
UC Davis
IDAV Publications

Title
Recursive Tetrahedral Meshes for Scientific Visualization,

Permalink
https://escholarship.org/uc/item/05n6k512

Author
Gregorski, Benjamin F.

Publication Date
2002

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/05n6k512
https://escholarship.org
http://www.cdlib.org/

Recursive Tetrahedral Meshes for Scientific Visualization

Benjamin Gregorski∗

Center for Applied Scientific Computing Lawrence Livermore National Laboratory
Center for Image Processing and Integrated Computing University of California, Davis

1 INTRODUCTION

The advent of high-performance computing has completely trans-
formed the nature of most scientific and engineering disciplines,
making the study of complex problems from experimental and the-
oretical disciplines computationally feasible. All science and engi-
neering disciplines are facing the same problem: how to archive,
transmit, visualize, and explore the massive data sets resulting from
modern computing. In the past, when only small amounts of data
were processed, many researchers could accomplish some of these
objectives at interactive rates on simple desktop machines. Today’s
impact problemsof science and engineering require new algorithms
for the analysis of the massive data sets produced by computational
simulations and new sensor technology. The exploration of truly
massive data sets requires new techniques in compression, storage,
transmission, retrieval, and visualization, as the existing techniques
for small data sets do not scale well, or not at all. New system-
atic approaches are needed to address the interrelated problems of
storage, visualization, and exploration of these massive data sets.

In this paper, we describe the use of recursive tetrahedral meshes
based on longest edge bisection as a data structure for scientific
visualization and its application to the approximation of datasets
with material interfaces and interactive isosurface extraction from
large volumetric datasets. The rest of this paper is structured as fol-
lows. Section 2 discusses previous work using longest edge bisec-
tion in the field of scientific visualization. Sections 3 and 4 detail
the basic mesh refinement scheme and the adaptive refinement of
the mesh. Section 5 discusses the application of this structure in the
approximation of datasets that contain material interfaces. Section
6 describes its application to fast isosurface extraction from large
datasets. Sections 7 and 8 give implementation details and Section
9 describes areas of future research.

2 PREVIOUS WORK

The refinement of a tetrahedral mesh via longest edge bisection and
its application in scientific visualization applications is described
in detail in several papers. In Zhou et al. [1], a fine-to-coarse
merging of groups of tetrahedra is used to construct a multi-level
representation of a dataset. Their representation approximates the
original dataset to within a specified error tolerance. In addition
they described a method for preserving the topology of isosurfaces
extracted from coarser levels of the representation relative to the
full resolution isosurface. For larger datasets, the fine-to-coarse al-
gorithm is not practical because storing the finest level mesh would
require too much memory. An improved algorithm for preserving
the topology of an extracted isosurface is presented by Gerstner
and Pajarola [2]. This algorithm is combined with a coarse-to-fine
splitting of tetrahedra to extract topology preserving isosurfaces or
to perform controlled topology simplification. Rendering of mul-
tiple transparent isosurfaces and parallel extraction of isosurfaces
are presented Gerstner [3] and by Gerstner and Rumpf [4]. Both of

∗{gregorski1}@llnl.gov

these algorithm extract the isosurfaces from the mesh in a coarse-to-
fine manner. In Roxborough and Nielson [5], the coarse-to-fine re-
finement algorithm is used to model 3-dimensional ultrasound data.
The adaptivity of the mesh refinement is used to create a model of
the volume that conforms to the complexity of the underlying data
and approximate the original data within a user defined error toler-
ance.

3 LONGEST EDGE B ISECTION

In this section we review longest edge bisection and establish termi-
nology. In this scheme, a tetrahedron is described by aleveland a
phasewith 3 phases at each level. The refinement begins at level 0,
phase 0 with an initial configuration of a cube divided into 6 tetra-
hedra around the major diagonal of the cube. Figure 1 illustrates the
three phases of the refinement process. Phase 0 introduces a new
vertex at the center of the cube, phase 1 introduces a new vertex at
the center of a face, and phase 2 introduces a vertex at the midpoint
of an edge. After three refinements, the level is incremented by 1
and the original cube has been split into eight smaller cubes. This
is equivalent to one refinement of an octree data structure, see [6]
and [7]. Aftern refinements, the phase isn mod 3 and the level is
bn/3c. The number of refinements is called therefinement level.
In the following sections, level refers to the valuebn/3c not the
refinement level. Thesplit edgeof a tetrahedron is the edge that is
bisected when the mesh is refined. In phase 0 the split edge is the
major diagonal of a cube, in phase 1 it is the diagonal of a cube’s
face and in phase 2 it is an edge of a cube. In each phase, a tetrahe-
dron is subdivided into twochildrenby introducing a vertex at the
midpoint of the split edge and forming a triangular face with this
vertex and the two vertices not on the split edge. This new face is
shared by the two children. The new vertex at the midpoint of the
split edge is called thesplit vertex.

Figure 1: Three phases of refinement for a single tetrahedron of the
initial configuration.

3.1 Diamonds
Tetrahedra are grouped into diamonds to simplify the refinement
process. When a tetrahedron is split, all the tetrahedra that share
its split edge must also be split in order to avoid introducing cracks

Figure 2: Shapes of phase 0, phase 1, and phase 2 diamonds. The
refinement edge is the bold dotted and dashed line.

Type Tetrahedra(phase,level) Parents Children
0 6(0,l) 3(2,l-1) 6(1,l)
1 4(1,l) 2(0,l) 4(2,l)
2 8(2,l) 4(1,l) 8(0,l+1)

Table 1: Number, phase, and level of tetrahedra, parents, and chil-
dren for each type of diamond. l is thelevelof the diamond.

and T-intersections into the mesh. A group of tetrahedra that share
a split edge is called adiamond. Thesplit edgeandsplit vertexof a
diamond are defined to be the common split edge and split vertex of
its tetrahedra. All diamonds in the mesh can be uniquely identified
by their split edge or split vertex. In later sections, a diamond will
be referenced by its split edge or split vertex. Phase 0, phase 1, and
phase 2 diamonds are shown in Figure 2. A phase 0 diamond is a
cube divided into six tetrahedra around its major diagonal, a phase
1 diamond consists of four tetrahedra around a face diagonal of a
cube, and a phase 2 diamond consists of eight tetrahedra around
an edge of a cube. By grouping tetrahedra into diamonds, we can
easily locate all of the tetrahedra around a split edge. Splitting a di-
amond is equivalent to splitting all of the tetrahedra in the diamond.
All tetrahedra within a diamond have the same level and phase. Ta-
ble 1 lists the number of tetrahedra, their phase, and level for each
diamond type.

Each diamond contains the following information: the phase and
level of the diamond; the type of the diamond based on its split
edge; if the diamond is a leaf, on a boundary of the root diamond,
or the root diamond. The type of the diamond is used to efficiently
encode the structure of the mesh (Section 7) including the location
of parent and child diamonds (Section 3.2). The type of a diamond
is determined by its split edge (SV0, SV1), whereSV0 andSV1

are the vertices on the split edge. There are 26 different directions
for the split edge of a diamond; there are 8 directions for the phase
0 diamonds, 12 for the phase 1 diamonds (4 each on the XY, XZ,
and YZ planes), and 6 for the phase 2 diamonds. For example,
the split edge ((64,64,0),(64,0,64)) gives the vector (0,-64,64). This
corresponds to the direction vector (0,-1,1). The 26 directions can
be defined by the different combinations of a vector(i, j, k) when
the entries are restricted to -1, 0, and 1. The vector(0, 0, 0) is not a
valid split edge.

