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(See the Editorial commentary by Rogers on pages 1377–8.)

Background. Invasive fungal diseases (IFDs) remain important causes of morbidity and mortality. The consensus definitions 
of the Infectious Diseases Group of the European Organization for Research and Treatment of Cancer and the Mycoses Study 
Group have been of immense value to researchers who conduct clinical trials of antifungals, assess diagnostic tests, and undertake 
epidemiologic studies. However, their utility has not extended beyond patients with cancer or recipients of stem cell or solid organ 
transplants. With newer diagnostic techniques available, it was clear that an update of these definitions was essential.

Methods. To achieve this, 10 working groups looked closely at imaging, laboratory diagnosis, and special populations at risk of 
IFD. A final version of the manuscript was agreed upon after the groups’ findings were presented at a scientific symposium and after a 
3-month period for public comment. There were several rounds of discussion before a final version of the manuscript was approved.

Results. There is no change in the classifications of “proven,” “probable,” and “possible” IFD, although the definition of “prob-
able” has been expanded and the scope of the category “possible” has been diminished. The category of proven IFD can apply to any 
patient, regardless of whether the patient is immunocompromised. The probable and possible categories are proposed for immuno-
compromised patients only, except for endemic mycoses.

Conclusions. These updated definitions of IFDs should prove applicable in clinical, diagnostic, and epidemiologic research of 
a broader range of patients at high-risk.

Keywords.  consensus; definitions; invasive fungal diseases; diagnosis; research.

The European Organization for Research and Treatment of 
Cancer and the Mycoses Study Group Education and Research 
Consortium (EORTC/MSGERC) consensus definitions of inva-
sive fungal diseases (IFDs) were last updated in 2008 [1]. These 
definitions achieved their original aim in fostering communica-
tion and enabling comparison of study findings among those en-
gaged in research into IFD of patients with cancer and recipients of 
hematopoietic stem cell transplants (HSCTs) or solid organ trans-
plants (SOTs) [2, 3]. Moreover, they have been adopted by regu-
latory agencies for evaluation of antifungals and have been used 
to evaluate diagnostic tests and to conduct epidemiologic studies 
[4–7]. Importantly, these definitions are specifically intended for 
these purposes only and not to direct or guide patient care.

The 2008 definitions had their shortcomings, including 
the facts that the definitions were unsuitable for patients with 
IFD in the setting of intensive care units (ICUs) or in pediat-
rics, data were insufficient to establish appropriate thresh-
olds for detecting Aspergillus galactomannan (GM), and there 
was uncertainty about the role of (1,3)-beta-D glucan (BDG). 
Furthermore, nucleic acid amplification including polymerase 
chain reaction (PCR)–based tests were excluded because of lack 
of standardization and validation. Definitions for cryptococ-
cosis and endemic mycoses also needed clarification, and there 
were no definitions for pneumocystosis.

PROCESS

Volunteers from the EORTC Infectious Diseases Group and 
the MSGERC were assigned according to their expertise to 
10 working groups, each charged with appraising a particular 
topic (see list of contributors in the Notes section). The chairs 
of the EORTC and MSG (J. P. D. and P. G. P.) selected leaders 
for each working group, and S. C. served as executive secretary. 
After completing the first round of working group assignments, 
leaders presented each group’s initial deliberations and recom-
mendations at the 7th Trends in Medical Mycology Conference 

in Lisbon, Portugal, October 2015. A slide set was made avail-
able until 31 December 2015 online at www.e-materials.com/
timm2015/invitation/Member and, on request, for public com-
ment. After several iterations, the final draft of the manuscript 
was circulated to all members for their approval.

REVISIONS AND UPDATES

Special Populations
Pediatrics and patients in the ICU were considered as special popula-
tions. However, group 10 (IFD definitions in ICU patients) was unable 
to generate recommendations that preserved a level of certainty con-
sistent with the existing definitions except for proven IFD (Table 1) 
and therefore undertook a separate initiative [8].

Pediatrics: Group 1

There was a clear need to establish pediatric-specific IFD definitions 
as the clinical and radiologic manifestations of IFD in children, that 
is, patients aged <18  years, may differ significantly from those in 
adults. Most importantly, the incidence of invasive candidiasis (IC) 
is higher in neonates than in other age groups [9–11]. The degree of 
prematurity, based on gestational age and birth weight, is a unique 
risk factor among neonates; hematogenous Candida meningoen-
cephalitis affects premature infants disproportionately and has se-
rious consequences including seizures, intraventricular hemorrhage, 
and developmental delay [12, 13]. With respect to IC due to non-
Candida albicans species, Candida glabrata is the most common 
pathogen in adults, whereas Candida parapsilosis predominates in 
children and neonates [14]. Risk factors for invasive mold diseases 
include innate immunologic defects, with Aspergillus nidulans being 
associated with chronic granulomatous disease, while Aspergillus 
fumigatus is seen more often in other patient groups [15].

