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ABSTRACT OF THE DISSERTATION 
 
 

An Integrated Chemoproteomics- and Genetics-based 

Approach to Identify Functional 

Amino Acids 

 

by 

 

Maria Francis Palafox 

Doctor of Philosophy in Human Genetics 

University of California, Los Angeles, 2023 

Professor Valerie A Arboleda, Co-Chair 

Professor Keriann Marie Backus, Co-Chair 

 

Deciphering the functional and therapeutic relevance of missense variants—mutations 

that change a single amino acid to an alternative residue—is a central challenge in 

modern genetics. In this work, we address this gap using an innovative approach that 

integrates genetic variants, in silico predictions of pathogenicity, and proteomic 

measures of amino acid functionality. First, we found that chemoproteomic methods that  

use a mass spectrometry-based approach to quantify amino acid sidechain reactivity 

proteome-wide can identify amino acid positions enriched for disease-associated 

missense variants. Second, by globally characterizing the positional and contextual 

relationships between reactive residues and genetic variation, we prioritized several 
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likely functional amino acids proximal to rare variants of uncertain significance in 

monogenic disorder genes. While many advanced methods exist to discern the 

pathogenicity of genetic variants, this work uniquely focuses on pathogenicity of 

missense and nucleophilic (reactive) residues in human proteins. In summary, this work 

has important implications in variant prioritization and in therapeutics development, 

where it can support drug discovery efforts through prioritization of attractive and 

function amino acids for small molecule targeting. 
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Chapter 1. Introduction 

The average person’s genome contains over 15,000 missense variants (Lek et al 2016), 

or single nucleotide variants (SNVs) that change an amino acid to an alternative amino 

acid in proteins. A major goal of human genetics is to distinguish which DNA variants 

confer disease risk from those that have no noticeable impact or are otherwise 

considered neutral. Experimental and computational approaches have been developed 

to better estimate the probability that a given variant is associated with deleterious 

consequences for an individual’s health. However, experimental approaches are not yet 

widely used for interpreting the large number of candidate genetic variants in a patient’s 

genome primarily because they are challenging to implement and costly to scale 

(Cooper et al 2011). Computational approaches, despite their algorithmic diversity and 

availability, are not accurate enough yet on their own to identify disease-causing 

variants in a clinical setting. Despite recent advances in both experimental and 

computational methods, identifying which missense variants are associated with 

disease remains a difficult task.  

A parameter associated with protein function is amino acid sidechain reactivity, 

which fluctuates depending on a residue’s chemical microenvironment. Mass 

spectrometry-based chemoproteomics methods have been developed to assay the 

intrinsic reactivity and targetability of residues in native biological systems (Weerapana 

et al 2010; Backus et al 2016; Hacker et al 2017). These methods have successfully 

identified drug vulnerabilities in cancer (Bar-Peled et al 2017) and the targets of FDA-

approved drugs (Blewett et al 2016). While these methods have emerged as powerful 
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tools for uncovering residues that are critical to protein function, a limitation of this 

approach is that biochemical measurements from chemoproteomics experiments alone 

fail to distinguish residue sites essential to proper protein functionality. A major goal 

following chemoproteomics experiments is to identify which detected residues, out of 

thousands of residues detected in a single experiment, play pivotal roles in protein 

functionality and ultimately, are sites amenable to therapeutic drug targeting. 

In this dissertation, I integrate chemoproteomics with human genetics to inform 

whether and to what extent biochemical measurements such as reactivity and 

computational methods for predicting missense variant pathogenicity can be used to 

guide the identification of functional residues and disease-associated missense variants 

in the human genome. In the following dissertation chapters, I explore the utility of my 

approach towards accomplishing major goals in both areas of science and highlight the 

strengths of using a multi-disciplinary approach.  

In Chapter 2 I combine chemoproteomic, genomic, and genetic-variant 

annotation data to understand how genetics can support prioritization of functional 

Chemoproteomic-Detected Amino Acids (CpDAAs). Accurate and precise inter-

database mapping of amino acids is an essential component of such multi-omic studies. 

While prior proteogenomics studies, which aim to identify unknown proteins by providing 

protein-level evidence of gene- and isoform-specific expression, showcase the utility of 

multi-omic approaches, such studies have not extended to chemoproteomics. In this 

chapter, I evaluate two mapping approaches to match CpDAAs to their genetic 

coordinates. My analysis sheds new light on the challenges associated with accurate 
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residue-to-codon mapping and reveals how databases update cycles and a reliance on 

stable identifiers can lead to pervasive mis-mapping and misidentification of CpDAAs in 

many functionally important proteins such as PRMT1, G6PD, and TP53. More broadly, 

this work provides a roadmap for more precise inter-database comparisons with wide 

ranging applications for both communities of proteomics and genetics researchers.  

In Chapter 3 I apply the mapping insights gained from Chapter 2 and explore 

what CpDAAs can do for prioritizing protein-altering variants with pathogenic potential. 

We find that detected proteins are relevant to studying monogenic disorders. Reactive 

residues on the surface of proteins are associated with missense constraint and can 

provide evidence of missense intolerance when genetic based scores may be less 

accurate for a particular context. A global analysis of monogenic disorder genes showed 

an overall lower abundance of cysteine and higher abundance of glycine and I discuss 

the significance of amino acid evolutionary history for insights into tolerance of gains 

and losses by missense variation. I then stratified chemoproteomic detected amino 

acids based on their 1D and 3D environment relations to missense alleles and predicted 

pathogenicity scores and confirmed the utility of my approach using functional data for 

fumarate hydratase protein. 
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Chapter 2. From chemoproteomic-detected amino acids to genomic 

coordinates: insights into precise multi-omic data integration 

2.1 Introduction 

Understanding how proteins work is the bedrock of functional biology and drug 

development. The identification of amino acids that directly regulate a protein's activity 

(e.g., catalytic residues, residues that drive interactions, or residues important for folding 

or stability) is an essential step to functionally characterize a protein. Delineation of 

amino acid-specific functions is typically accomplished using site-directed mutagenesis 

(Hemsley et al 1989; Starita et al 2015). While such studies can identify functional 

hotspots in human proteins, they are typically limited in scope and largely restricted to 

proteins easily expressed in vitro. With the advent of next-generation sequencing and 

CRISPR-based mutagenesis, deep mutational analysis can now be scaled to individual 

genes (e.g., TP53 and BRCA1) (Starita et al 2015; Boettcher et al 2019), but such 

studies have not been extended genome-wide. 

This problem of identifying the functional properties of a specific amino acid 

parallels one of the central challenges of modern genetics: interpreting the pathogenicity 

of the millions of genetic variants found in an individual's genome. Many computational 

methods, such as M-CAP (Jagadeesh et al 2016), Combined Annotation Dependent 

Depletion (CADD) (Kircher et al 2014), PolyPhen (Adzhubei et al 2010), and SIFT 

(Vaser et al 2016) integrate data such as sequence conservation, metrics of sequence 

constraint, and other functional annotations to provide a quantitative assessment of 

variant deleteriousness. In the absence of experimental data, these scores provide a 
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metric to rank genetic variants for their effect on a phenotype, something particularly 

important in the era of genome-wide association and sequencing studies. 