3.2 Parent and Child Diamonds
Given a diamondD, the parents ofD are defined to be the dia-
monds that must be split to createD’s tetrahedra. The parents of
a diamond are diamonds from the previous refinement level. The
parent information is summarized in Table 1. Figures 3-5 show
the parents for each diamond type. In Figures 3-5, the split edge
is (sv0, sv1), the split vertex isSV , and the parents are shown as
p0, p1, A diamond is referenced by its split vertex.

For a diamondD, the diamonds that are created whenD is split
are calledD’s children. Figures 6-8 show the children for the dia-

p0

p2

p1

SV

sv1

sv0

v1

v2

Figure 3: Phase 0 diamond and its phase 2 parents. The tetrahedron
(sv0, v2, sv1, v1) is one of the tetrahdra in the phase 2 diamond
whose split vertex isp0.

p1p0 SV

sv0

sv1

Figure 4: Phase 1 diamond and its phase 0 parents.

mond types. Similarly, thegrandchildrenof D are the children of
D’s children.

4 SPLIT /MERGE REFINEMENT

The mesh supports the dual queue split/merge refinement strategy
similar to that described by Duchaineau et al. [8]. In the applica-
tions described in Secions 5.2 and 6, this mesh structure is used to
construct an approximation of a volumetric dataset. The tetrahedra
which constitute the current approximation of the volume, and then
are used to visualize the dataset.

The current meshis a set of tetrahedra, possibly from differ-
ent levels of the hierarchy, that approximates the volume dataset
to within a certain error bound. This set of tetrahedra is free from
cracks and T-intersections, and defines aC0 continuous, piecewise
linear approximation to the original data. Since a diamond repre-
sents a collection of tetrahedra which share a common refinement
edge, it is possible for a diamond to have some but not all of its
tetrahedra in the current mesh. The current mesh is generated us-
ing two queues. Thesplit queueholds the diamonds containing
the tetrahedra of the current mesh. Themerge queueholds the
diamonds that have been split whose children have not been split
(i.e. diamonds that have children but no grandchildren). The di-
amonds in the queues are ordered by an application defined error
value which measures how well the tetrahedra in a diamond ap-

p0

p1

p2

p3

SV

sv0

sv1

Figure 5: Phase 2 diamond and its phase 1 parents.

c0

c1

c2

Figure 6: The children of a phase 0 diamond are the phase 1 di-
amonds located on the faces of a cube. Three of the children are
shown here.

proximate a region of the volume for visualization purposes. Larger
error values indicate a poorer approximation.

The split queue is initialized with the base configuration of six
tetrahedra (the root diamond), and the merge queue is empty. Given
an error toleranceE, the following steps are taken to construct an
approximation:

1. Diamonds that do not contain regions of interest are marked
asempty; they are assigned an error of zero. Errors values
are recomputed for all other diamonds in the split and merge
queues.

2. Diamonds in the split queue whose error is greater thanE are
split. Diamonds in the merge queue whose error is less than
E are merged.Emptydiamonds in the split queue are never
split. In the merge queue, they are the first diamonds to be
merged.

3. The refinement process is stopped when all diamonds in the
split queue have an error belowE and all diamonds in the

X

Y

Z

c0

c1

c2

c3

c6

c5

c4

p0

p1

Figure 7: The children of a phase 1 diamond are the phase 2 dia-
monds located on the centers of the edges of the faces containing
the split edge. Diamond p0 has children c0 - c3, and diamond p1
has children c3 - c6.

v0 v1p0

c0 c1

c2c3

v2

v3

Figure 8: The children of a phase 2 diamond are the phase 0 dia-
monds from leveli + 1 that touch the diamond’s split edge. Four
of the children for diamond p0 are c0 - c3. The other four are the
centers of the octants that come out of the page.

merge queue have an error aboveE, or when the time allowed
for processing has elapsed.

4. The visualization is created from the tetrahedra that belong to
the visible, non-empty diamonds in the split queue.

A diamondD is split by splitting all of its tetrahedra and insert-
ing the child tetrahedra into the split queue. A tetrahedron is placed
in the split queue by creating an entry for its diamond and adding
the tetrahedron to the diamond. When some of the tetrahedra inD
do not exist (i.e. they are not in the current mesh), it is necessary
to create them beforeD can be split. This is done by splitting the
parents ofD that have not been split. When all the parents and
tetrahedra ofD have been split,D is removed from the split queue
and added to the merge queue.

A diamondD is merged by merging all of its tetrahedra and
then adding them to the split queue. A tetrahedron is merged by
removing its two children from the split queue. A tetrahedron is
removed from the split queue by locating its diamond’s entry in the
split queue and removing it from the diamond. When a tetrahedron
is removed from the mesh, its diamond is checked to see if all the
tetrahedra of the diamond have been removed from the split queue.
If so, the diamond is removed from the split queue. Lastly,D’s par-
ents are checked to see if they can be added to the merge queue. A

diamond can be added to the merge queue only if all of its children
are in the split queue.

5 REPRESENTING DATASETS CONTAINING
MATERIAL INTERFACES

5.1 Introduction
Computational physics simulations operate on a wide variety of
input meshes, for example rectilinear meshes, adaptively refined
meshes for Eulerian hydrodynamics, unstructured meshes for La-
grangian hydrodynamics and arbitrary Lagrange-Eulerian meshes.
Often, these data sets contain special physical features such as ma-
terial interfaces, physical boundaries, or thin slices of material that
must be preserved when the field is simplified.

Material interfaces embedded in the meshes of computational
data sets are often a source of error for simplification algorithms
because they represent discontinuities in the scalar or vector field
over mesh elements. Representing material interfaces explicitly
allows separate field representations to be used for each material
within a single cell. Multiresolution representations utilizing sep-
arate field representations can accurately approximate datasets that
contain discontinuities without placing a large percentage of cells
around the discontinuous regions. In order to ensure that these fea-
tures are preserved, the simplified version of the data set is con-
structed using strictL∞ error bounds that prevent small yet impor-
tant features from being eliminated.

Data sets of this type require a simplification algorithm to ap-
proximate data sets with respect to several simplification criteria.
The cells in the approximation must satisfy error bounds with re-
spect to the dependent field variables over each mesh cell, and to
the representation of the discontinuities within each cell. In addi-
tion, since it is cumbersome to write algorithms for each specific
type of dataset, the simplification algorithm must be able to deal
with a wide range of possible input meshes. In order to effectively
do this, the algorithm must be able to efficiently represent material
interfaces and other explicit discontinuities.

The adaptive refinement of the tetrahedral mesh described in pre-
vious sections is used to construct a multiresolution representation
of a computational dataset with explicit representation and approx-
imation of material interfaces. Each tetrahedron approximates a
region of the dataset. Associated with each tetrahedron is an ap-
proximation to the material interfaces that are wholly or partially
contained within it and an approximation to the field variables (i.e.
density, pressure, etc.) defined over the region of the volume ap-
proximated by the tetrahedron. In order to accomodate a large vari-
ety of input meshes, the input datasets are resampled at the vertices
of the tetrahedral mesh in a manner that preserves user-specified as
well as characteristic features in the data set and approximates the
dependent field values to within a specified tolerance.

