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A Signal Transduction Pathway from TGF-b1 to
SKP2 via Akt1 and c-Myc and its Correlation with
Progression in Human Melanoma
Xuan Qu1,7, Liangliang Shen2,7, Yan Zheng3, Yang Cui1, Zhihui Feng4, Feng Liu5,6 and Jiankang Liu1

Both SKP2 (S-phase kinase-associated protein 2) and transforming growth factor-b1 (TGF-b1) play important
roles in cancer metastasis through different mechanisms: TGF-b1 via induction of epithelial–mesenchymal
transition (EMT) and SKP2 via downregulating p27kip1. Recent studies indicated that c-Myc and Akt1 were
active players in metastasis. In this study we demonstrated a crosstalk between these pathways. Specifically,
we found that TGF-b1 treatment increased SKP2 expression accompanied with increased phosphorylation of
Akt1 and c-Myc protein accumulation during EMT. We demonstrated that Akt1 was required for TGF-b1-mediated
SKP2 upregulation and that c-Myc transcription factor specifically bound to the promoter of SKP2 for its
enhanced transcription. Analysis of 25 samples of normal human skin, nevi, and melanomas revealed a positive
correlation between c-Myc and SKP2 accumulation. Furthermore, accumulation of SKP2 and c-Myc proteins
was significantly higher in metastatic melanoma samples as compared with that in primary melanomas, which
again was higher than that in normal skin or nevi. In summary, our results integrated TGF-b1 signals to SKP2 via
Akt1 and c-Myc during EMT, and provided, to our knowledge, a previously unreported mechanistic molecular
event for TGF-b1-induced metastasis in human melanoma.

Journal of Investigative Dermatology (2014) 134, 159–167; doi:10.1038/jid.2013.281; published online 18 July 2013

INTRODUCTION
Melanoma represents B4% of human skin cancers, yet accounts
for nearly 80% of deaths from skin tumors (Houghton and
Polsky, 2002). Its high mortality rate is mainly a result of the
propensity to metastasis. Further understanding of the molecular
mechanisms that enable melanoma invasion is urgently needed.

The phosphoinositide-3-kinase (PI3K)/Akt pathway con-
trols many fundamental processes of cancer cell biology
including cell proliferation, differentiation, and apoptosis.
The transforming growth factor-b (TGF-b) can rapidly
activate PI3K via phosphorylation of Akt (Bakin et al.,
2000), which appears to be independent of Smad2/3 activa-
tion (Wilkes et al., 2005). The TGF-b/PI3K/Akt pathway
plays a central role in epithelial–mesenchymal transition
(EMT) (Larue and Bellacosa, 2005), which facilitates cell
migration and invasion by changing cell morphology and
extracellular matrix components. During EMT, cells lose
expression of epithelial markers such as epithelial cadherin
(E-cadherin) and increase mesenchymal markers such as
neural cadherin (N-cadherin), vimentin, Snail, Twist, and
fibronectin (Zeisberg and Neilson, 2009). Emerging lines of
evidence suggest that tumor metastasis may be dependent
on the acquisition of EMT features by primary cancer cells
(Zavadil and Bottinger, 2005; Acloque et al., 2009; Kalluri
and Weinberg, 2009).

In addition to the PI3K/Akt pathway, c-Myc also plays a role
during TGF-b-induced EMT (Smith et al., 2009). It has been
demonstrated that high TGF-b levels are often associated with
melanoma progression (Javelaud et al., 2008), and so does the
Akt1, c-Myc, and SKP2 (S-phase kinase-associated protein 2)
levels (Grover et al., 1996; Schlagbauer-Wadl et al., 1999;
Dhawan et al., 2002; Li et al., 2004b; Robertson, 2005;
Govindarajan et al., 2007; Rose et al., 2011). However, it is
not clear how these signals are interacted and integrated in
melanoma metastasis.
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SKP2 is the substrate recognition subunit of SCF (SKP1-
CUL1-F-box protein) ubiquitin ligase complex (Nakayama and
Nakayama, 2005). Aberrant SKP2 expression plays an active
role in tumorigenesis owing to its central role in degradation
of a number of cyclin-dependent kinase inhibitors including
p27kip1, p21cip1, and p57 (Tsvetkov et al., 1999; Bornstein
et al., 2003; Kamura et al., 2003). SKP2 was overexpressed
in melanoma and its levels were correlated with metastasis
(Yokoi et al., 2004; Li et al., 2004a; Rose et al., 2011). SKP2
regulates c-Myc protein stability and activity at both tran-
scriptional and post-translational levels (Kim et al., 2003).
Whether and how SKP2 is regulated during TGF-b-induced
EMT remains to be elucidated.

