety disorder compared to healthy controls (92); 

however this is not replicated in adults with major depressive disorder (93).

We also report an association between lower local efficiency and higher internalizing 

symptoms in VP and FT children at 7 years, which may reflect weakened short-range 

connectivity between local brain regions (42), and is consistent with findings in adults with 

major depressive disorder (93). However, this relationship weakened following adjustment 

for brain size and thus should be interpreted with caution.

Despite higher mean symptom scores at 13 years than 7 years in both groups, associations 

between network integration and internalizing symptoms were not evident at 13 years in 

VP or FT adolescents. It is possible that in a more mature brain, internalizing symptoms 
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may be more strongly associated with the microstructure of specific long-range tracts with 

protracted maturation, rather than global measures of network integration.

The microstructure of the cingulum and uncinate fasciculus, which continue to mature well 

into adolescence and are involved in executive control and emotional processing, appear to 

be altered in individuals born preterm compared with FT peers in adolescence, and thus 

may provide a more sensitive marker of internalizing problem at this time (21, 23, 94). 

Alternatively, it is possible that socio-environmental factors may influence the presentation 

of internalizing symptoms to a greater extent in adolescence compared with childhood. 

The second follow-up in the current study at 13 years of age occurred during a sensitive 

period of development marked by major life events, including a transition to secondary 

education, relationship changes and increased independence from parents. Puberty may 

also play a role, with studies suggesting a positive relationship between stage of pubertal 

development and white maturation (95–97). Therefore, future research should investigate the 

role of white matter organization in psychopathology during adolescence in the context of 

socio-environmental factors and pubertal status.

At 7 years, there was some evidence that the association between characteristic path 

length and externalizing symptoms differed by group; high path length (lower integration) 

was associated with higher externalizing symptoms in the VP group, while lower path 

length (higher integration) was associated with higher externalizing symptoms in the FT 

group, although evidence for these relationships were weak. It is important to note that 

literature investigating links between brain measures and externalizing symptoms in the 

preterm population is scarce (98). Similar to VP children in the current study, children and 

adolescents with ADHD display lower network integration than healthy controls (99, 100). 

Perhaps lower integration and less efficient information transfer across the brain found in 

preterm cohorts (48, 52), which could reflect delayed or disrupted white matter maturation at 

a global level (54), is an indicator of shared biological mechanisms involved in internalizing 

and externalizing problems following VP birth.

At 13 years, increased clustering (average clustering coefficient, transitivity) was associated 

with higher externalizing symptoms in the VP group. These findings persisted beyond 

the influence of brain size and after excluding participants with low IQ, suggesting an 

independent role of network segregation in externalizing symptoms in VP adolescents. Both 

measures assess connectivity between nearby brain regions, thus VP adolescents with high 

externalizing symptoms appear to have increased local, short-range connections in the brain. 

The disparity in findings across the two time points assessed, that is, that lower network 

integration was associated with higher externalizing symptoms at 7 years, but higher 

network segregation was associated with higher externalizing symptoms in VP adolescents 

at 13 years warrants further investigation. Lower integration and higher segregation may be 

an indication of delayed development of the structural connectome, with the maturation of 

the human connectome postulated to develop from local to distributed organization across 

childhood and adolescence (55, 101). Our findings at 7 and 13 years are consistent with 

studies in clinical populations, with similar increases in clustering and decreases in global 

efficiency found in youth with ADHD compared with healthy controls in two cohorts 

aged 8–14 years (99) and 9–17 years (100). There was also evidence that associations 
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between local efficiency and externalizing symptoms also differed by group at 13 years 

and persisted beyond the influence of brain size, however evidence of associations within 

VP and FT groups was weak. Small-worldness, or the extent to which the brain network 

reflects a small world topology of highly clustered sub-networks with robust connections 

linking sub-networks (39), is preserved in the VP brain (48, 52) and was not associated 

with externalizing or internalizing problems in the current study. Thus, the measure of small-

worldness may not be sensitive to the alterations to network integration and segregation 

observed in the VP brain (48, 52).

