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A HIERARCHICAL SPATIAL DATA STRUCTURE FOR GLOBAL GEOGRAPHIC INFORMATION
SYSTEM

Michael F. Goodchild® Yang Shiren®
Abstract

Hierarchical spatial data structures offer distinct advantages of data compression and fast access, but are difficult to adapt to
the globe. Following Dutton (1984, 1988a, 1988b), we propose to project the globe onto an octahedron, and then to recursively
subdivide each of its eight triangular faces into four triangles. We provide procedures for addressing the hierarchy, and for computing
addresses in the hierarchical structure from latitude and longitude, and vice versa. At any level in the hierarchy the finite elements are
all triangles, but are only approximately equal in area and shape; we provide methods for computing area, and for finding the
addresses of neighboring triangles.

Introduction

Hierarchical spatial data structures (HSDSs) such as the quadtree and octtree ( see for example Sarnet 1984) have been
adopted in numerous geographic information systems and spatial data bases. They offer advantages in data compression and sampling
efficiency, since the depth of the tree, and thus the density of information, can be varied from one area to another in response to the
variability of the phenomenon being represented. Numerous processes operate faster on HSDSs, particularly various forms of spatial
search. The address of acell in an HSDS embeds both of its spatial coordinates, and thus effectively compresses two dimensions to
one ( Mark and Goodchild, 1986). Cells lower in the tree have longer addresses, and the length of an address is therefore a direct
measure of spatial resolution. This has led to the suggestion (Dutton, 1988b; Saalfeld, 1988) that HSDSs offer a powerful solution to
the problems of accuracy in spatial databases, since the spatial resolution of a position can be determined directly from the length of
its spatial address.

Three properties of quadtree and octtree implementations of HSDS are of particular interest in this paper: (1) at any level, the
cellsareequal in area; (2) at any level, cells are equal in shape; and (3) the data structure correctly encodes the adjacency relationships
between cells. The value of an HSDS for analysis and modeling would clearly be reduced without these properties, particularly in
modeling based on finite elements. Unfortunately it has proven difficult to find a method of hierarchically subdividing the earth’'s
surface so that these properties are retained. Many global databases have been based on rectangular cells superimposed on simple
cylindrical projections such as Mercator’s or the cylindrical equidistant projection. However although these schemes may achieve one
of our required properties (as a conformal projection, the Mercator projection achieves property (1)), we note that it is well known that
no projection of the earth onto a plane can satisfy both of properties (1) and (2). Moreover any cylindrical projection must violate
property (3) because of the interruption at the poles. A method based on a cylindrical equal area projection was proposed by Tobler
and Chen (1986); cells at agiven level have equal area, but unequal shape.

An HSDScaled "Triacon" or "Quaternary Triangular Mesh (QTM)" was suggested by Dutton (1984, 1988b). In this paper
we follow Dutton’s approach in first projecting the earth onto an octahedron, and then recursively subdividing each of the eight
triangular faces of the octahedron into four triangles. Each level of the hierarchy after the first thus contains four times as many
triangular cells or elements as the previous level. We simplify Dutton’s approach in our numbering of the triangles, in order to obtain
an addressing system which provides easy transformation to and from latitude and longitude. Our scheme satisfies property (3), and
although properties (1) and (2) are only approximately satisfied, each triangular cell has an area which can be computed from a simple
expression.

The discussion is organized as follows. We first describe the coordinate systems used to develop the properties of the
proposed global HSDS. Subsequent sections develop the transformations between coordinate systems, particularly between cell
address and latitude/longitude. Section 4 discuss the calculation of cell area, and section 5 and section 6 present an algorithm for
finding the neighbors of a cell and the average data file storage distance, which corresponds to the expected cost of transition from one
data cell to its neighbors.

