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Abstract

A Localization Theorem for Derived Loop Spaces and Periodic Cyclic Homology

by

Harrison I-Yuan Chen

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor David Nadler, Chair

Motivated by a theorem in the K-theoretic setting relating the localization of K0(X/T )

over a closed point z ∈ Spec(K0(BT )) to the Borel-Moore homology of the fixed points

HBM• (Xz ;C), we prove an equivariant localization theorem for smooth quotient stacks by re-

ductive groups G in the setting of derived loop spaces and periodic cyclic homology, realizing

a Jordan decomposition of loops described by Ben-Zvi and Nadler. We show that the derived

loop space L(X/G) is a family of twisted unipotent loop spaces over Aff(L(BG)) = G//G;

more precisely, the fiber over a formal neighborhood of a semisimple orbit [z ] ∈ G//G is

the unipotent loop space of the classical fixed points with a twisted S1-action. We further

study the relationship between unipotent loop spaces and formal loop spaces, and prove that

their Tate S1-invariant functions are isomorphic. Applying a theorem of Bhatt identifying

derived de Rham cohomology with Betti cohomology, we obtain an equivariant localiza-

tion theorem for periodic cyclic homology in the smooth case, identifying the completion of

HP (Perf(X/G)) at z ∈ G//G with the 2-periodic equivariant singular cohomology of the

z-fixed points H•(Xz/Gz ; k)((u)).
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Chapter 1

Introduction

Many phenomena in representation theory can be realized via categorical invariants applied to

geometric objects: Borel, Weil and Bott realized representations of a complex reductive group

via equivariant sheaves on the flag variety, Beilinson and Bernstein realized representations of

a finite-type Lie algebra via D-modules on the flag variety, Springer realized representations

of Weyl groups via Borel-Moore homology on the nilpotent cone, and Ginzburg, Kazhdan and

Lusztig realized representations of the affine Hecke algebra, a q-deformation of the group

algebra of the extended affine Weyl group which specializes at prime powers to Iwahori-Hecke

algebras, via the 0-truncated algebraic K-theory on the Steinberg stack.

The last result in this list is a “decategorified” statement, obtained by applying an “under-

ived” invariant to a category of interest. That is, the Grothendieck group of the derived cat-

egory of coherent sheaves on the Steinberg stack K0(Coh(St/GGm)) has a K0(Coh(BGGm))-

algebra structure with multiplicative structure given by convolution and linear structure by

pullback; in fact, it is a central algebra over K0(Coh(BGGm)). This convolution algebra is

identified with the affine Hecke algebra, which leads to a classification of irreducible repre-

sentations of the affine Hecke algebra. A central part of its story is a localization theorem in

K-theory, which relates the localizations and specializations of K0(Coh(St/GGm)) at fixed pa-

rameters of the center Spec(K0(Coh(BGGm))) = G//G×Gm to the equivariant and ordinary

cohomology of fixed points on the Steinberg stack.

This thesis grew out of an interest in developing a parallel theory of the affine Hecke alge-

bra in the setting of cyclic homology, which leads directly to the consideration of derived loop

spaces, whose global functions and circle action compute Hochschild and cyclic homology. In

this thesis we prove a foundational result parallel to the localization theorem described above:

a localization theorem in periodic cyclic homology. We further outline the broad program

that we hope to achieve, and provide several toy examples.

Central to our argument is the following idea, which we learned from David Ben-Zvi

and David Nadler. Traditionally, Hochschild homology has been computed algebraically via

a cyclic bar complex on generators of a category. It is an invariant of small stable ∞-
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categories, or equivalently, compactly generated presentable ∞-categories. However, the

theory of dualizable ∞-categories under the Lurie tensor product allows us to generalize this

notion to dualizable categories. Due to geometric descriptions of the dualizing structure

of categories of sheaves on derived stacks X, the Hochschild homology can be naturally

identified with global functions or distributions on the derived loop space [8]:

HH(Perf(X)) = O(LX), HH(Coh(X)) = ω(LX).

When X is a derived scheme, we can explicitly identify the loop space LX with the shifted

odd tangent bundle via a derived variant of the Hochschild-Kostant-Rosenberg theorem since

derived loops on X are Zariski local. Introducing the S1-action, results in [10] [6] [51] allow

us to identify the periodic cyclic homology with 2-periodic (derived) de Rham (co)chain

complexes:

HP (Perf(X)) ' C•dR(Xan; k)⊗k k((u)) HP (Coh(X)) ' C•,dR(Xan; k)⊗k k((u))

where u ∈ C•(BS1; k) is the degree 2 Chern class. Our ultimate goal is to describe the

periodic cyclic homology in the case when X is taken to be a quotient stack.

A difficulty in understanding the Hochschild homology of derived stacks is its failure to

be smooth local. On the other hand, as argued in [6], sheaves and functions on formal loop

spaces (i.e. loop spaces completed at constant loops) are smooth local. Our aim in this note

is to bridge this gap by understanding the global loop space L(X/G) as a family of twisted

formal loop spaces over G/G, which itself can be understood as a family of unipotent loop

spaces over its affinization G//G. This idea that first appeared in [7] under the banner of

a Jordan decomposition for loop spaces and was employed to study categorical Langlands

parameters for representations of real reductive groups.

A localization theorem for equivariant cohomology has been known for some time and

appears in various forms, for example in [26]. Briefly, the philosophy is that given a topological

space X with a topological torus T action, the equivariant cohomology H•T (X) is a module

over H•T (pt) = H•(BT ) = k [[t]] where t is placed in cohomological degree 2. The localization

theorem states that over the generic point H•(BT )loc we have an isomorphism

H•T (X)loc ' H•(XT )⊗H•(BT )loc .

A variant of this equivariant localization was proven for algebraic K-theory by Thomason

in [57] [58] (also in [16]). In this setting, we let T be an abelian reductive group and X

a variety with a T -action. In this case, K0(X/T ) is a module over polynomial functions

on the torus K0(BT ) = k [T ], and we have for any closed point t ∈ T an isomorphism

K0(X/T )t ' K0(Xt/T )t after passing to the local ring K0(BT )t = OT,t . In particular if t is

generic we have

K0(X/T )t ' K0(Xt/T )t ' K0(Xt)⊗K0(BT )t .
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In good cases (e.g. cellular fibrations), specializing at the point a yields an isomorphism with

Borel-Moore homology.

Our result applies the same philosophy in the setting of derived loop spaces and periodic

cyclic homology, and we generalize the philosophy to the case of a nonabelian reductive group.

The statements we prove have been previously developed in the setting of smooth quotient

stacks with finitely many orbits (so that the loop space is an underived stack) in [7], and with

special attention to the case B“G/B in Theorem 3.5. Similar statements also appear in [29]

for the case of a cohomologically proper quotient stack X/G in Lemma 4.11 and Proposition

4.12.

In this note, we restrict to the case when X is smooth, although in the case of periodic

cyclic homology we hope for a generalization to the singular case as well. The following

theorem appears in the main text as Theorem 3.3.7 and Corollary 3.4.4.

Theorem 1.0.1 (Equivariant localization for derived loop spaces). Let G be reductive group

acting on a smooth variety X, and z ∈ G a semisimple element. For a certain twisting of the

S1 action, we have functorial S1-equivariant isomorphisms

L̂(π0(Xz)/Gz)→ L̂z(X/G) := {̂G · z}/G ×L(BG) L(X/G),

Lu(π0(Xz)/Gz)→ Lu,z(X/G) := {̂G · z}//G ×G//G L(X/G).

Our result easily implies the following interpretation of derived fixed points, which also

appears as Corollary 1.12 in [3].

Corollary 1.0.2. Let X be a smooth variety with an action of reductive G, and z ∈ G

semisimple. We have a natural identification of the derived z-fixed points:

L(π0(Xz))→ Xz := L(X/G)×BG {z}.

Proof. Loop spaces commute with fiber products, and in general we have Y = (Y/G) ×BG
pt.

We prove in Theorem 3.6.1 the following identification of Tate global functions on formal

loop spaces and unipotent loop spaces for (possibly singular) quotient stacks.

Theorem 1.0.3. For a X a variety acted on by an affine algebraic group G, the pullback on

global derived functions

O(Lu(X/G))Tate → O(L̂(X/G))Tate

is an isomorphism. In particular, if U is a unipotent group acting on X, we have

HP (Perf(X/U)) ' HP (Perf(X)).
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Using results in [10] [6] to identify global functions on formal loop spaces with singular

cohomology, we prove Theorem 3.6.5, the promised equivariant localization result for periodic

cyclic homology.

Theorem 1.0.4 (Equivariant localization for periodic cyclic homology). Let G be a reduc-

tive group acting on a smooth variety X. The periodic cyclic homology HP (Perf(X/G)) is

naturally a module over HP (Perf(BG)) = k [G//G]((u)). For a closed point z ∈ G//G, we

have a functorial (with respect to pullback) identification of the formal completion at z with

a 2-periodicization of the singular cohomology of the fixed points

HP (Perf(X/G))ẑ ' H•((Xz)an/(Gz)an; k)⊗!
k k((u))

naturally as a module over HP (Perf(BG))ẑ ' H•(B(Gz)an; k)⊗!
k k((u)).

Coupling this with Corollary 1.0.2, we obtain an identification of the (derived) special-

ization of periodic cyclic homology at z ∈ G with non-equivariant cohomology of the fixed

points.

Corollary 1.0.5. Let X be a smooth variety with an action of reductive G, and z ∈ G

semisimple, and kz the skyscraper sheaf at [z ] ∈ G//G. We have an isomorphism

HP (Perf(X/G))⊗k[G/G]((u)) kz((u)) ' H•((Xz)an; k)((u)).

We note that in the case that G is a torus, stronger statements remain true when we

replace formal neighborhoods with local rings, recovering the equivariant localization in [16]

for K-theory in the setting of periodic cyclic homology. However, for a nonabelian reductive

group G, this fails even in the case when X is a point. For details, see Remark 3.3.9 and

Example 3.3.4.

Finally, in the third chapter we provide a few examples and sketch some arguments to

demonstrate a few applications we hope this project will be able to realize. In particular,

assuming a still-conjectural devissage theorem for the periodic cyclic homology of quotient

stacks, we prove that the periodic cyclic homology of the Steinberg stack is a 2-periodic

version of the affine Hecke algebra.
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Chapter 2

Background

The goal of this chapter is to collect various fundamental results and conventions in derived

algebraic geometry, much of which are already well-documented in the literature. For more

detailed and precise exposition, we refer the readers to [12] [18] [44] [45] [39] [50] [52] [60]

[61]. The reader should be warned that we often sacrifice precision for ease of exposition; in

particular, we will mostly black box∞-categorical constructions and refer to [44] and [45] for

precise statements. While perhaps unsatisfying, we feel this is appropriate because we never

need to access these constructions directly.

Let us first establish notation. We will let k denote an algebraically closed field of charac-

teristic zero, and in this note we work over k . All gradings follow cohomological conventions

(i.e. differentials increase degree). Unless otherwise stated, all functors and categories are

derived, e.g. for an affine scheme X = Spec(A), QCoh(X) denotes the category of un-

bounded complexes of A-modules localized with respect to quasi-isomorphisms. We use pt

to denote the point scheme Spec(k).

By ∞-category we mean an (∞, 1)-category, and we do not specify a particular model.

We let S denote the ∞-category of ∞-groupoids or spaces and we will take for granted that

the category of ∞-categories is enriched in S. We let Cat denote the ∞-category of all

infinity categories, Prk the full ∞-subcategory of presentable stable k-linear ∞-categories,

PrLk (respectively, PrRk ) the ∞-category of presentable stable k-linear ∞-categories whose 1-

morphisms are functors which are left (respectively, right) adjoints, and PrL,ωk the subcategory

whose morphisms also preserve compact objects. The category cat will denote the ∞-

category of small ∞-categories, stk the full subcategory of k-linear stable ∞-categories with

morphisms exact functors, and stid the full subcategory of idempotent-complete categories.

We let Modk or ModS denote the category of dg-modules over k or S-module spectra, where

S is a ring spectrum. For C ∈ PrLk , we let Cω ∈ stk denote its compact objects. For C ∈ stk ,

we let Ind(C) ∈ PrLk denote its ind-completion.

We let DRng denote the ∞-category of derived rings; during our exposition we do not

insist on a particular model, but later when we perform calculations we will always take DRng
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to be the ∞-category of dg algebras over k . In this note we adopt the point of view (as in

[23]) that (derived) stacks are prestacks which satisfy certain sheaf conditions, and that a

prestack is an ∞-functor Affop := DRng→ S.

We always use cohomological grading conventions, and HH will always denote the cochain

complex of Hochschild chains rather than its cohomology groups. If we need to refer to the

actual Hochschild homology we will denote it by H•(HH). We refer to the nh cohomology

group of a complex V by Hn(V ) or, viewing it as a spectrum, π−n(V ).

2.1 Infinity categories

The main references for this section are [45] and [44].

Definition 2.1.1 ((∞, 1)-categories). Roughly speaking, an (∞, 1)-category (which we will

abbreviate as ∞-category ) is a category enriched in spaces. The points of the Hom-spaces

should be thought of as 1-morphisms; the paths between points 2-morphisms, and so-on.

There are various models for ∞-categories, and they all possess model structures for which

they are Quillen equivalent: categories enriched in spaces, Segal categories, A∞-categories,

and quasicategories. In this work we will not directly access infinity categories and do not

require particular constructions; see [45] for a development of the theory of quasicategories.

An infinity category where all morphisms are invertible is known as an (∞, 0)-category

or ∞-groupoid, or more informally a space. Given a topological space X, we obtain an

(∞, 0)-category in the following way: the points x ∈ X are the objects. For two points

x, y ∈ X, the 1-morphisms are given by the set of paths γ : [0, 1]→ X from x to y . For two

1-morphisms γ, δ : x → y , the 2-morphisms are the homotopies between these paths in X.

The 3-morphisms are homotopies between homotopies, and so-on.

Definition 2.1.2 (Stable (∞, 1)-categories). An∞-category is called pointed if it has a zero

object (i.e. an object which is both initial and final, in an ∞-categorical sense, meaning that

all mapping spaces in to and out of the zero object are contractible). If it exists, the zero

object is unique up to equivalence; further note that the zero object is not an additional piece

of the structure and that in all future references to it will allow for any choice of zero object.

A triangle is a commuting square

X Y

0 Z

f

g

A triangle is a fiber sequence if it is a pullback square and a cofiber sequence if it is a

pushout square. In this case we say X is a fiber or cocone of g and Z is a cofiber or cone

of f . Note that cones and cocones are not unique (only up to homotopy), but they can be
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determined functorially. The suspension functor Σ is given by cone(X → 0) and loop functor

or desuspension Ω is given by cocone(0→ X).

An ∞-category is stable if (a) it is pointed, (b) every morphism has a cone and cocone,

and (c) every fiber sequence is a cofiber sequence and vice versa. A functor between two

stable ∞-categories is called exact ([44] 1.1.4.1) if the following equivalent conditions hold:

(a) it is left exact, i.e. it commutes with finite limits, (b) it is right exact, i.e. it commutes

with finite colimits, (c) it takes zero to zero, and fiber sequences to fiber sequences. The

homotopy category of a stable (∞, 1)-category is naturally a triangulated category; in this way

we can think of stable ∞-categories as a infinity-categorical analogue of abelian categories.

Definition 2.1.3 (Idempotent-completion and ind-completion). Let κ be an infinite cardinal.

We will generally take κ = ℵ0 = ω to be the uncountable cardinal, but we state definitions

in greater generality. An ∞-category C is called small if its objects form a set (as opposed

to a proper class). A colimit is called κ-filtered if it is the colimit over a κ-filtered category.

An ∞-category is κ-filtered ([45] 5.3.1.7) if for every κ-small simplicial set (i.e. a simplicial

whose component sets have cardinality strictly smaller than κ) and every map f : K → C,

there is an extension of f to the right cone of K (see Notation 1.2.8.4 of [45]).

There are two completion operations we will commonly use on small categories, both

defined via the Yoneda embedding C → PreSh(C) = Fun(C,S) (which is fully faithful by

[45] Proposition 5.1.3.1). We define the idempotent completion Idem(C) by the smallest full

subcategory of PreSh(C) containing the essential image of C and also retracts of objects in

the essential image (see Proposition 5.1.4.2 in [45]). The idempotent completion is again a

small stable ∞-category.

We define the κ-ind-completion Indκ(C) to be the full subcategory of PreSh(C) con-

taining the essential image and κ-filtered colimits of objects in the essential image (via [45]

Definition 5.3.5.1 and the characterization in Propositions 5.3.5.4). In a precise sense (see

[45] 5.3.5.10), the ind-completion is the category obtained by freely generating under fil-

tered colimits; that is, it has a universal property. Objects in Ind(C) can be represented by

filtered colimits in C, and we have the usual identification1 HomInd(C)(colimi Xi , colimj Yj) =

limi colimj HomC(Xi , Yj). If we do not specify, we will assume that κ = ω, the countable

infinite ordinal, e.g. Indω = Ind. Any ind-complete category is also idempotent complete2.

By [45] Lemma 5.4.2.4, Idem(C) are the compact objects of Ind(C).

By [44] Proposition 1.1.4.1, stable∞-categories admit finite limits and coimits; in partic-

ular, if C is stable, then Ind(C) contains all small colimits. For details, see [45] Section 5.3.

If C is a stable ∞-category, the idempotent completion and ind-completion have some nice

1By [45] Proposition 5.3.5.5, objects in the essential image of C under the Yoneda embedding

are compact in Ind(C). Thus the left hand side is HomPreSh(C)(colimi Hom(Xi ,−), colimj(Yj ,−)) =

colimj HomPreSh(C)(limi Hom(Xi ,−),Hom(Yj ,−)), and the final identification since Hom commutes colimits

in the first variable with limits.
2This is not as obvious as it sounds; see [45] Corollary 4.4.5.16.
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behavior. By Lemma 1.2.4.6 in [44], if C is a stable ∞-category, it is idempotent complete

if and only if its homotopy category is (as a 1-category)3.

Remark 2.1.4. The idempotent completion is meant to fix the following defect: if we have

a idempotent e : M → M, we would like to be able to think about e as a projector onto a

subobject X ⊂ M. In order to do this we need to be able to realize the object X (and the

quotient M/X ' Y as an object of the category, using only the basic operations provided.

When C is an abelian category, this is possible by taking kernels and cokernels. In the derived

setting, we do not have the kernels and cokernel operations, only cones (and cocones).

For example, if M = X ⊕ Y , where X and Y are distinct indecomposable objects in a

semisimple category, any attempt at doing so with a finite number of such operations will fail

by additivity of triangles (for example, cone(e) ' Y ⊕ Y [−1]). However, we can achieve this

goal with an infinite colimit by “pushing one of the terms off to infinity,” i.e. the cone of

Y ⊕ Y [−1] → Y ⊕ Y [−1] is Y ⊕ Y [−2], and iterating this n times we can obtain an object

Y ⊕ Y [−n], and taking n →∞ gives us Y in the colimit. For a less wishy-washy treatment,

see Section 4.4.5 in [45].

Definition 2.1.5 (Compactness, continuity). We say a functor is κ-continuous4 if it preserves

κ-small filtered colimits (i.e. colimits whose indexing diagram is a proper set). By the ∞-

categorical right adjoint theorem ([45] Corollary 5.5.2.9), a functor is continuous if and only

if it admits a right adjoint.

An object X ∈ C of an ∞-category which admits κ-filtered colimits is κ-compact if

MapC(X,−) preserves κ-filtered colimits. A functor preserves κ-compact objects if it takes

κ-compact objects to κ-compact objects.

Definition 2.1.6 (Accessibility, presentability). An ∞-category C is κ-accessible if it is the

κ-ind-completion of a small ∞-category Cκ, which necessarily becomes its subcategory of

κ-compact objects. We say a category is accessible if it is κ-accessible for some regular

cardinal κ. There are also intrinsic characterizations described in Section 5.4.2 of [45] which

roughly say that C is accessible if and only if it is generated under κ-small filtered colimits by

its full subcategory of κ-compact objects, and that the full subcategory of compact objects

is essentially small5. By Proposition 5.4.3.4 of [45], a small ∞-category is accessible if and

only if it is idempotent complete.

An ∞-category is presentable if it is accessible and has all small colimits. We denote

by PrL is the ∞-category of presentable ∞-categories (where we only allow invertible 2-

morphisms) and also require that the functors be continuous (equivalently, by adjoint functor

3See Warning 1.2.4.8 in [44] for a counterexample when C is not stable.
4Note that there are two opposite conventions: one convention where continuous means colimit-preserving

functors and one where it means limit-preserving functors. We will prefer the former as most functors we are

interested in will be colimit-preserving.
5This means that the number of equivalence classes in C is small and the homotopy groups of Hom-sets is

are small.
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theorem, they admit right adjoints). We define PrLk to be the full subcategory of k-linear

stable categories.

An ∞-category is κ-compactly generated if it is κ-accessible and presentable (i.e. if it

is κ-accessible and has small colimits). We say a category is compactly generated if it is

so for κ = ω. One important fact is that the κ-small colimit of κ-compact objects is also

κ-compact.

Remark 2.1.7. As the cardinal κ gets bigger, it is easier to be κ-small, the condition for a

colimit to be κ-filtered becomes stricter, there are fewer κ-filtered colimits, it is easier to

be κ-continuous, Indκ becomes smaller, and it is easier to be κ-compact. In particular, note

that not every presentable category is compactly generated, since Indκ(C0) 6' Indω(C0).

Remark 2.1.8 (Functors with continuous right adjoints). Suppose (F,G) are a pair of adjoint

functors between presentable categories; in particular, F preserves colimits. By Proposition

5.5.7.2 of [45], if G is continuous (i.e. commutes with filtered colimits), then F preserves

compact objects. If the source category of F is compactly generated, then the converse is

also true.

Definition 2.1.9 (k-linear (stable) categories). In Section 6 of [41], the notion of a pre-

sentable k-linear (stable) ∞-category is introduced for k a classical ring, and defined to be

the category of presentable category which is a module over the ∞-category of k-modules.

By Remark 6.5 of loc. cit. , every k-linear category is stable. We write by PrLk the category

of presentable k-linear stable ∞-categories.

Remark 2.1.10 (Equivalence between stable (∞, 1)-categories and dg categories). Since we

work over a field of characteristic zero, it will be useful to work with dg categories rather

than stable ∞-categories. To any dg category, there is an operation called the dg-nerve (see

Construction 1.3.1.6 in [44]) which produces a stable∞-category. It is shown in Corollary 5.5

of [18] that the ∞-category of small idempotent-complete k-linear stable ∞-categories and

the ∞-category of dg categories over k localized with respect to Morita equivalences (see

also [12] Definition 2.14 and 4.21). In particular, the latter category has a model structure

where fibrant replacements are given by idempotent-complete pretriangulated hulls.

The pretriangulated hull of a dg category C is defined to be the smallest full dg-subcategory

of Cop −mod which contains the essential image of the Yoneda map C → Cop −mod and

is closed under shifts and cones. A dg category does not, a priori, have a cone operation,

whereas a stable (∞, 1)-category does. That is, a priori a dg category need not have a

(de)suspension operation, nor (co)cones, that we expect in stable ∞-categories. The pre-

triangulated hull is the universal way to remedy this, i.e. by replacing a dg category C with

the closure of its essential image under the Yoneda embedding under shifts and cones, gives

a pretriangulated dg category. Further, under this correspondence, the category of perfect

C-modules can be thought of as the idempotent completion, and the category of C-modules

can be thought of as the ind-completion.
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Remark 2.1.11. By [44] Theorem 1.1.4.4 and Proposition 1.1.4.6, catexst admits small limits

and small filtered colimits. By [45] Proposition 5.5.3.13 and Theorem 5.5.3.18 (with Corollary

5.5.3.4), PrL admits small limits and small colimits. By [45] Proposition 5.5.3.8, if C,D ∈
PrL, then FunL(C,D) ∈ PrL.

Definition 2.1.12. The category PrL is equipped with a monoidal structure called the Lurie

tensor product, constructed in Section 4.8 of [44]. It can be thought of as an∞-analogue of

the Deligne tensor product. Let C,D ∈ PrL; we denote the Lurie tensor product by C⊗D,

and it is equipped with a canonical functor

C×D→ C⊗D

(X, Y ) 7→ X � Y.

It satisfies the universal property that it is initial amongst functors out of C × D which

preserves small colimits in each variable. Proposition 4.8.1.17 of loc. cit. gives an explicit

realization

C⊗D ' FunR(Cop,D)

which is again a presentable category by Lemma 4.8.1.16. In particular, by [45] Proposition

5.5.3.8,the Lurie tensor product makes PrL into a closed monoidal category with internal

mapping object FunL(−,−). Moreover, the Lurie tensor product induces a tensor product

on S-module categories for any ring spectrum S (see Propositions 4.8.2.10 and 4.8.2.18 in

[44]).

For more exposition on dualizable objects in a monoidal category, see Section 2.3 of [46].

Definition 2.1.13. Let (C,⊗) be a symmetric monoidal ∞-category with monoidal unit 1 ∈
C. An object X ∈ C is dualizable if there is an object X∨, a coevaluation map η : 1→ X⊗X∨
and an evaluation map ε : X∨ ⊗X → 1 such that the diagrams

A∨ ⊗ 1 A∨ ⊗ (A⊗ A∨) (A∨ ⊗ A)⊗ A∨ 1⊗ A∨

1⊗ A (A⊗ A∨)⊗ A A⊗ (A∨ ⊗ A) A⊗ 1

id⊗η

`−1◦r

α−1 ε⊗id

η⊗id

r−1◦`

α ε⊗id

commute, where α is the associator and `, r the left and right unitors for the symmetric

monoidal structure. If X is dualizable, then the dual is unique up to unique isomorphism (see

Remark 2.3.3. of [46]).

The following is proven in Theorem D.7.0.7 in [47] and Chapter I.1 Proposition 7.3.2 [23].
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Proposition 2.1.14. If C ∈ PrLk is compactly generated, then it is dualizable. In particular,

if C = Ind(C0), then C∨ = Ind(C0,op), and the evaluation map is given by ind-completion via

universal properties of the Yoneda pairing Hom(−,−) : C0,op×C→ Vectk . Furthermore, we

have isomorphisms

FunLk (C,C) ' FunLk (C,Vectk)⊗ C ' C∨ ⊗ C.

2.2 t-structures

In this section we review some technical but easy material on t-structures for the reader’s

convenience and reference. For more details, the reader should consult [44], [51] and the

appendix of [9].

Definition 2.2.1. Let D be an ∞-category, and C ⊂ D a subcategory. We say that C is a

localization of D if the inclusion functor has a left adjoint. The corresponding localization

functor L : D → D is the composition of the left adjoint with the inclusion, and there is a

natural map of functors idD → L. The subcategory C can be recovered as the essential image

of L. Equivalently, L : D → D is a localization functor if there is a natural transformation

idD → L inducing an equivalence L → L2. Dually, we say C ⊂ D is a colocalization of D if

the inclusion functor has a right adjoint, and denote the colocalization C. See Section 5.2.7

in [45] for details.

Definition 2.2.2. A t-structure on a triangulated category C is a pair of full subcategories

C≥0 and C≤−1 such that

(a) The categories (C≤−1,C≥0) are orthogonal; i.e. if X ∈ C≤−1 and Y ∈ C≥0, then

HomC(X, Y ) = 0.

(b) The functor [1] preserves C≤−1 and the functor [−1] preserves C≥0.

(c) For any Z ∈ C, there is a X ∈ C≤−1 and Y ∈ C≥0 such that X → Z → Y is exact.

A t-structure on a stable∞-category is a pair of such subcategories that induces a t-structure

on the homotopy category.

Note that the axioms for a t-structure do not provide for canonical truncation functors.

However, these canonical functors do exist, and are constructed in the following proposition.

Proposition 2.2.3. The categories (C≤−1,C≥0) are mutually orthogonal categories, i.e.

C≤−1,⊥ = C≥0, ⊥C≥0 = C≤−1.
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Furthermore, the inclusion functors have adjoints, i.e. we have the adjoint pairs (τ≥0, ι≥0)

and (ι≤−1, τ≤−1). In particular, we have a localization sequence

C≤−1 C C≥0L

realizing C≥0 as a localization of C with localization functor ι≥0 ◦ τ≥0. Equivalently, there is

a colocalization sequence

C≥0 C C≤−1C

realizing C≤−1 as a colocalization of C with colocalization functor ι≤−1 ◦ τ≤−1.

Proof. The first sentence follows from property (3) in the definition of t-structures. The

rest is Proposition 1.2.1.5 and Corollary 1.2.1.6 in [44].

