
UNIVERSITY OF CALIFORNIA,
IRVINE

Root-of-Trust Architectures for Low-end Embedded Systems

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Sashidhar Jakkamsetti

Dissertation Committee:
Professor Gene Tsudik, Chair

Professor Alfred Chen
Professor Ardalan Amiri Sani

2023

Portion of Chapter 3 © 2021 Institute of Electrical and Electronics Engineers
Portion of Chapter 4 © 2021 Institute of Electrical and Electronics Engineers
Portion of Chapter 5 © 2022 Institute of Electrical and Electronics Engineers

Portion of Chapter 6 © 2022 Association for Computing Machinery
All other materials © 2023 Sashidhar Jakkamsetti

DEDICATION

To my beloved family – my parents, Padmasree and Someswara Rao, my wife, Apoorva,
and my brother, Venkatesh.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vii

LIST OF TABLES ix

ACKNOWLEDGMENTS x

VITA xii

ABSTRACT OF THE DISSERTATION xv

1 Introduction 1
1.1 Contributions . 5
1.2 Scope and Limitations . 6
1.3 Dissertation Structure . 7

2 Background 8
2.1 Targeted Devices . 10
2.2 Remote Attestation (RA) . 12

2.2.1 VRASED . 13
2.3 Proofs of Execution (PoX) . 15

2.3.1 APEX . 15

3 Tiny-CFA: A Minimalistic Control-Flow Attestation Using Verified Proofs
of Execution 17
3.1 Introduction . 19

3.1.1 Contributions . 20
3.2 Background . 21

3.2.1 Control-Flow Attestation (CFA) . 21
3.3 Tiny-CFA . 22

3.3.1 Design Rationale & Security . 23
3.3.2 Optimizations . 27
3.3.3 Implementing Tiny-CFA . 29

3.4 Case Study & Evaluation . 31
3.4.1 Case Study: Control-Flow Attacks in Low-End MCU-s 31
3.4.2 Experimental Results . 33

iii

3.5 Conclusions . 37

4 DIALED: Data Integrity Attestation for Low-end Embedded Devices 38
4.1 Introduction . 40

4.1.1 Contributions . 41
4.2 Background . 41

4.2.1 Control-Flow vs. Data-Only Attacks 42
4.3 DIALED Design . 43

4.3.1 Overview . 44
4.3.2 Adversary Model . 46
4.3.3 Design Rationale . 47
4.3.4 Security Analysis . 49

4.4 DIALED Implementation . 50
4.5 Evaluation . 52

4.5.1 Hardware Overhead . 52
4.5.2 Experimental Analysis on Real-world Applications 53

4.6 Conclusions . 56

5 Privacy-from-Birth: Protecting Sensed Data from Malicious Sensors with
VERSA 57
5.1 Introduction . 59

5.1.1 Contributions . 60
5.2 Preliminaries . 61

5.2.1 GPIO & MCU Sensing . 61
5.2.2 LTL, Model Checking, & Verification 62

5.3 VERSA Overview . 64
5.4 MCU Machine Model . 68

5.4.1 Execution Model . 68
5.4.2 Hardware Signals . 70

5.5 PfB Definitions . 72
5.5.1 PfB Syntax . 74
5.5.2 Assumptions & Adversarial Model . 74
5.5.3 PfB Game-based Definition . 76

5.6 VERSA: Realizing PfB . 77
5.6.1 VERSA: Construction . 79
5.6.2 Encryption & Integrity of ER Output 83

5.7 Verified Implementation & Security Analysis 84
5.7.1 Sub-module Implementation & Verification 84
5.7.2 Sub-module Composition and VERSA End-To-End Security 88

5.8 VERSA Composition Proof . 90
5.9 Evaluation . 93

5.9.1 Toolchain & Prototype Details . 93
5.9.2 Hardware Overhead . 93
5.9.3 Verification Costs . 94
5.9.4 Runtime Overhead . 94

iv

5.9.5 Comparison with Other Low-End Architectures: 96
5.10 Discussion . 98

5.10.1 Clean-up after Program Termination 98
5.10.2 Data Erasure on Reset/Boot . 100

5.11 Limitations: . 100
5.11.1 Shared Libraries . 100
5.11.2 Atomic Execution & Interrupts . 101
5.11.3 Possible Side-channel Attacks . 101
5.11.4 Flash Wear-Out . 102
5.11.5 VERSA Alternative Use-Case . 102

5.12 Conclusions . 102

6 CASU: Compromise Avoidance via Secure Update for Low-end Embedded
Systems 104
6.1 Introduction . 106

6.1.1 Contributions . 107
6.2 Background . 107

6.2.1 TOCTOU Attacks & RATA . 108
6.3 CASU Scheme & Assumptions . 109

6.3.1 Basics . 109
6.3.2 Secure Update Overview . 110
6.3.3 Adversary Model . 111

6.4 CASU Design . 111
6.4.1 CASU-HW: Hardware Security Monitor 113
6.4.2 CASU Secure Update . 117
6.4.3 (Optional) CASU Secure Boot . 124

6.5 Implementation . 125
6.5.1 CASU-HW Verified Hardware Module 125
6.5.2 CASU-SW Secure Update Routine 126

6.6 Evaluation . 127
6.6.1 Hardware Overhead . 127
6.6.2 Runtime for Secure Updates . 128

6.7 Conclusions . 130

7 Related Work 131
7.1 Prior Work on RA and PoX . 133

7.1.1 Software-based RA . 133
7.1.2 Hardware-based RA . 133
7.1.3 Hybrid RA . 134
7.1.4 Temporal Aspects of RA . 134
7.1.5 PoX Related Work . 135

7.2 Mitigation of Control-flow Attacks . 136
7.2.1 Control-Flow Integrity (CFI) . 136
7.2.2 Control-Flow Attestation (CFA) . 137

7.3 Mitigation of Data-only Attacks . 137

v

7.3.1 Data-Flow Integrity (DFI) . 137
7.3.2 Data-Flow Attestation (DFA) . 138

7.4 Other Active RoTs . 138
7.5 Formally Verified Systems . 139
7.6 Remote Updates . 140

8 Conclusions & Future Work 141
8.1 Future Work . 142

Bibliography 145

vi

LIST OF FIGURES

Page

2.1 System Architecture of an MCU-based IoT Device 11
2.2 RA Protocol . 13

3.1 OR region used to store regular program outputs and CF-Log. 23
3.2 Instrumentation example: indirect control-flow instructions. 29
3.3 Instrumentation example: indirect write instructions. 30
3.4 Instrumentation example: R initialization check. 30
3.5 Instrumentation example: conditional branches. 30
3.6 Safety critical application exploitable by control-flow attacks. 32
3.7 Tiny-CFA Additional HW overhead (%) in Number of Look-Up Tables. Dashed

lines represent the total hardware cost of MSP430 core itself. 34
3.8 Tiny-CFA Additional HW overhead (%) in Number of Registers. Dashed lines

represent the total hardware cost of MSP430 core itself. 35

4.1 Embedded application vulnerable to a data-flow attack. 42
4.2 DIALED Architectural Components. 45
4.3 Instrumentation example: Logging P ’s arguments. 50
4.4 Instrumentation example: Logging runtime data inputs. 51
4.5 Total code size comparison . 54
4.6 Runtime comparison . 54
4.7 Log size comparison . 55

5.1 LTL Quantifiers . 63
5.2 MCU execution workflow with VERSA. 67
5.3 MCU Execution Model . 69
5.4 MCU Hardware Model . 70
5.5 Syntax of the PfB Scheme . 72
5.6 PfB Security Game . 73
5.7 PfB interaction between Ctrl and Dev . 75
5.8 VERSA Architecture . 77
5.9 Verified Remote Sensing Authorization (VERSA) Scheme 80
5.10 VERSA HardwareMonitor Specifications . 81
5.11 Verified FSM for GPIO and eKR Read-Access Control (LTL (5.10)-(5.14) &

LTL (5.18)-(5.19)) . 86
5.12 Verified FSM for eKR Write-Access Control (LTL (5.20)) 86

vii

5.13 ER Atomicity and Controlled Invocation FSM (LTL (5.15)-(5.17)) 87
5.14 VERSA End-To-End Security Properties in LTL. 88
5.15 VERSA Theorems for proving end-to-end security. 89
5.16 Runtime overhead of VERSA due to Verify 95
5.17 VERSA Additional HW overhead (%) in Number of Look-Up Tables 97
5.18 VERSA Additional HW overhead (%) in Number of Registers 97
5.19 Sample sensing operation that reads GPIO input, encrypts it, and cleans up

its stack after execution. 99

6.1 CASU Secure Update Protocol. 110
6.2 CASU Software Execution Flow. 113
6.3 CASU System Architecture. 114
6.4 CASU-HW Security Properties. 117
6.5 CASU Secure Update. 119
6.6 Secure Update Workflow: blue and green boxes indicate authorized and trusted

execution routines, respectively. 123
6.7 FSM of CASU-HW Verified Hardware Module. 125
6.8 CASU Additional HW overhead (%) in Number of Look-Up Tables 128
6.9 CASU Additional HW overhead (%) in Number of Registers 129
6.10 Runtime of CASU-SW Secure Update . 130

viii

LIST OF TABLES

Page

3.1 Original application costs . 36
3.2 Instrumented application costs . 36

4.1 Functionality and hardware overhead comparison of existing run-time attes-
tation architectures . 53

5.1 Notation Summary . 78
5.2 Hardware Overhead & Verification cost . 93

6.1 Notation Summary . 115
6.2 Hardware Overhead & Verification cost. 127

ix

ACKNOWLEDGMENTS

Such a wonderful five years of my life! Ph.D. was indeed a monumental learning experience.
It taught me patience and diligence and helped me evolve into a better and more mature
person. I am truly happy that I pursued this journey, and I am deeply grateful to everyone
who played a role, whether knowingly or unknowingly, in making it remarkable.

Above all, I am incredibly thankful to my amazing advisor, Gene Tsudik, for providing
me with the opportunity to pursue this Ph.D. with his generous support and guidance. He
taught me how to conduct proper research and, especially, how to write scientific papers. His
simple and unique style of writing and presenting research makes things easy to understand,
and I am glad that I could take at least some of it with me.

I extend my sincere thanks to my committee members, Ardalan Amiri Sani and Alfred
Chen, for their interest in my research and their valuable feedback and expertise. Having
such exceptional researchers on my Ph.D. committee was truly a privilege.

I also owe my gratitude to my early mentors without whom this journey wouldn’t have
started. First of all, I would like to convey my sincere thanks to Jean-Pierre Seifert, my
mentor during my first internship while pursuing Bachelor’s degree. He is one of the reasons
for my early interest in security. I would also like to thank my Bachelor’s advisors – Debashis
Ghosh and Vinod Pankajakshan – who were the very first to introduce me to research.

In addition to the mentors who helped me career-wise, I would also like to express my
immense respect and gratitude towards my early teachers, Krishnan Pagalthivarthi and
Ankush Mittal, who inspired me to pursue a Ph.D. and taught me how to lead a happy life.

Coming to my extraordinary collaborators during my Ph.D., I want to extend my heart-
felt thanks to all whom I have worked with, am currently working with, and/or continue
to work with: Ivan De Oliveira Nunes, Benjamin Terner, Seoyeon Hwang, Norrathep Rat-
tanavipanon, Youngil Kim, Karim Eldefrawy, Moti Yung, Zeyu Liu, and Varun Madathil.
Some of them were also my fellow labmates at UCI who were directly involved in some parts
of this dissertation. I especially want to mention Ivan De Oliveira Nunes, my close mentor,
with whom I had a lot of fun working, discussing, sharing ideas, and writing papers together.
I have learned a lot from him. I also want to specifically thank Benjamin Terner and Karim
Eldefrawy for introducing me to other interesting topics (apart from this dissertation) dur-
ing one of my internships, which I would like to further explore. This list of collaborators is
never-ending... thank you all so so much!

It would be incomplete without mentioning my dear friends that I made at UCI. I am very
thankful to all my labmates who were there for me throughout my journey: Norrathep
Rattanavipanon, Ivan De Oliveira Nunes, Ercan Ozturk, Yoshimichi Nataksuka, Seoyeon
Hwang, Andrew Searles, Youngil Kim, Renascence Tarafder Prapty, Elina Van Kempen,
and Gene Tsudik. Here’s to all the fun times!

Last but not least, my delightful family and friends. This phase of my life wouldn’t have

x

been this great if it weren’t for all of you. First and foremost, I want to express my deep
gratitude to my loving, understanding, and caring wife, Apoorva Muthineni. She was the
reason I made it this far. I can’t thank my parents, Padmasree and Someswara Rao Jakkam-
setti, and my brother, Venkatesh Jakkamsetti, enough. You guys have been my strongest
supporters throughout my life; this dissertation belongs to you! I would also like to thank
my grandparents, uncles, aunts, and cousins in my family. Additionally, I am very grateful
to all my friends in the US and India for their love, laughter, and support.

—

Portion of Chapter 3 is a reprint of the material as it appears in the Proceedings of 24th
Design, Automation and Test in Europe Conference (DATE 2021) [53], used with permission
from the Institute of Electrical and Electronics Engineers.

Portion of Chapter 4 is a reprint of the material as it appears in the Proceedings of the 58th
Design Automation Conference (DAC 2021) [52], used with permission from the Institute of
Electrical and Electronics Engineers.

Portion of Chapter 5 is a reprint of the material as it appears in the Proceedings of 43rd
IEEE Symposium on Security and Privacy (S&P 2022) [104], used with permission from the
Institute of Electrical and Electronics Engineers.

Portion of Chapter 6 is a reprint of the material as it appears in the Proceedings of the
41st International Conference on Computer-Aided Design (ICCAD 2022) [50], used with
permission from the Association for Computing Machinery.

Financial support was provided by Gene Tsudik (via Graduate Student Researcher position),
University of California, Irvine, UCI School of ICS (via Teaching Assistant position); and
other grants and funding sources (via Gene): Army Research Office under contract W911NF-
16-1-0536, Semiconductor Research Corporation under contract 2019-TS-2907, NSF Awards
1956393-SATC and 1840197-CICI, DARPA subcontract from Peraton Labs.

xi

VITA

Sashidhar Jakkamsetti

EDUCATION

Doctor of Philosophy in Computer Science 2023
University of California, Irvine Irvine, California

Bachelor of Technology in Electronics & Communications Eng. 2016
Indian Institute of Technology, Roorkee Roorkee, India

PROFESSIONAL EXPERIENCE

Research Scientist 2023 – present
Bosch Research Sunnyvale, California

Research Engineer Intern Summer 2022
Meta Research Menlo Park, California

Ph.D. Research Intern Summer 2021
Visa Research Menlo Park, California

Security Research Intern Summer 2019 & 2020
SRI International Menlo Park, California

Software Development Engineer 2016 – 2018
Microsoft Hyderabad, India

Research Intern & DAAD Scholar Summer 2015
Deutsche Telekom & Technical University of Berlin Berlin, Germany

TEACHING EXPERIENCE

Teaching Assistant 2018 – 2019
University of California, Irvine Irvine, California

xii

PAPERS IN SUBMISSION OR UNDER REVIEW*

Ivan De Oliveira Nunes, Seoyeon Hwang, Sashidhar Jakkamsetti, Norrathep Rattanavipanon,
and Gene Tsudik. PARseL: Towards a Verified Root-of-Trust over seL4. In submis-
sion at International Conference on Computer-Aided Design (ICCAD), 2023.

Sashidhar Jakkamsetti, Youngil Kim, and Gene Tsudik. Caveat (IoT) Emptor: Towards
Transparency of IoT Device Presence. In submission at ACM Conference on Computer
and Communications Security (CCS), 2023.

Sashidhar Jakkamsetti, Zeyu Liu, and Varun Madathil. Scalable Private Signaling. In
submission at IEEE Symposium on Security and Privacy (S&P), 2023.

Karim Eldefrawy, Sashidhar Jakkamsetti, Ben Terner, and Moti Yung. Standard Model
Time-Lock Puzzles: Defining Security and Constructing via Composition. In
IACR Cryptology ePrint Archive, 2023.

REFERRED CONFERENCE PUBLICATIONS*

Ivan De Oliveira Nunes, Sashidhar Jakkamsetti, Youngil Kim, and Gene Tsudik. CASU:
Compromise Avoidance via Secure Updates for Low-end Embedded Systems.
Appeared at International Conference on Computer-Aided Design (ICCAD), 2022.

Ivan De Oliveira Nunes, Seoyeon Hwang, Sashidhar Jakkamsetti, and Gene Tsudik. Privacy-
from-Birth: Protecting Sensed Data from Malicious Sensors with VERSA. Ap-
peared at IEEE Symposium on Security and Privacy (S&P), 2022.

Ivan De Oliveira Nunes, Sashidhar Jakkamsetti, Norrathep Rattanavipanon, and Gene Tsudik.
On the TOCTOU Problem in Remote Attestation. Appeared at ACM Conference
on Computer and Communications Security (CCS), 2021.

Ivan De Oliveira Nunes, Sashidhar Jakkamsetti, and Gene Tsudik. DIALED: Data In-
tegrity Attestation for Low-end Embedded Devices. Appeared at Design Automation
Conference (DAC), 2021.

Ivan De Oliveira Nunes, Sashidhar Jakkamsetti, and Gene Tsudik. Tiny-CFA: A Mini-
malistic Control-Flow Attestation Using Verified Proofs of Execution. Appeared
at Design, Automation & Test in Europe (DATE), 2021.

*Authors in the listed publications are arranged in alphabetical order of their last name.

xiii

OTHER PUBLICATIONS

Sugareddy, Sai Rohith, Sashidhar Jakkamsetti, Ramesh Goud, Yashaswini K.V. Digi Anal-
ysis: Static And Dynamic Evaluation Of Facial Asymmetry & Mandibular Devi-
ation. Appeared at International Journal of Current Advanced Research, 2021. (Runner-up
in Competitive Table Clinic (Research), Indian Orthodontic Society, 2021.)

OPEN-SOURCE CONTRIBUTIONS

Scalable Private Signaling https://github.com/sashidhar-jakkamsetti/sgx-ps
Implementation of Scalable Private Signaling using Intel SGX SDK and Drivers, and
OpenSSL written in C++.

CASU https://github.com/sprout-uci/CASU
Implementation of CASU using Xilinx Vivado, Diligent Basys3 FGPA, OpenMSP430,
and HACL* written in Verilog and C.

VERSA https://github.com/sprout-uci/pfb
Implementation of VERSA using Xilinx Vivado, Diligent Basys3 FGPA, OpenMSP430,
and HACL* written in Verilog and C.

VRASED+ https://github.com/sprout-uci/vrased-plus
Implementation of VRASED+ (VRASED with Verifier Authentication) using Xilinx
Vivado, Diligent Basys3 FGPA, OpenMSP430, and HACL* written in Verilog and C.

RATA https://github.com/sprout-uci/RATA
Implementation of RATA using Xilinx Vivado, Diligent Basys3 FGPA, OpenMSP430,
and HACL* written in Verilog and C.

xiv

https://github.com/sashidhar-jakkamsetti/sgx-ps
https://github.com/sprout-uci/CASU
https://github.com/sprout-uci/pfb
https://github.com/sprout-uci/vrased-plus
https://github.com/sprout-uci/RATA

ABSTRACT OF THE DISSERTATION

Root-of-Trust Architectures for Low-end Embedded Systems

By

Sashidhar Jakkamsetti

Doctor of Philosophy in Computer Science

University of California, Irvine, 2023

Professor Gene Tsudik, Chair

Internet-of-Things (IoT), “smart”, and Cyber-Physical Systems (CPS) devices have become

increasingly popular and commonplace over the past two decades. Some of them perform

safety-critical tasks and collect sensitive information, e.g., smoke detectors, temperature

sensors, heart rate monitors, and fitness trackers. However, due to their stringent cost, size,

and energy constraints, they are equipped with few (or no) security features. This makes

them vulnerable to attacks. Some prior work proposed security architectures (such as remote

attestation, proof of execution, and secure reset/erasure) to detect and mitigate malware on

them. However, these approaches either partially mitigate the problem and/or require new

hardware that is unrealistic for low-end devices.

This dissertation presents four hybrid (hardware/software co-design) root-of-trust (RoT)

architectures that mitigate various attacks with small hardware modifications: TinyCFA,

DIALED, VERSA, and CASU. TinyCFA and DIALED are passive RoTs that detect runtime

(control-flow and data-only) attacks by proposing new control-flow and data-flow attestation

architectures respectively. Whereas, VERSA and CASU are active RoTs that prevent sensor

data privacy leakage and code-injection attacks based on hardware-enforced access control

mechanisms. We implement and evaluate these architectures on low-end microcontrollers

(e.g., TI MSP430) and show that they are suitable for resource-constrained IoT. We also

xv

formally verify the hardware implementation of VERSA and CASU, thus showing that they

meet all stated security requirements.

xvi

Chapter 1

Introduction

Internet-of-Things (IoT) and Cyber-Physical Systems (CPS) refer to (inter)connected em-

bedded devices equipped with sensors, actuators, control units, and network connectivity

that enable them to collect, process, and exchange data. Such special-purpose computing

devices have become increasingly ubiquitous and widely adopted in many everyday settings,

including both private (e.g., homes, offices, and factories) and public (e.g., cultural, enter-

tainment, and transportation) spaces; they are also frequently used in farming, industrial,

and vehicular automation. This enables the creation of "smart" environments that improve

efficiency, productivity, and convenience in various aspects of modern society. It is expected

that the number of IoT devices will exceed 29 billion by 2030 [122], indicating their continued

growth and important role in shaping the future of industries, societies, and economies.

In contrast with general-purpose computers, IoT devices are purpose-built for specific tasks

that involve sensing and/or actuation. Some of these devices have safety-critical functions,

such as smoke/fire detectors, smart door locks, surveillance cameras, and other safety sensors

used in industrial and automobile settings. On the other hand, there are IoT devices that

gather and process sensitive personal information, including wearables like fitness trackers,

1

smartwatches, and health monitors such as pacemakers, connected inhalers, and syringe

pumps.

IoT device manufacturers understandably prioritize the development of novel functionality,

external aesthetics, user-friendliness, and other factors. Unfortunately, security is often

considered a secondary concern or an afterthought. This is partly due to various constraints

such as physical space, energy consumption, and cost considerations.

Unsurprisingly, IoT devices have been easy and attractive attack targets over the past few

years, e.g., [121, 94, 58, 42]. In 2010, Stuxnet Worm [121] targeted industrial control systems

(specifically, programmable logic controllers) used in Iran’s nuclear facilities. By exploiting

vulnerabilities in their firmware, Stuxnet disrupted centrifuge operations, causing physical

damage to the equipment and sabotaging the nuclear enrichment process. In 2016, Mirai

Botnet [94] launched a large-scale Distributed Denial-of-Service (DDoS) attack that infected

a vast number of poorly secured IoT devices, including cameras and routers. Mirai also

zombified Dyn, a major DNS provider in the US, causing widespread service disruptions and

making them inaccessible for several hours. There are also many Mirai-inspried Botnets (e.g.

Bashlite [7] and Hajime [8]) that search for, and infect, vulnerable IoT devices in order to

later take advantage of them. In 2017, Triton (or Trisis) malware [58] attacked industrial

safety systems used in oil and gas related infrastructures, leading to physical accidents and

disruptions. There are also numerous attacks targeting IoT user privacy [63, 64, 130, 113, 16].

Notably, [130, 16] attacked smart home devices and eavesdropped on users to obtain sensitive

private information.

A lot of research effort was invested in mitigating security and privacy issues in the IoT

ecosystem. Many proposed techniques (e.g., [132, 78, 91]) use end-to-end encryption, au-

thentication, and other cryptographic constructs to secure IoT devices and their communica-

tion with cloud servers. Another research direction focused on protecting sensitive data from

passive in-network adversaries, (e.g. [127, 22, 23]) and performing analysis based on traffic

2

metadata, e.g., packet header fields, size, and frequency. However, most of the prior work as-

sumes that these devices execute expected benign software and thus perform their expected

functionality, including cryptographic operations upon which their security generally relies.

Aforementioned techniques are suitable for high-end computing devices, such as smartphones

and laptops, because they are, by default, equipped with protective hardware such as Mem-

ory Protection Units (MPUs), Memory Management Units (MMUs), or Trusted Execution

Environments (TEEs). Such devices also support operating systems or microkernels to pro-

vide virtualization and isolate security-sensitive functions. However, the situation becomes

more challenging with low-power and budget-constrained embedded devices.

Low-end embedded devices are typically equipped with one or more resource-constrained

micro-controller unit(s) (MCUs) (for example, TI MSP430 [74] and AVR AtMega32 [5]),

which cannot run complex software or host expensive hardware. They often run simple

software on "bare metal" with minimal (or no) security mechanisms in place. Consequently,

it is impractical to assume that these MCUs, by themselves, can mitigate attacks, unlike

their higher-end counterparts.

A naive approach to protect these MCUs is by making all software to be read and execute

only. While this idea prevents malware from tampering with the software, it also sacrifices

flexibility by precluding any software updates.

Motivated by the aforementioned concerns, several small Root-of-Trusts (RoTs) were re-

cently proposed to provide rudimentary security services such as remote attestation [62, 47,

119, 21, 81, 117], proof of remote software execution [49, 118], proof of secure reset, erase,

and update [27, 115, 48] on low-end devices. These tiny RoTs are usually implemented

as hardware/software (hybrid) co-designs, aiming to achieve similar security levels as more

costly hardware-based architectures, albeit, at much lower hardware cost. See Chapter 2 for

more details on low-end MCUs and hybrid RoTs.

3

Nonetheless, current state-of-the-art can only measure software integrity, which although

useful, is not sufficient for a comprehensive security design. Their key limitations are:

1. Techniques such as remote attestation and proofs of software execution measure soft-

ware integrity during runtime. However, this does not capture the control-flow path

taken by the software. For example, a buffer overflow attack can corrupt the stack

or heap, potentially leading to a control-flow attack, i.e., where the software takes an

unexpected (or unintended) execution path. In that case, despite measuring software

integrity, the result of the execution is incorrect.

2. Data-only attacks target and corrupt the critical data variables while allowing the

software to follow expected control-flow path, thus remaining undetected. Techniques

that mitigate such attacks in sophisticated devices are not applicable to low-end MCUs

since they require much additional hardware.

3. Most prior results are reactive in nature, meaning they can detect and report software

compromises after the fact. However, they cannot prevent such compromises. Merely

detecting software compromises is not very useful in privacy-sensitive or safety-critical

applications. For example, consider a smoke detector. If the malware launches a code

injection attack, it can prevent the alarm from sounding even in the presence of smoke.

In such a scenario, despite attestation detecting the compromise, the consequences

could be catastrophic. Moreover, attestation during such real-time applications is a

hindrance because of its runtime overhead.

This dissertation explores new techniques in order to fill the gap in securing low-end resource-

constrained MCUs.

4

1.1 Contributions

We present four RoT architectures for low-end MCUs:

1. Tiny-CFA – a control-flow attestation architecture that detects control-flow attacks by

measuring the control-flow path taken by the software during runtime.

2. DIALED – a data-flow attestation architecture that detects both control-flow and

data-only attacks by measuring data-flow taken by the software during runtime.

3. VERSA – a privacy architecture that prevents sensor data leakage by enabling a

hardware-enforced access control mechanism.

4. CASU – a security architecture that prevents code-injection attacks by enforcing benign

software immutability and enabling secure authorized software updates.

The first two are passive architectures that detect and report runtime software exploits in

low-end IoT devices. Whereas, the second two are active architectures that prevent privacy

leakage and code modification attacks. They are specifically targeted toward personal or

safety-critical devices.

The focus of this dissertation is on designing, implementing, and evaluating these RoTs.

Another contribution of this dissertation is it implements formally verified hardware to derive

its security properties. For the first two RoTs, we use verified hardware to extend runtime

execution integrity, while for the other two, we implement new hardware, and verify it, to

enforce the stated security properties.

Additional hardware used in the proposed architectures is kept minimal, accounting for less

than 10-15% of the unmodified MCU core, making it suitable for low-end devices. Further-

more, all source code (including verification proofs) of VERSA and CASU are open-sourced.

5

1.2 Scope and Limitations

As usual with most new techniques, those proposed in this dissertation have limitations with

respect to applicability, deployability, and security:

1. In terms of scope, they only apply to very low-end MCUs that perform simple tasks.

Hence, they are probably not suitable for complex devices that run sophisticated soft-

ware, as they may incur noticeable overhead when the software size increases. However,

in our experiments (see the following Chapters), the overhead incurred by proposed

RoTs is tolerable.

2. With regard to deployability, proposed techniques are not applicable to off-the-shelf

MCUs, due to reliance on custom hardware support. However, all proposed techniques

can be extended to MCUs equipped with hardware support, such as a TEE (e.g. ARM

TrustZone [26]) with minor modifications.

3. In terms of security level, proposed techniques offer protection against software-compromised

MCUs including those that are physically re-programmed. However, physical invasive

attacks (e.g., inducing hardware faults, snooping on the memory bus, or retrieving

MCU secrets via physical side-channels) are out of scope. There are standard tech-

niques that address such attacks [110].

This dissertation further discusses these and other specific limitations inline in the corre-

sponding chapters.

6

1.3 Dissertation Structure

Next, Chapter 2 provides some background relevant to the dissertation as a whole, includ-

ing its scope and required fundamental security services: Remote Attestation and Proof-

of-Execution (PoX). Chapters 3 and 4 present, respectively, Tiny-CFA and DIALED, the

runtime attestation architectures for detecting control-flow and data-only attacks in low-end

MCUs. These two architectures are built atop PoX to support basic runtime attestation

mechanisms. DIALED is directly built atop Tiny-CFA to further reduce hardware overhead.

