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Abstract. At fixed hold temperatures, grain growth usually stagnates indefinitely

after sufficiently long hold times. The change in the growth behavior can be very

abrupt, resulting in a sudden plateau in plots of grain size versus time at fixed

temperature. Standard grain growth laws do not formally predict the rapid onset of

growth stagnation, merely a slow down of grain growth to imperceptible rates.

Therefore, the grain size in the plateau regions for long hold times is typically not in

agreement with that predicted with kinetic variables derived from the size versus

time curves for short hold times where there is pronounced curvature. Standard laws

lead to endpoint grain sizes with strong dependences on the hold times. The

experimental observation in many cases is a nearly linear temperature dependence

that is independent of the hold times after a sufficient duration. Additionally, the

growth process may restart from a stagnated state with sufficient temperature

increases, where again, the stagnated grain size temperature dependence is linear.

For growth laws including size dependent opposing forces, endpoint grain sizes are

predicted to be either independent of temperature, or exponentially temperature
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dependent with thermodynamic reversibility, the latter an impossibility. We derive,

heuristically, a stagnation force, phenomenologically incorporating these

observations: a near linear temperature dependence of endpoint grain sizes, and

irreversible growth. This description reduces to standard laws commonly used for

data fitting, and leads to a normal grain size distribution. Other laws are discussed

and compared. Fits to size versus time data are successfully made.
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1. Introduction.

For clarity, we must begin by providing reasonable definitions for two types of grain

sizes. Stagnated Grain Size is grain diameter or radius where there has been a rapid

and obvious reduction in the size versus time characteristics at a fixed temperature.

Examples of this may be seen in Figs. 6-7. Endpoint Grain Size is the grain size

reported at a specified time interval in either an experiment or a theoretical

prediction.

For nanocrystalline materials, indefinite stagnation of grain growth for fixed hold

temperatures and long hold times is frequently observed, Figure 6-7 [1-8]. In thin

films, workers have reported that grain growth may be restarted with sufficient

temperature increases from an apparently stagnated state, Figure 6 [1-2]. Growth

then rapidly restagnates at the new hold temperature. Simple growth laws do not

formally predict this rapid onset of stagnation, and therefore, do not predict the

correct temperature dependence of endpoint grain sizes from kinetic data extracted

before the plateau. In addition, the temperature dependence of stagnated grain sizes

is often observed to be nearly linear, and independent of the hold times after a

sufficient duration. A near linear temperature dependence on the endpoint grain size

is also often reported for experiments with powders [3-8].

Figure 1 shows endpoint grain sizes and stagnated grain sizes for a variety of

studies of nanocrystalline materials [1-8]. Note that the endpoint and stagnated grain

sizes of all these studies show a near linear dependence on the hold temperature.
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Table I shows the stagnated grain size for both normal and abnormal grains from our

previous study on abnormal grain growth in Ag, Figure 6 [1]. Note that the abnormal

grains stagnate even when their number of sides Na > 6. Figure 1 shows that the

slope of the stagnated grain size versus hold temperature is almost the same for

abnormal grains and normal grains in our experiments with silver films where the

temperature is ramped after stagnation, and for isothermal normal grain growth in Ag

films [1-2].

  

2. Standard Growth Laws.

The simplest growth laws are based on the rigorously derived fact that a

surface with surface energy γ and curvature K experiences a driving force toward the

center of curvature. The magnitude of this force is F=γK. For a perfectly spherical

surface of radius r, the curvature K=1/r.

A network of multisided grains, in contact with a variety of curvatures, is a

many interface problem. Statistically based simplifying assumptions must be made

to make a tractable mathematical description of growth behavior. One key

assumption is that the net curvature of all the interfaces in the system is given by the

inverse of the average grain size, Knet=1/rave.

Atoms will traverse the interface by a thermally activated mechanism

(typically either surface diffusion or grain boundary diffusion) resulting in an average

interfacial velocity vave proportional to a thermally activated mobility M(T), according

to
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vave = γ M(T)/rave.                                                                                                       (1)

Oftentimes, grain growth is observed to fall off with a dependence greater

than 1/rave. For these cases, it is assumed that there is a size dependent mobility

where the size-temperature coupling has the form M(T)/rave
n-1. This is not rigorously

derivable. This allows for more flexibility in curve fitting, but the resulting

classification scheme becomes hard to relate to physical parameters for

experimental observations of grain growth where the fall off is faster than the value

n=2. The interpretation of transport activation energies becomes questionable when

n>2, and values as high as n=12 have been reported [3]. In addition, the use of large

constant n values still fail to fit data in the plateau regions.