Definition 2.2.4. Let C be a category with a t-structure. We say objects in C≤0 are con-

nective, and objects in C≥0 are coconnective. We say objects which are in C≤n for some n

are eventually connective and objects in C≥−m for some m are eventually coconnective.6

Let F : C → D be a functor between categories with t-structures. We say F is left

t-exact if it takes C≥0 to D≥0 and right t-exact if it takes C≤0 to D≤0. We say F is t-exact

if it is both right and left t-exact.

The following definitions are mild conditions on t-structures that will hold for most the

categories we consider.

Definition 2.2.5. A t-structure on a presentable stable ∞-category C is accessible if one of

the following equivalent conditions hold: (a) C≤−1 is presentable, (b) C≤−1 is accessible, (c)

C≥0 is presentable, (d) C≥0 is accessible, (e) the truncation ι≤−1◦τ≤−1 : C→ C is accessible,

and (f) the truncation ι≥0 ◦ τ≥0 : C→ C is accessible.

Proof. See [44] Definition 1.4.4.12 and Proposition 1.4.4.13.

Remark 2.2.6. Since (τ≥0, ι≥0) and (ι≤−1, τ≤−1) are adjoint pairs, if the t-structure is ac-

cessible, then each of the four aforementioned functors are accessible.

Definition 2.2.7. The t-structure is compatible with filtered colimits if C has filtered colimits

and C≥0 is closed under filtered colimits in C.

When the t-structure is accessible, we have the following equivalent conditions.

6Note that sometimes connective objects are called bounded above and coconnective objects bounded

below. The use of the former terminology has the benefit that it is consistent with both homological and

cohomological grading conventions.
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Proposition 2.2.8. Let C be a stable presentable ∞-category with an accessible t-structure

(i.e. C≥0 is also presentable). The following are equivalent:

(i) C≥0 is closed under filtered colimits in C,

(ii) ι≥0 is continuous,

(iii) L≥0 = ι≥0τ≥0 is continuous,

(iv) L≤−1 = τ≤−1ι≤−1 is continuous,

(v) τ≤−1 is continuous.

Proof. This is (a part of) Lemma 6.1.1 in [9], which is stated without proof, which we

will provide. Since we assume C is presentable, the truncation and inclusion functors are

accessible, so we may freely use adjoint functor theorems. Conditions (i) and (ii) are simply

restatements of each other. For (iii), since τ≥0 is a left adjoint, it is already continuous, so

(ii) implies (iii); the converse follows since if Xi ∈ C≥0, we have τ≥0ι≥0 is the identity functor,

which must commute with colimits, so that

ι≥0 colimXi = ι≥0 colim τ≥0ι≥0Xi = ι≥0τ≥0 colim ι≥0Xi = colim ι≥0τ≥0ι≥0Xi = colim ι≥0Xi .

Conditions (iii) and (iv) are equivalent, since we have an exact sequence for any object X

L≤−1X → X → L≥0X.

Taking X = colimXi , and using the fact that exact triangles commute with colimits (being a

colimit itself), the claim follows. Finally, the equivalence of (iv) and (v) follows in the same

way as the equivalence of (ii) and (iii). Note that the rest of Lemma 6.1.1 in [9] follows via

the consideration in Remark 2.1.8, but we will not consider this.

The next two propositions allow us to transport t-structures across functors.

Proposition 2.2.9. Let Ci be a diagram of stable presentable∞-categories and exact contin-

uous functors, where each Ci has an accessible t-structure and each of the transition functors

are left t-exact and are left adjoints (i.e. continuous). Take C = limi∈I Ci . Then, there is

a unique accessible t-structure on C making the evaluation functors C → Ci left t-exact.

Furthermore, if the t-structures on Ci are compatible with filtered colimits, right-complete

or left-complete, then so is the t-structure on C (respectively).

Proof. The conditions define a full subcategory C≤−1; we need to show that the inclusion has

a right adjoint, and that the resting subcategories satisfy the third criterion of Proposition

1.2.1.15 of [44]. The first criterion follows since C≤−1 is presentable since the transition

functors are continuous and the t-structure accessible. The latter criterion follows by exact-

ness of the transition functors. If the t-structures on Ci are compatible with filtered colimits,

then so is the one on C since the transition functors are continuous and the t-structures

accessible. Right and left completeness follow since limits commute.
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Proposition 2.2.10. Let G : D → C be an exact functor between presentable stable ∞-

categories which is a right adjoint, and suppose that C has an accessible t-structure. There

is a unique accessible t-structure on D such that G is left t-exact, i.e. X ∈ D≥0 if and only

if G(X) ∈ C≥0.

Dually, if F : C → D is an exact functor between stable ∞-categories which is a left

adjoint, and D has a t-structure, there is a unique t-structure on C obtained by insisting that

F is right t-exact.

Proof. We only prove the first statement. The second statement follows by the same ar-

gument using the adjoint functor theorem for left adjoints. The category D≥0 as defined

above is accessible since C≥0 is and G is an accessible functor by the adjoint functor theorem.

Since G is a right adjoint, it commutes with limits (taken in D and C); in particular, the

inclusion ι≥0
D tautologically commutes with limits by construction, so it has a left adjoint and

is therefore a localization. One can then verify the third criterion of Proposition 1.2.1.16 in

[44], which follows by exactness.

We now discuss left and right completion of categories. These will play a role when we try

to understand categories of quasicoherent sheaves on stacks via derived categories of abelian

categories.

Definition 2.2.11. Let C be a stable ∞-category with a t-structure. The subcategory of

eventually connective or bounded above or right bounded objects is the union

C− =
⋃

C≥−n

and the subcategory of eventually coconnective or bounded below or left bounded objects is

the union

C+ =
⋃

C≤n.

The subcategory of bounded objects is given by Cb = C+ ∩ C−.

The left completion of C, denoted Ĉ, is defined by the limit

Ĉ := lim
n→∞

C≥−n = lim
(
· · · → C≥−1 → C≥0

)
.

By Proposition 1.2.1.17 in [44], the left-completion is stable and has a canonical t-structure.

Further, there is a canonical functor C → Ĉ which is exact and induces an equivalence

C+ → Ĉ+. We say that C is weakly left complete if
⋂

C≤−n ' 0, i.e. if for any given object

X ∈ C, the map X → limX≥−n is an equivalence. By Proposition 1.2.1.19 of [44], if C has

countable products and C≥0 is stable under countable coproducts, then weakly left complete

implies left complete.

Dually, we define the right completion of C by the limit

lim
n→∞

C≤n = lim
(
· · · → C≤1 → C≤0

)
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Most categories we work with will already be right complete, so we do not introduce notation

for this. A category is right complete if the analogous canonical map is an equivalence.

Remark 2.2.12. There is an equivalence between left bounded categories with a t-structure

and left complete categories with a t-structure, and dually for right bounded and right com-

plete categories. Note this means that the assignments C 7→ Ĉ and C 7→ C+ are inverse

functors; it does not mean that Ĉ ' C+.

The unbounded derived category D(A) of a Grothendieck abelian category A is con-

structed in Section 1.3.4 and 1.3.5 of [44],. The condition of being a Grothendieck abelian

category appears to largely deal with set-theoretic issues arising from localization. We have

the following in Propositions 1.3.5.9 and 1.3.5.21, and Remark 1.3.5.23.

Proposition 2.2.13. Let A be a Grothendieck abelian category. Then, D(A) is stable and

presentable. Furthermore, it has a natural t-structure which is accessible, right complete, and

compatible with filtered colimits. Furthermore, if C is a stable∞-category with an accessible

t-structure compatible with filtered colimits, then C♥ is a Grothendieck abelian category.

Remark 2.2.14. It is possible to define7 the bounded below or bounded above derived cate-

gories D+(A) and D−(A) if A has enough injective and projective objects respectively. For

details, see Section 1.3.2 of [44].

If C is a stable ∞-category with a t-structure such that C♥ has enough injective ob-

jects, then by Theorem 1.3.3.2 of [44] there is a canonical t-exact functor D+(C♥) → C

corresponding to the identity functor on C♥. We state the following without proof.

Proposition 2.2.15. Let C be a stable ∞-category with an accessible t-structure which is

compatible with filtered colimits such that C♥ has enough injective objects. The canonical

functor

F : D+(C♥)→ C+

is an equivalence when C has the following property: for any injective object I,

HomC(Y, I[n]) = 0

for all Y ∈ C♥ and n > 0.

Example 2.2.16. Let C = k [ε], where |ε| = −1, and define a t-structure such that the

forgetful functor k [ε] -mod → k -mod is t-exact. This t-structure does not satisfy the con-

ditions in the above proposition, since C♥ is the abelian category of k-vector spaces and

Hom•k[ε](k, k) = k [u] where |u| = 2, i.e. has positive cohomology groups.

7Explicitly, D+(A) is defined to be the dg-nerve (see Construction 1.3.1.16 in [44], this is a way to associate

a stable ∞-category to a dg category) of the dg category of bounded below complexes of projective objects.
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Now, let C = k [η] where |η| = 1. We insist only that the forgetful functor is right t-exact,

and its left orthogonal (k [η] -mod)≤−1 is defined to be the subcategory generated by objects

of the form k [η] ⊗k V where V ∈ (k -mod)≤−1; see Propositions 4.5.2 and 4.5.4 in [42] for

details. In this case, C♥ is the abelian category of k [η]-modules, which is equivalent to the

category of continuous k [[x ]]-modules, and this category satisfies the conditions in the above

proposition.

Example 2.2.17. This can be used to show that if X is a classical QCA stack, then QCoh(X)

is the left-completion of D−(QCoh(X)♥).

Proposition 2.2.18. Let A be an Grothendieck abelian category generated by a set of objects

with finite cohomological dimension. That is, there is a set G of objects if every X ∈ A can

be written as the quotient of a filtered colimit (equivalently, direct sum) of objects in G, i.e.

X = coker(
⊕
Gα →

⊕
Gβ), and the functor Ri HomA(T,−) vanishes for large i , for each

T ∈ G. Then, D(A) is left complete.

Example 2.2.19. If A is the abelian category of A-modules for a classical ring A, it is clear

that D(A) is left complete since A is generated by the free object A, and Ri HomA(A,−)

vanishes for i > 0. If G is a reductive group acting on a quasiprojective scheme X, then

QCoh(X/G)♥ can also be seen to satisfy this property. Namely, it is known that equivariant

locally free resolutions exist for quasiprojective schemes (see, for example, [16]) implying that

equivariant locally free sheaves form a generating set. Further, because G is reductive, the

G-invariants functor is t-exact and Ri HomX/G(E ,−) vanishes for i > 0.

2.3 Derived stacks and prestacks

Definition 2.3.1 (Derived stacks). A (higher) classical stack is a functor of (ordinary) 1-

categories Aff → Space satisfying a certain sheaf property, where the category of affine

schemes is isomorphic to the opposite category of the category of rings: Aff ' Rngop. The

category of ∞-stacks has internal mapping objects (see [61] Section 3.2, Example 5). The

sheaf property depends on a choice of Grothendieck topology, usually taken to be the étale or

fppf topology. The sheaf condition for a functor F requires that for an (étale or fppf) atlas

U → X, F (X) is isomorphic to the homotopy colimit of the diagram

· · · F (U ×X U) F (U).

The category of classical stacks remedies the failure of the category of schemes to contain

certain colimits.

A derived ring over a field k of characteristic zero, denoted DRng, is one of the following:

(1) a simplicial ring, (2) a connective differential-graded ring, or (3) a connective E∞ ring

spectrum. In Proposition 7.1.4.6 and 7.1.4.11 of [44] it is proven that the category of
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E1-algebras is equivalent to the category of dg algebras over any ring, but the category of

E∞-algebras is equivalent to commutative dg algebras only over a Q-algebra. The category

of derived rings forms an (∞, 1)-category. We define the category of affine derived schemes,

denote Aff, to be the opposite category of the category of derived rings.

A prestack X is an (∞, 1)-functor X : DRng = Affop → S from the category of derived

rings to the category of spaces.

A derived stack (or for us, just a stack) is prestack satisfying derived étale descent. The

derived étale topology on derived rings is generated by the following: a map U → X is a

derived étale cover if it is of finite presentation and if LU/X ' 0 and the induced map on

zeroth homotopy groups π0(U) → π0(X) is a surjective morphism of classical schemes (see

Section 3.2 of [60] for details). One important property of derived stacks is that they have

internal mapping objects which satisfy the adjunction Map(X × Y, Z) ' Map(X,Map(Y, Z))

(see Section 4.3, Example 4 of [61]). Derived stacks remedy the failure of pullback squares

in the category of classical stacks to satisfy base change.

The category of stacks is very general; we often wish to focus on stacks which are in some

sense understandable inductively via schemes. A k-Artin stack X is a stack such that the

diagonal map is representable by a (k−1)-Artin stack, and which admits an atlas by a scheme

U, i.e. a (representable by schemes) smooth map U → X, and such that the restriction of

X to n-coconnective dg algebras is k-truncated8. We define the category of 0-Artin stacks

to be the category of algebraic spaces.

A Laumon-Moret-Bailly stack or LM-algebraic stack [37] is an Artin 1-stack (a) whose

diagonal map is quasi-separated, quasi-compact, and representable by algebraic spaces and

(b) admits an atlas by a (derived) algebraic space. Note that in this case, the smooth atlas is

automatically representable by algebraic space9 and further X admits an atlas by a scheme. A

Drinfeld-Gaitsgory algebraic stack or DG-algebraic stack [21] is an LM-algebraic stack whose

diagonal map is representable by schemes. A geometric stack is a DG-algebraic stack whose

diagonal map is affine.

An LM-algebraic stack X over a field of characteristic zero is quasicompact with affine

automorphism groups, or more concisely, QCA (see [21] for details), if it is quasicompact,

the automorphism groups of its geometric points are affine, and the classical inertia stack

of X is of finite presentation over X. A morphism is QCA if every base change to an affine

scheme is an (algebraic) QCA stack.

A (separated) derived scheme is a derived stack X such that (a) the diagonal map is

schematic and affine, and the base change of the diagonal map to any affine scheme T is a

8This means that it takes values in the subcategory of (n + k)-groupoids in the category of ∞-groupoids.

Equivalently, its values have vanishing homotopy groups in degrees greater than n + k .
9This is a standard technique; if S is any algebraic space, then we need for U ×X S to be an algebraic

space. On the other hand, U ×X S = X ×X×X (U × S), so by representability of the diagonal we have that

T ×X S → T × S is representable by algebraic spaces, but T × S is an algebraic space so T ×X S is.
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closed embedding10 and (b) admits a Zariski atlas, i.e. there are affine derived schemes Ui
and open embeddings fi : Ui → X such that the base change of the fi to any affine derived

scheme form a Zariski cover on π0.

Further discussion of n-geometric stacks can be found in [54].

Example 2.3.2 (Derived schemes). The definition of derived schemes is somewhat non-

constructive. In [41], the notion of a spectral scheme is introduced as an explicit construction.

Our examples will, instead, be differential-graded schemes, discussed in [17]: a dg scheme is

a scheme X equipped with a connective complex of differential-graded OX-algebras O•X such

that the structure map OX → H0(O•X) is surjective. A morphism of dg schemes f : X → Y is

given by a map of underlying schemes π0(f ) and a map of sheaves of differential-graded OX-

algebras π0(f )∗O•Y → O•X. To describe the S-points of a dg scheme X, we need to describe

the space X(S). This can be done using the usual simplicial model category structure on

dg algebras discussed in [31], since the pullback of O•X to S is a dg S-algebra. If π0(X) is

separated, then a dg scheme determines a derived scheme.

Remark 2.3.3. If X is a classical stack (i.e. a functor Affcl → S), it can be considered as a

derived stack via left Kan extension, i.e. left adjoint to the restriction functor Fun(Aff,S)→
Fun(Affcl ,S). Explicitly, if S is a derived algebra, we have

X(S) := colim
S→S′

S′ classical

X(S′).

Since the inclusion of classical affine schemes into affine schemes is fully faithful, this left Kan

extension is fully faithful. Note that the restriction functor also has a right adjoint extension:

X(π0(S)) = lim
S′→S

S′ classical

X(S′)

which is not fully faithful in general. Note that if S is a classical scheme, then the left Kan

extension of S is just S considered as a derived scheme where πn(S) = 0 for n > 0.

2.4 Formal and derived completions

Finally, we will review the notion of formal completions of prestacks and derived completion

on Artin stacks. We summarize the main points of Chapter 4 of [43], Section 3.4 of [11],

Section 15.80 of the [55], and Chapter 6 of [24].

10A map of affine derived schemes is a closed embedding if it is on π0.
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Definition 2.4.1. Let f : X → Y be a map of derived stacks (or more generally, prestacks).

The formal completion of f , written ŶX, has a functor-of-points whose S-points are given by

diagrams

π0(S)red X

S Y

defining it as a prestack.

Lemma 2.4.2. The formal completion of a map X → Y only depends on π0(X)red → Y . In

particular, if Z → Y is a closed embedding, then ẐY ×Y X = ̂Xπ0(Z×Y X)red .

Proof. This follows directly from the functor-of-points characterization of formal completions,

and that π0(X)red is the universal stack that factors any map from a classical reduced scheme

π0(S)red .

Example 2.4.3. The formal odd tangent bundle T̂X[−1] is the completion of the inclusion

of the zero section X → TX[−1]. The corresponding filtration on O(T̂X[−1]) is the Hodge

filtration.

Definition 2.4.4. Let f : A→ B be a map of derived rings. Following [40], we say that f is

étale if the induced map π0(A)→ π0(B) is étale and for every n ∈ Z, the map πn(A)⊗π0(A)

π0(B)→ πn(B) is an isomorphism of abelian groups. A map of derived schemes is étale if it

is for a Zariski cover.

Proposition 2.4.5. LetX, Y, Z be stacks admitting deformation theory (e.g. quotient stacks).

The relative cotangent complex vanishes LX/Y ' 0 if f : X → Y is étale. In particular, for

any map Z → X, we have an isomorphism of formal completions X̂Z → ŶZ.

Proof. The first sentence is Proposition 2.22 in [40]. For the second, by the exact triangle

for cotangent complexes we have a natural isomorphism LZ/Y ' LZ/X under LZ, and note

that the formal completion of a map Z → X is a colimit of square-zero extensions controlled

by the the map between cotangent complexes LZ → LZ/X (see Chapter IV.5 in [23]).

We now discuss how to compute the derived completion of a quasicoherent sheaf.

Definition 2.4.6. Let A be a connective dg ring, and fix an ideal I ⊂ π0(A). We define

the full subcategory A -modni l of I-nilpotent objects consisting of those modules on which

I acts locally nilpotently, i.e. for each cycle m ∈ H•(M) there is some power of I which

annihilates m. By Proposition 4.1.12 and 4.1.15 in [43], the inclusion A -modni l ↪→ A -mod

is continuous and preserves compact objects; therefore it has a continuous right adjoint ΓI,

which we call the local cohomology functor. We define the full subcategory A -modloc of
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I-local objects as the right orthogonal to A -modni l , and the full subcategory A -modcpl of

I-complete modules to be the right orthogonal to A -modloc . The subcategory A -modcpl has

an equivalent characterization as those modules such that the derived limit

· · · M M M
x x x

is zero for all x ∈ I. By Proposition 4.2.2 of [43], the inclusion of the complete objects has

a left adjoint, which we call the (derived) completion functor and denote (̂−).

The following is Proposition 4.2.5 in [43].

Proposition 2.4.7. The composition of left adjoints

A -modni l A -mod A -modcpl
(̂−)

is an equivalence. Consequently, the composition of its right adjoints

A -modcpl A -mod A -modni l
Γ

is also an equivalence.

The derived completion and local cohomology functors can each be computed in two dual

ways. The following can be found as Propositions 15.80.10 and 15.80.17 in [55] and in a

global form as Proposition 3.4.12 in [11] and Proposition 6.7.4 in [24]. The statements on

local cohomology are well known (and which we will not use).

Proposition 2.4.8. Choose generators f1, . . . , fr of I ⊂ π0(A). The derived completion of an

A-module M can be computed

M̂ = lim
n
M ⊗π0(A) K

•
n

where K•n is the Koszul complex for the sequence f n1 , . . . , f
n
r ∈ π0(A), i.e. the polynomial

dg algebra whose underlying graded algebra is K•n := π0(A)[ε1, . . . , εr ] where |εi | = −1, and

whose differential is generated by d(εi) = f nj . It can also be computed

M̂ = RHomπ0(A)(G•,M)

where G• denotes the “local Koszul complex”

π0(A)
∏
π0(A)[ 1

f ni
]

∏
i ,j π0(A)[ 1

f ni
, 1
fk jn

] · · · π0(A)[ 1
f n1
, . . . , 1

f nr
] .

Likewise, we can compute the local cohomology of M by

ΓI(M) = colim Homπ0(A)(K•n ,M),
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ΓI(M) = G• ⊗Lπ0(A) M.

The latter formula is the calculation of local cohomology via a Cech resolution with supports

on an affine scheme.

Remark 2.4.9. The above story is globalized in [24] in the following way. Let X be a dg

scheme, and Z ⊂ X a classical closed subscheme. There is a functor î∗ : QCoh(X) →
QCoh(X̂Z) with a fully faithful (continuous) left adjoint î? whose essential image is the

category of quasicoherent sheaves supported on Z, and a fully faithful (non-continuous!)

right adjoint î∗ whose essential image is the category of quasicoherent sheaves complete with

respect to the ideal sheaf for Z. There is an exact triangle of functors arising from the

localization functor î?̂i
∗ (whose essential image is cocomplete):

ΓZ = î?̂i
∗ → idQCoh(X) → j∗j

∗ = (−)|U.

In particular, the functor on the left is local cohomology, and the functor on the right is

restriction to U. The (non-continuous) functor î∗̂i
∗ is the (derived) completion.

The following lemma is likely well-known, but we could not find a reference.

Lemma 2.4.10. Let X be a derived scheme, i : Z ⊂ X a closed subscheme and j : U =

X−Z → X its complement. Let φ : F → G be a map of quasicoherent sheaves on X. If the

derived completion φ̂Z and the restriction φ|U are isomorphisms, then φ is an isomorphism.

Proof. Using the above exact triangle, to show that φ is an isomorphism, it suffices to show

that ΓZ(φ) is an isomorphism, or equivalently, that ΓZ(cone(φ)) = 0. To this end, note

that ̂cone(φ) = î∗̂i
∗ cone(φ) = 0, and that î∗ is fully faithful, so that î∗ cone(φ) = 0, so that

ΓZ(cone(φ)) = î?̂i
∗ cone(φ) = 0.

Example 2.4.11. The above is not true for non-derived completions. For example, take

X = A1, Z = {0}, and φ : 0 → M = k [x, x−1]/k [x ] (one thinks of M as the module of

distributions supported at zero). Since M is supported at zero, M|U = 0, and since xkM = M

for all k , M̂Z = 0, but φ is not an isomorphism. On the other hand, the derived completion

of M is l [[x ]][1].

2.5 Quasicoherent and ind-coherent sheaves

Remark 2.5.1. We begin with a general remark. There are, in some sense, two approaches to

the theory of derived categories of quasicoherent sheaves on a derived stack X. The approach

taken in [23] produces the “correct” categories at the expense of being inexplicit. That is,

the category of quasicoherent sheaves on an affine derived scheme Spec(R) is defined to

be the ∞-category of complexes of R-modules localized with respect to quasi-isomorphisms,
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and the category QCoh(X) is defined to be the ∞-limit over quasicoherent sheaves on its

S-points. This category inherits a natural t-structure from the t-structures on QCoh(S)

and is automatically left-complete with respect to this t-structure; it is generally not true,

however, that QCoh(X) is the derived category of its heart.

On the other hand, one might prefer to choose a site and define the abelian category

QCoh(X)♥ to be a certain subcategory of sheaves of OX-modules on the site. Olsson [50]

gives an explicit construction of the category QCoh(X)♥ when X is a classical Artin stack

using the lisse-étale topology. This construction works only for classical Artin stacks since

it realizes QCoh(X) as the left-completion of the derived category of an abelian category

of quasicoherent sheaves QCoh(X)♥, generalizing the classical construction of the derived

category of quasicoherent sheaves on non-affine schemes. The category QCoh(X) above can

be recovered as the left-completion of D+(QCoh(X)♥).

Remark 2.5.2. The approach via abelian categories is bound to fail in the derived setting,

since even for derived schemes it is not true that the stable ∞-category of quasicoherent

sheaves is the derived category of an abelian category. However, an approach via ∞-topoi is

currently in development by Lurie in [47]. As of the time of this writing, the story has been

laid out for derived Deligne-Mumford stacks but not for Artin stacks.

Definition 2.5.3. Let S be an affine derived scheme; we define QCoh(S) to be S -mod.

When A is a dg algebra, we mean the dg category of complexes of S-modules localized with

respect to quasi-isomorphisms. When A is a simplicial algebra, we mean the stabilization

of the simplicially enriched category of simplicial A-modules localized with respect to weak

equivalences. This category is equipped with the usual t-structure inherited from the category

of complexes of A-modules. Given a map f : S′ → S of derived schemes, there is a natural

pullback f ∗ : QCoh(S) → QCoh(S′) given by derived tensor product, and a pushforward

f∗ : QCoh(S′) → QCoh(S) given by the restriction of scalars functor, which together form

an adjoint pair (f ∗, f∗). The pullback is left t-exact (i.e. preserves connective objects) and

the pushforward is right t-exact (i.e. preserves coconnective objects).

When X is a prestack, we define

QCoh(X) = lim
x :S→X
S affine

QCoh(S)

where the limit is taken inside the ∞-category of stable ∞-categories (or dg categories) via

∗-pullback functors. Tautologically, if X ′ → X is a map of prestacks, then we have a pullback

functor f ∗ : QCoh(X) → QCoh(X ′). Its right adjoint is defined to be the pushforward

functor, but it is not continuous in general. By Theorem 1.4.2 of [21], the pushforward is

continuous for QCA morphisms. The category QCoh(X) inherits a t-structure by insisting

that x∗ is left t-exact for every point x : S → X.

Remark 2.5.4. Let us somewhat unwind what this∞-limit means. An object of the diagram

category is an affine dg scheme S along with map x : S → X. The automorphisms of such an
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object form a pointed space with base point x ∈ X(S), and for any map f : S′ → S, we have

a map of spaces X(f ) : X(S) → X(S′). A quasicoherent sheaf F ∈ QCoh(S) is the data

of a compatible collection of QCoh(S)-valued local systems FS on the spaces X(S) for each

affine scheme S. That is, (a) for every x ∈ X(S), the stalk Fx ∈ QCoh(S) is a quasicoherent

complex on S and (b) for every path in X(S) from x to y , we have a map Fx → Fy and (c)

for every 2-simplex in X(S), we have a degree -1 map with prescribed boundary and so on.

Denote by X(f )−1 the natural pullback of local systems from X(S′) to X(S) and f ∗ :

QCoh(S′)→ QCoh(S) the quasicoherent pullback; for the compatibility we require an equiv-

alence X(f )−1FS′ ' f ∗FS of QCoh(S′)-valued local systems over X(S), i.e. for all x ∈ X(S),

we have equivalences FX(f )(x) ' f ∗Fx . One should also account for higher data, but we will

not in this sketch.

The following can be found in [23]; we repeat it for convenience.

Proposition 2.5.5. The canonical functor

D(QCoh(X)♥)+ → QCoh(X)+

is an equivalence for a quasicompact algebraic stack with affine diagonal. In particular, since

QCoh(X) is left-complete, we have an equivalence on left completions

lim
n→∞

D(QCoh(X)♥)≥−n → QCoh(X).

Proof. We show that QCoh(X) satisfies the conditions of Proposition 2.2.15. Since X has

affine diagonal, we can choose a classical smooth (in particular, flat) affine atlas f : S → X;

since the diagonal is affine, f is also affine. In particular, f∗ is t-exact by affineness and f ∗ is

t-exact by flatness, and define functors on the heart. Note that if X is not classical, we can

not in general find a flat atlas by a classical scheme.

Let M ∈ QCoh(X)♥ be any object and I ∈ QCoh(S)♥ an injective object with a

monomorphism f ∗M ↪→ I. Since f was chosen to be flat, M ↪→ f ∗M is a monomor-

phism, so that M ↪→ f∗I is also a monomorphism. Further, we have HomQCoh(X)(Y, f∗I[n]) =

HomQCoh(S)(f ∗Y, I[n]) = 0 for n > 0, satisfying the required conditions.

Remark 2.5.6. In [50], the abelian category of quasicoherent sheaves on a stack is defined.

Its derived category is not left-complete, and is therefore not equivalent to the∞-categorical

definition of QCoh(X) we take above. Similarly, the comments after Theorem 1.1 of [27]

indicate further results in this direction.