Chapter 5 focuses on sensor data privacy problem stated earlier. It defines sensor data

privacy, Privacy-from-Birth, and presents a provable RoT – VERSA – that realizes Privacy-

from-Birth with formally verified hardware. Next, Chapter 6 introduces CASU, a proactive

RoT that prevents code modification attacks. CASU includes an efficient secure over-the-

air update protocol suitable for low-end devices. Finally, Chapter 7 discusses directions for

future work.

We note that Chapter 2 only includes background on topics relevant to the dissertation

as a whole. Background specific to a particular chapter is provided within that chapter.

Similarly, system and adversary models are defined on a per-chapter basis. For the most

part, notation is consistent across chapters.

7

Chapter 2

Background

8

Abstract

This chapter overviews background material. Section 2.1 sets the scope of targeted

devices. We motivate this choice and discuss some intended contributions (specific

contributions are outlined in subsequent chapters). Next, Section 2.2 overviews Remote

Attestation (RA): a security service that enables verification of the software state

of a potentially compromised remote device – a prover (Prv) – by a trusted verifier

(Vrf). We also overview of VRASED, a formally verified RA architecture for low-end

MCUs. Lastly, Section 2.3, describes Proof-of-Execution (PoX): an attestation service

that provides proof that software executed properly, besides measuring its integrity.

Following this, we overview APEX, a formally verified PoX architecture for low-end

MCUs.

9

2.1 Targeted Devices

We focus on low-end CPS/IoT/smart devices with low computing power and meager re-

sources. These are some of the smallest and weakest devices based on low-power single-core

MCUs with only a few kilobytes (KB) of program and data memory. Two prominent exam-

ples of such MCUs are Atmel AVR ATmega [5] and TI MSP430 [74]: 8- and 16-bit CPUs,

respectively, typically running at 1-16MHz clock frequencies, with ≈ 64KB of addressable

memory.

Figure 2.1 illustrates a generic architecture of such MCUs. It includes a CPU core, a Direct

Memory Access (DMA) controller, and an interrupt control logic connected to the main

memory via a bus, on a single System-on-a-Chip (SoC). DMA is a hardware controller that

can read/write from/to memory in parallel with the core. Main memory contains several

logical regions: read-only memory (ROM), program memory (PMEM or flash), Interrupt

Vector Table (IVT), data memory (DMEM or RAM), and peripheral memory. IVT stores

pointers to the Interrupt Service Routines (ISRs), where the execution jumps when an inter-

rupt occurs; it also contains the Reset Vector pointer from where the core starts to execute,

after a reboot. Application software is installed in PMEM, which is non-volatile memory

realized as flash, and it uses DMEM, which is volatile memory made up of DRAM, for

its stack and heap. ROM contains the bootloader and/or any immutable software hard-

coded at manufacturing time, which is not modifiable thereafter. Peripheral memory region

(also in DRAM and often considered as a part of DMEM), contains memory-mapped I/O

and other communication interfaces, i.e., addresses in the memory layout that are mapped

to hardware components, e.g., timers, General-Purpose Input/Output (GPIO), Universal

Asynchronous Receiver/Transmitter (UART), Analog-to-Digital Converter (ADC) and vice

versa, Inter-Integrated Circuit (I2C), and Serial Peripheral Interface (SPI). In particular,

GPIO is peripheral memory addresses hardwired to physical ports that interface with exter-

nal circuits, e.g., analog sensors/circuits.

10

Figure 2.1: System Architecture of an MCU-based IoT Device

We note that small MCUs usually come in one of two memory architectures: Harvard and

von Neumann. The former isolates PMEM and DMEM by maintaining two different buses

and address spaces, while the latter keeps both PMEM and DMEM in the same address

space and accessible via a single bus.

These MCUs execute instructions in place, i.e., directly from flash memory. They have

neither memory management units (MMUs) to support virtualization/isolation, nor memory

protection units (MPUs). Therefore, privilege levels and isolation used in higher-end devices

and generic enclaved execution systems (e.g., Intel SGX [75] or ARM TrustZone-A [26]) are

not applicable.

The prototype implementation of all the proposed RoTs in this dissertation is based on

MSP430 MCU, a common platform for low-end embedded devices. One important factor

in this choice is public availability of an open-source MSP430 MCU design – OpenMSP430

11

[68]. Nonetheless, we note that our generic machine model and methodology can be readily

applicable to other low-end MCUs of the same class, such as Atmel AVR ATmega. Addi-

tionally, we hope that the lessons and insights gained from this work can be valuable for

designing and proving the security of similar services targeting higher-end devices.

2.2 Remote Attestation (RA)

Remote Attestation (RA) allows a trusted entity (verifier = Vrf) to remotely measure current

memory contents (e.g., software binaries) of an untrusted embedded device (prover = Prv).

As shown in Figure 2.2, RA is usually realized as a challenge-response protocol:

1. Vrf sends an attestation request containing a challenge (Chal) to Prv.

2. Prv receives the request and computes an authenticated integrity check over its memory

and Chal. The memory region can be either pre-defined or explicitly specified in the

attestation request.

3. Prv returns the result to Vrf.

4. Vrf verifies the result and decides if it corresponds to a valid Prv state.

The authenticated integrity check is accomplished by first measuring the Prv software mem-

ory using a suitable cryptographic hash function (e.g., SHA-256). Then, the result, i.e. the

digest, is authenticated using a Message Authentication Code (e.g., HMAC) or a digital

signature (e.g., ECDSA). While computing a MAC requires Prv to have a symmetric key

shared with Vrf, computing a signature does not need any shared secrets, since Vrf uses

Prv’s public key for verification. Both MAC and signature require secure storage to store

the symmetric/private key that is not accessible to software running on Prv memory, except

for trusted and typically immutable attestation code (or attestation hardware engine, when

12

Figure 2.2: RA Protocol

present). Since we are dealing with low-end MCUs, we assume the symmetric key setting

with MAC implementation, however, we note that using a public key with signatures is not

very different. Since most RA threat models assume that Prv’s software is compromised,

secure key storage implies some level of hardware support.

2.2.1 VRASED

VRASED [47] is a verified hybrid (hardware/software) RA architecture for for low-end

MCUs. It comprises a set of (individually) verified hardware and software sub-modules; their

composition provably satisfies formal definitions of RA soundness and security. VRASED

software component, which is immutable (stored in ROM), implements the authenticated

integrity function computed over a given “Attested Region” (AR) of Prv’s memory. Mean-

while, its hardware component assures that its software counterpart executes securely and

that no function of the secret key is ever leaked. In short, RA soundness states that the

integrity measurement must accurately reflect a snapshot of Prv’s memory in AR, disal-

13

lowing any modifications to AR during the actual measurement. RA security defines that

the measurement must be unforgeable, implying protection of secret key K used for the

measurement.

In order to prevent DoS attacks on Prv, the RA protocol may involve authentication of the

attestation request, before Prv performs attestation. If this feature is used, an authentication

token must accompany every attestation request. (By saying “this feature is used”, we mean

that its usage, or lack thereof, is fixed at the granularity of a Vrf-Prv setting, and not per

single RA instance.). In VRASED, Vrf computes this token as an HMAC over Chal, using K.

Since K is only known to Prv and Vrf, this token is unforgeable. To prevent replays, Chal is

a monotonically increasing counter, and the latest Chal used to successfully authenticate Vrf

is stored by Prv in persistent and protected memory. In each attestation request, incoming

Chal must be greater than the stored value. Once an attestation request is successfully

authenticated, the stored value is updated accordingly.

VRASED software component is based on a formally verified HMAC implementation from

the HACL* cryptographic library [139], which is used to compute:

H = HMAC(KDF (K, Chal), AR) (2.1)

where KDF (K, Chal) is a one-time key derived from the received Chal and K using a key

derivation function.

All techniques proposed in this dissertation use VRASED for some form of attestation or

HMAC computation on Prv memory. Details of each instance of VRASED usage are in each

chapter.

14

2.3 Proofs of Execution (PoX)

PoX augments RA capability by proving to Vrf that: (a) the expected software is stored in

Prv memory, and (b) this code executed, and any outputs were produced by its timely and

authentic execution. In short, PoX cryptographically binds and authenticates the executed

software and the outputs it generated during runtime, with the help of RA.

2.3.1 APEX

The first PoX architecture for low-end MCU-s is in APEX [49]. It includes a hardware module

controlling the value of a 1-bit flag called EXEC, that cannot be written by any software. A

value EXEC = 1 indicates to Vrf that attested code was executed successfully, between the

time when the Chal was received from Vrf and the time when the RA measurement occurs

(via HMAC). Similarly, when it receives an attestation reply with EXEC = 0, Vrf concludes

that execution of said code did not occur, or the code terminated due to an error, or that

execution (or its output) was tampered with. In APEX, theRA measurement covers: (a) the

EXEC flag itself; (b) the region where this execution’s output is saved (output region – OR);

and (c) the executable itself (stored in the executable region – ER). Thus, security of the

underlying RA architecture guarantees that the contents of these memory regions cannot

be forged/spoofed to something different from their values at the time of the attestation

computation.

APEX considers that a code executed properly (and sets EXEC = 1) if and only if:

1. Execution is atomic (i.e., uninterrupted), from the executable’s first instruction (legal

entry ERmin), to its last instruction (legal exit ERmax);

2. Neither the executable (ER), nor its outputs OR are modified in between the execution

15

and subsequent RA computation;

3. During execution, data-memory (including OR) cannot be modified, by means other

than the executable in ER itself, e.g., no modifications by other software or DMA

controllers.

These conditions mean that EXEC = 1 assures that memory contents (of ER and OR) are

consistent between ER’s code execution and respective attestation, and that execution itself

is untampered, e.g. via interrupts, or modification of intermediate results in data memory.

ER and OR locations and sizes are configurable, allowing for PoX of arbitrary code and

output sizes. APEX implementation is built atop VRASED. Moreover, APEX hardware

module is itself formally verified to adhere to a set of formal logic specifications, similar to

VRASED. These properties, along with VRASED verified guarantees, are proven sufficient

to imply a security definition (stated using the cryptographic security game framework [92])

for unforgeable proofs of execution. For a detailed description of APEX proofs, we refer the

interested reader to [49].

As discussed in [49], similar to Trusted Execution Environments (TEEs) targeting higher-

end platforms (e.g., Intel SGX [75] and ARM TrustZone[26]), APEX assumes executable

correctness, i.e., the code to be executed on Prv is assumed to be bug-free and memory-

safe code. Hence, APEX does not protect against runtime (aka control-flow and data-only)

attacks. In Tiny-CFA and DIALED, we bridge this gap by introducing an automated code

instrumentation technique that uses APEX to implement Control-Flow Attestation (CFA)

and Data-Flow Attestation (DFA), respectively. In other words, we show that CFA on top

of APEX (or any PoX), without any additional hardware requirement, is both possible and

affordable.

16

Chapter 3

Tiny-CFA: A Minimalistic Control-Flow

Attestation Using Verified Proofs of

Execution

17

Abstract

This chapter fills the gap in prior work by detecting control-flow attacks in low-end

MCUs. Control-flow attacks refer to manipulation of software execution flow during

runtime, which can lead to incorrect and potentially malicious behavior. While a few

techniques have been proposed, they require a lot of additional hardware that might

cost more than the underlying MCU.

To this end, we construct Tiny-CFA, a Control-Flow Attestation (CFA) technique

that requires only a single hardware capability: the ability to generate proofs of remote

software execution (PoX). This results in the lowest hardware overhead among all CFA

techniques. Furthermore, in terms of runtime overhead, Tiny-CFA incurs lower perfor-

mance compared to previous CFA techniques. We implement and evaluate Tiny-CFA,

analyze its security, and demonstrate its practicality using real-world publicly available

applications.

Material in this chapter appeared in the Proceedings of 24th Design, Automation

and Test in Europe Conference (DATE 2021) [53].

18

3.1 Introduction

Runtime/data-oriented attacks [125] tamper with execution state on the program’s stack or

heap to arbitrarily divert the program’s execution flow. Such attacks need not modify the

executable itself, but only the order in which its instructions are executed. Thus, they are not

detectable by RA. Control-flow attacks can be launched by a variety of means. For instance,

in languages such as C, C++, and Assembly (which are widely used to program MCU-s), buffer

overflows [45] can overwrite functions’ return addresses, hijacking the program’s control-

flow and launching well-known Return-Oriented Programming (ROP) attacks [120]. These

attacks are especially dangerous for low-end MCU-s that can not avail themselves of more

sophisticated OS-based mitigations, e.g., canaries, Address Space Layout Randomization

(ASLR), and Control-Flow Integrity techniques, available in high-end platforms. We discuss

a concrete example of such an attack in low-end MCU-s (and how it is detected by Tiny-CFA)

in Section 3.4.1.

Control-Flow Attestation (CFA) [15, 55, 54, 135] augments conventional RA capability to

enable detection of control-flow attacks. CFA techniques provide Vrf with a report that

conveys whether the expected code is loaded on Prv, as well as which particular instruction

path was taken during each execution of this program. In other words, CFA provides an

authentic and unforgeable report that allows Vrf to learn if instructions of a given program

were executed in a particular expected/legal order. This is typically achieved by securely

logging information associated with the destination of each control-flow altering instruction,

e.g., jumps, branches, returns.

CFA techniques have been implemented on medium- to high-end embedded devices (e.g.,

Raspberry Pi, and RISC-V based processors), by leveraging trusted hardware support, such

as ARM TrustZone, hardware branch monitors, and hardware hash engines. However, for

resource constrained MCU-s, these requirements are too costly, since their hardware overhead

19

is often higher than that of the MCU’s core itself, in terms of size, energy, and monetary

cost. To bridge this gap, our work uses PoX [49] (see Section 2.3 for details) – along

with automatic code instrumentation, to derive a new CFA technique. Since PoX can be

implemented efficiently even on most resource-constrained MCU-s, our CFA technique has

considerably lower hardware overhead than that of prior work.

3.1.1 Contributions

This chapter makes the following contributions:

1. Design of Tiny-CFA– a CFA technique based on automated software instrumentation

where the only hardware requirement is that already provided (at relatively low-cost)

by PoX architectures.

2. Implementation of Tiny-CFA based on APEX – as a result, its hardware cost is about

1 to 2 orders of magnitude lower than prior CFA techniques. Hence, it is suitable for

the low-end and ultra-low-energy MCU-s, such as MSP430 and AVR ATmega32. We

also show a case study of a control-flow attack and how Tiny-CFA detects it.

We note that because Tiny-CFA implementation relies on a formally verified PoX architec-

ture as the sole architectural component on Prv, it is also the first CFA technique to offer

the high-level assurance provided by a verified hardware Trusted Computing Base (TCB).

20

3.2 Background

3.2.1 Control-Flow Attestation (CFA)

Runtime attacks exploit program vulnerabilities to cause malicious and unauthorized pro-

gram actions. The most prominent example is a buffer overflow, allowing the attacker to

corrupt memory adjacent to a buffer. The main target of these attacks is the manipulation

of control-flow information stored on the program’s stack and heap, causing the program to

deviate from its intended behavior. In addition to detection of code modification via RA,

CFA detects such runtime attacks that hijack the program’s control-flow by reporting the

path the program took to Vrf.

A typical CFA scheme works by first instrumenting the existing software to record every

control-flow transfer it takes at runtime. After the program terminates, this log is then sent

to the Vrf for investigation of potential control-flow attacks. The instrumentation ensures

that at each control-flow altering instruction (e.g., jumps, branches, returns), execution

is trapped into a secure region to log the destination address. Only logging each control-flow

transfer is not sufficient, since one flavor of control-flow attacks involves hijacking the loops

to iterate more or fewer times than expected. Therefore, CFA also logs the condition on

which such control-flow transfer occurs.

C-FLAT [15] is the earliest CFA architecture. It uses ARM TrustZone-M [90] secure world

to implement CFA. By instrumenting the executable, at its every control-flow transfer, with

context switches between TrustZone’s normal and secure worlds, the control-flow path is

logged into protected memory. C-FLAT targets higher-end embedded devices (e.g., Rasp-

berry Pi), and its dependence on TrustZone (plus, numerous context switches) makes it

unsuitable for low-end MCU-s.

21

3.3 Tiny-CFA

Tiny-CFA uses APEXPoX that ties the executed code to its output, stored in a data-memory

range of configurable size, called OR. The basic idea is to instrument the code to produce

a log of the program control-flow path and make it a part of the output. The program

instrumentation writes the destination address of each control-flow altering instruction into

OR. We denote this control-flow log as CF-Log.

As shown in Figure 3.1, both regular program outputs and CF-Log are written to OR. Recall

from Section 2.3 that OR size/location is configurable. Hence, Vrf can choose OR to be large

enough to fit both the regular program output and its expected CF-Log. Note that, in any

CFA scheme, Vrf must have a priori knowledge of the expected/benign control-flows and

their sizes. Therefore, the appropriate OR size is trivially obtained by adding the regular

output and CF-Log sizes. The regular program output is written to OR normally, bottom-

to-top of OR, as in APEX. Whereas, Tiny-CFA instrumentation writes CF-Log to OR from

top to bottom. This strategy is similar to how stack and heap are handled in RAM and it

assures that the program output and CF-Log do not interfere or overlap with each other, as

long as OR is appropriately sized.

We believe that this general idea is both intuitive and sensible; it guides Tiny-CFA’s design.

However, ensuring that Tiny-CFA results in a secure CFA design is more challenging. To

see why, note that the executable to be attested, (i.e., security-critical code stored in

ER) is itself subject to control-flow attacks. Thus, any values logged to CF-Log by the

instrumented executable can, in principle, be modified as part of a control-flow attack. In

other words, Tiny-CFA’s approach secure only if CF-Log is an append-only log. Other-

wise, upon completion of its nefarious tasks, a control-flow attack can overwrite CF-Log to

reflect a benign or expected control-flow, erasing any trace of the compromised control-flow

and thus fool Vrf. In higher-end CFA architectures (e.g., C-FLAT [15]), this property is ob-

22

Figure 3.1: OR region used to store regular program outputs and CF-Log.

tained by logging the control-flow to dedicated secure memory, which is never accessible to

untrusted/application code. However, as discussed in Sections 3.1 and 3.2, low-end MCU-s

cannot afford such expensive security features. Below, we detail how Tiny-CFA can be made

secure by relying exclusively on PoX and instrumentation.

3.3.1 Design Rationale & Security

We now discuss Tiny-CFA design rationale and security properties at a high-level. Imple-

mentation details of Tiny-CFA on MSP430 are specified in Section 3.3.3. We postulate

the properties that ensure that control-flow attacks are always detected under the following

comprehensive adversarial model:

23

3.3.1.1 Adversarial Model

We assume that the adversary controls Prv’s entire software state, including code and data.

Adv can modify any writable memory and read any memory that is not explicitly protected

by hardware-enforced access control rules (e.g., APEX rules). Program memory modifica-

tions can be performed to change instructions, while data memory modifications may trigger

control-flow attacks. Adversarial modifications are allowed before, during, or after the exe-

cution of the program.

3.3.1.2 Security Properties

The following security properties are adhered to by Tiny-CFA for achieving guaranteed CFA.

(P1) Integrity of Code, Instrumentation, and Output

Clearly, any instrumentation-based approach is only sound if unauthorized modifications to

the instrumented code itself (e.g., to remove instrumentation) are detectable. Detection of

modifications is offered by the underlying RA and PoX architectures (see Section 3.2). In

particular, these architectures guarantee that any unauthorized code modification is detected

by Vrf. They also guarantee that modifications to attested executable’s output (OR –

which includes CF-Log) are only possible if done by the attested executable itself, during its

execution.

(P2) Secure logging of control-flow instructions

The first step in Tiny-CFA, is to instrument all control-flow altering instructions to log their

destinations to CF-Log, in OR. CF-Log is implemented as a stack, from the highest value in

24

OR (ORmax) growing downwards, as shown in Figure 3.1. The pointer to the top of this

stack is stored in a dedicated register R. Each control-flow instruction is then instrumented

with additional instructions to push its destination address to this stack, i.e.: (a) write

the destination of address to the memory location pointed to by R; and (b) decrement R.

At instrumentation time, the assembly code of the executable is inspected to assure that

no other instructions utilize the MCU register R. In all practical examples considered in

this work, executables have at least one free register available. If no such register exists by

default, the code can be recompiled to free up one register.

(P3) Secure logging of conditional branches

Conditional branches determine control-flow at runtime, depending on a result of a condi-

tional statement, e.g., a comparison or equality test. These instructions are used to im-

plement loops and if-then-else statements used in high-level languages. Conditional

branches are instrumented by pushing to CF-Log’s stack (using the same method as in P2)

the possible destinations as well as the result of the conditional statement. This way, by

inspecting CF-Log, Vrf can determine the exact path taken by the conditional branch.

(P4) CF-Log Write safety

Write operations (e.g. mov) are risky because they can be used to overwrite CF-Log, thus hid-

ing the compromised control-flow from Vrf. Direct writes (which modify constant addresses)

are easy to deal with because they can be statically inspected for safety at instrumenta-

tion time. In particular, the instrumenter can check that no direct writes modify CF-Log

reserved addresses in OR. Indirect writes modify memory addresses determined at run-

time. Consequently, they require instrumentation to check at runtime. After each indirect

write, Tiny-CFA instrumentation inserts instructions to check whether the write destination

25

is within CF-Log by checking if the write destination is within the range [R, ORmax] – the

memory range currently in use to store CF-Log. Upon detection of an illegal write, execution

is terminated, implying an invalid control-flow.

(P5) Wrap-around attack protection

Another way for a control-flow attack to go undetected is to keep executing the program

until R value overflows and wraps-around, and overwriting of CF-Log. To protect against

such attacks, modifications to R have an additional check, ensuring that whenever R points

to an instruction outside OR range, execution is terminated.

(P6) R initialization verification

Previous properties rely on R, which is initialized to ORmax at the start of execution, to

assure that CF-Log is indeed stored in OR. However, performing this initialization inside the

executable being attested allows for control-flow attacks that jump back to the R initializa-

tion code to reset R in the middle of the execution. To prevent this, Tiny-CFA instruments

the executable to check if R has been previously properly initialized to R = ORmax. The

caller application becomes responsible for initializing R appropriately, making control-flow

attacks that re-initialize R to reset CF-Log impossible, since they require jumping outside

of the executable range – ER – which is detected by APEX as a violation.

3.3.1.3 Security Argument

Below we argue the security of Tiny-CFA based on the aforementioned properties (P1 -

P6).

26

Let P denote a function/code-segment for which execution and control-flow need to be

attested. Properties P2 & P3 assure that all changes to the control-flow of P are logged

to CF-Log at runtime. Then, by inspecting an authentic (untampered) CF-Log, Vrf can

determine the exact control-flow taken by that particular P execution. Meanwhile, properties

P5 & P6 guarantee that CF-Log is stored inside OR, within [R, ORmax] range. Property

P4 detects any illegal writes during execution that attempt to modify CF-Log, i.e., writes

to [R, ORmax] range. Hence, for a given execution of P , the combination of P4, P5 & P6

guarantees that each written value can never be overwritten or deleted from CF-Log. Finally,

P1, inherited from the underlying PoX architecture, assures that neither P instructions

(including instrumentation), nor its output (including CF-Log) can be modified by other

means (e.g., other software on Prv, interrupts, DMA) before, during, or after execution.

Any such attempt is detectable by Vrf, because it causes APEX to set EXEC = 0; recall

the EXEC flag behavior described in Section 2.3. Therefore, Tiny-CFA properties P1-P6

suffice to implement secure CFA, under the aforementioned adversarial model.

3.3.2 Optimizations

CF-Log size determines the practicality of Tiny-CFA due to the resource-constrained nature

of low-end MCU-s, especially, with respect to memory size. Any log of control flow transitions

bloats rapidly for control-flow intensive code segments, e.g., loops with many iterations. In

this section, we discuss two simple optimizations (O1 & O2) that significantly reduce CF-

Log size without sacrificing overall security.

(O1) Static Control-Flow Instructions

Control-flow instructions with constant destination addresses (determined statically in the

code) need not be logged to CF-Log, as their effect on the program control-flow can not

27

change at runtime. This removes the need to log operations, such as usual function calls

(with exception of callbacks), fixed-address go-to-s, and similar.

(O1) Loops Optimization

Loops are challenging to log efficiently due to their high number of control-flow operations.

For instance, consider a delay function based on busy-wait, commonly used in MCU code.

It essentially consists of a loop that increments a counter up to a certain constant. The

higher the delay, the higher the number of iterations, implying the higher the number of

control-flow instructions to be logged. Even a 1-second delay loop, would require millions of

iterations (assuming typical clock frequencies on the order of MHz) resulting in millions of

symbols logged to CF-Log. To deal with such cases, we introduce an optimization for loops

for which the number of iterations can be determined, at instrumentation time.

Tiny-CFA instrumenter inspects each conditional branch. For each loop branch instruction

bi, changing the control-flow to destination instruction di, the instrumenter inspects all

instructions in the range [bi, di]. If [bi, di] contains no indirect control-flow instructions (e.g.,

unconditional branches) and no nested branches (such as loop in loop, or if-else in loop),

then the number of iterations caused by such a loop can be determined exclusively by the

loop condition and the variables involved in this condition. For example, consider a delay

loop while (i < j) i++;. The instrumenter tracks i and j based on their increment

logic. In this case, since i increments by 1, it is j - i. The instrumenter logs the value of

j - i along with the increment constant 1. Therefore, instead of logging each branch at

every iteration, Tiny-CFA simply logs the condition and the increment itself, only once. This

allows Vrf to learn the exact control-flow generated by a loop (i.e., # iterations) without

bloating CF-Log. In our 1-second delay example, instead of logging millions of symbols,

the loop would log just a couple of bytes, corresponding to the loop exit condition. This

optimization also applies to loops used in common memory/array manipulations, e.g., in

28

memset, and memcpy.

3.3.3 Implementing Tiny-CFA

We now describe how properties P1-P6 are securely implemented via automatic assembly

instrumentation on the MSP430 MCU. Our instrumenter is implemented in Python with

approximately 300 lines of code. It replaces relevant code segments in order to securely

enforce properties P1-P6.

Figure 3.2: Instrumentation example: indirect control-flow instructions.

Figure 3.2 shows the instrumentation of indirect control-flow instructions: return in this

particular example. It writes the return address, which in MSP430 assembly must be loaded

to register r1 before ret is called, to CF-Log. In our implementation R = r4. Hence,

the content of r1 (destination address) is copied to the address pointed to by R in OR, as

required by P2. To also enforce P5, upon writing to the address of R, and moving R to

point to the next address, the comparison at line 3 checks if R is still inside OR, otherwise

exiting the program, by jumping to an exit instruction at line 4.

Figure 3.3 depicts the instrumentation of indirect write instructions to enforce P4. Upon

writing to a given memory location (address pointed to by r14, in this example), checks

are performed to determine if this write operation did not modify CF-Log memory range:

[R, ORmax]. If an illegal write occurs, program execution is terminated (at line 5) and a

control-flow attack attempt is detected.

29

Figure 3.3: Instrumentation example: indirect write instructions.

Figure 3.4: Instrumentation example: R initialization check.

Figure 3.4 shows the instrumentation, required by P6, at the beginning of the code segment.

It ensures that R is properly initialized, otherwise halting execution at line 3.

Finally, Figure 3.5 depicts the instrumentation required by P3. It logs to CF-Log the results

of conditional statements. Note that, after a conditional statement (e.g., at line 1) evaluation,

the result is stored in the status register r2. Hence, the content of r2 is written to CF-Log

(line 2), since it is sufficient to determine the destination of the conditional branch. The

Figure 3.5: Instrumentation example: conditional branches.

30

same check to enforce P5 in Figure 3.2, is also performed in this case, because information

is being written to CF-Log. Since this check itself overwrites r2, the original value of r2

needs to be retrieved (at line 6) before the actual branch instruction at line 7. A more

memory-optimized implementation of P3 could be to rather find out which status bit in the

status register decides the jump to the destination address and write only that bit into OR

instead of the whole 16-bit register value. Essentially saving 15-bits of the CF-log for every

conditional jump.

Remark: Tiny-CFA can not be abused by control-flow attacks that jump in the middle of the

instrumentation instructions. Such an illegal jump is logged to CF-Log and is thus detectable

by Vrf. Since R never retracts (within a given execution), write checks (see Figure 3.3) make

it impossible to delete any information logged to CF-Log, including jumps into the middle of

instrumented code instructions.

3.4 Case Study & Evaluation

3.4.1 Case Study: Control-Flow Attacks in Low-End MCU-s

Control-flow attacks can be extremely harmful, especially, for low-end devices used for safety-

critical tasks. To illustrate this point, we show an attack on a medical syringe pump ap-

plication implemented on a low-end MCU. For clarity, we focus on a simplified version

of the OpenSyringePump application (available at: https://github.com/naroom/

OpenSyringePump). Later, in Section 3.4, we evaluate Tiny-CFA on three applications,

including the original OpenSyringePump code, which is longer and more complex than the

example used here. OpenSyringePump was also used to motivate and evaluate prior CFA

approaches, e.g., C-FLAT.

31

https://github.com/naroom/OpenSyringePump
https://github.com/naroom/OpenSyringePump

Figure 3.6: Safety critical application exploitable by control-flow attacks.

Consider the C code segment in Figure 3.6. In this application, the MCU is connected

through the general-purpose input/output (GPIO) port P3OUT (used at lines 5 and 8)

to an actuator, responsible for injecting a given dose of medicine, determined in software,

according to commands received through the network, e.g., from a remote physician. The

function injectMedicine injects the appropriate dosage according to the variable dose,

by triggering actuation for an amount of time corresponding to the value stored in dose.

To guarantee a safe dosage, the if statement (at line 4) assures that the maximum injected

dosage is 9, thus preventing overdosing.

Dosage is determined according to a list of values, e.g., symptom severity measures received

from a remote physician. The function parseCommands (line 11) is responsible for making

a copy of the received values and processing them to determine the appropriate dosage.