5.2 Material Interfaces
A material interface defines the boundary between two distinct ma-
terials. Figure 9 shows an example of two triangles crossed by a
single interface (smooth curve). This interface specifies where the
different materials exist within a cell. Field representations across
a material interface are often discontinuous, and can introduce a
large amount of error to cells that cross it. Instead of refining an
approximation substantially in the neighborhood of an interface or
attempting to place vertices and faces of cells directly on the inter-
face, the discontinuity in the field is represented by explicitly rep-
resenting the surface of discontinuity in each cell. Once the discon-
tinuity is represented, two separate functions are used to describe
the dependent field variables on either side of the discontinuity. By

Figure 9: True and approximated interfaces.

representing the surface of discontinuity exactly, our simplification
algorithm does not need to refine regions in the spatial domain with
a large number of tetrahedra.

5.2.1 Extraction and Approximation

For the datasets with which we are working, material interfaces
are represented as triangle meshes. In the case that these triangle
meshes are not known, they are extracted from volume fraction data
by a material interface reconstruction technique, see [9]. (The vol-
ume fractions resulting from numerical simulations indicate what
percentages of which materials are present in each cell.) This inter-
face reconstruction technique produces a set of crack-free triangle
meshes and normal vector information that can be used to deter-
mine on which side and in which material a point lies.

Within a tetrahedron, a material interface is approximated with
the zero set of a signed distance function. Each vertex of a tetra-
hedron is given a signed distance value for each of the material
interfaces in the tetrahedron. The signed distance from a vertexV
to an interface meshI is determined by finding the pointVi in the
triangle mesh describingI that has minimal distance toV. The sign
of the distance is determined by considering the normal vectorNi

at Vi. If Ni points towardsV, thenV is considered to be on the
positive sideof the interface; otherwise it is considered to be on the
negative sideof the interface. The complexity of this computation
is proportional to the complexity of the material interfaces within
a particular tetrahedra. In general, a coarse tetrahedra in the mesh
will contain a large number of interface triangles, and a fine tetrahe-
dra will contain a small number of interface triangles. The signed
distance values are computed as the mesh is subdivided. When a
new vertex is introduced via the mesh refinement, the computation
of the signed distance for that vertex only needs to look at the in-
terfaces that exist in the tetrahedra around the split edge (i.e. all of
the tetrahedra in the diamond being split). If those tetrahedra do
not contain any interfaces, no signed distance values needs to be
computed for the new vertex.

In Figure 9, the true material interface is given by the smooth
curve and its approximation is given by the piecewise linear curve.
The minimum distances from the vertices of the triangles to the
interface are shown as dotted lines. These signed distance values
at the vertices determine linear functions in each of the triangles,
and the approximated interface will be the zero set of these linear
functions. The situation in three dimensions is analogous.

Figure 10 shows a two-dimensional example of a triangle with
several material interfaces and their approximations. In this fig-
ure, the thin, jagged lines are the original boundaries and the thick,
straight lines are the approximations derived from using the signed

A

B

C
A

B

C

A/B Interface
Approximation

Figure 10: Triangle with three materials (A, B, and C) and three
interfaces.

v0
v1

v2

v3

N

Figure 11: Tetrahedron showing signed distance values and the cor-
responding boundary approximation.

distance values. For the interface between materials A and B, the
thin, dashed lines from vertices A, B, and C indicate the points
on the interface used to compute the signed distance values. The
signed distance function is assumed to vary linearly within a tetra-
hedron. The distance function is a linear functionf(x, y, z) =
Ax+ By + Cz + D. The coefficients for the linear function defin-
ing a boundary representation are found by solving a 4x4 system
of equations, considering the requirement that the signed distance
function over the tetrahedron must interpolate the signed distance
values at the four vertices.

The three-dimensional example in Figure 11 shows a tetrahe-
dron, a material interface approximation, and the signed distance
values di for each vertex Vi. The approximation is shown as a plane
cutting through the tetrahedron. The normal vector N indicates the
positive side of the material boundary approximation. Thus, the
distance to V0 is positive and the distances for V1, V2, and V3 are
negative. We note that a vertex has at most one signed distance
value for each interface. This ensures that the interface representa-
tion is continuous across tetrahedron boundaries. If a tetrahedron
does not contain a particular interface, the signed distance value for
that interface is meaningless for that tetrahedron. Given a pointP
in an interface triangle and the interface approximation Br, the er-
ror associated withP is the absolute value of the distance betweenP
and Br. The material interface approximation error of a tetrahedron
is the maximum of these distances, considering all the interfaces
within the tetrahedron.

Extrapolated
Ghost Value

Material Interface

Sampled function
over a triangle

V0

V1

V2

Figure 12: 2D Ghost Value Computation

5.2.2 Discontinuous Field Representations

Tetrahedra that contain material interfaces typically also have dis-
continuities in the fields defined over them. For example, the den-
sity field over a tetrahedron that contains both steel and nickel is
discontinuous exactly where the two materials meet. In these situ-
ations, it is better to represent the density field over the tetrahedron
as two separate fields, one field for the region containing only the
first material and one for the second material. One way to accom-
plish field separation is to divide the tetrahedron into two distinct
cells at the material interface. In Figure 13, the triangle would be
divided into a quadrilateral for material A and a triangle for ma-
terial B. The disadvantage of this method is that it introduces new
cell types into the mesh which makes it harder to have continuous
field representations across cells. Furthermore if new cell types are
introduced, we loose the multiresolution structure and adaptive re-
finement capabilities of the tetrahedral mesh.

The discontinuous field is represented by constructing a field for
each material in the tetrahedron. In order to do this, each of the
vertices in the tetrahedron must have distinct field values for each
material present in it. When material interfaces are present, field
values for a given material do not exist at all of a tetrahedron’s ver-
tices. Since linear approximation over a tetrahedron requires four
field values at the vertices, extra field values need to be extrapolated
to perform the interpolation. These extrapolated values are called
ghost values. A ghost value is an educated guess of a field value at a
point where the field does not exist. This is illustrated in Figure 12
for a field sampled over a triangular domain containing two materi-
als. For the field sampled at V0 and V1, a ghost value at vertex V2
is needed to compute a linear approximation of the field over the
triangle. The approximation is used only for those sample points
that belong to this material. When the field approximation error for
a cell (i.e. trianle or tetrahedron) is computed, the separate field
representations, built using these ghost values, are used to calculate
an error for each distinct material. The field approximation error
for the cell is the maximum of these per-material errors.

5.2.3 Computation of Ghost Values

For a vertexV that does not reside in materialM , we compute a
ghost value for the field associated with materialM at vertexV.
This ghost value is an extrapolation of the field value forM at V.
The process is illustrated in Figure 13. The known field values are
indicated by the solid circles. A0 and A1 represent the known field
values for material A, and B0 represents the known field value for

A0

A1

A
B

Original
Interface

Interface
Approximation

B0

Figure 13: Ghost value computation for a triangle containing two
materials. Ghost values for materialB are computed atA0 andA1
and a ghost value for materialA is computed atB0.

material B. Vertices A0 and A1 are in material A, and thus ghost
values for material B must be calculated at their positions. Vertex
B0 lies in material B, and thus a ghost value for material A must be
calculated at its position. The ghost value computation is performed
when the vertex is inserted during the mesh refinement process. The
ghost values for a vertexV are computed as follows:

1. For each material interface present in the tetrahedra of the di-
amond being split, find a vertex Vmin in a triangle mesh rep-
resenting an interface with minimal distance toV. (In Figure
13, these vertices are indicated by the dashed lines from A0,
A1, and B2 to the indicated points on the interface.)