Example 2.5.7. If S is a classical dg scheme, then QCoh(S) is easily verified to be the derived

category of its heart. On the other hand, if S is a dg algebra, this is seen to be false in any

example: take S = Spec(k [ε]) where |ε| = −1. The derived category of the heart is k -mod.
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Remark 2.5.8. In [50], the class of classical stacks for which QCoh(X) is constructed is

somewhat larger; in particular, their construction works for any 1-stack whose (a) diagonal is

representable by schemes, quasi-compact and quasi-separated and (b) which admits an atlas

by an algebraic space. We do not know whether the above proposition can be extended to

this case.

Example 2.5.9 (X = BG). Let us identify Perf(BG) by brute force as the dg category of

G-representations. First, note that BG as a derived stack is realized via a left Kan extension,

i.e. a colimit. Since BG has a simplicial presentation, i.e. is the totalization of a simplicial

diagram whose terms are classical schemes, we find that QCoh(BG) where BG is considered

as a derived stack is equivalent to the category where BG is considered as a classical stack.

Let V be a perfect complex of G-representations; we will associate to it an object of

Perf(BG). Note that since BG is a classical stack, we only need to address the pullback of

V to classical schemes S. An S-point x : S → BG is determined by a G-torsor P over S;

we define x∗V to be the sheaf of sections of the vector bundle P ×G V ∗ → S. This is clearly

functorial under pullback.

Conversely, to an object of F ∈ Perf(BG), we can assign a complex of G-representations

as follows. Let p : pt→ BG be the trivial torsor, and let p∗F = V be the resulting complex

of vector spaces. For each g ∈ G, we obtain an automorphism of the point p, inducing an

automorphism of V . This defines the G-action on V .

The following notion was defined and studied in [5].

Definition 2.5.10. A derived stack X is perfect if it has affine diagonal and if QCoh(X) is

compactly generated by Perf(X).

In Section 3.3 of loc. cit. and the discussion in Section 7 of [28], the following examples

of perfect stacks are established.

Theorem 2.5.11. The following are examples of perfect stacks over a field of characteristic

zero: (a) quasicompact and separated schemes, (b) the quotient stack X/G where X is (de-

rived) quasiprojective and G is affine, (c) mapping stacks Map(S,X) where S is a space finite

in CW-complexes and X is perfect, (d) fiber products of perfect stacks, (e) quasiprojective

stacks over a perfect stack, (f) any stack possessing the resolution property, i.e. the property

that any coherent sheaf is the quotient of a vector bundle.

Example 2.5.12 (Non-quasicompact scheme). Let Z be considered as a non-quasicompact

scheme, i.e. the disjoint union of infinitely many copies of Spec(k). Note that since Z
is not affine, we do not define IndCoh(Z) as the ind-completion of Coh(Z); instead, it is

defined to be Ind(Coh(U)) on affine opens U and patched together via the !-restriction.

In particular, since Z is zero-dimensional and smooth, ∗-restriction equals !-restriction and

IndCoh(Z) = QCoh(Z). Further, again by smoothness, Perf(Z) = Coh(Z).



CHAPTER 2. BACKGROUND 25

On the other hand, the compact objects of QCoh(Z) is the subcategory of complexes

with finite cohomological support and finite geometric support in Z. In particular, OZ is not

compact, so Z is not perfect. Explicitly, the identity map is an element of

HomQCoh(Z)(OZ,OZ) = HomQCoh(Z)(OZ,
⊕
n∈Z

kn)

which does not factor through any finite sum. In particular,

QCoh(Z) 6' Ind(Perf(Z)) IndCoh(Z) 6' Ind(Coh(Z)).

Example 2.5.13 (Non-separated scheme). Let X be the double affine line, i.e. X = A1∪GmA1.

Let x1, x2 ∈ X be the two doubled origins. The skyscraper sheaf kx1
is not perfect, since for

any perfect complex the stalk at x1 is equal to the stalk at x2. On the other hand, it is

compact, since it is compact on restriction to any affine open.

Further examples of stacks for which QCoh(X) is not compactly generated in positive

characteristic can be found in [1].

Remark 2.5.14. Let X be a QCA stack. It is known that Perf(X) are the compact objects

of QCoh(X), but it is not known whether QCoh(X) is compactly generated. However,

it is proven in Theorem 4.3.1 of [21] that QCoh(X) is dualizable when X is eventually

coconnective. The proof uses the fact that in this case, QCoh(X) is a retract of IndCoh(X)

(in particular, since OX is coherent when X is eventually coconnective), and Theorem 3.3.5,

which shows that IndCoh(X) is compactly generated by Coh(X).

In [22] the theory of ind-coherent sheaves is developed for derived schemes and stacks.

We will introduce the definitions here. Although we do not work directly with ind-coherent

sheaves, their study is important for our future work.

Definition 2.5.15. Let S be an affine scheme. We define the category of ind-coherent

sheaves on S to be

IndCoh(S) := Ind(Coh(S)).

Let f : S′ → S be a map of dg schemes. If f is proper (i.e. proper on underlying classical

schemes), then we obtain a functor f∗ : IndCoh(S′) → IndCoh(S′) which is continuous and

preserves compact objects. Therefore, it has a continuous right adjoint, which we denote

f ! : IndCoh(S) → IndCoh(S′). When f is an open immersion, we also have a continuous

functor f∗ which does not preserve compact objects but also commutes with limits; in this

case, it has a left adjoint which we denote f ! (also f ∗). By Theorem 5.2.2 of [22], via

Nagata’s compactification theorem, this defines for any map f of dg schemes a well-defined

pullback f ! and pushforward f∗.
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When X is a prestack, we then define

IndCoh(X) = lim
x :S→X
S affine

IndCoh(S)

where the limit is taken inside the ∞-category of stable ∞-categories (or dg categories) via

!-pullback functors.

Remark 2.5.16 (Relationship with homotopy category of injectives). A model for IndCoh(X)

should be a category C equipped with a fully faithful functor C→ Fun(Coh(X)op,Ch) whose

essential image coincides with the ind-completion of Coh(X). When X is a classical noetherian

scheme, the homotopy category of injectives Kinj(X) (for us, the dg category of injective

complexes) is such a model with structure functor I• 7→ Hom(−, I•). This Hom is the

literal Hom-complex of complexes (i.e. we do not invert quasi-isomorphisms). Likewise,

a model for IndCoh(X)∨ should be a category equipped with a fully faithful functor C →
Fun(Coh(X),Ch). Neeman and Murfet [49] [48] prove that the mock category of projectives

does the trick, with realization functor P• 7→ Hom(P•,−).

Example 2.5.17. Recall that when R = k [x ]/x2, the skyscraper module k0 = R/x has an

infinite injective resolution 0→ R → R → · · · . In particular, there is a short exact sequence

of modules

0→ k0 → R→ k0 → 0

which induces a nonzero map k0 → k0[1], which on injective resolutions looks like

· · · 0 0 R R R · · ·

· · · 0 R R R R · · ·

Thus we have a filtered diagram of modules k0 → k0[1] → k0[2] → · · · whose colimit is the

acyclic injective complex unbounded in both directions:

· · · → R→ R→ R→ · · · .

This complex is not isomorphic to zero in IndCoh(X) because in each finite stage of the

colimit the module is nonzero; more precisely, colimit has endomorphisms given by

lim
n

colim
m

HomR(k0[n], k0[m]) ' lim
n

colim
m

k ⊗ δm≥n = k

which is nonzero.
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Definition 2.5.18 (Comparison functors). There is a canonical object p!k = ωX ∈ IndCoh(X)

for any prestack X, where p : X → pt is the structure map. It is analogous to p∗k = OX ∈
QCoh(X), but in general it is not an algebra object but a coalgebra object. The category

QCoh(X) is monoidal, and IndCoh(X) has a continuous action of the monoidal category

QCoh(X). This action defines a functor Φ : QCoh(X)→ IndCoh(X) for any prestack X.

When S is a dg scheme, we have a comparison functor Ψ : IndCoh(S) → QCoh(S)

induced by ind-completion of the inclusion Coh(S)→ QCoh(S). For a general prestack, it is

not true that Ind(Coh(X)) = IndCoh(X); the latter is defined via Kan extension.

We have the following Propositions 1.2.4 and 1.3.4 in [22].

Proposition 2.5.19. Let S be a dg scheme. The functor Ψ≥n : IndCoh(S)≥n → QCoh(S)≥n

is an equivalence for every n. The category QCoh(S) is left complete, and Ψ realizes QCoh(S)

as the left completion of IndCoh(S).

Remark 2.5.20 (Convergence). Let A be a connective dg algebra. It is known that the

Postnikov tower

A = lim τ≥−nA = lim(· · · → τ≥−2A→ τ≥−1A→ τ≥0A)

converges, i.e. that the dg scheme Spec(A) is convergent as a prestack. Note that if

S = Spec(A), the indexing is reversed:

S = colim τ≤nS = colim(τ≤0S → τ≤1S → τ≤2S → · · · )

and the maps are closed immersions (and therefore proper). An equivalent way to express

convergence of dg schemes is that every dg scheme S is an ind-object of eventually cocon-

nective dg schemes.

The following is Proposition 4.3.4 in [22].

Proposition 2.5.21. We have that the natural functor

colim IndCoh(π≤n(S))→ IndCoh(A)

is an equivalence.

Example 2.5.22. Take A = k [u] with |u| = −2, and S = Spec(A). Since every finitely

generated complex of A-modules has a finite resolution, the category Perf(S) is the dg

category of finitely generated A-modules. On the other hand, Coh(S) is the category of

finitely generated A-modules with coherent cohomology. We find, then that IndCoh(S)

consists of complexes of A-modules on which u locally acts by torsion.
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We observe that the convergence property above is false for quasicoherent sheaves. The

colimit of the categories

k [u]/u -mod→ k [u]/u2 -mod→ · · ·

is the category of k [u]-modules where u acts by torsion, i.e. IndCoh(S) and not QCoh(S).

The following is Theorem 3.3.5 in [21].

Proposition 2.5.23. Let X be a QCA stack. The category IndCoh(X) is compactly generated

by Coh(X).

2.6 Group actions on categories and equivariant objects

We will give a bird’s eye overview of categories with actions of ∞-groups; unfortunately, we

do not know of a more comprehensive or detailed reference. In this note we will only apply

the case when G = S1.

Definition 2.6.1. An ∞-group G is a (∞-)group object11 in the ∞-category of spaces S.

Let G be an∞-group, and let B∗G denote the∞-category with a single object, whose space

of morphisms is G; this can be thought of a pointed version of the space BG realized as

an ∞-category. A G-action on a small k-linear stable ∞-category is a functor BG → stk ;

equivalently, it is a category C ∈ stk with a map of ∞-groups a : G → Aut(C). We define

the G-invariants of a category C with a G-action by

CG = lim
BG

C

where we regard the G-action on C as a BG-indexed diagram in stk (which has all limits by

Proposition 1.1.4.4 of [44]).

Let stGk denote the ∞-category of small stable k-linear ∞-categories equipped with a

G-action as above. Then, we obtain a functor of G-invariants

(−)G : stGk → stk .

This functor has a left adjoint, triv : stk → stGk which assigns to a category C the trivial G-

action. This adjunction has counit, defining a functor CG → C in stGk (where CG is equipped

with the trivial G-action).

Remark 2.6.2. Let G be a topological group which is a finite CW complex; equip the category

of finite chain complexes Vectωk with the trivial G-action. Then,

VectωGk ' C•(G; k) -mod

11See [45] Definition 7.2.2.1 and Proposition 7.2.2.4.
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where C•(G; k) is the group algebra whose product comes from that of G. This follows from

an argument similar to Lemma 3.10 in [6]. Choose a map p : pt→ BG making BG a pointed

space in derived stacks. Note that every map S → BG factors through pt → BG since BG

is the locally constant stack with value BG. Then, we have

(Vectωk )G ' Coh(BG) = lim
BG

Coh(pt).

and p∗ : Coh(BG) = Perf(BG) → Perf(pt) is identified with the counit map (Vectωk )G →
Vectωk . The Barr-Beck argument in Lemma 3.10 of [6] identifies

VectGk ' QCoh(BG) = lim
BG

QCoh(pt) = O(G) -comod .

Since G acts trivially on Vectk , all functors in the limit are t-exact, and by the arguments

in Section 4 of [51] the t-coherent objects in VectGk is equivalent to the category (Vectωk )G.

Since G is a finite CW complex, O(G) ' C•(G; k) has finite-dimensional and bounded co-

homology, and we have an equivalence between the category of finite O(G) ' C•(G; k)-

comodules and the category of finite C•(G; k)-modules.

Remark 2.6.3. If G is connected, the Koszul duality of [26] between C•(BG; k) -mod and

C•(G; k) -mod asserts an equivalence

(C•(BG; k) -perf)op C•(G; k) -modf g

C•(EG;k)⊗L
C•(BG;k)

−

RHomC•(G;k)(C•(EG;k),−)

arising from the calculation that

RHomC•(G;k)(k, k) ' RHomC•(G;k)(C•(EG; k), k) ' C•(BG; k).

The assumption that G is connected guarantees that the augmentation module k generates

C•(G; k) -mod. Taking ind-completions, we find that Ind(C•(BG; k) -perf) = C•(BG; k) -mod.

Example 2.6.4. The above is false if G is not connected. For example, the heart of

Coh(B(Z/2Z)) is the category of Z/2Z-representations, but C•(B(Z/2Z); k) ' k rationally.

Remark 2.6.5. More generally, with the above assumptions, if C is equipped with the trivial

G-action, then we have natural equivalences

CG ' C⊗ C•(G; k) -modf g ' C⊗ C•(BG; k) -perf .

Definition 2.6.6. Let X be a prestack. A G-action on X is a factorization of its functor

of points X(−) : Affop → S through the ∞-category of spaces with a G-action, i.e. the

∞-category of spaces over BG.



CHAPTER 2. BACKGROUND 30

Proposition 2.6.7. Let X be a prestack with a G-action for an∞-group G. Then, QCoh(X)

and Perf(X) have natural G-actions. Furthermore, the structure sheaf OX has a canonical

G-equivariant structure, i.e. the object OX ∈ QCoh(X) lifts to an object OGX ∈ QCoh(X)G

(and Perf(X)G, if OX is perfect) and is functorial with respect to pullback along G-equivariant

maps of prestacks with a G-action.

Remark 2.6.8. Before giving a mostly tautological proof, we give an informal discussion of

the definition of QCoh(X) for X a prestack. Let S be an affine derived scheme; we define12

QCoh(S) to be S -mod. When X is a prestack, we define

QCoh(X) = lim
x :S→X
S affine

QCoh(S)

where the limit is taken inside the∞-category of stable∞-categories (or dg categories). Let

us somewhat unwind what this means. An object of the diagram category is an affine dg

scheme S along with map x : S → X. The automorphisms of such an object form a pointed

space with base point x ∈ X(S), and for any map f : S′ → S, we have a map of spaces

X(f ) : X(S)→ X(S′).

A quasicoherent sheaf F ∈ QCoh(S) is the data of a compatible collection of QCoh(S)-

valued local systems FS on the spaces X(S) for each affine scheme S. That is, (a) for every

x ∈ X(S), the stalk Fx ∈ QCoh(S) is a quasicoherent complex on S and (b) for every path

in X(S) from x to y , we have a map Fx → Fy and (c) for every 2-simplex in X(S), we have

a degree -1 map with prescribed boundary and so on.

Denote by X(f )−1 the natural pullback of local systems from X(S′) to X(S) and f ∗ :

QCoh(S′)→ QCoh(S) the quasicoherent pullback; for the compatibility we require an equiv-

alence X(f )−1FS′ ' f ∗FS of QCoh(S′)-valued local systems over X(S), i.e. for all x ∈ X(S),

we have equivalences FX(f )(x) ' f ∗Fx . One should also account for higher data, but we will

not do so here.

Proof. By the above definition, it is clear that QCoh(X) has a G-action. A G-action on X is

a collection of compatible G-actions on X(S) for all S ∈ Aff, which evidently induces a map

from G to automorphisms of the category of QCoh(S)-valued local systems on X(S), which

defines a G-action on QCoh(S). Furthermore, we define the category of perfect complexes

Perf(X) to be the compact objects of QCoh(X). Since π0(G) acts by equivalences, its

action preserves compact objects, so the G-action restricts to Perf(X). Finally, we define

OX ∈ QCoh(X) to be the assignment for S ∈ Aff of the constant local system on X(S) with

12For example, when S = Spec(A) for a connective dg algebra or simplicial algebra A, we define QCoh(S)

to be (a) if A is a dg algebra, the dg derived category of A-modules (i.e. the localization of the dg category

of A-modules with respect to quasi-isomorphisms) or (b) if A is a simplicial algebra, the stabilization of the

(simplicially enriched) category of simplicial A-modules localized with respect to weak equivalences. These two

incarnations of quasicoherent sheaves are Quillen equivalent by the Dold-Kan correspondence.
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value OS ∈ QCoh(S). It is clear that OS is canonically a fixed point, and since the G-action

is already canonically trivial, it has a G-equivariant structure.

Remark 2.6.9. If X is a classical stack (i.e. a functor Affcl → S), it can be considered as a

derived stack via a Kan extension. Explicitly, if S is a derived algebra, we have

X(S) := lim
S′→S

S′ classical

X(S′) = X(π0(S′)).

By this description, it is clear that for a classical stack X, QCoh(X) is determined by its

pullbacks to classical schemes S.

Example 2.6.10. Consider X = S1 as the locally constant derived stack with value S1 ∈ S.

The category QCoh(S1) assigns to every connected S ∈ Aff the space X(S) = S1. A

QCoh(S)-valued local system on S1 is equivalent to a sheaf on S1 with a distinguished

automorphism. Altogether, we have that an object of QCoh(S1) consists of a k-vector space

along with an invertible linear map, i.e. a Z-representation. This is expected as S1 = BZ.

See also Lemma 3.17 of [6] (which does not apply to the present example as S1 is not simply

connected).

Remark 2.6.11. For X a stack with a G-action, the G-equivariant structure on OX is always

canonically trivial, but the G-equivariant structure on O(X) may be nontrivial. For example,

take X = L(BGa) ' Ga × BGa; the S1-equivariant structure on O(L(BGa)) ' O(Ga) ⊕
Ω1(Ga)[−1] is given by contraction with the Euler vector field.

Example 2.6.12. Let G = Z. A Z-action on a k-linear dg category C is the data of an

autofunctor F : C → C. Objects in the category of invariants CZ are pairs (X,α) where

X ∈ C is an underlying object and αX : F (X) ' X is an isomorphism; morphisms are given

by the usual intertwiners.

2.7 Circle actions and mixed complexes

Remark 2.7.1. Let G = S1; an S1-action on a k-linear dg category C is given by a map of

∞-groups S1 → Aut(C). We often seek a smaller, more explicit “formal” model. Theorem

5.2.0.4 of Preygel’s thesis [53] allows us to do just this; in particular, a S1-action on a dg

category C is determined up to equivalence by a k [z, z−1]− linear structure on C, i.e. a

universal automorphism of the identity functor (which is just the assignment of a universal

automorphism αX for each object X ∈ C). The objects of the equivariant category CS1
can

naively be thought of as pairs (X, εX) where X ∈ C is the underlying object and εX is a

nullhomotopy of 1 ' αX. We remain vague about what form this homotopy might take, but

will provide examples below, and refer the reader to Lemma 5.2.0.6 of [53].
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Example 2.7.2 (Matrix factorizations). This example is discussed in Section 6 of [52]. Let

M be a smooth classical scheme. By Lemma 6.1.1 of loc. cit. , the set of S1-actions on

Coh(M) = Perf(X) are in bijection with Gm(M) = Γ(M,OM)×, i.e. f ∈ Gm(M) acts by

multiplication by f on any given sheaf. An object of Coh(M)S
1

or Perf(M)S
1

is a coherent

complex of sheaves F• along with a nullhomotopy of the endomorphism 1 − f ; an object

admits an S1-equivariant structure if and only if its cohomology sheaves are supported on

the zeroes of 1− f , i.e. it is in the essential image of Coh(M1) under pushforward. Such an

object can have multiple equivariant structures.

Example 2.7.3. Let C = k -perf = Vectωk , the category of finite-dimensional chain complexes

over k ; S1-actions on C are in correspondence with k×. Only the S1-action corresponding

to 1 ∈ Gm, i.e. the trivial action, admits equivariant objects; any other S1-action results in

(Vectωk )S
1

= 0.

Taking the trivial S1-action, by Remark 2.6.2, (Vectω)S
1 ' C•(S

1; k) -mod. We can

replace this with a smaller model; in a general situation, given a quasi-isomorphism A → B

of dg algebras (or small dg categories), the adjoint functors (− ⊗B A,ResAB) form a Quillen

equivalence. In the case of a circle G = S1, the algebra of chains A = C•(S
1; k) is formal,

so we can take B = H•(S
1; k) ' k [ε] where |ε| = −1 is a choice of generating 1-chain.

Definition 2.7.4. Let C ∈ PrLk be a compactly generated k-linear stable∞-category, equipped

with an S1-action. We define

CωS1

:= Ind((Cω)S
1

),

CωTate := CωS1 ⊗(k -perf)ωS
1 k((u)) -mod .

Remark 2.7.5. We make the above definition because in general, taking G-invariants may

not commute with ind-completion: CS1 6' Ind((Cω)S
1
). For example, take C = Vectk with

the trivial S1-action. The Koszul duality functor discussed in Section 3 of [52] defines two

different equivalences (the f subscript indicates chain complexes with finite-dimensional total

cohomology):

k [[u]] -perf k [ε] -modf ,
k⊗L

k[[u]]
−

RHomk[ε](k,−)

k [[u]] -modf k [ε] -perf .
RHomk[[u]](k,−)

k⊗L
k[ε]
−

Taking ind-completions, we have

k [[u]] -mod Ind(k [ε] -modf ),
k⊗L

k[[u]]
(−)∨

RHomk[ε](k,−)∨
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k [[u]] -modtors k [ε] -mod .
RHomk[[u]](k,−)

k⊗L
k[ε]
−

Let us illustrate this with some explicit examples. Let M be the augmentation module for

k [ε]. It is coherent (i.e. finite) but not perfect. Under the first Koszul duality equivalence, it

is sent to the free module k [[u]]. Under the ind-completion of the second equivalence, writing

k as the colimit of C•(S
1; k)-modules C•(S

2n+1; k), it is sent to the module of distributions

colimn(k [u]/un)∗ = k((u))/k [[u]].

Or, let N = colimn k [−n] be a presentation via a colimit of coherent modules of the

k [ε]-complex (where the maps are multiplication by ε)

· · · → k [ε][2]→ k [ε]→ k [ε][−2]→ · · · .

Its image under the first equivalence is colimn k [[u]][n] ' k((u)), whereas its image under the

second equivalence is zero.

In terms of S1-actions, the first Koszul duality equivalence above realizes

VectωS
1

k := Ind((Vectωk )S
1

) ' k [[u]] -mod

and the second realizes

VectS
1

k ' k [[u]] -modtors .

Applying the Tate construction, we find that VectωTate
k ' k((u)) -mod, whereas VectTate

k ' 0.

We are generally interested in taking S1-invariants at the level of compact objects and

small categories. On the other hand, working in this setting is somewhat restrictive, since

many functors will not preserve compact objects. A workaround is discussed in Section 4 of

[51] via t-structures.

Definition 2.7.6. A mixed complex (V, d, ε) is a chain complex V with internal differential d

(of degree 1) and a k-linear map ε : V → V of degree −1 such that d(ε) = 0 (i.e. dε+εd = 0)

and ε2 = 0. Equivalently, a mixed complex is a H•(S
1; k)-module where H•(S

1; k) ' k [ε]

is the commutative dg algebra generated by a single generator in degree −1. We consider

a mixed complex as an object of VectωS
1

k ' Ind(k [ε] -modf ), i.e. as a filtered colimit of its

finite subcomplexes.

Definition 2.7.7. The S1-invariants of a mixed complex (V, d, ε) are defined by

V S
1

= RHomC•(S1;k)(C•(ES
1; k), V ) ' RHomk[ε](k, V ) = (V [[u]], d + uε)

where, given a space X with an S1-action, the action of C•(S
1; k) on C•(X; k) is by the

sweep action of [26]. It can be expressed as a limit

V S
1

= lim
n
RHomC•(S1;k)(C•(S

2n+1/S1; k), V ) ' lim
n

(V [u]/un, d + uε) = (V [[u]], d + uε)
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where here we choose a presentation of the homotopy quotient

BS1 = ES1/S1 ' S∞/S1 ' colim
n

S2n+1/S1 ' colim
n

(Cn+1 − {0})/C∗ ' colim
n
CPn+1

as a colimit of ordinary quotients by free actions of S1 on odd spheres. Since

RHomC•(S1;k)(k, k) ' C•(BS1; k)op,

V S
1

is naturally a module over C•(BS1; k) = k [[u]] where |u| = 2.

Definition 2.7.8. The Tate construction on (V, d, ε) is defined by

V Tate = V S
1 ⊗k[[u]] k((u)) = (V ((u)), d + uε).

Remark 2.7.9. The S1-invariants of a mixed complex V S
1

are an object of VectωS
1

. On the

other hand, the S1-coinvariants VS1 are an object of VectS
1

; we expect this since coinvariants

commutes with ind-completion.

2.8 Hochschild homology and cyclic homology

In this section we give a brief overview of the basic definitions of Hochschild homology and

cyclic homology for convenience, for the most part following [8]. A discussion of circle actions

can be found in Section 6 of [52]. Further discussion of circle actions can be found in [51]

Definition 2.8.1. Let Cat⊗ be a symmetric monoidal∞-category with monoidal unit 1⊗, and

X ∈ Cat⊗ a 1-dualizable object with dual X∨, coevaluation η : 1⊗ → X ⊗X∨ and evaluation

ε : X∨ ⊗X → 1⊗. We define the dimension of X by

dim(X) = ε ◦ η ∈ EndC⊗(1⊗).

and if φ is an endomorphism of X, we define its trace to be

tr(φ) = ε ◦ (φ⊗ 1) ◦ η ∈ EndC⊗(1⊗).

Note that dim(X) = tr(idX). If F : X → Y is a morphism with a right adjoint G, then we

can define

dim(F ) : dim(X) tr(G ◦ F ) tr(F ◦ G) dim(Y )
γ ' υ

where γ is the counit of the adjunction, υ the unit, and the middle isomorphism induced by

cyclic symmetry of traces.
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Remark 2.8.2. Equivalently, using Lurie’s proof of the Cobordism Hypothesis [46], there is

an equivalence between n-dualizable objects X ∈ Cat⊗ and framed extended Cat⊗-valued n-

dimensional topological field theories ZX; for a 1-dualizable object X we define the dimension

by

dim(X) = ZX(S1).

By this definition, there is evidently an S1-equivariant structure on dim(X).

We will define the Hochschild homology of a category to be its dimension; we first need

to define a monoidal structure on ∞-categories.

Definition 2.8.3 (Lurie tensor product). The category PrL is equipped with a monoidal

structure called the Lurie tensor product, constructed in Section 4.8 of [44]. It can be

thought of as an ∞-analogue of the Deligne tensor product. Let C,D ∈ PrL; we denote the

Lurie tensor product by C⊗D, and it is equipped with a canonical functor

C×D→ C⊗D

(X, Y ) 7→ X � Y.

It satisfies the universal property that it is initial amongst functors out of C × D which

preserves small colimits in each variable. Proposition 4.8.1.17 of loc. cit. gives an explicit

realization

C⊗D ' FunR(Cop,D)

which is again a presentable category by Lemma 4.8.1.16. In particular, by [45] Proposition

5.5.3.8, the Lurie tensor product makes PrL into a closed monoidal category with internal

mapping object FunL(−,−). Furthermore, by Propositions 4.8.2.10 and 4.8.2.18 in [44], the

Lurie tensor product induces a tensor product on k-linear presentable categories PrLk .

The following is proven in Theorem D.7.0.7 in [47] and Chapter I.1 Proposition 7.3.2 [23].

Proposition 2.8.4. If C ∈ PrLk is compactly generated, then it is dualizable. In particular, if

C = Ind(C0), then C∨ = Ind(C0,op), and the evaluation map is given by ind-completion via

universal properties of the Yoneda pairing Hom(−,−) : C0,op×C→ Vectk . Furthermore, we

have isomorphisms

FunLk (C,C) ' FunLk (C,Vectk)⊗ C ' C∨ ⊗ C.

Remark 2.8.5 (Functoriality). Morphisms in PrLk between dualizable categories admitting

continuous right adjoints are exactly those left adjoints which also preserve (ω-)compact

objects, i.e. functors coming from a functor between small stable k-linear ∞-categories.
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Remark 2.8.6. The dimension of a dualizable category takes values in chain complexes, i.e.

EndCat⊗(1⊗) = FunLk (Vectk ,Vectk) ' Vectk .