However, this function can also be used to trigger a buffer overflow attack, leading to a

malicious control-flow path. Specifically, because the size of copy_of_commands is static

and equal to 5, an input array of larger size can cause other values in the program’s stack

to be overwritten, beyond the area allocated for copy_of_commands, and including the

memory location storing the return address of parseCommands. In particular, the return

32

address is overwritten with the value of recv_commands[5]. By setting the content of

parseCommands[5] to the address of line 5 in Figure 3.6, such an attack causes the

control-flow to jump directly to line 5 (when parseCommands returns), skipping the safety

check at line 4, and potentially overdosing the patient.

The above attack example is detectable neither by static RA techniques nor by PoX tech-

niques, since expected (unmodified) code still executes in its entirety, yet in an unexpected

order. Tiny-CFA, however, detects such control-flow attacks, because the instrumentation

of indirect control-flow instructions (e.g., return in Figure 3.2) commits the maliciously

overwritten return address to CF-Log.

In Section 3.4 we evaluate Tiny-CFA performance in 3 realistic safety-critical applications:

(1) OpenSyringePump – the full implementation of our toy example in Figure 3.6; (2)

FireSensor (available at: https://github.com/Seeed-Studio/LaunchPad_Kit/

tree/master/Grove_Modules/temp_humi_sensor) – a fire detector based on tem-

perature and humidity sensors; and (3) UltrasonicRanger (available at: https://github.

com/Seeed-Studio/LaunchPad_Kit/tree/master/Grove_Modules/ultrasonic_

ranger) – a sensor used by parking assistants for obstacle proximity measurement.

3.4.2 Experimental Results

Recall that, since Tiny-CFA requires no hardware support beyond that already provided

by APEX [49], its hardware costs remain consistent with APEX. As a clear advantage over

prior techniques, our approach requires 5.4 times fewer additional LUTs and 50 times fewer

additional registers than the second cheapest approach – LiteHAX; see comparison of Tiny-

CFA hardware overhead with other CFA techniques in Figures 3.7 and 3.8. Hardware costs

are as reported in the original papers [135, 54, 55, 49]

33

https://github.com/Seeed-Studio/LaunchPad_Kit/tree/master/Grove_Modules/temp_humi_sensor
https://github.com/Seeed-Studio/LaunchPad_Kit/tree/master/Grove_Modules/temp_humi_sensor
https://github.com/Seeed-Studio/LaunchPad_Kit/tree/master/Grove_Modules/ultrasonic_ranger
https://github.com/Seeed-Studio/LaunchPad_Kit/tree/master/Grove_Modules/ultrasonic_ranger
https://github.com/Seeed-Studio/LaunchPad_Kit/tree/master/Grove_Modules/ultrasonic_ranger

APEX/Tiny−CFA Atrium LiteHAX LO−FAT

N
um

be
r

of
 A

dd
iti

on
al

 L
oo

k−
U

p
Ta

bl
es

0
20

00
40

00
60

00
80

00
10

00
0

Figure 3.7: Tiny-CFA Additional HW overhead (%) in Number of Look-Up Tables. Dashed
lines represent the total hardware cost of MSP430 core itself.

34

APEX/Tiny−CFA Atrium LiteHAX LO−FAT

N
um

be
r

of
 A

dd
iti

on
al

 R
eg

is
te

rs

0
50

00
10

00
0

15
00

0

Figure 3.8: Tiny-CFA Additional HW overhead (%) in Number of Registers. Dashed lines
represent the total hardware cost of MSP430 core itself.

35

3.4.2.1 Instrumentation Overhead

We measure the instrumentation overhead of Tiny-CFA based on three metrics: code size

increase, runtime overhead, and CF-Log size. As mentioned in Section 3.4.1, our evaluation

instantiates Tiny-CFA on MSP430 with three real-world, publicly available, and safety-

critical use cases: SyringePump, FireSensor, and UltrasonicRanger. Tables 3.1

and 3.2 present experimental results for these three applications in their unmodified forms

and when instrumented by Tiny-CFA. In each case, the attested execution corresponds to

one iteration of the application’s main loop (i.e., the application can report to Vrf with the

attestation response once per iteration), involving the respective sensing and actuation tasks.

Table 3.1: Original application costs

SyringePump FireSensor UltrasonicRanger
Code Size 218 bytes 434 bytes 238 bytes
Runtime 159644 cycles 20919 cycles 2799 cycles

Table 3.2: Instrumented application costs

SyringePump FireSensor UltrasonicRanger
Code Size 416 bytes 790 bytes 442 bytes
Runtime 162218 cycles 31818 cycles 3027 cycles
CF-Log size 400 bytes 2068 bytes 30 bytes

In all three cases, code size increases by ≈ 80%, while CF-Log size ranges between 30 and 2k

Bytes, and runtime overhead varies between ≈ 2% and ≈ 50%. CF-Log size depends on the

number of control-flow transfers occurring in the application. Programs performing simple

tasks need smaller log size (< 1k bytes), while those with complex tasks would need larger

log sizes.

Tiny-CFA exhibits lower runtime overhead than C-FLAT [15]. C-FLAT is only evaluated

using the SyringePump example, and its reported runtime overhead is ≈ 76%, due to

instrumentation of trampolines and context switches; see [15] for details. Meanwhile, in all

considered applications, Tiny-CFA runtime overhead remains below ≈ 50%. This is justified

36

by: (1) simpler design that does not rely on trampoline hypercalls or context switches, and

(2) optimization O2, which removes per-iteration instrumentation away from delay loops.

Since delay loops are used frequently in sensing/actuation applications, this optimization

comes in handy in most practical scenarios. However, we do not compare runtime overhead

of Tiny-CFA with Lo-FAT and LiteHAX since these two techniques do not instrument code,

instead detecting branches in hardware.

In summary, experimental results indicate that, in all sample applications, instrumented

executables remain well within the capabilities of low-end MCU-s, thus supporting Tiny-

CFA’s practicality.

3.5 Conclusions

In this chapter, we designed, implemented, and evaluated Tiny-CFA: a low-cost CFA ap-

proach targeting low-end MCU-s. Tiny-CFA couples a formally verified PoX architecture

with automated code instrumentation to yield an effective low-cost CFA. We argued security

of Tiny-CFA and demonstrated, via a MSP430-based implementation, its ability to detect

control-flow attacks.

37

Chapter 4

DIALED: Data Integrity Attestation for

Low-end Embedded Devices

38

Abstract

Although CFA techniques detect control-flow attacks, they cannot detect a more

subtle class of data-only attacks. These attacks manipulate the software’s execution

without modifying the program code or its control flow. Instead, they exploit vulner-

abilities in the code to corrupt intermediate computation results stored in the data

memory, leading to unexpected and potentially harmful outcomes. In this chapter,

we propose, implement and evaluate DIALED, the first Data-Flow Attestation (DFA)

technique applicable to the low-end MCUs. DIALED works in tandem with Tiny-CFA

to detect all (currently known) types of runtime software exploits at a fairly low cost.

Research presented in this chapter appeared in the Proceedings of the 58th Design

Automation Conference (DAC 2021) [52].

39

4.1 Introduction

Similar to control-flow attacks, data-only attacks exploit vulnerabilities in benign code to

corrupt intermediate values in data-memory. It is well-known [125, 77] that data-only attacks

need not alter the code or its control-flow in order to corrupt data. Without a way to

detect data-only attacks (as well as code and control-flow modifications) results of Prv’s

remote computation cannot be trusted. Hence, besides RA and CFA, there is also a need

for attesting the data-flow of the program – Data-Flow Attestation (DFA) – for providing a

comprehensive report of what happened on Prv during runtime.

Very recently, a technique supporting both CFA and DFA, called OAT [124], was proposed.

However, it implements DFA by relying on trusted hardware support from ARM TrustZone,

which is only available on higher-end platforms (e.g., smartphones, and Raspberry Pi) and

is not affordable to low-end, low-energy MCUs. In addition, OAT’s security relies on the

application programmer’s ability to correctly annotate all critical variables in the code to

be attested. This is a strong assumption since most control-flow and data-only exploits

are caused by implementation bugs introduced by the very same application programmer.

Naturally, it would be beneficial for this assumption to be avoided.

To address these limitations, we propose a new DFA technique that leverages PoX and

CFA in conjunction with code instrumentation, similar to the approach used in Tiny-CFA.

This approach aims to provide a solution that is applicable to low-end MCUs, avoiding the

reliance on expensive trusted hardware support and mitigating the assumption of correct

variable annotation by the application programmer. By combining PoX, CFA, and code

instrumentation, our proposed technique offers a comprehensive solution for both control-flow

and data-only attacks, while remaining suitable for resource-constrained embedded devices.

40

4.1.1 Contributions

This chapter makes the following contributions:

1. Design of DIALED: Data Integrity in Attestation for Low-end Embedded Devices –

a DFA technique based on automated code instrumentation using PoX as its sole

hardware requirement.

2. Implementation of DIALED based on Tiny-CFA (CFA) and APEX (PoX). This reduces

the hardware overhead significantly compared to prior architectures (such as OAT)

making it suitable for resource-constrained MCU-s.

DIALED uses APEX to securely log and authenticate any data inputs used by the program.

This authenticated log allows Vrf to reconstruct the entire data-flow of the program’s exe-

cution, thus enabling detection of any data-corruption attacks via abstract execution of the

attested program.

In the rest of this chapter, we describe DIALED’s design and analyze its security. We also

report on the implementation of DIALED along with Tiny-CFA on TI MSP430 MCU and

demonstrate its cost-effectiveness in the context of for three applications.

4.2 Background

This section overviews data-only attacks; it also compares such attacks with control-flow

attacks and elaborates on how they cannot be detected by CFA alone.

41

4.2.1 Control-Flow vs. Data-Only Attacks

Both control-flow and data-only attacks violate program execution integrity without modi-

fying the actual executable, by taking advantage of implementation bugs, e.g., lack of array

bound checks. Such vulnerabilities are quite common in memory-unsafe languages, such as

C, C++, and Assembly, which are widely used to program MCUs.

Control-flow attacks change the order of instructions execution thus changing program behav-

ior, escalating privilege, and/or bypassing safety checks (as shown in Figure 3.6). Whereas,

data-only attacks only corrupt the critical data variables to produce wrong results without

changing the order of execution.

Figure 4.1: Embedded application vulnerable to a data-flow attack.

As mentioned earlier, CFA securely logs all control-flow transitions, enabling detection of the

control-flow attack. However, CFA cannot detect data-only attacks that do not change the

control-flow. Figure 4.1 presents an implementation vulnerable to data-only attacks. To see

this vulnerability, note that P3OUT register controls multiple physical ports, each associated

with one bit:

• Setting P3OUT = 00000000 = 0x0 turns all physical ports off

42

• Setting P3OUT = 00000001 = 0x1 turns on 1st physical port

• Setting P3OUT = 00000010 = 0x2 turns on 2nd physical port

• Setting P3OUT = 00000011 = 0x3 turns on both 1st and 2nd physical ports, etc.

In order to trigger actuation through the proper port (Port 1 in this example), this code

needs to set P3OUT = 0x1. This is configured in the global variable set, at line 1 of

Figure 4.1. The value of set is later used to trigger actuation at line 8. The code also

allows settings to be updated at an arbitrary position defined by the input parameter

index. Since settings has a fixed length of 8, a malicious input with index = 8 would

overflow this buffer causing set to be overwritten with the value of new_setting. An

input new_setting=0 with index = 9 would overwrite set = 0. Later, in line 8, when

set is used to trigger actuation of port 1, it will instead have no actuation effect (since it is

now 0). Consequently, the medicine will not be injected. It is important to note that this

attack does not change the program control flow, but just corrupts data. It therefore can

not be detected by CFA alone.

In this chapter, we address detection of these data-only attacks by proposing a DFA ar-

chitecture – DIALED. Its core idea is to log (and send to Vrf) all inputs during execution

along with its control flow, which enables Vrf to emulate the entire execution of the attested

program, allowing it to detect both control-flow and data-flow attacks. DIALED is detailed

in the next section.

4.3 DIALED Design

Figure 4.2 shows the components of DIALED: it is implemented alongside Tiny-CFA (itself

based on APEX) to provide both CFA andDFA. The executable is separately instrumented by

both Tiny-CFA and DIALED. APEX provides a proof of the execution of the instrumented

43

executable, serving as an authenticator for its output: a log containing the executable’s

control flow and its data inputs.

4.3.1 Overview

DIALED uses a novel input detection method via secure instrumentation of the executable.

This instrumentation guarantees that all relevant data is logged during program execution,

this is in addition to the control-flow log produced by Tiny-CFA. The underlying PoX pro-

vides Vrf with a proof that this output was indeed produced by the execution of the expected

(instrumented) code. In doing so, DIALED provides Vrf with all information needed to ex-

ecute this program locally and detect any code, control flow, or data compromises. The

core property of DIALED is detection and secure logging of every external input received

during program execution, including from peripherals, the network, and GPIO, as well as

data fetches from memory locations outside the executable’s own state (i.e., stack and heap).

Similar to OAT [124], the goal is to attest embedded operations, i.e., finite and self-

contained safety-critical functions called by the program’s main loop. Examples include

sensing and actuation tasks triggered by commands received through the network, as in

Section 4.2.1. Since embedded operations typically have well defined and reasonably small

number of data inputs, DIALED can efficiently save all inputs to an append-only log – Input

Log (I-Log). DIALED instrumentation assures that all data inputs are appended to I-Log.

We define data inputs as follows:

Definition 4.1 (Data Inputs). Any value read from any memory location outside of the

attested program’s current stack. The program’s current stack is the region located within

the current stack pointer value (top of the stack) and the value of the stack pointer when the

attested program was first called (based of the program’s stack). It includes all local variables.

According to this definition, read instructions that move/copy data from peripherals, network

44

Figure 4.2: DIALED Architectural Components.

45

or GPIO are considered as Data Inputs and written to I-Log, since these involve reads from

memory outside of the program’s stack. But reads that occur during regular computation,

e.g., instructions that compute on local variables are not written to I-Log, as they are not

inputs. This approach makes the size of I-Log relatively small, which is confirmed by the

real-world embedded operations considered in our evaluation in Section 4.5.

Recall that Tiny-CFA instruments the executable to produce a Control-Flow Log (CF-Log).

In DIALED, both CF-Log and I-Log are written to APEX-designated output region OR.

Hence, Vrf is assured of the integrity of these logs. In addition, given the attestation guar-

antee, Vrf is also assured that the correct/expected instrumented code was executed to

produce this log. By knowing the code, its control-flow, and all inputs, Vrf can locally em-

ulate its execution and verify all steps in this computation, as well as detect all data-only

and control-flow attacks.

In the rest of this section, we discuss DIALED’s properties and its security. Then, Section 4.4

details DIALED’s instrumentation and architectural components.

4.3.2 Adversary Model

We assume an adversary that controls Prv’s entire software state, including code and data.

It can modify any writable memory and read any memory that is not explicitly protected

by hardware-enforced access controls, e.g., APEX rules. Program memory modifications can

change instructions, while data memory modifications can trigger control-flow and data-only

attacks arbitrarily. Adversarial modification attempts are allowed before, during, or after

the execution.

46

4.3.3 Design Rationale

DIALED’s security is based on five properties: P1-P5. We describe them at a high level

in this section and discuss how DIALED achieves them. Subsequently, in Section 4.4, we

describe implementation details of DIALED on MSP430 through automated code instru-

mentation.

(P1) Integrity Proofs for Code, Instrumentation, and Output

As an instrumentation-based technique, DIALED is only secure if any modifications to the

instrumented code itself (e.g., removing instrumented instructions) is detectable. Detection

of code modifications is already offered by the underlying APEX PoX architecture (see

Section 2.3). APEX guarantees that every code modification is detected by Vrf. It also

guarantees that any modification of the attested executable’s output region OR (which, in

our case, includes CF-Log and I-Log) can only be done by the attested executable itself,

during its execution.

(P2) Integrity Proof for the Control Flow

Since DIALED relies on instrumented instructions, these instructions can not be skipped,

e.g., via control-flow violations. Therefore, Tiny-CFA ensures that the control flow is logged

to CF-Log and whatever is written to CF-Log can not be modified; see Section 3 for details.

Hence, all attempts to skip the logging of any data inputs are detectable by Vrf using CF-Log.

The integrity of CF-Log itself is important to DIALED’s overall functionality since Vrf needs

both CF-Log and I-Log in order to abstractly execute the program and verify the integrity

of the execution.

(P3) Secure Logging of Data Inputs from Operation Arguments

47

To enable re-execution by Vrf, any arguments passed to the program at invocation must be

securely logged to I-Log. DIALED automatically instruments the executable with Assembly

instructions that copy all program arguments to I-Log.

(P4) Secure Logging of Runtime Data Inputs

Data inputs can be obtained at runtime, e.g., values read from GPIO, or packets arriving

from the network. Such inputs are received through peripheral memory, at a particular

set of physical addresses in data-memory. DIALED instruments every read instruction to

check whether the read address is outside the program’s stack. The range of the stack is

determined by [ls, hs], where ls is the value of the stack pointer saved at the moment when

execution starts (before the allocation of local variables), and hs always reflects the current

stack pointer, i.e., the top of the stack.

(P5) I-Log and CF-Log Integrity

To ensure integrity of CF-Log and I-Log, DIALED must guarantee that control flow and

data-only attacks do not overwrite these logs. Thus, we realize I-Log and CF-Log as a single

stack data structure inside OR, from the highest value (ORmax) growing downwards. The

pointer to the top of this stack is stored in a dedicated register R. Each instruction that

alters the control flow or involves data input is instrumented (with additional instructions)

to push the relevant values (either control-flow destination or data input) onto the stack,

i.e.:

1. Write the value (destination of address or data input) to the location pointed by R;

and

2. Decrement R.

48

At instrumentation time, assembly code is inspected to ensure that no other instructions use

R. In all practical code examples we inspected, executables have at least one free register

available. If no such register exists, the code can be recompiled to free up one register.

Whenever a write operation occurs, it is checked for safety, by seeing if the address of the

write is within the range [R, ORmax], i.e., the current range for I-Log and CF-Log. If an

illegal write occurs, execution is aborted and Vrf treats it as an attack. Since these “write

checks” are already needed, and implemented, by Tiny-CFA, they can be used “as is” by

DIALED, at no additional instrumentation cost.

4.3.4 Security Analysis

Let P denote an embedded operation for which control-flow and data-flow need to be at-

tested. P1 assures to Vrf that P indeed executed, and that neither its executable (including

instructions added by DIALED’s instrumentation) nor the output (OR) produced by this

execution has been tampered with. P2 assures that all changes to the control-flow of P are

written to OR at runtime. Similarly, P3 & P4 guarantee that any data inputs are also

logged to OR. Therefore, what we need to show is that once written, control-flow and data

input values in OR can not be modified during the rest of P execution. This is exactly the

guarantee offered by P5. Therefore, P1-P5 suffice to guarantee the integrity of OR and

P ’s executable (stored in ER), including I-Log and CF-Log, even in the presence of potential

control-flow and data-only attacks. Given the integrity of received I-Log and CF-Log, Vrf can

re-execute P locally and reproduce any type of runtime attack, including both control-flow

and data-only attacks, that may have occurred during P ’s actual execution in Prv.

49

Figure 4.3: Instrumentation example: Logging P ’s arguments.

4.4 DIALED Implementation

As described in Section 4.3.3, properties P1, P2 and P5 are provided by APEX and Tiny-

CFA. Hence, we focus on the implementation of P3-P4 DIALED instrumentation component

contains about 300 lines of Python.

Figure 4.3 shows the instrumentation used to implement P3 (in MSP430 Assembly) which

commits P ’s arguments to I-Log. The instrumentation is added once: at the entry point of P

to log any input parameters. Lines 2-4 are already added to P by Tiny-CFA to check whether

R is initialized to OR_MAX. This is required by property P5 (see Section 4.3.3). Lines

5-9 are added by DIALED to save the current stack pointer value to address OR_MAX.

This value determines the bottom of P ’s execution stack and is used to detect and log data

50

Figure 4.4: Instrumentation example: Logging runtime data inputs.

inputs. Lines 10-25 record P ’s arguments (input parameters) to I-Log. In MSP430, function

arguments are passed using up to 8 general-purpose registers r8–r15. Since the application

defines how many arguments are passed, DIALED always logs such registers, to guarantee

that all inputs are always captured. In this implementation, R = r4. Hence, each register is

written to the memory address pointed by r4. At each such write, safety checks discussed

in P5 (Section 4.3.3) are performed to assure the integrity of I-Log and CF-Log in OR.

Additional checks are performed to guarantee that R = r4 never overflows the size of OR.

Such an event is treated as a security violation and reported to Vrf.

Figure 4.4 depicts the instrumentation used to log runtime data inputs to I-Log– i.e., property

P4. Line 2 is a read instruction to copy contents from address pointed to by r15, to r14. In

order to define whether this is indeed a data input, at line 4, the address in r15 is checked

against the location of the bottom of P ’s stack, which is stored at the address of OR_MAX

when P is invoked (lines 6-9 in Figure 4.3). Also, at line 6 in Figure 4.4, the address in r15 is

also checked against the current stack pointer (always stored at register r1). If these checks

fail, the value of the address pointed to by r15 lies outside of P ’s current execution stack:

it is treated as input and committed to I-Log at line 9. Otherwise, the value is part of P ’s

51

current state and is not logged. Lines 10–12 check if r4 reached the top of OR, preventing

overflows, as described in the previous paragraph.

Note that, since DIALED is implemented alongside Tiny-CFA, it cannot be abused by control

flow attacks that jump in the middle of the instrumented code to skip checks and/or data

input logging. Such an illegal jump is itself a control-flow change, which is committed to

CF-Log by Tiny-CFA and thus detected by Vrf.

4.5 Evaluation

We evaluate DIALED in terms of its hardware costs and software runtime overhead of

attested embedded operations.

4.5.1 Hardware Overhead

Table 4.1 compares DIALED functionality and hardware costs to prior runtime attestation

techniques (overviewed in Section 7.2 and 7.3). In terms of hardware, both C-FLAT [15]

and OAT [124] are based on ARM TrustZone [90] which is unavailable on low-end MCUs.

Atrium [135], LO-FAT [55], and LiteHAX [54] rely on dedicated (additional) hardware sup-

port from hash engines and branch-monitoring modules. Thus, their hardware overhead is

far more costly than the baseline MCU (MSP430) itself. Meanwhile, DIALED and Tiny-

CFA rely on low-cost hardware support of the APEX’s PoX architecture [49]. Thus, they

impose much lower hardware overhead, affordable even for such low-end MCUs. Out of all

other architectures, only OAT, LiteHAX, and DIALED provide both CFA and DFA. Among

these, DIALED achieves ≈ 5× lower overhead in terms of combinatorial logic (Look-Up Ta-

bles – LUTs) and ≈ 50× lower state hardware overhead (Registers) than the cheapest prior

technique achieving both CFA and DFA, i.e., LiteHAX.

52

Table 4.1: Functionality and hardware overhead comparison of existing run-time attestation
architectures

Technique Support
for CFA

Support
for DFA

Hardware
Cost – LUTs

Hardware
Cost – Re-
sigters

MSP430 (base-
line)

– – 1904 691

C-FLAT ✓ – ARM-
TrustZone-M

ARM-
TrustZone-M

OAT ✓ ✓ ARM-
TrustZone-M

ARM-
TrustZone-M

Atrium ✓ – 10640 (+559%) 15960 (+2308%)
LO-FAT ✓ – 3192 (+168%) 4256 (+616%)
LiteHAX ✓ ✓ 1596 (+84%) 2128 (+308%)
Tiny-CFA
(based on APEX
hardware)

✓ – 302 (+16%) 44 (+6%)

DIALED (based
on APEX hard-
ware)

✓ ✓ 302 (+16%) 44
(+6%)

4.5.2 Experimental Analysis on Real-world Applications

We evaluate DIALED runtime overhead in three real-world applications. For the sake

of fair comparison, we consider the exact same open-source applications used to evalu-

ate Tiny-CFA: (1) OpenSyringePump (available at: https://github.com/manimino/

OpenSyringePump/blob/master/syringePump/syringePump.ino) – a medical

syringe pump; (2) FireSensor (available at: https://github.com/Seeed-Studio/

LaunchPad_Kit/tree/master/Grove_Modules/temp_humi_sensor) – a fire de-

tector based on temperature and humidity sensors; and (3) UltrasonicRanger (available at:

https://github.com/Seeed-Studio/LaunchPad_Kit/tree/master/\Grove_

Modules/ultrasonic_ranger) – a sensor used by parking assistants for obstacle prox-

imity measurement.

53

https://github.com/manimino/OpenSyringePump/blob/master/syringePump/syringePump.ino
https://github.com/manimino/OpenSyringePump/blob/master/syringePump/syringePump.ino
https://github.com/Seeed-Studio/LaunchPad_Kit/tree/master/Grove_Modules/temp_humi_sensor
https://github.com/Seeed-Studio/LaunchPad_Kit/tree/master/Grove_Modules/temp_humi_sensor
https://github.com/Seeed-Studio/LaunchPad_Kit/tree/master/ \ Grove_Modules/ultrasonic_ranger
https://github.com/Seeed-Studio/LaunchPad_Kit/tree/master/ \ Grove_Modules/ultrasonic_ranger

SyringePump FireSensor UltrasonicRanger
0

200

400

600

800

1000
Co

de
 S

ize
 (i

n
by

te
s)

Original
Tiny-CFA
DIALED

Figure 4.5: Total code size comparison

SyringePump FireSensor UltrasonicRanger
0

20000
40000
60000
80000

100000
120000
140000
160000

Ru
nt

im
e

(n
um

be
r o

f c
yc

le
s) Original

Tiny-CFA
DIALED

Figure 4.6: Runtime comparison

54

SyringePump FireSensor UltrasonicRanger
0

250
500
750

1000
1250
1500
1750
2000

Lo
g

siz
e

(in
 b

yt
es

)
Tiny-CFA
DIALED

Figure 4.7: Log size comparison

We consider all sources of runtime overhead imposed by code instrumentation in these tech-

niques: code size increase, runtime (CPU cycles), and the size of the attestation log inside

OR, including I-Log and CF-Log. Figures 4.5 and 4.6 compare results of unmodified appli-

cations, with the same applications instrumented by Tiny-CFA, and the same applications

instrumented by DIALED. As these results demonstrate, the overhead in both cases is domi-

nated by the instrumentation for CFA. On top of Tiny-CFA, DIALED code size and runtime

increases range between 1% − 20%. This is due to additional instructions introduced by

DIALED instrumentation, as described in Section 4.4. Figure 4.7 shows the total OR size

required to store the execution information. Recall that DIALED requires storage of both

I-Log and CF-Log to enable detection of both control-flow and data-only attacks. Size re-

quirements for these logs vary widely depending on the type of application (control-flow-

or data-input-intensive). In general, we observe a small increase in OR size. This is due

to the data input definition from Section 4.3, which allows DIALED to only log relevant

data inputs while retaining all necessary information for Vrf’s abstract execution of Prv’s

55

embedded operation.

Remark: we do not compare runtime overhead of DIALED withDFA architectures LiteHAX

and OAT, since they rely on different CPU architectures.

In summary, even though DIALED’s overhead is not negligible, it is well within the capabil-

ities of low-end MCUs and suitable for practical purposes. Specifically, instrumented binary

sizes are within the MCUs memory budget, its runtime is reasonable, and log sizes are small

enough to fit into data memory without encroaching on the stack. We believe this to be a

reasonable price for the benefit of detecting any runtime compromise in low-end MCUs.

4.6 Conclusions

We design and implement DIALED, the first Data-Flow Attestation (DFA) approach target-

ing lowest-end MCUs. DIALED is composed with Tiny-CFA, a Control-Flow Attestation

(CFA) architecture, thus enabling detection of both control-flow and data-flow attacks at

runtime. We discuss DIALED’s security and evaluate its performance on real embedded

applications, showing that DIALED’s overhead is well within the capabilities of some of the

most resource-constrained MCUs.

56

Chapter 5

Privacy-from-Birth: Protecting Sensed

Data from Malicious Sensors with

VERSA

57

Abstract

Many IoT devices handle sensitive and personal data. If left unprotected, ambient

sensing (e.g., of temperature, audio, or video) can leak private information. At the

same time, resource-constrained IoT devices have few (or no) security features.

There are many well-known techniques to secure sensed data, e.g., by authenticating

communication end-points, encrypting data before transmission, and obfuscating traffic

patterns. Such techniques protect sensed data from external adversaries while assuming

that the sensing device itself is secure. Meanwhile, both the scale and frequency of IoT-

focused attacks are growing. This prompts a natural question: how to protect sensed

data even if all software on the device is compromised? Ideally, in order to achieve

this, sensed data must be protected from its genesis, i.e., from the time when a physical

analog quantity is converted into its digital counterpart and becomes accessible to

software. We refer to this property as PfB: Privacy-from-Birth.

In this chapter, we formalize PfB and design Verified Remote Sensing Authorization

(VERSA) – a provably secure and formally verified architecture guaranteeing that only

correct execution of expected and explicitly authorized software can access and manip-

ulate sensing interfaces, specifically, GPIO, which is the usual boundary between analog

and digital worlds on IoT devices. This guarantee is obtained with minimal hardware

support and holds even if all device software is compromised. VERSA ensures that mal-

ware can neither gain access to sensed data on the GPIO-mapped memory nor obtain

any trace thereof. VERSA is formally verified and its open-sourced implementation tar-

gets resource-constrained IoT edge devices, commonly used for sensing. Experimental

results show that PfB is both achievable and affordable for such devices.

Material in this chapter appeared in the Proceedings of 43rd IEEE Symposium on

Security and Privacy (S&P 2022) [104].