1. Coordinate Systems

In our proposed scheme, the entire earth is described by an octahedron. One quarter of each hemisphere is represented by an
equilateral triangle and is then decomposed. In order that the hierarchy be symmetrical and isohedral, i.e., all cells are congruent and
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every cell can be mapped onto other cells through translation, reflection, rotation or a combination of these, the triangle is subdivided
into four smaller equilateral triangles and each of them is further subdivided recursively until arequired level is reached. When the
four triangles are decomposed from their ancestor triangle, they arelabeled 0, 1, 2 and 3. There are 24 possible distinct ways of
labeling. Moreover while the initial subdivision occurs with the northern hemisphere triangles standing on their bases ("upward'), the
southern hemisphere triangles stand on vertices ("downward"). In subseguent iterations, triangles in both upward and downward
orientations must be subdivided in both hemispheres. If this orientation of trianglesis considered, there are 48 possible labeling
schemes. In order to limit the complexity of the addressing and conversion algorithms, we use the following labeling method in every
recursive decomposition: (1) the center triangleis labeled cell O; (2) the triangle vertically above (below) the central triangleis labeled
cell 1; and (3) the triangles below (above) and |eft and right of triangle 0 are labeled cells 2 and 3 respectively. Note that thetermsin
the parentheses are used when the triangle being subdivided stands on a vertex("downward").

Theinitial representation of the globe as eight triangles is termed the level 0 subdivision; after j further subdivisions of each
triangle we reach level j of the HSDS. Thus at level |, there are 8x4 cells. For much of the discussion in this paper the level 0
subdivision will be ignored, and we will refer ssmply to the recursive subdivision of one quarter hemisphere. Figure laisatriangle
decomposed to level 4, with each cell identified by its address which consists of four base4 digits, identifying the triangles selected at
each level of subdivision. The full address including level O would require an initial base8 digit. Figure 1b shows the decimal address
of cellsin the triangular decomposition. Figure 1c shows the ordering of cells, and emphasizes the consistent choice of the left cell as
cell 2 at every level, irrespective of whether the triangle is upward or downward.

In this study, we use the following coordinate systems:



(1). Positions on the globe are referenced by latitnde ¢ and longitude A.

(2). Each of the eight isosceles triangles of the level O octahedron contains one quarter hemisphere.
Locations within each triangle are identified by Cartesian coordinates x and y, with respect to an
origin in the lower left corner. The triangles are numbered O through 3 in the Northern hemi-
sphere, and 4 through 7 in the Southemn, in both cases in anticlockwise order when viewed from
the North pole. The appropriate triangle can thus be found by dividing longitude by % and trun-
cating to an integer, and adding 4 for southern latitudes.

The wiangle vertices are assumed to lie at (0,0,) (2",0)and (2*1,2*1 V3) in the (x,y)
coordinate system, where n is the highest level of subdivision. We assume that x depends linearly on
longitude for a given latitude, and that y depends linearly on latitude. Figure 2 shows the relationships
between latitude and longitude and (x, y) schematically.

The left, right and bottom edges of the triangle in Figure 2 can be described by the following equations:

Left edge: y = 3 x or A=0 (1-1)
Right edge: y =@ -0V or = % (1-2)
Bottom edge: y=0 or ¢ =0 (1-3)

From Figure 2 and expressions (1-1) to (1-3), we have the following expression for the relation between y
and ¢.
T »\3

= ., or =9
o vz y n

(1-4)

From the point p (x, y) in the Figure 2, we have

x =x +x° where x, = T3y

and x° is the horizontal distance from p(x,y) to the left edge of the triangle. Since the distance
between x, and x; corresponds to the maximum longitude difference at latitude ¢ =my/(2" V3 ) which

is also defined as %, therefore, we have

_x_2)

X2 — X1 T

From expression (1-1) and (1-2), we have

Then
. 22 2n+l;" 21-n
x =T(x2_x1)= - (1- @y)
and




2z _2
= 7 [0 +2M1~ 0]

The expressions for transformation of longitude A and latitude ¢ to x and y in the triangle are
the following:

2 2 _2r\3 _
x = [‘I"F27k(1—1t 1 y ==, ¢ (1-5)
or
T V3 x -y gL
= = 1-6
27 5 - 2y * 2w’ -9

The parameters of the triangles at different levels are shown in Table 1. Table 2 shows the lengths of
edges of the triangles at different levels of decomposition. At the 20-th level, the edges of triangles are
less than 10m, and 20 quaternary digits or 40 binary digits (approximately 12 decimal digits) are
required for addressing. '

2. Conversion of Triangle Address to Cartesian Coordinates

The addresses of vertices can be calculated by using the parameters listed in Table 1. For triangles
decomposed to the k-th level, the triangle address is represented by k quaternary numbers

ay,a3,qs,....,4; (2-1)

where 1<k <n.In this section we consider the problem of determining the Cartesian coordinates of the
centroid of a triangle with given triangle address. The coordinates of the triangle’s vertices can be deter-
mined from the parameters listed in Table 1 and from knowledge of the triangle’s orientation.