That is, every such endofunctor F commuting with colimits is determined by its value F (k)

since every vector space can be written as a colimit (possibly over a large cardinal) of the

one-dimensional vector space k .

Definition 2.8.7. Let C ∈ stk be a small stable k-linear∞-category. We define the Hochschild

homology functor

HH := dim ◦ Ind : stk → FunLk (Vectk ,Vectk) ' Vectk

i.e. HH(C) is the image of k under the composition

Vectk FunLk (C,C) C∨ ⊗ C Vectk .
coev ' ev

Let C ∈ PrL,ωk,⊗ be a dualizable presentable stable k-linear ∞-category, and consider only

functors in PrLk which preserve (ω-)compact objects. We define the Hochschild homology

functor

HH := dim : PrL,ωk,⊗ → FunLk (Vectk ,Vectk) ' Vectk .

Note that if C is compactly generated, then HH(C) = HH(Cω); there is no ambiguity, and

the latter definition is strictly more general.

We define the (negative) cyclic homology 13 and periodic cyclic homology by

HC(C) := HH(C)S
1

HP (C) := HH(C)Tate := HC(C)S
1 ⊗C•(BS1;k) C

•(BS1; k)loc

where C•(BS1; k)loc ' k((u)) is obtained by inverting the Chern class |u| = 2.

Example 2.8.8 (Algebraic examples). Let A be a dg algebra (or more generally, a dg category)

over k , and C = A -mod the category of left dg-modules over A. By the dg Morita theory

of [62], continuous functors A -mod → B -mod are given by objects of Aop ⊗ B -mod. The

coevaluation k -mod → A ⊗ Aop -mod is given the identity functor A ⊗k −, where A is

considered as a bimodule over itself, and the evaluation map is given by − ⊗A⊗Aop A. In

particular, the Hochschild homology is given by the usual Hochschild homology

HH(A -mod) = HH(A;A) = A⊗A⊗Aop A

and similarly for cyclic and periodic cyclic homology.

13Historically, this has been referred to as the negative cyclic homology. We opt not to use this term due

possible confusion owing to to differences in our grading conventions.
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Remark 2.8.9 (Cyclic bar complex). Applying the above example to a small dg category

recovers the cyclic bar complex of [35], i.e. the chain complex of the simplicial set C•(C)

whose n-simplices are given by

Cn(C) =
∐

X0,...,xn∈Ob(C)

HomC(X0, Xn)⊗ HomC(Xn, Xn−1)⊗ · · · ⊗ HomC(X1, X0)

where the face maps are given by composition and the degeneracy maps by the identity

homomorphism as usual. The Connes B operator can be defined in the usual way. One can

obtain smaller models by taking objects from a set of compact generators (see Theorem 5.2

of [35]) rather than all of Ob(C); for example, if C = A -perf, then the free module A is a

compact generator and one recovers the classical cyclic bar complex C•(A;A).

Example 2.8.10. Let A be a regular commutative ring over k . Then, the Hochschild-Kostant-

Rosenberg theorem identifies HH(A;A) ' Ω−•A/k , and the mixed complex structure is given by

the de Rham differential B = ddR. Thus, HP (A -mod) = H•dR(X; k)((u)).

Example 2.8.11 (Geometric examples). By [5], when X is a perfect stack (e.g. a quotient

stack of a derived quasiprojective scheme by an affine group in characteristic zero), then

QCoh(X) is compactly generated by Perf(X) and we have isomorphisms

QCoh(X)⊗QCoh(X) ' QCoh(X ×X) ' FunLk (QCoh(X),QCoh(X))

where the functors on the right are given by integral transforms. Explicitly, we identify

QCoh(X) QCoh(X)∨
'

on compact objects K ∈ Perf(X) by

K 7→ Γ(X,K ⊗−) ' Γ(X,HomX(K∨,−)).

Letting p : X → Spec(k) be the map to a point and ∆ : X → X × X the diagonal, the

coevaluation is given by the functor ∆∗p
∗ and the evaluation by p∗∆

∗. In particular, we find

that the Hochschild homology is

HH(Perf(X)) ' p∗∆∗∆∗p∗k = Γ(X,∆∗∆∗OX) ' Γ(LX,OLX) = O(LX)

with the last isomorphism arising via base change.

Remark 2.8.12. If X is QCA but not perfect, then QCoh(X) is dualizable, so that

HH(QCoh(X)) = O(LX)

by a similar argument. It is unclear, in this case, how to compute HH(Perf(X)), and whether

it agrees with HH(QCoh(X)).
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Remark 2.8.13 (Monoidal structure in Hochschild homology). Let C be a small monoidal

∞-category, i.e. an algebra object in the category of ∞-categories. In particular, there is a

functor

C⊗ C→ C

which is continuous in each factor. Since the categories C are small, the monoidal product

preserves compact objects on ind-completions, and we obtain a lax monoidal structure on

Hochschild homology

HH(C)⊗HH(C)→ HH(C)

defining an algebra structure on HH(C). In fact, by Theorem 4.2.5 of [38], this map is an

isomorphism.

Example 2.8.14 (Two different monoidal structures). Take A to be any associative dg-

algebra, and consider A⊗Aop-mod, the category of A bi-modules. This is a monoidal category

under convolution, even if A is noncommutative (and therefore A -mod has no monoidal

structure). Then, HH((A⊗ Aop) -mod) is an algebra object in chain complexes.

For example, take A = kn. There are two monoidal structures on A⊗Aop-mod. The first is

just by pointwise multiplication (which comes from the tensor product monoidal structure on

modules over the commutative ring kn), and the other by convolution (i.e.composition). As a

dg vector space, it is a simple calculation to compute the Hochschild homology HH(A⊗kA) =

kn
2
. It has two multiplicative structures: one is pointwise multiplication corresponding to the

tensor structure on kn -mod, and the other is matrix multiplication coming from convolution.

2.9 Hochcschild homology is a localizing invariant

The results in this section have, in some form or another, been documented in the literature,

for example in Section 1.5 in [2], Section 5.2.7 of [45], [36] or Section 5 of [12].

Definition 2.9.1 (Localization in stable presentable ∞-categories). Let B be a presentable

stable ∞-category, and C ⊂ B a full presentable (i.e. closed under direct sums) subcategory

such that the inclusion has a left adjoint ` called the localization functor, which is automati-

cally continuous. Let A = ⊥C be the left orthogonal, i.e. the full subcategory consisting of

X ∈ C such that

HomB(X,C) = 0 ∀C ∈ C⇒ X ' 0.

The adjunction allows us to rephrase this: the left orthogonal consists of X ∈ C such that

HomC(`(X), C) = 0 for all C ∈ C, i.e. such that `(X) ' 0.
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The inclusion of A into B is automatically continuous (being a left orthogonal) and thus

admits a right adjoint colocalization14 c , which one can prove (see Lemma 3.1.5 in [2]) is

continuous. Thus we have a diagram

A
i //

B
` //

c
oo C

j
oo

which we call a short exact sequence of dg categories. Note that all functors here are

continuous (j is by assumption).

Definition 2.9.2 (Exact sequences in small stable ∞-categories). Let A → B → C be a

sequence of small stable ∞-categories which are idempotent complete. We say that the

sequence is exact if the ind-completion is exact in the above sense. Note that the ind-

completion of all functors preserve compact objects by construction, and are continuous by

construction, and therefore by the adjoint functor theorem they all admit continuous right

adjoints, recovering the localization diagram above. We say the sequence is split exact the

functors admit right adjoint splittings; a split exact sequence is also known as a semiorthogonal

decomposition, where the right orthogonal to A is realized as a subcategory of B by the right

adjoint to the quotient functor B→ C.

Definition 2.9.3. Let E : stk → Vectk be a functor from k-linear stable ∞-categories to dg

k-vector spaces. We say that E is an additive invariant if sends split exact sequences (i.e.

semiorthogonal decompositions) to exact triangles. We say that E is a localizing invariant if

it takes exact sequences to exact triangles.

Example 2.9.4. Let B = Coh(P1), the derived category of coherent sheaves on P1. We will

use the notation 〈X1, . . . , Xr 〉 to denote the subcategory generated by the objects Xi . It is

well known that the following is a semi-orthogonal decomposition

〈OP1(−1)〉 → Coh(P1)→ 〈OP1〉

whereas, given a choice of point x ∈ P1 and skyscraper sheaf kx ,

〈kx〉 → Coh(P1)→ Coh(P1 − {x})

is not, since the pushforward functor j : QCoh(P1 − {x}) → QCoh(P1) does not preserve

compact objects.

14This nomenclature might be confusing. We say the data described, i.e. a fully faithful functor i with a right

adjoint and a functor ` with a fully faithful right adjoint, is a localization sequence. A colocalization sequence

is a localization sequence where we replace the word “right” with “left.” The functors j and c define a “dual”

colocalization sequence. The usual recollement diagram is obtained if the localization sequence depicted is also

a colocalization sequence, i.e. if i has a left adjoint and if j has a fully faithful left adjoint.
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Example 2.9.5. Let X be a QCA stack, Z a closed substack (necessarily representable by

schemes), and U = X − Z. In general, there is a non-split exact sequence

CohZ(X)→ Coh(X)→ Coh(U)

where CohZ(X) denotes coherent sheaves on X supported on Z.

Remark 2.9.6. The adjunction unit ` ◦ j → 1C and counit 1A → c ◦ i are isomorphisms. On

the other hand, the compositions j ◦ ` and i ◦ c are idempotent, and we have maps

η : 1B → j ◦ `

ε : i ◦ c → 1B

such that

i ◦ c → 1B → j ◦ `
is an exact triangle in EndL(B). In particular, j ◦ ` = cone(ε) and i ◦ c [−1] = cone(η).

Example 2.9.7. Take X = A1 and Z = {0}, so U = Gm. The functor i ◦ c is the local

cohomology functor, and the functor j ◦ ` is the restriction and then pushforward. Evaluating

the above exact triangle in EndL(Coh(A1)) on the sheaf M = k [x ], we obtain the exact

triangle

k((x))/k [[x ]][−1]→ k [x ]→ k [x, x−1].

Rotating the triangle, we obtain the following exact sequence

k [x ]→ k [x, x−1]→ k [x, x−1]/k [x ]

Lemma 2.9.8. Let F → G → H be an exact sequence of endofunctors of a dualizable k-linear

presentable ∞-category C. Then, we have an exact triangle in Vectk

tr(F )→ tr(G)→ tr(H)

where tr is the monoidal trace in PrLk .

Proof. By Theorem 3.8 and Lemma 3.3 (which shows that triangulated categories arising

from dg categories are algebraic) of [35], there is a small dg-category R such that C '
R−mod, and by Corollary 3.3 of [12], the short exact sequence F → G → H corresponds to

a short exact sequence of R-bimodules M → N → P . Applying the exact functor −⊗R⊗LRop R

preserves exactness of this triangle.

Proposition 2.9.9. Let A→ B→ C be a localization sequence of∞-categories; by definition

the arrows are continuous (since they have right adjoints). Then,

HH(A)→ HH(B)→ HH(C)

is a (split) exact triangle.
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Proof. Let us adopt the notation above. The sequence of maps on Hochschild homology is

given by

tr(1A)→ tr(c ◦ i) ' tr(i ◦ c)→ tr(1B)→ tr(j ◦ `) ' tr(` ◦ j)→ tr(1C)

Since 1A → c ◦ i and ` ◦ j → 1C are isomorphisms, we only have to show that the sequence

of endofunctors on B

tr(i ◦ c)→ tr(1B)→ tr(j ◦ `)
is exact. The proposition follows from the previous lemma.

Corollary 2.9.10. There is an S1-equivariant map of algebras

ch : K•(C)→ HH(C)

where K•(C) is endowed with the trivial S1-action. This map is functorial in the sense that

it is a morphism between the functors K,HH : stex →Modk .

Proof. First, let us prove that Hochschild homology is a localizing invariant in the language of

[12], where it is shown that non-connective K-theory is the universal spectra-valued localizing

invariant of small stable∞-categories (though we will work in the dg setting). A functor from

the category of stable ∞-categories to spectra (in our case, chain complexes over k) is a

localizing invariant if (a) it inverts Morita equivalences, (b) preserves filtered colimits and (c)

sends exact sequences to cofiber sequences. The previous proposition proves property (c).

We defined Hochschild homology using large ind-completed presentable categories in PrL

rather than their small categories in stex ; the Hochschild homology of a small stable category

is defined to be the Hochschild homology of its ind-completion. In particular, since the ind-

completion of a category is equivalent to the ind-completion of its idempotent completion,

and idempotent completions are fibrant replacements under the Morita model structure of dg

categories, (a) is automatic, and (b) is a consequence of the fact that Hochschild homology

can be computed via a categorical cyclic nerve complex, which is built from tensor products,

which commute with filtered colimits.

To complete the argument, by Theorem 1.1 in [12], there is a factorization

stex Mloc

Modk

U

HH
HH′

Furthermore, the initial object QCoh(pt) ∈ stex is mapped to an initial object under U, since

U preserves filtered colimits, and by Theorem 1.3 in loc. cit. , this initial object corepresents

the nonconnective K-theory functor K : stex → QCoh(pt). To see that the map is a map of

algebras, note Theorem 5.8 in [13] and the earlier observation that Hochschild homology is

lax monoidal (in fact, strict symmetric monoidal).
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Remark 2.9.11. The difference between Hochschild homology of small categories versus large

categories plays a role when considering the trace from K-theory. In particular, K-theory is

a universal invariant for small stable ∞-categories, not large (presentable) categories. The

Chern character induces a natural transformation

K(C0)→ HH(Ind(C0))

where C0 is a small stable∞-category. If we take instead a presentable stable∞-category C,

unless we know it is compactly generated, it does not necessarily make sense to talk about the

trace as above. For example, it is not known in general for X a QCA stack that QCoh(X) is

compactly generated by Perf(X) (or compactly generated at all). On the other hand, in this

note we are largely interested in cases where X is a quotient stack of a quasiprojective scheme

by an affine group, for which QCoh(X) is known to be compactly generated by Perf(X).

Remark 2.9.12 (Monoidal structures in K-theory). Following the discussion in [13], the

(connective and non-connective) K-theory spectrum of a stable monoidal ∞-category is lax

but not strongly monoidal, i.e. there is a map

K(C)⊗K(C)→ K(C)

which is not an equivalence.

Remark 2.9.13 (Cyclic homology is not a localizing invariant). On the other hand, (negative)

cyclic homology and periodic cyclic homology are not localizing invariants, since their con-

structions involve an infinite limit which may not commute with filtered colimits. However,

the formation of S1 and Tate invariants on a mixed complex are exact, so they still send

localization sequences to exact triangles, and also invert Morita equivalences. Further, the

trace map to Hochschild homology induces a trace map to both cyclic and periodic cyclic

homology. In particular, we can write

V S
1

= lim
n
RHomC•(S1;k)(C•(S

2n+1; k), V ) = lim
n

(V [u]/un, d + uε)

Each finite stage of the above limit is a localizing invariant and thus receives a trace from

K-theory, and by universal property of the limit cyclic homology also receives a trace from

K-theory.

2.10 Calculations of Hochschild homology

The functorial definition of the trace from algebraic K-theory to Hochschild homology has

the following explicit realization on any given object.
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Definition 2.10.1 (Chern characters of compact objects). Let C be a presentable k-linear

∞-category. A compact object X ∈ C defines a compact-object preserving functor cX :

Vectk → C by V 7→ V ⊗X, and thus induces a map on Hochschild homology, defining a map

of chain complexes k → HH(C). The trace or Chern character of X is

tr(X) = HH(cX)(1).

Example 2.10.2 (Group representations). Let C = Coh(BG) where G is reductive. The

Hochschild homology is given by the composition of the coevaluation with the evaluation

Vectk → Coh(B(G × G))→ Vectk .

The integral kernel for the identity functor is the G×G-representation k [G] ∈ Coh(B(G×G)),

and evaluation is the G-invariants functor under the diagonal G-action. By the Peter-Weyl

theorem,

k [G] '
⊕

λ∈Irr(G)

Vλ � V
∗
λ

so we can identify the Hochschild homology

HH(Coh(BG)) ' k [G]G '
⊕

λ∈Irr(G)

k · idVλ.

The trace of a G-representation V is computed as follows: the functor −⊗k V has right

adjoint HomG(V,−), giving us the sequence of maps

k → trVectk (HomG(V, V )⊗−) ' trCoh(BG)(Hom(V,−)⊗ V )→ HH(Coh(BG))

which can be identified

k → Homk(V, V )G ' (V ∗ ⊗ V )G → HH(Coh(BG)).

Writing V =
⊕

λ∈Irr(G) Lλ ⊗ Vλ where Lλ is a vector space, this sequence can be written

k →
⊕

λ∈Irr(G)

Lλ →
⊕

λ∈Irr(G)

k.

The value of 1 under this composition is

(dim(Lλ))λ∈Irr(G) ∈
⊕

λ∈Irr(G)

k.

Example 2.10.3 (Cohomological Chern character). We can use functoriality to determine

the Chern character or trace of a compact object in QCoh(X), i.e. E ∈ Perf(X). Let

p : X → pt; such an object defines a functor

f∗ = p∗ −⊗OXE : Vectk → QCoh(X)
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which has right adjoint

f ! = Γ(X,−⊗OX E∨) = HomOX(E ,−) : QCoh(X)→ Vectk

Note that we require that E is compact (perfect) so that it we can define the right adjoint;

the functor it defines is on cocomplete categories. Explicitly, we can understand this as the

chain by

dim(Perf(pt))→ tr(f !f∗) ' tr(f∗f
!)→ dim(Perf(X))

k Γ(X, EndOX(E)) Γ(X,∆∗E � E∨) Γ(X,∆∗∆∗OX) = O(LX).
η ' ε

This Chern character, like the usual one, is multiplicative.

Theorem 2.10.4 (Theorem 4.5 in [15]). Suppose that X is a smooth scheme. The trace

map

K0(X)→ H0(O(LX)) '
⊕
i

Hi(X,Ωi
X)

agrees with the classical Chern character.

Remark 2.10.5 (Homological Chern character). There is also a notion of homological Chern

character, although it is more difficult to compute. Note that the monoidal structure ⊗! on

ind-coherent sheaves does not preserve compact objects, so there is no algebra structure on

HH(Coh(X)); however, there is an action of Perf(X) on Coh(X), inducing a HH(Perf(X))-

module structure on HH(Coh(X)).

Let X = P1/Gm; we compute K0 and HH of Coh(X).

Example 2.10.6 (K-theory). In K-theory, we find K0(P1/Gm) ' k [z, z−1, w, w−1]. Let L be

a line bundle on X. At each (fixed point) pole we have a representation of Gm, say of weight

a and b. It turns out that this determines the twist on the line bundle, so L = OX(a − b).

The Gm-action determines a choice of (opposite) orientation for each pole. Indeed, if x

and y are local coordinates on P1 with respect to these poles (such that xy = 1 on the

intersection), with deg(x) = 1 and deg(y) = −1, then the line bundle may be trivialized by

k [x ]σx and k [y ]σy . If deg(σx) = a and deg(σy) = b, then necessarily by degrees, we have on

the intersection that σx = y b−aσy up to a constant, determining the twist on the line bundle.

This line bundle, for example, may be represented by zaw b.

There is the Euler short exact sequence:

0→ O → O(1)⊕2 → O(2)→ 0

This sequence can be made equivariant:

0→ O(1, 1)→ O(2, 1)⊕O(1, 0)→ O(1,−1)→ 0
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The above tells us that we have a map k [z±, w±]/(z − 1)(w − 1) → K0(P1/Gm) which

is surjective. To see that it is injective, consider the diagram

Z[z±] ' K0(A1/Gm)

Z[z±, w±]/(z − 1)(w − 1) K0(P1/Gm)

Z[w±] ' K0(A1/Gm)

w=1

z=1

Any word sent to zero must be in the ideal (w − 1) and the ideal (z − 1) (i.e. the kernel of

the diagonal maps).

Example 2.10.7 (Hochschild homology). Since P1 has finitely many Gm-orbits, we find that

L(P1/Gm) is P1 with a Gm nodally intersecting at the poles, and the Gm-equivariant global

functions on this space are k [z, z−1, w, w−1]/(z − 1)(w − 1), agreeing with the above. In

particular, in this example the Hochschild homology was much easier to compute than K-

theory.

We now consider the example X = A2/Gm.

Example 2.10.8 (K-theory). Every module over R = k [x, y ] has a finite equivariant free

resolution, so K0(A2/Gm) ' Z[z, z−1], where z corresponds to the trivial line bundle with

Gm-weight 1.

Example 2.10.9 (Hochschild homology). It’s not hard to check that the geometric points

of L(A2/Gm) have two connected components: A2 and Gm, which meet at {0} ∈ A2 and

{1} ∈ Gm. We can explicitly write down, using the Koszul resolution, that while L(A2/Gm)

is a proper derived scheme, its derived structure has cohomological weight 1. Explicitly,

O(L(A2/Gm)×Gm pt) is the dg complex

k [x, y , z±] k [x, y , z±] k [x, y , z±]

z−1y−y

x−z−1x


(x−z−1x y−z−1y)

Note that H−1 has a nontrivial cycle

(
y

−x

)
of degree 1, corresponding to

y dx − x dy ∈ Ω1
A2

and that H−1 ' k [x, y , z±]/(z − 1) is supported at z = 1, the irreducible component isomor-

phic to A2. These cycles are the 1-forms which take value zero on the vector field generated
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by the Gm-scaling action; the corresponding “geometric points” of H−1 are vector fields

“modulo” those generated by the Gm-scaling. However, since deg(x, y , dx, dy) = 1, all of

the non-zero vanish when we take Gm-invariants, i.e. O(L(A2/Gm)) ' O(Gm). Similarly, we

find that O(L(An/Gm)) = O(Gm) = k [z, z−1].

We now compute the circle action on HH(Coh(BGa)) explicitly. We expect, more gener-

ally, that for a unipotent group U there is a description of the circle action on HH(Coh(BU))

via contraction with a scaling action on the Eilenberg-Zilber complex, but we are not able to

produce it.

Lemma 2.10.10. Since Ga is abelian, there is an isomorphism

L(BGa) ' Ga × BGa.

Fix coordinates x, η , with |x | = 0 and |η| = 1, such that O(Ga) = k [x ] and O(BGa) = k [η].

The Connes B-operator on O(L(BGa)) = k [x, η] is given by

B(x) = η.

Consequently, HP (Perf(BGa)) = k((u)).

Proof. In [32] it is shown that O(L(BGa)) ' k [x, η] where |x | = 0 is a coordinate for O(Ga)
and |η| = 1 is a coordinate for O(BGa). It remains to compute the mixed complex structure.

The first three terms of the twisted atlas are

Ga Ga ×Ga Ga ×Ga ×Ga

where the face maps send

(x, y) 7→ x + y y + x

(x, y , z) 7→ (x + y , z) (x, y + z) (z + x, y)

On functions, the first three terms of the bar complex which computes the cohomology of

Ga/Ga is

k [x ] k [x ]⊗ k [x ] k [x ]⊗ k [x ]⊗ k [x ]

All maps are algebra morphisms. The first level of coface maps send

x 7→ 1⊗ x + x ⊗ 1 x ⊗ 1 + 1⊗ x

and the second level of coface maps send

x ⊗ 1 7→ x ⊗ 1⊗ 1 + 1⊗ x ⊗ 1 x ⊗ 1⊗ 1 x ⊗ 1⊗ 1 + 1⊗ 1⊗ x

1⊗ x 7→ 1⊗ 1⊗ x 1⊗ x ⊗ 1 + 1⊗ 1⊗ x 1⊗ x ⊗ 1



CHAPTER 2. BACKGROUND 47

Taking alternating sums, we find that the first differential is zero, and the second differential

has kernel (1⊗ x)(x ⊗ 1 + 1⊗ x)n for n ≥ 0. The Connes B-operator is N]s](1− t)] where

s is the extra degeneracy map, and N is the norm (which is the identity map at the zeroth

level). The extra degeneracy sends x ⊗ 1 7→ 0 and 1⊗ x 7→ x , and thus B sends

(1⊗ x)(x ⊗ 1 + 1⊗ x)n 7→ (1⊗ x − x ⊗ 1)(x ⊗ 1 + 1⊗ x)n 7→ xn+1

Thus the mixed differential sends η 7→ x .

Finally, we compute examples of the Chern character with values in HH(Coh(P1)). We

do so in two ways; first, geometrically taking values in Dolbeault cohomology, and second,

by choosing generators of the category Coh(P1).

Example 2.10.11 (Projective space via Dolbeault cohomology). The loop space O(X) when

X is projective can be understood as a shifted version of Dolbeault cohomology where

Hp(X,Ωq
X) is in degree q − p. We can compute easily that O(LPn)) = kn+1. We focus

on the example X = P1 so that

HH(Perf(P1)) ' H0(P1,OP1)⊕H1(P1,OP1(−1)) ' k2.

Our goal is to compute the trace map for line bundles on P1.

To do this, we compute the derived global sections of the map of sheaves (in the derived

category of sheaves on X):

OX → E ⊗ E∨ ' ∆∗(E � E∨)→ ∆∗∆∗OX ' OLX ' OX ⊕Ω1
X[1]

The most important map is the middle map. As written, it is a global section of the sheaf

HomX(∆∗E � E∨,∆∗∆∗OX). However, we will need to understand it as the image of the

evaluation map on sheafy Hom:

HomX×X(E � E∨,∆∗OX)→ ∆∗HomX(∆∗E � E∨,∆∗∆∗OX).

These sheaves as supported on the diagonal in X × X, and thus we can think of them as

sheaves on the formal completion of the diagonal, and in particular we can take a Cech cover

of the diagonal rather than all of P1 × P1.

Let us fix some coordinates. Take E = OP1(n). Let x, y be coordinates on the open

charts for the first P1 factor, and x ′, y ′ on the second factor (i.e. xy = 1 and x ′y ′ = 1 on

the intersections). Let ex , ey denote local trivializing sections for OP1(n) and fx ′, fy ′ denote

local trivializing sections for OP1(−n). We have a Cech resolution of OP1(n)�OP1(−n):

O(n)�O(−n) // k [x, x ′]ex fx ′ ⊕ k [y , y ′]ey fy ′ //
k [x, y , x ′, y ′]

xy = 1, x ′y ′ = 1
ex fx ′
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where ex = y ney and fx ′ = y ′−nfy ′. Over the diagonal open affines, the trivializing section

satisfy the relation

ex fx ′ = y ny ′−ney fy ′

and as we expect, this sheaf has no global sections.

For ∆∗OX, we take Beilinson’s resolution of the diagonal, and then the Cech resolution

of that to get a double complex:

O �O // k [x, x ′]cxcx ′ ⊕ k [y , y ′]cycy ′ // k[x,y ,x ′,y ′]
xy=1,x ′y ′=1

cxcx ′

O(−1)�Ω1(−1) //

OO

k [x, x ′]sxtx ′ ⊕ k [y , y ′]sy ty ′ //

OO

k[x,y ,x ′,y ′]
xy=1,x ′y ′=1

sxtx ′

OO

Here, we have the relations cx = cy and cx ′ = cy ′ (i.e. these are just the constant sections);

the relations sx = y−1sy and tx ′ = y ′−1ty ′. The vertical maps send

sxtx ′ 7→ (x − x ′)cxcx ′

sy ty ′ 7→ (y ′ − y)cycy ′

We are interested in where the element ex fx ′ + ey fy ′ in the first Cech complex should go

to in the second Cech complex. We need the map to be a map of chain complexes, i.e. we

need the following square to commute

k [x, x ′]ex fx ′ ⊕ k [y , y ′]ey fy ′ //

��

k[x,y ,x ′,y ′]
xy=1,x ′y ′=1

ex fx ′

��

k [x, x ′]cxcx ′ ⊕ k [y , y ′]cycy ′ ⊕ k[x,y ,x ′,y ′]
xy=1,x ′y ′=1

sxtx ′ // k[x,y ,x ′,y ′]
xy=1,x ′y ′=1

cxcx ′

Going around clockwise, we compute

ex fx ′ + ey fy ′ 7→ ex fx ′ − xnx ′−nex fx ′ 7→ (1− xnx ′−n)cxcx ′

Going around counterclockwise, we compute (with p a stand-in for the target in the third

summand):

ex fx ′ + ey fy ′ 7→ cxcx ′ + cycy ′ + psxtx ′ 7→ (x − x ′)pcxcx ′
Thus, (x − x ′)p = (1− xnx ′−n), so

p = −y(1 +
x

x ′
+
x2

x ′2
+ · · ·+

xn−1

x ′n−1
)

Now, when we pull back to the diagonal, this becomes

psxtx = −nysxtx = −nxsy ty ∈ H1(P1,Ω1
P1)

Thus, the Chern character takes O(n) 7→ (1,−n), like the classical Chern character.
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Example 2.10.12 (Projective space via Kronecker quiver). It is well-known that the category

of coherent sheaves on P1 is equivalent to representations of the Kronecker quiver:

• //

// •

Thus, we can compute the Hochschild homology of Coh(P1) by the classical Hochschild

homology of this quiver algebra. It is convenient to use the following standard resolution for

quiver algebras. Let E denote the subalgebra of edges and V the subalgebra of vertices of a

quiver path algebra A, and take

0→ A⊗V E ⊗V A→ A⊗V A

1⊗ γ ⊗ 1 7→ 1⊗ γ − γ ⊗ 1

as a projective A⊗ A resolution of A. Sometimes, this is written instead

0→
⊕

γ:i→j∈E

Aej ⊗ eiA→
⊕
i∈V

Aei ⊗ eiA

Writing it this way makes it obvious that it is a projective (in fact, free) resolution.15 Further, if

the quiver has no cycles, then the first term of this resolution vanishes after applying −⊗A⊗AA
and the zeroth term becomes V . Thus, we find that

HH•(Coh(Pn) = k⊕n+1.