Neonates with IC often present with subtle clinical findings, 
and cultures are frequently sterile, including cerebrospinal fluid 
(CSF) samples from neonates with candidemia and concurrent 
Candida meningitis. Diagnosis is often inferred from insensitive 

http://www.e-materials.com/timm2015/invitation/Member
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and nonspecific surrogate tests, such as increased C-reactive 
protein or thrombocytopenia, which has been shown to be a 
predictor of candidemia in infants [16, 17]. In neonates, a posi-
tive urine culture has a significance similar to that of a positive 
blood culture as an indicator of IC [16]. Radiographic findings 
are less specific in children than those reported in adults [18]. 
Chest computerized tomography (CT) scans in children with 
proven invasive pulmonary aspergillosis (IPA) commonly show 
nonspecific changes and not the halo sign, air crescent forma-
tion, or cavitation seen in adults [19].

There are also far fewer data to support the clinical use of 
nonculture-based fungal biomarkers in neonates and children [20], 
although the GM assay performs similarly in children and adults 
when used as an adjunctive tool to diagnose invasive aspergillosis 
(IA) [20, 21]. Likewise, there are few data regarding the use of BDG, 
Candida mannan antigen, and anti-mannan antibody biomarkers 
in pediatrics [22]. Recent data support the utility of BDG in CSF for 
the diagnosis and therapeutic monitoring of children with Candida 
meningoencephalitis [23], but the data are sparse regarding the 
utility of PCR assays and the T2Candida assay for diagnosis [24].

Diagnostic Tests and Imaging

In the previous definitions [1], indirect tests for diagnosing IFD 
were only included if there was sufficient evidence that they had 

been standardized and validated. Moreover, commercial tests 
were included only if criteria for interpretation had been provided. 
Hence, while tests for GM and BDG were incorporated, tests for 
detecting fungal nucleic acid were not [1]. Furthermore, there was 
no agreement about appropriate thresholds, so the manufacturers’ 
analytical thresholds were adopted. The evidence for using GM 
to diagnose IA has grown considerably since then, and testing 
for BDG has been extended to a wide range of patients. With re-
spect to Aspergillus PCR, the International Society of Human and 
Animal Mycology working group Fungal PCR Initiative (FPCRI; 
www.fpcri.eu) has made significant progress toward setting a 
standard for the technique after vigorous validation [25].

Imaging: Group 2
There is mounting evidence that the radiologic manifestations 
of invasive mold disease are more varied than previously rec-
ognized. The increased sensitivity of newer imaging tech-
niques enables a greater number and depth of abnormalities 
to be seen in different anatomic regions. Recent data relating 
to the role of imaging in the diagnosis of IPA and pulmonary 
mucormycosis (PM) in adults suggest that a high-resolution 
CT scan (HRCT) is preferred to chest radiographs, magnetic 
resonance imaging (MRI), and positron emission tomography 
(PET), likely reflecting that HRCT is more sensitive than a chest 

Table 1. Criteria for Proven Invasive Fungal Disease

Fungus Microscopic Analysis: Sterile Material Culture: Sterile Material Blood Serology
Tissue Nucleic Acid 
Diagnosis

Moldsa Histopathologic, cytopathologic, or direct 
microscopic examinationb of a specimen 
obtained by needle aspiration or biopsy 
in which hyphae or melanized yeast-like 
forms are seen accompanied by evidence 
of associated tissue damage

Recovery of a hyaline or pigmented 
mold by culture of a specimen 
obtained by a sterile procedure from 
a normally sterile and clinically or  
radiologically abnormal site  
consistent with an infectious  
disease process, excluding BAL fluid, 
a paranasal or mastoid sinus cavity 
specimen, and urine

Blood culture that 
yields a moldc (eg, 
Fusarium species) 
in the context of a  
compatible  
infectious  
disease process

Not applicable Amplification of fungal 
DNA by PCR  
combined with DNA 
sequencing when 
molds are seen 
in formalin-fixed 
paraffin-embedded 
tissue

