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Modeling Unsupervised Event Segmentation:
Learning Event Boundaries from Prediction Errors
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Department of Computer Science, 901 E. 10th St.

Bloomington, IN 47408 USA

David Leake (leake@indiana.edu)
Department of Computer Science, 901 E. 10th St.

Bloomington, IN 47408 USA

Abstract

Segmenting observations from an input stream is an impor-
tant capability of human cognition. Evidence suggests that hu-
mans refine this ability through experiences with the world.
However, few models address the unsupervised development
of event segmentation in artificial agents. This paper presents
work towards developing a computational model of how an
intelligent agent can independently learn to recognize mean-
ingful events in continuous observations. In this model, the
agent’s segmentation mechanism starts from a simple state
and is refined. The agent’s interactions with the environ-
ment are unsupervised and driven by its expectation failures.
Reinforcement learning drives the mechanism that identifies
event boundaries by reasoning over a gated-recurrent neural
network’s expectation failures. The learning task is to reduce
prediction error by identifying when one event transitions into
another. Our experimental results support that reinforcement
learning can enable detecting event boundaries in continuous
observations based on a gated-recurrent neural network’s pre-
diction error and that this is possible with a simple set of fea-
tures.

Keywords: Event Cognition; Unsupervised Segmentation;
Expectation-based Failures; Reinforcement Learning

Introduction
The ability to derive meaning from complex observations is a
skill that has been recognized as vital for “growing” an intel-
ligent agent from a simple starting state through interactions
with a complex environment (Brooks, 1995; Cohen, Oates,
Atkin, & Beal, 1996). Before the agent is able to reason over
a world model, it must first develop one. We present an ap-
proach in which an agent, exposed to patterns with tempo-
ral dependencies, develops a predictive model of its environ-
ment. The agent’s expectation failures (i.e. prediction errors)
are then used as the basis of its event segmentation mecha-
nism. The resulting segments form the foundation of event
representations.

The research we present in this paper builds on the work
by Reynolds, Zacks, and Braver (2007) to build a computa-
tional model of event segmentation. We extend their model
by incorporating a reinforcement learning agent to handle the
detection of event boundary locations and trigger the subse-
quent event segmentation. The prediction mechanism is the
gated-recurrent neural network (GRNN) model outlined by
Reynolds et al. We evaluated several variations on the state
representation presented to the reinforcement learning agent.
The representations leverage information about the GRNN’s

prediction error through time. The first representation evalu-
ated is a simple state representation composed of the ratio of
the predictive model’s current error to its average error. This
simple representation is then expanded to include a measure
of input change, the amount of time since the gate was last
opened, and the type of event that is expected next. Each
state representation we evaluated contained the prediction ra-
tio. We tested the GRNN-RL pair and the state represations
on a motion captures dataset representing people executing
13 distinct tasks. Our results support the idea that informa-
tion about the GRNN’s prediction error is sufficient to allow a
learned RL policy to appropriately identify event boundaries.

Motivation
People are able to unconsciously and effortlessly perceive
sequences of discrete events from dynamic and continuous
sensory input (Radvansky & Zacks, 2014; Ross & Bald-
win, 2015). People’s ability to recognize temporal struc-
ture and patterns frequently observed across environmental
contexts facilitates their partitioning of continuous activities
into discrete events (Elman, 1990; Cleeremans & McClel-
land, 1991; Cohen & Adams, 2001; Reynolds et al., 2007).
Therefore, people must learn the sequential dependencies that
allow them to reason about sequences of observations as sin-
gle, individual events. Reasoning about both observed events
and their associated spatiotemporal patterns allows humans
to reason about the underlying cause of the change in sen-
sory observations (Radvansky & Zacks, 2014). Evidence
suggests that when people use an inferred event (i.e., spa-
tiotemporal pattern) to guide their sensory expectations, they
are able to recognize when transitions between events occur
because their observations no longer match that of the cur-
rent, hypothesized spatiotemporal pattern (Braver & Cohen,
2000; Rougier, Noelle, Braver, Cohen, & O’Reilly, 2005).
We model how agents develop spatiotemporal models and
use them to to interpret continuous observations as discrete
events.