Beyond genetic variation, a frequently overlooked parameter that defines 

functional hotspots in the proteome is amino acid side chain reactivity, which can 

fluctuate depending on the residue's local and 3-dimensional protein microenvironment. 

Mass spectrometry-based chemoproteomics methods have been developed that can 

assay the intrinsic reactivity of thousands of amino acid side chains in native biological 

systems (Weerapana et al 2010; Backus et al 2016; Hacker et al 2017). Using these 

methods, previous studies, including our own, revealed that "hyper-reactive" or pKa-

perturbed cysteine and lysine residues are enriched in functional pockets. These 

chemoproteomics methods can even be extended to measure the targetability or 

"druggability" of amino acid side chains, which has revealed that a surprising number of 

cysteine and lysine side chains can also be irreversibly labeled by small drug-like 

molecules (Weerapana et al 2010; Backus et al 2016; Hacker et al 2017). Complicating 

matters, for the vast majority of these chemoproteomic-detected amino acids (CpDAA), 

the functional impact of a missense mutation or chemical labeling remains unknown. 

Integrating chemoproteomics data with genomic-based annotations represents an 

attractive approach to stratify CpDAA functionality and to identify therapeutically 

relevant disease-associated pockets in human proteins. 

Such multi-omic studies require mapping a protein's sequence back to genomic 

coordinates, through the transcript isoforms, in essence reverse engineering the central 

dogma of molecular biology. Accurate mapping between amino acid positions and 

genomic coordinates remains particularly challenging, due in part to the diversity of cell 
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type-specific transcript and protein isoforms and the non-linear relationship between 

gene, transcript, and protein sequences. One approach to address these challenges is 

through proteogenomics (Ruggles et al 2017), where custom FASTA files are generated 

from whole exome or RNA-sequencing data. However, such approaches are not 

scalable or cost-effective. Furthermore, many proteomic datasets, particularly previously 

acquired and public datasets, lack matched genomic data, precluding proteogenomic 

analysis. 

Many computational tools have been developed for inter-database mapping, 

including using unique identifiers (Durinck et al 2009; Smith et al 2019; Agrawal & 

Prabakaran, 2020), methods to map genomic coordinates to protein sequences and 

structures (David & Yip, 2008; Sehnal et al 2017; Sivley et al 2018; Stephenson et al 

2019), and tools for codon-centric-based annotation of genetic variants (Gong et al 

2014; Schwartz et al 2019). One key application of these tools is the improved 

prediction of variant pathogenicity (Guo et al 2017). However, while many predictive 

genetic scores are built on the GRCh37 genome assembly (frozen in 2014), the UniProt 

Knowledge Base (UniProtKB) (McGarvey et al 2019) proteomic reference is based on 

genome assembly GRCh38. Further complicating data integration, the unsynchronized 

and frequent updates to widely used databases, such as UniProtKB and Ensembl, 

result in a constantly evolving landscape of genome-, transcriptome- and proteome-

level sequences and annotations, which further confounds multi-omic data integration, 

particularly for residue-level analyses. 

Focusing initially on previously identified CpDAAs (Weerapana et al 2010; 

Backus et al 2016; Hacker et al 2017), we first assess how choice of databases, 
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including release dates, and the use of isoform-specific, versioned, or stable identifiers 

impact residue-coordinate mapping and the fidelity of data integration. We then apply an 

optimized mapping strategy to annotate CpDAA positions with predictions of genetic 

variant pathogenicity, for both previously published and newly generated 

chemoproteomic analyses of amino acid reactivity. Our study uncovers key sources of 

inaccurate mapping and provides fundamental guidelines for multi-omic data 

integration. We also reveal that highly reactive cysteines, including those identified 

previously (Weerapana et al 2010) and newly identified CpDAAs, are enriched for 

genetic variants that have high predicted pathogenicity (high deleteriousness), which 

supports both the utility of predictive scores to further power proteomics datasets and 

the use of chemoproteomics to add another layer of interpretation to missense genetic 

variants. As many databases move to GRCh38, we anticipate that our findings will 

provide a roadmap for more precise inter-database comparisons, which will have wide-

ranging applications for both the proteomics and genetics communities. 

 

2.2 Results 

Characterizing the dynamic mapping landscape relevant to CpDAA data 

integration 

Our first step to achieve high-fidelity multi-omic data integration was to establish a 

comprehensive set of test data. For this, we aggregated publicly available cysteine and 

lysine chemoproteomics datasets (Weerapana et al 2010; Backus et al 2016; Hacker et 

al 2017), resulting in a total of 6,510 CpD cysteines and 9,327 CpD lysines detected in 
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4,119 unique proteins. These 15,837 CpDAAs are further sub-categorized by the 

residues labeled by cysteine- or lysine-reactive probes (iodoacetamide alkyne [IAA] or 

pentynoic acid sulfotetrafluorophenyl ester [STP], respectively) and those residues with 

additional measures of intrinsic reactivity (categorized as high-, medium-, and low-

reactive residues). 

As our overarching objective was to characterize CpDAAs using functional 

annotations based on different versions of protein, transcript, and DNA sequences 

(Figure 2-1A), our next step was to develop a high-fidelity data analysis pipeline for 

intra- and inter-database mapping. To guide our analyses, we first referenced 

established methods for such data mapping, including ID mapping (Huang et al 2008; 

Meyer, Geske, & Yu, 2016; Xin et al 2016), residue–residue mapping (Martin, 2005; 

David & Yip, 2008; Dana et al 2019), and residue–codon mapping (Zhou et al 2015; Li 

et al 2016) (See Table 2-1 for detailed descriptions of each type of mapping). 

We suspected that the frequent and unsynchronized update cycles of 

independent databases (Figure 2-1B) might complicate accurate residue-level 

mapping. Supporting this hypothesis, quantification of the average update cycle for 

each database across this time period revealed that UniProtKB has the shortest mean 

update cycle (~ 6 weeks; Figure 2-1C). In contrast, NCBI is only updated yearly. These 

different update cycles can create a lag between versions of databases used to create 

identifier cross-reference (a.k.a. External Reference [xref]) files. For example, ID 

mapping files provided by Ensembl for UniProtKB proteins may not share identical 

sequences if not used within the short 4-week window between UniProtKB updates. 
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To enable further characterization of how database update cycles and mapping 

strategy impact the fidelity of data integration, we collected a test set of Ensembl 

releases (Figure 2-2). Specific releases were prioritized that (i) represented reference 

releases based on the GRCh37 or GRCh38 reference genome, (ii) were compatible 

with the latest Consensus Coding Sequence (CCDS) update for the human genome 

(release 22), (iii) were used in database for nonsynonymous functional predictions 

(dbNSFP) v4.0a and CADDv1.4, two resources that integrate functional annotations for 

all possible nonsynonymous single nucleotide variants (SNV) (Kircher et al 2014; Liu et 

al 2016; Rentzsch et al 2019), and (iv) were associated with a commonly used version 

of the Ensembl Variant Effect Predictor (VEP) (McLaren et al 2016). 