Yeastsa Histopathologic, cytopathologic, or direct  
microscopic examination of a specimen 
obtained by needle aspiration or biopsy 
from a normally sterile site (other than 
mucous membranes) showing yeast 
cells, for example, Cryptococcus species 
indicating encapsulated budding yeasts or 
Candida species showing pseudohyphae 
or true hyphaed

Recovery of a yeast by culture of a 
sample obtained by a sterile proce-
dure (including a freshly placed [<24 
hours ago] drain) from a normally 
sterile site showing a clinical or radio-
logical abnormality consistent with an 
infectious disease process

Blood culture that 
yields yeast (eg, 
Cryptococcus or 
Candida species) 
or yeast-like fungi 
(eg, Trichosporon 
species)

Cryptococcal 
antigen in 
cerebrospinal 
fluid or blood 
confirms 
cryptococ-
cosis

Amplification of fungal 
DNA by PCR  
combined with DNA 
sequencing when 
yeasts are seen 
in formalin-fixed 
paraffin-embedded 
tissue 

Pneumo-
cystis

Detection of the organism microscopically 
in tissue, BAL fluid, expectorated sputum 
using conventional or immunofluores-
cence staining 

Not applicable Not applicable Not applicable Not applicable

Endemic 
mycoses

Histopathology or direct microscopy of 
specimens obtained from an affected site 
showing the  
distinctive form of the fungus 

Recovery by culture of the fungus from 
specimens from an affected site

Blood culture that 
yields the fungus

Not applicable Not applicable

Abbreviations: BAL, bronchoalveolar lavage; PCR, polymerase chain reaction. 
aIf culture is available, append the identification at the genus or species level from the culture results.
bTissue and cells submitted for histopathologic or cytopathologic studies should be stained using Grocott-Gomori methenamine silver stain or periodic acid Schiff stain to facilitate inspec-
tion of fungal structures. Whenever possible, wet mounts of specimens from foci related to invasive fungal disease should be stained with a fluorescent dye (eg, calcofluor or blankophor).
cRecovery of Aspergillus species from blood cultures rarely indicates endovascular disease and almost always represents contamination.
dTrichosporon and yeast-like Geotrichum species and Blastoschizomyces capitatus may also form pseudohyphae or true hyphae.

http://www.fpcri.eu
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radiograph, more widely available than MRI, and the experi-
ence with HRCT is much larger than with PET [26, 27]. Among 
patients with IPA, nodules or infiltrates with a halo sign remain 
useful among neutropenic patients but they are nonspecific for 
IPA in other groups [28]. Furthermore, the air crescent sign is 
a late and nonspecific sign. Among nonneutropenic patients, 
multiple pulmonary nodules and various nonspecific find-
ings including bronchopneumonia, consolidation, cavitation, 
pleural effusions, ground glass opacities, tree-in-bud opacities, 
and atelectasis are found [29]. Overall, consolidation is the 
most frequent presentation of PM, followed by mass lesions, 
nodules, and cavitation [30]. Multiple nodules (more than10) 
and pleural effusions appear to be more frequent in PM than 
in IPA [31]. Moreover, the reverse halo sign is more specific for 
PM than IPA, although the differential diagnosis also includes 
other diseases including tuberculosis [32].

Aspergillus Galactomannan: Group 3
We evaluated Aspergillus galactomannan for both adults and 
children and specific patient groups and its utility and validity 
for different clinical specimens. We adopted different thresh-
olds for different specimens rather than for different host groups 
[33–35] (Table 2). These differ from those recommended by the 
manufacturer of the GM assay (Platelia Aspergillus (Bio-Rad, 
CA), validated only for use in serum and bronchoalveolar la-
vage (BAL) fluid; however, detection of GM in plasma and CSF 
should support a diagnosis of IA [36, 37]. Exposure to mold-
active antifungals compromises the utility of the GM test for IA 
[38] by reducing its sensitivity [39]. Therefore, caution should 
be exercised when GM is found to be absent from serum or 
plasma in patients receiving mold-active antifungals. There was 
consensus that similar GM thresholds are appropriate for adults 
and children.