2. Evaluate the data set on the far side of the interface at Vmin

and use this as the ghost value atV.

Only one ghost value exists for a given field and material at the
vertexV. This ensures that the field representations are C0 contin-
uous across cell boundaries. In Figure 10, vertex V0 lies in mate-
rial A, and therefore we must compute ghost values for materials
B and C at vertex A0. The algorithm will examine the three ma-
terial boundaries and determine the points from materials B and C
that are closest to A0. The fields for materials B and C are evalu-
ated at these points, and these values are used as the ghost values
at A0. This computation assumes that the field remains constant on
the other side of the interface. Alternatively, a linear or higher order
interpolation technique, taken from the simulation used to generate
the dataset, can be used to extrapolate the ghost values.

5.3 Multiresolution Representation of
Datasets

Given a dataset and triangle mesh representations for the material
interfaces, our algorithm constructs a multiresolution representa-
tion as follows:

1. Our algorithm starts with a base mesh of six tetrahedra and
associates with each one the interface triangles that intersect
it.

2. The initial tetrahedral mesh is first subdivided so that the tri-
angle meshes describing the material interfaces are approx-
imated within a certain tolerance. At each subdivision, the
material interface triangles lying partially or entirely in a tetra-
hedron are associated with the tetrahedron’s children; approx-
imations for the triangles in each child tetrahedron are con-
structed, and interface approximation errors are computed for
the two new child tetrahedra, and ghost values are computed
for the split vertex.

3. The mesh is further refined to approximate the field of interest,
for example density or pressure, within a specified tolerance.

5.4 Error Metrics
Each tetrahedron has two associated error values: a field error and
a material interface error. In order to calculate the field errors for
a leaf tetrahedron in our mesh hierarchy, we assume that the origi-
nal dataset can be divided intonative data elements. Each of these
is presumed to have a well defined spatial extent and a well de-
fined representation for each field of interest over its spatial do-
main. The simplest example of a native data element is just a grid
point that holds field values. Other possibilities are blocks of grid
points treated as a unit, cells with a non-zero volume and a field
representation defined over the entire cell, or blocks of such cells.
For a given field, we assume that it is possible to bound the dif-
ference between the representation over one of our leaf tetrahedra
and the representation over each of the native data elements with
which the given tetrahedron intersects. The error for the given field
in the given tetrahedron is the maximum of the errors associated
with each of the intersecting native data elements. Since tetrahedra
are grouped into diamonds, the error values ,i.e. interface error and
field error, associated with a diamond are the maximum of the error
values of its tetrahedra.

The field erroreT for a non-leaf tetrahedron is computed from
the errors associated with its two children according to:

eT = max{eT0 , eT1}+ |z(vc)− zT (vc)|, (1)

whereeT0 and eT1 are the errors of the children;vc is the split
vertex; z(vc) is the field value assigned tovc; andzT (vc) is the
field value that the parent assigns to the spatial location ofvc. The
approximated value atvc, zT (vc), is calculated as:

zT (vc) =
1

2
(z(v0) + z(v1)), (2)

wherev0 andv1 are the vertices of the parent’s split edge.
This error is looser than the bound computed directly from the

data. It has the advantage that the error associated with a tetra-
hedron bounds the deviation from the original representation and
the deviation from any intermediate resolution. This error isnested
or monotonic because the error of a child is guaranteed not to be
greater than the error of its parent.

The material interface error associated with a leaf tetrahedron is
the maximum value of the errors associated with each of the ma-
terial interfaces in it. For each material interface, the error is the
maximum value of the errors associated with the vertices constitut-
ing the triangle mesh defining the interface and being inside it . The
error of a vertex is the absolute value of the distance between the
vertex and the interface approximation. The material interface error
E for a tetrahedron guarantees that no point in the original interface
polygon mesh is further from its associated approximation than a
distance ofE. This error metric is an upper bound on the deviation
of the original interfaces from our approximated interfaces. A tetra-
hedron that does not contain any material interfaces has an interface
error of zero.

Figure 14: Original triangular meshes representing material inter-
faces.

5.5 Results
Our sample dataset is from a simulation of a hypersonic impact be-
tween a projectile and a metal block. The simulation was based on
a logically rectilinear mesh of dimensions 32x32x52 for a total of
53248 nodes. For each cell, the average density and pressure values
are available, as well as the per-material densities and volume frac-
tions. The physical dimensions in x, y, and z directions are [0,12]
[0,12] and [-16,4.8].

There are three materials in the simulation: the projectile, the
block, andemptyspace. The interface between the projectile and
the block consists of 38 polygons, the interface between the pro-
jectile and empty space consists of 118 polygons and the interface
between empty space and the block consists of 17574 polygons.
Figure 14 shows the original interface meshes determined from the
volume fraction information. The largest mesh is the interface be-
tween the metal block and empty space; the next largest mesh in
the top, left, front corner is the interface between the projectile and
empty space; the smallest mesh is the interface between the projec-
tile and the block.

Figure 15 shows a cross-section view of the mesh created by a
cutting plane through the tetrahedral mesh. The darker lines are the
original interface polygons, and the lighter lines are the approxima-
tion to the interface. The interface approximation error is 0.15. (An
error of 0.15 means that all of the vertices in the original material
interface meshes are no more than a physical distance of 0.15 from
their associated interface approximation. This is equivalent to an
error of (0.5 - 1.5)% when considered against the physical dimen-
sions.) A total of 3174 tetrahedra were required to approximate the
interface within an error of 0.15. The overall mesh contained a to-
tal of 5390 tetrahedra. A total of 11990 tetrahedra were required to
approximate the interface to an error of 0.15 and the density field
within an error of 3. The maximum field approximation error in the
tetrahedra containing material interfaces is 2.84, and the average
field error for these tetrahedra is 0.007. These error measurements
indicate that separate field representations for the materials on ei-
ther side of a discontinuity can accurately reconstruct the field.

Figures 15 and 16 compare the density fields generated using
linear interpolation of the density values and explicit field represen-
tations on either side of the material interface. These images are
generated by intersecting the cutting plane with the tetrahedra and
evaluating the density field at the intersection points. A polygon is
drawn through the intersection points to visualize the density field.
In the tetrahedra where material interfaces are present, the cutting
plane is also intersected with the interface representation to gener-
ate data points on the cutting plane that are also on the interface.
These data points are used to render the separate field prepresenta-
tions for each material that the cutting plane intersects.

Figure 16 shows that using explicit field representations in the
presence of discontinuities can improve the quality of the field ap-
proximation. This can be seen in the flat horizontal and vertical
sections of the block where the tetrahedra approximate a region that
contains the block and empty space. In these tetrahedra, the use
of explicit representations for the discontinuities leads to an exact
representation of the density field. The corresponding field repre-
sentations using linear interpolation, shown in Figure 15, captures
the discontinuities poorly. Furthermore, Figure 16 captures more of
the dynamics in the area where the projectile is entering the block
(upper-left corner). The linear interpolation of the density values in
the region where the projectile is impacting the block smooths out
the density field, and does not capture the distinct interface between
the block and the projectile.

6 VIEW-DEPENDENT EXTRACTION OF ISO-
SURFACES

Isosurface extraction is a fundamental method for visualizing vol-
ume datasets. Traditionally, with smaller and simpler data sets, re-
searchers developedin-core isosurface extraction techniques that
work well on small or medium-scale data sets. These techniques
can quickly generate isosurfaces, and treat each isosurface inde-
pendently. Today’s scientific and engineering problems require a
different approach to address the massive data problems in organi-
zation, storage, transmission, visualization, exploration, and analy-
sis.