With the triangle cell ordering shown in Figure 1, there are the following relations:
(1. Let
k-1 k-1 _ _
NZy = 3[a;=0]1 = ¥ la3Mairl (2-2)

i=1 i=1

denote the number of zeros in a; to a,-;. a;; and g;, are two binary digits representing each

quaternary  digit a;. a;, @2 are logical negative of ( or NOT ) a;, app.

(ai1,ai2) = (0,0, (0,1, (1,0), (1,1) correspond to a; = 0,1, 2,3 respectively.

If the level O triangle is upward, then the k -th level triangles with address
A =a;,45,a3,....,a;

are upward if NZ, is even, and downward if NZ; isodd. NZ; iszero when &k = 1.

We can readily generalize to include the base-8 digit representing the initial octahedral decomposi-
tion at level 0. If the base-8 digit is represented as three binary digits, then the level zero triangle is
upward if the first digit is 0, downward if it is 1. The generalized definition of NZ, is:

-l
NZy = aw + 2 lanMail

i=1



where agq is the first bit of the binary representation of the base-8 digit.

(2). For the triangles in the k-th level with the same ancestor triangle, i.e., having identical a; to ap ,
then:

1. The triangle with @, = 1 is a complex conjugate or a reflection of the triangle with a, = 0.
2. The triangles with a; =2 and a; =3 are the left-down (or left-up) and right-down (or right-up)
translation of the triangle with g, = 1 respectively.
(3). The centroid coordinates of the O level (original) triangle are

n—1
Ko, ¥o) = (2, 2@ ) @3)

(4). The relative distance of the triangle centroids at the k-th level Oi o, Oy, Or2. and O3 from
the centroid of their ancestor at the (k-1) -th level O,_; o are (see Table 3):

O1-10—Oro:.  (AXi 0, AYgo) = (0, 0) (2-4a)
2;:—&
Or10—0Or1:.  (AXgy, AYy) = (0, a ) (2-4b)
V3
2n—k—1
Or10-0k2:  (AXpa2, AY)) = (-2"*%, -« ) (24c)
V3
2u—k—1
Or10-Ors.  (BXpa, AYy3) = (271, —a N (2—44)

where

o= (-

The Triangle Address A = ay,a,,...,a; can be converted to Cartesian coordinates by the fol-
lowing expressions:

k -
on-l o Z[(_l)aiz'fl ai 2n—¢-—1] -

X, =
i=1
k
= [2F + S[ED* gy 28] 22+ (2-5a)
i=1
k NZ _ )
277+ LD (@1 ai2) + ai ] 2~
i=1
Y = =
. 2]
k NZ; ) _ X
26+ TN 2(@n\ai2) + i) 28]
= i=1 gn—t-1 (2-5b)
3

Coordinates of the three vertices of the triangles can be calculated from:

Top vertex: Xitop = Xi (2-6a)

2n—k
V3

Yemp = Ye + DY (2-6b)



Left vertex: Xern = Xp— 2071 (2-7a)
Y = Vi + 1" —2:;3?_1 (2-7b)
Right vertex:  Xp_pigne = X3 + 2**71 (2-8a)
Yi-righh = Y + 1! Z.\;;_;l (2-8b)

Example 1. Find the Cartesian coordinates of the centroid of triangle A =3023.
A =3023 =110010 11
or
an=1, ap=1 ay =0, axn=0; ay =1 axnp=0 ay =1, ap=1.