To compute the trace, recall how the category Coh(P1) is equivalent to representations

on the Kronecker quiver. Let us choose O(−1) and O as our generators for the category.

Then, the equivalence functor takes

F 7→ RHom(F ,O(−1))
//

// RHom(F ,O)

For example,

O(n) 7→ RΓ(P1,O(−1− n))
//

// RΓ(P1,O(−n))

The trace morphism simply computes the (signed) dimension on each vertex. Thus, we find

that

tr(O(n)) = (−n, 1− n)

15Here is the rest of the proof. Clearly, A ⊗V A → A is surjective. To see that A ⊗V E ⊗V A → A ⊗V A is

injective, grade the left tensor factor of A such that the vertices have degree zero and edges have degree one,

and the entire right tensor factor is degree zero. Then, the map is a degree one map. One can check explicitly

then that it is injective on its homogeneous parts, and thus is injective in general. To see that it is exact in

the middle, we impose the relations generated by the image. We can use these relations to move all nontrivial

paths to the right factor, i.e. reduce any expression to a degree zero expression. It’s easy to check that the

map is injective for degree zero maps, so we are done.
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Note that the sum of the components computes the rank of the bundle. This basis differs

from our previous example by an automorphism of GL2(Z), i.e. the map HH(Coh(P1)) →

HH(Coh(Q)) is given, in the chosen basis, by the matrix

(
0 1

1 1

)
.

Example 2.10.13 (Not an isomorphism of algebras). It is well-known that Coh(P1) = Perf(P1)

is equivalent to Rep(Q) where Q is the Kronecker quiver, and we observe above that both

have Hochschild homology isomorphic to k2. There is a natural basis on each side. For

HH(Perf(P1)), we can take the constant function 1 ∈ H0(P1,OP1) and the canonical dis-

tribution ω ∈ H1(P1,Ω1
P1). For Rep(Q), each basis vector corresponds to a vertex of the

quiver, which in turn correspond to generating objects OP1(−1) and OP1. However, the

equivalence Perf(P1) ' Rep(Q) is not monoidal, equipping QCoh(P1) with the usual ten-

sor product of quasicoherent sheaves and Rep(Q) with the tensor product of representa-

tions. In turn, they induce non-isomorphic algebra structures on k2: HH(QCoh(P1)) is

given by (a, b) · (a′, b′) = (aa′, ab′ + a′b), whereas the multiplication in HH(Rep(Q)) is

(a, b) · (a′, b′) = (aa′, bb′). They cannot be isomorphic because the former algebra has only

one idempotent but the latter has two.
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Chapter 3

Equivariant Localization for Derived Loop
Spaces and Periodic Cyclic Homology

In this chapter we prove the main result of this thesis: a equivariant localization formula for

periodic cyclic homology and derived loop spaces.

3.1 Derived loop spaces and its variants

An in-depth discussion of derived loop spaces can be found in [6]; we will summarize the

main definitions and prove some basic lemmas in the case of the loop space of an algebraic

or geometric stack. Note that we often refer to derived loop spaces as simply loop spaces.

Definition 3.1.1. We consider the higher derived stack S1 as a locally constant sheaf on

Aff with value the topological circle S1. Its affinization is the shifted affine line BGa =

SpecC•(S1; k) and the map S1 = BZ → BGa is induced by the (algebraic) map of abelian

groups Z→ Ga. The stack BGa is not an affine scheme since C•(BS1; k) is not connective,

but it still has a well-defined functor of points; it is an example of a coaffine stack (in the

language of [42]) or an affine stack (in the language of [59]). Explicitly, by Lemma 2.2.5

in [59] or the introduction to Section 4 of [42], it is the left Kan extension1 of the classical

stack2 sending an affine scheme S = Spec(R) to the Eilenberg-Maclane space K(R, 1) where

R is considered as an abelian group under addition. In particular, the affinization map on

S-points is given by Eilenberg-Maclane spaces K(1,Z) → K(1, S) where we consider S as

an abelian group under addition. We fix an isomorphism C•(S1; k) ' k [η] where |η| = 1.

Definition 3.1.2. Let X be a derived stack. We have the following variants of derived loop

spaces.

1That is, the (fully faithful) left adjoint to the restriction of a prestack (i.e. a functor DRng → S) to a

classical prestack (i.e. a functor Rng→ S).
2In fact, coaffine stacks are always left Kan extensions of classical stacks.
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• The (derived) loop space of X is the derived mapping stack

L(X) := Map(S1, X) ' X ×X×X X.

The second presentation is a consequence of the presentation of S1 as the suspension

of S0, i.e. the homotopy pushout S1 ' pt
∐
S0 pt = ΣS0, and the property that

derived mapping stacks take coproducts in the source to products. The evaluation map

p : LX → X realizes the loop space as a relative group stack over X.

• The formal loop space L̂(X) is the completion of L(X) along the closed substack of

constant loops; the evaluation realizes the formal loop space as a relative (formal) group

stack over X.

• The unipotent loop space Lu(X) is the derived mapping stack

Lu(X) := Map(BGa, X)

and the affinization map S1 → BGa defines a map LuX → LX. There is a natural

Ga oGm-action on LuX arising from the natural Gm-action on BGa.

• We define the odd tangent bundle, a linearized form of the loop space,

TX[−1] := SpecX SymX LX[1]

where LX is the relative spectrum of the derived symmetric powers3 of the cotangent

complex. There is a projection q : TX[−1] → X and a zero section c : X → TX[−1]

induced by the structure and augmentation maps respectively. We write T̂X[−1] for

the odd tangent bundle completed at its zero section. Both TX[−1] and T̂X[−1] are

equipped with the natural scaling Gm-action on fibers.

Example 3.1.3. If X = Spec(A), then the derived loop space

L(X) = Spec(A⊗A⊗kAop A) = Spec(C•(A;A))

is the derived spectrum of the cyclic bar complex equipped with the shuffle product. The

rotation S1-action has a combinatorial realization via the cyclic structure on the cyclic bar

complex (see [38] and [33]).

3We define the relative spectrum as follows: for an algebra object A ∈ QCoh(X), we define the S-points

for SpecX A as pairs (η, δ) where η ∈ X(S) and δ : S → Spec η∗A which are compatible under the projection;

note that η∗A is an algebra since S is an affine derived scheme and pullback preserves the monoidal structure

on quasicoherent sheaves. The symmetric algebra functor SymX is left adjoint to the forgetful functor from the

category of augmented commutative unital associative algebra objects of QCoh(X), which exists by the adjoint

functor theorem.
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Remark 3.1.4. The following perspective may be helpful. The bar resolution B•(A) for

A as an A ⊗ Aop-module is obtained by tensoring A with the map of simplicial complexes

I → pt, where the unit interval I is presented by a simplicial set with two 0-simplices and one

non-degenerate 1-simplex,

B•(A) = A⊗ I → A X ' MapDSt(I, X) = Spec(A⊗ I).

The cyclic bar complex C•(A) = B•(A)⊗A⊗Aop A is obtained by gluing the two 0-simplices of

I, i.e. it is the chain complex associated to the tensor product of A with the presentation of

S1 by one 0-simplex and one non-degenerate 1-simplex:

C•(A) = A⊗ S1 L(X) = MapDSt(S
1,Spec(A)) = Spec(A⊗ S1).

This induces on X the structure of a cocyclic scheme, and O(X) the structure of a cyclic

algebra.

Example 3.1.5. If X is a stack, then π0(L(X)) is the (classical) inertia stack of X. In

particular, let X = BG; then L(BG) = G/G is the stacky adjoint quotient. Note that

L(BG) = BG ×BG×BG BG is classical since the diagonal map is flat. The S1-equivariant

structure on O(G/G) has a description in terms of the a cyclic algebra (see Section 7.3.3 of

[38]) arising from the cyclic structure on the simplicial Cech diagram for the atlas G → G/G.

Proposition 3.1.6 (Loop space of a quotient stack). The loop space of a quotient stack

L(X/G) can be computed by the G-equivariant fiber product

L(X/G) (X × G)/G

X/G (X ×X)/G

a×p

∆

where G acts on X ×X and X × G diagonally.

Proof. Note that X/G×X/G ' (X×X)/(G×G) with action (g1, g2)·(x1, x2) = (g1x1, g2x2).

We write
X

G
×X×X

G×G

X

G
=
X × G
G × G ×X×X

G×G

X × G
G × G

where the map X × G → X × X sends (x, g) 7→ (x, gx) and the action of G × G on X × G
is (g1, g2) · (x, g) = (g1x, g2gg

−1
1 ). By the “two-out-of-three” lemma for pullback squares

applied to

L(X/G) (X × G)/G (X × G)/(G × G)

X/G (X ×X)/G (X ×X)/(G × G)

the claim follows.
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Remark 3.1.7. Forgetting G-equivariance, the loop space L(X/G) consists of pairs (x, g) ∈
X × G such that g · x = x . Ignoring issues of equivariance, the geometric fiber of the map

L(X/G) → L(BG) = G/G over g ∈ G is its fixed points Xg. The geometric fiber of the

evaluation map L(X/G)→ X/G over x ∈ X is the stabilizer of x .

Example 3.1.8 (Odd tangent bundle of smooth quotient stacks). In the case of X/G where

X is smooth, we have that

LX/G =
(

Ω1
X → g∗ ⊗OX

)
where the internal differential d is the Cartan differential, so that

Symn(LX/G[1]) = Symn(Ω1
X → g∗ ⊗OX) ' (Ωn

X → g∗ ⊗Ωn−1
X → · · · → Symn(g∗)⊗OX)

and

p∗OT̂X/G [−1] =

(
lim
k

⊕
i≥k

Sym• g∗

Sym≥k g∗
⊗Ωi

X[i ], d

)
.

This example can also be carried out when X is not smooth, replacing Ω1
X with LX.

We first prove some technical facts, which may be skipped on a first reading. Note that a

quasi-compact geometric stack is automatically QCA in the sense of [21]. If X is an algebraic

stack then X admits a cover by a disjoint union of affine schemes; if X is quasi-compact this

disjoint union can be taken to be finite, so that X admits a cover by an affine scheme. If X

is geometric (i.e. has affine diagonal), then

S ×X T = (S × T )×X×X X

is affine for any affine schemes S, T .

Lemma 3.1.9. Let X be an algebraic stack. Then LX is an algebraic stack. If X is geometric,

then LX is geometric. If X is geometric and quasi-compact, then so is LX.

Proof. Assume X is algebraic. That LX is algebraic follows from the fact that LX =

Map(S1, X) is a finite limit, and any finite limit of algebraic stacks is algebraic. An algebraic

stack with a cover by a scheme U → X is geometric if and only if U×X U = (U×U)×X×X X
is affine. Assume X is geometric, so that U×X U is affine. In particular, U×X×X X is a cover

for LX, and we have

(U ×X×X X)×LX (U ×X×X X) = U ×X (LX ×LX (U ×X×X X)) = (U ×X U)×X×X X

which is affine since U ×X U is affine and the diagonal map is affine, so LX is geometric.

Assume X is also quasi-compact; then it admits a cover by an affine U, and U ×X×X X is

also affine since the diagonal is affine.
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Lemma 3.1.10. Let X be an algebraic stack. Then the inclusion of constant loops X → L(X)

is a (schematic) closed immersion.

Proof. Since the diagonal map X → X ×X is representable by schemes, so is the evaluation

map L(X) → X. Let U → X be an atlas for X with U a scheme; its base change along

the evaluation map gives a cover by a scheme U ×X×X X → LX. In particular, by the

two-out-of-three property of Cartesian squares, the left square is Cartesian

U U ×X×X X U

X LX X

i.e. the base change of the inclusion of constant loops X → LX along an atlas is a scheme,

so it is schematic. It is a closed embedding since any map of derived schemes which admits

a retract is a closed embedding, and U → U ×X×X X admits a retract by universal property.

We provide a proof for the last claim. It suffices to assume all schemes are classical,

since the the property of being a closed immersion depends only on classical schemes and

the property of admitting a retract is preserved by π0. Let f : Z → Y be a map of schemes

admitting a retract. We can verify that f is a closed immersion affine locally on Y , so assume

Y is affine. It is a closed immersion if f ] : OY → f∗OZ is surjective. Since Y is affine, this is

equivalent to O(Y )→ O(Z) being surjective, which follows since the composition on global

functions O(Z)→ O(Y )→ O(Z) is the identity.

Definition 3.1.11. Let X be a prestack, and x : S → X be an S-point where S is an affine

derived scheme. The group of based loops at x , denoted Ω(X, x), is the ∞-group object in

prestacks over S defined by the pullback LX ×X S, or equivalently, the pullback

Ω(X, x) S

S X.

x

x

The group structure given by the simplicial diagram with terms S ×X · · · ×X S, i.e. the

group multiplication is given by convolution and inversion by switching the factors in the

fiber product. If X is algebraic, then based loops at any point x ∈ X(S) is an ∞-group

object in derived schemes over S, and if X is geometric, it is an ∞-group object in affine

derived schemes over S. If f : X → Y is a map of prestacks, with x ∈ X(S), then there

is a map of ∞-groups Ω(f , x) : Ω(X, x) → Ω(Y, f (x)). We define the unipotent based

loops of X, denoted Ωu(X, x), by the fiber product Lu(X) ×X S; there is a natural map

Ωu(X, x)→ Ω(X, x). Note that the unipotent based loops do not form a group.
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Example 3.1.12. Let X be an (affine) derived scheme and x ∈ X(k) a geometric point.

Then, Ω(X, x) = TX,x [−1] = Spec Sym x∗LX[1] is the odd tangent space at x ∈ X(k).

The comultiplication on functions is given by the natural comultiplication on the symmetric

algebra and antipode map by the sign morphism.

Proposition 3.1.13. For any prestack X, there is a natural bijection between S-points x ∈
X(S) along with a based loop γ ∈ Ω(X, x)(S) and S-points of LX. Similarly, there is a natural

bijection between S-points x ∈ X(S) along with a based loop α ∈ Homgrp,S(Ga×S,Ω(X, x))

and S-points of LuX.

Proof. For the first claim, note we the based loops can be realized by the fiber product

Ω(X, x) LX X

S X X ×X.

x

x

By universal property, a map S → Ω(X, x) is equivalent to a map S → LX; all fitting into

the above diagram. For the second claim, note by universal property that we obtain a map

Ga × S = S ×BGa×S S → Ω(X, x) = S ×X S

where S → BGa × S is the canonical cover. Taking higher fiber products, we obtain a

map of ∞-groups Ga × S → Ω(X, x) over S. Conversely, given a map of ∞-groups, by

universal property of totalization, we obtain a map BGa × S → X since x : S → X defines

an augmentation of the simplicial diagram for the ∞-group Ω(X, x) over S.

Definition 3.1.14. Let X = Spec(R) be an affine scheme with a Gm-action. We say the

Gm-action is contracting if it acts by only non-positive weights on R. In this case, the fixed

point locus is Y = Spec(RGm), and we say the Gm-action contracts to Y . In particular, there

are maps Y → X → Y . More generally, let X be a prestack with a Gm-action, equipped

with a Gm-equivariant affine map p : X → Y where Y is given the trivial action. We say

the Gm-action contracts to Y if for any affine S and map S → Y , the induced Gm-action

on S ×Y X contracts to S. In particular, this implies there is also a Gm-equivariant section

Y → X.

Lemma 3.1.15. Let X be a quasi-compact geometric stack. The Gm-actions on LuX and

TX[−1] contract to the fixed point locus of constant loops.

Proof. The claim for TX[−1] is by definition. For the unipotent loop space, take x ∈ X(S).

It suffices to show that the induced Gm-action on Ωu(X, x) is contracting. This follows

from the description of Ωu(X, x) = Homgrp,S(Ga,Ω(X, x)), and the contracting Gm-action

on Ga.
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We now examine some relationships between the above variants of loop spaces which are

not immediately obvious. The following is essentially Remark 6.11 in [6], but will not be used

in our results.

Definition 3.1.16. Let X be a quasi-compact geometric stack. We define a natural Gm-

equivariant map

υ : LuX → TX[−1]

as follows. Since X is geometric, the evaluation map p : LX → X is affine, and the

ideal sheaf for the constant loops X ⊂ LX defines a filtration on p∗OLX. The usual Rees

construction produces a family over A1/Gm whose generic fiber is LX and whose special fiber

is TX[−1]/Gm. Likewise, the evaluation map q : LuX → X is ind-affine by Lemma A.8.13

in [19], and the Gm-scaling action is compatible with the filtration. Thus, by functoriality we

obtain a map Lu(X)/Gm → TX[−1]/Gm.

Definition 3.1.17. Let X be a quasicompact geometric stack. There is an exponential map

exp : T̂X[−1]→ L̂X

defined as follows. Proposition 4.4 of [6] defines for a derived scheme U a Hochschild-

Kostant-Rosenberg map

exp : T̂X[−1] = TX[−1]→ L̂(X) = L(X)

which is an isomorphism by Theorem 6.9 of loc. cit. . Choose an atlas U → X where U is

an affine scheme; the associated simplicial Cech diagram U• also consists of affine schemes,

and by universal property of the totalization we have a map

SpecX Tot(OT̂U• [−1]) = SpecX Tot(OL̂U•)→ L̂X.

Using the fact that the assignment of cotangent complexes is a (non-quasicoherent) sheaf

on the smooth site, Theorem 6.6 of [6] identifies the left-hand side with T̂X[−1]. The

exponential map is proven to be an equivalence in Corollary 6.1 of loc. cit. .

Remark 3.1.18. When X is a smooth affine scheme, the Hochschild-Kostant-Rosenberg

map is well-known. When X is an affine (derived) scheme, a version of the Hochschild-

Kostant-Rosenberg map can be written down in the same fashion by replacing O(X) with

a semi-free dg-resolution and replacing the module of differentials Ω1
X with the cotangent

complex LX. When X is a smooth scheme, the Hochschild-Kostant-Rosenberg map can be

explicitly realized via the completed bar complex of [64], which defines the sheafy cyclic bar

complex as a complex of sheaves on X rather than X ×X. We are not aware of a reference

which has extended these results to the case of a non-smooth (dg derived) scheme X. When

X has the resolution property (e.g. when X is quasiprojective), such a generalization appears

straightforward.
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In [6], it is shown that for X a scheme, L̂(X) = Lu(X) = L(X). This is not true for

stacks, but we will now show that for a schematic map f : X → Y , the formal and unipotent

loops of X are loops in X whose images in Y are formal and unipotent respectively.

Proposition 3.1.19. Suppose that f : X → Y is a map of algebraic stacks representable by

schemes. Then,

L̂(X) = L̂(Y )×L(Y ) L(X).

Proof. It suffices to show that the closed classical substack π0(Y ×L(Y ) L(X)) has the same

reduced points as X ⊂ L(X). To do this, it suffices to check on geometric points. Consider

the diagram of classical pullbacks

Ω(X, x) Ω(Y, f (x)) Spec k

Spec k f −1(f (x)) X

Spec k Y.

x

x

f (x)

Since f is schematic, x : Spec k → f −1(f (x)) is a closed embedding of schemes (since it as

a map of schemes admitting a retract; see Lemma 3.1.10). Since Y is an algebraic stack,

Ω(Y, f (x))) is a scheme, and so Ω(X, x)→ Ω(Y, f (x)) is a closed embedding of schemes and

a map of affine (classical) group schemes. The preimage of the identity is thus the identity,

so constant loops in LY are preimages of constant loops in LX.

Example 3.1.20 (Quotient stacks). In the case of quotient stacks, we have a map L(X/G)→
L(BG) = G/G. The above proposition says that L̂(X/G) is the completion of L(X/G) at

the closed substack of points lying over {e}/G ⊂ G/G.

We will need to consider certain derived linear groups over derived schemes. They will all

take the following form.

Definition 3.1.21. Let S be an affine derived scheme, i.e. S = Spec(R). Let G ′ be a linear

algebraic group over k , and denote G ′S := G ′×k S. Let G ′ act on a derived k-scheme X, and

let x : S → X be an S-point of X. We call the derived affine group

G = {x} ×X G ′S

a derived linear stabilizer group. The formal unipotent cone of G ′S is the inverse image of the

formal neighborhood of the unipotent cone U ⊂ G over k , and likewise for G.
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Example 3.1.22. Let S = Spec(R). The automorphism groups of S-points of quotient

stacks by affine algebraic groups are derived linear stabilizer groups. More explicitly, for

p : X/G → BG and x ∈ X/G(S), we have a Cartesian diagram

Ω(X/G, x) Ω(BG, p(x)) = G × S

S X × S.x

The following is well-known, but we provide a brief argument as we could not find a

reference in the literature.

Proposition 3.1.23. Let H,G be groups in derived schemes over k (a field of characteristic

zero). Then, we can identify the mapping stack

Map(BH,BG) = Homgrp(H,G)/G

where Homgrp(H,G) is an ind-scheme and G acts by the adjoint action.

Proof. By Lemma A.8.13 in [19], Homgrp(H,G) is an ind-scheme (the argument easily gen-

eralizes to the case of derived group schemes). We define a map Φ : Map(BH,BG) →
Homgrp(H,G)/G and Ψ : Homgrp(H,G)/G → Map(BH,BG) and leave the verification that

they are strict (i.e. not just quasi) inverses to the reader. On S-points, Map(BH,BG)(S) =

Map(BH×S,BG); the value of this sheaf at S′ → S consists of a functor FS′ from H-torsors

over S′ to G-torsors over S′. We define (note that Homgrp(H,G)(S) = HomS−grp(H×S,G×
S), where S − grp indicates a map of groups over S)

Φ(F )(S′) =


F (H × S′) Homgrp(H(S′), G(S′))

S′

φ

G−torsor


where φ is defined as follows. There is a canonical isomorphism AutS′(S

′×H) = H(S′), and

for h ∈ AutS(S × H), F (h) is an automorphism of F (S′ × H), given by the action by some

gh. We define φ(x)(h) = x · gh (note our torsors are right-torsors). The map Ψ is defined

as follows. The S-points of Homgrp(H,G) consist of a G-torsor P → S with a G-equivariant

map φ ∈ HomGrp(H(S), G(S)). Then, Ψ(P, φ) is the functor which takes a H-torsor Q→ S

to Q×H P where H acts on P via φ.

Definition 3.1.24. A map of prestacks X → Y is a monomorphism, i.e. X is a substack

of Y , if for any affine derived scheme S and y ∈ Y (S) the fiber product {y} ×Y (S) X(S) is

contractible (in the category of spaces).
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Remark 3.1.25. The following proof will assume the existence of a theory of Hopf objects

in an arbitrary symmetric monoidal ∞-category.

Proposition 3.1.26. Let X be a geometric stack. The map LuX → LX is a monomorphism,

i.e. unipotence of a loop is a property and not a structure.

Proof. Let S = Spec(R). Consider an S-point of LX, i.e. an x ∈ X(S) and g ∈ Ω(X, x)(S).

We wish to show that LuX(S)×LX(S) {(x, g)} is contractible. Equivalently, we wish to show

that Ωu(X, x)(S)×Ω(X,x)(S){g} is contractible, i.e. that the space of maps Ga×S → Ω(X, x)

such that (1, s) 7→ g is contractible. Since our objects are affine, we can work with global

functions. That is, we wish to show that the sequence of spaces

HomHopf(QCoh(S))(p∗OΩ(X,x),OS×Ga)→ HomCoalg(QCoh(S))(p∗OΩ(X,x),OS×Ga)

→ HomR(R[Ω(X, x)], R[x ])

has contractible fibers. We claim that the first map has contractible fibers (i.e. the forgetful

functor from Hopf objects to coalgebra objects is faithful) and that the second map is an

equivalence (i.e. OS ⊗k O(Ga) is the cofree coalgebra object in Coalg(QCoh(S))). We will

assume the existence of a theory of Hopf objects in a symmetric monoidal∞-category which

provides the first claim. The second claim follows from the calculation in Lemma 1.12 of

[25].

Proposition 3.1.27. Let G be a linear algebraic group over an affine k-scheme S. Then,

there is a natural G-equivariant equivalence

Homgrp,S(Ga × S,G) ' Û.

Proof. Evaluation at the identity provides a map Homgrp,S(Ga × S,G) → G; we claim its

set-theoretic image lies in U ⊂ G, so that the map factors through Û. To check this, it

suffices to check along geometric points of S, i.e. we can assume S = k , and now the claim

follows since the image of any unipotent k-point must also be unipotent.

The inverse map is produced by the exponential map as follows. We take as a given that

such an exponential map is constructed for classical affine algebraic groups over k , i.e. we

have a map Ga × ÛG′ → G ′. This defines a map Ga × ÛG′S → G ′S. To lift this to a map

Ga×S ÛG → G, we use the universal property of fiber products and the fact that if an S-point

g ∈ G ′(S) fixes x ∈ X(S), then so does gt ∈ G ′(S) for t ∈ Ga(S). More precisely, the
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following diagram commutes, inducing the desired exponential map

Ga ×S G Ga × G ′ × S

G G ′ × S

S X × S.x

That these two maps are inverse equivalences is due to Proposition 3.1.26.

Proposition 3.1.28 (Unipotent loops of quotient stacks). Let G be a classical affine algebraic

group over k . Then,

Lu(BG) = Û/G

where U is the unipotent cone of G. Furthermore, if G acts on a scheme X, then Lu(X/G)

is computed by the pullback square

Lu(X/G) L(X/G)

Û/G G/G.

Proof. The first claim is a combination of Propositions 3.1.23 and 3.1.27. For the sec-

ond claim, let x ∈ (X/G)(S) and p(x) ∈ BG(S). Since p is schematic, Ω(X/G, x) →
Ω(BG, p(x)) ' G × S is a (derived) closed immersion. The formal neighborhood of based

unipotent loops is closed under inverse image.

3.2 Twisted circle actions on loop spaces

Definition 3.2.1 (Twisted S1-actions). We focus on the case of a quotient stack X/G by a

linear algebraic group. We fix the following notation for various circle actions on X/G. Let

z ∈ Z(G) be a central element of G.

• The loop rotation action on L(X/G) on the loop space is denoted ρ.

• The z-twisted action on BG or X/G for a scheme X on which z acts trivially is denoted

σz or simply σ. This action arises on BG by the group homomorphism Z × G → G

sending (n, g) 7→ zng. On functor-of-points, recall that the S-points of X/G is the
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category whose objects are diagrams

(X/G)(S) =


P X

S

φ

p


where P → S is a (right) G-torsor and P → X is G-equivariant. The morphisms are

given torsors maps intertwining φ. The S1-action determines a universal automorphism

of the identity functor which multiplies on the right by z ; this is a well-defined map

of torsors since z ∈ G is central, and a well-defined automorphism of φ since z acts

trivially on X.

• The z-twisted rotation on L(X/G) is the diagonal of the S1 × S1-action ρ×Lσz , and

is denoted τz or τ . Note that it makes sense to talk about the diagonal since ρ and Lσ
commute: ρ commutes with any group action of the form Lγ, where γ is an S1-action

on X/G.

Remark 3.2.2. We can characterize the z-twisted rotation on L(X/G) in the following way.

Since z acts on X trivially and is central in G, we have a “multiplication by z” map of stacks

µz : L(X/G) → L(X/G), which is an isomorphism identifying the formal neighborhood of

the fiber in X/G over e ∈ G with that over z ∈ G, but is not S1-equivariant under the

naive rotation actions. The z-twisted rotation τz on L(X/G) is obtained by transporting the

rotation action via µz , i.e. it can be characterized by making the diagram commute:

S1 × L(X/G) L(X/G)

S1 × L(X/G) L(X/G).

aτ

p×µz' µz'

aρ

Example 3.2.3. On Perf(G/G), the rotation ρ acts on fibers over g ∈ G by g; the z-twisting

Lσz acts on fibers over any g ∈ G by z , and the twisted rotation τz acts on fibers over g ∈ G
by gz = zg.