RESULTS
TGF-b1-induced EMT and SKP2 expression in melanoma cells

In order to study the TGF-b1-mediated EMT signal cascade
and whether it involves SKP2, the A375 and SK-MEL-28
melanoma cell lines were treated with TGF-b1 and EMT

was examined at various time points. EMT was measured by
both cell morphology and the expression of biomarkers
including E-cadherin, N-cadherin, fibronectin, and Snail.
A375 cells exhibited cobblestone-like morphology under
normal culture condition, with or without serum (Figure 1a,
and data not shown). TGF-b1 was added to serum-free media
at concentrations of 5 or 10 ng ml� 1. The cells began to
acquire an elongated mesenchymal-like phenotype after
24 hours (Figure 1a), which was enhanced 48 hours after
treatment, with most cells displaying an elongated and
fibroblast-like morphology (Figure 1a). Moreover, the cells
treated with TGF-b1 for 2 days acquired a mesenchymal
mRNA expression profile, as evidenced by increased accu-
mulation of the mRNAs encoding N-cadherin, Snail, and
fibronectin and decreased accumulation of E-cadherin mRNA
(Figure 1b). Consistently, protein-level changes of EMT mar-
kers were also observed in A375 and SK-MEL-28 cells
(Figure 1c). Upregulation of SKP2 is recognized as an
important mechanism for tumorigenesis and metastasis in
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Figure 1. Transforming growth factor-b1 (TGF-b1)-induced epithelial–mesenchymal transition (EMT) and S-phase kinase-associated protein 2 (SKP2) expression

in melanoma cells. (a) Morphological changes of A375 cells treated with TGF-b1. (b) Quantitative reverse-transcriptase–PCR (qRT–PCR) quantification of epithelial

cadherin (E-cadherin), neural cadherin (N-cadherin), fibronectin, and Snail in A375 and SK-MEL-28 cells treated with vehicle or TGF-b1 (10 ng ml�1) for 2 days.

The control was defined as 1.0. Data shown are means±SD of triplicates and represent three independent experiments (same for all the following experiments).

(c) Western blot analysis of SKP2, N-cadherin, E-cadherin, and cyclin E in A375 and SK-MEL-28 cells treated with TGF-b1 (10 ng ml�1, 2 days). (d) qRT–PCR

results showing SKP2 transcription levels in A375 and SK-MEL-28 cells treated with vehicle or TGF-b1 (10ng ml� 1, 2 days). (e) Dual luciferase assay results

showing the SKP2 promoter activity increases after TGF-b1 treatment (10 ng ml�1, 1 day). (f) Western blot analysis of N-cadherin and E-cadherin in A375 cells

treated with TGF-b1 or SKP2 small interfering RNA (siRNA). **Po0.01, Student’s t-test.
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melanoma (Katagiri et al., 2006; Rose et al., 2011), but its role
in EMT has not been previously reported. In our experiment, at
2 days after TGF-b1 stimulation, SKP2 protein accumulation
increased in A375 and SK-MEL-28 cells (Figure 1c). Mean-
while, cyclin E, an early S-phase marker, was not induced
(Figure 1c). The endogenous SKP2 mRNA level increased
approximately 1.5- to 2-fold (Po0.01; t-test) after TGF-b1
stimulation in both cell lines (Figure 1d), suggesting that
TGF-b1 induced SKP2 expression at the transcriptional
level, and was not influenced by cell cycle in this case.
To further confirm our finding, a human SKP2 promoter-
luciferase reporter plasmid (pGL4-SKP2-1.2) was transfected
into cells together with an internal control pRL-SV40 plasmid.
Dual luciferase reporter assay indicated that SKP2 promoter
activity increased significantly upon TGF-b1 stimulation
(Po0.01; t-test; Figure 1e). Furthermore, SKP2 knockdown
by small interfering RNA (siRNA) dramatically inhibited
the changes of E-cadherin and N-cadherin after incubation
with TGF-b1 (Figure 1f). Taken together, the above results
suggest that SKP2 mediates TGF-b-induced EMT in melanoma
cells.