BDG and T2Candida Assays: Group 4
The group considers detection of BDG to be suitable for 
diagnosing probable IFD in the appropriate clinical setting. 
This includes patients with hematologic malignancies with and 
without neutropenia, neutropenia following HSCT, and certain 
patients in the ICU who are at higher risk (>10%) for IC as a 
result of gastrointestinal surgery with recurrent anastomotic 
leaks, perforations of the upper gastrointestinal tract, or necro-
tizing pancreatitis when there is clinical suspicion of infection 
[40, 41]. A  single threshold (>80 pg/mL) using the Fungitell 
test (Associates of Cape Cod, Falmouth, MA) is recommended; 
there is insufficient evidence to include assays produced by 
other manufacturers [42]. Confidence for true positive results 
increases with repeated positive tests and for values that greatly 
exceed the positivity threshold [43]. There may be variability in 
positive predictive value (PPV) and negative predictive value 
(NPV) based on patient population, but a single threshold 
is favored at this time. The group did not support the use of 

Table 2. Probable Invasive Pulmonary Mold Diseases

Host factors

 Recent history of neutropenia (<0.5 × 109 neutrophils/L [<500 neutrophils/
mm3] for >10 days) temporally related to the onset of invasive fungal 
disease

 Hematologic malignancya

 Receipt of an allogeneic stem cell transplant

 Receipt of a solid organ transplant

 Prolonged use of corticosteroids (excluding among patients with allergic 
bronchopulmonary aspergillosis) at a therapeutic dose of ≥0.3 mg/kg cor-
ticosteroids for ≥3 weeks in the past 60 days

 Treatment with other recognized T-cell immunosuppressants, such as 
calcineurin inhibitors, tumor necrosis factor-a blockers, lymphocyte-
specific monoclonal antibodies, immunosuppressive nucleoside analogues 
during the past 90 days

 Treatment with recognized B-cell immunosuppressants, such as Bruton’s 
tyrosine kinase inhibitors, eg, ibrutinib

 Inherited severe immunodeficiency (such as chronic granulomatous di-
sease, STAT 3 deficiency, or severe combined immunodeficiency)

 Acute graft-versus-host disease grade III or IV involving the gut, lungs, or 
liver that is refractory to first-line treatment with steroids

Clinical features

Pulmonary aspergillosis

The presence of 1 of the following 4 patterns on CT:

 Dense, well-circumscribed lesions(s) with or without a halo sign

 Air crescent sign

 Cavity

 Wedge-shaped and segmental or lobar consolidation

Other pulmonary mold diseases

As for pulmonary aspergillosis but also including a reverse halo sign

Tracheobronchitis

 Tracheobronchial ulceration, nodule, pseudomembrane, plaque, or eschar 
seen on bronchoscopic analysis

Sino-nasal diseases

 Acute localized pain (including pain radiating to the eye)

 Nasal ulcer with black eschar

 Extension from the paranasal sinus across bony barriers, including into the 
orbit

Central nervous system infection

1 of the following 2 signs:

 Focal lesions on imaging

 Meningeal enhancement on magnetic resonance imaging or CT

Mycological evidence

 Any mold, for example, Aspergillus, Fusarium, Scedosporium species or 
Mucorales recovered by culture from sputum, BAL, bronchial brush, or 
aspirate

 Microscopical detection of fungal elements in sputum, BAL, bronchial 
brush, or aspirate indicating a mold

Tracheobronchitis

 Aspergillus recovered by culture of BAL or bronchial brush

 Microscopic detection of fungal elements in BAL or bronchial brush 
indicating a mold

Sino-nasal diseases

 Mold recovered by culture of sinus aspirate samples

 Microscopic detection of fungal elements in sinus aspirate samples 
indicating a mold

Aspergillosis only

Galactomannan antigen

Antigen detected in plasma, serum, BAL, or CSF

Any 1 of the following: 

 Single serum or plasma: ≥1.0

 BAL fluid: ≥1.0

 Single serum or plasma: ≥0.7 and BAL fluid ≥0.8
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serum BDG to rule in patients for clinical trials or for defining 
IA or IC, as BDG detection is not specific for any one IFD. It 
was agreed that this test should only be used on serum sam-
ples, although the test has been used for CSF samples with some 
success to support a diagnosis of central nervous system (CNS) 
IFD in certain circumstances when other diagnostic tests are 
negative or inconclusive [44].

The T2Candida panel has been cleared by the US Food and 
Drug Administration for the detection of common Candida 
species from whole blood specimens. The test has a very high 
NPV but, as with all such tests, the PPV is variable and de-
pends upon disease prevalence in a given patient population 
[45, 46]. The PPV increases from 62% among patients with 
sepsis, shock, or lengths of stay greater than 3–7  days in an 
ICU to 92% for bone marrow transplant recipients and pa-
tients with leukemia who are neutropenic but not receiving 
any antifungal prophylaxis. The test has been included as 
mycologic evidence to support a diagnosis of candidemia in 
selected clinical trials [47].