Example 3.2.4. Let G = T be a torus (in particular, every t ∈ T is central). We can explicitly

describe the S1-actions on linear categories

Perf(L(BT )) = Perf(T × BT ) '
⊕
λ∈Λ

Perf(T )

where Λ is the character lattice of T . We have a basis zλ of k [T ] where we range over

λ ∈ Λ. The rotation S1-action ρ acts on the λ-summand by zλ. The t-twisting action σt
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on BT acts on the λ-summand by the scalar zλ(t). The t-twisted rotation τt acts on the

λ-summand by zλ(t)zλ.

Let us take the t-twisted rotation τt (which reduces to the usual rotation for t = e). We

have, via the category4 PreMF in [52],

Perf(L(BT ))S
1

=
⊕
λ∈Λ

PreMF(T, 1− zλ(t) · zλ),

Perf(L̂(BT ))S
1

=
⊕
λ∈Λ
λ(t)=1

PreMF(T̂ , 1− zλ).

For the second identity, the zeros of 1 − zλ(t)zλ meet the constant loops if and only if

zλ(t) = 1. After passing to the Tate category under the rotation action, we note that the

zero locus of 1 − zλ is smooth (it is a subgroup of T ) of codimension 1 unless λ = 0 (in

which case it has codimension zero and must be derived). Therefore,

Perf(L(BT ))Tate =
⊕
λ∈Λ

MF(T, 1− zλ(t) · zλ) = Perf(T )⊗k k(u)),

Perf(L̂(BT ))Tate =
⊕
λ∈Λ
λ(t)=1

MF(T̂ , 1− zλ) = Perf(T̂ )⊗k k((u)).

Note that the Tate categories do not depend on the twisting at all (but the S1-invariant

categories do).

Lemma 3.2.5. Let z ∈ G be a central element of a reductive group, and suppose z acts on a

derived scheme Y trivially. The z-twisted (non-rotation) S1-equivariant structure on O(Y/G)

is zero. In particular, the (non-rotation) S1-equivariant structure Lσz on O(L(X/G)) is zero.

Proof. The S1-equivariant structure is given by the Connes B-operator. Note that z acts on

L(X/G)×BG pt = X×X×XX×G trivially, so that the second claim follows from the first. To

this end, note that the map Y/G → Aff(Y )/G is S1-equivariant, so we may replace Y with

its affinization. In this case, we can write down the usual simplicial presentation for the atlas

Y → Y/G; the S1-action endows this simplicial presentation with the structure of a cyclic

presentation. Explicitly, via the formulas in Section 7.3.3 of [38], the nth level is Y × G×n,

and the rotation sends (y , g1, . . . , gn) 7→ (y , z(g1 · · · gn)−1, g1, g2, . . . , gn−1). In particular,

since z acts on Y trivially, the S1-action does not depend on Y , so it suffices to check when

Y = pt. In this case, O(BG) = k has no higher cohomology since G is reductive, so the

S1-equivariant structure is zero.

4For M a scheme and f : M → Gm, the category PreMF(M, f ) is the category Perf(M ×Gm {1}) with an

extra k [u]]-linear structure acting by cohomological operators.
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Corollary 3.2.6. Suppose z ∈ G is a central element of a reductive group and acts on a

scheme X trivially. Then,

O(L(X/G))S
1,τ ' O(L(X/G))S

1,ρ

as objects in the equivariant category VectωS
1

k . The same holds for formal and unipotent

loop spaces.

Proof. There is a S1 × S1-equivariant structure on O(L(X/G)), i.e. O(L(X/G)) has the

structure of a H•(S
1 × S1; k) = k [ε1, ε2]-module where |ε1| = |ε2| = −1. Let the first factor

be the loop rotation ρ and the second the twisting Lσ. Then, the S1-equivariant structure

corresponding to the diagonal τ is the mixed complex O(L(X/G)) with the action of ε1 + ε2.

However, we’ve shown in the previous lemma that ε2 = 0.

3.3 Localization for formal loop spaces

The following construction defines a notion of formal loops near a semisimple orbit z ∈ G.

Construction 3.3.1 (Formal loops over z ∈ G). Let X be a derived scheme, G a reductive

group acting on X, and z ∈ G a semisimple element; we define L̂z(X/G) as follows. Denote

by µz : Gz/Gz → Gz/Gz the multiplication by z . We define L̂z(BG) := L̂(BGz) and a

natural map L̂z(BG)→ L(BG) by the composition

L̂z(BG) := L̂(BGz) L(BGz) L(BG).
µz

We define the formal loops over z , denoted L̂z(X/G), by the pullback

L̂z(X/G) L(X/G)

L̂z(BG) L(BG).

This construction is functorial in schematic maps between stacks X/G representable (by

schemes) over BG.

Remark 3.3.2. Unwinding the definition, we find that the pullback can be separated into two

stages

L̂z(X/G) L(X/Gz) L(X/G)

L̂z(BG) L(BGz) L(BG).
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The first (rightmost) pullback square arises by applying the loop space to the fiber product

X/Gz = X/G ×BG BGz .

The second arises by completion at the closed point z ∈ L(BGz) = Gz/Gz .

The following assertion proves that the right maps in the above remark are étale, and

therefore isomorphisms on formal neighborhoods.

Proposition 3.3.3. Let G be a reductive group, z ∈ G a semisimple element and Gz its

centralizer. The map L(BGz)→ L(BG) is locally étale at z .

Proof. Let us recall the set-up of the étale slice theorem as in [20]. Let G be a reductive

group acting on an affine variety X, and x ∈ X a closed point such that the stabilizer ZG(x) is

reductive. We define a map φ : X → Tx(X) as follows. Let m be the maximal ideal for x ∈ X;

the quotient map to the cotangent space has a ZG(x)-equivariant splitting m/m2 → m since

ZG(x) is reductive, defining a map Symk(m/m2)→ k [X]. Geometrically, this means choosing

functions f1, . . . , fn ∈ k [X] vanishing at x whose differentials generate the cotangent space

at x , and defining the map φ : X → Tx(X) by evaluation

y 7→
∑

fi(y)
d

dfi

∣∣∣∣
y=x

,

in a ZG(x)-equivariant manner. The étale slice is the inverse image φ−1(N) where N ⊂
Tx(X) is any normal subspace to Tx(G · x) ⊂ Tx(X), and the theorem tells us that the map

G ×ZG(x) φ−1(N)→ X is étale.

Specializing to our situation, where G acts on itself by the adjoint action, we produce the

Gz -equivariant map φ : G → Tz(G) as follows. Affine locally at z , we can choose generators

f1, . . . , fn such that

k [G]/(f1, . . . , fr) = k [Gz ],

and the vanishing of df1, . . . , dfr determines gz ⊂ Tz(G) ' g. Thus it suffices to show that gz

is a normal subspace to Tz(G · z), since φ−1(gz) = Gz by construction. On the other hand,

we have a natural isomorphism G · z ' G/Gz , inducing Tz(G · z) ' g/gz , which produces a

splitting of Tz(G · z) ⊂ Tz(G) whose kernel is gz . Explicitly, z is semisimple and acts on g, so

g decomposes into z-eigenspaces; gz is the trivial eigenspace and g/gz is isomorphic to the

sum of all other eigenspaces.

Example 3.3.4. Let G be a simple reductive algebraic group and choose z ∈ G regular

semisimple. Its centralizer is a torus T and the map G ×T T reg → Grs is étale with fiber

WT = N(T )/T .

We now construct the map that realizes the localization on formal loops.
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Construction 3.3.5 (Localization map and formal localization map). We define global and

formal localization maps

`z : L(π0(Xz/Gz))→ L(X/G) ̂̀
z : L̂(π0(Xz)/Gz)→ L̂z(X/G)

as follows. Let Y be a derived Gz -scheme such that the action of z is trivial, and

f : (G ×Gz Y )/G = Y/Gz → X/G

a representable map of quotient stacks (to define `z , just take Y = π0(Xz)). We denote

p : X/G → BG and q : X/Gz → BGz . We have S1-equivariant pullback squares

L(Y/Gz) L(Y/Gz)ρ

L(X/Gz)shif t L(X/Gz)ρ L(X/G)ρ

L(BGz)τ L(BGz)ρ L(BG)ρ.

'

`z Lf

' étale

Lq Lp

µz

'
Gz⊂G
étale

The subscript in L(X/Gz)shif t is only to emphasize that the map L(X/Gz) → L(BGz)τ on

the left cannot be identified with the loop space of a map X/Gz → BGz ; it is “shifted” so

that the constant loops live over z−1 ∈ Gz . On the other hand, by Remark 3.2.2 the left map

L(Y/Gz)→ L(BGz) can be identified with the map on loops induced by Y/Gz → BGz since

z acts trivially on Y . This entire diagram can be completed at constant loops on L(BGz)τ ,

equivalently loops near t ∈ L(BGz)ρ to obtain the map ̂̀z
L̂(Y/Gz) L̂z(Y/Gz)ρ

L̂z(X/Gz)shif t L̂z(X/Gz)ρ L̂z(X/G)ρ

L̂(BGz)τ L̂z(BGz)ρ L̂z(BG)ρ.

'

̂̀
z L̂z f

' '

L̂zq L̂zp

µ̂z

' '

This construction is functorial in schemes over BG.

Remark 3.3.6. One can check that `z can be identified with the map (breaking S1-symmetry):

G ×Gz (π0(Xz)× Gz)

G ×Gz π0(Xz) G ×Gz (π0(Xz)× π0(Xz))

−→
X × G

X X ×X

where the top map sends (h, x, g) 7→ (h · x, hgzh−1).
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Theorem 3.3.7. Let X be a smooth variety with an action of a reductive group G, and z ∈ G
semisimple. The S1-equivariant map̂̀

z : L̂(π0(Xz)/Gz)→ L̂z(X/G)

is an isomorphism.

Proof. By the discussion in Definition 3.3.5 we only need to show that Lz f is an isomorphism

at local rings over z ∈ Gz , i.e. replacing G with Gz , we can assume G is a reductive group

acting on a scheme X, and that z ∈ G is central. We wish to show that L̂z(π0(Xz)/G) →
L̂z(X/G) is an isomorphism (note there is no “shift by z” in this set-up). The map L̂z is

an isomorphism on π0(−)red by the discussion in Lemma 3.1.6, so we need only show it is a

derived isomorphism. It thus suffices to show that Lz f : Lz(π0(Xz/G)) → Lz(X/G), after

forgetting equivariance, induces an isomorphism on local rings for all closed points x ∈ π0(Xz).

We will use the essential fact that Xz is smooth when z ∈ G is a semisimple element of a

reductive group: in this case, we can choose a torus T containing z and and apply the étale

slice theorem to a T -closed affine open cover.

Let us first discuss the localization that we carry out. Forget all group actions; we wish

to localize the diagram

L(π0(Xz)/G)×BG pt L(X/G)×BG pt

G

at points (x, z) ∈ π0(L(π0(Xz)/G)) upstairs and show that the resulting map on local rings

is an isomorphism. More explicitly, let A = OX,x be the local ring with maximal ideal m,

J ⊂ m ⊂ A the ideal for π0(Xz) ⊂ X and B = OG,z be the local ring at z ∈ G. The coaction

induces a map c : A→ A⊗ B. We can compute

(L(X/G)×BG pt)loc = A⊗LA⊗A (A⊗ B)

(L(π0(Xz)/G)×BG pt)loc = A/J ⊗LA/J⊗A/J (A/J ⊗ B)

with the map between them being the naive one (induced by the quotient A → A/J). By

smoothness of X and Xz , the diagonal embeddings are local complete intersections, and

Xz ⊂ X is also a local complete intersection. In particular by Nakayama’s lemma we can

produce generators x1, . . . , xn of m whose linear span is G-closed, such that J = (x1, . . . , xr),

the linear span of x1, . . . , xr forms a subrepresentation, and furthermore xi ⊗ 1− 1⊗ xi forms

a regular sequence for the diagonal5. Thus, taking semi-free Koszul resolutions for A as an

A⊗ A-module and A/J as an A/J ⊗ A/J-module, we have the derived tensor products

A⊗LA⊗A (A⊗ B) = ((A⊗ B)[ε1, . . . , εn], dint(εi) = c(xi)− xi)
5In particular, since A and A/J are Cohen-Macaulay, any minimal generating set is automatically regular.
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A/J ⊗LA/J⊗A/J (A/J ⊗ B) = ((A/J ⊗ B)[εr+1, . . . , εn], dint(εi) = c(xi)− xi)

where |εi | = −1. The map

A⊗LA⊗A A⊗ B → A/J ⊗LA/J⊗A/J (A/J ⊗ B)

sends εi 7→ 0 for i ≤ r and εi 7→ εi when i > r . We wish to show that the derived equa-

tions imposed on L(X/G) via the Koszul resolution (dint(ε1), . . . , dint(εr)) and the classical

equations imposed on L(π0(X/G)) via quotient (x1, . . . , xr) differ by an (invertible) change

of variables, so that this map is a quasi-isomorphism.

Write c(xi) =
∑s

i,j=1 ei jxj where ei j ∈ B and let E = (ei j) denote the corresponding

matrix, so that the two coordinates we wish to relate are related by the matrix E − I. We

claim this matrix is invertible. It suffices to show that its evaluation at z ∈ G is invertible,

i.e. to show that E(z) = evz ◦ c : J/J2 → J/J2 has no eigenvector with eigenvalue 1 in its

induced action on the conormal space J/J2 of Xz ⊂ X at z . That z acts on the normal

spaces of Xz by eigenvalues not equal to 1 is a property of the z-fixed point variety.

Corollary 3.3.8. Let X, Y, Z be smooth varieties, with maps f : X → Z and g : Y → Z.

Then

L̂(π0(Xz)×π0(Zz ) π0(Y z)) ' L̂z(X ×Z Y )

where all fiber products are derived.

Proof. This follows immediately since loop spaces commute with fiber products.

Remark 3.3.9. Note that in the case G = T is a torus, the étale factor of the map

`z : L(π0(Xz)/Gz)→ L(X/G)

is trivial, so `z is an isomorphism on local rings (rather than formal neighborhoods) over

z ∈ G/G. This recovers a statement similar to the K-theoretic equivariant localization. In

fact, we have something even stronger: the following lemma shows how to find a Zariski open

neighborhood U ⊂ T of z on which `z induces an isomorphism. That is, only finitely many

subgroups of T appear as stabilizers of the action of T on a fixed X, and `z is an isomorphism

on the localization of T obtained by deleting those subgroups which do not contain z , which

parallels the equivariant localization argument for equivariant cohomology in [26].

Lemma 3.3.10 (Finiteness of stabilizer subgroups). Let T be a torus acting on a (quasi-

compact) variety X. Only finitely many subgroups of T may appear as stabilizers of this

action.

Proof. We can work affine locally, since X has a finite T -closed Zariski cover, and may also

assume that X is connected. If every point of X has stabilizer of equal dimension to T ,

the possible stabilizer subgroups are in bijection with a subset of the (obviously finite) set of
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subgroups of the (finite) component group T/T ◦. If there is a point x ∈ X whose stabilizer

T x ⊂ T has strictly smaller dimension, then by the Luna slice theorem (note that the stabilizer

T x is reductive since every subgroup is) there is a locally closed subvariety V ⊂ X such that

the map a : T ×T x V → X is étale and dominant. Any stabilizer of a point in the image of

a must be a subgroup of T x , so the problem reduces to considering the action of T x on V ,

and the action of T on the compliment of V ⊂ X (which is a closed subvariety, therefore

affine, of strictly smaller dimension). Note that in both cases, the dimension of the variety

decreases, and that the claim is obviously true for zero-dimensional varieties, so the lemma

follows by induction.

3.4 Localization for unipotent loop spaces

We now carry out the constructions in the previous section for unipotent loop spaces, and

prove an analogous result.

Construction 3.4.1 (Unipotent loops over z ∈ G). Let X be a derived scheme, G a reductive

group acting on X, and z ∈ G a semisimple element; we define Lu,z(X/G) as follows. First

define Lu,z(BG) := Lu(BGz) and a natural map Lu,z(BG)→ L(BG) by the composition

Lu,z(BG) = Lu(BGz) Lu(BGz) L(BGz) L(BG)
µz

We define the unipotent loops over z , denoted Lu,z(X/G), by the pullback

Lu,z(X/G) L(X/G)

Lu,z(BG) L(BG)

This construction is functorial in schematic maps between stacks X/G representable (by

schemes) over BG.

Proposition 3.4.2. Let a : G/G → G//G be the affinization, and let a(z) = [z ] ∈ G//G.

The map above induces an isomorphism on completions

Lu,z(BG) ' ̂a−1([z ])/G ⊂ L(BG).

In particular, the map Lu,z(BG)→ L(BG) factors isomorphically through ̂µ−1([z ])/G.

Proof. This follows from Proposition 3.1.28 and the observation that the classical reduced

fiber over [z ] ∈ G is isomorphic to the unipotent cone of Gz/Gz . That is, if u ∈ Gz is

unipotent, then uz = zu ∈ G has the same eigenvalues as z , so a(z) = a(zu), and by Jordan
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composition any y ∈ µ−1([z ]) can be written uniquely in this way. Furthermore, Guz ⊂ Gz , so

letting U be the unipotent elements of Gz , we have that the fibers of the map G ×Gz U → G

over points in its image µ−1([z ]) are singleton points.

Construction 3.4.3 (Unipotent localization map). We define a unipotent localization map

`uz : Lu(π0(Xz)/Gz)→ Lu,z(X/G)

as follows, using the same set-up as Definition 3.3.5. The diagram can be completed at

unipotent loops on L(BGz)τ :

Lu(Y/Gz) Lu,z(Y/Gz)ρ

Lu,z(X/Gz)shif t Lu,z(X/Gz)ρ Lu,z(X/G)ρ

Lu(BGz)τ Lu,z(BGz)ρ Lu,z(BG)ρ

'

`uz Lu,z f

' '

Lu,zq Lu,zp

µuz

' '
Prop 3.4.2

This construction is functorial in schemes over BG.

Corollary 3.4.4. Let X be a smooth variety with an action of a reductive group G. The

S1-equivariant map

`uz : Lu(π0(Xz)/Gz)→ Lu,z(X/G)

is an isomorphism.

Proof. By Definition 3.4.3, the map is an isomorphism on π0. Let z ∈ G be a central

semisimple element, and u ∈ G be any unipotent element. The proof of Theorem 3.3.7 goes

through with the following modification: we have to check local rings at (x, zu) ∈ X × G
where x ∈ π0(Xzu) ⊂ π0(Xz), and u ∈ G is unipotent. The same argument goes through,

as we only require semisimplicity to show that L̂(X/Gz) → L̂(X/G) is an isomorphism, and

we only require centrality in defining the shift map.

3.5 Tate S1-equivariant functions on formal loop spaces

compute Betti cohomology

We now set out to prove the equivariant localization theorem for periodic cyclic homology. We

first establish the following general assertion for geometric stacks. It is well-known by experts

and is essentially a simple corollary of results in [10], [30] and [6]. A general discussion can

also be found in the introduction of [34]. We first introduce some technical notions needed

to phrase the result in the 2-periodic setting. Recall the following notions for vector spaces

from [4].
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Definition 3.5.1. A linear topological vector space is a a vector space V which admits a

topology for which the vector space operations are continuous, and such that there is a

system of neighborhoods at 0 consisting of subspaces. In this case, the topology is generated

by this system at 0 and translations under addition. The completion V̂ of V is the limit over

the system of neighborhoods Uα:

V̂ := lim
0∈Uα

V/Uα

We say the topology is complete if the natural map V → V̂ is an isomorphism. Let V1, V2

be linear topological vector spaces. We define the !-tensor product V1⊗! V2 with topology by

the basis consisting of open sets of the form U1 ⊗ V2 + V1 ⊗ U2, where U1 ⊂ V1 and U2 ⊂ V2

are opens.

These notions generalize immediately to chain complexes, where we replace the notion of

subspace with subcomplex. In this case, the complexes term-wise satisfy the Mittag-Leffler

condition and therefore lim1 = 0, so that the naive notion of completion is “automatically

derived.”

Remark 3.5.2. Let X be a possibly singular scheme, and X ⊂ M an embedding into a smooth

scheme. The derived de Rham complex on a scheme X, defined in [10], is the complex of

quasicoherent sheaves built from (derived) exterior powers of LX on X, equipped with the

de Rham differential. The main theorem of [10] produces a quasi-isomorphism between the

Hodge-completed6 derived de Rham complex of X and the de Rham complex of M completed

at the closed subscheme X (also considered as an abelian sheaf on X). Hartshorne [30] proved

that the hypercohomology of this latter complex computes Betti cohomology.

These complexes arise in the context of loop spaces follows. For X a scheme, we have that

L̂X = LX ' TX[−1]. Though the adic filtration corresponding to the closed immersion of

constant loops defines an analogue of the Hodge filtration, these negatively -graded differential

forms are already complete with respect to this filtration. On the other hand, the negative

cyclic homology (HH(Perf(X))[[u]], d+uε) is completed with respect to the noncommutative

Hodge filtration defined by F kHN(Perf(X)) = ukHN(Perf(X)). The ⊗!-tensor product of

these filtrations produces a 2-periodic version of the Hodge filtration.

Proposition 3.5.3. Let X be a geometric stack with a smooth cover by a variety. There is

a natural isomorphism

O(L̂(X))Tate ' C•dR(Xan; k)⊗! k((u))

where C•dR(X; k) denotes the Hodge-completed de Rham cochains on X.

6Completing with respect to the Hodge filtration (i.e. the “rows” in the spectral sequence) makes a

difference when X is singular, since the total complex may be unbounded in a positive and a negative direction:

the de Rham complex extends in the positive direction, whereas a semifree resolution extends in the negative

direction.
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Proof. By Theorem 6.9 of [6], the exponential map T̂X[−1]→ L̂(X) is an filtration-preserving

isomorphism, so we computeO(T̂X[−1])Tate instead. We first show that the mixed differential

on

O(T̂X[−1]) =

∞⊕
i=0

Γ(X,Ωi
X)[i ]

is the de Rham differential. Sheaves (and functions) on formal loop spaces and odd tangent

bundles are smooth local, and since Γ(X,−) commutes with limits, it commutes with both

S1-invariants and totalization. We can compute the S1-invariant global functions via global

sections of the following (non-quasicoherent) complex (where U×Xn denotes the nth stage in

the simplicial complex associated to a smooth cover U → X by a scheme)

O(T̂X[−1])S
1 ' Tot(O(TU×Xn [−1])S

1

) ' Tot(O(TU×Xn [−1]))S
1

' Γ(X,SymX LX[1])S
1 ' (Γ(X, lim

j
Sym≤jX LX[1][[u]]), u · ddR).

This completes the claim.

Next, note that the Tate construction can be realized as a limit followed by a colimit

(i.e. a localization of the S1-invariants) or a colimit followed by a limit (i.e. a limit of the

S1-coinvariants under the periodicity operator). In particular, using the second description,

we find that O(T̂X[−1])Tate is the completion of the topological chain complex

(Γ(X,SymX LX[1])⊗! k [u, u−1], u · ddR)

where (ignoring the differential; one verifies that the differential is compatible with the follow-

ing topology) we equip Γ(X,SymX LX[1]) with the topology induced by the Sym≥1
X LX[1]-adic

topology on hypercohomology, and k [u] with the u-adic topology. Forgetting the topology,

this complex evidently has the same underlying chain complex as C•dR(Xan; k) ⊗! k((u)).

We claim their topologies agree. The topology on O(L̂(X))Tate has basis given by opens

Ui j := Γ(X,Sym≥iX Ω1
X[1]u≥j). The topology on C•dR(Xan; k) ⊗! k((u)) is given by opens

Vi j := Γ(X,Sym≥iX Ω1
X[−1]u≥j). We see that Ui ,j+i = Vi ,j , so the topologies agree, so the

completions agree.

Remark 3.5.4. The above proposition is false if we do not consider the topologies. For

example, take X = BGm. Then, we have O(L̂(BGm)) = k [[[t]] where |t| = 0, and in

particular, H0(O(L̂(BGm))Tate) = k [[t]]. On the other hand, H•(BGm; k) ' k [s] = k [[s]]

where |s| = 2, so H0(H•(BGm; k)((u))) = k [su−1].

3.6 Equivariant localization for periodic cyclic homology

We prove the equivariant localization theorem for periodic cyclic homology, assuming the

following theorem, which is proven as Theorem 3.7.15.
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Theorem 3.6.1. Let X be an algebraic space with an action of an affine algebraic group G.

The natural map

O(Lu(X/G))Tate → O(L̂(X/G))Tate

is an isomorphism.

We first need to introduce a few technical notions regarding mixed complexes, with the

aim of proving that in our situation formal completions commute with the Tate construction

on Hochschild homology. Analogous results and arguments can be found in [34].

Definition 3.6.2. Let (V, d, ε) be a mixed complex. We define

V
∏

Tate = (
∏
k

V uk , d + uε)

where |u| = 2. Note that V
∏

Tate cannot carry a multiplicative structure. We also define

V ⊕Tate = (
⊕
k

V uk , d + uε) = (V [u−1, u], d + uε).

There are natural maps

V ⊕Tate → V Tate → V
∏

Tate.

Remark 3.6.3. Lemma 2.6 of [34] shows that the Tate construction preserves quasi iso-

morphisms, essentially because it is computed via the right spectral sequence. On the other

hand, the other variants above do not preserve quasi-isomorphisms. In particular, they are

not well-behaved in the derived category.

Lemma 3.6.4. Let (V, d, ε) be a mixed complex. If V is cohomologically bounded below,

then V ⊕Tate → V Tate is a quasi-isomorphism. If V is cohomologically bounded above, then

V Tate → V
∏

Tate is a quasi-isomorphism.

Proof. The proof of the first statement appears as Corollary 2.7 in [34] (note that they

use homological grading conventions). For the second, note that although the product-

Tate construction does not respect quasi-isomorphisms, the usual Tate construction does,

so we can still replace V with a quasi-isomorphic mixed complex. In particular, replace V

via quasi-isomorphism with a complex which vanishes in sufficiently large degrees. Then,

V Tate → V
∏

Tate is an isomorphism, since they differ only in direct sum versus direct product

in the uk component for k small, but since V vanishes in large degree, in each cohomological

degree the uk component vanishes for sufficiently small k .

Theorem 3.6.5 (Equivariant localization for periodic cyclic homology). Let G be a reduc-

tive group acting on a smooth quasi-projective variety X. The periodic cyclic homology

HP (Perf(X/G)) is naturally a module over HP (Perf(BG)) = k [G//G]((u)). For a closed
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point z ∈ G//G, we have a functorial (with respect to pullback) identification of the formal

completion at z with a 2-periodicization of the singular cohomology of the fixed points

HP (Perf(X/G))ẑ ' H•((Xz)an/(Gz)an; k)⊗!
k k((u))

naturally as a module over HP (Perf(BG))ẑ ' H•(B(Gz)an; k)! ⊗k k((u)).

Proof. First, note that though the map of stacks G/G → G//G is not representable by

schemes, we can still calculate (directly via its functor of points) that classical fiber product

π0(G/G ×G//G {z}) = {G · z}/G

is a closed substack of G/G. In particular, by its functor of points description, the fiber

product with respect to the formal completion is exactly {̂G · z}/G, and by Proposition 3.4.2

we have that

L(X/G)×G//G {̂z} = Lu,z(X/G)

and in particular, since pushforward commutes with limits, we have that O(Lu,z(X/G)) '
O(L(X/G))ẑ .

We wish to show that the Tate construction commutes with completion, i.e.

HP (Perf(X/G))ẑ = (O(L(X/G))Tate)ẑ ' (O(L(X/G))ẑ)Tate.

This claim turns out to be rather delicate, and occupies most of this proof.

First, we claim that the explicit realization of Hochschild homology HH(Perf(X/G)) via

the cyclic bar complex of Example 2.8.9 is a k [G]G-linear mixed complex, i.e. a mixed complex

where both the internal and mixed differentials are k [G]G-linear. By Proposition 5.1.28 of

[16], if X is quasiprojective (this is the only place we use quasiprojectiveness), then Perf(X/G)

is generated by locally free objects; write the cyclic bar complex using the generating set of all

equivariant locally free sheaves on X. Its k [G]G-linear structure arises via the shuffle product

as follows. Via the Peter-Weyl theorem there is a natural isomorphism k [G]G '
⊕

V irrep. k , so

that c ∈ HomPerf(BG)(Vλ, Vλ) acts by sending elements of the cyclic Hom-tensor with objects

X0, . . . , Xn to the cyclic Hom-tensor with objects X0 ⊗ Vλ, X1 ⊗ Vλ, . . . , Xn ⊗ Vλ by

f0 ⊗ · · · ⊗ fn 7→ (f0 ⊗ c)⊗ (f1 ⊗ 1)⊗ · · · ⊗ (fn ⊗ 1) = (f0 ⊗ 1)⊗ · · · ⊗ (fn−1 ⊗ 1)⊗ (fn ⊗ c).