TGF-b1 induces SKP2 expression via Akt1

Next, we examined the mechanism by which SKP2 was
upregulated by TGF-b1 signaling. Activation of the Akt pathway
is known to function as an adaptive signaling pathway triggered
by TGF-b1 (Bakin et al., 2000). Therefore, we investigated
whether Akt1 was involved in the cellular responses to TGF-b1.
Western blot analysis revealed a time-dependent increase in
Akt phosphorylation at serine 473 after TGF-b1 treatment.
Meanwhile, glycogen synthase kinase-3b, a substrate of PI3K/
Akt pathway (Cross et al., 1995), was also phosphorylated time-
dependently via TGF-b1 treatment (Figure 2a).

It was previously demonstrated that Akt1 regulated SKP2
mRNA and protein abundance in pancreatic ductal adeno-
carcinoma cells (Reichert et al., 2007). To examine the role of
Akt1 in SKP2 expression in melanoma cells, endogenous Akt1
was knocked down by siRNA. The Akt1 protein decreased to
undetectable levels, which led to a concomitant reduction of
SKP2 protein accumulation (Figure 2b). Consistently, Akt1
siRNA (100 nM) reduced SKP2 mRNA by 50–60% in A375 and
SK-Mel-28 cells (Po0.01; t-test; Figure 2c). Furthermore, Akt1
siRNA also led to a 60–80% reduction of SKP2 promoter
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Figure 2. Transforming growth factor-b1 (TGF-b1) induces S-phase kinase-associated protein 2 (SKP2) activation via Akt1. (a) Western blot analysis of time-

dependent activation of Akt (acutely transforming retrovirus AKT8 in rodent T cell lymphoma) in TGF-b1-treated A375 and SK-MEL-28 cells (10 ng ml�1). P-GSK-

3b, phosphorylated glycogen synthase kinase-3b. (b) Western blot analysis of knockdown of Akt1 in A375 and SK-MEL-28 cells. (c) SKP2 mRNA and promoter

activity was decreased by Akt1 small interfering RNA (siRNA). (d) Overexpression of the wild type or activating form of Akt1 (myr-Akt1) increased SKP2 protein.

(e) SKP2 mRNA accumulation, as well as SKP2 promoter activity, was induced by Akt1. (f) AKT1 knockdown decreased SKP2 expression at transcriptional and

protein levels. Top western blot analysis of SKP2 in A375 transfected with the Akt1 siRNA or control vector and treated with vehicle or TGF-b1 (10 ng ml�1, 48
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activity as analyzed by luciferase reporter assays in both cell
lines (Po0.01; t-test; Figure 2c).

On the other hand, ectopic expression of Akt1 (pcDNA3.
1-Akt1) or a constitutively active Akt1 that contained a
myristoylation sequence (pcDNA3.1-myr-Akt1) (Shen et al.,
2010) dramatically increased SKP2 protein levels (Figure 2d).
Ectopic expression of Akt1 in melanoma cells also moderately
but consistently increased the accumulation of SKP2 mRNA
and promoter activity (Po0.01; t-test; Figure 2e). Next, we
examined the effect of Akt1 on TGF-b1-induced transcrip-
tional activation of SKP2. As shown in Figure 2f, Akt1 siRNA
inhibited the TGF-b1-mediated induction of both SKP2 protein
level and promoter activity.

c-Myc positively regulates SKP2 transcription in response to
TGF-b1 stimulation
We next sought to identify the transcription factor responsible
for SKP2 gene induction in response to TGF-b1 stimulation.
Using TESS (Transcription Element Search System) program

(http://www.cbil.upenn.edu/cgi-bin/tess/tess), several E-box
cis-elements (CACGTG, Myc-binding sites) were found in
the SKP2 promoter. A previous study has shown that c-Myc
activates and binds to the SKP2 promoter in leukemia cells
(Bretones et al., 2011). Whether TGF-b1-mediated SKP2
activation is through c-Myc is still unknown.