Background
The task of this paper is related to previous works such as
the Neo project (Cohen et al., 1996). Neo is a simulated in-
fant that implements a computational model of the perceptual
analysis by image-schema theory of complex concept forma-
tion (Johnson, 1987; Mandler, 1988, 1992; Lakoff & John-
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son, 2008). Neo begins with relatively simple configurations
and develops/learns complex concepts through interactions
with a simulated, complex world, by analyzing occurrences
of discrete, symbolic tokens. We agree on the importance
of developing complex agents able to learn via a process of
perceptual analysis, representations of objects, states, and ac-
tivities as its foundation for learning conceptual categories.
However, a precondition for systems such as Neo is a pro-
cess for transforming continuous sensory observations of the
world into meaningful, discrete units (i.e., “unitization”). Our
work addresses the unitization problems.

Reynolds et al. (2007) propose a relatively simple mech-
anism for event segmentation. Using its experiences with
the world, their mechanism refines and hones the way it
segments continuous observations without prior knowledge
about the events or about the locations of event boundaries.
Their mechanism is an implementation of the first compo-
nent of Event Segmentation Theory (EST), a theory of event
schema/model creation (Zacks, Speer, Swallow, Braver, &
Reynolds, 2007; Kurby & Zacks, 2008). While previous
approaches to event segmentation focused on the degree of
change between subsequent observations as the key predic-
tive feature (Newtson, 1976; Gibson, 1979), EST emphasizes
the role of prediction failures. The importance of prediction
error during event segmentation is based on data suggesting
that people attempt to predict what they will observe next
(Rao & Ballard, 1999; Enns & Lleras, 2008; Niv & Schoen-
baum, 2008).

People maintain working models, dynamic representations
that facilitate event comprehension and incorporate predic-
tions about what will be observed next, of the events they
are observing (Radvansky & Zacks, 2014). Evidence sug-
gests that working models are the result of the segmentation
and chunking of experience that are triggered by transient
increases in prediction error (i.e., expectation failure driven
event segmentation). When an event boundary is detected,
people update their working model, thus changing their ex-
pectations about what will be observed next. However, there
is a key limitation in the approach taken by Reynolds et al.
when implementing this process, as their system depends on
externally set thresholds to determine when one event ends
and another begins. The work we present here extends their
prediction model by removing externally set thresholds and
examining the impact of incorporating higher-level expecta-
tions.

Modeling Prediction Error-based Segmentation
Reynolds, Braver, and Zack’s Segmentation Model
Reynolds et al. (2007) used a gated-recurrent neural network,
with the architecture depicted on the left in Figure 1, to model
how people might learn sequential dependencies and perceive
discrete event categories from continuous observations. The
GRNN identified points at which one activity transitioned
into another via an expectation failure based heuristic. They
selected the GRNN because they considered it the most bio-
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frames and any differences across events). Second, the figures were scaled to be within the
range {−1,1} by dividing all points by the largest absolute deviation from origin along any
of the three axes across all time-points. Finally, the motion captures were processed to ensure
that the orientation of each figure (defined by the vector from the left side to the right side of its
hips) was, on average, the same across events. These preprocessing measures were performed
in order to eliminate extraneous cues differentiating the events that could have influenced the
models’ performance.

The networks were trained and tested using a continuous presentation procedure. At the
end of each event, a new event was randomly sampled (with replacement) from the pool of
events and presented in its entirety to the network. Event presentation was continuous in that
the model attempted to make a prediction for every input, such that it attempted to predict the
first frame of a new, randomly selected event based on the last frame of the previous event.
These frames were considered boundaries between events. All other frames were considered
to occur within an event. Each network saw each event multiple times over the course of its
training.

3.2. Simulation details

Each model consisted of the same basic structure, with additional components where noted
below (see Fig. 2).

The core structure consisted of input (54 units), hidden (100 units), and output (54 units)
layers that were fully connected in a feed-forward fashion. The input and hidden units had
sigmoidal activation functions, with the activation level of each unit, acti, determined by the
equation:

Fig. 2. Architecture of the Model. A feed-forward model was augmented both by a simple recurrent network
architecture (Elman, 1991) and by a group of memory cells (Hochreiter & Schmidhuber, 1997) that can maintain
information for extended periods of time while still being updated appropriately. The mechanism by which these
cells are updated is a transient increase in prediction error.Figure 1: GRNN Model Architecture (Reynolds et al., 2007)

on the left. Unsupervised Event Segmentation Model Archi-
tecture on the right.