58

5.1 Introduction

Over the past decade, IoT privacy issues have been recognized and explored by the research

community [131, 129, 91, 138, 108]. Many techniques (e.g., [101, 85]) were developed to secure

sensor data from active attacks that impersonate users, IoT back-ends, or servers. There

are also techniques protecting private data from passive in-network observers that intercept

traffic [127, 22, 23, 24] or perform traffic analysis based on unprotected packet headers and

other metadata, e.g., sizes, timings, and frequencies. However, security of sensor data on the

device which originates that data has not been investigated. We consider this to be a crucial

issue, since all software on the device can be compromised and leak (exfiltrate) sensed data.

Whereas, aforementioned techniques assume that sensing device runs the expected benign

software.

We claim that in order to solve this problem, privacy of sensed data must be ensured “from

birth”. This corresponds to two requirements: (1) access to sensing interfaces must be strictly

controlled, such that only authorized code is allowed to read data, (2) sensed data must be

protected as soon as it is converted to digital form. Even the simplest devices (e.g., motion

sensors, thermostats, and smart plugs) should be protected since prior work [39, 100, 123, 78]

amply demonstrates that private – and even safety-critical – information can be inferred

from sensed data. It is also well-known that even simple low-end IoT devices are subject to

malware attacks. This prompts a natural question: Can privacy of sensed data be guaranteed

if the device software is compromised? We refer to this guarantee as Privacy-from-Birth (PfB).

Some previous results considered potential software compromise in low-end devices and pro-

posed methods to enable security services, such as remote verification of device software

state (remote attestation) [62, 103, 47, 21, 30, 83], proofs of remote software execution [49],

control- & data-flow attestation [54, 15, 55, 135, 124, 53, 52], as well as proofs of remote

software updates, memory erasure, and system reset [48, 20, 27].

59

Regardless of their specifics, such techniques only detect of violations or compromises af-

ter the fact. In the context of PfB, that is too late since leakage of private sensed data

likely already occurred. Notably, SANCUS [103] specifically discusses the problem of access

control to sensor peripherals (e.g., GPIO) and proposes attestation of software accessing (or

controlling access to) these peripherals. However, this only allows detection of compromised

peripheral-accessing software and does not prevent illegal peripheral access.

To bridge this gap and obtain PfB, we construct the Verified Remote Sensing Authorization

(VERSA) architecture. It provably prevents leakage of private sensor data even when the

underlying device is compromised. At a high level, VERSA combines three key features: (1)

Mandatory Sensing Operation Authorization, (2) Atomic Sensing Operation Execution, and

(3) Data Erasure on Boot (see Section 5.3). To attain these features, VERSA implements

a minimal and formally verified hardware monitor that runs independently from (and in

parallel with) the main CPU, without modifying the CPU core. We show that VERSA is

an efficient and inexpensive means of guaranteeing PfB.

5.1.1 Contributions

This chapter makes the following contributions:

• Formulates PfB with a high-level specification of requirements, followed by a game-

based formal definition of the PfB goal.

• Constructs VERSA, an architecture that guarantees PfB.

• Implements and deploys VERSA on a commodity low-end MCU, which demonstrates

its cost-effectiveness and practicality.

• Formally verifies VERSA implementation and proves security of the overall construc-

tion, hence obtaining provable security at both architectural and implementation levels.

60

VERSA implementation and its computer proofs are publicly available in [12].

5.2 Preliminaries

5.2.1 GPIO & MCU Sensing

A GPIO port is a set of GPIO pins arranged and controlled together, as a group. The MCU-

addressable memory for a GPIO port is physically mapped (hard-wired) to physical ports

that can be connected to a variety of external circuits, such as analog sensors and actuators,

as shown in Figure 2.1. Each GPIO pin can be set to function as either an input or output,

hence called "general purpose". Input signals produced by external circuits can be obtained

by the MCU software by reading from GPIO-mapped memory. Similarly, egress electric

signals (high or low voltage) can be generated by the MCU software by writing (logical 1 or

0) to GPIO-mapped memory.

Remark: “GPIO-mapped memory” includes the set of all software-readable memory regions

connected to external sensors. In some cases, this set may even include multiple physical

memory regions for a single physical pin. For instance, if a given GPIO pin is also equipped

with an Analog-to-Digital Converter (ADC), a GPIO input could be reflected on different

memory regions depending on whether the ADC is active or inactive. All such regions are

considered “GPIO-mapped memory” and we refer to it simply as GPIO. Using this definition,

in order to access sensor data, software running on the MCU must read from GPIO.

We also note that various applications require different sensor regimes [6]: event-driven,

periodic, and on-demand. Event-driven sensors report sensed data when a trigger event

occurs, while periodic sensors report sensor data at fixed time intervals. On-demand (or

query-driven) sensors report sensor data whenever requested by an external entity. Although

61

we initially consider on-demand sensing, as discussed in Section 5.3, the proposed design is

applicable to other regimes.

5.2.2 LTL, Model Checking, & Verification

Our verification and proof methodologies are in-line with prior work on the design and

verification of security architectures proving code integrity and execution properties for the

same class of MCUs [47, 49, 51, 50, 18]. However, to the best of our knowledge, no prior

work tackled formal models and definitions, or designed services, for guaranteed sensed data

privacy. This section overviews our verification and proof methodologies that allow us to

later show that VERSA achieves required PfB properties and end-goals.

Computer-aided formal verification typically involves three steps. First, the system of inter-

est (e.g., hardware, software, or communication protocol) is described using a formal model,

e.g., a Finite State Machine (FSM). Second, properties that the model should satisfy are

formally specified. Third, the system model is checked against formally specified properties

to guarantee that the system retains them. This can be done via Theorem Proving [93] or

Model Checking [41]. We use the latter to verify the implementation of system sub-modules,

and the former to prove new properties derived from the combination (conjunction) of ma-

chine model axioms and sub-properties that were proved for the implementation of individual

sub-modules.

In one instantiation of model checking, properties are specified as formulae using Linear

Temporal Logic (LTL) and system models are represented as FSMs. Hence, a system is

represented by a triple: (σ, σ0, T), where σ is the finite set of states, σ0 ⊆ σ is the set of

possible initial states, and T ⊆ σ × σ is the transition relation set, which describes the set

of states that can be reached in a single step from each state. Such usage of LTL allows for

representing a system behavior over time.

62

• Xϕ – neXt ϕ: holds if ϕ is true at the next system state.
• Gϕ – Globally ϕ: holds if for all future states ϕ is true.
• ϕ U ψ – ϕ Until ψ: holds if there is a future state where ψ holds and ϕ holds for all
states prior to that.
• ϕ W ψ – ϕ Weak until ψ: holds if, assuming a future state where ψ holds, ϕ holds for
all states prior to that. If ψ never becomes true, ϕ must hold forever. Or, more formally:
ϕ W ψ ≡ (ϕ U ψ)∨ G(ϕ).
• ϕ B ψ – ϕ Before ψ: holds if the existence of state where ψ holds implies the existence
of at least one earlier state where ϕ holds. Equivalently: ϕ B ψ ≡ ¬(¬ϕ U ψ).

Figure 5.1: LTL Quantifiers

Our verification strategy benefits from the popular model checker NuSMV [40], which can

verify generic hardware or software models. For digital hardware described at Register

Transfer Level (RTL) – which is the case in this work – conversion from Hardware Description

Language (HDL) to NuSMV models is simple. Furthermore, it can be automated [76] as the

standard RTL design already relies on describing hardware as FSMs. LTL specifications are

particularly useful for verifying sequential systems. In addition to propositional connectives,

such as conjunction (∧), disjunction (∨), negation (¬), and implication (→), LTL extends

propositional logic with temporal quantifiers, thus enabling sequential reasoning. In this

chapter, we are interested in the LTL quantifiers shown in Figure 5.1.

NuSMV works by exhaustively enumerating all possible states of a given system FSM and

by checking each state against LTL specifications. If any desired specification is found not

to hold for specific states (or transitions between states), the model checker provides a trace

that leads to the erroneous state, which helps correct the implementation accordingly. As

a consequence of exhaustive enumeration, proofs for complex systems that involve complex

properties often do not scale due to the so-called “state explosion” problem. To cope with it,

our verification approach is to specify smaller LTL sub-properties separately and verify each

respective hardware sub-module for compliance. In this process, our verification pipeline

automatically converts digital hardware, described at RTL using Verilog, to Symbolic Model

Verifier (SMV) [97] FSMs using Verilog2SMV [76]. The SMV representation is then fed

63

to NuSMV for verification. Then, the composition of LTL sub-properties (verified in the

model-checking phase) is proven to achieve a desired end-to-end implementation goal, also

specified in LTL. This step uses an LTL theorem prover [60].

In our case, we show that the end-to-end goal of VERSA, in composition with VRASED, is

sufficient to achieve PfB via cryptographic reduction from the formal security definition of

VRASED. These steps are discussed in detail in Section 5.7.

5.3 VERSA Overview

VERSA involves two entities: a trusted remote controller (Ctrl) and a device (Dev). We ex-

pect Ctrl to be a relatively powerful computing entity, e.g., a home gateway, a backend server

or even a smartphone. VERSA protects sensed data on Dev by keeping it (and any function

thereof) confidential. This implies: (1) controlling GPIO access by blocking attempted reads

by unauthorized software, and (2) keeping execution traces (i.e., data allocated by GPIO-

authorized software) confidential. Therefore, access to GPIO is barred by default. GPIO

is unlocked only for benign binaries that are pre-authorized by Ctrl. Whenever a binary is

deemed to be authorized on Dev, VERSA creates for it an ephemeral isolated execution envi-

ronment and permits its one-time execution. This isolated environment lasts until execution

ends, which corresponds to reaching the legal exit point of the authorized binary. Therefore,

by including a clean-up routine immediately before the legal exit, we can assure that all

execution traces, including all sensitive information, are erased. Any attempt to interrupt,

or tamper with, isolated execution causes an immediate system-wide reset, which erases all

data traces.

We use the term “Sensing Operation”, denoted by S, to refer to a self-contained and logically

independent binary (e.g., a function) that is responsible for processing data obtained through

64

one or more reads from GPIO.

VERSA achieves PfB via three key features:

[A] Mandatory Sensing Operation Authorization requires explicit authorization issued by

Ctrl before any Dev software reads from GPIO. Recall that access to GPIO is blocked by

default. Each authorization token (ATok) coming from Ctrl allows one execution of a

specific sensing operation S, although a single execution of S can implement several GPIO

reads. ATok has the following properties:

1. It can be authenticated by Dev as having been issued by Ctrl; this includes freshness;

2. It grants privileges only to a specific S to access GPIO during its execution; and

3. It can only be used once.

Ctrl can authorize multiple executions of S by issuing a batch of tokens, i.e., ATok1, ..., ATokn,

for up to n executions of S. Although supporting multiple tokens is unnecessary for on-

demand sensing, it might be useful for periodic or event-driven sensing regimes discussed in

Section 5.2.1.

[B] Atomic Sensing Operation Execution ensures that, once authorized by Ctrl, S is executed

with the following requirements:

1. S execution starts from its legal entry point (first instruction) and runs until its legal

exit point (last instruction). This assumes a single pair of entry-exit points;

2. S execution can not be interrupted and its intermediate results cannot be accessed by

external means, e.g., via DMA controllers; and

3. An immediate MCU reset is triggered if either (1) or (2) above is violated.

65

[C] Data Erasure on Reset/Boot works with [B] to guarantee that, sensed data (or any

function thereof) obtained during S execution is not leaked due to errors or violations of

security properties, which cause MCU reset per item (3) above. This feature must guarantee

that all values that remain in RAM after a hard reset and the subsequent boot process, are

erased before any unprivileged software can run. While some architectures already provide

memory erasure on boot, for those MCUs that do not do so, it can be obtained by calling

a secure RAM erasure function at boot time, e.g., as a part of a ROM-resident bootloader

code. Section 5.10.2 discusses this further.

At a high level, correct implementation of the aforementioned three features suffices to obtain

PfB, because:

• Any compromised/modified binary can not access GPIO since it has no authorization

from Ctrl.

• Any authorized binary S must be invoked properly and run atomically, from its first,

and until its last, instruction.

• Since S is invoked properly, the intended behavior of S is preserved. Code reuse attacks

are not possible unless they occur as a result of bugs in S implementation itself. Ctrl

can always check for such bugs in S prior to authorization; see Section 5.5.2.

• S runs uninterrupted, meaning that it can erase all traces of its own execution from

the stack before passing control to unprivileged applications. This guarantees that no

sensor data remains in memory when S terminates.

• VERSA assures that any violation of the aforementioned requirements causes an MCU

reset, triggering erasure of all data memory. Therefore, malware that attempts to

interrupt S before completion, or tamper with S execution integrity, will cause all

data used by S to be erased.

66

Figure 5.2: MCU execution workflow with VERSA.

67

Support for Output Encryption: S might process and use sensor data locally as part of

its own execution, or generate some output that needs to be returned to Ctrl. In the latter

case, encryption of S output is necessary. For this reason, VERSA supports the generation

of a fresh key derived from ATok (thus implicitly shared between Ctrl and S). This key

is only accessible to S during authorized execution. Hence, S can encrypt any data to be

exported with this key and ensure that encrypted results can only be decrypted by Ctrl.

Since we assume that the encryption function is part of S, it cannot be interrupted (or tam-

pered with) by any unprivileged software or external means. Importantly, the encryption key

is only accessible to S (similar to GPIO) and shielded from all other software. Furthermore,

the choice of the encryption algorithm is left up to the specific S implementation.

Figure 5.2 illustrates MCU execution workflow discussed in this section.

5.4 MCU Machine Model

5.4.1 Execution Model

To enable formal specification of PfB guarantees, we formulate the MCU execution model

in Definition 5.1. It represents MCU operation as a discrete sequence of MCU states, each

corresponding to one clock cycle – the smallest unit of time in the system. We say that the

subsequent MCU state is defined based on the current MCU state (which includes current

values in memory/registers, as well as any hardware signals and effects, such as external

inputs, actions by DMA controller(s), and interrupts) and the current instruction being

executed by the CPU core. Similarly, the instruction to be executed in the next state is

determined by the current state and the current instruction being executed.

For example, an arithmetic instruction (e.g., add or mult) causes the program counter (PC)

68

Definition 5.1 (MCU Execution Model).
1 – Execution is modeled as a sequence of MCU states S := {s0, ..., sm} and a sequence of
instructions I := {i0, ..., in}. Since the next MCU state and the next instruction to be executed
are determined by the current MCU state and the current instruction being executed, these
discrete transitions are denoted as shown in the following example:

(s1, ij)← EXEC(s0, i0); (s2, ik)← EXEC(s1, ij); ... (sm,⊥)← EXEC(sm−1, il)

The sequence I represents the physical order of instructions in memory, which is not necessarily
the order of their execution. The next instruction and state are also affected by current external
inputs, current data-memory values, and current hardware events, e.g., interrupts or resets,
which are modeled as properties of each execution state in S. The MCU always starts execution
(at boot or after a reset) from state s0 and initial instruction i0. EXEC produces ⊥ as the next
instruction if there is no instructions left to execute.

2 – State Properties as Sets: sets are used to model relevant execution properties and
characterize effects/actions occurring within a given state st. We are particularly interested in
the behaviors corresponding to the following sets:

1. READ: all states produced by the execution of an instruction i that reads the value from
memory to a register.

2. WRITE: all states produced by the execution of an instruction i that writes the value
from a register to memory.

3. DMAR: all states produced as a result of DMA reading from memory.

4. DMAW : all states st produced as a result of DMA writing to memory.

5. IRQ: all states st where an interrupt is triggered.

6. RESET: all states st wherein an MCU reset is triggered.

Note that these sets are not disjoint, i.e., st can belong to multiple sets. Also, the aforementioned
sets do not aim to model all possible MCU behaviors, but only the ones relevant to PfB. Finally,
we further subdivide sets that model memory access into subsets relating to memory regions of
interest. For example, considering a contiguous memory regionM = [Mmin,Mmax], READM
is a subset of READ containing only the states produced through EXEC of instructions that
read from the memory region M. We use the same notation to refer to other subsets, e.g.,
WRITEM, DMAR

M, and DMAW
M.

Figure 5.3: MCU Execution Model

69

Definition 5.2 (Hardware Model).
M denotes a contiguous memory region within addressesMmin andMmax in physical memory
of Dev, i.e., M := [Mmin,Mmax].
s represents the system execution state at a given CPU cycle.

Program counter & instruction execution:
G :{[X(s)← EXEC(s, ik) ∧ ik ∈M)]→ (PC ∈M)} (5.1)

Memory Reads/Writes:
G :{X(s) ∈ READM → (Ren ∧Daddr ∈M)} (5.2)

G :{X(s) ∈WRITEM → (Wen ∧Daddr ∈M)} (5.3)

G :{(X(s) ∈ DMAR
M ∨X(s) ∈ DMAW

M)→ (DMAen ∧DMAaddr ∈M)} (5.4)
Interrupts (irq) and Resets:

G :{s ∈ IRQ↔ irq} (5.5)

G :{s ∈ RESET↔ reset} (5.6)

Figure 5.4: MCU Hardware Model

to point to the subsequent address in physical memory. However, an interrupt (which is a

consequence of the current MCU state) may occur and deviate from the normal execution

flow. Alternatively, a branching instruction may be executed and cause PC to jump to some

arbitrary instruction that is not necessarily located at the subsequent position in the MCU

flash memory.

In order to reason about events during the MCU operation, we say that each MCU state

can belong to one or more sets. Belonging to a given set implies that the state has a given

property of interest. Definition 5.1 introduces six sets of interest, representing states in which

memory is read/written by CPU or DMA, as well as states in which an interrupt or reset

occurs.

5.4.2 Hardware Signals

We now formalize the effects of execution, modeled in Definition 5.1, to the values of con-

crete hardware signals that can be monitored by VERSA hardware in order to attain PfB

70

guarantees. Informally, we model the following simple axioms:

[A1] PC: contains the memory address containing the instruction being executed at a given

cycle.

[A2] CPU Memory Access: Whenever memory is read or written, a data-address signal

(Daddr) contains the address of the corresponding memory location. A data read-enable

bit (Ren) must be set for a read access and a data write-enable bit (Wen) must be set

for a write access.

[A3] DMA: Whenever a DMA controller attempts to access the main memory, a DMA-

address signal (DMAaddr) contains the address of the accessed memory location and a

DMA-enable bit (DMAen) must be set.

[A4] Interrupts: When hardware interrupts or software interrupts happen, the irq signal

is set.

[A5] MCU reset: At the end of a successful reset routine, all registers (including PC) are

set to zero before restarting software execution. The reset handling routine cannot

be modified, as resets are handled by MCU in hardware. When a reset happens, the

corresponding Reset signal is set. The same signal is also set when the MCU initializes

for the first time.

This model strictly adheres to MCU specifications, assumed to be correctly implemented by

the underlying MCU core.

Definition 5.2 presents formal specifications for the aforementioned axioms in LTL. Instead of

explicitly quantifying time, LTL embeds time within the logic by using temporal quantifiers

(see Section 5.2). Hence, rather than referring to execution states using temporal variables

(i.e., state t, state t + 1, state t + 2), a single variable (s) and LTL quantifiers suffice to

71

Definition 5.3 (Syntax: PfB scheme).

A Privacy-from-Birth (PfB) scheme is a tuple of algorithms [Authorize,Verify,XSensing]:

1. AuthorizeCtrl(S, · · ·): an algorithm executed by Ctrl taking as input at least one executable
S and producing at least one authorization token ATok which can be sent to Dev to
authorize one execution of S with access to GPIO.

2. VerifyDev(S,ATok, · · ·): an algorithm (with possible hardware-support), executed by Dev,
that takes as input S and ATok. It uses ATok to check whether S is pre-authorized by
Ctrl and outputs ⊤ if verification succeeds, and ⊥ otherwise.

3. XSensingDev(S, · · ·): an algorithm (with possible hardware-support) that executes S in
Dev, producing a sequence of states E := {s0, ..., sm}. It returns ⊤, if sensing successfully
occurs during S execution, i.e., ∃s ∈ E such that (s ∈ READGPIO) ∧ (s /∈ RESET)); it
returns ⊥, otherwise.

Remark: In the parameter list, (· · ·) means that additional/optional parameters might be in-
cluded depending on the specific PfB construction.

Figure 5.5: Syntax of the PfB Scheme

specify, e.g., “current”, “next”, “future” system states (s). For this part of the model, we are

mostly interested in: (1) describing MCU state at the next CPU cycle (X(s)) as a function

of the MCU state at the current CPU cycle (s), and (2) describing which particular MCU

signals must be triggered in order for X(s) to be in each of the sets defined in Definition 5.1.

LTL statements in Definition 5.2 formally model axioms [A1]-[A5], i.e., the subset of MCU

behavior that is relevant to, and sufficient for formally verifying, VERSA. LTL (5.1) models

[A1], (5.2) and (5.3) model [A2], and each (5.4), (5.5), and (5.6) models [A3], [A4], and

[A5], respectively.

5.5 PfB Definitions

Based on the specified machine model, we now proceed with the formal definition of PfB.

72

Definition 5.4 (PfB Game-based Definition).

5.4.1 Auxiliary Notation & Predicate(s):

• Let K be a secret string of bit-size |K|; and λ be the security parameter, determined by
|K|, i.e., λ = Θ(|K|);

• Let atomicExec be a predicate evaluated on some sequence of states S and some software
– i.e., some sequence of instructions I.
atomicExec(S := {s1, ..., sm},I := {i0, ..., in}) ≡ ⊤ if and only if the following hold;
otherwise, atomicExec(S,I) ≡⊥.

1. Legal Entry Instruction: The first execution state s1 in S is produced by the
execution of the first instruction i0 in I.
i.e., (s1 ← EXEC(i0, s∗)) ∨ (s1 ∈ RESET), where s∗ is any state prior to s1.

2. Legal Exit Instruction: The last execution state sm in S is produced by the exe-
cution of the last instruction in in I.
i.e., (sm ← EXEC(in, sm−1)) ∨ (sm ∈ RESET).

3. Self-Contained Execution: For all sj in S, sj is produced by the execution of an
instruction ik in I, for some k.
i.e., (sj ← EXEC(ik, sj−1)) ∨ (sj ∈ RESET), for some ik ∈ I.

4. No Interrupts, No DMA: For all sj in S, sj is neither in the IRQ or DMA. i.e.,
[(sj /∈ IRQ) ∧ (sj /∈ DMA)] ∨ (sj ∈ RESET).

5.4.2 PfB-Game: The challenger plays the following game with Adv:

1. Adv is given full control over Dev software state, implying Adv can execute any (poly-
nomially sized) sequence of arbitrary instructions {iAdv

0 , ..., iAdv
n }, inducing the associated

changes in Dev’s sequence of execution states;

2. Adv has oracle access to polynomially many calls to Verify. Adv also has access to the set
of software executables, SW := {S1, ..., Sl}, and the set of all corresponding authorization
“tokens”, T := {ATok1, ...,ATokl}, ever produced by any prior Ctrl calls to Authorize up
until time t. i.e., ATokj ← Authorize(Sj , ...), for all j.

3. Let U ⊂ T be the set of all “used” authorization tokens up until time t, i.e., ATokj ∈ U, if
a call to XSensing(Sj , ...) returned ⊤ up until time t; Let P be the set of “pending” (issued
but not used) authorization tokens, i.e., P := T \ U.

4. At any arbitrary time t, Adv wins if it can perform an unauthorized or tampered
sensing execution, i.e.:

– Adv triggers an XSensing(SAdv, ...) operation that returns ⊤, for ∀SAdv /∈ SW, or

– Adv triggers (S,⊤)← XSensing(Sj , ...) such that atomicExec(S,Sj) ≡⊥, for some Sj ∈
SW and ATokj ∈ U .

5.4.3 PfB-Security: A scheme is considered PfB-Secure iff, for all PPT adversaries Adv,
there exists a negligible function negl[] such that:

Pr[Adv,PfB-Game] ≤ negl(l)

Figure 5.6: PfB Security Game
73

5.5.1 PfB Syntax

A PfB scheme involves two parties: Ctrl and Dev. Ctrl authorizes Dev to execute some

software S which accesses GPIO. It should be impossible for any software different from

S to access GPIO data, or any function thereof (see Definition 5.4). Ctrl is trusted to

only authorize functionally correct code. The goal of a PfB scheme is to facilitate sensing-

dependent execution while keeping all sensed data private from all other software.

Definition 5.3 specifies a syntax for PfB scheme composed of three functionalities: Authorize,

Verify, and XSensing. Authorize is invoked by Ctrl to produce an authorization token, ATok,

to be sent to Dev, enabling S to access GPIO. Verify is executed at Dev with ATok as input,

and it checks whether ATok is a valid authorization for the software on Dev. If and only

if this check succeeds, Verify returns ⊤. Otherwise, it returns ⊥. The verification success

indicates one execution of S granted on Dev via XSensing. XSensing is considered successful

(returns ⊤), if there is at least one MCU state produced by XSensing where a GPIO read

occurs without causing an MCU reset, i.e., (s ∈ READGPIO) ∧ ¬(s ∈ RESET). Otherwise,

XSensing returns ⊥. That is, XSensing models execution of any software in the MCU and

its return symbol indicates whether a GPIO read occurred during its execution. Therefore,

invocation of XSensing on any input software that does not read from GPIO returns ⊥.

Figure 5.7 illustrates a benign PfB interaction between Ctrl and Dev.

5.5.2 Assumptions & Adversarial Model

We consider an adversary, Adv, that controls the entire software state of Dev, including

PMEM (flash) and DMEM (DRAM). It can attempt to modify any writable memory (in-

cluding PMEM) or read any memory, including peripheral regions, such as GPIO, unless

explicitly protected by verified hardware. It can launch code injection attacks to execute

arbitrary instructions from PMEM or even DMEM (if the MCU architecture supports execu-

74

Figure 5.7: PfB interaction between Ctrl and Dev

tion from DMEM). It also has full control over any DMA controllers on Dev that can directly

read/write to any part of the memory independently of the CPU. It can induce interrupts to

pause any software execution and leak information from its stack, or change its control-flow.

We consider Denial-of-Service (DoS) attacks, whereby Adv abuses PfB functionality in order

to render Dev unavailable, to be out-of-scope. These are attacks on Dev availability and not

on sensed data privacy.

Executable Correctness: we stress that VERSA aims to guarantee that S, as specified

by Ctrl, is the only software that can access and process GPIO data. Similar to other trusted

hardware architectures, PfB does not check for lack of implementation bugs within S; thus

it is not concerned with run-time (e.g., control-flow and data-only) attacks. As a relatively

powerful and trusted entity Ctrl can use various well-known vulnerability detection methods,

e.g., fuzzing [38], static analysis [44], and even formal verification, to scrutinize S before

authorizing it.

Physical Attacks: Physical and hardware-focused attacks are considered out of scope.

75

An Adv that is physically present near Dev can indeed sense what Dev reads through its

sensor peripherals; so privacy concerns may not be applicable in this case. We also assume

that Adv cannot modify code in ROM, induce hardware faults, or retrieve Dev’s secrets via

side-channels that require Adv’s physical presence. Protection against such attacks can be

obtained via standard physical security techniques [110]. This assumption is in line with

related work on trusted hardware architectures for embedded systems [62, 47, 83, 30].

5.5.3 PfB Game-based Definition

Definition 5.4 starts by introducing an auxiliary predicate atomicExec. It defines whether a

particular sequence of execution states (produced by the execution of some software S) ad-

heres to all necessary execution properties for Atomic Sensing Operation Execution discussed

in Section 5.3.

In atomicExec (in Definition 5.4.1), conditions 1-3 guarantee that a given S is executed

as a whole and no external instruction is executed between its first and last instructions.

Condition 4 assures that DMA is inactive during execution, hence protecting intermediate

variables in DMEM against DMA tampering. Additionally, malicious interrupts could be

leveraged to illegally change the control-flow of S during its execution. Therefore, condition

4 stipulates that both cases cause atomicExec to return ⊥.

PfB-Game in Definition 5.4.2 modelsAdv’s capabilities by allowing it to execute any sequence

of (polynomially many) instructions. This models Adv’s full control over software executed

on the MCU, as well as its ability to use software to modify memory at will. It can also

call Verify any (polynomial) number of times in an attempt to gain an advantage (e.g., learn

something) from Verify executions.

To win the game, Adv must succeed in executing some software that does not cause an MCU

76

reset, and either: (1) is unauthorized, yet reads from GPIO, or (2) is authorized, yet violates

atomicExec predicate conditions during its execution.

Figure 5.8: VERSA Architecture

5.6 VERSA: Realizing PfB

VERSA runs in parallel with the MCU core and monitors a set of MCU signals: PC, Daddr,

Ren, Wen, DMAen, DMAaddr, and irq. It also monitors ERmin and ERmax, the boundary

memory addresses of ER where S is stored; these are collectively referred to as “META-

DATA”. VERSA hardware module detects privacy violations in real-time, based on afore-

mentioned signals and METADATA values, causing an immediate MCU reset. Figure 5.8

shows the VERSA architecture. For quick reference, MCU signals and memory regions rel-

evant to VERSA are summarized in Table 5.1. To facilitate the specification of VERSA

77

Table 5.1: Notation Summary

Notation Description

PC Current program counter value
Ren 1-bit signal that indicates if MCU is reading from memory
Wen 1-bit signal that indicates if MCU is writing to memory
Daddr Memory address of an MCU memory access
DMAen 1-bit signal that indicates if DMA is active
DMAaddr Memory address being accessed by DMA, when active
irq 1-bit signal that indicates if an interrupt is happening
Reset Signal that reboots the MCU when set to logic ‘1’
ER A configurable memory region where the sensing operation S is stored,

ER = [ERmin, ERmax]

METADATA Metadata memory region; contains ERmin and ERmax

ATok Fixed memory region from which Verify reads the authorization token when
called

GPIO Memory region that is mapped to GPIO port
V R Memory region storing Verify code which instantiates VRASED software

and its hardware protection
iAuth A fixed address in ROM , only be reachable (i.e., PC = iAuth) by a suc-

cessful Verify call (i.e., Verify returns ⊤)
eKR (Optional) memory region for the encryption key Kenc necessary to encrypt

the S output (relevant to sensed data)

properties, we introduce the following two macros:

Read_Mem(i) ≡ (Ren ∧Daddr = i) ∨ (DMAen ∧DMAaddr = i)

Write_Mem(i) ≡ (Wen ∧Daddr = i) ∨ (DMAen ∧DMAaddr = i)

representing read/write from/to a particular memory address i by either CPU or DMA.