Aspergillus PCR: Group 5
In considering Aspergillus PCR, target species, patient popu-
lations, appropriate specimens for testing, technical issues, 
comparison with other biomarker assays, and unique attri-
butes of PCR assays were reviewed. The data were sufficiently 
robust for performing Aspergillus PCR on serum, plasma, 
whole blood, and BAL fluid in adults. The group acknowl-
edged that Aspergillus PCR data have been evaluated most ex-
tensively for adults with hematologic malignancies and HSCT. 
Systematic reviews of Aspergillus PCR methods on blood and 
BAL fluid conclude that PCR provides a robust diagnostic test 
for screening and confirming the diagnosis of Aspergillus in-
fection [22, 48–53].

There are relatively few commercial PCR assays, and most 
investigators have developed methods in-house. As such, the 
FPCRI was established to develop criteria for Aspergillus PCR 
rather than a standardized method per se. Despite technologic 
variability, PCR performance was comparable with that for 
detecting GM and BDG [54]. Moreover, commercial PCR tests 
performed using methodology in line with the FPCRI recom-
mendations provide a standardized approach that has been in-
dependently associated with improved performance. A unique 
feature of PCR is its ability to detect both genus and species of 
Aspergillus. PCR is also capable of identifying certain mutations 
associated with triazole resistance directly from clinical speci-
mens [55–57].

Tissue Diagnosis: Group 6
Tissue diagnosis requires the presence of fungal elements in 
formalin-fixed paraffin-embedded tissue and signifies proven 
fungal disease but not the identity of the fungus involved. To 
achieve this, we recommend amplification of fungal DNA by 
PCR combined with DNA sequencing, but only when fungal 
elements are seen by histopathology. PCR would add value by 
allowing identification of the fungus to genus and possibly spe-
cies levels. Because the technique used should be rigorously 
quality controlled, only laboratories with a proven record in 
performing DNA extraction from formalin-fixed tissue should 
undertake this. The identity of the fungus should be consistent 
with the histopathologic findings [58–60].

Other Disease Entities
Pneumocystosis: Group 7
The inclusion of Pneumocystis jirovecii pneumonia (PCP) di-
agnosis in the updated definitions was limited to patients not 
living with human immunodeficiency virus (HIV). Diagnosing 
PCP has been more difficult among these  patients possibly 
due to a more focal pulmonary involvement, lower suspicion 
of disease, and lower sensitivity of traditional histologic and 
microscopy diagnostic tests [61]. As such, it is important to 
more fully define host factors for patients at increased risk for 
PCP. We selected receipt of therapeutic doses of corticoster-
oids for at least 2 weeks within the past 60 days; antineoplastic, 
antiinflammatory, or immunosuppressive treatment; and low 
CD4 lymphocyte counts due to a medical condition. This in-
cludes, but is not limited to, patients with primary immuno-
deficiencies, hematologic malignancies, SOTs, and allogeneic 
HSCT recipients [62, 63]. Clinical criteria in this popula-
tion tend to be nonspecific and include cough, dyspnea, and 
hypoxemia. Radiographic abnormalities include bilateral 
ground-glass opacities and, less frequently, consolidation, small 
nodules, unilateral infiltrates, pleural effusions, and cystic le-
sions [61, 64, 65]. Amplification of P. jirovecii DNA by quantita-
tive real-time PCR on BAL fluid, expectorated sputum, or oral 
wash specimens is preferred to qualitative PCR and is helpful to 
establish probable disease. However, further studies are needed 

 CSF: ≥1.0

Aspergillus PCR

Any 1 of the following: 

 Plasma, serum, or whole blood 2 or more consecutive PCR tests positive

 BAL fluid 2 or more duplicate PCR tests positive

 At least 1 PCR test positive in plasma, serum, or whole blood and 1 PCR 
test positive in BAL fluid

Aspergillus species recovered by culture from sputum, BAL, bronchial brush, 
or aspirate

Probable invasive fungal diseases (IFD) requires the presence of at least 1 host factor, a 
clinical feature and mycologic evidence and  is proposed for immunocompromised patients 
only, whereas proven IFD can apply to any patient, regardless of whether the patient is 
immunocompromised. Probable IFD requires the presence of a host factor, a clinical fea-
ture, and mycologic evidence. Cases that meet the criteria for a host factor and a clinical 
feature but for which mycological evidence has not been found are considered possible 
IFD. (1,3)-beta-D glucan was not considered to provide mycological evidence of any inva-
sive mold disease.