Surface based level-of-detail techniques such as [10] and [11]
extract the isosurfaces and build multiresolution models from these
surfaces. For large volume datasets that contain topologically com-
plex isosurfaces with millions and millions of triangles, these tech-
niques need to be combined with out-of-core techniques such as
those developed by Lindstrom [12], [13] in order to operate. In
some cases, the storage requirements needed to extract, simplify,
and visualize these surfaces can actually exceed those of the vol-
ume data from which they are derived. Processing and interactively
visualizing these types of isosurfaces requires algorithms such as
those developed by Duchaineau [14], [15], that combine multireso-
lution representations, compression, and view-dependent optimiza-
tions. Furthermore, these surface based techniques are not suitable
for visualizing volumes that contain a large number of interesting
isosurfaces because they must extract all of the interesting surfaces
which would take far too much disk storage to be practical. On the
other hand, volume based techniques which extract and render the
isosurfaces directly do not require the precomputation of selected
isosurfaces, and can easily switch between isovalues.

The refinement of a tetrahedral mesh via longest edge bisection
is utilized to build a multiresolution hierarchy of the volume dataset.
This multiresolution representation is used to generate isosurfaces
”on-the-fly” using a view-dependent error measure and an adaptive
refinement algorithm to generate and explore the isosurfaces. In this
algorithm, we combine coarse-to-fine and fine-to-coarse refinement
schemes for the tetrahedral mesh to create an adaptively refinable
mesh. This adaptive mesh supports a dual queue split/merge al-

Figure 15: Cross section of the tetrahedral mesh. The left picture shows the original interfaces and their approximations. The picture on the
right shows the density field using linear interpolation.

gorithm similar to the ROAM system [8] for terrain visualization.
It has fast coarsening and refinement operations which allow for
strict frame to frame triangle counts, progressive improvements of
mesh quality, and guaranteed frame rates. The refinement scheme
is coupled with a data storage scheme which aligns the data on disk
and in main memory with the access patterns dictated by the mesh
refinement.

Our algorithm is divided into two phases: a preprocessing phase
that collects general information for each diamond, and a run-time
phase that uses this information to generate the isosurfaces. In the
preprocessing phase, we compute the following information for the
diamonds (Section 3.1):

1. The isosurface approximation error of the region enclosed by
the diamond. (Section 6.2)

2. The min and max data values within the diamond including
the diamond’s boundary. The precomputed min/max ranges
are used to quickly cull regions of the dataset that do not con-
tain the isosurface.

3. The gradient vector at the split vertex of the diamond. (Sec-
tion 3.1)

This precomputed information is used to drive the run time mesh
refinement.

At run time, the split/merge refinement algorithm (Section 4) is
used to create a lower resolution dataset that approximates the orig-
inal dataset to within a given error tolerance. The error tolerance is
a measure of how much an isosurface drawn through the lower res-
olution dataset deviates from the finest level isosurface. The error
tolerance is measured in pixels on the view screen. The isosurface
is extracted from the tetrahedra in this lower resolution representa-
tion using linear interpolation. The precomputed gradient vectors
are used to shade the isosurface.

6.1 Mesh Refinement and Isosurface Ex-
traction

As described in Section 4, the mesh supports the dual queue
split/merge refinement strategy [8]. This strategy provides more
frame-to-frame coherence than a coarse-to-fine algorithm. It allows
us to control the triangle count per frame, and to effectively cache
previously computed geometry to minimize expensive interpolation
calculations. In most interactive applications, the viewing position
does not change significantly between consecutive frames. In frame
i + 1, many diamonds from framei will have a view-dependent er-
ror that is still within the error tolerance. These diamonds can be
reused in framei + 1. A small fraction of the diamonds must be
split or merged to satisfy the error tolerance. By starting the refine-
ment process for framei + 1 with the mesh from framei instead of
the base mesh, a large number of splits and merges do not have to
be performed.

For the split merge refinement process described in Section 4,
the error metricE is a view-dependent measure of the screen space
projection deviation between the real isosurface and the isosurface
extracted from the tets in the current mesh. A diamond that does
not contain the isosurface of interest is consideredempty. In addi-
tion, diamonds that are outside of the view-frustum are considered
invisible. Similar to empty diamonds, invisible diamonds are never
split and are the first to be merged. The final isosurface is extracted
from the visible, non-empty diamonds in the split queue.

The isosurface approximation error, min and max values, and
gradient vector at the split vertex are precomputed for each dia-
mond in the hierarchy. The isosurface errors are compressed on a
logarithmic scale and represented in six bits. There is one set of
error values for each level of the mesh (Section 3). The gradient
vectors are quantized on a unit cube using fourteen bits. In addi-
tion, we use an iterative relaxation process to smooth the gradient

Figure 16: Cross section of a density field approximated using explicit interface representations and separate field representations. The left
picture shows the field along with the approximating tetrahedral mesh. (interface error = 0.15).

vectors which are computed directly from the byte datasets we use.
The min and max values for a diamondD are compressed in rela-
tion to a diamondS that completely containsD. This is illustrated
in Figure 17. A diamondS that completely surroundsD can be
found by examining the two diamonds whose split vertices are the
vertices ofD’s split edge.

We assume that the data points of the input dataset lie on a
(2n +1)× (2n +1)× (2n +1) grid. In this setting, each data point
corresponds to the split vertex of some diamond. We also assume
that the dataset obeys periodic boundary conditions (i.e. the value at
index(2n) equals the value at index0). For the dataset used in our
tests this is a valid assumption. For each diamond, the precomputed
information is stored in three bytes. Including the original data it-
self which is byte data, this gives us thirty two bits of information
for each input data point.

1/21/41/8

approximate range

actual range

surrounding range

Figure 17: The min/max values of a diamond are encoded relative
to the min and max values of an enclosing diamond using 4 bits to
encode 0/8, 1/8, 1/4, or 1/2 of the enclosing interval.

When the isovalue changes, the new isosurface can be extracted
by starting at the root diamond or starting from the current mesh. In
the first case, the split and merge queues, hash tables, and caches are

u

x

y
a2(x)

a1(x)

a b

f(x)

L(x)eiso

ea

Figure 18: Isosurface error calculation in 1D.

emptied and initialized with the root diamond. The split/merge re-
finement is then started from this initial configuration. In the second
case, the diamonds in the split and merge queues must be checked
to determine if they contain the current isovalue. Diamonds that do
not contain the isovalue are marked as empty and given an approx-
imation error of zero. Once these diamonds have been marked, the
split/merge refinement continues from this new configuration. The
effectiveness of both of these methods depends on the locality of
the old and new isosurfaces in the mesh hierarchy. Starting from
the current configuration makes sense if the are close together, and
starting from the top makes sense if they are far apart.

When a tetrahedron is added to the split queue, the isosurface
is extracted and stored in thegeometry cache. The geometry is
cached in an array so that it is in a contiguous region of memory.
New geometry is appended to the end of the array. Geometry is

removed from the cache by replacing the removed geometry with
geometry at the end of the array. This caching method duplicates
normals and vertices along edges. Its advantage is that it has better
memory coherence than hash table based caches which cache the
vertices and normals on a per-edge basis (See Gerstner and Rumpf
[4]). In each frame the mesh is drawn simply by traversing the
triangle cache. By using the split/merge refinement scheme and the
geometry cache, we only have to lookup and compute the changes
between consecutive frames.