With these prioritized datasets in hand, we next tracked the loss of CpDAA-

containing protein IDs during intra-database mapping of UniProtKB releases and inter-

database ID mapping to different Ensembl releases. Gratifyingly, only a handful of the 

original 4,119 protein IDs were lost due to database updates, both for Ensembl (e.g., 37 

IDs for v97 release of Ensembl) and for UniProtKB (e.g., 26 IDs for 2012 UniProtKB; 

Figure 2-2). The greatest identifier loss was observed from mapping UniProtKB-based 

legacy data to the 2018 UniProtKB-SwissProt CCDS cross-referenced curation of the 

human proteome, with 119 IDs not found in the 2018 dataset. We ascribe this identifier 

loss to both UniProtKB updates and to the higher level of curation for proteins in the 

2018 dataset, which includes only Swiss-Prot canonical protein sequences with a cross-

referenced (“xref”) entry term in the CCDS database. Of note, CCDS gene IDs are 

manually reviewed and linked to UniProtKB-SwissProt. The TREMBL database is 

comprised of automatically generated protein IDs, which, as a result, comprises a 
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substantially larger set of UniProtKB IDs, when compared to the manually curated 

SwissProt CCDS subset (Figure 2-3). From these analyses, we concluded that using 

the CCDS UniProtKB release was optimal for integrating functional annotations with 

chemoproteomics datasets. 

 

Updates to canonical sequences assigned to UniProtKB stable identifiers can 

lead to intra-database mismapping of CpDAAs 

Proteomics datasets, including published CpDAA datasets, are routinely searched 

against FASTA files containing only canonical UniProtKB proteins (Table 2-1), for two 

main reasons. First, canonical proteins reduce the redundancy and complexity of 

proteome search databases. Second, these sequences are identified by stable 

identifiers (also known as the UniProtKB primary accessions) and offer the seeming 

advantage of remaining constant through database update cycles. However, one 

particularly confusing aspect of the stable identifier is that the word “stable” in this 

context does not mean permanent or immutable. Specifically, the associated sequence 

linked to a stable identifier can change over database releases. 

Therefore, we next assessed whether and to what extent updates to the 

canonical sequences assigned to UniProtKB stable identifiers resulted in mismapping. 

To confirm the integrity of our CpDAA dataset, we started this process by validating that 

over 99% of the CpDAA protein IDs and residue positions matched with those found in 

a 2012 UniProt FASTA file, corresponding to the reference proteome originally used to 

process the datasets (see Materials and Methods). The small fraction of data lost was 

due to missing stable identifiers and mis-matched CpDAA positions, which likely stems 
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from slight inconsistencies between the original processing pipeline and our current 

workflow. We then mapped the 6,404 CpD cysteines and 9,213 CpD lysines from 4,084 

canonical proteins identified in the 2012 dataset to the 2018 UniProtKB CCDS canonical 

sequence subset of the human proteome. Mapping to CCDS sequences enabled us to 

take advantage of the extensive array of tools that facilitate forward and reverse 

annotation between gene, transcript, and protein sequences and would allow for 

residue-specific mapping to genomic functional annotations (Zhou et al 2015; Meyer, 

Geske, & Yu, 2016; McGarvey et al 2019). Updating to the 2018 release was a requisite 

step for using these tools, as they overwhelmingly require recent cross-reference files 

using the newest reference genome GRCh38. For all CpDAA positions, we performed 

residue–residue mapping—defined as a one-to-one correspondence between amino 

acids in proteins from different databases or release dates—to match the 2012 

canonical UniProtKB sequences with their 2018 counterparts. This dataset mapping 

resulted in the loss of 121 protein IDs, with 108 simply not found in the 2018 reference 

file and the remaining 13 found to have different canonical sequences, resulting in 

mismapping or loss of the originally identified CpDAA residues. 

The high concordance between these two UniProtKB releases, separated by 

6 years, indicates that for the vast majority of UniProtKB updates, differences in release 

date should not complicate re-mapping legacy proteomics data to more recently 

released gene, transcript, and protein sequences. However, we were surprised to find 

that several widely studied proteins, including protein arginine N-methyltransferase 1 

(PRMT1 or ANM1, Q99873), serine/threonine protein kinase, (SIK3; Q9Y2K2) 

(Walkinshaw et al 2013), and tropomyosin alpha-3 chain (TPM3, P06753), had 
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canonical protein sequence differences resulting in all or nearly all CpDAA positions to 

be missed using the 2018 position index. We observed two main reasons for these 

losses: (i) changes to the canonical sequence associated with the UniProtKB stable ID 

and (ii) changes to which isoform is assigned as the canonical sequence. While both 

2012 and 2018 sequences of PRMT1 are associated with UniProtKB stable ID Q99873, 

the 2018 sequence contains an additional short N-terminal sequence, not present in the 

2012 sequence (Figure 2-4A). As a result, all 13 PRMT1 CpDAAs failed to map to the 

2018 UniProtKB release. In the 2012 release of UniProtKB, the canonical sequence of 

the peptidyl-prolyl cis-trans isomerase FKBP7 is associated with the versioned (isoform) 

ID Q9Y680-1, whereas in the 2018 release, the canonical sequence is associated with 

the versioned (isoform) ID Q9Y680-2, which lacks a short sequence (AAΔ125:162) in 

the middle of the protein. For FKBP7, this update fortuitously does not result in loss of 

CpD Lys83, as it is located N-terminal to the deletion. These updates to the protein 

sequence are, in essence, masked by the stable IDs, which do not flag sequence 

updates or changes to which isoform sequence is assigned as the canonical. 

Exemplifying this problem, we identified 45 stable identifiers with non-identical canonical 

protein sequences in the 2012 and 2018 UniProtKB releases. 

To further understand how the presence or absence of protein isoforms impacts 

the fidelity of data mapping during intra-database (UniProtKB) mapping, we identified all 

isoforms associated with CpDAA stable protein IDs. Analysis of this dataset revealed 

that 58% of protein stable IDs have between 2–5 associated isoform sequences (Figure 

2-4B). Catenin delta-1 protein (CTNND1, O60716) had 32 isoforms, which was the 

greatest number of isoforms in our dataset. Protein isoforms are identified by the “-X” 
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after the UniProtKB ID, where X represents the isoform name. A common assumption of 

most mapping tools and proteomics databases is that the “-1” sequence is the canonical 

sequence. However, a key finding from our isoform analysis is that the canonical 

sequence does not always correspond to the “-1” isoform ID provided by UniProtKB. In 

fact, for 288 proteins in the UniProtKB 2018 release, the non-“-1” entry corresponds to 

the canonical isoforms, and for 55 CpDAA-containing proteins in our dataset (~ 2%), the 

canonical sequence is not the “-1” isoform (Figure 2-4C). Strikingly, the canonical 

sequence can even be the “-10” isoform, as is the case for the Ras-associated and 

pleckstrin homology domains-containing protein (RAPH1, Q70E73). In the context of 

database mapping, all of these non-“-1” canonical proteins will likely result in 

mismapping using established tools. 