Abbreviations: BAL, bronchoalveolar lavage; CSF, cerebrospinal fluid; CT, computed tomog-
raphy; PCR, polymerase chain reaction.
aHematologic malignancy refers to active malignancy, in receipt of treatment for this ma-
lignancy, and those in remission in the recent past. These patients would comprise largely 
acute leukemias and lymphomas, as well as multiple myeloma, whereas patients with 
aplastic anemia represent a more heterogeneous group of individuals and are not included.

Table 2. Continued
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to validate thresholds for positivity [66, 67]. Similarly, 2 or more 
serum BDG levels of ≥80 ng/L are useful for diagnosing prob-
able disease in appropriate clinical context provided other IFDs 
have been excluded [68, 69].

Cryptococcosis: Group 8
A broader understanding of the natural history and host factors 
associated with cryptococcal disease warrants updating these 
definitions. We support the previous definitions of proven and 
probable cryptococcal disease in any host. However, we also 
recognize cryptococcal infection among individuals in high-
risk host groups who have few, if any, symptoms and only a 
positive serum cryptococcal antigen test (asymptomatic cryp-
tococcal antigenemia). This condition may be more common 
than symptomatic disease, and patients may develop clinical 
cryptococcal disease unless treated and so are now included 
in these definitions [70]. The term “disseminated cryptococ-
cosis” as distinct from CNS cryptococcosis has been aban-
doned in favor of the terms “pulmonary,” “CNS” and “other 
extrapulmonary sites.” “Colonization” with Cryptococcus spp. is 
no longer included in the definitions as it is poorly understood 
and its natural history is unknown.

Identification to the species level for Cryptococcus 
neoformans and Cryptococcus gattii has become increasingly 
important based on reports that suggest different clinical pres-
entations, outcomes, and responses to antifungal therapy be-
tween these 2 species [71, 72]. Verification of species that 
use CGB (L-canavanine, glycine, bromthymol blue) agar or 
matrix-assisted laser desorption ionization–time of flight mass 
spectrometry is recommended. Outcomes for HIV-associated 
cryptococcosis due to C. neoformans and C. gattii appear to be 
similar, and identification to the species level may be unneces-
sary [73, 74].

Endemic Mycoses: Group 9
The endemic mycoses are caused by environmental fungi that 
are usually restricted geographically and cause disease in im-
munocompetent and immunocompromised hosts. Causative 
agents include Histoplasma capsulatum var. capsulatum and 
H. capsulatum var. duboisii, Blastomyces species complex (eg, B. 
dermatitidis, B. gilchristii, B. helicus, B. silverae, and B. parvus), 
Coccidioides immitis/Coccidioides posadasii, Paracoccidioides 
brasiliensis/Paracoccidioides lutzii, Sporothrix species com-
plex (S. brasiliensis, S. schenckii sensu stricto, S. globosa, and 
S. luriei), Talaromyces (formerly Penicillium) marneffei, and 
Emergomyces species (E. pasteurianus, E. africanus, E. orientalis, 
E. canadensis, and  E. europaeus) [75–80]. Probable endemic 
mycoses are defined by evidence of environmental exposure to 
the fungus, a compatible clinical illness, and the presence of ei-
ther Histoplasma or Blastomyces antigen in any body fluid or 
antibody to Coccidioides species in serum or CSF as recovery 
by culture and histopathologic evidence of infection is generally 
lacking. There are no approved serologic tests for T. marneffei, 

Table 3. Other Probable Invasive Diseases

Candidiasis

Host factors

 Recent history of neutropenia <0.5 × 109 neutrophils/L (<500 neutrophils/
mm3 for >10 days) temporally related to the onset of invasive fungal 
disease

 Hematologic malignancy

 Receipt of an allogeneic stem cell transplant

 Solid organ transplant recipient

 Prolonged use of corticosteroids (excluding among patients with allergic 
bronchopulmonary aspergillosis) at a therapeutic dose of ≥0.3 mg/kg cor-
ticosteroids for ≥3 weeks in the past 60 days

 Treatment with other recognized T-cell immunosuppressants, such as 
calcineurin inhibitors, tumor necrosis factor-a blockers, lymphocyte-
specific monoclonal antibodies, immunosuppressive nucleoside analogues 
during the past 90 days