Expression of SKP2 in normal human melanocytes (NHMs)
and melanoma cell lines was examined by western blot.
Low level of SKP2 protein was detected in NHMs; higher level
of SKP2 protein was detected in all melanoma cell lines
examined (Figure 3a). Consistent with the published data,
c-Myc protein accumulation was also elevated in all mela-
noma cell lines as compared with NHMs. Interestingly, N-Myc
was expressed in NHMs but lost in some melanoma cell lines
including A375, c8146A, Wm3211, c83-2C, and M14
(Figure 3a). These results suggest that c-Myc but not N-Myc
expression may be correlated with SKP2 expression in human
melanoma cell lines. Therefore, we further investigate the
relationship between c-Myc and SKP2.
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Figure 3. c-Myc positively regulates S-phase kinase-associated protein 2 (SKP2) transcription in response to transforming growth factor-b1 (TGF-b1) stimulation.

(a) Protein levels of c-Myc, N-Myc, and SKP2 in normal human melanocytes (NHMs) and melanoma cell lines. (b) c-Myc mRNA was induced by TGF-b1 in A375

and SK-MEL-28 cells. (c) c-Myc overexpression or knockdown with/without TGF led to SKP2 mRNA level changes in A375 and SK-MEL-28 cells. shRNA, short

hairpin RNA. (d) c-Myc overexpression or knockdown led to SKP2 promoter activity changes in A375 and SK-MEL-28 cells. (e) c-Myc overexpression or

knockdown correlated with SKP2 protein levels in A375 and SK-MEL-28 cells. (f, g) c-Myc inhibitor F-10048 (60–120 mM) decreased SKP2 protein and mRNA

accumulation, as well as promoter activity. (h, i) c-Myc inhibitor JQ-1 (100–500 nM) decreased SKP2 protein and mRNA accumulation as well as promoter activity.

*Po0.05, Student’s t-test. **Po0.01, Student’s t-test.
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To dissect this signal pathway, quantitative reverse-
transcriptase–PCR analysis indicated that 2 days after TGF-b1
stimulation, the level of c-Myc mRNA expression was
increased B3-fold (Po0.01; t-test; Figure 3b), indicating
that c-Myc was also upregulated at the transcriptional
level by TGF-b1. To investigate the importance of the
presence of c-Myc in conferring the transcription inducibility
of SKP2 by TGF-b, we transfected the empty vector, c-Myc
overexpression construct, and c-Myc short hairpin RNA
(shRNA) construct into A375 or SK-MEL-28 cell lines, respec-
tively. SKP2 mRNA levels and promoter activity were
increased by c-Myc overexpression (Po0.01; t-test), whereas
the c-Myc shRNA construct decreased SKP2 mRNA and
promoter activity significantly (Po0.01; t-test; Figure 3c and
d). Moreover, as shown in Figure 3e, the expressions of c-Myc
and SKP2 were remarkably induced in the presence of TGF-b1.
However, TGF-b1-induced SKP2 expression was not comple-
tely abolished when c-Myc was knocked down (comparing the
two ‘‘Myc shRNA’’ lanes without or with TGF-b1 treatment in
each cell line).

Consistent with the above results, when c-Myc inhibitor
10058-F4 (60 or 120mM) (Huang et al., 2006; Lin et al., 2007)
was used to treat A375 or SK-MEL-28 cells, SKP2 protein level
was reduced after 24 hours in a dose-dependent manner
(Figure 3f). At the transcriptional level, 10058-F4 (60mM)
effectively decreased SKP2 mRNA accumulation and promo-
ter activity in both melanoma cells (Figure 3g). No visible cell
death was observed in 10058-F4-treated cells (data not
shown). Similar results were also found with JQ1 treatment
at 100 and 500 nM, which is another effective c-Myc inhibitor
(Figure 3h and i).