 

Accurate residue-level inter-database mapping between UniProtKB and Ensembl 

is dependent on database update cycles 

To investigate how sequence versions impact inter-database mapping, we next turned 

to ID cross-reference files that are released by Ensembl and UniProtKB. Cross-

reference files can be used to convert between UniProtKB and Ensembl ID types. Three 

major challenges arise with ID cross-referencing: (i) when cross-reference stable IDs 

match, but corresponding sequences are not identical, (ii) multi-mapping, where a 

UniProtKB ID maps to many Ensembl protein (ENSP), transcript, and gene IDs, and (iii) 

when the origin, both the time of the releases and the specific database provided cross-

reference files used, determines the mapping accuracy of datasets. 
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Glucose-6-phosphate dehydrogenase (G6PD, P11413) exemplifies how 

sequence updates associated with a stable ID can lead to mismapping of gene-, 

transcript-, and protein-level annotations for CpDAAs (Figure 2-4D). For G6PD, the 

same UniProtKB ID maps to four unique ENSP IDs with identical sequences (see first 

row in “Identical”) as well as four different ENSP IDs with non-identical sequences (see 

second row in “Non-identical”). For G6PD, this significant redundancy is also observed 

at the gene and transcript level, both for stable and versioned IDs (Figure 2-5A). 

Overall, genes undergo the highest frequency of sequence re-annotation due to 

continual refinement of the reference genome. In contrast, protein IDs remain largely 

fixed across releases (Figure 2-5B). 

To assess how pervasive multi-mapping is across the entire CpDAA dataset, we 

quantified the mean number of Ensembl IDs per UniProtKB ID. We counted both 

versioned and stable Ensembl IDs types (gene, transcript, and protein IDs), for all CpD 

UniProtKB proteins grouped by single (Figure 2-5C) or multi-isoform (Figure 2-5D) 

associated stable IDs. We suspected that database updates for all data types (gene, 

transcript, and protein) and the presence of UniProtKB isoforms would contribute to the 

observed multi-mapping of CpD protein IDs in our dataset. Of note, Ensembl versioned 

IDs indicate changes to the associated sequence rather than the presence of isoforms. 

For example, for protein tropomyosin alpha-4 chain (TPM4, P67936), during the update 

from v96 to v97, the stable protein identifier showed version change from “.3” to “.4” 

(ENSP00000300933.3 to ENSP00000300933.4), which corresponds to a difference of 

165 amino acids in the primary sequence caused by the update. Not surprisingly, we 

found that UniProtKB stable identifiers with multiple associated protein isoforms have a 
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higher average of cross-referenced Ensembl ID types per UniProtKB stable identifier, 

when compared to UniProtKB stable IDs associated with only one protein isoform. In 

addition, single isoform UniProtKB stable IDs are more likely to cross-reference identical 

ENSPs, when compared to multi-isoform UniProtKB stable IDs (Figure 2-6A and 

Figure 2-6B). 

One last challenge we identified is that the origin of the cross-reference file 

(whether it was created by UniProtKB or by Ensembl) affected the outcome of our 

mapping procedures. Across the five Ensembl releases, only 56.9% of all Ensembl-

UniProtKB cross-referenced IDs had identical protein sequences (Figure 2-6). We then 

used a cross-reference file from UniProtKB that, unlike the Ensembl mapping files, 

contains mappings with canonical isoform protein identifiers for UniProtKB proteins to 

Ensembl stable protein IDs, to test whether inclusion of isoform name details improves 

the accuracy of inter-database ID mapping. This approach allowed for > 99% identical 

protein sequence cross-references for UniProtKB-ENSP IDs and substantially reduced 

the burden of identifier multi-mapping (Figure 2-7A and Figure 2-7B). Our study 

demonstrates that high-fidelity ID cross-referencing requires attention to details 

regarding database updates, multi-mapping, and identifier types used in cross-reference 

file sources. We also observed that sequences associated with mapped UniProtKB and 

Ensembl stable IDs varied significantly in alignment distance depending on the Ensembl 

version (Figure 2-4E; Figure 2-10), with temporally close releases showing generally 

greater sequence similarity. 
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Assessment of pathogenicity predictions for CpD cysteine and lysine codons, 

using residue–codon mapping 

Our next objective was to apply residue–codon mapping to the prioritization of functional 

CpDAAs. Cysteines and lysines are both highly conserved, with 97% (Miseta & Csutora, 

2000) and 80% (Hacker et al 2017) median conservation, respectively. Consequently, 

sequence motif conservation cannot distinguish between functional and non-functional 

residues within chemoproteomics datasets. To identify cysteine- and lysine-centric 

genetic features suitable for pathogenicity prioritization, we tailored our pipeline to 

reverse-translate CpD cysteine and lysine positions in canonical UniProtKB proteins to 

genomic coordinates from both major genome assemblies (GRCh37 and GRCh38) and 

genomic-based functional annotations. For all proteins within our CpDAA dataset, 

referred to as detected proteins, we also processed undetected equivalent residue 

types in CpD Cys- and/or CpD Lys-containing proteins (Figure 2-8). Cysteines and 

lysines were required to have valid coordinates in GRCh37 and GRCh38 reference 

genome assemblies, as some functional genetic variant annotations are only available 

in one genome assembly. Probe-labeled cysteines and lysines represent ~ 15% of all 

cysteines (6,057 CpD Cys out of 40,107 total Cys) and ~ 6% of all lysines (8,868 CpD 

Lys out of 149,520 total Lys) found in chemoproteomic-identified proteins (n = 3,840 

UniProtKB IDs successfully mapped; Figure 2-9A and Figure 2-9B). 

Next, genomic coordinates of cysteine and lysine codons from 3,840 detected 

proteins were annotated by a panel of functional scores (Quang, Chen, & Xie, 2015; 

Shihab et al 2015; Ioannidis et al 2016; Jagadeesh et al 2016; preprint: Samocha et al 

2017; Sundaram et al 2018; Rentzsch et al 2019). With the goal of assessing the 
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correlation between individual scores and chemoproteomics identification labels, we 

selected complementary pan-genome and missense deleteriousness prediction scores  

based on either GRCh37 or GRCh38 reference genome assemblies for our analysis. 

For the CADD score, which is available for both assemblies, we observed a trend of 

slightly higher scores with CADD38 compared to CADD37 (Figure 2-12). We calculated 

the Spearman's correlation of scores for all possible nonsynonymous SNVs overlapping 

cysteine and lysine codons and saw a higher correlation between the deleteriousness 

predictions for CpD cysteine substitutions (Figure 2-9C) than for CpD lysine 

substitutions (Figure 2-9D). For the subset of scores that provide deleteriousness 

scores for all possible nonsynonymous variants, we did not observe substantial 

differences between the correlation of scores for chemoproteomic- detected and 

undetected lysines or cysteines (Figure 2-13). 

Pathogenicity thresholds, which are provided by a subset of the scores 

investigated (e.g., CADD, functional analysis through hidden markov models [fathmm-

MKL], and Deleterious Annotation of genetic variants using Neural Networks [DANN]), 

provide a useful cut-off for assessing whether substitutions at specific amino acids are 

likely to be deleterious to protein function. Therefore, we next assessed whether 

substitutions at detected vs undetected cysteines or lysines were more likely to be 

predicted damaging. We first assessed the amino acid substitutions for cysteine and 

lysine resulting in the greatest chemical property change, or highest Grantham score 

(Grantham, 1974), Cys > Trp and Lys > Ile. For CADD38 (Kircher et al 2014), fathmm-

MKL coding (Shihab et al 2014), and DANN (Quang, Chen, & Xie, 2015), substitutions 

of detected cysteines were less likely to be predicted damaging compared to 
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substitutions of undetected cysteines (Figure 2-9E, red). In contrast, substitutions of 

detected lysines were more likely to be predicted damaging compared to substitutions 

of undetected lysines (Figure 2-9E, blue). This trend for cysteine and lysine predicted 

deleterious score enrichment extended to all missense types (Figure 2-16A). 