A major strength of our study is the use of a large prospective longitudinal cohort of 

VP and FT-born individuals, which enabled investigation into the role of the structural 

connectome in psychopathology in childhood and early adolescence. However, the FT group 

in the current study was relatively small, which may have affected statistical power to 

find group differences in associations. Longitudinal structural connectome analyses (such 

as group × time interactions) were not performed in the current study due to updated 

dMRI sequences over time; future work incorporating identical sequences over time or 

scan harmonization techniques may be beneficial to improve understanding of longitudinal 

changes in the structural connectome. Currently, there is no consensus on the optimal 

brain parcellation scheme, however studies have indicated that the parcellation scheme 

used may influence connectome findings (102, 103) and thus should be considered when 

comparing connectome findings across studies. Subject motion is an inherent challenge 

in pediatric neuroimaging studies, however we minimized this through quality control 

procedures, which reduced the sample size particularly at 7 years. Our finding that VP 

children excluded at 7 years (due to poor quality or no MRI data available) had greater 

externalizing symptoms compared with VP children included in the current study at 7 

years reflects the challenges of scanning this subset of children at a young age and may 

have limited our ability to fully characterize relationships with externalizing symptoms at 7 

years. Finally, in addition to the parent-report of the SDQ, future studies should include the 

self-report version in adolescence to gain greater insight into an individual’s emotional state. 

It would be interesting to continue to explore associations between connectivity measures 

and self-reported internalizing symptoms in adolescence.

CONCLUSION

In the current study, we applied a graph theory approach to provide novel insights into 

the neurobiological basis of psychopathology in childhood and adolescence. We found that 

lower network integration, potentially reflecting weaker long-range connections and less 

efficient information transfer across the brain, was associated with higher internalizing 

symptoms at 7 years, but not at 13 years. There was also disparity in associations with 

externalizing symptoms at 7 and 13 years. Integration again appeared to be the most 

strongly associated with externalizing symptoms at 7 years, however there was little 

evidence for associations within either birth group. At 13 years, high clustering was 

associated with higher externalizing symptoms, but only in the VP group, suggesting a 

distinct biological basis of externalizing problems in this group. Future studies incorporating 

stratification techniques and assessment of socio-environmental factors may help to clarify 

the extent to which variability in degree of compromise and/or socio-environmental factors 
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may contribute to the likely multifactorial relationship between brain connectivity and 

psychopathology in individuals born VP.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Flow chart of participant recruitment and loss at 7- and 13-year time points.
89% of those initially recruited returned for 7-year follow up and 80% of those initially 

recruited returned for 13-year follow-up. Reasons for attrition included families moving out 

of state/internationally, withdrawing from the study or loss of contact. Imaging data that was 

not of sufficient quality were excluded primarily due to incomplete or incorrect acquisitions, 

non-uniform diffusion gradient directions (7-year only) or movement artefacts.
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Figure 2. Relationship between (a) global efficiency, (b) characteristic path length and (c) local 
efficiency and internalizing symptoms in very preterm and full-term groups combined at 7 years.
There was little evidence that associations differed between very preterm and full-term 

groups, therefore combined group associations are presented. Adjusted for sex, age at 

assessment and higher social risk at 7 years. Shading represents 95% confidence intervals.
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Figure 3. Relationship between characteristic path length and externalizing symptoms in very 
preterm and full-term children at 7 years.
There was evidence that the association differed between very preterm and full-term groups, 

therefore associations are presented separately. Adjusted for sex, age at assessment and 

higher social risk at 7 years. Shading represents 95% confidence intervals.
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Figure 4. Relationship between (a) average clustering coefficient, (b) transitivity and (c) local 
efficiency and externalizing symptoms in very preterm and full-term adolescents at 13 years.
There was evidence that the association differed between very preterm and full-term groups, 

therefore associations are presented separately. Adjusted for sex, age at assessment and high 

social risk at 13 years. Shading represents 95% confidence intervals.
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Table 1.