c-Myc binds to SKP2 promoter via E2 box and mediates
TGF-b1-induced SKP2 expression

Four potential c-Myc-binding sites (E-box: 50-CACGTG-30)
were located within the 1.2 kb of the human SKP2 promoter
(Figure 4a). To determine which E-box is responsible for
c-Myc binding, we generated site-directed mutations on all
four potential c-Myc-binding sites named M1, M2, M3, and
M4, representing mutations on E-box1/2/3/4, respectively.
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to SKP2 promoter in A375 and SK-MEL-28 cells. (f) Western blot analysis of SKP2 protein level (upper panel) and promoter activity (lower panel) in A375 cells

treated with c-Myc inhibitor (60mM) and TGF (10 ng ml�1) for 24 hours. (g) Western blot analysis of SKP2 protein level (upper panel) and promoter activity (lower

panel) in A375 cells transfected with Akt1 vector, followed by c-Myc inhibitor (60mM, 24 hours). **Po0.01, Student’s t-test.
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The human wild-type SKP2 promoter and these four E-box
mutations were transfected into A375 and SK-MEL-28 cells,
respectively. As shown in Figure 4b, mutagenesis of E-box4
(M4) had no effect on the activity of the SKP2 promoter.
Mutagenesis of E-box3 (M3) decreased the luciferase activity
of SKP2 by at least 30%. In addition, M1 and M2 mutations
decreased the SKP2 luciferase activity by nearly 90%. These
results indicated that the binding sites of E-box1 and E-box2
are critical for the SKP2 promoter activity.

Next, the response of pGL4-SKP2 mutations to c-Myc
overexpression was further investigated. The SKP2 wild-type
promoter activity was activated approximately 2- to 3-fold
by c-Myc overexpression in A375 cells and SK-MEL-28
cells, respectively (Figure 4c), whereas mutagenesis of
E-box1 and E-box4 slightly reduced the inducibility
by c-Myc; mutation of E-box3 did not significantly affect
the inducibility by c-Myc in both cell lines. Mutation of
E-box2 dramatically decreased the activation of SKP2
promoter by c-Myc, suggesting that the E-box2 may be the
major site for c-Myc to regulate SKP2 transcription (Figure 4c).
To further confirm whether c-Myc binds to the
promoter directly, we carried out chromatin immunoprecipi-
tation (ChIP) assay in SK-MEL-28 and A375 cells. Figure 4d
shows that the primers corresponding to E-box2/3 regions
yielded significant amounts of product; in contrast, the E-box1
and E-box4 region yielded no specific signal (Figure 4d).
Together, these results indicated that the E-box2 in the SKP2
promoter is responsible for mediating c-Myc-induced SKP2
activation.

To further dissect the induction of SKP2 in response to
upstream signals, melanoma cells were treated with TGF-b1 or

transfected with Akt1 constructs. ChIP experiments indicated
that the binding of c-Myc to SKP2 promoter was dramatically
increased by TGF-b1 treatment or Akt1 overexpression
(Figure 4e). Moreover, in the presence of c-Myc inhibitor
51008-F4, TGF-b1-induced or Akt1 overexpression-induced
SKP2 expression was partly abolished at both transcriptional
and protein levels in melanoma cells (Figure 4f and g). These
data suggest that c-Myc was required in mediating TGF-b1-
activated SKP2 expression.

Correlation of c-Myc and SKP2 levels in melanoma tumor
samples

To measure whether there is a clinical correlation between
c-Myc and SKP2 in human tissue samples, and whether
these proteins are correlated with melanoma progression,
we performed immunohistochemical analysis to assess the
expression levels of SKP2 and c-Myc in 2 human normal
skin samples, 6 benign nevi, 7 primary melanoma, and 10
metastatic melanoma samples. As shown in Figure 5a, human
normal skin tissue and nevi did not exhibit any positive
staining for SKP2 or c-Myc. In contrast, the expression levels
of both c-Myc and SKP2 were upregulated in primary
melanoma samples, and even more so in metastatic melano-
mas. Furthermore, an association study showed that c-Myc
expression positively correlated with SKP2 expression in these
tissue samples (Po0.001; analysis of variance test; Figure 5b).
The average fold change of c-Myc expression in metastatic
melanoma was significantly higher than in unpaired primary
melanoma (4.32 vs. 2.75; P¼ 0.00012; unpaired Student’s
t-test; Figure 5c). Similarly, the average fold change of SKP2
expression in metastatic melanoma was significantly higher
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Figure 5. Correlation of c-Myc and S-phase kinase-associated protein 2 (SKP2) levels in melanoma tumor samples. (a) Immunohistochemical staining of