Equation 1 predicts that in isothermal-isochronal annealing experiments

(where hold time length and temperature are fixed for each specimen), that the

endpoint grain size will have the same temperature dependence as the atomic

mobility (typically ~ e-Q/nkT). This is the only case in which this law produces any

regular temperature dependence on endpoint grain sizes, and why this is the

experiment of choice for activation energy extraction. Incorporating the size

dependent mobility into Equation 1, the solution is

r(T,t)n = ro
n + γ M(T)t.                                                                                                 (2)

Since there are no opposing terms to growth, vave  never goes to zero,

therefore, there is no formal prediction of a plateau (or rave constant with time). In

addition, there is not even a means to define a characteristic grain size or a time

length that specifies when the boundary velocity slows down. Therefore, the
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endpoint grain sizes predicted by Equation 2 are strongly time dependent, and, the

prediction of near linear temperature dependence of endpoint grain size does not

follow from this law.

Consider experiments where the temperature is held for a given time interval,

raised abruptly to a higher temperature, and held again for another interval, etc. To

account for the stagnation and grain growth restart that may be observed in such an

experiment, Figure 6, one may try to add an opposing driving force changing

monotonically with grain size. For simplicity, consider

vave = γ M(T)/rave
n-1 - α B(T)rave

m                                                                                 (3)

where α is a constant, B(T) is the mobility of the opposing mechanism assumed to

be exponentially dependent on temperature, and m is an exponent like n. M(T) and

B(T) have activation energies QM and QB, respectively.  If the opposing force and the

force for growth occur via the same transport mechanism, M(T)=B(T), and vave=0

when rave=(γ/α)1/(m+n-1). The equation allows for formal mathematical stagnation of the

grain growth.  However, it predicts that the stagnated grain size is independent of

temperature.  Therefore, under these conditions, the law fails to predict the restart of

the growth process from stagnation on temperature increases. An example

illustrating this problem is grain boundary pinning by precipitates, often referred to as

Zener drag [9].

If the transport mechanisms are not the same in Equation 3, then the

stagnated grain size temperature dependence is rave = Sexp(-∆Q / kT), an

exponential dependence. The effective "stagnation activation energy" ∆Q=(QM-
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QB)/(m+n-1). If m+n-1>0, in order to have a size increase on a temperature increase,

QB < QM. This would occur, for example, if the transport mechanism promoting grain

growth were grain boundary diffusion. The mechanism opposing grain growth must

be controlled by surface diffusion. If m+n-1<0 then QB > QM is required for size

increase on temperature increases. In either case, Equation 3 predicts that grain

growth should be a reversible process, a thermodynamic impossibility. This is

illustrated in Figure 2. Such a description would not even be useful for engineering

purposes, where it would be desirable to be able to predict endpoint grain sizes

under varying process conditions.

Statistical multiplicative factors have been incorporated into Eqns. 1 and 3 to

attempt to account for the overall geometry of the grains in the network. One

example is the average number of sides of grains in the system, N. When all grains

have a geometrically perfect shape, growth should stop, so the growth law is

proportional to (N – Nperfect). For a two dimensional grain, Nperfect = 6, corresponding

to triple junctions where all angles are 120o [10]. However, grain growth has been

observed to stagnate well before N=6, particularly in the case of abnormal grain

growth, where large grains have many more than six sides [1].

3. Phenomenological Description of Stagnation.

The standard growth laws do not account for the near linear temperature

dependence of the stagnated grain sizes, and in many cases, endpoint grain sizes.

We develop a retarding force to grain growth that does produce linear behavior, and

captures the essential features of grain growth restart on temperature increases.
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In our work on nanocrystalline Ag, refs. 1-2, it was concluded that thermal

grooving impeded grain growth causing stagnation. Abrupt changes in temperature

would allow a number of interfaces to escape the thermal grooves, where others

could not. We postulated that the internal regions of grain boundaries pinned at the

film surface by grooves could migrate such that the boundary angle exceeded the

groove angle, and for a short time, move freely until a new groove formed at the

surface with sufficient depth to cause stagnation.