Sample Characteristics

7 years 13 years

VP n = 72 FT n = 17 VP n = 125 FT n = 44

GA at birth (weeks), M (SD), range 27.5 (1.7) 24–31 39 (1.2) 38–40 27.4 (1.9) 22–32 39 (1.4) 37–42

Birthweight (g), M (SD), range 1004 (209) 560–1390 3292 (539) 2482–4140 964 (232) 414–1425 3296 (542) 2220–4290

Male, n (%) 33 (46) 8 (47) 67 (54) 21 (48)

SGA,
a
 n (%) 4 (6) 1 (6) 11 (9) 0

b

Singleton, n (%) 32 (44) 15 (88) 65 (52) 40 (91)

BPD,
c
 n (%) 19 (26) 0 40 (32) 0

b

Antenatal corticosteroids,
d
 n (%) 65 (90) 0 113 (90) 0

b

Postnatal corticosteroids,
e
 n (%) 2 (3)

f 0 10 (8)
g

0
b

Infection,
h
 n (%) 17 (25)

i 0 40 (33)
j

0
b

Cystic PVL, n (%) 2 (3) 0 4 (3) 0
b

Grade III/IV IVH,
k
 n (%) 2 (3) 0 6 (5) 0

b

Moderate/severe WMA,
l
 n (%) 6 (9)

i 0 16 (13) 0
b

Age at assessment (years),
m

 M (SD) 7.6 (.2) 7.6 (.2) 13.2 (.38) 13.2 (.46)

ICV (cm3), M (SD) 1350.8 (114) 1438.8 (110.9) 1443.7 (131.8) 1523.7 (157.8)

Internalizing score,
n
 M (SD) 3.9 (3) 2.5 (2.6) 5.0 (3.4) 4.3 (2.6)

Externalizing score,
o
 M (SD) 5.1 (3.5) 3.8 (2.8) 5.4 (3.6) 5.7 (3.4)

IQ,
p
 M (SD) 99.9 (12.7) 110.4 (10.2) 99.5 (18.2) 110.1 (12.4)

IQ < 70,
p
 n (%) 0 0 9 (7) 0

Higher social risk,
q
 n (%) 38 (53) 4 (23.5) 77 (62) 16 (36.4)

Note:

a
Birthweight more than two standard deviations below the mean.

b
n = 24.

c
Oxygen requirement at 36 weeks.

d
Typical regime: Betamethasone Chronodose, 11.4 mg intramuscularly, full course: two doses 24 hours apart; part course: single dose.

e
Postnatal dexamethasone, usual dose 0.15 mg/kg per day for 3 days, reducing over 10 days: total dose 0.89 mg/kg.

f
n = 71.

g
n = 124.

h
Proven necrotizing enterocolitis and/or sepsis.

i
n = 68.

j
n = 121.
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k
Graded according to Papile et al.

l
Scored using Kidokoro system.

m
Corrected for prematurity.

n
Calculated using the Strengths and Difficulties Questionnaire (SDQ; emotional symptoms + peer problems subscales).

o
Calculated using the SDQ (hyperactivity + conduct problems subscales).

p
Wechsler Abbreviated Scale of Intelligence (WASI) full scale IQ score administered at 7 years, Kaufman Brief Intelligence Test, 2nd Edition 

(K-BIT 2) composite standard score administered at 13 years (M = 100, SD =15).

q
Family social risk score ≥ 2.

BPD: bronchopulmonary dysplasia; FT: full-term; GA: gestational age; ICV: intracranial volume; IQ: intelligence quotient; M: mean; PVL: 
periventricular leukomalacia; SGA: small for gestational age; SD: standard deviation; VP: very preterm; WMA: white matter abnormality.
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