c-Myc and SKP2 in human normal skin, nevus, and melanoma samples. SKP2 is enriched in melanoma and correlates with c-Myc expression. Original

magnification: � 4, �10, or � 20. (b) Correlation between c-Myc and SKP2 expression in 25 human tissues, with linear regression lines and Pearson’s correlation

significance (Po0.001, analysis of variance (ANOVA) test). (c, d) Relative expression levels of c-Myc and SKP2 in normal skin, nevus, and melanoma. *Po0.05,

**Po0.01, unpaired Student’s t-test.
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than that in unpaired primary melanoma (4.31 vs. 3.02;
P¼0.0025; unpaired Student’s t-test; Figure 5d). The demon-
stration of SKP2 expression in distal metastases supports our
conclusion that SKP2 expression in melanoma correlates with
disease progression. These in vivo findings are consistent with
previous in vitro observations that c-Myc transcription factor
can induce SKP2 expression.

DISCUSSION
SKP2 is a critical regulator of cell cycle progression that targets
several cyclin-dependent kinase inhibitors for degradation.
Given the central role of SKP2 cell cycle regulation, aberrant
activation of SKP2 gene expression has been detected in a
large number of human cancers, and high level of SKP2 is
strongly correlated with tumor progression and poor prog-
nosis. Thus, identification of the regulatory mechanisms
leading to increased SKP2 expression may offer an insight
into the control of tumor cell proliferation and progression.

In this study, we found that SKP2 expression was increased
by TGF-b1 treatment in melanoma cells, accompanied by the
changes in EMT markers and cell morphology. We further
found that PI3K/Akt signaling played a role in TGF-b1-induced
SKP2 expression. The PI3K/Akt pathway regulates many
fundamental processes of cancer cell biology, and also
functions as an adaptive signaling pathway triggered by
TGF-b1. Here our study showed that knockdown of the
endogenous Akt1 in melanoma cells repressed SKP2 expres-
sion at the transcriptional level. On the other hand, enforced
expression of Akt1 increased SKP2 mRNA and protein expres-
sion, as well as SKP2 promoter activity. Moreover, knockdown
of endogenous Akt1 is sufficient to eliminate the TGF-b1-
induced SKP2 expression in melanoma cells. Therefore,
the TGF-b1-mediated SKP2 gene upregulation is partly
through Akt1.

However, enforced expression of Akt1 is not sufficient in
itself to explain the strong induction of SKP2 by TGF-b1 in
melanoma cells. Compared with this induction, the induction
of SKP2 by enforced Akt1 expression is still weak. Thus, in its
natural setting, the SKP2 promoter must receive further
TGF-b1 inputs for activation. In our experiment, four E-boxes
were found in SKP2 core promoter region that may be induced
by TGF-b1. Several lines of evidence indicated that c-Myc was
required in the induction of SKP2 expression by TGF-b1 in
melanoma cells: (1) transfection of c-Myc activated the SKP2
expression; (2) c-Myc inhibitor represses the SKP2 expression;
(3) TGF-b1 induced c-Myc expression at the transcriptional
level; (4) knockdown of c-Myc by siRNA or its inhibitor
abolished the induction of SKP2 by TGF-b1; and (5) c-Myc
directly binds to SKP2 core promoter. The significance
of the binding sites was further demonstrated by the fact
that mutation of E-box2 reduced the SKP2 promoter activity,
as well as inducibility by TGF-b1. Moreover, ChIP assay
demonstrated that c-Myc bound to specific regions of SKP2
promoter. These experiments may explain, on one hand, the
requirement of c-Myc for TGF-b1-mediated activation of
SKP2 and, on the other, the ability of TGF-b1 to provide a
second input for SKP2 activation in addition to Akt1 signaling
pathway.