logically plausible model available for capturing how people
might learn sequential dependencies with the ability to store a
representation of the current event in memory based, on con-
temporary work in behavioral and neuropsychological corre-
lates of event structure and computational studies of sequen-
tial domains (for an extensive literature review see Reynolds
et al. (2007)). The GRNN adjusted its event representation by
triggering a gating mechanism that allowed the event repre-
sentation to be directly updated based on the GRNN’s obser-
vations. The gating mechanism controlled the extent to which
the event representation was updated by each new observation
and, combined with the network’s recurrence, allowed the
GRNN to maintain representations of the events through time
(Elman, 1990; Hochreiter & Schmidhuber, 1997). In their
simulations, the gate was operated either: (1) by ground truth
knowledge about the location of event boundaries or (2) by
an externally set threshold on the ratio of the model’s current
sum squared error (SSE) and its average SSE. Their model
attempted to predict its next observation; expectation failures
were measured as SSE in the model’s prediction and the true
next observation. Based on the distribution of SSE observed
within events versus at event boundaries, the authors con-
cluded that a GRNN with an expectation failure-based gat-
ing mechanism is a reasonable approximation of how peo-
ple might segment sequences of observations into meaningful
units.

We built on Reynolds et al.’s (2007) work by extending
their GRNN to include a RL agent that learns a policy for
controlling the gating mechanism.

A New Approach to Unsupervised, Self-Regulating
Event Segmentation
We incorporated a RL agent that learned a policy for control-
ling the gating mechanism that Reynolds et al. (2007) created
for their final simulation (Simulation IIIB), with the architec-
ture depicted on the right in Figure 1. In Simulation IIIB,
the gating mechanism was controlled by a simple mathemat-
ical function that evaluated whether the ratio of the models’
last observed prediction error relative to the observed average
error exceeded a threshold (1.5). Before modifying Simula-
tion IIIB to include the RL agent, we tested our implemen-
tation in order to replicate their the experimental results, and
we observed the same relations between the within event and
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boundary observations. Reproducing the author’s results (1)
allowed us to evaluate the reproducibility of their work be-
fore using it as the basis of our system and (2) allowed us to
build our model on one already reviewed and evaluated by the
scientific community.

In our model, the gating function from Simulation IIIB was
replaced with a RL agent that learned a policy for control-
ling the gating mechanism. An Expected-Sarsa learning al-
gorithm with a linear function approximator (Sutton & Barto,
2015) was used to learn the policy for controlling the gating
mechanism. Our GRNN and RL combination is only able to
build low-level expectations about what it will observe next.
However, it could be used as a component in a larger sys-
tem to build higher-level expectations that could be used to
help guide the actions of the RL agent. In our experiments,
while our model only directly builds expectations at the lower
level, we incorporate information at higher levels of expecta-
tion in the the RL agent’s state representation. We distinguish
between lower and higher level information based on whether
or not the information stems from the RL agent’s immediately
available observations about the state of the GRNN. Lower-
level information is information that is readily available to
the RL agent, whereas higher level information is not imme-
diately available. For instance, the degree to which there is
change between two subsequent observations is readily ob-
servable, whereas knowledge about the likelihood of a the
next event transition being from sitting to standing is not.

In our experiments, the combined GRNN and RL
agent was presented with a sequence of frames of mo-
tion captures of activities carried out by people (i.e. sit-
ting,standing,jumping,etc.). Each activity constituted a sin-
gle event and contained some number of frames. The frames
are what the GRNN observed. The experiments varied the
information presented to the RL agent. The RL agent’s state
representations consisted of both lower and higher level in-
formation about the state of the GRNN and RL agent. The
lower-level information included a measure of the GRNN’s
prediction error (as in Reynolds et al. (2007)), the degree
of change in the system’s subsequent observations (inspired
by Newtson (1976); Gibson (1979)), and the amount of time
since the RL agent last updated the event representation. The
higher level information included was a representation of the
next event the agent expected to observe.

The Models
The GRNN was constructed with the same parameters used
by Reynolds et al.: 54 input units, 100 hidden units, 100
event units, 100 recurrent units, and 54 output units. The
input and the hidden units had sigmoidal activation func-
tions. The weights were initialized randomly within the
range [−0.5,0.5] and during back-propagation the learning
rate was 0.001. When comparing our implementation of the
GRNN to that of Reynolds et al. we trained it to asymp-
totic performance, roughly 20,020 events, and evaluated it
on 900 events. For further specifics about how the GRNN

was configured, please refer to details about Simulation IIIB
in Reynolds et al. (2007). The GRNN was trained on 50,000
events with a perfect gating signal prior to incorporating the
RL agent as the gating mechanism.