With such a mechanism, or any mechanism, not all grains are affected

equally. Some boundaries may escape, others may not. Independent of the

mechanism, let us consider a statistical weighting function where there is a high

probablilty that any interface can migrate with a sufficient temperature increase, but,

will restagnate when its curvature reaches a new, lower value. This probability

distribution must result in an irreversible growth process, and, a tendency for the

network to approach a condition of normal growth. A distribution satisfying these

requirements is

P(T,r) = 1-exp(-(AT/r)Y).                                                                                            (4)

A and Y are fitting variables that parameterize the strength of the opposing force and

its impact on the network in a general way. Inserted into Equation 1, the new growth

law reads

vave = (1-exp(-(AT/rave )Y))γ M(T)/rave
n-1.                                                                (5)

The radii resulting from Equation 5 are plotted in Figure 3 for the indicated

values of Y and A=1. Figure 4 shows the linear dependence of the stagnated grain
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size for Equation 5 for sufficiently high values of Y. We have solved numerically for

the radii as a function of time from the velocity in Equation 5. We offer no closed

form solution for r(t).

The linear characteristic of the stagnated grain size versus temperature can

be understood by the 1/e value of the exponent, rave = AT. When this condition is

met, the average interfacial velocity begins to decay rapidly. The irreversibility

results from the fact that temperature decreases tend to cause P(t,T) to approach

zero. The approach to normal grain size distributions occurs because larger grains

are impeded more than smaller ones.

We point out that different starting grain sizes for normal growth do not seem

to require different A values for good fits. The latter as evidenced by the two Ag

normal growth studies shown in Figure 1, where the as deposited film thicknesses

were 14 nm and 32 nm respectively in references 1-2 for sputtered Ag films. This is

borne out in Equation 5, as it predicts that different starting grains sizes, for the

same parameters otherwise, will reach the same final grain size. This probably

applies to near fully dense systems, noting reference 5 in Figure 1, an Ag powder

study.

Thus far, we have merely introduced a candidate functional form with no

underlying physical principles. We can only rationalize our choice of distribution

function with a simple analogy. Consider a driving force opposed by a "classical"

drag force whose magnitude is proportional to the velocity of the boundary,

v = M . F - αd (r) . M . F.                                                                                         (6)
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We will suppose that the drag coefficient, αd(r),changes in size as if the boundary

behaves something like a sail, being pushed through a resistive medium at a fixed

velocity. The appropriate from must satisfy several conditions.

1) Consider the limit of infinite boundary size r=∞ . The drag coefficient may not have

the simple dependence αd = Cr, since any applied force F would result in motion of

the boundary against the force. The physically sensible solution is the one which

simply prevents any motion, that is, αd(∞ )=1.

2) As a second limit, r=0 must result in zero drag, so, forms such as αd = C/r must be

excluded.

3) Finally, we would like, for some range of grain sizes, to recover the experimentally

observed growth law v ∝ 1/rp≥ 1.

A form for the drag coefficient which satisfies all of these is

αd(r) = exp(-(C/r)Y).                                                                                              (7)

The requirements on the limits of r=∞ and r=0 are satisfied. For (C/r)Y << 1, αd(r)≅

1-(C/r)Y, which when substituted in Equation 6 results in v = M . F . (C/r)Y satisfying

the third condition, with the relationship between equations 5 and 7 now apparent. C

characterizes a systems non-ideality. As C→∞  the system is perfectly ideal and

there is no opposition to growth.

For a comparison to a standard growth law, if we define a local growth

exponent from the standard growth law v ∝ 1/rn-1 where nloc = 1 - ∂ ln(v)/∂ln(r), and
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apply this to Equation 5, we essentially have a size dependent n where nloc =n for

r<<AT and nloc = n + Y for r >> AT. The rate of change of the extracted nloc with r

depends on A and Y, Figure 5 and Equation 8. So, although this law also does not

predict stagnation of growth in a formal manner, it does provide for a very abrupt

increase in n, which in a short time experiment, would appear as a rapid onset of

stagnation. It would also explain why exponents extracted for short duration

experiments result often in n=2-3, but points in the plateau regions must be ignored

in order to produce these results, and, why including points in the plateau tends to

drive n up. Thus, assuming C=AT, the local growth exponent expressed in its

complete form is

nloc = n + Y(AT/r)Y exp(-(AT/r)Y) (1-exp(-(AT/r)Y))-1.                                           (8)

4. Analysis.

Figure 6 shows the fit of Equation 5 to our abnormal grain size data for Ag

films, from reference 1. The parameter set is given in Table II. The Q=0.274 eV is

taken from our estimate in reference 1, where the growth exponent n=2 was

assumed in the analysis. Only slightly different A values were used when greater or

less than T=300oC, but the other parameters were constant. Note the large value of

Y necessary to fit the data of reference 1.