 Inherited severe immunodeficiency (such as chronic granulomatous di-
sease, STAT 3 deficiency, CARD9 deficiency, STAT-1 gain of function, or 
severe combined immunodeficiency)

 Acute graft-versus-host disease grade III or IV involving the gut, lungs, or 
liver that is refractory to first-line treatment with steroids

Clinical features

At least 1 of the following 2 entities after an episode of candidemia within 
the previous 2 weeks:

 Small, target-like abscesses in liver or spleen (bull’s-eye lesions) or in the 
brain, or, meningeal enhancement

 Progressive retinal exudates or vitreal opacities on ophthalmologic exam-
ination

Mycological evidence

 ß-D-glucan (Fungitell) ≥80 ng/L (pg/mL) detected in at least 2 consecutive 
serum samples provided that other etiologies have been excluded

 Positive T2Candidaa

Cryptococcosis

Host factorsb

 Human immunodeficiency virus infection

 Solid organ or stem cell transplant recipient

 Hematologic malignancy

 Antibody deficiency (eg, common variable immunoglobulin deficiency)

 Immunosuppressive therapy (including monoclonal antibodies)

 End-stage liver or renal disease

 Idiopathic CD4 lymphocytopenia

Clinical features

 Meningeal inflammation

 Radiological lesion consistent with cryptococcal disease

Mycological evidence

 Recovery of Cryptococcus from a specimen obtained from any nonsterile 
site

Pneumocystosisc

Host factors

 Low CD4 lymphocyte counts <200 cells/mm3 (200 × 106 cells/L) for any 
reason

 Exposure to medication (antineoplastic therapy, antiinflammatory, or im-
munosuppressive treatment) associated with T-cell dysfunction

 Use of therapeutic doses of ≥0.3 mg/kg prednisone equivalent for ≥2 
weeks in the past 60 days

 Solid organ transplant

Clinical features

 Any consistent radiographic features particularly bilateral ground glass 
opacities, consolidations, small nodules or unilateral infiltrates lobar in-
filtrate, nodular infiltrate with or without cavitation, multifocal infiltrates, 
miliary pattern d

 Respiratory symptoms with cough, dyspnea, and hypoxemia accom-
panying radiographic abnormalities including consolidations, small 
nodules, unilateral infiltrates, pleural effusions, or cystic lesions on chest 
X-ray or computed tomography scan
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S. schenckii species complex, or P. brasiliensis. Exposure to 1 of 
these fungi is defined as a history of residence in an endemic 
area, no matter how remote, travel to an endemic area, or con-
tact with fomites such as soil or vegetation that is derived from 
an endemic area.

Proven Invasive Fungal Disease

The revised definitions of proven IFD are shown in Table 1.

Probable Invasive Fungal Disease

Several changes were made to the definitions of probable IFD 
(Tables 2 and 3). For example, host factors were expanded 
to include inherited severe immunodeficiency and low CD4 
lymphocyte counts. Radiographic features were expanded to 
include wedge-shaped and segmental or lobar consolidation 
and a reverse halo sign to indicate mold disease of the lower 
respiratory tract. Revised thresholds for GM now replace 
those of the manufacturer. Aspergillus PCR is now included, 
and there are mycologic criteria for non-HIV–associated 
pneumocystosis.

Possible Invasive Fungal Disease

While definitions of proven and probable disease have been 
shown to be reliable in research and attracted little controversy 
among the group, this cannot be said of the possible IFD cate-
gory. There is much confusion about the difference between a 

host factor and a risk factor. As before, a host factor has been 
defined as a characteristic of individuals clearly predisposed to, 
and not simply at risk of, an IFD [1]. For example, while im-
paired gut wall integrity through surgery or illness may increase 
the risk of candidiasis, it was not considered specific enough 
to warrant inclusion as a host factor. Pulmonary abnormalities 
such as tree-in-bud opacities and interstitial abnormalities were 
excluded from the clinical features as they can be due to a wide 
range of pathologies in addition to IFD.

GENERAL POINTS

Throughout this process, we have emphasized the need to differ-
entiate between definitions of IFD required for clinical research 
from those that influence clinical practice. In clinical practice, 
many would administer an antifungal agent to any patient at risk 
of IFD when fungi are detected by biomarkers in serum, plasma, 
whole blood, or relevant body site fluid without there being suf-
ficient evidence to satisfy the consensus definitions of IFD. We 
also recognize that our definition of a host factor errs on the side 
of conservatism given the increasing use of drugs such as mono-
clonal antibodies for treating a variety of conditions.