The RL agent was construction according to an ε-greedy
Expected-Sarsa with replacing traces policy learning algo-
rithm. The specific state representations the agent learned
to operate over can be seen in the experiments section be-
low. Each of the state representations contained at least one
continuous feature, therefore a linear function approximator
was used to estimate the value of each state-action pair. Tile
coding was used to convert the continuous states into binary
feature vectors consisting of 32 layers of tilings with 4 tiles
for each feature.

The agent had two possible actions: (1) flip the gate and
(2) do not flip the gate. The policies were learned according
to −SSE computed from the SSE observed in the GRNN’s
predictions after each action by the RL agent. We chose this
reward, because it allows for unsupervised to control the gat-
ing mechanism and it is aligned with event segmentation the-
ory (Radvansky & Zacks, 2014). Table 1 shows the learning
parameters used to learn the policies for each of the state rep-
resentation experiments.

Experiments
Experiments evaluated the performance of the RL agent at
detecting when the GRNN’s event representation should be
updated. In each experiment, the RL learning algorithm de-
scribed above was evaluated according to the quality of the
policy it was able to learn given the different state representa-
tions. The different state representations incorporated differ-
ent amounts of low and high-level information. The low-level
information described the state of the GRNN and the state of
the RL agent. The high-level information described expecta-
tions about the next event that would be observed. The RL
agent learned over the course of 2,000 episodes. During each
episode, the RL agent was exposed to 100 randomly ordered
events. For the first 20 events, a perfect gating signal was used
before the RL agent began learning. This allowed a reason-
able average SSE to be computed before it was used as part
of the RL agent’s state representation. An overview of the
experimental state representations and the learning parame-
ters used by the RL agent to learn a policy for the given state
representation can be seen in Table 1.

Each state representation consisted of between 1 and 4 fea-
tures and always contained a feature describing the GRNN’s
current prediction error with respect to its historical predic-
tion error, i.e. SSE Ratio. Each dimension represented dif-
ferent information about the state of the overall system (Ta-
ble 2):

• SSE Ratio - the GRNN’s current prediction error (i.e. SSE)
with respect to a windowed average of the GRNN’s histor-
ical SSE;

• Obs Dist - the euclidean distance between two subsequent
observations, Xt−1 and Xt ;
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Table 1: State Representations and Learning Parameters.

State Representation Learning Parameters
SSE Ratio (α=0.005;γ=0.95;λ=0.9)
SSE Ratio+Obs Dist (α=0.005;γ=0.9;λ=1.00)
SSE Ratio+Next Event (α=0.001;γ=0.9;λ=0.75)
SSE Ratio+Last Gate (α=0.005;γ=0.95;λ=0.8)
SSE Ratio+Obs Dist+Last Gate (α=0.005;γ=0.9;λ=0.8)
SSE Ratio+Obs Dist+Next Event (α=0.001;γ=0.85;λ=0.95)
SSE Ratio+Last Gate+Next Event (α=0.005;γ=0.95;λ=0.95)
SSE Ratio+Obs Dist+ (α=0.005;γ=0.9;λ=0.9)
Last Gate+Next Event

• Last Gate - the distance between the system’s current time
step, t, and the last time step at which the RL agent’s action
was to opened the gate and update the event representation,
ta=1;

• Next Event - the next event the model will observe.

The mechanism by which a system might build higher level
expectations is not the focus of this research. Therefore, a
perfect version of this mechanism is used in our experiments.
Taking this approach is in line with the style of experiments
completed by Reynolds et al. (2007) during Simulation IIIA;
additionally, it allows for evaluating the performance of the
RL agent as the GRNN’s gating mechanism and evaluating
the benefits higher level expectations can have for lower-level
components, without having to tease apart the impact of the
performance of the higher level reasoning component.

Table 2: State Representation Features.