For reads/writes from/to some continuous memory region (composed of multiple addresses)

M = [Mmin,Mmax], we instead say Daddr ∈M to denote that Daddr = i ∧(i ≥Mmin)∧(i ≤

Mmax). The same holds for notation DMAaddr ∈M.

78

5.6.1 VERSA: Construction

Recall the key features of VERSA from Section 5.3. To guarantee Mandatory Sensing Op-

eration Authorization and Atomic Sensing Operation Execution, VERSA constructs PfB =

(Authorize,Verify,XSensing) algorithms as in Construction 5.1. We describe each algorithm

below.

5.6.1.1 Authorize

To authorize S, Ctrl picks a monotonically increasing Chal and generates

ATok := HMAC(KDF (Chal,K),S). This follows VRASED authentication algorithm – see

VERSA Verify specification below. ATok is computed over S with a one-time key derived

from K and Chal, where K is the master secret key shared between Ctrl and Dev.

5.6.1.2 Verify

To securely verify that an executable S’, installed in ER, matches authorized S, Dev invokes

VRASED∗ to compute: σ := HMAC(KDF (Chal,K),S ′) Verify outputs ⊤, if and only if

σ = ATok. In this case, PC reaches a fixed address, called iAuth. Otherwise, Verify outputs

⊥. In the rest of this section, we use “authorized software" to refer to software located in

ER, for which Verify(ER, ATok) outputs ⊤. Whereas, “unauthorized software" refers to any

software for which Verify(ER, ATok) outputs ⊥.
∗Dev and Ctrl act as Prv and Vrf in VRASED respectively.

79

Construction 5.1. Let K is a symmetric key pre-shared between Ctrl and VRASED in
Dev. VERSA instantiates a PfB = [Authorize,Verify,XSensing] scheme as follows:

1. AuthorizeCtrl(S): Ctrl produces an authorization message M := (S, Chal,ATok), where S
is a software, i.e., a sequence of instructions {i1, ..., in}, that Ctrl wants to execute on
Dev; Chal is a monotonically increasing challenge; and ATok is an authentication token
computed as shown in equation 5.7 . Ctrl sends M to Dev. Upon receiving M, Dev is
expected to parse M, find the memory region for S, and execute Verify (see below).

ATok := HMAC(KDF (Chal,K),S) (5.7)

2. VerifyDev(ER,ATok, Chal): calls VRASED [47] on memory region ER :=
[ERmin, ERmax] to securely compute σ as shown in equation 5.8.

σ := HMAC(KDF (Chal,K), ER) (5.8)

If σ = ATok, output ⊤; Otherwise, output ⊥.

3. XSensingDev(ER): starts execution of software in ER by jumping to ERmin (i.e., setting
PC = ERmin). A benign call to XSensing with input ER is expected to occur after one
successful computation of Verify for the same ER region. Otherwise, VERSA hardware
(see Construction 5.2) will cause the MCU to reset when GPIO is read. XSensing produces
E := {s0, ..., sm}, the set of states produced by executing ER, and outputs ⊤ or ⊥ as
follows:

XSensing(ER) =

{
(E,⊤), if ∃s ∈ E such that (s ∈ READGPIO) ∧ (s /∈ RESET)
(E,⊥), otherwise

(5.9)

Figure 5.9: Verified Remote Sensing Authorization (VERSA) Scheme

80

Construction 5.2. VERSA HardwareMonitor
At all times, VERSA verified hardware enforces all following LTL properties :

A – Read-Access Control to GPIO:

G : {(Read_Mem(GPIO) ∧ ¬(PC ∈ ER))→ Reset} (5.10)

G : {[(PC = ERmax) ∨Reset]→ (¬Read_Mem(GPIO) ∨Reset) W (PC = iAuth)} (5.11)

B – Ephemeral Immutability of ER and METADATA

G : {(PC = iAuth) ∧ (Write_Mem(ER) ∨Write_Mem(METADATA))→ Reset} (5.12)

G : {((Write_Mem(ER) ∨Write_Mem(METADATA)→
(¬Read_Mem(GPIO) ∨Reset) W (PC = iAuth))}

(5.13)

[Optional] G : {((Write_Mem(ER) ∨Write_Mem(METADATA)→
(¬Read_Mem(eKR) ∨Reset) W (PC = iAuth))}

(5.14)

C – Atomicity and Controlled Invocation of ER:

G : {¬Reset ∧ (PC ∈ ER) ∧ ¬X(PC ∈ ER)→ (PC = ERmax) ∨X(Reset)} (5.15)

G : {¬Reset ∧ ¬(PC ∈ ER) ∧X(PC ∈ ER)→ X(PC = ERmin) ∨X(Reset)} (5.16)

G : {(PC ∈ ER) ∧ (irq ∨DMAen)→ Reset} (5.17)

[Optional] Read/Write-Access Control to Encryption Key (Kenc) in eKR:

G : {(Read_Mem(eKR) ∧ ¬(PC ∈ ER))→ Reset} (5.18)

G : {[(PC = ERmax) ∨Reset]→ (¬Read_Mem(eKR) ∨Reset) W (PC = iAuth)} (5.19)

G : {[Write_Mem(eKR) ∧ ¬(PC ∈ V R)]→ Reset} (5.20)

Remark: [Optional] properties are needed only if support for encryption of outputs is desired.

Figure 5.10: VERSA HardwareMonitor Specifications

81

5.6.1.3 XSensing

When XSensing (ER) is invoked, PC jumps to ERmin, and starts executing the code in ER.

It produces a set E of states by executing ER, and outputs ⊤, if there is at least one state

that reads GPIO without triggering an MCU reset. Otherwise, it outputs ⊥.

5.6.1.4 HardwareMonitor

VERSA HardwareMonitor is verified to enforce LTL specifications (5.10)–(5.20) in Construc-

tion 5.1.

A – Read-Access Control to GPIO is jointly specified by LTLs (5.10) and (5.11). LTL

(5.10) states that GPIO can only be read during execution of ER (PC ∈ ER), requiring

an MCU reset otherwise. LTL (5.11) forbids all GPIO reads (even those within ER execu-

tion) before successful computation of Verify on ER binary using a valid ATok. Successful

Verify computation is captured by condition PC = iAuth. A new successful computation of

Verify(ER, ATok) is necessary whenever ER execution completes (PC = ERmax) or after

reset/boot. Hence, each legitimate ATok can be used to authorize ER execution once.

B – Ephemeral Immutability of ER and METADATA is specified by LTLs (5.12)-

(5.14). From the time when ER binary is authorized until it starts executing, no modifi-

cations to ER or METADATA are allowed. LTL (5.12) specifies that no such modification

is allowed at the moment when verification succeeds (PC = iAuth); LTL (5.13) requires

ER to be re-authorized from scratch if ER or METADATA are ever modified. Whenever

these modifications are detected (Write_Mem(ER)∨Write_Mem(METADATA)) further

reads to GPIO are immediately blocked (¬Read_Mem(GPIO) ∨ Reset) until subsequent

re-authorization of ER is completed (... W (PC = iAuth)). LTL (5.14) specifies the same

requirement in order to read VERSA-provided encryption key (Kenc) which is stored in mem-

82

ory region eKR. This property is only required when support for encryption of outputs is

desired.

C – Atomicity & Controlled Invocation of ER are enforced by LTLs (5.15), (5.16),

and (5.17). They specify that ER execution must start at ERmin and end at ERmax.

Specifically, they use the relation between current and next PC values. The only legal PC

transition from currently outside of ER to next inside ER is via PC = ERmin. Similarly, the

only legal PC transition from currently inside ER to next outside ER is via PC = ERmax.

All other cases trigger an MCU reset. In addition, LTL (5.17) requires an MCU reset

whenever interrupts or DMA activity is detected during ER execution. This is done by

simply checking irq and DMAen signals.

We note that XSensing relies on the HardwareMonitor to reset the MCU when a violation of

ER atomic execution is detected. Upon reset all data is erased. However, when execution

of S completes successfully VERSA does not trigger resets. In this case, S is responsible for

erasing its own stack before completion. We discuss how this self-clean-up routine can be

implemented in Section 5.10.1.

5.6.2 Encryption & Integrity of ER Output

Recall that, S might need to encrypt and send the result to Ctrl. For that purpose, Verify

derives a fresh one-time encryption key (Kenc) from K and Chal. To assure confidentiality of

Kenc, the following properties are required for the memory region (eKR) reserved to store

Kenc:

1. eKR is writable only by Verify (i.e., PC ∈ V R); and

2. eKR is readable only by ER after authorization.

83

LTLs (5.18)-(5.20) and (5.14) specify the confidentiality requirements of Kenc. In sum,

these properties establish the same read access-control policy for eKR and GPIO regions.

Therefore, only authorized S is able to retrieve Kenc.

5.7 Verified Implementation & Security Analysis

This section describes implementation details of VERSA. We also describe how VERSA

hardware is formally verified.

5.7.1 Sub-module Implementation & Verification

VERSA sub-modules are represented as FSMs and individually verified to hold for LTL

properties from Construction 5.2. They are implemented in Verilog HDL as Mealy machines,

i.e., their output is determined by both their current state and current inputs. Each FSM

has a single output: a local Reset. VERSA global output Reset is given by the disjunction

(logic OR) of all local Reset-s. For simplicity, instead of explicitly representing the output

Reset value for each state, we use the following convention:

1. Reset is 1 whenever an FSM transitions to RESET state;

2. Reset remains 1 while on RESET state;

3. Reset is 0 otherwise.

Note that all FSMs remain in RESET state until PC = 0 which indicates that the MCU

reset routine finished.

Fig. 5.11 illustrates the VERSA sub-module that implements read-access control to GPIO

and eKR (when applicable). It guarantees that such reads are only possible when they

84

emanate from execution of authorized software S contained in ER. It also assures that no

modifications to ER or METADATA occur between authorization of S and its subsequent

execution. The Verilog implementation of this FSM is formally verified to adhere to LTLs

(5.10)-(5.14) and (5.18)-(5.19). It has 3 states: (1) rLOCK, when reads to GPIO (and

possibly eKR) are disallowed; (2) rUNLOCK, when such reads are allowed to ER; and (3)

RESET . The initial state (after reset or boot) is RESET , and it switches to rLOCK state

when PC = 0. It switches to rUNLOCK when PC = iAuth (with no reads to GPIO and

eKR), indicating that Verify was successful. Note that rUNLOCK transitions to RESET

when reads are attempted from outside ER, thus preventing reads by any unauthorized

software. Once PC reaches ERmax, indicating that ER execution has finished, the FSM

transitions back to rLOCK. Also, any attempted modifications to METADATA or ER in

rUNLOCK state bring the FSM back to rLOCK. Note that rUNLOCK is only reachable

after authorization of ER, i.e., PC = iAuth.

The FSM in Figure 5.12 enforces LTL (5.20) to protect eKR from external writes. It has two

states: (1) wUNLOCK, when writes to eKR are allowed; and (2) RESET . At boot/after

reset (PC = 0), this FSM transitions from RESET to wUNLOCK. It transitions back to

RESET state whenever writes to eKR are attempted, unless these writes come from Verify

execution (PC ∈ V R).

Figure 5.13 shows the FSM verified to enforce ER atomicity and controlled invocation: LTLs

(5.15)-(5.17). It has five states; notER and midER correspond to PC being outside and

within ER (not including ERmin and ERmax), respectively. firstER and lastER are states

in which PC points to ERmin and ERmax, respectively. The only path from notER to

midER is via firstER. Likewise, the only path from midER to notER is via lastER. The

FSM transitions to RESET whenever PC transitions do not follow aforementioned paths.

It also transitions to RESET (from any state other than notER) if irq or DMAen signals

are set.

85

Figure 5.11: Verified FSM for GPIO and eKR Read-Access Control (LTL (5.10)-(5.14) &
LTL (5.18)-(5.19))

Figure 5.12: Verified FSM for eKR Write-Access Control (LTL (5.20))

86

Figure 5.13: ER Atomicity and Controlled Invocation FSM (LTL (5.15)-(5.17))

87

Definition 5.5. Atomic Sensing Operation Execution:

G{ (PC ∈ ER)→ [(PC ∈ ER) ∧ ¬irq ∧ ¬DMAen] W [(PC = ERmax) ∨Reset] }
∧ G{ ¬Reset ∧ ¬(PC ∈ ER) ∧X(PC ∈ ER)→ X(PC = ERmin) ∨X(Reset) }

(5.21)

Definition 5.6. Mandatory Sensing Operation Authorization:

G{ (Read_Mem(GPIO) ∧ ¬Reset)→ (PC ∈ ER) } ∧{
(PC = iAuth) ∧

{
(PC = iAuth)→ [¬Write_Mem(ER) ∧ ¬Write_Mem(METADATA)

∧ (Write_Mem(eKR)→ (PC ∈ V R))] U (PC = ERmin)
}}

B
{
Read_Mem(GPIO) ∧ ¬Reset

}
(5.22)

Figure 5.14: VERSA End-To-End Security Properties in LTL.

5.7.2 Sub-module Composition and VERSA End-To-End Security

To demonstrate security of VERSA according to Definition 5.4, our strategy is two-pronged:

A) We show that LTL properties from Construction 5.1 are sufficient to imply that GPIO

(and eKR) is only readable by S and any XSensing operation that returns ⊤ (i.e.,

performs sensing) is executed atomically. The former is formally specified in Defini-

tion 5.6, and the latter in Definition 5.5. For this part, we write an LTL computer

proof using SPOT LTL proof assistant [60].

B) We use a cryptographic reduction to show that, as long as item A holds, VRASED

security can be reduced to VERSA security according to Definition 5.4.

The intuition for this strategy is that, to win PfB-game in Definition 5.4, Adv must either

break the atomicity of XSensing (which is in direct conflict with Definition 5.5) or execute

XSensing with unauthorized software and read GPIO without causing an MCU Reset. Def-

inition 5.6 guarantees that the latter is not possible without a prior successful call to Verify.

On the other hand, Verify is implemented using VRASED verified architecture, which guar-

88

Theorem 5.1. Definition 5.2 ∧ LTL 5.15, 5.16, 5.17 → Definition 5.5

Theorem 5.2. Definition 5.2 ∧ LTL 5.10, 5.11, 5.12, 5.13, 5.16, 5.20 → Definition 5.6

Theorem 5.3. VERSA is secure according to the PfB-game in Definition 5.4, as long as
VRASED is a secure RA architecture according to VRASED security game from [47].

Figure 5.15: VERSA Theorems for proving end-to-end security.

antees the unforgeability of ATok. Hence, breaking VERSA requires either violating VERSA

verified guarantees or breaking VRASED verified guarantees, which should be infeasible to

any PPT Adv.

Section 5.8 includes proofs for Theorems 5.1, 5.2, and 5.3, in accordance to this proof strat-

egy. The rest of this section focuses on VERSA end-to-end implementation goals captured

by LTLs in Definitions 5.5 and 5.6 as well as their relation to VERSA high-level features

discussed in Section 5.3.

[Definition 5.5] states that it globally (always) holds that ER is atomically executed

with controlled invocation. That is, whenever an instruction in ER executes (PC ∈ ER),

it keeps executing instructions within ER (PC ∈ ER), with no interrupts and no DMA

enabled, until PC reaches the last instruction in ERmax or an MCU reset occurs. Also,

if an instruction in ER starts to execute, it always begins with the first instruction in

ERmin. This formally specifies the Atomic Sensing Operation Execution feature discussed

in Section 5.3.

[Definition 5.6] globally requires that whenever GPIO is successfully read (i.e., without

a Reset), this read must come from the CPU while ER is being executed. In addition,

before this read operation, the following must have happened at least once:

(1) Verify succeeded (i.e., PC = iAuth);

(2) From the time when PC = iAuth until ER starts executing (i.e., PC = ERmin), no

89

modification to ER and METADATA occurred; and

(3) If there was any write to eKR from the time when PC = iAuth, until PC = ERmin, it

must have been from Verify, i.e., while PC ∈ V R.

This formally specifies the intended behavior of the Mandatory Sensing Operation Autho-

rization feature, discussed in Section 5.3.

5.8 VERSA Composition Proof

In this section, we show that VERSA is a secure PfB architecture according to Defini-

tion 5.4, as long as A) the sub-properties in Construction 5.1 hold (Theorem 5.1, 5.2) and

B) VRASED is a secure remote attestation (RA) architecture according to the VRASED

security definition in [47] (Theorem 5.3). Informally, (A) shows that if the machine model

and all LTLs in Construction 5.1 hold, then the end-to-end goals for secure PfB architec-

ture are met, while this does not include the goal of prevention of forging authorization

tokens. (B) handles the latter using a cryptographic reduction, i.e., it shows that an adver-

sary able to forge the authorization token (with more than negligible probability) can also

break VRASED according to the RA-game, which is a contradiction assuming the security

of VRASED. Therefore, Theorems 5.1-5.3 prove that VERSA is a secure PfB architecture

as long as VRASED is a secure RA architecture.

For (A), computer-checked LTL proofs are performed using SPOT LTL proof assistant [60].

These proofs are available at [12]. We present the intuition behind them below.

Proof of Theorem 5.1 (Intuition). LTL (5.16) states the legal entry instruction requirement,

while LTL (5.15) states the legal exit instruction requirement in atomicExec. Also, since LTL

90

(5.15) states that ERmax is the only exit from ER without a reset, it implies self-contained

execution of ER. Lastly, LTL (5.17) enforces MCU reset if any interrupt or DMA occurs,

which prevents interrupts and DMA actions, as required by atomicExec. These imply the

LTL in Definition 5.5 which stipulates that execution of ER must start with ERmin and

stays within ER with no interrupts nor DMA actions until PC reaches ERmax (causing a

reset otherwise).

Proof of Theorem 5.2 (Intuition). Definition 5.6 (i) requires at least one successful verifi-

cation of ER before GPIO can be read successfully (without triggering a reset); and (ii)

disallows modifications to ER, METADATA, and Kenc (other than by V R) in between

ER verification subsequent ER execution. LTLs (5.10) and (5.11) state that PC must be

within ER to read GPIO and disallow GPIO reads by default (including when MCU reset

occurs) and after the execution of ER is over (PC = ERmax). Also, LTL (5.11) requires

(re-)authorization (PC = iAuth) of ER after the execution of ER is over (PC = ERmax).

LTL (5.13) disallows GPIO reads until the (re-)verification whenever ER or METADATA

are written. LTL (5.12) disallows changes to ER and METADATA at the exact time when

verification succeeds. LTL (5.16) guarantees that the execution of ER starts with ERmin

and LTL (5.20) guarantees that only the V R code can modify the value in eKR. Thus, these

are sufficient imply Definition 5.6.

For (B), we construct a reduction from the security game of VRASED in [47] to the security

game of VERSA according to the Definition 5.4. i.e., the ability to break the PfB-game

of VERSA allows breaking the RA-game of VRASED. Therefore, as long as VRASED is a

secure RA architecture according to the RA-game, VERSA is secure according to the PfB-

game.

91

Proof of Theorem 5.3. Assume AdvPfB , an adversary who can win the security game in

Definition 5.4 against VERSA with more than negligible probability. We show that if such

AdvPfB exists, then it can be used to construct AdvRA that wins the RA-game with more

than negligible probability.

Recall that, to win the PfB-game, AdvPfB must trigger⊤ as a result of XSensing, which means

it reads the sensed data without MCU reset. From the PfB-game step 4 in Definition 5.4, it

can be done in either of the following two ways:

Case1. AdvPfB executes a new, unauthorized software SAdv which causes XSensing(SAdv)→

⊤; or

Case2. AdvPfB breaks the atomic execution of an authorized, but not yet executed software,

Sj, so that it causes XSensing(Sj)→ (E,⊤) such that atomicExec(E,Sj) ≡⊥.

Recall that for the instruction set Ij of Sj and a set Ej of execution states , to have

atomicExec(Ij, Ej) ≡⊥, at least one of four requirements in Definition 5.4.1 must be false.

Note that the atomic sensing operation execution goal in Definition 5.5 rules out Case2.

Specifically, LTL (5.16) enforces (1), while (2) and (3) are guaranteed by LTL (5.15). Lastly,

(4) is covered by LTL (5.17).

For Case1, AdvPfB needs to read GPIO without causing an MCU reset. Recall that the

Mandatory Sensing Operation Authorization in Definition 5.6 requires Verify (with input

executable in ER) to succeed at least once before reading GPIO. According to VERSA

construction, AdvPfB causes Verify(ER, ATok∗, Chal∗) to output ⊤, where ER contains SAdv

which is an unauthorized software, ATok∗ is a valid issued (but never used) token, and

Chal∗ is its corresponding challenge. Since Verify is implemented using VRASED to com-

pute HMAC of Chal and ER, AdvPfB can be directly used as AdvRA to win the RA-game

of VRASED. Thus, assuming secure VRASED, this is a contradiction, which implies the

security of VERSA according to the PfB-game.

92

5.9 Evaluation

In this section, we discuss VERSA implementation details and evaluation. VERSA source

code and verification/proofs are publicly available at [12].

5.9.1 Toolchain & Prototype Details

VERSA is built atop OpenMSP430 [68]: an open source implementation of TI-MSP430 [74].

We use Xilinx Vivado to synthesize an RTL description of HardwareMonitor and deploy it

on Diligent Basys3 prototyping board for Artix7 FPGA. For the software part (mostly to

implement Verify), VERSA extends VRASED software (which computes HMAC over Dev

memory) to include a comparison with the received ATok (See Section 5.9.4 for extension

details). The comparison uses secure memcmp (constant-time function) operation to check

whether σ (from equation 5.8) computed over ER, matches ATok. It also supports to write

Kenc generated during Verify to eKR using memcpy.

We use the NuSMV model checker to formally verify that HardwareMonitor implementation

adheres to LTL specifications (5.10)-(5.20).

Table 5.2: Hardware Overhead & Verification cost

Architecture Hardware Reserved Verification
LUTs Regs RAM (bytes) LoC #(LTLs) Time (s) RAM (MB)

OpenMSP430 1854 692 0 - - - -
VRASED 1891 724 2332 481 10 0.4 13.6
VERSA + VRASED 2109 742 2336 1118 21 13956.4 1059.1

5.9.2 Hardware Overhead

Table 5.2 reports on VERSA hardware overhead, as compared to unmodified OpenMSP430

and VRASED. Similar to other schemes [47, 49, 103, 62], we consider hardware overhead

93

in terms of additional Look-Up Tables (LUTs) and registers. Extra hardware in terms of

LUTs gives an estimate of additional chip cost and size required for combinatorial logic,

while extra hardware in terms of registers gives an estimate of memory overhead required by

sequential logic in VERSA FSMs. Compared to VRASED, VERSA requires 10% additional

LUTs and 2% additional registers. In actual numbers, it adds 255 LUTs and 50 registers to

the underlying MCU as shown in Table 5.2.

5.9.3 Verification Costs

Formal verification costs are reported in Table 5.2. We use a Ubuntu 18.04 desktop machine

running at 3.4GHz with 32GB of RAM for formal verification. Our verification pipeline

converts Verilog HDL to SMV specification language and then verifies it against the LTL

properties listed in Construction 5.1 using the NuSMV model checker (per Section 5.2).

VERSA verification requires checking 11 extra invariants – LTLs (5.10) to (5.20) – in addition

to VRASED LTL invariants. It also incurs higher run-time and memory usage than VRASED

verification. This is due to two additional 16-bit hardware signals (ERmin, ERmax) which

increase the space of possible input combinations and thus the complexity of model checking

process. However, verification is still manageable in a commodity desktop – it takes around

5 minutes and consumes 340MB of memory.

5.9.4 Runtime Overhead

VERSA requires any software piece seeking to access GPIO (and Kenc) to be verified. Con-

sequently, runtime overhead is due to Verify computation which instantiates VRASED. This

runtime includes: (1) time to compute σ from equation 5.8; (2) time to check if σ = ATok;

and (3) time to write Kenc to eKR, when applicable. Naturally, the runtime overhead is

dominated by the computation in (1) which is proportional to the size of ER. As VERSA

94

150 200 250 300 350 400 450 500
Binary size (in bytes)

1.1

1.2

1.3

1.4

1.5
Ru

nt
im

e
(#

cy
cle

s i
n

m
illi

on
s)

Simple App.

Motion Sensor

Temperature
Sensor

Figure 5.16: Runtime overhead of VERSA due to Verify

does not require any software instrumentation, there is no increase in code size or runtime

overhead while executing ER.

We measure Verify cost on three sample applications: (1) Simple Application, which reads

32-bytes of GPIO input and encrypts it using One-Time-Pad (OTP) with Kenc; (2) Motion

Sensor (available at https://github.com/Seeed-Studio/LaunchPad_Kit/tree/

master/Grove_Modules/pir_motion_sensor) – which continuously reads GPIO in-

put to detect movements and actuates a light source when movement is detected; and

(3) Temperature Sensor (adapted code from https://github.com/Seeed-Studio/

LaunchPad_Kit/tree/master/Grove_Modules/temp_humi_sensor to support en-

cryption of its outputs) – which reads ambient temperature via GPIO and encrypts this read-

ing using OTP. We prototype using OTP for encryption for the sake of simplicity noting that

VERSA does not mandate a particular encryption scheme (e.g., CPA/CCA-Secure ones). All

sample applications include a self-clean-up code executed immediately before reaching their

95

https://github.com/Seeed-Studio/LaunchPad_Kit/tree/master/Grove_Modules/pir_motion_sensor
https://github.com/Seeed-Studio/LaunchPad_Kit/tree/master/Grove_Modules/pir_motion_sensor
https://github.com/Seeed-Studio/LaunchPad_Kit/tree/master/Grove_Modules/temp_humi_sensor
https://github.com/Seeed-Studio/LaunchPad_Kit/tree/master/Grove_Modules/temp_humi_sensor

exit point to erase their stack traces.

Figure 5.16 shows Verify runtimes on these applications. Assuming a clock frequency of

10MHz (a common frequency for low-end MCUs), Verify runtime ranges from 100 − 200

milliseconds for these applications. The overhead is linear on the binary size.

Note: Every application includes a self-clean-up code at the end to erase its stack after

execution. We present an example of such clean up code in Section 5.10.1.

Remark: Runtime of Verify is almost the same as the runtime of attestation algorithm

of other similar architectures for low-end MCUs such as [47, 62, 49] since they all use

the same HMAC implementation from HACL* library. The additional runtime of Verify is

due to memcmp and memcpy steps at the last, which is negligible compared to the HMAC

computation step. Next, we do not compare runtime overhead of VERSA with SANCUS [103]

as the latter is a pure hardware architecture with no software overhead.

5.9.5 Comparison with Other Low-End Architectures:

To the best of our knowledge, VERSA is the first architecture related to PfB. However, to

provide a point of reference in terms of performance and overhead, we compare VERSA

with other low-end trusted hardware architectures, such as SMART [62], VRASED [47],

APEX [49], and SANCUS [103]. All these architectures provide RA-related services to attest

integrity of software on Dev either statically or at runtime. Since PfB also checks software

integrity before granting access to GPIO, we consider these architectures to be related to

VERSA.

Figures 5.17 and 5.18 compare VERSA hardware overhead with the aforementioned archi-

tectures in terms of additional LUTs and registers. Percentages are relative to the plain

MSP430 core total cost.

96

VERSA SMART VRASED APEX SANCUS0
10
20
30
40
50
60
70
80

%
 A

dd
iti

on
al

 L
UT

s

Figure 5.17: VERSA Additional HW overhead (%) in Number of Look-Up Tables

VERSA SMART VRASED APEX SANCUS0

20

40

60

80

100

120

%
 A

dd
iti

on
al

 R
eg

s

Figure 5.18: VERSA Additional HW overhead (%) in Number of Registers

97

VERSA builds on top of VRASED. As such, it is naturally more expensive than hybrid

RA architectures such as SMART and VRASED. Similar to VERSA, APEX also monitors

execution properties and also builds on top of RA (in APEX case, with the goal of producing

proofs of remote software execution). Therefore, VERSA and APEX exhibit similar over-

heads. SANCUS presents a higher cost because it implements RA and isolation features in

hardware – which makes it faster compared to hybrid schemes.

5.10 Discussion

5.10.1 Clean-up after Program Termination

While VERSA guarantees the confidentiality of sensing operations, it requires S to erase

its own stack/heap before its termination. This ensures that unauthorized software can not

extract and leak sensitive information from S execution and allocated data. This can be

achieved via a single call to libc’s memset function with starting address matching the base

of S stack and size equal to the maximum size reached by S execution.

The maximum stack size can be determined manually by counting the allocated local vari-

ables in small and simple S implementations. To automatically determine this size in more

complex S implementations, all functions called within S must update the highest point

reached by their respective stacks. Figure 5.19 shows a sample application that reads 32 bytes

of sensor data, encrypts this data using VERSA one-time key Kenc, and cleans-up the stack

thereafter. Line 12 is S entry point (ERmin). S first saves the stack pointer to STACK_MIN

address. Then, the application function is called, in line 17. application implements

S intended behavior. After the application is done, the clean up code (lines 51-53) is

called with STACK_MIN as the start pointer and size of 32 + 4 bytes (32 bytes for data

variable (in line 39) and 4 bytes for stack metadata).