Immunohistochemical staining of melanoma samples for
c-Myc and SKP2 showed a correlation of protein accumu-
lation between these two proteins, which is also positively
correlated with melanoma progression. Our analysis of -
25 tumor samples demonstrated that c-Myc-mediated activa-
tion likely serves as an important guardian for over-
expression of SKP2 in vivo. It should be noted that, as is
often observed among clinical samples, no 1:1 correlation
between c-Myc and SKP2 expression in tissues was observed.
Thus, in addition to c-Myc, other factors may also con-
tribute to TGF-b1-induced SKP2 expression and melanoma
progression. This was further supported by our in vitro study
in cell lines where c-Myc knockdown did not completely
abolish the TGF-b1-induced SKP2 protein accumulation
(Figure 3e). As an important regulator for cell cycle progression
and tumor invasion, SKP2 is regulated by many genes via
transcriptional and post-translational processes, including
E2F/Rb pathway, mTOR (mammalian target of rapamycin)
pathway, glypican-1 (GPC1), Stat3 (signal transducer and
activator of transcription 3), and p300 (Assoian and Yung,
2008; Inuzuka et al., 2012; Qiao et al., 2012; Totary-Jain
et al., 2012). In melanoma, SKP2 level is also regulated by the
BRAF pathway (Bhatt et al., 2007). Further studies are warranted
to understand the complexity of SKP2 regulation and function in
melanoma.

Taking together our results and published data, regulation of
SKP2 in the TGF-b1-induced melanoma EMT integrated the
PI3K/Akt1 and c-Myc oncogenic pathways in melanoma
progression. SKP2 may be a critical effector in TGF-b1-
induced melanoma EMT process, and hence may serve as a
good therapeutic target.

MATERIALS AND METHODS
Cell culture and reagents

Human melanoma cell lines (A375 and SK-MEL-28) were

cultured in DMEM medium (Invitrogen, Carlsbad, CA) supple-

mented with 10% fetal bovine serum and 1% penicillin/

streptomycin. c-Myc inhibitors (10058-F4 and JQ-1) were pur-

chased from Sigma (St Louis, MO) and Cayman Chemical (Ann

Arbor, MI) separately. TGF-b1 (240-B) was purchased from R&D

Systems (Minneapolis, MN). Human skin and melanoma samples

were collected with the written consent of patients; the experi-

ment was approved by the Internal Review Board of Xi’an Jiao

Tong University and adhered to the Declaration of Helsinki

Principles.

Plasmid constructs and transfection

The human SKP2 promoter was subcloned from a previously

published construct (Tang et al., 2009) with the following

steps: an EcoRI/PstI fragment from the published construct was first

subcloned into pBSK to create pBSK-SKP2-1.2. A KpnI/BamHI

fragment from pBSK-SKP2-1.2 was then released and ligated to

pGL4.10 (KpnI/BglII), resulting in pGL4-SKP2-1.2. The pMXS-hc-

Myc was purchased from Addgene.org (Cambridge, MA), and it

originated from Dr Shinya Yamanaka’s laboratory (Takahashi et al.,

2007). The c-Myc shRNA was also from Addgene.com (Popov et al.,

2007). Transfection was performed using Lipofectamine 2000

(Invitrogen, Carlsbad, CA).
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siRNA
The siRNAs (200 nM) against Akt1 (Irie et al., 2005) and negative

control (GenePharma, Shanghai, China; Akt1 siRNA: 50-GAGUUUG

AGUACCUGAAGCUG-30; negative control: 50-UUCUCCGAACGU

GUCACGUTT-30) were transfected using Lipofectamine 2000. The

siRNA used for SKP2 was a 21-bp synthetic molecule corresponding

to nt847–867 of the SKP2 coding region. A 21-nt siRNA duplex

corresponding to the firefly luciferase gene was used as control.