We next tested if these trends would extend to clinically validated “pathogenic” 

and “likely pathogenic” missense mutations, as identified by the ClinVar database 

(Landrum et al 2018). ClinVar is the gold standard repository of genomic variants 

associated with monogenic disorders. In total, the filtered ClinVar dataset contained 

2,225 disease-associated missense variants that change from a cysteine (1,653 

variants) or lysine (572 variants). We found no significant enrichment of disease-

associated variants in detected over undetected cysteines (Figure 2-9F, red). In 

contrast, detected lysines showed a significant enrichment for disease-associated 

variants relative to undetected lysines (Figure 2-9F, light blue). Combining cysteine and 

lysine data revealed detected residues in general as more likely to harbor disease-

associated mutations relative to equivalent undetected residues in 3,840 detected 

proteins (Figure 2-9F, dark blue). Given the challenges associated with accurately 

diagnosing missense variants, we expect that chemoproteomic detection, particularly for 

lysine residues, could be used as an additional metric to improve pathogenicity 

predictions for genetic variants. 

 

Chemoproteomics data combined with pathogenicity scores can help prioritize 

functional residues 
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We next assessed correlations between genetic-based pathogenicity score and amino 

acid reactivity, as assessed by chemoproteomics. We chose CADD as the optimal 

score to evaluate, as it integrates other nucleotide variant predictors into its model and 

is available for both reference genome assemblies, GRCh37 and GRCh38. 

Chemoproteomic reactivity measurements were binned into low, medium, and high 

reactivity categories, defined as low (R10:1 > 5), medium (2 < R10:1 < 5), high 

(R10:1 < 2) isoTOP-ABPP ratios, respectively (Weerapana et al 2010; Hacker et al 

2017). These ratios quantify the relative labeling of a residue at different probe 

concentrations (e.g., 1× vs 10×). A ratio closer to one indicates that labeling is saturated 

at low probe concentration, which corresponds to a cysteine or lysine with higher 

intrinsic reactivity. 

To adapt CADD scores from the nucleotide level to the amino acid level for 

CpDAAs, the mean and max CADD score for all possible nonsynonymous SNVs per 

codon (see Methods) were calculated. For both max (Figure 2-11A) and mean (Figure 

2-16B) CADD codon scores, we found that highly reactive cysteines show significantly 

higher predicted deleteriousness. In contrast, lysine reactivity did not correlate with 

predicted pathogenicity (Figure 2-11B and Figure 2-16C). 

As the legacy cysteine reactivity dataset was relatively small (94 high reactivity 

cysteines in total), we next sought to verify these striking correlations, using a larger 

dataset. For this, we subjected lysates from the immortalized human T lymphocyte 

Jurkat cell line to isoTOP-ABPP reactivity profiling, comparing cysteine labeling with 10 

or 100 μM iodoacetamide alkyne probe, as has been described previously (Weerapana 

et al 2010). In aggregate, we identified 4,291 cysteines across five replicate 
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experiments (~ 4-fold more cysteines than were assayed by (Weerapana et al 2010)), 

including 322 high, 1,448 medium, and 2,247 low reactivity residues. A strong 

correlation (Pearson correlation coefficient = 0.5) was observed between values 

reported in our new dataset and those reported previously (Figure 2-15). This rich 

dataset allowed us to further verify our finding that the codons of highly reactive 

CpDAAs are enriched for high pathogenicity scores. Gratifyingly, our initial finding was 

reproduced with this new and larger dataset (Figure 2-16B and C), supporting both the 

validity of our approach and the robustness of our findings. 

As a first case study to explore the utility of integrating genetic-based 

pathogenicity predictions with CpDAA reactivity measures, we turned to the well-

characterized essential enzyme glucose-6-phosphate dehydrogenase (G6PD). 

Associated with over 160 different genetic mutations, G6PD deficiency is one of the 

most common genetic enzymopathies (Hwang et al 2018). As G6PD deficiency is 

associated with both acute and chronic hemolytic anemia (Porter et al 1964; Miwa & 

Fujii, 1996) (OMIM #300908), and with malaria resistance (Luzzatto, Usanga, & Reddy, 

1969) (OMIM #611162), identifying functionally important residues in G6PD should 

inform the diagnosis and treatment of G6PD-associated genetic disorders. To visualize 

CADD pathogenicity scores along protein sequence length, we plotted the first 300 

amino acids in G6PD with lines tracking max CADD GRCh38 scores, including the 

positions of all 15 residues identified in prior chemoproteomics studies (Figure 2-17A). 

Of particular interest to us were K171 and K205, which are both located proximal to the 

enzyme active site (Figure 2-17B). While K171 and K205 had very different intrinsic 

reactivities (R10:1 = 1.3 and R10:1 = 9.2, respectively), both showed high max CADD 
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scores (28.8 and 32, respectively; Figure 2-17A). Consistent with the observed high 

CADD scores, chemical modification at K205 (e.g., by aspirin) has been found to block 

G6PD activity (Jeffery, Hobbs, & Jörnvall, 1985; Ai et al 2016) and mutations at K171 

have been implicated in anemia (Hirono et al 1989; Au et al 2000). These prior data, 

when combined with our analysis of CADD and reactivity measurements support our 

finding that the propensity of lysines to react with electrophilic probes, but not measured 

differences in their intrinsic probe reactivity, correlate with predicted pathogenicity 

(Figure 2-9E and Figure 2-9F, and Figure 2-16A and Figure 2-16C). 

We next sought to determine whether the utility of integrating genetic-based 

pathogenicity predictions with CpDAA reactivity measures could extend to the de novo 

discovery of functional residues. We turned to the well-characterized enzyme caspase-

8, a member of the cysteine-aspartic acid protease (caspase) family and a key initiator 

of extrinsic apoptosis. Pathogenic mutations in caspase-8 result in autoimmune 

lymphoproliferative syndrome (ALPS, OMIM# 607271) (Chun et al 2002; Kanderova et 

al 2019) and are associated with certain types of cancer. Our chemoproteomic reactivity 

dataset (Figure 2-18A) revealed that caspase-8 harbors two iodoacetamide alkyne-

reactive cysteines: the catalytic cysteine (Cys360, R10:1 = 3.8) and a second non-

catalytic cysteine (Cys409, R10:1 = 2.9). Consistent with its function as the catalytic 

nucleophile, the codon of Cys360 has a high mean CADD score (29.3), whereas the 

codon of Cys409 has a lower CADD score (21.4), indicative that mutations that alter 

Cys409 should be less damaging to caspase-8 (Figure 2-11C). Cys409 is located on a 

flexible loop ~ 11.8 Å from the active site, as revealed by our projection of the max 

CADD codon scores onto the CASP8 X-ray structure (Figure 2-11D). As, to our 
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knowledge, the functional impact of Cys409 mutations has not been assessed, we 

tested whether mutations at Cys409 would impact protein function, as indicated by the 

elevated measured reactivity, but not the moderate CADD score. Activity assays 

revealed that mutations at Cys409 do indeed impact protein function, completely 

blocking proteolytic activity (Figure 2-11E). Taken together, these analyses highlight the 

utility of integration of chemoproteomic measures with pathogenicity predictions to 

improve stratification of functional and pathogenic residues. 