98

Figure 5.19: Sample sensing operation that reads GPIO input, encrypts it, and cleans up its
stack after execution.

99

5.10.2 Data Erasure on Reset/Boot

Violations to VERSA properties trigger an MCU reset. A reset immediately stops execution

and prepares the MCU core to reboot by clearing all registers and pointing the program

counter (PC) to the first instruction of PMEM. However, some MCUs may not guarantee

erasure of DMEM as a part of this process. Therefore, traces of data allocated by S (including

sensor data) could persist across resets.

In MCUs that do not offer DMEM erasure on reset, a software-based Data Erasure (DE) can

be implemented and invoked it as soon as the MCU starts, i.e., as a part of the bootloader

code. In particular, DE can be implemented using memset (similar to lines 51-53) with

constant arguments matching the entirety of the MCU’s DMEM. DE should be immutable

(e.g., stored in ROM) which is often the case for bootloader binaries. Upon reset, PC must

always point to the first instruction of DE. The normal MCU start-up proceeds normally

after DE execution is completed.

5.11 Limitations:

In the following, we discuss some limitations of VERSA and their possible mitigations.

5.11.1 Shared Libraries

To verify S, Ctrl must ensure that S spans one contiguous memory region (ER) on Dev.

If any code dependencies exist outside of ER, VERSA resets the MCU according to LTL

(5.17). To preclude this situation, S must be made self-contained by statically linking all of

its dependencies within ER.

100

5.11.2 Atomic Execution & Interrupts

Per Definition 5.4, VERSA forbids interrupts during execution of XSensing. This can be

problematic, especially on Dev with strict real-time constraints. In this case, Dev must

be reset in order to allow servicing the interrupt after DMEM erasure. This can cause a

delay that could be harmful to real-time settings. Trade-offs between privacy and real-time

constraints should be carefully considered when using VERSA. One way to remedy this issue

is to allow interrupts as long as all interrupt handlers are: (1) themselves immutable and

uninterruptible from the start of XSensing until its end; and (2) included in ER memory

range and are thus checked by Verify.

5.11.3 Possible Side-channel Attacks

MSP430 and similar MCU-s allow configuring some GPIO ports to trigger interrupts. If one

of such ports is used for triggering an interrupt, Adv could possibly look at the state of Dev

and learn information about GPIO data. For example, suppose that a button press mapped

to a GPIO port triggers execution of a program that sends some fixed number of packets over

the network. Then, Adv can learn that the GPIO port was activated by observing network

traffic. To prevent such attacks, privacy-sensitive quantities should always be physically

connected to GPIO ports that do not interrupt sources (these are usually the vast majority

of available GPIO ports). Other popular timing attacks related to cache side-channels and

speculative execution, are not applicable to this class of devices, as these features are not

present in low-end MCUs.

101

5.11.4 Flash Wear-Out

VERSA implements Verify using VRASED. As discussed in Section 2.2, the authentication

protocol in VRASED requires persistent storage of the highest value of a monotonically

increasing challenge/counter in flash. Flash memory has a limited number of write cycles

(typically at least 10,000 cycles [10, 5]). Hence, a large number of successive counter updates

may wear out that portion of flash memory, the persistent counter stored in flash is only

updated following successful authentication of Ctrl. Therefore, only legitimate requests from

Ctrl cause these flash writes. Nonetheless, if the number of expected legitimate calls to

Verify is high, one must select the persistent storage type or (alternatively) use different

flash blocks once a given flash block storing the counter reaches its write cycles’ limit. For

a more comprehensive discussion of this matter, see [25].

5.11.5 VERSA Alternative Use-Case

VERSA can be viewed as a general technique to control access to memory regions based on

software authorization tokens. We apply this framework to GPIO in low-end MCUs. Other

use-cases are possible. For example, a VERSA-like architecture could be used to mark a

secure storage region and grant access only to explicitly authorized software. This could

be useful if Dev runs multiple (mutually distrusted) applications and data must be securely

shared between subsets thereof.

5.12 Conclusions

We formulated the notion of Privacy-from-Birth (PfB) and proposed VERSA: a formally

verified architecture realizing PfB. VERSA ensures that only duly authorized software can

102

access sensed data even if the entire software state is compromised. To attain this, VERSA

enhances the underlying MCU with a small hardware monitor, which is sufficient to achieve

PfB. The experimental evaluation of VERSA publicly available prototype [12] demonstrates

its affordability on a typical low-end IoT MCU: TI MSP430.

103

Chapter 6

CASU: Compromise Avoidance via Secure

Update for Low-end Embedded Systems

104

Abstract

Proliferation of runtime attacks that introduce malicious code (e.g., by injection)

into embedded devices – referred to as code injection attacks – has prompted a range

of mitigation techniques. While RA schemes detect such attacks, they require Vrf

to explicitly initiate RA request, based on some unclear criteria. Thus, in case of

prover’s compromise, Vrf only learns about it upon the next RA instance. While suffi-

cient for compromise detection, some applications would benefit from a more proactive,

prevention-based approach.

To this end, we construct CASU: Compromise Avoidance via Secure Updates. CASU

is an inexpensive hardware/software co-design enforcing: (i) runtime software im-

mutability, thus precluding any illegal software modification, and (ii) authenticated

updates as the sole means of modifying software. In CASU, a successful RA instance

serves as a proof of successful update, and continuous subsequent software integrity is

implicit, due to the runtime immutability guarantee. This obviates the need for RA in

between software updates and leads to unobtrusive integrity assurance with guarantees

akin to those of prior RA techniques, with better overall performance.

Research presented in this chapter appeared in the Proceedings of the 41st Interna-

tional Conference on Computer-Aided Design (ICCAD 2022) [50].

105

6.1 Introduction

Code injection attacks [65, 125, 45, 105] represent a real and prominent threat to low-end

devices. Embedded systems software is mostly written in C, C++, or Assembly – languages

that are very prone to errors. Code injection attacks exploit these errors to cause buffer

overflows and inject malicious code into the existing software or somewhere else in the device

memory.

Previous results considered such attacks in low-end devices and proposed RA [62, 103, 47,

21, 30, 83], as well as proofs of remote software updates and memory erasure [48, 20, 27].

However, they have considerable runtime costs since they require computing a cryptographic

function (usually, a Message Authentication Code (MAC)) over the entire software. A recent

result, RATA [51], minimized the cost of RA by measuring a constant-size memory region

that reflects the time of the last software modification (legal or otherwise). RATA achieved

that by introducing a hardware security monitor that securely logs each modification time

to that region.

Regardless of their specifics, RA techniques only detect code modifications after the fact.

They cannot prevent them from taking place. Hence, there could be a sizeable window of

time between the initial compromise and the next RA instance when the compromise would

be detected.

To this end, the goal of this chapter is to take a more proactive, prevention-based approach

to avoid potential compromise. It constructs CASU: Compromise Avoidance via Secure

Update, which consists of two main components. First is a simple hardware security monitor

that is formally verified. It performs two functions: (1) blocks all modifications to the

specific program memory region where the software resides, and (2) prevents anything stored

outside that region from executing. It runs independently from (in parallel with) the MCU

core, without modifying the latter. This thwarts all code injection attacks. However, it is

106

unrealistic to prohibit all modifications to program memory, since genuine software updates

need to be installed during the device’s lifetime. Otherwise, the software could be housed

in ROM or the entire device would function as an ASIC (Application Specific Integrated

Circuit). Therefore, CASU second component is a secure remote software update scheme.

The key benefit of CASU is maintaining constant software integrity without repeated RA

measurements while allowing genuine secure software updates. Specifically, it guarantees

that, between any two successive secure updates, device software is immutable. However,

the device’s liveness can be ascertained at any time by repeating the latest update, which

essentially represents RA.

6.1.1 Contributions

The intended contributions of CASU are:

1. A tiny formally verified hardware monitor that guarantees benign (authorized) software

immutability and prevents the execution of any unauthorized code.

2. A scheme to enable secure software updates when authorized by a trusted 3rd party.

3. An open-source CASU prototype built atop a commodity low-end MCU to demonstrate

its low cost and practicality.

6.2 Background

This section gives a brief overview of TOCTOU attacks and RATA, which mitigates such

attacks.

107

6.2.1 TOCTOU Attacks & RATA

Traditional RA techniques have shared a common limitation: they measure the state of

Prv executables at the time when RA is executed by Prv. They provide no information

about Prv executables before RA measurement or its state in between two consecutive

RA measurements. This problem is referred to as Time-Of-Check Time-Of-Use or RA-

TOCTOU. In practice, RA-TOCTOU leaves devices vulnerable to transient malware that

erases itself after completing its tasks, leaving no detectable traces.

RATA [51] solves RA-TOCTOU with a minimal (formally verified) hardware component

to additionally provide historical context about the state of Prv program memory. This

is achieved via securely logging the time when the latest program memory modification

was performed. This time is securely logged to a protected memory region called Latest

Modification Time (LMT) buffer that can not be modified by any software. LMT is also

covered by the RA function. Therefore, in RATA an RA result tells Vrf about the current

state of Prv and “since when” this has been the state of Prv. This feature was integrated

seamlessly into VRASED and the composition was shown to be secure against TOCTOU

attacks (see [51] for a detailed definition).

RATA is implemented as a hardware module behaving as follows:

1. It monitors a set of MCU signals and detects whenever any location within an attested

memory region AR is written.

2. Whenever a modification in AR is detected, RATA logs the timestamp by reading the

current time from the real-time clock (RTC) and storing it in a fixed memory location,

called Latest Modification Time (LMT).

3. In the memory layout, LMT is stored in the same region as AR and enforced by RATA

to be read-only for all software executing on the MCU, and for DMA.

108

In solving the RA-TOCTOU problem, RATA also obviates the need to compute RA the

entirety of AR, significantly reducing RA execution time on Prv. When Vrf already knows

AR contents from a previous RA result, it suffices to verify that AR has not changed. Such

a proof can be obtained by attesting only LMT , instead of AR in its entirety. Therefore RA

time complexity is reduced from linear on the size of AR to a constant on the size of LMT ,

i.e., 32 bytes.

In this chapter, unlike RATA, CASU actively prevents any modification to PMEM at

runtime, unless it is a securely and causally authorized (by the trusted Vrf) software update.

6.3 CASU Scheme & Assumptions

6.3.1 Basics

Similar to the typical RA setting, CASU involves a low-end MCU (Prv) and verifier (Vrf).

The latter is a trusted higher-end device, e.g., a laptop, a smartphone, a smart home gateway,

or a device manufacturer’s back-end server. Vrf is responsible for initiating each software

update request, verifying whether the update was successful, and keeping track of the latest

successfully confirmed software update. We assume a single Vrf for a given Prv. Also, Prv

and Vrf are assumed to share a master secret key (K) installed on Prv at manufacturing

time. Our discussion focuses on the symmetric key setting, which is more practical for low-

end MCUs. Nonetheless, the use of public-key cryptography is possible with some cosmetic

changes to CASU, provided that Prv has sufficient computing capabilities.

109

Figure 6.1: CASU Secure Update Protocol.

6.3.2 Secure Update Overview

At the time of its initial deployment, Vrf is assumed to know the software state (Sold) of

Prv. When Vrf later wishes to update this software, it issues an update request, denoted by

UpdateVrf , to Prv. This request carries the new software Snew and a fresh authentication

token ATok, based on Snew.

When Prv receives an UpdateVrf , Sold invokes CASU, which handles the update process in

two steps: (1) AuthPrv verifies that ATok is a fresh and timely token that corresponds to

Snew, and (2) if the first step succeeds, InstallPrv replaces Sold with Snew and generates an

authenticated acknowledgment (AAck). At this point, CASU terminates and control is given

to Snew which must send AAck to Vrf.

Upon receiving AAck, Vrf executes the Verify procedure to check whether the AAck is a valid

confirmation for the outstanding UpdateVrf . If no AAck is received, or if AAck verification

fails, Vrf assumes a failed update. Figure 6.1 illustrates the interaction between Vrf and

Prv. Protocol details are described in Section 6.4 below.

110

6.3.3 Adversary Model

We consider an adversary, Adv, that controls the entire memory state of Prv, including

PMEM (flash) and DMEM (RAM). It can attempt to write, read or execute any memory

location. It can also attempt to remotely launch code injection attacks to modify Prv

software. It may also divert the execution control-flow to ignore update requests, as well as

attempt to extract any Prv secrets or forge update confirmations.

Furthermore, Adv can configure DMA controllers on Prv to read/write to any part of the

memory while bypassing the CPU. It can induce interrupts in an attempt to pause the update

procedure, modify any part of the old or new software versions, or cause inconsistencies or

race conditions. It might also eavesdrop on or interfere with network traffic between Vrf and

Prv, in a typical Dolev-Yao manner [59].

As common in most related work, physical attacks requiring adversarial presence are consid-

ered out of scope. This includes both non-invasive and invasive physical attacks. The former

describes attacks whereby Adv physically reprograms Prv software using direct/wired in-

terfaces, such as USB/UART, SPI, or I2C. The latter refers to inducing hardware faults,

modifying code in ROM, extracting secrets via physical side-channels, and tampering with

hardware. Protection against non-invasive attacks can be obtained via well-known features,

such as a secure boot. (see Section 6.4.3). Whereas, protection against invasive attacks can

be obtained via standard tamper-resistant techniques [110].

6.4 CASU Design

One of CASU main features is the prevention of all unauthorized software modifications

to Prv software. As mentioned earlier, the former can be trivially achieved by making

all Prv software read-only, or by making Prv an ASIC. However, this precludes all benign

111

(authorized) updates. Therefore, it is essential to have a secure update mechanism. The

term “authorized" refers to software installed on Prv physically at manufacture or deployment

time, as well as each subsequent version installed via update request by Vrf.

From Vrf perspective, CASU guarantees that, once installed, authorized software on Prv

remains unchanged until the next Vrf-initiated successful secure update. This is achieved

via three features:

1. Authorized Software Immutability: Except via a secure update (implemented within

CASU trusted code), authorized software cannot be modified.

2. Unauthorized Software Execution Prevention: Only the memory containing the (im-

mutable) authorized software is executable.

3. Secure Update: Vrf is the only entity that can authenticate Prv to install new software.

After an update, the previous version of the installed software is no longer authorized.

The first two features are realized by a hardware module, CASU-HW, that runs in parallel

with the CPU. It monitors a few CPU hardware signals and triggers an MCU reset if any

violation is detected. The third feature is realized by a trusted code base (TCB), CASU-SW,

that extends VRASED to authenticate incoming update requests containing new software

to be installed (Snew) and an authorization token (ATok) that must be issued by Vrf using

the key K pre-shared with CASU module in Prv. If ATok matches Snew, then CASU-SW

installs Snew on Prv and produces an authenticated AAck, attesting to Vrf that a successful

update occurred on Prv.

Figure 6.2 depicts CASU software execution flow. After each boot or reset, it executes

authorized software that was previously installed (either physically embedded or via CASU

Secure Update). In this state, CASU-HW ensures software immutability and execution

prevention of anything else. However, when an update request is received, CASU-SW must

be invoked to securely apply the update and re-configure CASU-HW to protect the memory

112

Figure 6.2: CASU Software Execution Flow.

region where Snew is installed. Note that the update cannot be performed without invoking

CASU-SW due to the immutability guarantee.

Table 6.1 summarizes MCU hardware signals and memory regions relevant to CASU. Figure

6.3 illustrates the CASU architecture: (1) CASU-HW prevents modification of memory

regions in gray and prevents execution of all other memory, while (2) CASU-SW resides in

the ROM; it contains a bootloader and subroutines related to CASU secure update. We

describe these features in detail in the rest of this section.

6.4.1 CASU-HW: Hardware Security Monitor

CASU-HW monitors PC,Wen,Daddr,DMAen,DMAaddr to detect illegal writes or execution.

When a violation is detected, CASU-HW activates the Reset signal. To simplify notation

when describing CASU-HW properties, we define the following macro:

113

Figure 6.3: CASU System Architecture.

114

Table 6.1: Notation Summary

Notation Description

PC Program Counter, points to the current instruction being executed
Wen 1-bit signal that indicates if MCU core is writing to memory
Daddr Memory address where the MCU core is currently accessing
DMAen 1-bit signal that indicates if DMA is active
DMAaddr Memory address being accessed by DMA, when active
Reset Signal that reboots the MCU when set to logic ‘1’
TCR Trusted Code Region, a fixed ROM region storing CASU-SW
ER Executable Region, a configurable memory region where authorized software is

stored; ER = [ERmin, ERmax], where ERmin and ERmax are the boundaries of
ER

EP Executable Pointer, a fixed memory region storing current values of ERmin and
ERmax

bEP Buffer Executable Pointer, a fixed memory location used to save the boundaries of
the memory region storing new software Snew.

ATR Fixed memory buffer from which AuthPrv reads ATok and also where InstallPrv

outputs AAck

IV TR Reserved memory region for the MCU’s IVT
SF Fixed memory region where Status flag is stored; Status is used by CASU-SW for

consistency.

115

Mod_Mem(i) ≡ (Wen ∧Daddr = i) ∨ (DMAen ∧DMAaddr = i)

i represents a memory address. Mod_Mem (i) is true whenever the MCU core or the DMA

is writing to i. When representing a write within some contiguous memory region (with

multiple addresses) M = [Mmin,Mmax], we “abuse” the notation as Mod_Mem (M). To

denote that a write has occurred within one of the multiple contiguous memory regions, e.g.,

when a write happens to some address within M1 or M2, we say Mod_Mem (M1,M2).

Authorized Software Immutability

Software authorized by CASU, including any ISRs, is located in the contiguous memory

segment ER. The pointer EP stores the boundaries that define ER, i.e., ERmin and ERmax.

CASU-HW monitors EP to locate the currently authorized software and enforce its rules

based on this region. Write attempts to EP are also monitored and only allowed when

performed by CASU-SW, preventing malicious changes to EP that could misconfigure the

range of ER, leading CASU-HW to enforce protections based on the incorrect region. ER

is configurable to give CASU-SW flexibility to change the location and size of authorized

software, instead of fixing Snew to the same location and size of Sold, as software versions vary

in size. CASU-HW also protects memory regions SF and IV TR. SF is used during a secure

update, described in Section 6.4.2. Since ISRs are a part of ER, IVT must be protected to

maintain the integrity of interrupt handling during authorized software execution.

Incidentally, Authorized Software Immutability also prohibits self-modifying code, i.e., code

in ER writing to ER, to prevent code injection attacks within ER.

Unauthorized Software Execution Prevention

116

Authorized Software Immutability:

[Mod_Mem(ER,EP, SF, IV TR) ∧ (PC /∈ TCR)]→ Reset (6.1)

Unauthorized Software Execution Prevention:

[(PC /∈ ER) ∧ (PC /∈ TCR)]→ Reset (6.2)

Figure 6.4: CASU-HW Security Properties.

Only authorized software (located in ER) or CASU-SW (located in TCR) are allowed to

be executed on Prv. Since ER is configurable via EP after a secure update, CASU-SW

re-configures EP to allow execution of Snew from the new ER location.

6.4.1.1 CASU-HW Properties Formally

Figure 6.4 formalizes the aforementioned CASU-HW security properties using proportional

logic. Note that these properties must hold at all times. Equation 6.1 states that any

modification to ER, EP , SF , and IV TR– when a program other than CASU-SW (PC /∈

TCR) is executing – causes a Reset. Equation 6.2 states that MCU cannot execute programs

other than those in ER and TCR. If PC points to any other memory location, the MCU is

reset.

6.4.2 CASU Secure Update

Recall (from Section 6.3.2) that CASU Secure Update implements: (UpdateVrf , Verify) on

Vrf and (AuthPrv, InstallPrv) on Prv. At a high level, there are two ways of implementing

it on Prv.

1. Download Snew to DMEM (RAM), i.e., the stack or heap of the current software (Sold),

117

and invoke AuthPrv. If it succeeds, InstallPrv overwrites ER with Snew and updates

EP . This is problematic, because, if a reset occurs in the middle of InstallPrv execu-

tion, then ER containing Sold would be partially overwritten and Snew in the DMEM

would be lost as a consequence of the reset. This would leave Prv software in a cor-

rupted state.

2. Download Snew to PMEM (flash) and invoke AuthPrv. If AuthPrv succeeds, InstallPrv

updates EP to the location where Snew resides. This is generally safer since Snew and

Sold reside in two separate flash memory regions. If the installation is interrupted by a

reset, CASU-SW can re-invoke InstallPrv to complete the installation. However, this

requires Prv PMEM to be sufficiently large to accommodate both Snew and Sold, i.e.,

at least double the size of ER. We believe that this is a realistic assumption. The size

of flash memory on our targetted devices is at least 8KB, whereas the typical binary

size is usually under 2KB.

Construction 6.1 shows the whole scheme. Recall that CASU-SW is immutable (being in

ROM). Its functionality is described below.

6.4.2.1 UpdateVrf

Secure update requires for any software Snew to be installed on Prv to adhere to the following

format Snew := (LSnew ||VSnew ||NSnew ||BINSnew ||IV TSnew), where LSnew , VSnew , NSnew is the Snew

header consisting of its size, version number, and a random nonce, respectively. BINSnew

is the Snew binary in byte-code that mandatorily includes a download and acknowledge

subroutine that accepts future update requests and replies acknowledgment message back

to Vrf. IV TSnew is the IVT of Snew that needs to be overwritten to IV TR region so that

MCU knows where to jump into the new software when an interrupt is triggered. Another

requirement is that VSnew should always be greater than the version number of the current

(or old) software on Prv. This avoids replay attacks that attempt to trick Prv into installing

118

Construction 6.1. Let K is a symmetric key pre-shared between Vrf and Prv
(protected by VRASED secure architecture). CASU Secure Update scheme defined by
[UpdateVrf ,AuthPrv, InstallPrv,Verify] is realized as follows:

1. UpdateVrf(Snew)→ ATok:
Vrf generates a tuple T := (Snew,ATok), where Snew is the new software and ATok is the
accompanying authentication token, as follows:
(a) Compiles and generates Snew:= (LSnew ||VSnew ||NSnew ||BINSnew ||IV TSnew), where LSnew

is Snew size, VSnew is Snew version number, NSnew is a random nonce, BINSnew is Snew
binary, and IV TSnew is Snew IV T , to be placed in IV TR of Prv.

(b) Computes ATok using equation 6.3 with the second operand set to: 0||Snew, where
’0’ is the direction indicator from Vrf to Prv.

ATok := HMAC(K, 0||Snew) (6.3)

Vrf sends T to Prv for update.
2. AuthPrv(Snew,ATok)→⊥ /⊤:

Upon receiving a tuple T := (Snew,ATok) from Vrf, Snew is downloaded at memory region
pointed to by bEP , and ATok is written to ATR. Then Prv does the following:
(a) If VSnew <= VER, output ⊥ and return to ER; otherwise, proceed to the next step.
(b) Computes σ using equation 6.4.

σ := HMAC(K, 0||bEP) (6.4)

(c) If σ == ATok, output ⊤ and invoke InstallPrv; otherwise, output ⊥ and return to
ER, where the current software (Sold) resides.

3. InstallPrv(Snew)→ AAck:
Upon invocation by AuthPrv, or at boot time, in case Status is equal to 1, Prv does the
following:
(a) Sets Status to 1 and updates EP with values in bEP .
(b) Updates IV TR with IV TSnew .
(c) Computes AAck using equation 6.5 and stores it at ATR. In equation 6.5 the second

operand is 1||VSnew ||NSnew , where ’1’ is the direction indicator from Prv to Vrf.

AAck := HMAC(K, 1||VSnew ||NSnew) (6.5)

(d) Sets Status to 0 and jumps to new ER, which is pointed to by the new value in EP .
Prv replies to Vrf with AAck indicating successful update.

4. Verify(AAck)→⊥ /⊤:
Upon receiving AAck from Prv, Vrf does the following:
(a) Computes γ using the same equation 6.5.
(b) If γ == AAck, outputs ⊤; otherwise outputs ⊥.

Figure 6.5: CASU Secure Update.

119

an old software version that contains vulnerabilities. In case Vrf wishes to revert to an older

version (e.g., due to later-discovered bugs in Snew), it must issue a brand new update request

with the older-version software, though with a new version number.

Vrf, by invoking UpdateVrf , computes ATok using equation 6.3 and sends (Snew, ATok) to

Prv.

6.4.2.2 AuthPrv

When Prv receives UpdateVrf with Snew and ATok, the current download subroutine on Sold

in ER accepts and downloads Snew to an available PMEM slot. It then writes the pointers

to Snew to bEP , buffer Executable Pointer, in PMEM, and writes ATok to ATR. This

download subroutine should not be a part of CASU-SW, as exposing network interfaces

directly to trusted parts of the device is hazardous and may result in the exploitation of

unknown vulnerabilities in it, leading to key leakage. Hence, even though ER is untrusted,

it should be the one receiving the request, because even if it fails to receive or chooses to not

call AuthPrv, then AAck is not generated/sent, which is a clear indication to Vrf that the

update was unsuccessful.

To securely verify that Snew is valid software to be installed on Prv, AuthPrv first checks

whether the VSnew is greater than the one of ER, i.e., VER. If the VSnew is valid, it invokes

VRASED as a subroutine to compute σ according to equation 6.4. If σ matches with ATok

received from Vrf, then it outputs ⊤ (accept symbol) and further invokes InstallPrv to apply

the update. Otherwise, it outputs ⊥ (reject symbol) and returns to old software at ER

without computing any response to be sent back to Vrf.

Note that CASU-SW execution is guarded by CASU-HW (which inherits VRASED hardware

properties), i.e., any interrupts or DMA, or any attempts to access the key or any confidential

data that CASU-SW generates, will be considered as a violation and an MCU reset will be

120

triggered immediately. Also note that if such an abrupt reset occurs, MCU will return to

the old software, and eventually Vrf has to send a new update request. In this new request,

Vrf can use the same version number (but with a different nonce for maintaining freshness)

because the previous update was not applied, and thus, the version number of the current

software is still old.

6.4.2.3 InstallPrv

Once Snew is authenticated, InstallPrv is invoked. This is the critical step of CASU Secure

Update. It is responsible for updating the EP with bEP , IV TR with IV TSnew and computing

authenticated acknowledgment AAck that is to be replied to Vrf. As mentioned in Section

6.4.2.2, if a reset occurs during any of these sub-steps, they have to be repeated from the

beginning. This is because, if EP is updated and IV TR is not, vulnerabilities in old ISRs

pointed to by the old IV T can be exploited by malware. Furthermore, if EP and IV TR are

updated, yet the computation of AAck failed, Vrf assumes that the update failed and repeats

the update request with the same version number (since EP is updated to the new software),

and AuthPrv will fail again. Therefore, all three sub-steps must take place atomically. To

this end, CASU-SW uses a Status flag SF in PMEM, which it sets and unsets, before and

after the completion of InstallPrv sub-steps, respectively.

To handle cases when a reset is triggered during InstallPrv, the Reset Vector in IV TR

is programmed to start executing from CASU-SW. This technique is analogous to having a

bootloader. At boot time, CASU-SW uses Status to determine whether a reset occurred prior

to the completion of InstallPrv. If so, CASU-SW re-invokes InstallPrv from the beginning.

Finally, InstallPrv computes AAck according to equation 6.5 and writes it to ATR. Af-

ter generating AAck, CASU-SW jumps to new ER. Now, it is the responsibility of the

acknowledge subroutine in Snew to reply to Vrf with AAck.

121

Acknowledgment Receipt: There are two unlikely cases where Vrf may not receive AAck,

after being generated by InstallPrv. Firstly, AAck sent by Prv being lost or corrupted in

transit. In this case, upon a time-out, Vrf re-sends UpdateVrf . Since InstallPrv stores

AAck in a dedicated region of DMEM (ATR), download in ER checks whether the update

request has the same version number as itself and directly replies AAck to Vrf, instead of

invoking AuthPrv again. Secondly, a reset occurring after a successful update and before

AAck is sent to Vrf. In that case, AAck is lost and, upon a timeout, Vrf needs to send a

new UpdateVrf with a new version number. The drawback of this approach is that the

same update is re-applied, wasting MCU clock cycles. However, the latter case is very rare,

and even if it occurs, CASU-SW only takes less than a second to re-install Snew (see Section

6.6.2).

Vrf can distinguish between these cases by first re-sending the same UpdateVrf . If there

is still no response, then AAck is most likely lost due to a reset and Vrf must send a new

UpdateVrf with a new version number.

There are other ways to mitigate the aforementioned AAck issues. Rather than storing AAck

in DMEM, it could be placed into a reserved memory in PMEM to ensure its persistence

even if a reset occurs. Now, download can always reply with AAck whenever it sees a

duplicate request, thus eliminating the cost of re-update. However, this approach requires an

additional write to flash, which may be undesirable. Alternatively, we can use a Vrf-supplied

timestamp instead of a nonce in Snew and modify AuthPrv to accept duplicate requests with

a more recent timestamp. This approach does not require any reserved memory (not even

in DMEM). However, it incurs runtime overhead every time Vrf issues a duplicate request.

Each aforementioned alternative has its own benefits and drawbacks. We leave it up to Vrf

to decide which is most suitable.

Note that none of the above can result in a DoS attack due to multiple requests, because all

UpdateVrf-s originate from a legit Vrf and are verified by AuthPrv. Moreover, download

122

Figure 6.6: Secure Update Workflow: blue and green boxes indicate authorized and trusted
execution routines, respectively.

can check the Snew header to see if the request was already seen, discard the rest of the

packets, and simply reply stored AAck to Vrf.

6.4.2.4 Verify

Finally, if all goes well, Vrf receives an AAck and checks its validity using equation 6.5. If

either AAck is invalid or a time-out occurs, Vrf assumes that the update failed.