Quantitative reverse-transcriptase–PCR

Complementary DNA was synthesized using PrimeScript RT-PCR Kit

(TAKARA, Dalian, China). Specific primers for quantitative reverse-

transcriptase–PCR are listed in Supplementary Table S1 online. The

mRNA expression of target gene versus glyceraldehyde-3-phosphate

dehydrogenase (internal control) was calculated by DDCt method.

Antibodies and western blotting

Western blot analyses were carried out using the following primary

antibodies: anti-c-Myc (sc-764, 1:1,000) and anti-SKP2 (sc-7164,

1:1,000; Santa Cruz Biotechnology, Santa Cruz, CA). Anti-phospho-

pGSK3b (Ser9) (9336, 1:1,000), anti-phospho-Akt (Ser473) (4051,

1:1,000), and anti-Akt (9272, 1:1,000) were from Cell Signaling

Technology (Beverly, MA). E-cadherin (MAB1838, 1:1,000) and

N-cadherin (MAB13881, 1:1,000) were from BD Bioscience

(San Jose, CA). Anti-human b-actin (1:5,000) was purchased from

Sigma (St Louis, MO).

Immunohistochemistry

Tissue microarrays were obtained from US Biomax (Rockville, MD).

Additional human samples were collected at the Second Affiliated

Hospital of Xi’an Jiaotong University (2005–2010), with the approval

by the ethics committee of the Xi’an Jiaotong University. For

immunohistochemical analysis, the endogenous peroxidase activity

was blocked using 3% H2O2 for 12 hours, followed by incubation

with 5% normal goat serum and then primary antibody at 4 1C

overnight. Immunohistochemistry was scored as the following by

three investigators: negative, 1; minimal, 2; moderate, 3, strong, 4; or

maximal, 5; P values were calculated using t-test. Statistical signifi-

cance was set at *Po0.05 and **Po0.01. The correlation between

c-Myc and SKP2 was analyzed using analysis of variance test.

Luciferase reporter assays

The pGL4-SKP2 reporter, M1, M2, M3, or M4 each were co-

transfected with control vector, c-Myc plasmid, c-Myc shRNA, Akt1

siRNA, or negative control siRNA, respectively, each with pRL-SV40.

Dual luciferase activities were measured 48 hours later using the dual

luciferase reporter assay system (Promega, Madison, WI). For TGF-b1

or c-Myc inhibitor treatment, pGL4-SKP2 and pRL-SV40 were

transfected into cells. TGF-b1 or c-Myc inhibitor was added 24 hours

later, and the cells were incubated for additional 24 hours, and dual

luciferase activities were then measured. Relative luciferase activities

were expressed as means±SD from at least three independent

experiments.

Site-directed mutagenesis

The primers encoding the SKP2 promoter c-Myc-binding site (E-box1/

2/3/4), with TTAA substituted for E-box (M1/2/3/4 mutation under-

lined). PCR was performed with LA Taq polymerase (TAKARA) using

the pGL4-SKP2 as a template. Mutated plasmids were sequenced to

verify incorporation of the E-box site mutation.

Chromatin immunoprecipitation ChIP

The ChIP analysis was performed using the ChIP Assay kit (Upstate

Biotechnology, Charlottesville, VA). 107 cells were crosslinked with

1% formaldehyde for 10 minutes at 37 1C and then washed, lysed,

and sonicated to generate 200–500 bp chromatin fragments. The

samples were precleared with 60ml of salmon sperm DNA–protein

A-agarose and subsequently incubated at 4 1C overnight with 2mg

c-Myc antibody and rabbit IgG as control. Immunocomplexes were

recovered, washed thoroughly, and eluted with the ChIP elution

buffer. Following the reversal of crosslinks at 65 1C for 4 hours,

samples were extracted with phenol/chloroform, precipitated with

ethanol, and then used as templates for PCR amplification. The qPCR

assay result was expressed as fold enrichment over a non-E-box-

containing fragment upstream of the 6-phosphofructo-2-kinase/fruc-

tose -2,6-biphosphatase (PFKFB3) promoter (Supplementary Table S2

online) (Sans et al., 2006; Stoltzman et al., 2008).

Statistics

Statistical analyses were performed using two-sample, two-tailed,

equal variance Student’s t-test. Statistical significance was set at

*Po0.05 and **Po0.01.
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