Feature Definition
SSE Ratio SSEt

apet−1
; apet = apet−1 +0.05(SSEt −apet−1)

Obs Dist
√

∑
53
i=1(Xt [i]−Xt−1[i])2

Last Gate t − ta=1
Next Event Ei+1

For each condition described in Table 1, the RL agent
learned its policy by interacting with the GRNN as it oper-
ated over a sequence of 20,020 randomly ordered events. The
RL agent learned its policy over the course of 500 episodic
passes over the event sequence. The performance of each
learned policy was evaluated over 50 separate runs where a
new randomized sequence of events was generated for each
run. The performance of the policy learned for each state rep-
resentation is described below in Results. The above experi-
ments were run for the −SSE and the distance-based reward
functions described in Models above.

The Data
The training data set for the GRNN and, subse-
quently, the RL agent was the motion capture data
used by Reynolds et al. (2007), which can be found at
http://dcl.wustl.edu/stimuli.html.

The data set contains 3-dimensional motion captures of
people performing 13 distinct tasks. Each motion capture
lasted 3-4 seconds and contained between 10 and 13 obser-
vations. Each motion capture activity was considered to be
one event. Each event observation consisted of 18 (x, y, z)
points on the body. We preprocessed each observation fol-
lowing Reynolds et al. (2007); the origin of the coordinate
frame was transformed such that the points corresponding to
person’s hip was the origin, all values were scaled to the range
[−1,1], and the orientation of each figure was altered such
that it was the same across all events.

Following Reynolds et al. (2007), before each training run
for the GRNN or the RL agent, the training set was created by
randomly ordering the events from the set of 13 events. A new
event was randomly selected and added to the training set un-
til the GRNN reached asymptotic performance. This allowed
the GRNN and the RL agent to observe each event multiple
times and learn a good predictive model for the frames that
fell within a given event. The random ordering of the events
provided the learning algorithm with a large variety of tran-
sition examples. The same process was used to create the
training set of the RL agent, but with a stopping condition of
the combined GRNN and RL agent having observed a pre-
specified number of events.

Results
The results show that it is possible to use reinforcement learn-
ing to identify true event boundaries. Furthermore, it is pos-
sible to learn a policy for controlling the GRNN gating mech-
anism without encoding any knowledge within the reward
function about where event boundaries actually exist. This is
important, because it provides evidence demonstrating that it
is possible for an artificial agent to take the first steps towards
learning complex concepts using a bottom-up approach. Ad-
ditionally, it provides evidence that it is possible for an artifi-
cial agent to learn on its own without requiring the painstak-
ing process of handcoding thresholds and decision boundaries
on the part of a human.

Table 3 shows the results from training the RL agent with
the eight different state representations. Dist. describes the
average distance between when the RL agent chose to update
the event representation and the closest true event boundary.
Reward is the total reward received by the agent during the
episode. Err. describes the GRNN’s average SSE over the
course of the episode. Each value in Table 3 is averaged
across 50 independent runs.

For each state representation, it was possible to learn a pol-
icy by which the RL agent could control the GRNN’s gating
mechanism. The learning curves for each state representation
can be seen in Figure 2. Each of the state representations was
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Table 3: Experimental results after 1000 episodes averaged
over 50 runs.

State Dist. Reward Err.
SSE Ratio 0.2 −12.0 0.15
SSE Ratio+Obs Dist 0.13 −30.72 0.18
SSE Ratio+Next Event 0.52 −31.44 0.18
SSE Ratio+Last Gate 1.22 −65.78 0.38
SSE Ratio+Obs Dist+Last Gate 1.16 −42.31 0.25
SSE Ratio+Obs Dist+Next Event 0.76 −48.69 0.28
SSE Ratio+Last Gate+Next Event 1.1 −103.07 0.3
SSE Ratio+Obs Dist+ 0.32 −52.56 0.5
Last Gate+Next Event

able to achieve an average reward between 0.15 -0.5 over the
course of 1000 episodes. When run using a perfect gating
function, the GRNN is able to achieve an average prediction
error within the same range achieved by the RL agent. It is
of note that this improvement in performance over that re-
ported by Reynolds et al. (2007) is due, in part, to advances
in deep neural network computing libraries. The state repre-
sentation SSE Ratio+Obs Dist was able to learn a policy best
able to maximize its received rewards. This indicates that in-
formation about the ratio of the current SSE to the average
observed SSE and the degree of change between two subse-
quent observations are critical features for deciding how and
when to update the GRNN’s event representation.