This action respects the face maps and degeneracy maps by general construction. Note

that since the Xi are locally free, there are no higher Ext sheaves.

By Theorem 1.4.2 of [21], HH(Perf(X/G)) is cohomologically bounded above. Recall

that the
∏

Tate construction does not behave well with respect to quasi-isomorphisms, so

we need to fix this particular model computing HH(Perf(X/G)). By Lemma 3.6.4, the map

HP (Perf(X/G))→ HH(Perf(X/G))
∏

Tate
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is a quasi-isomorphism. In particular, the right-hand side is entirely built out of products, so

it commutes with limits such as derived completion. More precisely, letting K•n be the Koszul

complex computing derived completion,

HP (Perf(X/G)ẑ ' HH(Perf(X/G))
∏

Tate)ẑ ' lim
n

((
∏
k

HH(Perf(X/G))uk , d+uε)⊗k[G]GK
•
n).

Since the mixed complex structure on HH(Perf(X/G)) is k [G]G-linear and K•n is semi-free of

bounded cohomological amplitude, this is equal to

lim
n

(
∏
k

HH(Perf(X/G))uk ⊗k[G]G K
•
n , d + uε) = lim

n
HH(Perf(X/G)⊗k[G]G K

•
n)

∏
Tate.

Now, since products commute with limits, and HH(Perf(X/G)) ⊗k[G]G K
•
n is still bounded

above, this is equivalent to

(HH(Perf(X/G))ẑ)
∏

Tate ' HH(Perf(X/G)ẑ)Tate.

By Corollary 3.4.4, Theorem 3.6.1, Corollary 3.2.6, and Proposition 3.5.3, we have

HP (Perf(X/G))ẑ ' O(Lu,z(X/G))Tate ' O(Lu(π0(Xz)/Gz))Tate,τ

' O(Lu(π0(Xz)/Gz))Tate,ρ ' O(L̂(π0(Xz)/Gz)) ' H•((Xz)an/(Gz)an; k)((u)).

Functoriality follows by functoriality of Theorem 3.3.7 and since f ∗ preserves compact objects

in quasi-coherent sheaves.

Example 3.6.6 (Toy example). Let G = Gm = Spec k [z, z−1] act on X = A1 = Spec k [x ] by

scaling, i.e. the Gm-weight |x | = 1. The loop space can be calculated directly

L(A1/Gm) =
Spec k [z, z−1, x ]/〈x(z − 1)〉

Gm

and has no derived structure (since G acts on X by finitely many orbits). The Hochschild

homology and periodic cyclic homology can also be calculated directly

HH(Perf(A1/Gm)) = (k [z, z−1, x ]/x(z − 1))Gm = k [z, z−1]

HP (Perf(A1/Gm)) = k [z, z−1]((u))

as the only possible S1-action on a HH(Perf(A1/Gm)) is trivial, being concentrated in a single

cohomological degree. It is clear that completing at any z0 ∈ Gm gives, for t = z − z0 and

|t| = 0,

HP (Perf(A1/Gm))ẑ ' k [[t]]((u)).
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On the other hand, we can compute H•((Xz)an; k)((u)) for each z0. For z = z0 6= 1, the

fixed points π0(Xz0)/Gz0 = {0}/Gm ' BS1, whose 2-periodic cohomology isH•(BS1; k)((u)) =

k [[s]]((u)) with |s| = 2. For z = 1 the fixed points are A1/Gm ' C/S1 ' BS1, and the same

argument applies. Note that the identification k [[s]]((u)) ' k [[t]]((u)) is by the relationship

tu = s; in particular it is necessary that we formally invert u for the rings k [[t]]((u)) and

k [[s]]((u)) to be isomorphic even abstractly. The discrepancy between the cohomological

degrees of t and s is a manifestation of the Koszul duality shearing discussed in [6].

Example 3.6.7 (Flag variety). Let X = G/B be the flag variety with the usual action of G.

Then, X/G = BB, so L(X/G) = B/B = G̃/G is the Grothendieck-Springer resolution. The

fiber for the map G̃ → G over any point g ∈ G consists of the Borel subgroups containing g,

i.e. the g-fixed points of G/B. We have that

HH(Perf(BB)) = O(G̃/G) = k [H]← HH(Perf(BG)) = O(G/G) = k [H]W

where H is the universal Cartan subgroup and W the universal Weyl group. Let s ∈ G be a

semisimple element, and [s] its adjoint orbit. Completing at [s] ∈ k [H]W , we have

HP (Perf(BB))
[̂s]

=
⊕
|W ·s|

k [[h]]← HP (Perf(BG))ŝ ' k [[h]]WGs .

On the left, the tangent space at all points of H are identified naturally with h everywhere,

and there are |W · s| preimages to the point [s] ∈ H//W . On the right, the tangent space

at [s] is identified with h modulo W s , the subgroup of W fixing s. In particular, the rank of

HP (Perf(BB))ŝ over HP (Perf(BG))ŝ is |W · s| · |WGs | = |W | by a theorem of Steinberg and

Pittie.

On the other hand, the fixed points (G/B)s consist of Borels containing s; by conjugating,

we can choose a torus such that s ∈ T ⊂ B. There is a Gs-action on (G/B)s and its stabilizer

at every point is conjugate to Bs , but the action may not be transitive; thus, (G/B)s is the

disjoint union of copies of Gs/Bs . To count the number of connected components we count

T -fixed points: the T -fixed points of G/B are also s-fixed points, and furthermore each

Gs/Bs contains |WGs | such T -fixed points, so we have |W |/|WGs | connected components.

Finally, taking into account equivariance, we have

H•(
∐

|W |/|W ·s|

B(Bs)an; k) =
⊕

|W |/|WGs |

k [[h]]← H•(B(Gs)an; k) = k [[h]]WGs

where h is placed in cohomological degree 2.
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3.7 Comparing global functions on unipotent and formal

loop spaces

This subsection is devoted to the proof of Theorem 3.6.1. Central to our proof will be to use

the fact that the map is a pro-graded isomorphism; the following lemma establishes a general

situation when this is true. Let us first clarify what we mean by a pro-graded isomorphism,

and why this notion is necessary.

Definition 3.7.1. A pro-graded chain complex V is an object of Pro(QCoh(BGm)); that

is, it is a filtered limit of graded vector spaces7. Letting Ln denote the weight n twisting

one-dimensional Gm-representation, the nth homogeneous part functor is given by

(−)wt=n := ev ◦ Pro(Γ)(BGm,−⊗ L−n) : Pro(QCoh(BGm))→ Vectk .

where the functor

Pro(Γ)(BGm,−) : Pro(QCoh(BGm))→ Pro(Vectk)

is the functor induced on pro-completions from Γ(BGm,−) : QCoh(BGm)→ QCoh(pt) and

the functor

ev : Pro(Vectk)→ Vectk

takes a limit diagram and evaluates it in Vectk (which has all limits); it is right adjoint to the

inclusion. The underlying chain complex is given by

ev ◦ Pro(p∗) : Pro(QCoh(BGm))→ Vectk

where p : pt → BGm is the usual atlas so that p∗ is the forgetful functor. A map of graded

chain complexes is a pro-graded isomorphism if it is an isomorphism on nth graded parts for

all n.

Remark 3.7.2. We briefly remark on the necessity of this formalism, which describes a very

simple idea. Let p : pt → BGm be the standard atlas; the pullback (forgetful functor) p∗

does not commute with limits. Even worse, the category QCoh(BGm) cannot differentiate

between certain direct sums and direct products: its objects are Z-graded chain complexes

which are equal to the direct sum of their homogeneous pieces8. In particular, completing

{0} ⊂ A1 with the usual scaling action,

lim
n,QCoh(pt)

k [x ]/xn = k [[x ]] lim
n,QCoh(BGm)

k [x ]/xn = k [x ].

7By Proposition 1.1.3.6 of [44], this category is stable.
8To see this, note that objects of QCoh(BGm) are chain complexes which are O(Gm)-coalgebras, i.e.

equipped with a map V → V ⊗k k [z, z−1]. In particular, tensors have finite rank, so any vector can only have

finitely many homogeneous parts.
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This presents a problem in situations where we wish to compare two (topological) vector

spaces via a grading.

One way to remedy this is to keep track of the limit diagrams by working in the cate-

gory Pro(QCoh(BGm)) and apply the evaluation functor in Vectk = QCoh(pt) rather than

QCoh(BGm). The category Pro(QCoh(BGm)) contains more information than we need;

in particular, we do not wish to track the topologies on various completed vector spaces.

For our purposes, we can consider a more smaller, more familiar category via Carier duality:

the category of kZ-modules. That is, these operations of interest are still available to us in

QCoh(Spec kZ), compatibly with Pro(QCoh(BGm)).

The Cartier dual of Gm is Z, so that there is an equivalence9 Perf(BGm) ' Cohprop(Z),

where Cohprop(Z) is the category of sheaves on Z with proper (in this case, finite) support,

inducing a functor D : QCoh(BGm) → QCoh(Z). There is a natural affinization map

r : Z → Spec(kZ), inducing a functor Pro(r∗) : Pro(QCoh(Z)) → Pro(QCoh(Spec(kZ))).

The composition defines a functor which we denote Ψ :

Pro(QCoh(BGm)) Pro(QCoh(Z)) Pro(QCoh(Spec(kZ))) kZ -mod .
D

Ψ

Pro(r∗) ev

Composing Ψ with the global sections functors recovers the underlying vector space, and

composing with the costalk at n ∈ Spec kZ recovers the nth homogeneous part. In particular,

if we are interested in studying the underlying vector space of V ∈ Pro(QCoh(BGm)) via its

homogeneous components, it suffices to consider it as an object of QCoh(Spec(kZ)).

We summarize the above discussion in the following proposition, and prove the various

claims. Informally, it for the purpose of studying pro-graded isomorphisms, it suffices to work

in kZ -mod rather than the larger category Pro(QCoh(BGm)).

Proposition 3.7.3. We have commutative diagrams of functors

Pro(QCoh(BGm)) kZ -mod

Vectk

ev◦Pro(p∗)

Φ

Γ(Spec kZ,−)

Pro(QCoh(BGm)) kZ -mod

Vectk

ev◦Γ(BGm,−⊗L−n)

Φ

ι!n

9Explicitly, a graded vector space is sent to the sheaf on Z whose fiber over n is the nth homogeneous

component.
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Proof. The proposition follows from two claims: (1) that the diagrams above commute

without the Pro, i.e. p∗ = Γ(Spec kZ,−) ◦ r∗ ◦D and Γ(BGm,−) = ι!
0 ◦ r∗ ◦D, and (2) that

the evaluation functor Pro(kZ -mod) → kZ -mod commutes with global sections and taking

costalks. We first remark that the quotient ring for the closed subscheme {n} ⊂ Spec kZ,

which we denote kn ' k , is equal to the localization of the ring at n ∈ Z, and in particular is

flat, so that the costalk functor ι!
n(−) = HomkZ(kn,−) need not be derived.

The second claim follows since both the global sections functor is a left adjoint. For taking

stalks, note that the costalk is equal to the stalk, and that the costalk is a right adjoint. The

first claim can be directly verified: it suffices to consider modules since all functors are exact.

In particular, if V ∈ QCoh(BGm), then it is a k [z, z−1]-comodule, i.e. there is a map

V → V ⊗ k [z, z−1] '
⊕
n

Vnz
n.

The functor D takes V to the complex on Z whose value on open affine {n} ∈ Z is Vn.

The functor r∗ takes D(V ) to
⊕

n Vn where kZ acts in the natural way. Finally, we see that

the global sections are exactly p∗V =
⊕
Vn and the stalk i !n(

⊕
n Vn) = HomkZ(kn,

⊕
n Vn) =

Vn.

Definition 3.7.4. Let V be a kZ-module. The support of v ∈ V is the closed subscheme

defined by the annihilator ideal of v .

Remark 3.7.5. It is perhaps not surprising that QCoh(Spec kZ) is a convenient place to

discuss such phenomena. In particular, points of Spec kZ correspond bijectively with filters

SZ on Z. Recall that a filter on a set S is a collection of subsets closed under finite intersection

and taking supersets. The bijection associates to a (prime) ideal I ⊂ kZ the collection of

subsets {{n ∈ Z | an = 0} | a ∈ I} where an denotes the nth component of a ∈ kZ. The

closed point {n} corresponds to the filter of subsets containing n.

For example, given a collection of vector spaces Vn, we can associate at two extremes the

kZ-modules
⊕
Vn and

∏
Vn. The support of

⊕
Vn corresponds to the filter of cofinite sets,

and the support of
∏
Vn corresponds to the power set 2Z.

Lemma 3.7.6. A pro-graded isomorphism is injective.

Proof. This is the easy fact that if a map of sheaves on Spec(kZ) is zero on stalks at closed

points, then it is zero, and the observation that on Spec kZ, costalks and stalks coincide.

Lemma 3.7.7. Suppose that f : V → W is a pro-graded isomorphism of pro-graded vector

spaces such that either V or W are supported at finitely many weights. Then f is an isomor-

phism on underlying vector spaces. More generally, let A be a sheaf of algebras on Spec(kZ),

and f : V → W a pro-graded isomorphism of sheaves of A-modules where W is generated by

elements supported at finitely many weights. Then, f is an isomorphism on underlying vector

spaces.
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Proof. For the first claim, the assumptions of the proposition imply that V and W have finite

support, whose points consist entirely of closed points of kZ. A map being a pro-graded

isomorphism means that it is an isomorphism at stalks of closed points.

For the second more general claim, note that if W is an A-module, and w ∈ W is an

element of finitely many weights, say w = w1 + · · · + wr where the wi are homogeneous of

weight ci , then wi ∈ A · w since eci · w = wi . In particular, W having a set of generators

supported at finitely many weights is equivalent toW having a set of homogeneous generators.

Now, if f : V → W is a pro-graded isomorphism, then it is injective by the previous lemma. For

surjectivity, note that for a given homogeneous w ∈ W , since f is a pro-graded isomorphism,

we have a homogeneous v ∈ V such that f (v) = w , and surjectivity follows since W is

generated by homogeneous elements.

The following lemma allows us to reduce statements in the derived category to statements

in the abelian category.

Lemma 3.7.8. A map f : V → W is a pro-graded quasi-isomorphism of pro-graded complexes

if and only if each of the Hi(f ) : Hi(V )→ Hi(W ) are pro-graded isomorphisms of modules.

Proof. We can take a map f : V → W of complexes of kZ-modules. It is easy to verify

that taking nth homogeneous parts (i.e. talking stalks via localization) is exact, so that if

Hn(f ) is a pro-graded isomorphism, it is an isomorphism of modules and therefore f is a

quasi-isomorphism. Conversely, the global sections functor is clearly exact.

Definition 3.7.9. The category Pro(QCoh(Gm)) has a monoidal structure via the dual Day

convolution, defined by

(lim
i
Vi)⊗ (lim

j
Vj) := lim

i ,j
(Vi ⊗ Vj).

A pro-graded dg-algebra is an algebra object in pro-graded chain complexes. If A is a pro-

graded dg-algebra, then Spec(A) is naturally a dg-indscheme with a Gm-action in the sense of

[24]. We will use the word ind-stack to mean a prestack which can be written as an inductive

limit of closed embeddings of (derived) QCA stacks (in the sense of [21]); in practice we only

need the case of a formal completion of a closed substack of a quotient stack.

Recall the definition of a contracting Gm-action in Definition 3.1.14.

Lemma 3.7.10. Let A be a noetherian weight Z≤0 pro-graded connective dg-algebra, which

is generated in negative weights over its weight 0 part, and let I = π0(Awt<0) ⊂ π0(A) be

the classical augmentation ideal. The derived completion A → ÂI is a pro-graded quasi-

isomorphism. Globally, if X is an ind-stack with a representable contracting Gm-action with

fixed point locus Z ⊂ X, then OX → OX̂Z is a pro-graded quasi-isomorphism of quasicoherent

sheaves on X. In particular, O(X)→ O(X̂Z) is a pro-graded isomorphism.
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Proof. Choose generators f1, . . . , fr of I. By Proposition 3.4.12 in [11], we can compute the

homotopy limit ÂI via the limit

ÂI = lim
n

(
A⊗π0(A) K

•
n

)
where K•n is the Koszul complex for f n1 , . . . , f

n
r ∈ π0(A). Since f1, . . . , fr are of strictly negative

weight, for large n, (K•n)wt≤k = (π0(A))wt≤k for any k . Furthermore, homotopy limits can

be computed in the derived category of k-complexes, and in particular we can compute the

homotopy limit on each graded piece. Thus, (ÂI)
wt=k is a computed by a limit which stabilizes

at Awt=k , proving the claim. For the global claim where X is an ind-scheme, one can pass

to an open affine Gm-closed cover (which exists since Gm is a torus). For the global claim

where X is an ind-stack, one can check the equivalence smooth locally by passing to an atlas

on X.

Recall that by Remark 6.11 of [6] that there are embeddings L̂(X/G) ↪→ Lu(X/G) ↪→
TX[−1]. Thus, formal loops and unipotent loops inherit compatible Gm-actions and their

functions are Z≤0 pro-graded. We have the following.

Lemma 3.7.11. Let X be a geometric stack. The map

O(LuX)→ O(L̂X)

is a pro-graded (quasi-)isomorphism.

Proof. An argument is outlined in Corollary 2.7 of [7]; we will repeat it for convenience. By

Lemma 3.1.9, LX is geometric. The formal loops L̂X are the completion of the unipotent

loops LuX along constant loops, and the action is contracting by Lemma 3.1.15. The

statement follows by Lemma 3.7.10.

Example 3.7.12. The pro-graded isomorphism of Lemma 3.7.11 may fail to be an isomor-

phism. For example, take X = G/U where U is any unipotent subgroup of G; then we have

that

L((G/U)/G) = L(BU) = U/U → L(BG) = G/G

has image inside the unipotent cone of G. In particular,

Lu(BU) = L(BU) = U/U L̂(BU) = û/U.

For example, if U = BGa, then the map is

O(Lu(BGa)) = O(Ga × BGa) = k [x, η]→ O(L̂(BGa)) = O(Ĝa × BGa) = k [[x ]][η]

is a pro-graded isomorphism but not an isomorphism, where |x | = 0 is a generator for O(Ga)
and |η| = 1 is a generator for O(BGa).
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Using the fact that the map is a pro-graded isomorphism, we can show in the case of a

unipotent group that the map on Tate-equivariant functions is an isomorphism by a finiteness

argument. Essentially, we show that applying the Tate construction collapses enough of the

target to produce an isomorphism. We include the following proposition as an easy precursor

to the next one; it is not required in future arguments.

Corollary 3.7.13. Let U be a unipotent algebraic group, and X an algebraic space with a

U-action. Then, the natural map

O(Lu(X/U))Tate → O(L̂(X/U))Tate

is an isomorphism. In particular, taking X = pt,

O(Lu(BU))Tate = O(U/U)Tate → O(L̂(BU)) ' k((u))

is an isomorphism.

Proof. By Lemma 3.7.11, the map is a pro-graded isomorphism. Furthermore, applying the

Tate construction, we have that O(L̂(X/U)) ' H•(X; k)((u)) since U is contractible, where

u has cohomological degree 2 and weight 1. The statement follows from Lemma 3.7.7: since

H•(X; k) is finite-dimensional, it has a homogeneous basis.

A tweaking of the above argument gives us the reductive case.

Corollary 3.7.14. Let G be a reductive algebraic group, and X an algebraic space with a

G-action. Then, the natural map

O(Lu(X/G))Tate → O(L̂(X/G))Tate

is an isomorphism.

Proof. We first show that O(L̂(BG)) = O(Lu(BG)). To this end, by Proposition 3.5.3 we

have

O(L̂(BG))Tate ' H•(BG; k)⊗! ((u)) ' k [[h]]W ((u))

where h is in cohomological degree zero and subcomplex H•(BG; k) is given by k [hu]W . By

Proposition 3.1.28, we have

O(Lu(BG)) ' lim
n
O(g×h//W {0}(n))G ' k [[h]]W

so that O(Lu(BG))Tate ' O(L̂(BG))Tate ' k [[h]]W ((u)). In particular, the map

O(Lu(X/G))Tate → O(L̂(X/G))Tate



CHAPTER 3. EQUIVARIANT LOCALIZATION FOR DERIVED LOOP SPACES AND

PERIODIC CYCLIC HOMOLOGY 83

is linear over k [[h]]W ((u)) in the pro-graded category, where h has weight -1. We claim that

Hi(O(L̂(X/G))Tate) ' Hi(H•(X/G; k)⊗! k((u)))

is finitely generated over H•(BG; k) ' k [[h]]W by weight-homogeneous generators; assuming

the claim, the result follows from Lemma 3.7.10 and Lemma 3.7.7.

To see the claim, recall the topological chain complex in Proposition 3.5.3 computing Tate

functions on formal loop spaces. The topology is invariant under the degree-weight shearing

which multiplies the weight −k part by uk . In particular, H•(X/G; k) is finitely generated

over H•(BG; k) by cohomologically homogeneous generators in weight 0; we can lift these

generators x1, . . . , xr living in cohomological degrees 2d1, . . . , 2dr to the chain complex. Since

the chain complex and its completion are invariant under shearing, then H2i(O(L̂(X/G))Tate)

is generated by xiu
i−di (and similarly when i is odd), proving the claim.

We can now prove Theorem 3.6.1, which we restate for convenience.

Theorem 3.7.15. Let X be an algebraic space with an action of an affine algebraic group G.

The natural map

O(Lu(X/G))Tate → O(L̂(X/G))Tate

is an isomorphism.

Proof. Every affine algebraic group G embeds as a subgroup of a reductive group K. Apply

the previous corollary to (X ×G K)/K. Note that X ×G K is not guaranteed to be a scheme,

but is always an algebraic space.
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Chapter 4

Convolution Methods in Geometric
Representation Theory

In this chapter we preview a possible application of our main theorem to geometric representa-

tion theory. Let G be a reductive group acting on smooth schemes X, Y and f : X/G → Y/G

be a proper (representable) map of quotient stacks. Let S = BG. By the formalism of [21]

applied to derived loop spaces, we have that

HH(Coh(X ×Y X)) = ExtQCoh(LY )(Lf∗OLX,Lf∗OLX)

Since f is proper, it preserves compact (i.e. coherent, which since X, Y are smooth, are the

same as perfect) objects; we can work with small categories and the issue of functoriality in

[51] do not appear. We thus find

HP (Coh(X ×Y X)) = ExtQCoh(LY )(Lf∗OLX,Lf∗OLX)Tate.

Note that Coh(X ×Y X) acts on Coh(X) linearly over Coh(Y ) via convolution, inducing

an algebra structure on HH(Coh(X ×Y X)) and HH(Coh(Y ))-module over this algebra

HH(Coh(X)), and similarly for periodic cyclic homology. Similar patterns arise in K-theory,

developed fully in [16].

4.1 Toy example: convolution pattern in Hochschild

homology: A1/Gm
We will perform an analysis of convolution structures in Hochschild homology in a toy example,

and make comparisons to K-theory. For this section, take f : X → Y , with X = (A1∪pt)/Gm
and Y = A1/Gm. Note that since Gm acts by finitely many orbits on everything in sight, the

S1-equivariant structure is necessarily trivial and thus there is nothing gained by passing to

HP , i.e. HP = HH ⊗k k((u)). For this section, we will only work with HH.
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Example 4.1.1 (K-theory). We naturally have K(A1/Gm) = Z[z, z−1], defined by the action

of Gm on the zero fiber k [t]/(t). This determines the Gm-action on k [x ] – if z acts by

degree n on k , then it acts by degree n + r on x r ∈ k [x ]. We let zn denote the sheaf

k [x ] where deg(1) = n. Likewise, K(BGm) = Z[z, z−1]. Thus, K(X) = Z[z, z−1]2, and

K(X ×Y X) = Z[z, z−1]4. There is only one interesting convolution sheaf on X ×Y X, which

is the one that “sends [pt] 7→ [A1] in K(X). It acts by pushing forward a sheaf on the origin

to A1. Let k be a sheaf on the origin of degree n; after pushing forward to A1, it has a free

resolution of the form k [x ](n − 1)
x // k [x ](n) , i.e. zn − zn−1 = zn−1(z − 1). Thus, the

convolution action is by the matrix(
a b

c d

)
7→
(
a (1− z−1)b

c d

)
where a, b, c, d ∈ Z[z ].

Note that there is a short exact sequence

0→ K0({0}/Gm)→ K0(A1/Gm)→ K0(P1)→ 0

where the first map Z[z, z−1] → Z[z, z−1] is multiplication by 1− z−1, and the second map

is evaluation at z = 1.

Example 4.1.2 (Hochschild homology). We want to study the convolution given by L(f ) :

LX → LY . Choose coordinates A1 = Spec k [x ] and Gm = Spec k [z, z−1], and define

R = k [x, z, z−1]/x(z − 1) with a Gm-action deg(x) = 1 and deg(z) = 0, so that L(Y ) =

Spec(R)/Gm and L(X) = (Spec(R) ∪Gm)/Gm. Our goal is to compute

ωLY (L(X ×Y X)) = HomLY (Lf∗OLX,Lf∗, ωLX)

This will act on the module O(LX) = k [z, z−1]2. We’ve already identified OLX; to identify

ωLX, note that LX has two connected components: LY and Gm×BGm. The map LY → LY
is just the identity map, so the pushforward on distributions is more or less obvious. The map

Gm × BGm → LY is given by closed immersion, and we can compute the shriek pullback by

the adjunction

HomR(R/t,R) ' HomR/t(R/t, f
!R) = f !R

There is a resolution of R/t by the complex

R/t

· · · // R
t // R

z−1
// R

t // R

'
OO

Its R-linear dual is quasi-isomorphic (under a noncanonical identification of functions and

distributions) to functions on LY supported on the set where t = 0, i.e. the ideal sheaf
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(z − 1). Note that (z − 1) ' R/t, again noncanonically. To compute HomLY we need to

take Gm-equivariant homomorphisms of the relevant sheaves:

ωLY (L(X ×Y X)/LY ) = HomR(R ⊕ R/t,R ⊕ (z − 1))G ' HomR(R ⊕ R/t,R ⊕ R/t)G

twisting with a choice of isomorphism (z − 1) ' R/t to identify the source and the target

(so that we have a monoidal product). To compute this, we need to again use the above

resolution. We will choose to write this in “matrix form”, i.e. think of a pair (f , g) ∈ (R⊕R/t)

as a column vector

(
f

g

)
. We find that

ωLY (L(X ×Y X)/LY ) =

(
R (z − 1)

R/t R/t[[β]]

)G
where deg(β) = 2, and wt(β) = 1 (since β is multiplication by (z−1)(t), which has degree 1).

Note that while (z−1) ' R/t as a module, the functions f ∈ (z−1) represent multiplication

by f . Further note that these matrices are exactly the endomorphisms

ω(L(X ×Y X) ' EndLY (Lf∗ωLX) = EndGnR(R ⊕ R/t)

i.e. R-linear morphisms R → R/t are exactly given by (z − 1), and derived R-linear mor-

phisms R/t → R/t are exactly given by R/t[[β]], and further we insist that the maps are

G-equivariant on both sides.

Finally, taking G-invariants, we find

ωLY (L(X ×Y X)/LY ) '
(
k [z, z−1] (z − 1)

k [z, z−1] k [z, z−1]

)
Specifying generic z recovers a matrix algebra, realizing the K-theoretic convolution alge-

bra of K(X×Y X) where we localize to a generic character, and specifying z = 1 recovers the

K-theoretic action of A1 where we localize to 1 ∈ Gm, i.e. forget the equivariance entirely.

The vanishing of z − 1 realizes the fact that the K-theoretic pushforward of sheaves on {0}
to A1 is zero.

4.2 The Hochschild homology of Coh(B“G/B)

Let G be a reductive group. Let S = BG, X = BB and so X ×S X = B“G/B. We will

first interpret the convolution patterns in K-theory, and then apply our previous results on

convolution patterns in Hochschild homology. In particular, we will obtain a Weyl group action

on K0(Perf(BB)) = HH(Perf(BB)) linear over K0(Perf(BG)) = HH(Perf(BG)) which does

not come from a categorical action. Note that we will not take S1-invariants; since S1 acts

trivially, it will merely clutter the notation.
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Remark 4.2.1 (K-theory). It is well-known that the representation ring of a reductive group

is given by k [H]W where H is a universal Cartan (i.e. the quotient of a Borel by its unipotent

radical). The stack BB ' G“(G/B) warrants a brief discussion; the flag variety is customarily

denoted G/B, but can actually be defined without making a choice of Borel as the variety

of Borel subgroups of G. Choosing a base point of this variety amounts to choosing a

Borel, which induces an isomorphism with the homogeneous space G/B. The identification

K0(Perf(BB)) ' [H] depends on such an identification, and H = B/U. We choose once and

for all a notion of fundamental Weyl chamber (determined either by an embedding of G/B

into projective space or a choice of Borel); this gives us a length function ` : W → Z.