6.2 Error Metrics
Each diamond in the mesh has an associated approximation error,
isosurface error, and view-dependent error. The approximation er-
ror aeT for a tetrahedronT is the maximum difference between a
linear approximation of the scalar values at the vertices ofT and
the actual data values for the points insideT and on its boundary.
The approximation erroraeD for a diamondD is the maximum of
the approximation errors of its tetrahedra. Leaf tetrahedra and leaf
diamonds have an approximation error of 0.

The isosurface error of a tetrahedronT is the maximum deviation
of an isosurface generated using the scalar values at the vertices of
T from the true isosurface passing throughT . This calculation is
illustrated in Figure 18 for the one-dimensional case. The original
isosurface isf(x) and it is approximated byl(x). The upper and
lower bounds on the approximation, given by the approximation
error ae, area1(x) anda2(x). For a given function valuey, the
isocontour usingl(x) occurs at pointa wherey = l(a), while the
true isocontour usingf(x) occurs at the pointb wherey = f(b).
The error in the isocontour is given by:

ie = |a − b| (3)

An upper boundu for the isosurface error can be computed by:

u = ae/m, (4)

whereae is the approximation error andm is slope of the linear
approximationl. As the slope ofl increases,f must converge to a
vertical line and will be approximated with increasing accuracy by
l, implying that the approximation errors get smaller and smaller.
As the slope ofl decreases, the isocontour approximationa and the
true isocontourb can be far apart even ifae is small. In higher
dimensions, the slope of the approximation translates to the mag-
nitude of the gradient. In three-dimensions, this is the gradient of
the field through a tetrahedron as given by its linear approximation.
The isosurface error is clamped at the physical size of the tetrahe-
dron because the isosurface drawn through a tetrahedron can never
be outside the tetrahedron’s boundaries. The isosurface error for a
tetrahedronT is given by:

ieT = aeT /‖∇T‖, (5)

The isosurface errorieD for a diamond is the maximum of its tetra-
hedras’ isosurface errors. The view-dependent error of a diamond
is the projection of its isosurface error onto the view screen. This
is done by creating a sphere at the diamond’s split vertex of radius
ieD and projecting this sphere onto the view screen. The size of
the projected sphere (i.e. width or height in pixels) is the view-
dependent error. Details on view-dependent error metrics can be
found in Hoppe [16] , Lindstrom [17], and Luebke [18]. All of
these error metrics are easily incorporated into our refinement strat-
egy.

6.3 Memory Layout
In order to improve cache performance and effectively utilize the
available memory bandwidth, we arrange our data on disk and in

0

3

1

2

4

5
6

7

9

10

11
12

13

14 15

8

Figure 19: New data points required at each refinement level for
2D edge bisection. The lower right mesh is the lower left mesh
after two refinements.

memory to follow the data ordering indicated by the mesh refine-
ment. When visualizing very large datasets, memory performance
is a key bottleneck that must be overcome to achieve interactivity.

Figure 19 shows how the mesh refinement algorithm accesses the
data. Starting with the root configuration in the upper left, the dots
indicate which data points are introduced at each refinement step.
As the mesh is refined, the dataset is accessed along grids whose
points are separated by decreasing powers of two. This data layout
scheme and its performance benefits are detailed in [19] and [17].
Storing the data in this manner improves the coherence of the data
access which is essential when working with large datasets. The
original dataset and the information computed in the preprocessing
phase of our algorithm are stored on disk in this manner. They
are mapped to main memory at run time. This allows us to keep
in memory the data that is currently being used by the split/merge
process and the isosurface extraction process.

6.4 Results
We have tested our methods on an SGI Onyx with 44-250 MHZ
R10000 processors and IR2 graphics boards. At run time the algo-
rithm uses one processor and one graphics pipe. The preprocessing
was done in parallel on an SGI Onyx.

Our test dataset is the Gorden Bell Prize winning simulation of a
Richtmyer-Meshkov instability in a shock tube experiment [20]. A
full resolution isosurface of the mixing interface produces a mesh
with 460 million triangles. The dataset consists of 274 time steps
with each time step divided into a grid of 8x8x15 bricks where each
brick consists of 256x256x128 byte data values for a total time step
resolution of 2048x2048x1920 byte data values. In our examples,
we are looking at isosurfaces of entropy values calculated as two
fluids mix over time. Our examples are from5123 datasets. Fig-
ure 20 shows a view of the turbulent mixing in a region of high
entropy at time step 200. Fixing this viewpoint, zooming out, and
drawing the isosurface outside of the view-frustum reveals how the
triangulation and the mesh change as we move away from the point
of interest. This is shown in Figure 21. Figure 22 shows a closeup
view of the surface of entropy value 186 at time step 273. The abil-
ity to zoom in on regions of the dataset and refine the isosurface
accordingly allows one to closely inspect the features of the mixing
process. Figure 23 is created from Figure 22, by turning off view-

Figure 20: Close up inspection of turbulent mixing in Richtmeyer-
Meshkov instability(time step 200/273). Iso value (Entropy) = 180.

dependent refinement, zomming out and drawing the isosurface in-
cluding those parts culled by the view frustum. This shows how the
mesh and triangulation adaptively refine around the viewpoint.

Table 2 shows the performance measurements for the visibility
culling and priority recomputation, the split merge refinement, and
the rendering sections of our algorithm. The time for culling and
priority recomputation depends on the number of computations and
the memory performance of the hash table. We can perform about
700K - 1.1e6 computations a second. Rendering at 7 FPS and al-
lowing at most half of the frame time for culling and priority re-
computation, we are allowed 50K - 78K computations per frame.
Currently, we recompute the priorities for all visible, non-empty di-
amonds in the queues. This is an expensive operation and can be
improved using hierarchical, defered priority recomputation. The
split/merge performance is determined by the number of recursive
splits and the coherency of the data access. Merges only have to
look at children and parents and performO(1) lookups to find them.
Splits look at children and parents and may have to look atO(n)
diamonds wheren is the number of levels in the tree. To test the
performance of these operations, we fixed the time for doing splits
and merges to 0.01s. The algorithm performs around 1000 - 4000
updates per second or 10 - 40 updates per timeslice. The time for
drawing depends on the number of elements drawn. In immediate
mode, the SGI graphics system can draw 50K triangles at a rate of
1.05e6 triangles per second which is about 20 frames per second.
This gives us about 66K triangles per frame at 7 FPS. The slow-
est portion of the algorithm is the culling and priority computation.
Limiting the triangle count in the extracted isosurface to around
50K triangles gives us roughly 65K - 85K diamonds in the queues.
This allows us to render 5 - 7 frames per second or about 250K
- 350K triangles per second. In practice when exploring inside a
dataset and looking closely at features, the maximum number of
triangles is not used because large regions are culled. Our results
are similar to previous results on isosurface extraction using edge
bisection, and we show that they can be achieved on large datasets.

7 MESH ENCODING

The mesh structure can be encoded in a very compact manner as-
suming that the data points lie on a(2n +1)× (2n +1)× (2n +1)

Figure 21: Zoomimg out from the viewpoint in Figure 20 reveals
the triangulation at coarser levels of the hierarchy.