Figure 6.6 depicts the workflow of secure updates. When Prv comes out of reset, it starts

executing CASU-SW. CASU-SW first checks whether Status is 1, it invokes InstallPrv to

resume installation of already verified Snew located at bEP . Otherwise, it jumps to Sold in

ER. Upon receiving UpdateVrf , the download routine in Sold accepts and downloads Snew

to an available memory slot in PMEM and stores this address in bEP . Sold is free to complete

its pending tasks before invoking AuthPrv in CASU-SW. Once, it invokes CASU-SW, atomic

123

execution of AuthPrv and InstallPrv (if the former succeeds) begins. During InstallPrv, if a

violation is detected, Prv resets and invokes CASU-SW with Status set to 1, thus invoking

InstallPrv again. After successful completion of InstallPrv, CASU-SW jumps to Snew in ER.

Eventually, the acknowledge in Snew replies AAck to Vrf, and continues with its normal

execution.

6.4.3 (Optional) CASU Secure Boot

CASU’s adversary model does not include physical attacks as mentioned in section 6.3.3.

CASU targets only remote adversaries that try to modify Prv software, either by infecting

Prv with malware that changes the software or by requesting a malicious software update

via a forged ATok. We consider such an adversary model because this is the most common

type of attack that is viable in pragmatic settings. However, in situations where CASU is

applied on devices that are prone to physical attacks, specifically of the non-invasive kind,

then a secure boot mechanism must be implemented alongside CASU.

Secure Boot is a hardware/software component that verifies the integrity of the device’s

software, before loading and executing it, as soon as the MCU is powered on. After a

reset/reboot, the processor is programmed to start executing from Secure Boot. If Secure

Boot verifies that the software is in the expected condition, then it continues to invoke this

software. Otherwise, it goes into an infinite loop, blocking the device forever until the device

is physically reprogrammed with valid software.

To implement Secure Boot as a part of CASU, there are two additional changes required.

First, CASU-SW must be modified to invoke AuthPrv on ER, every time it boots. If

AuthPrv verifies that ER is unmodified, then CASU-SW executes ER; otherwise, it blocks

Prv. Second, the hardware of the MCU core must be modified to start from CASU-SW

deterministically (after Secure Boot). This is because, in the original CASU design, boot-

124

Figure 6.7: FSM of CASU-HW Verified Hardware Module.

loading into CASU-SW is ensured by IVT guarded by CASU-HW. However, if an adversary

modifies this IVT by physically reprogramming Prv, then there is no way CASU-HW can

prevent this. Therefore, the second change is required to protect against such attacks.

6.5 Implementation

6.5.1 CASU-HW Verified Hardware Module

Figure 6.7 presents a hardware FSM formally verified to enforce both properties of Figure

6.4. It is a Mealy FSM, where the output is determined by both the current state and the

current input. This FSM takes as input the signals shown in Figure 6.3 and produces a

single one-bit output Reset. If Reset is 1, the MCU core immediately resets.

There are two states in the FSM: RESET and EXEC. In RESET, Reset is 1 and remains

so until the FSM leaves that state; in other cases, Reset is 0. After a reset, as soon as PC

reaches 0 (execution is ready to start), the FSM transitions to EXEC. While in EXEC, the

FSM constantly checks for: (1) modifications to ER, EP , SF , or IV TR, and (2) execution

attempts outside ER and TCR. In either case, the FSM transitions to RESET.

We implement the FSM using Verilog HDL and automatically translate it into Symbolic

125

Model Verifier (SMV) language using Verilog2SMV [76] tool. Finally, we use the NuSMV

Model Checker [40] to generate machine proofs showing that the FSM adheres to the prop-

erties in Figure 6.4.

6.5.2 CASU-SW Secure Update Routine

CASU-SW implements subroutines casu_entry, casu_authenticate, casu_install,

and casu_exit.

casu_entry is the only legal entry point to CASU-SW; it is invoked at boot and during an

update. Boot invocation is obtained by setting the IVT reset vector to casu_entry, which

takes a boolean argument to test whether it was invoked at boot or by ER for an update.

In the former case, it checks Status to determine whether to invoke casu_install in

order to resume the unfinished update from the last reset. Otherwise, it calls casu_exit,

which clears the MCU registers and jumps to the binary in ER. In the latter case, it

invokes casu_authenticate that checks for the validity of the version number of Snew at

bEP and invokes VRASED software to compute HMAC. If the measurement matches ATok,

casu_install is invoked; otherwise, it jumps to casu_exit. Finally, casu_install

updates EP , copies the new IVT to IV TR, and computes and stores AAck at ATR. It also

sets/unsets Status to indicate the status of installation to casu_entry subroutine, in case

of a reset.

CASU-SW is implemented in C with a tiny TCB of ≈ 140 lines of code. It uses VRASED

software, which is implemented using a formally verified cryptographic library, HACL* [139].

126

6.6 Evaluation

All CASU source code and hardware verification/proofs are publicly available at [11]. CASU

prototype is built on OpenMSP430 [68] and it uses VRASED for computing HMAC during

Authorize. We use Xilinx Vivado to synthesize an RTL description of CASU-HW and deploy

it on the Diligent Basys3 board featuring an Artix7 FPGA.

6.6.1 Hardware Overhead

Table 6.2 presents CASU hardware overhead compared to unmodified OpenMSP430 and

VRASED. Similar to prior work [47, 49, 103, 62], we consider additional Look-Up Tables

(LUTs) and registers. Compared to VRASED, CASU only requires 3% (99) additional LUTs

and 0.3% (34) additional registers.

Verification Cost: CASU was verified using a Ubuntu 18.04 LTS machine running 3.2GHz

with 16GB of RAM. Table 6.2 shows verification time and memory. CASU requires 95

additional lines of Verilog code to enforce properties in Figure 6.4. The verification cost

includes the verification of VRASED properties. The time to verify the composite design is

under a second and requires 148MB of RAM.

Table 6.2: Hardware Overhead & Verification cost.

Architecture Hardware Verification
LUTs Regs LoC #(LTLs) Time (s) RAM (MB)

OpenMSP430 1859 692 - - - -
VRASED 1902 724 481 10 0.4 13.6
CASU (+VRASED) 1958 726 576 12 0.9 148

Comparison with Related Architectures: In Figures 6.8 and 6.9, we compare CASU

with other low-end MCU security architectures, including VRASED [47], RATA [51], APEX [49],

and PURE [48], which provide RA-related services. However, recall that, unlike CASU, all

127

CASU VRASED RATA APEX PURE
0
2
4
6
8

10
12
14
16
18
20

%
 A

dd
iti

on
al

 LU
Ts

Figure 6.8: CASU Additional HW overhead (%) in Number of Look-Up Tables

these other architectures are reactive. As a superset of VRASED, CASU naturally has a

higher overhead. CASU and RATA have similar overheads, since both monitor memory

modifications. Whereas APEX and PURE enforce additional hardware properties for gen-

erating proofs of execution (APEX), and proofs of update, reset, and erasure (PURE); and

thus, they have a higher overhead than CASU.

6.6.2 Runtime for Secure Updates

The runtime of CASU-SW was evaluated on three sample applications: (1) Blinking LED

(250 bytes of binary size) - toggles an LED every half a second, (2) Ultrasonic Ranger (422

bytes) - available at [4] - computes the distance of an obstacle from a moving object, and

(3) Temperature Sensor (734 bytes) - available at [3] - measures the temperature of a room.

In each case, we measured execution time of casu_authenticate and casu_install

128

CASU VRASED RATA APEX PURE
0
2
4
6
8

10
12
14
16
18
20

%
 A

dd
iti

on
al

 R
eg

ist
er

s

Figure 6.9: CASU Additional HW overhead (%) in Number of Registers

– the most time-consuming tasks dominated by HMAC computations. Results are shown

in Figure 6.10. casu_install runtime is constant because it updates fixed-size memory

ranges (including EP , IV TR, and SF) and computes HMAC on a fixed-size input. Whereas,

casu_authenticate scales linearly with Snew size, over which HMAC is computed. The

combined runtime for the worst case (temperature sensor case with 734-byte binary) is

≈ 200ms, which we consider to be reasonable, considering that updates are infrequent.

Reserved Memory: CASU requires 32 bytes of reserved RAM for ATR, 8 bytes of reserved

PMEM for EP and bEP , and 1 byte of PMEM for SF . In total, it consumes 41 bytes of

additional storage.

129

200 300 400 500 600 700 800
Binary size (in bytes)

20
40
60
80

100
120
140
160
180
200

Ru
nt

im
e

(m
s)

Blinking LED
(250 bytes)

Ultrasonic Ranger
 (422 bytes)

 Temperature
 Sensor
 (734 bytes)

Entire Secure Update
Authenticate Subroutine
Install Subroutine

Figure 6.10: Runtime of CASU-SW Secure Update

6.7 Conclusions

In this chapter, we designed CASU, a prevention-based root-of-trust architecture for low-

end MCUs. CASU differs from prior work by disallowing illegal software modifications

rather than detecting them. CASU also prevents execution of any unauthorized software and

supports secure software updates. CASU is prototyped on OpenMSP430 and its hardware

component is formally verified. Experiments show that CASU incurs quite low overhead and

is thus suitable for resource-constrained low-end IoT devices. Its entire implementation is

publicly available at [11].

130

Chapter 7

Related Work

131

Abstract

This chapter overviews prior work related to this dissertation. Section 7.1 describes

state-of-the-art RA techniques. Next, Section 7.2 discusses prior work on Control-

Flow Integrity and CFA techniques. Section 7.3 overviews Data-Flow Integrity and

DFA related work. Then, Section 7.4 overviews active RoT designs. Section 7.5 con-

siders some formally verified architectures. Finally, Section 7.6 discusses over-the-air

software/firmware updates.

132

7.1 Prior Work on RA and PoX

RA purpose is to measure the software integrity on a given device. There are three main

categories of RA techniques: software-based, hardware-based, and hybrid approaches.

7.1.1 Software-based RA

Software-based attestation [81, 119, 117, 114, 66, 88, 69] does not rely on any hardware

modifications. However, insecure if Adv can physically re-program Dev (i.e., non-invasive

physical Adv). Also, its inability to maintain cryptographic secrets results in strong assump-

tions about precise timing and constant communication delays between Vrf and Prv. These

assumptions are generally unrealistic in the IoT ecosystem. Thus, software-based attestation

is unsuitable for multi-hop and jitter-prone communication, or settings where a compromised

Prv is aided (during attestation) by a more powerful accomplice device. On the other hand,

[70] and [21] achieve security against software compromise by relying upon secrets, however,

they are not resistant to non-invasive physical attacks. Nonetheless, software-based attes-

tation is the only viable choice for legacy devices that have no security-relevant hardware

support.

7.1.2 Hardware-based RA

Hardware-based methods [107, 128, 84, 112, 96, 95, 103] perform RA relying on security

provided by either using dedicated hardware components (e.g., TPM [128]) or require sub-

stantial changes to the underlying instruction set architecture in order to support execution

of trusted software (e.g., Intel SGX [75] or ARM TrustZone [26]). However, the cost of such

hardware is normally prohibitive for low-end MCUs. SANCUS [103] is a hardware-based RA

architecture for low-end devices (MSP430, in particular). However, its hardware overhead is

133

more than 100% that of the unmodified MSP430 CPU core.

7.1.3 Hybrid RA

Hybrid attestation techniques [62, 47, 30, 83] leverage minimal hardware support while re-

lying on software to reduce additional hardware complexity. SMART [62] is the first hybrid

RA architecture for low-end MCUs, where the MAC (over Prv memory) is implemented in

its TCB, while this TCB and the attestation key are protected by minimal hardware exten-

sions. HYDRA [61] relies on a secure boot hardware feature and a formally verified secure

microkernel, seL4 [82], while Trustlite [83] modifies MPU and CPU exception hardware to

implement RA on the Intel Siskiyou Peak platform. Tytan [30] builds upon Trustlite, ex-

tending its capabilities for applications with real-time requirements. Overall, hybrid RA

techniques provide a balance between security guarantees and hardware cost, making them

suitable for scenarios where low-end devices are deployed remotely.

7.1.4 Temporal Aspects of RA

RATA [51] detects TOCTOU attacks by monitoring software modifications between two RA

measurements. Besides TOCTOU attacks, two other temporal aspects are crucial for RA

security. The first aspect is temporal consistency [33], which ensures that the RA result

reflects an instantaneous and consistent snapshot of attested memory. This consistency

is vital because, without it, self-relocating malware could evade detection by relocating

itself during RA. Achieving temporal consistency involves enforcing atomic execution of the

attestation code or locking attested memory to prevent modifications during RA.

Second, when RA is used on safety-critical and/or real-time devices [32], atomicity require-

ment might interfere with the real-time nature of Prv application. To address this issue,

134

SMARM [35] uses probabilistic malware detection. It divides the memory into a set of

blocks which are attested in a randomized order. While attesting a block must be atomic,

interrupts are allowed between attestation of two blocks. Assuming that malware can not

guess the next block, even if interrupts are allowed, malware only has a small probability of

avoiding detection. If this procedure is repeated multiple times, such probability becomes

negligible. Meanwhile, ERASMUS [34] and SeED [73] are based on Prv self-measurements,

where a Prv periodically measures and records its own software state, in order to detect

transient malware that infects Prv and leaves before the next RA instance.

7.1.5 PoX Related Work

Flicker [96] achieves PoX by utilizing TPM-based attestation and sealed storage, combined

with late launch support offered by AMD Secure Virtual Machine [19]. This enables iso-

lated code execution and attestation of executed code, as well as its associated inputs and

outputs. Sanctum [43], implemented on Rocket RISC-V core, follows a similar approach by

instrumenting the enclave code to convey information about its own execution to a remote

party. However, both Flicker and Sanctum are designed for high-end devices, APEX is the

only PoX architecture that is tailored for low-end devices that provide PoX.

Remark: APEX PoX relies on RA for measuring the attested software and its outputs. In

this dissertation, we use APEX (for PoX) for constructing Tiny-CFA and DIALED to enable

CFA an DFA, and VRASED (for RA) for constructing VERSA and CASU to enable access-

control policies for software based on authentication via VRASED HMAC computation.

135

7.2 Mitigation of Control-flow Attacks

Mitigation of runtime exploits is a popular topic and many solutions were proposed [14].

There are two means of addressing control-flow attacks: (a) Control-Flow Integrity aims to

prevent control-flow deviations by using prior knowledge of acceptable states of the control-

flow traversals, and (b) Control-Flow Attestation detects them by recording and reporting

the control-flow path. Below we discuss some prior work in both.

7.2.1 Control-Flow Integrity (CFI)

The main idea of CFI is to derive a program’s control-flow graph (CFG) prior to execution,

and then monitor its runtime behavior to ensure that the control-flow follows a legitimate

path of the CFG; any deviation from the CFG leads to termination of the program. CFI

methods [13, 126, 102, 46] primarily aim to find a practical trade-off between runtime over-

head and the level of precision. Some work [137, 136] proposed CFI for COTS or legacy

binaries. Another relevant scheme is code-pointer integrity (CPI) [86], which focuses on

guaranteeing the integrity of code pointers to prevent control-flow hijacking. However, nei-

ther CFI nor CPI provides information about the actual control-flow path taken during

program execution. Moreover, they do not address non-control data attacks – which corrupt

data variables (e.g. loop/if condition variables) that are used to drive the control flow –

that execute valid CFG path but still an unexpected path. Furthermore, CFI techniques

require extensive hardware support to enable secure shadow stack and constant checking of

the destination addresses (to check their validity against valid CFG); hence, unsuitable for

low-end MCUs.

136

7.2.2 Control-Flow Attestation (CFA)

As mentioned in Section 3.2, C-FLAT [15] is the earliest CFA architecture that uses ARM

TrustZone Secure World [26]. To remove TrustZone dependence, LO-FAT [55] and Lite-

HAX [54] implement CFA using stand-alone hardware modules: a branch monitor and

a hash engine. Atrium [135] enhances aforementioned CFA techniques by securing them

against physical adversaries that intercept instructions as they are fetched to the CPU.

Though less expensive than C-FLAT, such hardware components are still not affordable for

low-end MCUs, since their cost (in terms of price, size, and energy consumption) is higher

than that of a low-end MCU itself. This is evident from Figures 3.7 and 3.8, which com-

pares hardware costs – in terms of Look-Up Tables (LUTs) and numbers of Registers – of

aforementioned CFA techniques and the total hardware cost of the OpenMSP430 core itself.

7.3 Mitigation of Data-only Attacks

There are two mitigation strategies for data-only attacks: (a) Data-Flow Integrity approach

that prevents modifications of secure memory/data by unauthorized software snippets, and

(b) Data-Flow Attestation technique that instead takes an after-the-fact detection approach.

7.3.1 Data-Flow Integrity (DFI)

Some DFI [57, 98, 56, 99] techniques actively enforce integrity checks to ensure that data

flow remains within expected boundaries, thereby preventing unauthorized modifications.

Others [17, 37] use static analysis to derive a policy table specifying which memory addresses

where each instruction can write. They instrument all memory access instructions to ensure

the policy is not violated during runtime. DataShield [36] applies selective protection to

137

sensitive data based on its data-type; it needs developer annotations to mark such sensitive

data. Although effective at preventing data corruption, these techniques tend to incur high

runtime overhead due to intercepting and checking all memory accesses.

7.3.2 Data-Flow Attestation (DFA)

Given intensive overhead (in terms of runtime and hardware) of DFI, DFA detects data-only

attacks by monitoring the data flow of critical variables during runtime. OAT [124] and

LiteHax [54] provide DFA and CFA. While OAT relies on ARM TrustZone-M to record both

control-flow path and the critical data variables, LiteHax implements custom hardware on

RISC-V Pulpino core [109]. However, similar to aforementioned techniques, they are too

costly for low-end MCUs.

It is important to note that DFA techniques, such as OAT, similar to other data-oriented

security approaches (e.g., DataShield), require developer annotations to identify critical vari-

ables. However, relying on developer annotations introduces the possibility of human error.

Hence, there is a need for techniques that minimize reliance on manual annotations and

provide robust and automated data-flow attestation mechanisms.

7.4 Other Active RoTs

Passive RoTs detect software compromise by producing an unforgeable proof of Prv state to

Vrf. In terms of functionality, they implement the following services: (1) RA [62, 103, 47,

21, 30, 83, 128, 81, 119, 117, 114, 66, 96, 112]; (2) PoX, CFA, DFA [49, 54, 15, 55, 135, 124,

53, 52, 67]; and (3) proofs of remote software update, erasure, and reset [48, 20, 27]. They

cannot prevent stated violations.

138

There are other active RoTs, e.g., Garota [18] is a hybrid architecture that guarantees the

execution of critical software even when all the software on the device is compromised.

Cider [133] and Lazarus [72] rely on ARM TrustZone or a similar class of MCUs to protect

devices from being "bricked", by resetting and updating the device whenever it does not

respond to a watchdog timer.

Other hybrid architectures, such as SANCTUM [43] and Notary [28], provide strong memory

isolation and peripheral isolation guarantees, respectively. These guarantees are achieved

via hardware support or external hardware agents. However, we note that such schemes are

designed for high-end computers that support MMUs.

7.5 Formally Verified Systems

Formal Verification provides increased confidence about the correctness of the security tech-

niques’ implementations. Several efforts focused on formal verification of security-critical

services and systems [139, 87, 82, 29]. seL4[82] is a verified microkernel that provably guar-

antees memory protection and process isolation. HACL*[139] is a verified cryptographic

library proved for functional correctness, memory safety, and secret independence using F*

(formal verification) language.

In the space of low-end MCUs, VRASED [47] and RATA [51] are formally verified hybrid

RA architectures, where the latter one detects TOCTOU attacks. APEX [49] is a verified

architecture that provides proofs of remote software execution. PURE [48] offers formally

verified proofs of remote update, reset, and erasure. Garota [18] is verified to adhere to the

guaranteed execution of critical software when triggered by an interrupt. Another recent

result [31] formalized and proved the security of a hardware-assisted mechanism to prevent

leakage of secrets through timing side-channels due to MCU interrupts.

139

7.6 Remote Updates

Remote Over-the-Air (OTA) Updates support the seamless delivery of software updates for

IoT devices. Notably, TUF [111] is an update delivery framework resilient to key compro-

mises. Uptane [80] extends TUF for supporting updates for vehicular ECUs. However, both

TUF and Uptane require relatively heavy cryptographic operations, unsuitable for CASU-

targeted low-end devices. ASSURED [27] extends TUF to provide a secure update framework

for large-scale IoT deployments. SCUBA [116] uses software-based attestation to identify and

patch infected software regions. However, due to the timing assumptions of software-based

attestation, it is unsuitable for remote IoT settings. PoSE [106] and AONT [79] use proofs

of secure erasure to wipe Prv to show that its memory is fully erased and then install new

software. However, these schemes are not fault-tolerant and can not retain previous software,

in case of reset during erasure or new update installation. Also, an extensive discussion of

various software update schemes can be found in [134].

140

Chapter 8

Conclusions & Future Work

In conclusion, this dissertation addresses security challenges in low-end, resource-constrained

MCUs. It identifies shortcomings in current security architectures and presents four RoT

architectures: Tiny-CFA, DIALED, VERSA, and CASU. Tiny-CFA and DIALED are passive

RoTs that detect runtime software exploits, while VERSA and CASU are active RoTs that

prevent them.

These architectures are constructed using software/hardware co-design, incorporating min-

imal hardware support to ensure secure isolated execution of their software counterparts.

This design principle makes proposed RoTs suitable for low-end MCUs. Another important

aspect is the utilization of formally verified hardware support to derive their stated security

properties.

The first contribution in Chapter 3, is Tiny-CFA, which implements a CFA technique that

detects control-flow attacks by measuring the actual control-flow path taken by software.

Although there are a few architectures implementing runtime attestation, they rely on ex-

pensive hardware support which is not suitable for low-end MCUs. Tiny-CFA instead relies

on a low-cost PoX architecture.

141

Building upon Tiny-CFA, the second contribution is DIALED, presented in Chapter 4. It

implements DFA to detect both control-flow and data-only attacks, providing comprehensive

coverage for all known data-oriented software exploits. By measuring both control- and data-

flows, this architecture provides an end-to-end runtime execution report. Also, DIALED

requires automatic code instrumentation (similar to Tiny-CFA), at compile time, whereby

all critical data inputs are securely logged.

Next, we presented VERSA (discussed in Chapter 5), which thwarts sensor data leakage.

Low-end MCUs often collect sensitive personal information from their sensor peripherals.

VERSA implements a hardware-enforced access control mechanism that prevents unautho-

rized access to the GPIO-mapped memory of the MCU. The only way to legally access the

sensitive memory is to gain authorization from VERSA trusted software. VERSA hardware

is formally verified to protect sensitive memory regions and to provide a secure execution

environment for authorized software to process confidential data.

Finally, in Chapter 6, we introduced CASU, which prevents runtime code-injection attacks.

Similar to VERSA, CASU implements new verified hardware that prevents modifications

to benign (authorized) software and execution of other (unauthorized) software, thereby

enforcing runtime integrity. It also offers a secure update framework to remotely update

(already authorized) software.

We implement all RoTs on an open-source MSP430 core, a representative MCU for low-end

IoT devices, and demonstrate their feasibility using real-world applications. Experimental

results show that they have low runtime and hardware overhead.

8.1 Future Work

Limitations & Future Work:

142

1. Further research on Control-Flow and Data-Only Attacks: The presented RoTs aim to

mitigate runtime software exploits. However, none of these approaches can completely

prevent control-flow or data-only attacks. Although such attacks can be detected later

through control/data-flow attestation techniques, they still succeed in either leaking

sensitive information or disrupting safety-critical tasks. In Chapter 7, we discuss tech-

niques that address this limitation on higher-end processors. An interesting future

direction is to extend our RoTs to support CFI/DFI by incorporating these ideas or

designing new techniques specifically for low-end MCUs. This is particularly chal-

lenging because CFI techniques require storing and monitoring all valid control-flow

graphs, which can become exponentially large.

2. Support for Interrupt-Aware Architectures: Another limitation is the handling of in-

terrupts in the proposed architectures, except for CASU. Tiny-CFA, DIALED, and

VERSA handle interrupts by resetting the device. However, for safety-critical applica-

tions, these MCUs may benefit from interrupt-friendly architectures. One approach to

achieve this is by securely storing the current software context in a protected memory

region, executing the corresponding interrupt handler, and then resuming by loading

the context back into normal memory. If the MCU’s memory is limited, an alternative

could be to read/write-protect the current software context in-place. This presents an-

other interesting direction for future work, with the main challenge being the design of

verified hardware that requires minimal modifications to implement such functionality.

Other Future Directions:

1. Deploying proposed architectures on commercially available MCUs, such as ARM

Cortex-M series [9] MCUs. These MCUs offer slightly higher power and features,

including MPUs and (optional) low-end TEEs such as TrustZone-M [90]. Exploring

the deployment of the proposed architectures on these MCUs, which are becoming

143

more affordable and popular, would be interesting.

2. Extending security services to higher-end devices: Another avenue for future research

is to explore similar security services for higher-end IoT devices, such as smartwatches

and automobile infotainment units. These devices typically host more powerful pro-

cessors such as ARM Cortex-A series [1] and RISC-V cores [2, 109], which have MMUs

and support operating systems with virtualization enabled. Some even have TEEs

such as TrustZone-A [89] and Multizone [71]. Leveraging these capabilities and build-

ing security architectures that integrate with existing platforms can provide enhanced

security for high-end applications.

3. Designing and verifying security architectures using formally verified microkernels: The

final future direction involves designing and verifying security architectures for high-

end applications using a formally verified microkernel, seL4 [82]. seL4 offers provable

memory protection and process isolation guarantees on processors such as the ARM

Cortex-A series. Exploring the integration of this secure microkernel with the pro-

posed architectures can provide high-assurance security solutions for mid-to-high-end

systems.

144

Bibliography

[1] Arm cortex-a9. https://developer.arm.com/Processors/Cortex-A9.

[2] SiFive Boards.

[3] Temperature sensor code. https://github.com/Seeed-Studio/LaunchPad_
Kit/tree/master/Grove_Modules/temp_humi_sensor.

[4] Ultrasonic ranger code. https://github.com/Seeed-Studio/LaunchPad_
Kit/tree/master/Grove_Modules/ultrasonic_ranger.

[5] Avr atmega 1284p 8-bit microcontroller. http://ww1.microchip.com/
downloads/en/DeviceDoc/doc8059.pdf, 2009.

[6] Wireless Sensor and Actuator Networks, pages 295–300. John Wiley & Sons, Ltd,
2010.

[7] BASHLITE. https://www.enigmasoftware.com/
bashlite-malware-hits-one-million-iot-devices/, 2016.

[8] Hajime. https://threatpost.com/mirai-and-hajime-locked-into-\
iot-botnet-battle/125112/, 2016.

[9] Arm cortex-m prototyping system. https://www.arm.com/products/tools/development-
boards/versatile-express/cortex-m-prototyping-system.php, 2017.

[10] Msp430 flash memory characteristics. https://www.ti.com/lit/an/
slaa334b/slaa334b.pdf?ts=1638460551489, 2018.

[11] CASU source code. https://github.com/sprout-uci/CASU, 2022.

[12] VERSA source code. https://github.com/sprout-uci/pfb, 2022.

[13] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. Control-flow integrity. In V. Atluri,
C. A. Meadows, and A. Juels, editors, Proceedings of the 12th ACM Conference on
Computer and Communications Security, CCS 2005, Alexandria, VA, USA, November
7-11, 2005, pages 340–353. ACM, 2005.

[14] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. Control-flow integrity principles,
implementations, and applications. ACM Trans. Inf. Syst. Secur., 13(1):4:1–4:40, 2009.

145

https://github.com/Seeed-Studio/LaunchPad_Kit/tree/master/Grove_Modules/temp_humi_sensor
https://github.com/Seeed-Studio/LaunchPad_Kit/tree/master/Grove_Modules/temp_humi_sensor
https://github.com/Seeed-Studio/LaunchPad_Kit/tree/master/Grove_Modules/ultrasonic_ranger
https://github.com/Seeed-Studio/LaunchPad_Kit/tree/master/Grove_Modules/ultrasonic_ranger
http://ww1.microchip.com/downloads/en/DeviceDoc/doc8059.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/doc8059.pdf
https://www.enigmasoftware.com/bashlite-malware-hits-one-million-iot-devices/
https://www.enigmasoftware.com/bashlite-malware-hits-one-million-iot-devices/
https://threatpost.com/mirai-and-hajime-locked-into- \ iot-botnet-battle/125112/
https://threatpost.com/mirai-and-hajime-locked-into- \ iot-botnet-battle/125112/
https://www.ti.com/lit/an/slaa334b/slaa334b.pdf?ts=1638460551489
https://www.ti.com/lit/an/slaa334b/slaa334b.pdf?ts=1638460551489
https://github.com/sprout-uci/CASU
https://github.com/sprout-uci/pfb

[15] T. Abera, N. Asokan, L. Davi, J. Ekberg, T. Nyman, A. Paverd, A. Sadeghi, and
G. Tsudik. C-FLAT: control-flow attestation for embedded systems software. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, Vienna, Austria, October 24-28, 2016, pages 743–754. ACM, 2016.

[16] A. Acar, H. Fereidooni, T. Abera, A. K. Sikder, M. Miettinen, H. Aksu, M. Conti,
A.-R. Sadeghi, and S. Uluagac. Peek-a-boo: I see your smart home activities, even
encrypted! In Proceedings of the 13th ACM Conference on Security and Privacy in
Wireless and Mobile Networks, WiSec ’20, page 207–218, New York, NY, USA, 2020.
Association for Computing Machinery.

[17] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro. Preventing memory error
exploits with WIT. In 2008 IEEE Symposium on Security and Privacy (S&P 2008),
18-21 May 2008, Oakland, California, USA, pages 263–277. IEEE Computer Society,
2008.