By the pullback map, K0(Perf(BB)) = k [H] is a module over K0(Perf(BG)) = k [H]W ,

and K0(Perf(B“G/B)) has a left and right action of K0(Perf(BB)) = k [H]. As a left-module,

using the results of Section 5.2.18 of [16], we can determine that

K0(Perf(B“G/B)) ' K0(Perf(T“G/B)) ' k [H]⊗ k [W ].

We let eλ denote the basis element in k [H] where λ ∈ X∗(H) is a character of H. The

pushforward functor Perf(BB) → Perf(BG) (which makes sense since f is proper and all

stacks involved are smooth) induces a “trace” map on K0; it can be explicitly computed by

the Borel-Weil-Bott theorem as the map sending eλ to (−1)`(w)χw ·λ, where w ∈ W is chosen

such that w · λ is dominant under the twisted Weyl action and χw ·λ is the character for the

irreducible representation with highest weight w · λ. By the Weyl character formula, we can

compute the trace:

τ : k [H]→ k [H]W P 7→ ∆−1
∑
w∈W

(−1)`(w)w · (P )ew(ρ)

where

∆ =
∏
α∈R+

(eα/2 − e−α/2)

is the “Weyl denominator” (R+ the set of positive roots), and ρ = 1
2

∑
α∈R+ α. In Proposition

6.1.19 of [16], it is shown that BB → BG satisfies the conditions of the Kunneth theorem

(Theorem 5.6.1) of loc. cit. ; therefore we have

K0(Perf(B“G/B)) ' k [H]⊗k[H]W k [H]

By the base change formula, we have that the action of K0(Perf(B“G/B)) on K0(Perf(BB))

is by

(f ⊗ g) · x = f τ(gx).

We make a few stray observations:

• The trace map induces a nondegenerate pairing K(BB)⊗K(BG)K(BB)→ K(BG), i.e.

k [H]⊗k[H]W k [H]→ k [H]W .
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• Note that the k [H]W -linearity of the action is expressed by the projection formula, i.e.

f∗(f
∗V ⊗W ) ' V ⊗ f∗W

where V is a G-representation and W is a B-representation, and the functor f∗ is the

induction from a B-representation to a G-representation. While this functor may be

difficult to describe in general due to nontrivial extensions inducing complicated spectral

sequences, on the level of K0-groups it is not.

• Proposition 6.1.19 of [16] argues using an explicit basis of k [H] over k [H]W (of rank

|W |) by Steinberg and Pittie [56].

• By the Kunneth theorem in K-theory, we have an isomorphism

K0(B“G/B) ' Endk[H]W (k [H]).

Since the affine Weyl group acts on the weight lattice, we have an embedding of the

group algebra of the affine Weyl group k [W af f ] ↪→ K0(B“G/B). This map is not an

isomorphism as we will see in the next example.

Example 4.2.2 (G = SL2). It is instructive to work out the above explicitly when G = SL2.

In this case, k [H] = k [t, t−1] and k [H]W = k [t + t−1]. First, the Steinberg-Pittie basis is

given by {1, t−1}. Furthermore one observes the following phenomena:

• The Weyl group (or any larger covering, like the braid group) does not act on the

category Coh(BB) linearly over Coh(BG). For example, take G = SL2, and let w ∈ W
be the nontrivial Weyl reflection. Suppose we had an autofunctor w : Coh(BB) →
Coh(BB). That it is invertible means that it takes line bundles to line bundles; in

particular w(O(n)) = O(−n)[k ] for some shift k . That it is Coh(BG)-linear means

that w(p∗V ) ' p∗V for every representation V ∈ Coh(BG). Now, p∗C2 sits inside a

short exact sequence 0 → O(−1) → p∗C2 → O(1) → 0; acting by w gives a short

exact sequence 0 → O(1)[a] → p∗C2 → O(−1)[b] → 0, but there cannot be such

a short exact sequence. Note that the Weyl group does act on the non-equivariant

category Coh(G/B), but not canonically. One can choose a torus T ⊂ B, and clearly

N(T )/T acts on the right.

• Even though this multiplication in K-theory cannot come from a categorical action,

the identity functor still makes sense as an integral transform. Using the (equivariant)

Beilinson resolution of the diagonal of P1, we find that 1 ∈ Endk[H]W (k [H]) corresponds

to 1⊗ 1− t−1 ⊗ t−1. Through guesswork, one can compute that w ∈ Endk[H]W (k [H])

corresponds to 1⊗ 1− t ⊗ t−1.
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• By contrast, Bezrukavnikov and Riche proved that there is a braid group action on

the category Coh(Ñ/GGm). In particular, the integral kernel corresponding to w is

OP1×P1 ∈ Coh(StN/SL2,Gm).

• Note that K0(B“G/B) ' Endk[H]W (k [H]) 6' k [W af f ]. We’ve identified the actions of

1 and w inside the convolution algebra k [H]⊗k[H]W k [H] above. We have the following

k [H]-basis of Z[H] ⊗Z[H]W Z[H] (under the left action) by Steinberg-Pittie: 1 ⊗ 1 and

1 ⊗ t−1. The k [H]-basis 1, w of Z[W af f ] can be expressed in terms of the Steinberg-

Pittie one by the matrix

(
1 t−1

1 t

)
. This matrix is not invertible; its determinant is

t − t−1.

• Inverting t − t−1 “corresponds” to restricting to regular semisimple elements of G. We

can make this precise using loop spaces shortly.1

We need the following calculation, which is well-known to experts but we include for

completeness and convenience.

Lemma 4.2.3. Let µ : G̃ → G be the global Grothendieck-Springer resolution. We have

µ∗OG̃ ' OG×H//WH

where µ∗ is the derived pushforward. In particular, the higher pushforwards vanish.

Proof. First, we will show that the pushforward of OG̃ along µ has vanishing cohomology.

Since G is affine, it suffices to show that the global sections functor has vanishing cohomology;

equivalently, we can show that the pushforward i∗OG̃ along the embedding i : G̃ → G ×G/B
has vanishing higher global sections. We replace i∗OG̃ with its Koszul resolution

OG̃ '
(
p∗Ωd

G/B → · · · → p∗Ω1
G/B → p∗OG/B

)
where p : G × G/B → G/B is the projection and d = dim(G/B). Using the projection

formula, the pushforward of this complex along p is

p∗OG̃ '
(
k [G]⊗Ωd

G/B → · · · → k [G]⊗Ω1
G/B → k [G]⊗OG/B

)
.

The global sections of this complex can be computed by a spectral sequence with Ep,q1 =

Hp(G/B,Ωq
G/B), which is known to vanish unless p = q, for example by [63]. Thus, the

spectral sequence degenerates at the E2 page and Γ•(G̃,OG̃) is concentrated in degree zero.

1Alternatively, we can show this inside EndZ[H]W (Z[H]) by seeing that the Weyl character “trace” en-

domorphism of k [H] cannot possibly be obtained by a sum affine Weyl group actions. Indeed, suppose

tr = f (t) + g(t)w . Since tr(t−1) = f (t)t−1 + g(t)t = 0, we have that tr = −t2g(t) + g(t)w . Next,

since tr(1) = −t2g(t) + g(t) = 1, but 1− t2 is not a unit.
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To show that Γ0(G̃,OG̃) = O(G×H//WH), we apply a standard fact in algebraic geometry:

if f : X → Y is a proper birational map with Y normal and affine, then f∗OX = OY . There

is a map ν : G̃ → H which induces the desired map, which is an isomorphism on the regular

semisimple locus and is proper by base change. We claim that G ×H//W H is normal. The

base change of a normal variety along a normal morphism is normal; a morphism f : X → Y

is normal if for every x ∈ X, f is flat at x and if the geometric fiber f −1(f (x)) is normal at

x . The claim follows, since H → H//W has finite fibers and is thus normal.

Lemma 4.2.4. Suppose Z is affine. Then there is a canonical isomorphism

Γ(Z, f∗F ⊗OZ g∗G) ' Γ(X,F)⊗O(Z) Γ(Y,G)

In particular,

Aff(X ×Z Y )→ Aff(X)×Z Aff(Y ).

Proof. The map is obtained purely by universal property of fiber products and affinization.

That is, to produce this map, it suffices to produce a map φ : X ×Z Y → Aff(X)×Z Aff(Y ),

which is produced by the diagram

X ×Z Y //

��

((

X

��

Aff(X)×Z Aff(Y ) //

��

Aff(X)

��

Y // Aff(Y ) // Z

In fact this map is an isomorphism2 which more or less follows from the definitions. One

possible argument is to use base change and the projection formula to show that φ∗OX×ZY =

OAff(X)×ZAff(Y ); another is to take Cech covers U → X and V → Y and notice that U ×Z V
is a Cech cover of X ×Z Y .

Remark 4.2.5. This result is not true if Z is the quotient of an affine by a reductive group.

For example, take X = Y = Z = BG. It is not true that the invariants of a tensor product

of representations is isomorphic to the tensor product of invariants.

Lemma 4.2.6. Let H be the universal Cartan. The global functions on the Grothendieck-

Springer stack are given by

O(G̃/G) = k [H]

and the global functions on the Steinberg stack are given by

O(StG/G) = k [H]⊗k[H]W k [H]

2This is not true if Z is nonaffine. For example, take Z = P1 and X = Y = Tot(O(−1)). Then X×ZY = s̃l2,

so we know Aff(X ×Z Y ) = sl2 ×t//W t, whose graded dimension does not agree with Aff(X)× Aff(Y ).
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Proof. We will use liberally the fact that for any scheme X, O(X/G) = O(X)G, which

follows from a standard descent argument. In particular, O(X/G) ' O(Aff(X)/G). For the

Grothendieck-Springer resolution, we claim that Aff(G̃) = G×H//W H. To see this, note that

the map G̃ → G ×H//W H is birational and proper, and that G ×H//W H is normal. We claim

that if f : X → Y is proper and birational and Y is normal, then f∗OX = OY . Since f is

birational, f∗OX ⊂ Frac(OY ). Since f is proper, f∗OX is finitely generated as an OY -module.

Since Y is normal, any finitely generated OY -module in Frac(OY ) is OY , proving the claim.

Thus, Aff(G̃) = G ×T//W T , and

O(G̃/G) = O(H//W ×H//W H) = O(T ).

Alternatively, one can note that the projection G ×H//W H → H is a categorical quotient,

since the fiber of every closed point contains a unique closed orbit.

For the Steinberg variety, we apply the next lemma. In our case, one has that

Aff(StG) = Aff(G̃)×G Aff(G̃) = H ×H//W G ×H//W H.

So, one has

O(StG/G) = O(Aff(StG)/G) = O(H ×H//W H//W ×H//W H) = O(H)⊗O(H//W ) O(H).

Remark 4.2.7 (Hochschild homology). In Hochschild homology, we have L(BG) = G/G,

L(BB) = B/B ' (G×B B)/G = G̃/G and L(B“G/B) = StG/G. Since these are all smooth

quotient stacks with no nontrivial moduli of orbits, the loop spaces are all classical. We have,

ω(StG/G) ' EndOG/G(µ∗OG̃/G) ' EndOG/G(O(G×H//WH)/G)

and we wish to study the map

Endk[G](k [G ×H//W H])G −→ Endk[H]W (k [H])

Note that since G ×H//W H is flat over G, there are no higher Ext groups and this verifies in

a different way that L(B“G/B) has no derived structure. Since we are in an entirely classical

situation, and since k [G ×H//W H] is generated as a k [G]-module by k [H] ⊂ k [G ×H//W H]G,

the map above is injective. To see that it is surjective, we can explicitly produce a section of

the above map as follows: for φ ∈ Endk[H]W (k [H]), define φ̃ ∈ Endk[G](k [G ×H//W H])G by

φ̃(f ⊗ g) = φ(f )⊗ g

Since φ is linear over k [H]W , this is well-defined, and it’s clear that φ̃ is G-equivariant.
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We have that

ω(StG/G) = O(StG/G) ' Γ(G/G, µ∗OG̃/G ⊗G/G µ∗OG̃/G)

' Γ(H//W,OH ⊗H//W OH) ' k [H]⊗k[H]W k [H].

The embedding

k [H]⊗k[H]W k [H]→ Endk[H]W (k [H]) (f ⊗ g)(x) = f · tr(g · x)

is determined the trace map tr : µ∗ωG̃ → ωG. Explicitly, this trace map is

tr(x) =
1

|W |
∑
w∈W

w · x

Furthermore, it’s clear that k [W af f ] ⊂ Endk[H]W (k [H]) ' k [H]⊗k[H]W k [H]; for SL2 we’ve

explicitly written out the reflection operators in terms of the Steinberg-Pittie basis. On the

other hand, the Steinberg-Pittie operators can be written in terms of the reflection and shift

operators via the Weyl character formula, which has denominator ∆, which is the equation

for the reflection hyperplanes in the character lattice. Thus, localizing away from the singular

locus in G/G makes the above inclusion an equality.

4.3 The Hochschild homology of Coh(Lu(B“G/B))
For this section and the next, we will let GGm denote G ×Gm. We will assume the following

unproven conjecture, whose proof has eluded us.

Conjecture 4.3.1 (Devissage). Let X be a QCA stack, Z a closed reduced substack, and

i : Z → Z ′ a nilthickening of Z in X; we write i ′ : Z ′ → X for the closed immersion. Then,

the pushforward functors

HP (Coh(Z)) HP (Coh(Z ′)) HP (CohZ(X))
HP (i∗) HP (i ′∗)

induce isomorphisms on periodic cyclic homology.

Remark 4.3.2. If we assume that X is a quotient stack of a quasiprojective scheme by a

group, it is not difficult to reduce to the case when X is smooth. If X is not smooth, then

embed X G-equivariantly into a smooth quotient stack M. We have a map of exact triangles

HP (CohZ(X)) HP (Coh(X)) HP (Coh(X − Z))

HP (CohZ(M)) HP (Coh(M)) HP (Coh(M − Z))
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Assuming the devissage result when for an embedding into smooth M, we have

HP (CohZ(X)) HP (CohX(M)) HP (CohX−Z(M − Z))

HP (Coh(Z)) HP (Coh(M)) HP (Coh(M − Z))

Taking cones of the columns, we have an localization sequence

0 HP (Coh(M −X)) HP (Coh(M −X))

proving the claim.

Theorem 4.3.3. Let H denote the affine Hecke algebra. We have isomorphisms of algebras

H⊗k k((β)) HP (StN/GGm)

k [q, q−1][H]W ⊗k k((β)) HP (Ñ/GGm)

'

'

Partial proof of theorem. We argue by producing a natural map

K0(Coh(StN/GGm))→ HP (Coh(StN/GGm))

which factors the trace map from the connective K-theory spectrum

K•(Coh(StN/GGm))→ HP (Coh(StN/GGm)).

and showing that this map is a quasi-isomorphism, and then applying Theorem 7.2.5 in [16].

We first need to deal with the fact that the treatment in [16] deals with the underived Stein-

berg variety St′N = Ñ ×g g̃, which is a classical scheme, whereas our convolution formalism

requires us to deal with the derived Steinberg variety StN = Ñ ×g Ñ . They do not differ by

much; in particular, the following squares are Cartesian

StN //

��

Ñ

��

// {0}

��

St′N
//

��

g̃

��

// h

Ñ // g
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Since ν : g̃→ h is smooth, the normal bundle to the fiber ν−1(0) = Ñ inside g is trivial with

fibers isomorphic to h. In particular, since the top two squares together form a Cartesian

square, and since the image of St′N in h is {0}, we have

StN ' St′N × h[−1]

where h[−1] = Speck Symk h[1]. It is well known that the K-theory of coherent sheaves is

not sensitive to nilthickenings, essentially by the usual devissage argument for K-theory of

coherent sheaves. For periodic cyclic homology, we do not currently have a devissage result

for stacks. However, it is known that periodic cyclic homology is a A1-homotopy invariant.

In particular, since there is an equivariant A1-homotopy contracting h[1] to its zero-section,

we can conclude that the pushforward functor

HP (Coh(St′N ))→ HP (Coh(StN ))

is a quasi-isomorphism without the full strength of devissage. In particular, from now on we

can make our arguments replacing StN with St′N .

Using the filtration of the Steinberg variety by irreducible components as in Lemma 7.6.11

of [16], which we will denote

Z1 = Ñ/GGm ⊂ Z2 ⊂ · · · ⊂ Zk = Z = StN/GGm ,

we can inductively compute HP (Coh(StN/GGm)) by exact triangles. By Theorem 6.2.4 and

the Cellular Fibration Lemma 5.5.1 of [16], the differential from K1 to K0 in the corresponding

long exact sequence is zero. That is, there is an exact triangle of complexes

K0(CohZi−1
(Z)⊗ k((u))→ K0(Coh(Zi))⊗ k((u))→ K0(Coh(Zi − Zi−1)⊗ k((u))

We wish to induce a natural isomorphism down the middle

K0(CohZi−1
(Z))((u)) K0(Coh(Zi))((u)) K0(Coh(Zi − Zi−1))((u))

HP (CohZi−1
(Z)) HP (Coh(Zi)) HP (Coh(Zi − Zi−1))

which factors the trace K0 ⊗ k((u)) → HP . The left isomorphism is given by the still

conjectural devissage result in periodic cyclic homology and by induction on i . Since Zi−Zi−1

is an equivariant vector bundle over BK where K = B ∩w ·B, by Lemma 4.3.4 and Lemma

4.3.5 the map on Hochschild homology

K0(Zi − Zi−1)→ HH(Coh(Zi − Zi−1) ' k [H]

is an isomorphism. Furthermore, it factors the natural map K → HC, since HC has non-

negative cohomological amplitude. Therefore the middle arrow factors K → HP and is also

an isomorphism.
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Lemma 4.3.4 (Periodic cyclic homology of vector bundles). Let p : E → X be a vector bundle

over a stack X. Then, the functors p∗ : Perf(X) → Perf(E) and p∗ : Coh(X) → Coh(E)

induce isomorphisms on periodic cyclic homology.

Proof. Let z : X → E denote the zero section First note that p∗ : Coh(X) → Coh(E) is

well-defined since p is smooth, and z∗ : Coh(E) → Coh(X) is well-defined since it is a local

complete intersection. Let us prove the Coh case; the argument for Perf is the same but

easier since we do not have to worry about functors being well-defined on compact objects.

Consider the diagram

E

E × A1 E

t1t0
z◦p

id
h

where h : E × A1 is the homotopy contracting the fibers of the vector bundle. Note that

the pullbacks t∗0 , t
∗
1 make sense as functors on derived categories of coherent sheaves since

t0, t1 are local complete intersections (of codimension one). Since Coh(E×A1) ' Coh(E)⊗
Perf(A1) (see Remark 1.1.6 in [9]) and periodic cyclic homology is A1-homotopy invariant

(i.e.HP (C⊗Perf(A1)) ' HP (C) is an equivalence for any C; see Theorem B (iii) of [14] for

details) we have that (z ◦ p)∗ : HP (Coh(X)) → HP (Coh(E)) is homotopic to the identity.

The functor p ◦ z is the identity, and the statement follows.

Lemma 4.3.5. Let G be a reductive linear algebraic group, B,B′ two Borel subgroups, and

K = B ∩ B′, and let H be the universal Cartan, canonically realized as the quotient of K,B

or B′ by their respective unipotent radicals. The natural map O(L(BH)) → O(L(BK)) is

an isomorphism.

Proof. First, we claim that that O(L(BK)) = O(K/K) has cohomological amplitude zero.

There is an isomorphism of stacks K“K ' G“(G ×K K), and if we forget the stacky G-

quotient, there is a sequence of (G-equivariant) maps of schemes G ×K K → G/K → G/B,

where the first map is a K-bundle and the second map is an affine bundle with fiber B/K. Our

strategy will be to apply two functors to the G-equivariant sheaf OG×KK: (1) the pushforward

along the map G/K → G/B to the category of G-equivariant coherent sheaves on G/B,

which is equivalent to the category B-representations, and then (2) push it forward along the

map BB → BG → pt, i.e. induce it to a G-representation using Borel-Weil-Bott and then

take its trivial isotypic component.

This B-representation we consider is somewhat complex; since we are only interested in the

trivial isotypic component of its induction to G, we can make a some simplifying reductions.

First, it is a (infinite) direct sum of finite-dimensional representations, so we can focus on

each of these finite-dimensional pieces. Any finite-dimensional B-representation has a finite

Jordan-Holder series whose composition factors are one-dimensional, and one-dimensional

representations are classified by the action of a torus T ⊂ B. In general, to compute the
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induction to G (i.e. global sections on the flag variety under Borel-Weil-Bott) of such a

representation, we need to use a spectral sequence associated to the Jordan-Holder filtration

whose boundary maps can be difficult to compute. Since we are only interested in the trivial

isotypic component, we only need to keep track of where its corresponding weights appear in

the spectral sequence, in particular we want to look for weights which are reflections of zero

on the weight lattice along the shifted reflection hyperplanes. We will show that only the zero

weights (and not its reflections) show up in as composition factors of this B-representation

(i.e. not the shifted reflected zero weights), and thus the trivial-isotypic component of the

spectral sequence degenerates, and the result follows.

In what follows, we will identify the B-representation and the filtration we use to compute

its induction to G. By equivariance we can consider the B-equivariant sequence of maps

B ×K K → B/K → pt. Let us first identify B/K. Let U ⊂ B be the unipotent radical

and choose a subgroup V ⊂ U such that K ∩ V = {e} and KV = B. For example, we

can do this by choosing a torus T ⊂ B such that K = B ∩ w · B, for w ∈ N(T ), and

take V = U ∩ w · Bop. Then, the multiplication map K × V → B is clearly K-equivariant;

furthermore, each K-orbit in B intersects exactly one point in the image, so the map induces

on quotients an isomorphism V ' B/K. However, this isomorphism is not B-equivariant; we

cannot even naturally endow V with a B-action since V is not normalized by B. Our remedy

will be instead to consider T -actions, which will suffice since our argument only depends

on knowing the composition factors of B-representations, and these are determined by the

action of a maximal torus T ⊂ B. The maximal torus T we chose in defining V will suffice;

it normalizes V , so we can write t · vK = tvK = (tvt−1)tK = (tvt−1)K.

Further, we claim that B ×K K ' B/K × K. In a general setting, a G-torsor P → X

and a scheme Z with a G-action determines a Z-bundle over X by P ×G Z → X. Here,

B ×K K → B/K is a K-bundle which is determined by the K-torsor B → B/K and the

adjoint action of K on itself. The isomorphism followed by the inclusion B/K → V → B is a

trivializing section (though not B-equivariant, as discussed). Collecting the above discussion,

we have an isomorphism V ×K ' B×KK which is T -equivariant, with T acting on V ×K by

simultaneous conjugation on each factor. In particular this implies that O(B/K×K) has the

same T -weights as O(B), which completes our argument that O(LBG) has cohomological

amplitude zero.

Finally, we claim that the map O(H/H) → O(K/K) is an isomorphism in degree zero;

we can understand L(BK) more equivariantly as the subvariety of the global Steinberg StG
consisting of points (x, B,B′) where B,B′ have relative position given by w , and such that

x ∈ B∩B′. Then, if U ⊂ B and U ′ ⊂ B′ are the respective unipotent radicals, and B = w ·B′,
the map sends (x, B,B′) ∈ K to x mod U = w · (x mod U ′) ∈ H. It is well-known that the

closed G-orbits correspond bijectively to the closed points downstairs.
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Corollary 4.3.6. The square

K0(BH) K0(BK)

HH(BH) HH(BK)

commutes, and all maps are isomorphisms.

Proof. The map K(BH)→ HH(BH) factors through the truncation to K0, since HH(BH)

has cohomological amplitude zero as shown above, and likewise for BK. We’ve just proven

that the bottom arrow is an isomorphism, and it is well-known that the top and left arrows

are also isomorphisms.
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[20] Jean-Marc Drézet. “Luna’s slice theorem and applications”. In: Algebraic group actions

and quotients. Hindawi Publ. Corp., Cairo, 2004, pp. 39–89.

[21] Vladimir Drinfeld and Dennis Gaitsgory. “On some finiteness questions for algebraic

stacks”. In: Geom. Funct. Anal. 23.1 (2013), pp. 149–294. ISSN: 1016-443X. URL:

https://doi.org/10.1007/s00039-012-0204-5.

[22] Dennis Gaitsgory. “ind-coherent sheaves”. In: Mosc. Math. J. 13.3 (2013), pp. 399–

528, 553. ISSN: 1609-3321.

[23] Dennis Gaitsgory and Nick Rozenblyum. A study in derived algebraic geometry. Vols.

I. and II. Vol. 221. Mathematical Surveys and Monographs. American Mathematical

Society, Providence, RI, 2017. ISBN: 978-1-4704-3569-1, 978-1-4704-3570-7.

[24] Dennis Gaitsgory and Nick Rozenblyum. “DG indschemes”. In: Perspectives in repre-

sentation theory. Vol. 610. Contemp. Math. Amer. Math. Soc., Providence, RI, 2014,

pp. 139–251. URL: https://doi.org/10.1090/conm/610/12080.

https://doi.org/10.1016/j.aim.2014.02.004
https://doi.org/10.1007/BF01160473
https://doi.org/10.1007/BF01160473
http://arxiv.org/abs/0308080v3
https://doi.org/10.1007/978-0-8176-4938-8
https://doi.org/10.1007/978-0-8176-4938-8
https://doi.org/10.1016/S0012-9593(01)01064-3
https://doi.org/10.1016/S0012-9593(01)01064-3
https://doi.org/10.1016/S0012-9593(01)01064-3
https://doi.org/10.1016/S0012-9593(01)01064-3
http://arxiv.org/abs/1308.2587v2
https://doi.org/10.1017/CBO9781316092439
https://doi.org/10.1017/CBO9781316092439
https://doi.org/10.1007/s00039-012-0204-5
https://doi.org/10.1090/conm/610/12080


BIBLIOGRAPHY 100

[25] Ezra Getzler and Paul Goerss. “A Model Category Structure for Differential Graded

Coalgebras”. In: (1999). URL: https://ncatlab.org/nlab/files/GetzlerGoerss99.

pdf.

[26] Mark Goresky, Robert Kottwitz, and Robert MacPherson. “Equivariant cohomology,

Koszul duality, and the localization theorem”. In: Invent. Math. 131.1 (1998), pp. 25–

83. ISSN: 0020-9910. URL: https://doi.org/10.1007/s002220050197.

[27] Jack Hall, Amnon Neeman, and David Rydh. “One positive and two negative results

for derived categories of algebraic stacks”. In: (2015). arXiv: 1405.1888v2.

[28] Jack Hall and David Rydh. “Perfect complexes on algebraic stacks”. In: (2017). arXiv:

1405.1887v3.

[29] Daniel Halpern-Leistner and Daniel Pomerleano. “Equivariant Hodge theory and non-

commutative geometry”. In: (2016). arXiv: 1507.01924.

[30] Robin Hartshorne. “On the De Rham cohomology of algebraic varieties”. In: Inst.

Hautes Études Sci. Publ. Math. 45 (1975), pp. 5–99. ISSN: 0073-8301. URL: http:

//www.numdam.org/item?id=PMIHES˙1975˙˙45˙˙5˙0.

[31] Kathryn Hess. “Rational homotopy theory: a brief introduction”. In: Interactions be-

tween homotopy theory and algebra. Vol. 436. Contemp. Math. Amer. Math. Soc.,

Providence, RI, 2007, pp. 175–202. DOI: 10.1090/conm/436/08409. URL: https:

//doi.org/10.1090/conm/436/08409.

[32] Jens Carsten Jantzen. Representations of algebraic groups. Second. Vol. 107. Math-

ematical Surveys and Monographs. American Mathematical Society, Providence, RI,

2003, pp. xiv+576. ISBN: 0-8218-3527-0.

[33] John D. S. Jones. “Cyclic homology and equivariant homology”. In: Invent. Math.

87.2 (1987), pp. 403–423. ISSN: 0020-9910. URL: https://doi.org/10.1007/

BF01389424.

[34] Dmitry Kaledin. “Co-periodic cyclic homology”. In: (2015). arXiv: 1509.08784v1.

[35] Bernhard Keller. “On differential graded categories”. In: International Congress of

Mathematicians. Vol. II. Eur. Math. Soc., Zürich, 2006, pp. 151–190.
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