Time(s) Operation # Elements Elem/Sec
0.07 Cull/Priority 50K - 78K 700K - 1.1e6
0.06 Drawing 66K 1.05e6
0.01 Split/Merge 10-40 1000 - 4000

Table 2: Timings results for algorithm sections.

grid. In this case, the offsets to compute the tetrahedron vertices,
parents and children of a diamond are all powers of two relative
to the split vertex of the diamond. Data that do not lie on such a
grid can either be resampled to lie on a grid of the proper size or
embedded in avirtual grid of the proper size.

A diamond is represented by an(i, j, k) index. The vertices
defining the split edge of a diamond are encoded in a single byte
as an offset vector from the split vertex. For example, the split
edge withSV0 = (64, 64, 0) andSV1 = (64, 0, 64) has the vector
(0,−64, 64) and split vertex(64, 32, 32). Dividing this vector by
64 yields(0,−1, 1). These values are stored as 2 bit quantities in a
single byte.SV0 andSV1 are computed by rescaling the vector and
adding/subtracting it from the split vertex. In this case,(0,−1, 1) is
rescaled to(0,−32, 32). The rescaling factor is easily determined
from the level of the diamond. For a mesh withl levels, the scaling
factor for a diamond at levelj is given by2l−j−1. Since this fac-
tor is always a power of 2, computing the indices can be done with
shifts and adds. The split edge encodings are stored in a lookup ta-
ble and accessed at run time based upon the type (Section 3.1) of the
diamond. Since a diamond is identified by its split vertex, the ver-
tices on the split edge can be computed by knowing the diamond’s
type and level.

The parents, tetrahedron vertices, and children of a diamond are
also encoded relative to the split vertex of the diamond in the same
manner that the split edge is encoded. These encodings are stored in
a lookup table based on the type of the diamond. For any diamond,
the(i, j, k) index for a parent, child or vertex can be computed from
the diamond’s split vertex and the proper encoding. There is one set
of encodings for each of the 26 types of diamonds.

In the case of adaptively resampled grids, such as those used in
the material interface approximation, the vertices of the initial cube
can be assigned indices on a(231 +1)× (231 +1)× (231 +1) grid.

Figure 22: Closeup view of a mixing feature at time step 273. En-
tropy value = 186, Iso error = 0.5. This shows at a fine resolution
the smoothness of the flow and the dimpled shape created by the
mixing.

While this theoretically limits the maximum size of the adaptive
grid, in practice the grid will ever be subdivided the ninety three
times necessary to run out of bits in the indices.

8 DATA STRUCTURES

The split and merge queues are implemented as hash tables using
a fixed number of buckets and chaining to handle collisions. Each
bucket corresponds to a range of the possible error values. Each en-
try in the bucket corresponds to a diamond whose error falls within
the bucket’s range. In the case of isosurface extraction, the error
corresponds to the projected screen space error as measured in pix-
els on the screen. For building multiresolution representations of
datasets with material interfaces, the error can be the interface ap-
proximation error or the field approximation error. The buckets are
not sorted by error value.

Hash tables can be used instead of priority queues because it
is not necessary to split the diamond in the split queue with the
highest error, or to merge the diamond in the merge queue with
the lowest error. Instead it is sufficient to split a diamond whose
error is greater than the current tolerance and to merge a diamond
whose error is less than the current tolerance. Hash tables with
O(1) operations provide better performance than a priority queue
with O(log n) operations. A separate hash table, the queue hash
table, is used to map diamond(i, j, k) indices to their entries in the
queue. There is one hash table for the split queue and one hash table
for the merge queue. This second hash table is necessary because
the split and merge queues are ordered by error values. In order
to quickly locate a specific diamond in either queue, we need to
be able to access the queue based upon the(i, j, k) index of the
diamond. Accessing the diamonds in the queues based on error
would require locating the bucket that the diamond is in, and then
traversing the bucket to get the appropriate entry.

The data structures are illustrated in Figure 24. The hash table
maps a diamond index to an entry in the queue. The diamond in-
dex associated with the queue entry maps back to the precomputed
diamond information and the same hash table entry. When a tetra-
hedron is added or removed from the mesh, its diamond’s index
is used to locate the corresponding entry in the split queue via the
split queue’s hash table. Each diamond in the split queue contains

Figure 23: Zoomed out view of Figure 22 shows the refinement of
the mesh structure in the vicinity of the viewpoint and away from
the viewpoint.

Queue

Precomputed
Diamond Info

Hash Table
 Entry

Diamond Index (i,j,k)

Figure 24: Relationship between precomputed data, queue entries,
and queue hash table.

flags indicating which of its tetrahedra are actually in the current
mesh. These flags are called the diamond’stetrahedron flags. The
reason for these flags is illustrated for the 2D case in Figure 25.
The mesh has four diamondsd0 − d3. Diamondd1 has two trian-
gles that are both in the mesh. Diamondd2 has two triangles only
one of which is in the current mesh. The triangle not in the mesh
is shown with the dashed lines. The diamond’s tetrahedron flags
are used to record this information. Each bucket entry in the split
and merge queues stores the diamond’s level,(i, j, k) index, error
values,invisible andemptybits where applicable and application
specific diamond information.

9 FUTURE WORK

9.1 IsoSurface Extraction for Time-
Varying Data

The work on isosurface extraction was done only for static data.
The visualization of time varying data presents an even bigger chal-
lenge especially for large datasets such as the Richtymyer-Meshkov
dataset. Extending our algorithms to time varying data requires

D0

D1

Figure 25: Use oftetrahedron flagsto indicate which tetrahedra
are in the current mesh. Diamondd1 has 2 triangles in the mesh.
Diamondd2 has one triangle in the mesh.

time varying encoding and compression of the data as well as
fast decoding and decompression to update the mesh as quickly
as possible and to minimize the amount of information that must
be loaded from disk. Since the approximation and view-dependent
error values are changing between frames, more information needs
to be updated at each frame to maintain interactivity. For time-
varying data, the tetrahedral mesh in three dimensions becomes a
mesh of four dimensional simplices which approximate a region
of the volume over time. Future work would focus on efficient
encoding/decoding, compression/decompression methods, storage
and retrieval schemes. In addition parallel rendering and retained
mode rendering algorithms can be used to increase the number of
triangles drawn per frame.

9.2 IsoSurface Extraction on Datasets of
Arbitrary Size

Currently the input datasets are assumed to be on power of 2 grids.
Arbitrary grids can be handled either by dividing them into chunks
and operating on the chunks independently or by adaptively resam-
pling the dataset on the vertices of the tetrahedral mesh. Future
work would focus on accurately resampling the data to ensure that
small features are not lost, and on efficient storage and run-time
retrieval schemes for the adaptively sampled data.

9.3 Higher Order Field Representations
Currently our tetrahedra are linear elements. Higher order elements
can approximate complex regions using fewer tetrahedra than lin-
ear field representations at the expense of increased computation
time for preprocessing and visualization. Higher order elements in-
clude tetrahedra that define quadratic or cubic interpolation meth-
ods and tetrahedra that explicitly represent discontinuities or other
interesting features such as those used to construct multiresolution
representations of datasets containing material interfaces. Future
work would focus on constructing these higher order representa-
tions from the input datasets and on efficiently storing and render-
ing them.

9.4 Parallelization
The algorithm for isosurface extraction can easily be parallelized.
The overall split/merge refinement scheme can be threaded so that
mesh refinement happens asynchronously from drawing. Synchro-
nization only needs to occur when the geometry is updated from
one frame to the next. Large datasets can be divided into chunks,
and each chunk can be handled by a different processor. The only
information passed between processors are splits/merges that occur
on common boundaries. Future work would focus on dividing up

datasets and distributing them between processors, parallel render-
ing, and efficient message passing between processors.