X = [2° + D2 4 010 22 4+ D102+ D111 201205 =

- [24 + 23 _ 21 + 20]2u—5 - 23>an-5

n—5
Y o= (24 XD 2 4 0122 4 -1 2+ Ix(-1) 20 2 5
2n—5 2n-5
=[2* -2 + 2 +2° = 11x
"% 5
Example 2. Find the Cartesian coordinates of the centroid of triangle A = 1003 .
A =1003 = 01 00 00 11
or
a; =0, ap=1; ay =0, ax=0 ay =0, axp=0 ay =1, agp=1.
X =02 4+ Ox(=1)' 2% + Ox(-1)°*12% + Ox(-1)* 2% + Ix(-1)'*1 207125 =
=[28 + 201275 = 172"
n~5
Y = [2% + 2xX(=1)"92% 4+ Ox(-=1)"*92% + Ox(~1)'*02! + Ix(-1)**'12°] A
V3
2u-5 2n-5
=[2°-~-2° = 31x
"8 5

3. Conversion of Cartesian Coordinates to Triangle Address

For implementation of the triangular tessellation data structure in a global geographic information
system, it is necessary to convert the coordinates of the earth to the triangle address. Since longitde and
latitude can be directly represented by Cartesian coordinates, the problem can be reduced to conversion of
Cartesian coordinates into the triangle address. A recursive approximation algorithm for conversion of
Cartesian coordinates to triangle address will be derived below.

Let an equilateral triangle be divided into four triangles and let the centroid of the parent triangle be
denoted by O;_;p , the centroids of four son triangles are denoted as O, O; 1, Oj2, and O;; as
shown in Figure 3. We have O, = Ojo and the distance between the centroid of the parent triangle
and the centroids of the other three son triangles can be calculated by expressions (2-4a) to (2-4d).



If p(x,y) is an arbitrary point with Cartesian coordinates (x,y) and is inside the parent triangle,
the point p (x, y) will be a point in the k-th son triangle if p (x,y) isclosest to the centroid of son trian-
glek (k=0,1,2, or 3). Thiscan be seen by drawing three bisectors of the parent triangle and connect-
ing p (x,y) to the centroids of four son triangles as shown in Figure 3.

We start the recursive approximation procedures from level 0. To simplify the calculation, the dis-
tance squared is used instead of distance.

(1). Calculate the relative distance

2n—1
Axp = x-2"1, Ayp =y-— 3-1)
0 Yo =¥~ (
between (x, y) and the centroid of the original triangle.
(2). Calculate
DD = (Axg—AX1;)? + (Ayo—AYy,) (3-2a)

for 1=0,1,2,3, where AX,,; and AY,, are the relative distance from the centroids of the first
level triangles to the centroid of the O level triangle as expressed in (24a) to (2-4d)and o = 1 for
j=1 (level 1).
If

Min[D(1,0),D(1,1),D(1,2),D(1,3)] = D(Ll,k ), (3-2b)

then p (x, y) isin the triangle k, of the first level triangles and we set

a, =k (3—26)
and
Axy = Axp — AX 1, Ay, = Ayp — AYy,,. (3-24)

The recursive approximation algorithm for conversion of Cartesian coordinates to triangle address is
as follows:

input x, y, k;
output ay,G2,Q83, ...4,;
begin {main}
2n—1
Axy = x—2% Ayy = y—
0 Yo = Y 3
=0
repeat

for j=11tok
for I=11t03

=1
NZI = agy + E[a, = 0]

i=1
D) = (Axjg —AX;p? + (Ayj; — AY;p?
if
D(j, k) = min[D (;,0),D(,1).D(j,2), D(j,3)]



then

continue

end

Example 3. Given the Cartesian triangle address (x,y) = (23x2"~5,

a;, Gy, a3, a4.

(1). For j=0 wehave o= +1
Axg = (23-16)2"° = 125,

(2). For j =1 wehave a=+1:

Ax o = (7-0p2"5 = 7x2"-5,
D(1,0) = 57.33333
Axy; = (7T-0p2"° = 725,

D(1,1) = 196

Ax = (T+8)2"5 = 1525,
D(1,2) = 228

Ax 3 = (7-8)2"5 = 23,
D(13) =4

MinD(1,1) = D(1,3) = 4
We have

a; = 3 Axl = "2"—‘5

(3). For j = 2:Wehave o= +1 since a,#0,

Axzg = (-1-0p2*5 = =25,
D(2,0) = 4

Axyy = (m1-0p2"5 = —2n-3,
D(2,1) = 9333333

Axyp = (=1 +412%5 = 325,
D(2,2) = 25.333333

Axyy = (-1-4)"°
D(2,3) = 41.333333

MinD@2,1) = D(2,0) = 4

- 2n—5

We have
a,; = 0 AXZ =_2u—5

2
(4). For j = 3:Wehave a=~1 since ¥(a = 0) = L

i=}

11x2"5 . o
—‘é_——) find the triangular tiling address

- n—-5
pyy = A1 (g

"}
=«(5-0y"5 -5
A = =
\Y1,0 & G
Ayyy = —(5+16p2" 5 -21x2"S
“ \} B
—(5-8)x2"S 3x2"-5
A = =
Y1,2 B B
Ay, = S8 3x2"5
2 V3 B
3x2"-
Ay, = .
Y1 ‘Jé-
Ayzo = (B-0p2"5 32
o = = -
> 3 B
Ayay = (3-8)2"5  —5xs
1= =
* 3 3
Ayas = (3+4p2s  T*S
> B V3
Ayas = B+ayerd 1S
. B 3
3x2n—5
Ay, = .
Y2 \/3—



- n-5
Brye = (~1-0p2" = 2, Byse = B=OL7 _ 30ns

3
D@(3,0) =4
e s 3+4 n-5 7 L]
Axyy = (-1-0p2"* = =275, Aysy = € +%>a B )fg
D(3,1) = 17.333333 s
_ ~ 3__2)>an—5 2n—
Axay, = (14225 = 205, Ay, = & -
32 Y32 ‘1-3— \[3—
D(3,2) = 1.333333 s s
_ _ 3-2np"" 2"
Axy; = (~1-2p2"5 = ~35, Ayss = & -
33 Y3,3 \/3— ‘f3_

D(3,3) = 4333333

Min D(3,1) = D(3,2) = 1333333
We have

2»—5
a3 =2 Axy =2"° Ay =

3
(5). For j = 4:Wehave a=-1 since J(a; = 0) = 1.

i=1

e " 1-0 >an~5 2»—5
AX4'° = (1—0))(2 5 = 2 5, Ayc.o = ( é_ = .ﬁ- .
D @4,0) = 1.333333 s
n- n 1+2)2%5 3x2n-
Axy; = (1-0)2"5 = 25, Ay = € *—é - 2%
D@,1) = 4
- n-5
Ary; = (L+1p2™5 = 25, Ayes = Q—%ﬁ‘z— =0
D@2 =4
_ n-5
AX4'3 = (1-1)X2"‘5 = 0, Ay4'3 = Lll&_ = 0
B
D@43)=0
MinD@4,1) = D@4,3) = 0
We have
a, =3 Axy =0 Ay; = 0.

Therefore, the triangular tiling address is
A =a a; a3 a4 =3023.

5. The Area of Decomposed Triangles

The process we have described for creating an HSDS for the globe does not satisfy properties (1)
and (2) precisely; triangles at level k >0 are not equal in area, and have varying shapes, although we
believe that our scheme represents close to an optimum compromise between these conflicting objectives.
In this section we examine the areas of triangles explicitly. We assume that the earth is spherical, although
the results should generalize easily to the more accurate ellipsoid of revolution.

The earth surface area A between latitude ¢; and ¢, covered by a level O triangle is

TR
2

A = TR (Gno,—sinoy) @-1)

At level n, the total number of triangles in the belt between ¢ and ¢ + 2:; is



2n+l

n+2
Ny =2 =F-0-1 = F=Z -0

b4
and the earth surface area of a triangle at level n is

A 2 R? sin(¢+2™"! 1) —sin
_]\-[— = 2n+3 T (4-2)
¢ E. - 22 o

AAO =

When 2**! » 1, we have

sin(¢p +2™"1 ) —sinp = Py cos¢
and
,E_ —n-n-2 P lt__
, TR =0
The expression (4-2) can be written as
AA¢=k-:—°& = kX - gncy 4-3)
5-¢
where
 R? T
k 22n+4 ° x=;—¢'

From expression (4-3), it is interesting to note that the area covered by high level decomposed trian-

gle varies with the sinc function. In the range from 3 =0 to x = % , sincy is a monotonically

decreasing function of %, or AA, is an increasing function of ¢ for ¢ =0 to ¢ = 12"'- . For ¢=0 and

¢=~72£,wchave
AAy = &, AAr = [
9 2
and
AAE
AA(Z) =3 ¢

That is, for high level decomposed triangles, the corresponding area increases % = 1.5708 times when

latitude changes from O to 125_ . Only the triangles along a given latitude have the same area and the area

changes with latitude according to the sinc function as shown in Figure 4.