Other controversial issues included distinguishing between 
the performance characteristics of tests for screening and con-
firmation, the impact of exposure to antifungal agents used 
for prophylaxis or treatment on imaging and diagnostic tests, 
and the use of biomarkers to monitor therapeutic outcome. We 
agree that further research will be required to evaluate the evi-
dence for each of these assays. Finally, there was consensus that 
diagnostic strategies to determine the relative efficiency of an 
available test, alone or in combination with other diagnostic 
tests, should be considered further.

CONCLUSIONS

In summary, these revised definitions represent consensus ex-
pert opinion based on the best available evidence. As such, they 
will need to be reviewed regularly for their utility and relevance 
and, where possible, extended to other populations affected by 
IFDs. We acknowledge the limitations of these definitions, in-
cluding the exclusion of certain cases of IFD. However, the reli-
ance on host factors, clinical features, and mycologic evidence 
to define IFD in selected populations has proven its value for 
clinical trials, epidemiologic studies, and the evaluation of di-
agnostic tests.

Notes
Author contributions. Pediatrics: William Steinbach (Chair, Mycoses 

Study Group [MSG]), Brian Fisher (MSG), Andreas Groll (European 
Organization for Research and Treatment of Cancer [EORTC]) Thomas 
Lehrnbecher (EORTC), Emmanuel Roilides (EORTC), Thomas J Walsh 
(MSG), Adilia Warris (EORTC), Theo Zaoutis (MSG). Guidance on im-
aging: John W.  Baddley (Chair, MSG), Barbara Alexander (MSG), Sujal 
Desai (EORTC), Klaus Peter Heussel (EORTC), Frédéric Lamoth (EORTC), 
Orla Morrisey (MSG), Cornelia Schaefer Prokop (EORTC). Update of 

Mycological evidence

 ß-D-glucan (Fungitell) ≥80 ng/L (pg/mL) detection in ≥2 consecutive serum 
samples provided other etiologies have been excluded

 Detection of Pneumocystis jirovecii DNA by quantitative real-time poly-
merase chain reaction in a respiratory tract specimen

Endemic mycoses

Host factors

 Not applicable as these diseases affect both healthy and less healthy hosts

Clinical features

 Evidence for geographical or occupational exposure (including remote) to 
the fungus and compatible clinical illness

Mycological evidence

 Histoplasma or Blastomyces antigen in urine, serum, or body fluid

 Antibody to Coccidioides in cerebrospinal fluid or 2-fold rise in 2 consecu-
tive serum samples

Probable invasive fungal diseases (IFD)requires the presence of at least 1 host factor, a 
clinical feature and mycologic evidence and   is proposed for immunocompromised pa-
tients only, whereas proven invasive fungal disease can apply to any patient, regardless of 
whether the patient is immunocompromised. Except for endemic mycoses, probable IFD 
requires the presence of a host factor, a clinical feature, and mycologic evidence, whereas 
cases that meet the criteria for a host factor and a clinical feature but for which mycological 
evidence has not been found are considered possible IFD.
aT2Candida  is US Food and Drug Administration approved for the detection of Candida 
albicans, Candida parapsilosis, Candida tropicalis, Candida krusei, and Candida glabrata in 
blood.
bCryptococcosis also occurs in phenotypically normal hosts.
cDefinitions for human immunodeficiency virus–associated pneumocystosis are not in-
cluded here.
dBilateral, diffuse ground glass opacities with interstitial infiltrates are more common than 
other features such as consolidations, small nodules, thin-walled cavities, and unilateral 
infiltrates.

Table 3. Continued
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galactomannan: Paul Verweij (Chair, EORTC), Elio Castagnola (EORTC), 
Johan Maertens (EORTC), Kieren Marr (MSG), Joseph Wheat (MSG). 
Update on beta-D-glucan, T2Candida: Cornelius J.  Clancy (Chair, MSG), 
Hamdi Akan (EORTC), David Andes (MSG), Mario Cruciani (EORTC), 
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(MSG). Pneumocystosis: Andreas Groll (Chair, EORTC), Sharon Chen 
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(MSG). Inclusion of patients in the intensive care unit: Matteo Bassetti (Chair, 
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Shmuel Shoham (MSG), Jose Vazquez (MSG).
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authors and do not necessarily represent the official position of the Centers 
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