 

2.3 Discussion 

We conducted an in-depth assessment of multiple mapping strategies to facilitate multi-

omic analysis of chemoproteomics datasets. We then applied our optimal mapping 

strategy to analyze the relationship between missense pathogenicity scores and 

chemoproteomic measures of the intrinsic reactivity of cysteine and lysine residues. Our 

study revealed a number of challenges that limit the precision of multi-omic data 

analyses when using publicly available chemoproteomics datasets. To increase 

awareness of identifier mapping problems and to highlight important considerations for 

those analyzing similar datasets, we have summarized a list of best practices for 

accurate curation of functional annotations for CpDAA below. 

 

Recommended best practices for inter- and intra-database integration for 

chemoproteomics datasets 

Entry  Recommendation 
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A  Support integration of quantitative chemoproteomics studies by (i) providing 

reference UniProtKB FASTA files alongside raw proteomic data files and (ii) 

including genomic coordinates for the codons of identified amino acids in the 

reference files 

B  Perform proteomics database searches against reference database sequences 

that map to known transcript and gene coordinates (e.g., CCDS) 

C  Perform sequence identity checks, which will identify and minimize mismapping 

caused by canonical sequence updates between UniProtKB releases 

D  Map data to the appropriate genome assembly for downstream applications. 

Genome assembly updates can introduce or refine genome resolution and in 

doing so alter the genomic coordinates of codons. Not all downstream 

pathogenicity predictors are compatible with both GRCh37 and GRCh38. 

 

The availability of raw proteomics data in public repositories (e.g., PRIDE (Côté 

et al 2012), PeptideAtlas, and Panorama (Sharma et al 2014)) might suggest an 

obvious solution to address the challenges associated with reprocessing published 

data: to re-search raw data using a new UniProtKB reference. However, reprocessing 

raw proteomic datasets can be both computationally expensive and time-limiting. An 

important alternative is to re-map the processed residue-level data to a release of 

UniProtKB that serves as the reference proteome for all functional annotations of 

interest, facilitating comparisons between annotated datasets. Complicating matters, 

providing the reference search databases (typically a custom UniProtKB FASTA file) 

alongside the raw proteomics files is not routine, and, although UniProtKB is updated 
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monthly, only annual releases are maintained long-term in the database archives. 

Simply put, the original reference search sequences used in a chemoproteomics study 

may no longer be accessible for subsequent follow-up studies. Use of non-matched 

reference files can result in data loss and annotation errors, which may confound 

interpretation. For example, when we remapped legacy protein identifiers to multiple 

UniProtKB releases, we lost 28–199 of proteins, which ranges from 0.6 to 4.8% of the 

original total CpDAA proteins (Figure 2-2). While this may, at first glance, seem to be a 

paltry fraction of all data, these losses can still prove problematic when key proteins of 

interest are lost due to database release differences. 

There are several interconnected causes for our observed data loss at the 

protein level. The absence of protein isoform-specific identifiers in most proteomics 

search databases, particularly when combined with database updates to canonical 

sequences, can lead to mismapping, as shown for PRMT1 and FKBP7 (Figure 2-4A). 

The small number of UniProtKB sequences for which the canonical sequence is not the 

UniProtKB “-1” entry can also lead to further mismapping, especially when using 

mapping software that relies on this assumption (Figure 2-4C). Making reference 

FASTA files publicly available alongside raw data files is a relatively simple solution to 

facilitate data integration. 

Reversing the central dogma to map protein identifiers back to transcript and 

gene identifiers and CpDAA positions back to transcript and genomic coordinates adds 

several additional layers of mapping complexity. Ensembl stable identifiers (gene, 

transcript, and protein), which are linked to UniProtKB stable identifiers are useful for 

facilitating this process. However, the number of redundant sequences maintained by 
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Ensembl and the dynamic landscape of Ensembl entries across releases complicates 

the use of Ensembl stable IDs for inter-database mapping. For example, for the protein 

G6PD, across the five Ensembl releases investigated, we identified seven stable protein 

IDs, of which only one was consistently identical to the UniProtKB canonical sequence 

for G6PD (Figure 2-4D). The unsynchronized and frequent database update cycles are 

a cause of mismapping, which is particularly problematic for large-scale residue-level 

annotation projects (Figure 2-4E and Figure 2-2). Practically speaking, what this 

means is that a CpDAA from an available proteomics dataset could easily be mapped to 

the incorrect amino acid in an ENSP, followed by the incorrect transcript position, 

incorrect genomic coordinates, and incorrect pathogenicity score. Although there are a 

number of tools (e.g., TransVar and BISQUE (Zhou et al 2015; Meyer, Geske, & Yu, 

2016) that facilitate inter-database cross-referencing, their performance can be limited 

by all the challenges outlined above. An important and easily implementable solution to 

these problems is to search proteomics data against a highly curated reference file, 

such as the UniProtKB subset of cross-referenced CCDS proteins. Additionally, where 

possible, sequence identity checks should be performed to verify the mapping of 

identified residues. 

Choice of reference genome further complicates data mapping. While many 

studies have now transitioned to GRCh38, many useful annotations, including variant-, 

sub-gene-, and gene-level metrics (e.g., MPC, PrimateAI, M-CAP, CCR, LOEUF), were 

built using GRCh37 genome assembly and are generally incompatible with the more 

recent GRCh38 genome assembly. As GRCh37 was frozen in 2014, mismapping can 

occur from invalid coordinates of proteomics datasets generated using newer reference 
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proteomes based on GRCh38 coordinates. For many annotations, the solution to 

different genome assemblies is to “lift-over” annotations to the other genome assembly. 

However, not all functional annotations are compatible with liftover. Local sequence 

alignment tools can be used to address problems when transitioning between GRCh37 

and GRCh38 but can be challenging to scale genome-wide. The transition of all relevant 

annotations to the GRCh38 reference genome is ongoing and will address many of the 

aforementioned issues. However, this move is a substantial undertaking that requires 

rerunning of large-scale datasets and extensive quality control measures. To make full 

use of these scores, we recommend mapping proteomics data to genomic coordinates 

for both assemblies. 

Together our analysis of inter-database mapping enabled us to compile a 

rigorously curated dataset of CpDAAs that mapped to both GRCh37- and GRCh38-

based scores (data can be visualized in our CpDAA R Shiny app 

https://mfpalafox.shinyapps.io/CpDAA/). Using this dataset, we were then able to ask a 

number of novel questions, including how different scores compare across all identified 

cysteine and lysine residues and whether the codons of specific residues are enriched 

for predicted pathogenic mutations. For all nucleotide substitutions that result in a CpD 

cysteine or lysine amino acid change, we observed generally high concordance 

between scores (Figure 2-9C and Figure 2-9D). While mutations at detected cysteine 

codons were, in general, predicted to be less deleterious than those at undetected 

cysteine codons, the subset of CpD cysteines with heightened reactivity were predicted 

to be more damaging than cysteines of lower reactivity (Figure 2-9E, Figure 2-14 and 

Figure 2-16A). No such trend was observed for highly reactive lysines (Figure 2-11B; 

https://mfpalafox.shinyapps.io/CpDAA/
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Figure 2-14). These intriguing findings suggest that cysteine hyper-reactivity is a 

privileged feature that could be used to inform the functions of genetic variants. As a 

demonstration of the utility of cysteine reactivity measures for identification of functional 

residues, we found that mutation of the non-catalytic Cys409 in caspase-8, which had 

an elevated reactivity ratio but relatively modest CADD score, completely ablated 

proteolytic activity, which supports that reactivity measurements likely can help to 

functionally stratify amino acids when CADD scores are less than conclusive. 