0 200 400 600 800 1000
0.6

0.5

0.4

0.3

0.2

0.1

0.0

sseratio
sseratio+obsdist
sseratio+lastgate
sseratio+nextevent

sseratio+obsdist+lastgate
sseratio+obsdist+nextevent
sseratio+lastgate+nextevent
sseratio+obsdist+lastgate+nextevent

Figure 2: GRNN Model Architecture (Reynolds et al., 2007).

The results show that the RL agent was able to learn a pol-
icy for each state representation. The agent was able to reach
a reasonable average distance from the true event boundary,
approximately 1.5 frames for about half of the state represen-
tations. We considered the RL agent’s ability to identify an
event boundary within 0.67 of the true event boundary to be

a reasonable level of performance given that each event lasts
for 11 frames on average.

Finding that it is possible for a RL agent to learn when one
event ends and another begins using GRNN’s the SSE Ratio
alone, while surprising, is encouraging, as an initial step to-
wards learning to unitize continuous observations without the
use of higher level information (i.e. Next Event). It is pos-
sible that the SSE Ratio feature was so powerful on its own
because it is correlated with and related to the other lower-
level features (i.e. Obs Dist and Last Gate). However, it is
not surprising that the SSE Ratio+Obs Dist both resulted in
a high performing policy and the best performaning policy
given the evidence in the literature suggesting that the degree
of change between two subsquent observations plays a large
role in segmenting continuous events and detecting boundary
points on physical objects (Newtson, 1976; Gibson, 1979) is
considered.

The ability to correctly identify event boundaries does not
always have a consistent effect on the GRNNs observed pre-
diction error. This finding indicates that it is not the number
of boundaries that are correctly identified that is important,
but rather which boundaries are correctly identified. Appro-
priately handling sub-event boundaries could drive down er-
ror in the GRNN while causing the RL agent to trigger gates
at non-event boundaries, thus increasing the average distance
measure. For example, the SSE Ratio state representation
results in an agent that is better able to detect event bound-
aries than the SSE Ratio+Next Event state represention, but
the SSE Ratio+Next Event results in more rewards and lower
average prediction errors in the GRNN.

Future Work
That the RL agent was able to learn a policy for controlling
the gating mechanism based solely on the GRNN’s predic-
tion error supports the potential for prediction error to play
a primary role in event segmentation. We hypothesize that
prediction error is likely to play an important role in other
aspects of complex event segmentation and, possibly, event
cognition. For example, if a person is unable to predict the
event he/she will observe, then the higher level expectation
failures might be propagated back to the segmentation gating
mechanism and alter how it is identifying event boundaries.
The ability of the agent to learn a gate controlling policy given
a state representation that includes higher level expectations
(i.e. the likelihood that the current event will transition into
a standing event), indicates that the combined GRNN and
RL agent model should be able to segment continuous ob-
servations into discrete events such that the discrete events
are maximally predictive based on higher level expectation
errors. We intend to study this in future work.

The research in this paper represents a step towards model-
ing how an intelligent agent can reason about and manipulate
its model of the world in order to develop meaningful rep-
resentations in an unsupervised way. Given that our system
can recognize event boundaries, the next step is to develop a
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system that is able to recognize sub-events. We believe that
extending our approach to learning a policy for segmenting
an event into sub-events will depend on two parts: (1) al-
lowing the RL agent to more finely control the amount of
influence each observation has on the subsequent event rep-
resentation and (2) learning prototypical representations of
the events. Giving the RL agent more fine-grained control
over the influence incoming observations have on the cur-
rent event representation should allow the agent to account
for sub-events within longer, more complex events. Addi-
tionally, by learning the sequential dependencies among the
event representations, it should be possible to go beyond
identifying event boundaries to predicting which event will
be observed next. For example, given an observation that
a person is currently seated, represented in the form of the
GRNN+RL agents event representation and the learned pro-
totypical agent, it should be possible to predict the likelihood
that the person will stand up.

Conclusion
This paper has presented a model for learning to segment con-
tinuous observations into event units. Additionally, our model
is able to learn to identify boundary points without any prior
knowledge. The combined GRNN and RL agent proposed in
this paper represents an approach to modeling event segmen-
tation that removes the limitation of externally set thresholds
and is able to operate in continuous domains. Experimental
results support our conclusion that it is possible to use RL to
learn a gate controlling mechanism that is able to accurately
identify event boundaries independently without incorporat-
ing knowledge about the location of event boundaries in the
reward function.
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