Figure 7 shows our fit to the data of reference 3 using Equation 5, a study of

nanocrystalline iron. We have fit the full range of the annealing time with Equation 5,

using n=2, Q=0.49 eV, although a sharp change in Y and A were necessary

between 725-825 K. Two separate regions of behavior can also be seen in Figure 7.
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The parameter sets used are shown in Table 3. It can be noted that the data set of

805 K can be fit very well (shown as the dotted line in Figure 6) with the exception of

one point. The fit at 805 K combines the Y values of the lower temperatures with the

A values of the higher temperatures, but a different γMo was necessary, and we will

treat this data set as an exception. The activation energy Q=0.49 eV was chosen so

that γ Mo would be nearly temperature independent for the data sets, other than 805

K.

5. Discussion.

This analysis shows it is possible to use a standard growth law for short times

after temperature changes with n=2 and a single activation energy with a nearly

constant mobility pre-exponential. Since n=2 for short hold times, the Q can be

physically interpreted: since Q<0.5 eV for the cases in refs. 1 and 3, grain growth is

controlled by surface diffusion. Essentially the same parameter set can also fit the

data over a long range of hold times into the plateau, and over a range of

temperatures. A single transport mechanism is assumed to be in operation. The long

duration pinning force increases sharply with temperature via A and Y, Table II. The

rapid rise of the pinning force with grain size, using the law given by Equation 5,

allows the long-term behavior to be de-coupled from the short-term behavior, while

all variables influence the intermediate behavior.  Large n values and potentially

unphysical activation energies in the early growth stage need not be used to

compensate for the long term behavior. In addition, this law allows for the restart of

the growth process from hard stagnation on temperature increases with virtually the

same parameter set, Figure 6.
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Important physical questions that remain to be addressed are:

1) On what are the boundaries dragging ?

2)  What is responsible for the relation C=AT ?

Some theoretical work has been done on drag forces due to triple junctions in

thin film grain boundary networks, but whether the two ideas can be connected is

unclear [11].

One may speculate that the drag force is indirectly connected with the grain size

by some known mechanism. For example, grain boundary impurity or precipitate

density increases as grain size increases, creating a drag force increasing with grain

size. For films, grains grow with time, and thermal grooves deepen. Boundaries

pinned at the surface by deepening thermal grooves (for the same groove angle)

take longer to develop the greater internal curvatures to needed escape them,

causing a decrease of average boundary velocity. One may imagine many possible

combined mechanisms. For the engineer who wishes to characterize his system

predictively and is unable to deconvolute the effects of multiple mechanisms , this

law could be useful.

Still, the stagnation behavior seems to be quite general. The same late stage

growth behavior occurs for a variety of materials, whether films or powders, metals,

or dielectrics. This behavior may very well be a late growth stage effect, inherent in

any system, unaccounted for by theory or in the common methods of analysis.
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For example, consider the total interfacial energy of a grain boundary network,

as a function of the grain size. As the average grain size increases and the total

system energy approaches a global minimum, perhaps the total system energy may

have an increasing density of local mimima. Energy input (temperature increase) is

required to jog the system out of a local minima, and grain growth proceeds until the

next local minima is encountered, etc. The system would like to reach the ultimate

state of perfection, which is the elimination of all interfacial energy resulting in a

single crystal with no grain boundaries (zero misorientation for all “boundaries”). The

next best thing to a single crystal is for the system to develop a dense concentration

of coincidence-site-lattice boundaries (CSL). CSL boundaries are known to result in

deep minima or “cusps” in the surface energy as a function of misorientation. The

system “drags” on its own perfection. The evolution of the system as a whole cannot

be captured by simple growth laws which only generalize the behavior of a single

curved surface, and ignore detailed interfacial interactions.

6. Conclusions

Standard growth laws fail to predict the temperature dependence of stagnated

or endpoint grain sizes in film or powder nanocrystalline systems, often

experimentally observed to be linear.  Traditional explanations for stagnation, such

as film thickness effects or opposing forces, fail to explain the restart of growth from

stagnation with thermodynamic irreversibility.