[18] E. Aliaj, I. De Oliveira Nunes, and G. Tsudik. GAROTA: generalized active root-of-
trust architecture. CoRR, abs/2102.07014, 2021.

[19] AMD Technology. AMD64 Architecture Programmer’s Manual, Volume 2, 2023.

[20] M. Ammar and B. Crispo. Verify&revive: Secure detection and recovery of compro-
mised low-end embedded devices. In Annual Computer Security Applications Confer-
ence, pages 717–732, 2020.

[21] M. Ammar, B. Crispo, and G. Tsudik. Simple: A remote attestation approach for
resource-constrained iot devices. In 2020 ACM/IEEE 11th International Conference
on Cyber-Physical Systems (ICCPS), pages 247–258. IEEE, 2020.

[22] N. Apthorpe, D. Y. Huang, D. Reisman, A. Narayanan, and N. Feamster. Keep-
ing the smart home private with smart (er) iot traffic shaping. arXiv preprint
arXiv:1812.00955, 2018.

[23] N. Apthorpe, D. Reisman, and N. Feamster. Closing the blinds: Four strategies for pro-
tecting smart home privacy from network observers. arXiv preprint arXiv:1705.06809,
2017.

[24] N. J. Apthorpe, D. Reisman, and N. Feamster. A smart home is no castle: Privacy
vulnerabilities of encrypted iot traffic. CoRR, abs/1705.06805, 2017.

[25] E. Aras, M. Ammar, F. Yang, W. Joosen, and D. Hughes. Microvault: Reliable storage
unit for iot devices. In 2020 16th International Conference on Distributed Computing
in Sensor Systems (DCOSS), pages 132–140, 2020.

[26] Arm Ltd. Arm TrustZone. https://www.arm.com/products/
security-on-arm/trustzone, 2018.

146

https://www.arm.com/products/security-on-arm/trustzone
https://www.arm.com/products/security-on-arm/trustzone

[27] N. Asokan, T. Nyman, N. Rattanavipanon, A.-R. Sadeghi, and G. Tsudik. ASSURED:
Architecture for secure software update of realistic embedded devices. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, 37(11), 2018.

[28] A. Athalye, A. Belay, M. F. Kaashoek, R. Morris, and N. Zeldovich. Notary: A
device for secure transaction approval. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, SOSP ’19, page 97–113, New York, NY, USA, 2019.
Association for Computing Machinery.

[29] L. Beringer, A. Petcher, Q. Y. Katherine, and A. W. Appel. Verified correctness and
security of OpenSSL HMAC. In USENIX, 2015.

[30] F. Brasser, B. E. Mahjoub, A. Sadeghi, C. Wachsmann, and P. Koeberl. Tytan: tiny
trust anchor for tiny devices. In Proceedings of the 52nd Annual Design Automation
Conference, San Francisco, CA, USA, June 7-11, 2015, pages 34:1–34:6. ACM, 2015.

[31] M. Busi, J. Noorman, J. Van Bulck, L. Galletta, P. Degano, J. T. Mühlberg, and
F. Piessens. Provably secure isolation for interruptible enclaved execution on small mi-
croprocessors. In 2020 IEEE 33rd Computer Security Foundations Symposium (CSF),
pages 262–276. IEEE, 2020.

[32] X. Carpent, K. Eldefrawy, N. Rattanavipanon, A.-R. Sadeghi, and G. Tsudik. Recon-
ciling remote attestation and safety-critical operation on simple iot devices. In DAC,
2018.

[33] X. Carpent, K. Eldefrawy, N. Rattanavipanon, and G. Tsudik. Temporal consistency
of integrity-ensuring computations and applications to embedded systems security. In
ASIACCS, 2018.

[34] X. Carpent, N. Rattanavipanon, and G. Tsudik. ERASMUS: Efficient remote attesta-
tion via self-measurement for unattended settings. In DATE, 2018.

[35] X. Carpent, N. Rattanavipanon, and G. Tsudik. Remote attestation of iot devices via
SMARM: Shuffled measurements against roving malware. In HOST, 2018.

[36] S. A. Carr and M. Payer. Datashield: Configurable data confidentiality and integrity.
In R. Karri, O. Sinanoglu, A. Sadeghi, and X. Yi, editors, Proceedings of the 2017 ACM
on Asia Conference on Computer and Communications Security, AsiaCCS 2017, Abu
Dhabi, United Arab Emirates, April 2-6, 2017, pages 193–204. ACM, 2017.

[37] M. Castro, M. Costa, and T. Harris. Securing software by enforcing data-flow integrity.
In B. N. Bershad and J. C. Mogul, editors, 7th Symposium on Operating Systems
Design and Implementation (OSDI ’06), November 6-8, Seattle, WA, USA, pages 147–
160. USENIX Association, 2006.

[38] J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. C. Lau, M. Sun, R. Yang,
and K. Zhang. Iotfuzzer: Discovering memory corruptions in iot through app-based
fuzzing. In NDSS, 2018.

147

[39] Y. Cheng, X. Ji, X. Zhou, and W. Xu. Homespy: Inferring user presence via encrypted
traffic of home surveillance camera. In ICPADS, pages 779–782, 2017.

[40] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebas-
tiani, and A. Tacchella. Nusmv 2: An opensource tool for symbolic model checking.
In CAV, 2002.

[41] E. M. Clarke Jr, O. Grumberg, D. Kroening, D. Peled, and H. Veith. Model checking.
MIT press, 2018.

[42] M. Corporation. Mitre att&ck. https://attack.mitre.org/, 2015.

[43] V. Costan, I. Lebedev, and S. Devadas. Sanctum: Minimal hardware extensions for
strong software isolation. In 25th USENIX Security Symposium (USENIX Security
16), 2016.

[44] A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti. A large-scale analysis of
the security of embedded firmwares. In 23rd USENIX Security Symposium (USENIX
Security 14), pages 95–110, 2014.

[45] C. Cowan, F. Wagle, C. Pu, S. Beattie, and J. Walpole. Buffer overflows: Attacks and
defenses for the vulnerability of the decade. In IEEE DISCEX. IEEE, 2000.

[46] J. Criswell, N. Dautenhahn, and V. S. Adve. Kcofi: Complete control-flow integrity for
commodity operating system kernels. In 2014 IEEE Symposium on Security and Pri-
vacy, SP 2014, Berkeley, CA, USA, May 18-21, 2014, pages 292–307. IEEE Computer
Society, 2014.

[47] I. De Oliveira Nunes, K. Eldefrawy, N. Rattanavipanon, M. Steiner, and G. Tsudik.
VRASED: A verified hardware/software co-design for remote attestation. In USENIX
Security, 2019.

[48] I. De Oliveira Nunes, K. Eldefrawy, N. Rattanavipanon, and G. Tsudik. Pure: Using
verified remote attestation to obtain proofs of update, reset and erasure in low-end
embedded systems. 2019.

[49] I. De Oliveira Nunes, K. Eldefrawy, N. Rattanavipanon, and G. Tsudik. APEX: A
verified architecture for proofs of execution on remote devices under full software com-
promise. In 29th USENIX Security Symposium (USENIX Security 20), Boston, MA,
Aug. 2020. USENIX Association.

[50] I. De Oliveira Nunes, S. Jakkamsetti, Y. Kim, and G. Tsudik. Casu: Compromise
avoidance via secure update for low-end embedded systems. In Proceedings of the 41st
IEEE/ACM International Conference on Computer-Aided Design, ICCAD ’22, New
York, NY, USA, 2022. Association for Computing Machinery.

[51] I. De Oliveira Nunes, S. Jakkamsetti, N. Rattanavipanon, and G. Tsudik. On the
toctou problem in remote attestation. CCS, 2021.

148

https://attack.mitre.org/

[52] I. De Oliveira Nunes, S. Jakkamsetti, and G. Tsudik. Dialed: Data integrity attestation
for low-end embedded devices. 2021.

[53] I. De Oliveria Nunes, S. Jakkamsetti, and G. Tsudik. Tiny-CFA: Minimalistic control-
flow attestation using verified proofs of execution. In Design, Automation and Test in
Europe Conference (DATE), 2021.

[54] G. Dessouky, T. Abera, A. Ibrahim, and A.-R. Sadeghi. Litehax: lightweight hardware-
assisted attestation of program execution. In 2018 IEEE/ACM International Confer-
ence on Computer-Aided Design (ICCAD), pages 1–8. IEEE, 2018.

[55] G. Dessouky, S. Zeitouni, T. Nyman, A. Paverd, L. Davi, P. Koeberl, N. Asokan,
and A.-R. Sadeghi. Lo-fat: Low-overhead control flow attestation in hardware. In
Proceedings of the 54th Annual Design Automation Conference 2017, page 24. ACM,
2017.

[56] J. Devietti, C. Blundell, M. M. K. Martin, and S. Zdancewic. Hardbound: architec-
tural support for spatial safety of the C programming language. In S. J. Eggers and
J. R. Larus, editors, Proceedings of the 13th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS 2008, Seattle,
WA, USA, March 1-5, 2008, pages 103–114. ACM, 2008.

[57] D. Dhurjati and V. S. Adve. Backwards-compatible array bounds checking for C with
very low overhead. In L. J. Osterweil, H. D. Rombach, and M. L. Soffa, editors, 28th
International Conference on Software Engineering (ICSE 2006), Shanghai, China, May
20-28, 2006, pages 162–171. ACM, 2006.

[58] A. Di Pinto, Y. Dragoni, and A. Carcano. Triton: The first ics cyber attack on safety
instrument systems. In Black Hat USA, 2018.

[59] D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions on
Information Theory, 1983.

[60] A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, E. Renault, and L. Xu. Spot
2.0—a framework for ltl and ω-automata manipulation. In International Symposium
on Automated Technology for Verification and Analysis, 2016.

[61] K. Eldefrawy, N. Rattanavipanon, and G. Tsudik. HYDRA: hybrid design for remote
attestation (using a formally verified microkernel). In Wisec, 2017.

[62] K. Eldefrawy, G. Tsudik, A. Francillon, and D. Perito. SMART: Secure and minimal
architecture for (establishing dynamic) root of trust. In NDSS, 2012.

[63] H. Fereidooni et al. Breaking fitness records without moving: Reverse engineering and
spoofing fitbit. In RAID’17, 2017.

[64] G. A. Fowler. Alexa has been eavesdropping on you this whole time.
https://www.washingtonpost.com/technology/2019/05/06/
alexa-has-been-eavesdropping-you-this-whole-time/, 2019.

149

https://www.washingtonpost.com/technology/2019/05/06/alexa-has-been-eavesdropping-you-this-whole-time/
https://www.washingtonpost.com/technology/2019/05/06/alexa-has-been-eavesdropping-you-this-whole-time/

[65] A. Francillon and C. Castellucia. Code injection attacks on harvard-architecture de-
vices. In CCS ’08, 2008.

[66] R. W. Gardner, S. Garera, and A. D. Rubin. Detecting code alteration by creating a
temporary memory bottleneck. IEEE TIFS, 2009.

[67] M. Geden and K. Rasmussen. Hardware-assisted remote runtime attestation for critical
embedded systems. In 2019 17th International Conference on Privacy, Security and
Trust (PST), pages 1–10. IEEE, 2019.

[68] O. Girard. openMSP430, 2009.

[69] V. D. Gligor and S. L. M. Woo. Establishing software root of trust unconditionally.
In NDSS, 2019.

[70] M. Grisafi, M. Ammar, M. Roveri, and B. Crispo. PISTIS: Trusted computing architec-
ture for low-end embedded systems. In 31st USENIX Security Symposium (USENIX
Security 22), 2022.

[71] HexFive. Hexfive multizone security. https://hex-five.com/.

[72] M. Huber, S. Hristozov, S. Ott, V. Sarafov, and M. Peinado. The lazarus effect: Healing
compromised devices in the internet of small things. In H. Sun, S. Shieh, G. Gu, and
G. Ateniese, editors, ASIA CCS ’20: The 15th ACM Asia Conference on Computer
and Communications Security, Taipei, Taiwan, October 5-9, 2020, pages 6–19. ACM,
2020.

[73] A. Ibrahim, A.-R. Sadeghi, and S. Zeitouni. SeED: secure non-interactive attestation
for embedded devices. In ACM Conference on Security and Privacy in Wireless and
Mobile Networks (WiSec), 2017.

[74] T. Instruments. Msp430 ultra-low-power sensing & measurement mcus. http:
//www.ti.com/microcontrollers/msp430-ultra-low-power-mcus/
overview.html.

[75] Intel. Intel Software Guard Extensions (Intel SGX). https://software.intel.
com/en-us/sgx.

[76] A. Irfan, A. Cimatti, A. Griggio, M. Roveri, and R. Sebastiani. Verilog2SMV: A tool
for word-level verification. In Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2016, 2016.

[77] K. K. Ispoglou, B. AlBassam, T. Jaeger, and M. Payer. Block oriented programming:
Automating data-only attacks. In D. Lie, M. Mannan, M. Backes, and X. Wang,
editors, Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018, pages
1868–1882. ACM, 2018.

150

https://hex-five.com/
http://www.ti.com/microcontrollers/msp430-ultra-low-power-mcus/overview.html
http://www.ti.com/microcontrollers/msp430-ultra-low-power-mcus/overview.html
http://www.ti.com/microcontrollers/msp430-ultra-low-power-mcus/overview.html
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx

[78] M. Jin, R. Jia, and C. J. Spanos. Virtual occupancy sensing: Using smart meters to
indicate your presence. IEEE Transactions on Mobile Computing, 16(11):3264–3277,
2017.

[79] G. O. Karame and W. Li. Secure erasure and code update in legacy sensors. In Trust
and Trustworthy Computing, pages 283–299. Springer International Publishing, 2015.

[80] T. Karthik, A. Brown, S. Awwad, D. McCoy, R. Bielawski, C. Mott, S. Lauzon,
A. Weimerskirch, and J. Cappos. Uptane: Securing software updates for automobiles.
In International Conference on Embedded Security in Car, pages 1–11, 2016.

[81] R. Kennell and L. H. Jamieson. Establishing the genuinity of remote computer systems.
In USENIX Security Symposium, 2003.

[82] G. Klein, K. Elphinstone, G. Heiser, et al. seL4: Formal verification of an OS kernel.
In ACM SIGOPS, 2009.

[83] P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan. TrustLite: A security
architecture for tiny embedded devices. In EuroSys, 2014.

[84] X. Kovah, C. Kallenberg, C. Weathers, A. Herzog, M. Albin, and J. Butterworth.
New results for timing-based attestation. In Proceedings of the IEEE Symposium on
Research in Security and Privacy. IEEE Computer Society Press, 2012.

[85] S. Kumar, Y. Hu, M. P. Andersen, R. A. Popa, and D. E. Culler. JEDI: Many-
to-many end-to-end encryption and key delegation for iot. In 28th USENIX Security
Symposium (USENIX Security 19), pages 1519–1536, 2019.

[86] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song. Code-pointer
integrity. In J. Flinn and H. Levy, editors, 11th USENIX Symposium on Operating
Systems Design and Implementation, OSDI ’14, Broomfield, CO, USA, October 6-8,
2014, pages 147–163. USENIX Association, 2014.

[87] X. Leroy. Formal verification of a realistic compiler. Communications of the ACM,
52(7), 2009.

[88] Y. Li, J. M. McCune, and A. Perrig. VIPER: Verifying the integrity of peripherals’
firmware. In ACM CCS, 2011.

[89] A. Limited. ARM TrustZone for cortex-a. https://www.arm.com/
technologies/trustzone-for-cortex-a.

[90] A. Limited. ARM TrustZone for cortex-m. https://www.arm.com/
technologies/trustzone-for-cortex-m.

[91] H. Lin and N. W. Bergmann. Iot privacy and security challenges for smart home
environments. Information, 7(3):44, 2016.

[92] Y. Lindell and J. Katz. Introduction to modern cryptography, chapter 4.3, pages 109–
113. Chapman and Hall/CRC, 2014.

151

https://www.arm.com/technologies/trustzone-for-cortex-a
https://www.arm.com/technologies/trustzone-for-cortex-a
https://www.arm.com/technologies/trustzone-for-cortex-m
https://www.arm.com/technologies/trustzone-for-cortex-m

[93] D. W. Loveland. Automated Theorem Proving: a logical basis. Elsevier, 2016.

[94] W. Magazine. The botnet that broke the internet isn’t going away. https://
www.wired.com/2016/12/botnet-broke-internet-isnt-going-away/,
2016.

[95] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig. TrustVisor:
Efficient TCB reduction and attestation. In IEEE S&P ’10, 2010.

[96] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki. Flicker: An
execution infrastructure for tcb minimization. In Proceedings of the 3rd ACM SIGOP-
S/EuroSys European Conference on Computer Systems 2008, pages 315–328, 2008.

[97] K. L. McMillan. The smv system. In Symbolic Model Checking, pages 61–85. Springer,
1993.

[98] S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic. Softbound: highly com-
patible and complete spatial memory safety for c. In M. Hind and A. Diwan, editors,
Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2009, Dublin, Ireland, June 15-21, 2009, pages 245–258.
ACM, 2009.

[99] S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic. CETS: compiler en-
forced temporal safety for C. In J. Vitek and D. Lea, editors, Proceedings of the 9th
International Symposium on Memory Management, ISMM 2010, Toronto, Ontario,
Canada, June 5-6, 2010, pages 31–40. ACM, 2010.

[100] S. Narain, T. D. Vo-Huu, K. Block, and G. Noubir. Inferring user routes and loca-
tions using zero-permission mobile sensors. In 2016 IEEE Symposium on Security and
Privacy (SP), pages 397–413. IEEE, 2016.

[101] A. L. M. Neto, A. L. Souza, I. Cunha, M. Nogueira, I. O. Nunes, L. Cotta, N. Gentille,
A. A. Loureiro, D. F. Aranha, H. K. Patil, et al. Aot: Authentication and access
control for the entire iot device life-cycle. In Proceedings of the 14th ACM Conference
on Embedded Network Sensor Systems CD-ROM, pages 1–15, 2016.

[102] B. Niu and G. Tan. Per-input control-flow integrity. In I. Ray, N. Li, and C. Kruegel,
editors, Proceedings of the 22nd ACM SIGSAC Conference on Computer and Com-
munications Security, Denver, CO, USA, October 12-16, 2015, pages 914–926. ACM,
2015.

[103] J. Noorman, J. V. Bulck, J. T. Mühlberg, F. Piessens, P. Maene, B. Preneel, I. Ver-
bauwhede, J. Götzfried, T. Müller, and F. C. Freiling. Sancus 2.0: A low-cost security
architecture for iot devices. ACM Trans. Priv. Secur., 20(3):7:1–7:33, 2017.

[104] I. D. O. Nunes, S. Hwang, S. Jakkamsetti, and G. Tsudik. Privacy-from-birth: Pro-
tecting sensed data from malicious sensors with VERSA. In 43rd IEEE Symposium
on Security and Privacy, SP 2022, San Francisco, CA, USA, May 22-26, 2022, pages
2413–2429. IEEE, 2022.

152

https://www.wired.com/2016/12/botnet-broke-internet-isnt-going-away/
https://www.wired.com/2016/12/botnet-broke-internet-isnt-going-away/

[105] OWASP. Owasp top ten. https://owasp.org/www-project-top-ten/, 2021.

[106] D. Perito and G. Tsudik. Secure code update for embedded devices via proofs of secure
erasure. In ESORICS, 2010.

[107] N. L. Petroni Jr, T. Fraser, J. Molina, and W. A. Arbaugh. Copilot — A coprocessor-
based kernel runtime integrity monitor. In USENIX Security Symposium, 2004.

[108] P. Porambage, M. Ylianttila, C. Schmitt, P. Kumar, A. Gurtov, and A. V. Vasilakos.
The quest for privacy in the internet of things. IEEE Cloud Computing, 3(2):36–45,
2016.

[109] PULP Platform. PULPino.

[110] S. Ravi, A. Raghunathan, and S. Chakradhar. Tamper resistance mechanisms for
secure embedded systems. In VLSI Design, 2004.

[111] J. Samuel, N. Mathewson, J. Cappos, and R. Dingledine. Survivable key compromise in
software update systems. In Proceedings of the 17th ACM Conference on Computer and
Communications Security, page 61–72. Association for Computing Machinery, 2010.

[112] D. Schellekens, B. Wyseur, and B. Preneel. Remote attestation on legacy operating
systems with trusted platform modules. Science of Computer Programming, 74(1):13
– 22, 2008.

[113] D. Schneider. Jeep Hacking 101. http://spectrum.ieee.org/
cars-that-think/transportation/systems/jeep-hacking-101, 2015.

[114] A. Seshadri, M. Luk, and A. Perrig. SAKE: Software attestation for key establishment
in sensor networks. In DCOSS. 2008.

[115] A. Seshadri, M. Luk, A. Perrig, L. van Doorn, and P. Khosla. Scuba: Secure code
update by attestation in sensor networks. In ACM Workshop on Wireless Security
(WiSe), pages 85–94, Los Angeles, CA, USA, 2006. ACM.

[116] A. Seshadri, M. Luk, A. Perrig, L. van Doorn, and P. Khosla. Scuba: Secure code
update by attestation in sensor networks. In In Proceedings of the 5th ACM workshop
on Wireless security (WiSe ’06), page 85–94, 2006.

[117] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla. Pioneer: Verifying
code integrity and enforcing untampered code execution on legacy systems. In ACM
SOSP, 2005.

[118] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla. Pioneer: Verifying
code integrity and enforcing untampered code execution on legacy systems. ACM
SIGOPS Operating Systems Review, December 2005.

[119] A. Seshadri, A. Perrig, L. Van Doorn, and P. Khosla. SWATT: Software-based attesta-
tion for embedded devices. In IEEE Symposium on Research in Security and Privacy
(S&P), pages 272–282, Oakland, California, USA, 2004. IEEE.

153

https://owasp.org/www-project-top-ten/
http://spectrum.ieee.org/cars-that-think/transportation/systems/jeep-hacking-101
http://spectrum.ieee.org/cars-that-think/transportation/systems/jeep-hacking-101

[120] H. Shacham. The geometry of innocent flesh on the bone: Return-into-libc without
function calls (on the x86). In CCS ’07, 2007.

[121] I. Spectrum. The real story of Stuxnet. http://spectrum.ieee.org/telecom/
security/the-real-story-of-stuxnet, 2013.

[122] statista. "number of internet of things (iot) connected devices worldwide from
2019 to 2021, with forecasts from 2022 to 2030". https://www.statista.com/
statistics/1183457/iot-connected-devices-worldwide/, 2022.

[123] A. S. A. Sukor, A. Zakaria, N. A. Rahim, L. M. Kamarudin, R. Setchi, and H. Nishizaki.
A hybrid approach of knowledge-driven and data-driven reasoning for activity recog-
nition in smart homes. Journal of Intelligent & Fuzzy Systems, 36(5):4177–4188, 2019.

[124] Z. Sun, B. Feng, L. Lu, and S. Jha. Oat: Attesting operation integrity of embedded
devices. In 2020 IEEE Symposium on Security and Privacy (SP), pages 1433–1449.
IEEE, 2020.

[125] L. Szekeres, M. Payer, T. Wei, and D. Song. Sok: Eternal war in memory. In 2013
IEEE Symposium on Security and Privacy, pages 48–62. IEEE, 2013.

[126] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson, L. Lozano, and
G. Pike. Enforcing forward-edge control-flow integrity in GCC & LLVM. In K. Fu and
J. Jung, editors, Proceedings of the 23rd USENIX Security Symposium, San Diego,
CA, USA, August 20-22, 2014, pages 941–955. USENIX Association, 2014.

[127] R. Trimananda, J. Varmarken, A. Markopoulou, and B. Demsky. Packet-level signa-
tures for smart home devices. In Network and Distributed Systems Security (NDSS)
Symposium, volume 2020, 2020.

[128] Trusted Computing Group. Trusted platform module (tpm), 2017.

[129] A. Ukil, S. Bandyopadhyay, and A. Pal. Iot-privacy: To be private or not to be pri-
vate. In 2014 IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), pages 123–124. IEEE, 2014.

[130] J. Varmarken, H. Le, A. Shuba, A. Markopoulou, and Z. Shafiq. The TV is smart and
full of trackers: Measuring smart TV advertising and tracking. Proc. Priv. Enhancing
Technol., 2020(2):129–154, 2020.

[131] R. H. Weber. Internet of things–new security and privacy challenges. Computer law
& security review, 26(1):23–30, 2010.

[132] L. Xiong, T. Peng, F. Li, S. Zeng, and H. Wu. Privacy-preserving authentication
scheme with revocability for multi-wsn in industrial iot. IEEE Syst. J., 2023.

[133] M. Xu, M. Huber, Z. Sun, P. England, M. Peinado, S. Lee, A. Marochko, D. Mattoon,
R. Spiger, and S. Thom. Dominance as a new trusted computing primitive for the
internet of things. In 2019 IEEE Symposium on Security and Privacy, SP 2019, San
Francisco, CA, USA, May 19-23, 2019, pages 1415–1430. IEEE, 2019.

154

http://spectrum.ieee.org/telecom/security/the-real-story-of-stuxnet
http://spectrum.ieee.org/telecom/security/the-real-story-of-stuxnet
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/

[134] K. Zandberg, K. Schleiser, F. Acosta, H. Tschofenig, and E. Baccelli. Secure firmware
updates for constrained iot devices using open standards: A reality check. IEEE Access,
pages 71907–71920, 2019.

[135] S. Zeitouni, G. Dessouky, O. Arias, D. Sullivan, A. Ibrahim, Y. Jin, and A.-R. Sadeghi.
Atrium: Runtime attestation resilient under memory attacks. In Proceedings of the
36th International Conference on Computer-Aided Design, pages 384–391. IEEE Press,
2017.

[136] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant, D. Song, and W. Zou.
Practical control flow integrity and randomization for binary executables. In 2013 IEEE
Symposium on Security and Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013,
pages 559–573. IEEE Computer Society, 2013.

[137] M. Zhang and R. Sekar. Control flow and code integrity for COTS binaries: An
effective defense against real-world ROP attacks. In Proceedings of the 31st Annual
Computer Security Applications Conference, Los Angeles, CA, USA, December 7-11,
2015, pages 91–100. ACM, 2015.

[138] S. Zheng, N. Apthorpe, M. Chetty, and N. Feamster. User perceptions of smart home
iot privacy. Proceedings of the ACM on Human-Computer Interaction, 2(CSCW):1–20,
2018.

[139] J.-K. Zinzindohoué, K. Bhargavan, J. Protzenko, and B. Beurdouche. Hacl*: A verified
modern cryptographic library. In CCS, 2017.

155

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Contributions
	Scope and Limitations
	Dissertation Structure

	Background
	Targeted Devices
	Remote Attestation (RA)
	VRASED

	Proofs of Execution (PoX)
	APEX

	Tiny-CFA: A Minimalistic Control-Flow Attestation Using Verified Proofs of Execution
	Introduction
	Contributions

	Background
	Control-Flow Attestation (CFA)

	Tiny-CFA
	Design Rationale & Security
	Optimizations
	Implementing Tiny-CFA

	Case Study & Evaluation
	Case Study: Control-Flow Attacks in Low-End MCU-s
	Experimental Results

	Conclusions

	DIALED: Data Integrity Attestation for Low-end Embedded Devices
	Introduction
	Contributions

	Background
	Control-Flow vs. Data-Only Attacks

	DIALED Design
	Overview
	Adversary Model
	Design Rationale
	Security Analysis

	DIALED Implementation
	Evaluation
	Hardware Overhead
	Experimental Analysis on Real-world Applications

	Conclusions

	Privacy-from-Birth: Protecting Sensed Data from Malicious Sensors with VERSA
	Introduction
	Contributions

	Preliminaries
	GPIO & MCU Sensing
	LTL, Model Checking, & Verification

	VERSA Overview
	MCU Machine Model
	Execution Model
	Hardware Signals

	PfB Definitions
	PfB Syntax
	Assumptions & Adversarial Model
	PfB Game-based Definition

	VERSA: Realizing PfB
	VERSA: Construction
	Encryption & Integrity of ER Output

	Verified Implementation & Security Analysis
	Sub-module Implementation & Verification
	Sub-module Composition and VERSA End-To-End Security

	VERSA Composition Proof
	Evaluation
	Toolchain & Prototype Details
	Hardware Overhead
	Verification Costs
	Runtime Overhead
	Comparison with Other Low-End Architectures:

	Discussion
	Clean-up after Program Termination
	Data Erasure on Reset/Boot

	Limitations:
	Shared Libraries
	Atomic Execution & Interrupts
	Possible Side-channel Attacks
	Flash Wear-Out
	VERSA Alternative Use-Case

	Conclusions

	CASU: Compromise Avoidance via Secure Update for Low-end Embedded Systems
	Introduction
	Contributions

	Background
	TOCTOU Attacks & RATA

	CASU Scheme & Assumptions
	Basics
	Secure Update Overview
	Adversary Model

	CASU Design
	CASU-HW: Hardware Security Monitor
	CASU Secure Update
	(Optional) CASU Secure Boot

	Implementation
	CASU-HW Verified Hardware Module
	CASU-SW Secure Update Routine

	Evaluation
	Hardware Overhead
	Runtime for Secure Updates

	Conclusions

	Related Work
	Prior Work on RA and PoX
	Software-based RA
	Hardware-based RA
	Hybrid RA
	Temporal Aspects of RA
	PoX Related Work

	Mitigation of Control-flow Attacks
	Control-Flow Integrity (CFI)
	Control-Flow Attestation (CFA)

	Mitigation of Data-only Attacks
	Data-Flow Integrity (DFI)
	Data-Flow Attestation (DFA)

	Other Active RoTs
	Formally Verified Systems
	Remote Updates

	Conclusions & Future Work
	Future Work

	Bibliography