We can foresee a multitude of applications for chemoproteomic and genomic 

data integration. While prior studies that revealed hyper-reactive cysteine residues are 

enriched in redox-active sites and enzyme active sites (Weerapana et al 2010; Backus 

et al 2016) and that hyper-reactive lysines were depleted in post-translational 

modification sites (Hacker et al 2017), most CpDAAs still lack functional annotation. 

Predictive tools, such as those highlighted here, will undoubtedly aid in stratification of 

residues identified by chemoproteomics studies, pinpointing potentially druggable and 

disease-linked protein regions. To further aid in integration of CpDAA functional data, 

we have developed the CpDAA database to house all datasets used in this study 

together with their associated annotations. 

Another area that we expect will benefit from such multi-omic approaches is 

interpretation of the impact of rare missense variants identified in patients with 

monogenic disorders. Protein-level functional data can aid in the interpretation of 

variants of uncertain significance (VUS), including those identified in clinical genetic 

testing, and can guide follow-up research studies. We anticipate that chemoproteomic 

methods should prove enabling for VUS interpretation, providing a high-throughput 



 28 

means to stratify amino acid functionality that is complementary to established genetic 

approaches, including site-directed mutagenesis. Application of chemoproteomics data 

to clinical studies will require careful data integration and sequence level mapping, 

particularly given that the reference sequences and choice of identifiers employed by 

clinical vs research studies are typically non-identical. 

Addition of protein structural data to such pipelines will likely further improve their 

utility and predictive power. As a starting point to such structure-based data integration, 

we mapped CADD predictive scores directly to the structures of CASP8 and G6PD 

(Figure 2-11D and Figure 2-17C). This 3-dimensional data integration highlighted key 

residues that form a common function in 3D space but are not easily identified using 

predictions associated with conservation in the linear-space of DNA. Looking to the 

future, we anticipate that such multi-omic studies will likely prove most enabling when 

combined with rigorous functional validation, for example by combining CRISPR-Cas9 

mutagenesis with phenotypic assays. The use of CRISPR-Cas9 base editors (Kim et al 

2019; Grünewald et al 2019, 2020) should facilitate such studies, particularly when 

combined with protein-centric guide RNA design packages (e.g., CRISPR-TAPE) 

(Anderson et al 2020). In sum, we anticipate that such studies represent the next 

frontier for both the genetics and chemoproteomics communities. 

2.4 Methods 

Data sources 

All data sources are listed in Reagents and Tools table. CpDAA datasets were obtained 

from the following studies (Weerapana et al 2010; Backus et al 2016; Hacker et al 
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2017). UniProtKB-SwissProt human proteome filtered by canonical isoform and cross-

reference in CCDS database was downloaded August 06, 2018 (2018_06; see 

Reagents and Tools table). Two cross-reference file sources were used to map 

UniProtKB protein IDs to Ensembl IDs: (i) UniProtKB ID mapping (idmapping.dat) 

(McGarvey et al 2019) or (ii) Ensembl release-specific mapping files (xref files) (Aken et 

al 2016). ENSPs and identifiers were extracted from five release-specific FASTA files 

(Ensembl database version v85, v92, v94, v96, and v97) downloaded November 19, 

2019. CADDv1.4 (Kircher et al 2014) scores were downloaded on July 03, 2019. DANN 

(Quang, Chen, & Xie, 2015), fathmm-MKL (Shihab et al 2014), M-CAP v1.3 (Jagadeesh 

et al 2016), MPC release 1 (preprint: Samocha et al 2017), REVEL (Ioannidis et al 

2016), and PrimateAI (Sundaram et al 2018) scores were extracted from dbNSFPv4.0a 

(Liu et al 2016) downloaded on June 11, 2019. “Pathogenic” and “likely pathogenic” 

labeled variants were extracted from the July 24, 2019, release of ClinVar (Landrum et 

al 2018). 

 

Database update cycles 

Average time between Ensembl, GENCODE, CCDS, and NCBI updates was quantified 

using all releases between August 2013 and July 2019 (5 years and 11 months window 

of time). Dates counted refer to the public release date posted on each databases' ftp 

site. For the UniProtKB update cycle length, values provided by the UniProtKB website 

on typical time between Knowledgebase releases from 2019 (4 weeks) and 2020 

(8 weeks) were averaged. UniProtKB, Ensembl, GENCODE, CCDS, and NCBI releases 
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were selected based on proximity to the release dates of the five Ensembl database 

versions analyzed in the current study. 

 

Mapping CpDAA data to more recent UniProtKB releases 

CpDAA datasets had been previously searched against a non-redundant reverse 

concatenated UniProtKB reference FASTA file (Weerapana et al 2010; Backus et al 

2016; Hacker et al 2017) from the November 2012 (2012_11) release and amino acids 

in labeled peptides were annotated with the corresponding UniProtKB stable ID, amino 

acid letter, and position (e.g., P11413_C205). The author-provided UniProtKB 2012_11 

FASTA file was referenced to check the UniProtKB IDs and CpDAA positions. Legacy 

chemoproteomic-detected cysteine and lysine positions that did not match positions in 

the canonical sequences from the 2012_11 release were dropped from further analysis. 

The UniProtKB 2012 canonical protein-based CpDAA residue numbers were then 

checked against UniProtKB canonical proteins from the 2018_06 release of CCDS 

cross-referenced human proteome dataset (See GitHub for python script). 

Chemoproteomic-detected proteins were excluded from further analysis if (i) UniProtKB 

canonical sequence from 2018 release was missing chemoproteomic-detected positions 

(e.g., natural variant overlaps detected cysteine position), (ii) UniProtKB ID flagged with 

“caution” on UniProt's website (e.g., https://www.uniprot.org/uniprot/Q8WUH1), and (iii) 

UniProtKB IDs not cross-referenced in all five Ensembl release-specific mapping files. 

 

Assessment of isoforms per stable UniProtKB ID 
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The UniProtKB homo sapien FASTA file containing canonical and isoform sequences 

was downloaded August 06, 2018. Isoform IDs per UniProt entry (referred to as stable 

ID in this study) were counted in the FASTA file. Canonical isoform IDs marked by lack 

of isoform name details (e.g., P11413) were excluded. 

 

Identification of UniProtKB canonical isoform ID numbers 

UniProtKB canonical isoform ID numbers (e.g., P11413-X, “X” representing the isoform 

name) were identified for multi-isoform associated UniProtKB entries by comparing the 

2018 UniProtKB FASTA file (used to count total isoforms per UniProtKB entry) and the 

UniProtKB ID mapping (idmapping.dat) file from August 01, 2018, release downloaded 

August 06, 2018. The FASTA file displays the canonical protein isoform ID with no 

isoform name details, but the idmapping.dat file displays the canonical isoform protein 

ID with these details. 