5. Algorithm to Find Neighbors of Triangles



It is often necessary to find the three directly connected neighbors of a given triangle with address
A =a,a5,83,...,4.
We denote the three neighbors as Top, Left and Right neighbors. The direction of the neighbors depends
on whether the triangle A is upward or downward as follows:

Top Left Right
Upward (NZeven) S NwW NE
Downward (NZ odd) N SwW SE
‘We use the codes
T =ty,t2,83,...50,
L =11,l2,l3,...,lk,
R =ry,rp,r3,...,Tk,

to represent the addresses of the Top, Left and Right neighbors respectively. Both the triangle and its
neighbor are inside a triangle of the j -th level if a,,a;,..,a;; does not change. The problem is to
determine the level of triangle within which a neighbor of a given triangle is contained, and to change the
code of a; a;,1, .. ,a: for the top, left and right neighbors of a given triangle separately.

Recall that the triangles are ordered as follows: v
(1). the center, top, left and right triangles within a triangle are ordered 0, 1, 2, and 3 respectively,
(2). the triangle with a; = 1 is a reflection of the triangle with a; = 0,

(3). the triangles with a; =2 and ag; =3 are the left-down (or left-up) and right-down (or right-up)
translation of the triangle with a; = 1 respectively.

The neighbor addresses can be searched using the the following conversion table:

a; Top Left Right
0 1# 24# 3#

1 o# 3 2

2 2 1 0#

3 3 0# 1

for a; (i from k to j),where # is the search terminate symbol. It can be implemented as follows.
(1). To find the top neighbor, starting from i =k, a; changesto 4:

i

2 if a;=2

15
t" 3 if a" = 3

and process g;, for t;_;. On the other hand if g; #2 and g; #3,then

t; =1 if a; = 0
t; =0 if g =1
and the search finishes.

We define this ¢ as j and set
e = a
fori=1t0i=j-1
(2). For the left neighbor, starting from i =k, a; changes to I



l"=3 if ai=1
l,'= if a,-=2

and process a;_; for l;.;. Onthe other hand if a; #1 and q; #3 , then
;=2 if a=0
I; =0 if =3

and the search finishes. We define this i as j and set
L = a

fori=1toi=j-1

(3). For the right neighbor, starting from i =k. a; changes to r;:

r; =2 if a;=1
r:=1 if a;=3

and process a;_; for r;_). Onthe other hand if g; #1 and g; # 3 ,then

r,-=3 if a,-=0
r,-=0 if a,-=2

and the search finishes. We define this i as j and set
Ty = Gg

fori=1ti=j-1

The algorithm for finding neighbor addresses described above is easy to implement as only
k—j+1 quaternary digits have to be determined by simple criteria and the other j—1 digits are only a
copy of the corresponding digits in the given triangle. The average number of quaternary digits which
need to be changed to find a neighbor can be determined as follows.

(1). The probability of changing only the last (k-th) digit is % ;
(2). The probability of changing j quaternary digits is 27
Therefore, the average number of steps of calculation is
k .
- Y S S
Sav -Elzj + ok =2 o
S, isless than 2 quaternary or 4 binary digits.

The neighbor finding algorithm can be used for searching hexagons with a given triangle included or
to find the twelve neighbors of a given triangle (Figure 5). Let a given triangle be denoted by T, and the
other five triangles in a hexagon are T; T, T3 T4 and Ts respectively. They can be found as follows
whether the given triangle is upward or downward.