9.5 Isosurface and Volume Rendering
Techniques

Since the isosurface geometry is constantly changing from frame to
frame, traditional lighting methods do not provide the best images
because of popping artifacts. Since modern hardware is optimized
for texture based rendering, future work would focus on using tex-
turing for non-photorealistic rendering to enhance features of the
dataset, and software and hardware techniques for multiresolution
volume rendering.

9.6 Geometric Modeling
Adaptive distance fields have recently been introduced as a new
modeling primitive for computer graphics. Current research has fo-
cused on using adaptively subdivided octrees to represent the ADF.
This presents problems when trying to extract polygonal meshes.
Recursive tetrahedral meshes do not have this problem, and polyg-
onal meshes can be extracted using simple isosurface extraction
techniques.

REFERENCES

[1] Y. Zhou, B. Chen, and A. Kaufman, “Multiresolution tetrahe-
dral framework for visualizing regular volume data,” inIEEE
Visualization ’97, IEEE Computer Society Technical Com-
mittee on Computer Graphics, Oct. 1997.

[2] T. Gerstner and R. Pajarola, “Topology preserving and
controlled topology simplifying multiresolution isosurface
extraction,” in Proceedings Visualization 2000(T. Ertl,
B. Hamann, and A. Varshney, eds.), pp. 259–266, IEEE Com-
puter Society Technical Committee on Computer Graphics,
2000.

[3] T. Gerstner, “Fast multiresolution extraction of multiple trans-
parent isosurfaces,” inProceedings of EG+IEEE VisSym
(R. P. David S. Ebert, Jean M. Favre, ed.), Annual Conference
Series, EG+IEEE, Springer, 2001.

[4] T. Gerstner and M. Rumpf, “Multiresolution parallel iso-
surface extraction based on tetrahedral bisection,” inVol-
ume Graphics(M. Chen, A. Kaufman, and R. Yagel, eds.),
Computer Graphics Proceedings, Annual Conference Series,
pp. 267–278, ACM, Springer, 2000.

[5] T. Roxborough and G. M. Nielson, “Tetrahedron based, least
squares, progressive volume models with application to free-
hand ultrasound data,” inProceedings Visualization 2000
(T. Ertl, B. Hamann, and A. Varshney, eds.), pp. 93–100, IEEE
Computer Society Technical Committee on Computer Graph-
ics, 2000.

[6] H. Samet,Introduction to Spatial Data Structures. Reading,
Massachusetts: Computer Graphics, Image Processing, and
GIS-Addison-Wesley, 1990.

[7] H. Samet,The Design and Analysis of Spatial Data Struc-
tures. Reading, Massachusetts: Addison-Wesley, 1990.

[8] M. A. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C. Miller,
C. Aldrich, and M. B. Mineev-Weinstein, “ROAMing terrain:
Real-time optimally adapting meshes,” inIEEE Visualization

’97, IEEE Computer Society Technical Committee on Com-
puter Graphics, Oct. 1997.

[9] K. S. Bonnell, D. R. Schikore, K. I. Joy, M. Duchaineau, and
B. Hamann, “Constructing material interfaces from data sets
with volume-fraction information,” inProceedings Visualiza-
tion 2000, pp. 367–372, IEEE Computer Society Technical
Committee on Computer Graphics, 2000.

[10] Z. J. Wood, M. Desbrun, P. Schröder, and D. Breen, “Semi-
regular mesh extraction from volumes,” inProceedings Visu-
alization 2000(T. Ertl, B. Hamann, and A. Varshney, eds.),
pp. 275–282, IEEE Computer Society Technical Committee
on Computer Graphics, 2000.

[11] M. Gavriliu, J. Carrance, D. E. Breen, and A. H. Barr, “Fast
extraction of adaptive multiresolution meshes with guaranteed
properties from volumetric data,” inProceedings Visualiza-
tion 2001(T. Ertl, K. I. Joy, and A. Varshney, eds.), pp. 295–
302, IEEE Computer Society Technical Committee on Com-
puter Graphics, 2001.

[12] P. Lindstrom, “Out-of-core simplification of large polygonal
models,” inSiggraph 20000, Computer Graphics Proceedings
(K. Akeley, ed.), pp. 259–262, ACM Siggraph, ACM Press /
ACM SIGGRAPH / Addison Wesley Longman, 2000.

[13] P. Lindstrom and C. T. Silva, “A memory insensitive tech-
nique for large model simplification,” inProceedings Visu-
alization 2001(T. Ertl, K. I. Joy, and A. Varshney, eds.),
pp. 121–126, IEEE Computer Society Technical Committee
on Computer Graphics, 2001.

[14] M. A. Duchaineau, S. Porumbescu, M. Bertram, B. Hamann,
and K. I. Joy, “Dataflow and re-mapping for wavelet com-
pression and view-dependent optimization of billion-triangle
isosurfaces,” inHierarchical Approximation and Geometrical
Methods for Scientific Visualization(G. Farin, H. Hagen, and
B. Hamann, eds.), Springer-Verlag, Berlin, Germany, (to ap-
pear)., 1999.

[15] M. A. Duchaineau, M. Bertram, S. Porumbescu, B. Hamann,
and K. I. Joy, “Interactive display of surfaces using subdivi-
sion surfaces and wavelets,” inProceedings of 16th Spring
Conference on Computer Graphics, Comenius University,
Bratislava, Slovak Republic(T. Kunii, ed.), 2001.

[16] H. Hoppe, “View-dependent refinement of progressive
meshes,” inSIGGRAPH 97 Conference Proceedings(T. Whit-
ted, ed.), Annual Conference Series, pp. 189–198, ACM SIG-
GRAPH, Addison Wesley, Aug. 1997. ISBN 0-89791-896-7.

[17] P. Lindstrom and V. Pascucci, “Visualization of large ter-
rains made easy,” inProceedings of IEEE Visualization 2001
(T. Ertl, K. Joy, and A. Varshney, eds.), IEEE Computer Soci-
ety Technical Committee on Computer Graphics, 2001.

[18] D. Luebke and C. Erikson, “View-dependent simplification
of arbitrary polygonal environments,” inProceedings of SIG-
GRAPH 97, Computer Graphics Proceedings, Annual Con-
ference Series, (Los Angeles, California), pp. 199–208, ACM
Siggraph, ACM SIGGRAPH / Addison Wesley, August 1997.
ISBN 0-89791-896-7.

[19] V. Pascucci, “Multi-resolution indexing for out-of-core adap-
tive traversal of regular grids,” inProceedings of the NSF/DoE
Lake Tahoe Workshop on Hierarchical Approximation and
Geometric Methods for Scientific Visualization(H. Hagen,
G. Farin, and B. Hamann, eds.), (Tahoe City, California), Oct.
2000. Available as LLNL technical report UCRL-JC-140581.

[20] A. A. Mirin, R. H. Cohen, B. C. Curtis, W. P. Dannevik, A. M.
Dimits, M. A. Duchaineau, D. E. Eliason, D. R. Schikore,
S. E. Anderson, D. H. Porter, , and P. R. Woodward, “Very
high resolution simulation of compressible turbulence on the
ibm-sp system,” inProceedings of SC99, Also available as
Lawrence Livermore National Laboratory technical report
UCRL-MI-134237, 1999.