A size dependent drag force proportional to the velocity of the boundary with

a drag coefficient αd(r) = exp(-(C/r)Y) is proposed. This form satisfies size limits,
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thermodynamic irreversibility, the approach to normal grain size distributions, and

reduces to a common growth law where v ∝ 1/rp≥ 1. It has been fit to experimental

data for short-term growth and for long-term growth in the plateau with reasonable

precision, allowing one transport mechanism to be used for the data investigated. It

has been possible to use the rigorously derivable growth exponent n=2 in all cases

examined. If C=AT, then the law allows for a restart of the growth process from

stagnation, a near linear final size dependence on temperature with a single

parameter set, and a characteristic grain size for slow growth at a given temperature

rchar = AT.

Theoretical work is needed to relate the proposed form of the opposing force

to physical mechanisms. Denser time vs. grain size data than what was used in the

present work, taken over long hold times, will be required to attempt simultaneous

fits of the short term and long term grain sizes, with the single parameter set

(Y,A,Q,n,γMo).

The often experimentally reported stagnated and endpoint grain size is linearly

temperature dependent. This results whether the specimens are films or powders,

and the behavior may prove to be very general.  Perhaps this phenomenological

description may initially be used as a classification scheme where it is found that A

and Y show material dependences.  Engineers may find this law useful for

characterization of materials and to accurately predict endpoint grain sizes for

varying process conditions.
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Tables.

Table I. Stagnated abnormal grain size data for 80 nm thick Ag films [1].

a calculated from the average value of the plateau.

Time (mins) Temp (C) Da (nm)a Dn (nm) Na

121 100 159 26 19.2

181 200 206 74 8.75

201 300 223 84 8.37

208.5 350 242 90 8.4
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Table II. Fit parameters for Equation 5 to our abnormal grain size data for Ag

films [1]. The fit is shown in Figure 6.

Y A (nm/K) Q (eV) n γMo (nm2/s)

T<300 oC 110 0.205 0.274 2 1.3.104

T>300oC 110 0.185 0.274 2 1.3.104
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Table III. Parameters used for the fits in Figure 7, reference 3. Q=0.49 eV and

n=2. The bold emphasizes the "hybrid" nature of the 805 K data set.

 Y A (nm/K) γMo (nm2/K)

875 K 60 0.034 25

825 K 60 0.032 25

805 K 20 0.030 14

725 K 20 0.0113 23

675 K 20 0.01 25

625 K 20 0.01 25
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Figure Captions.

Figure 1. Stagnated and endpoint grain sizes for a variety of thin film and powder

studies. Normal and abnormal grain sizes in thin films of Ag are from references

1-2. The slopes of these lines for the normal and abnormal grains is 0.31 and

0.24 nm/K, respectively. Note that the slopes of the curves from the references 1-

2 are nearly the same. Reference 2 is an isothermal annealing study, and

reference 1 is a study where the temperature is ramped after obvious stagnation.

The remainder of the references are for isochronal-isothermal annealing studies.

Figure 2. Growth according to Equation 3 with n=2 and m=1 for temperatures of

400 K – 550 K in 50 K increments and hold times of 3000 time units. The last

hold temperature is a reduction from 550 K to 500 K. Equation 3 unfortunately

predicts a reversible growth process. QM =1 eV and QB=0.3 eV .

Figure 3. Equation 5 plotted for 400-800 K in 100 K increments, with A=1 nm/K

and the indicated Y. Q=1 eV and n=2.

Figure 4. Note that the stagnated grain size is linearly dependent on temperature

for a growth law such as Equation 5, when Y becomes sufficiently large.

Figure 5. Local mode parameter nloc for n=2, Y=5 and 10, T=300 oC.

Figure 6. Fit of equation 5 to our abnormal grain size for Ag films, from reference

1, with parameters in Table 2. The plateaus correspond to temperatures of

100oC, 200oC, 300oC, 350oC.
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Figure 7. Fits of equation 5 to the data of reference 3, a study of nanocrystalline

Fe. The corresponding parameter sets are shown in Table 3.
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Figure 1.
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Figure 2.
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Figure 3.
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Figure 4.
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Figure 5.

 



Dannenberg & Stach 28

Figure 6.
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Figure 7.