For a hexagon with the given triangle as a top triangle:

T, = R(Ty), T, = T(Ty), Ty = L(T2), Ty = L(T3)
Ts = T(Ty)

For a hexagon with the given triangle as a left triangle:
T, = L(To), L, = L(Ty), Ty =T(T2), T4 = R(T3)



Ts = R(T4)
For a hexagon with the given triangle as a right triangle:

T, = T(To), T, = R(Ty), T3 = R(T3), T, =T(T3)

Ts = L(T4)

where T; = T(T;), T; = L(T;), and T; = R(T;), implies that the triangle T; is the top, left and
right neighbor of triangle T; respectively. The first four triangles in the three hexagons above are the
twelve neighbors of the given triangle as shown in Figure 5.

Another application of the neighbor finding algorithm is that a chain code with a series of codes
T (top), L (left) and R (right) can be used to describe lines or borders of arcas.

6. Average Data File Storage Distance

One of the important indices in data file structures for large geographical information systems is the
Average Data File Storage Distance (Goodchild and Grandfield, 1983; Mark and Goodchild, 1986 ). This
is defined as the average absolute difference between the addresses of neighboring cells or tiles; in our
case, each triangle is assumed to have three neighbors. Goodchild and Grandfield (1983) used the index in
a study of the data compression achieved by different ordering of a lattice, whereas Goodchild (1989)
argued its usefulness in predicting the time required to access data base partitions in very large spatial
archives. In this analysis we are concerned only with subdivisions of the level 0 triangles, and ignore the
differences which occur across edges of the octahedron,

The average data file storage distance is the sum of absolute differences between adjacent triangular
cells D,y divided by the number of edges OCipem ,» OF

Dmal

D =
= O0Coua

The total differences for triangular cells can be represented as

D:

; = 4xD;,; + AD;

and
OCI = 4X0Cj+1 + AOCJ

where 4xD;,; and 4xOCj;,; are the toial differences and number of edges of triangular cells for level
j+1 triangles and AD; and AOC; are the distances and edges added at the j -th level (See Figure 1b).

AD; = Q¥ IxakT = &N

is the sum of edge cell values of triangles 1,2 and 3 minus the sum of edge cell values of triangle 0 at the j
-th level, and

AOC 7 = 3)<2k—j

is the total number of edges added at the j -th level. Therefore
L/ L
D; =6x ¥ 2 = QNI
i=2(k—j) i=0



and

2(k-1) k-j
oc; =3x ¥ 2 = 32*xY
i=k=1 i=0
The average distance at j -th level is
D; .
. = - 2&—]+1
Den oc;

We have j = 1 when the 0 level triangle is decomposed to k -th level, In this case

D,, = 2k

7. Conclusions

The hierarchical data structure which we have described in this paper satisfies one of our original requirementsin full, by
preserving the relationships between neighboring cells. The distortions of areainherent in the structure, and described by the sinc
function, range up to afactor of 1.57 at the poles. Triangles become increasingly equilateral toward the center of each level O triangle
at higher levels of subdivision, but the triangles adjacent to each level 0 vertex always contain one right angle. Our requirements of
equal area and equal shape are thus satisfied only approximately.

In this structure every object on the earth’s surface can be indexed by the address of the smallest enclosing triangle. The
length of the addressis then adirect index of the object’s size. To find the smallest enclosing triangle of a polygon, we simply
determine the triangle address of one of its vertices to some arbitrary but high level k, and then identify alargest valuej < k such that
all other vertices share the same quaternary digits 1 through j. For example, the US, which spans two level 0 triangles, has a null
address, while the block formed by 3rd and 4th Streets, Broadway and Fulton in the City of Troy, New Y ork has the address
0223022113013 (level 13). The approximate edge length of alevel 16 triangle is 150m, or the rough dimensions of a city block,
according to Table 2. However while the Broadway and Fulton faces of the block are both wholly within level 16 triangles, the
smallest triangle enclosing the entire block is at level 13.

Length of address can also be used as a measure of uncertainty of position, by identifying the smallest triangle which
encloses the union of the object’s possible positions. For example, the accuracy currently provided by the Global Positioning System
(GPS or NavStar) is about 20m. The corresponding length of address for any point on the earth’s surface is 19 quaternary digits or 38
bits, any further precision being spurious. For comparison, to achieve 20m precision in latitude/longitude coordinates, it is necessary
to specify location to the nearest second, which requires 7 decimal digits plus sign for longitude and 6 digits plus sign for latitude.

The ideal workstation for global systems modeling would allow the user to browse freely through data distributed over the
surface of the globe. With datasets based on rectangular subdivision of acylindrical projection it isrelatively easy to browse in the
equatorial region, but difficult near the poles because of high levels of distortion and interruption at the pole itself. Similar problems
occur using rectangular subdivision of any other standard projection. For example, the orthographic projection gives aview of the
globe as it would appear from space. However it would be time consuming to re-compute and redisplay the projection for every
change of viewpoint.

Recent developmentsin 3D graphics display technology may make browsing on the globe much more practical. Instead of
projecting to a plane, asolid is represented digitally by a polyhedron with triangular faces, and displayed in perspective directly from a
display list of triangles. The graphical rendering (color or texture) of each triangle can be controlled directly from its attributes.
Workstations which can display polyhedra of 10,000 trianglesin 1 second are currently available for less than $20,000, and we can
expect orders of magnitude improvement in these specifications in the near future. Thus we are able with current technology to create
abrowse of aglobal dataset at level 6 (approximately | degree resolution). For spatial variables such as land/water, subdivision can be
much higher in some areas because of the relative homogeneity of continents and oceans. Thus the devel oping technology of 3D
display based on polyhedra with triangular faces gives a powerful argument for trianglebased tessellation over more conventiond
methods.

The results presented in this paper suggest several potentially fruitful areas for further work. We have thus far ignored the
non-spherical nature of the earth in calculating triangle areas. We aso intent to pursue the development of agorithms, particularly to
build the triangle data structure from vector data, such as the world’s coastlines. In the longer term, we plan to develop a prototype
workstation for global data based on the triangular structure and triangle display lists.
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Table 1. Basic geometric parameters of decomposed triangles




level deg min sec along equator along meridian
(longitude) km (latitude) km

0 90° 10018.5380 9983.8912

2 22°30° 2504.6345 2495.9953

4 5°37730°" 626.1586 623.9988

6 1°24722.57 156.5397 155.9997

8 21756257 39.1349 38.9999

10 516406257 9.7837 9.7500

12 1°19.1015"" 2.4459 24375

14 19.77539°" 611.5m 609.4m

16 49438~ 153.9m 152.3m

18 123596 38.2m 38.1m

20 0.3089904 " 9.55m 9.525m

Table 2. Length of wiangle edges at increasing levels of subdivision of a spheroid with radius

6378km along Equator and 6356km along meridian




level Oo,j—Oj_l 01'1"'0/'_1 Oz.j—o_,'_l 03_j—0j_1
(AX, AY) (AX, AY) (AX, AY) (AX, AY)
2;:-1 2»—2 2n—2
1 0,0 0, ~2"2, - 2"2, -
(0,0) ( i ) ( Ny ) ( i )
2;-2 2n—3 2u-3
2 0,0 0, -2"3, -« 23, —a
(0,0) (0, o B ) ( Ny ) ( i )
2»-—_, j 2n—]-l R 2n—]—1
. 0’ 0 0, - 2»—]—1 ,—Q 2n—j—1 ,—
J (0,0) (0,0 Ny ) ( Ny ( Ny

Table 3. Relative distances of successor triangles’ centroids to the centroid of their ancestor triangle.
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Figure 1 The triangular data structure applied to a quarter hemisphere, showing (a)
quaternary addressing, (b)decimal addressing, and (c) the ordering of level 4 tri-

angles
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Figure 2. Relationship between the coordinate systems
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Figure 3. Centoids of triangular cells and distance to these centroids
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Figure 4. Distribution of the area of triangular cells at different latitudes (sinc function)
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Figure 5. Hexagon including a given triangle, and twelve neighbors of a given triangle
a. Top hexagon with given triangle upward
b. Top hexagon with given triangle downward
¢. Left hexagon with given triangle upward
d. Left hexagon with given triangle downward
e. Right hexagon with given triangie upward
f. Right hexagon with given triangle downward
g. Twelve neighbors with given triangle upward
h. Twelve neighbors with given triangle downward
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