 

Inter-database identifier mapping (ID mapping) of CpDAA residues between 

UniProtKB and ENSPs 

 

Two methods were used to cross-reference stable or versioned protein IDs between 

UniProtKB and five Ensembl releases: 

 

Method A 

Ensembl mapping: Ensembl mapping (“xref”) files from the five releases studied (v85, 

v92, v94, v96, and v97) were used for inter-database identifier mapping. Ensembl gene 
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(ENSG), transcript, and associated protein IDs cross-referencing the curated set of 

3,953 CpD UniProtKB stable IDs were extracted and grouped by single or multi-isoform 

status of the cross-referenced UniProtKB entry. Ensembl IDs cross-referencing UniProt 

CpD protein IDs were then used to filter the five Ensembl release-specific peptide 

FASTA files for associated protein sequences. 

 

Method B 

UniProtKB isoform-specific mapping: UniProtKB ID mapping (idmapping.dat) file from 

August 01, 2018, release was used for inter-database identifier mapping. Ensembl IDs 

cross-referenced by the UniProtKB canonical protein isoform IDs for multi-isoform 

entries and stable IDs for single isoform entries were pooled and used to filter release-

specific Ensembl peptide FASTA files for associated protein sequences. 

 

Assessing identifier multi-mapping between UniProtKB and Ensembl 

From Method A ID mapping, the total number of unique Ensembl IDs (versioned and 

stable) from five releases that cross-reference CpD UniProt proteins was calculated for 

each UniProtKB ID. The mean number of unique multi-mapping Ensembl IDs per CpD 

UniProtKB protein ID was calculated for single and multi-isoform entries. Sequence 

identity was checked for all cross-referenced Ensembl and UniProtKB proteins and 

marked by an additional Boolean column (“False” for non-identical and “True” for 

identical Ensembl-UniProt canonical proteins; see GitHub for python script). From 

Method B ID mapping, as with analysis for Method A, identifier multi-mapping was 

calculated for single and multi-isoform UniProtKB entries and sequence identity of 
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cross-reference proteins was marked by an additional Boolean column. Student's 

unpaired t-test was used to assess all ID multi-mapping differences between versioned 

and stable ENSG, transcript, and protein IDs cross-referencing our curated set of 3,953 

CpD UniProt protein IDs found in all Ensembl release-specific mapping files. 

 

Identification of frequently updated Ensembl sequence types and non-identical 

cross-referenced UniProtKB-ENSPs 

CpD UniProtKB canonical protein IDs were used to filter five Ensembl peptide FASTA 

files (Method A). A total of 8,861 unique Ensembl stable protein IDs were shared across 

all five Ensembl releases, cross-referencing a total of 3,887 CpD UniProtKB canonical 

proteins IDs. The 8,861 ENSP IDs with their associated stable gene and transcript IDs 

in each Ensembl release file were combined into a stable key ID (formatted as 

“ENSG_ENST_ENSP”, for gene, transcript, and protein Ensembl stable IDs). Ensembl 

versioned IDs were additionally extracted from the release-specific FASTA files. To 

identify differences between ENSG, transcript, and protein sequence re-annotation 

rates, ID version number increments (signifying sequence re-annotation updates) 

relative to the v85 versioned IDs were summed for each ID biotype (gene, transcript, 

and protein ID extension numbers “.X”). To identify “dated” ID mappings, in which the 

cross-referenced ENSPs are no longer identical to canonical proteins from the 2018 

UniProtKB release (current study's reference proteome for CpDAA positions and 

functional annotations), sequence distance (IDs from Method B) was scored using the 

Hamming normalized distance metric (Frederick, Sedlmeyer, & White, 1993) and the 

Levenshtein normalized distance metric (Yujian & Bo, 2007). Normalized scale is 0 to 1, 
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with 0 indicating identical Ensembl-UniProtKB proteins and 1 indicating significant 

differences between the two sequences. 

 

Residue mapping to pathogenicity scores 

CpDAA-containing UniProt protein IDs and residue positions were mapped to 

dbNSFPv4.0a for annotations of missense deleteriousness scores. Additionally, 

undetected cysteine and lysine positions in CpD proteins were also pulled from 

dbNSFPv4.0. Genomic coordinate keys (formatted as “chr_pos_ref_alt”) were made 

from the dbNSFP columns for GRCh37 and GRCh38 genome assemblies. Coordinate 

keys from dbNSFP were then used to map CADDv1.4 model annotation files. Missense 

overlapping cysteine and lysine codons in CpD proteins were required to have valid 

coordinates in both genome assemblies and annotations for all possible 

nonsynonymous SNVs (stop-gained missense consequences were filtered out from our 

analysis). The deleteriousness scores with no missing annotations for loss-of-cysteine 

and loss-of-lysine missense (CADD, fathmm-MKL, and DANN) were summarized by 

taking the max or mean of all nonsynonymous variants per cysteine and lysine codon in 

successfully annotated CpD proteins (see GitHub for python scripts). 

 

Correlation of deleteriousness scores for CpD cysteine and CpD lysine missense 

variants 

Relationship between missense deleteriousness prediction scores and chemoproteomic 

detection was assessed by Spearman's rank-order correlation using the SciPy stats 

module both for CpDAAs and for non-detected cysteine and lysine residues. A 
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nonparametric correlation test was chosen based on non-normal distributions of 

missense scores for cysteines and lysines in CpD proteins. All correlations are based 

on a subset of cysteine and lysine missense variants with no missing score annotations. 

CADD raw scores were used instead of the PHRED scores, with “CADD37” denoting 

raw score from the CADD GRCh37 model and “CADD38” denoting raw score from the 

CADD GRCh38 model. 

 

Enrichment analysis of predicted and known pathogenic missense variants for 

cysteine and lysine residues in detected proteins 

For the analysis with predicted deleteriousness scores, cysteine and lysine residues 

from 3,840 successfully annotated CpD proteins were filtered for Cys > Trp and 

Lys > Ile specific substitutions. Deleterious missense thresholds were set as follows: 

CADD PHRED scores from the GRCh38 model (CADD38) greater than or equal to 25, 

fathmm-MKL scores greater than or equal to 0.95, and DANN scores greater than or 

equal to 0.98. For each group, an odds ratio (OR) along with the 95% confidence 

interval (CI) was calculated using Fisher's exact test on a 2 × 2 contingency matrix. 

Evidence for statistical significance of association was determined using the Bonferroni-

adjusted P-value cut-off of 0.004. For the analysis with ClinVar “pathogenic” and “likely 

pathogenic” variants, the downloaded ClinVar variant data were filtered for loss-of-

cysteine and loss-of-lysine missense consequences (n = 2,225 pathogenic variants) by 

parsing the Human Genome Variation Society Sequence Variant Nomenclature column 

(HGVS, e.g., p.Cys36Trp). In total, 389 pathogenic variants overlapped the genomic 

coordinates of cysteines and lysines in 3,840 CpD proteins. For each group, an 
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estimate of fold enrichment or odds ratio (OR), along with the 95% confidence interval 

(CI) was obtained using Fisher's exact test on a 2 × 2 contingency matrix. Evidence for 

statistical significance of association was determined based on the Bonferroni-adjusted 

P-value cut-off of 0.0167. 

 

Bootstrap analysis of CADD38 PHRED max codon scores 

The bootstrapping procedure for calculating the 95% confidence interval of median 

CADD38 PHRED max codon scores and further characterizing the differences between 

low, medium, and highly reactive residues was performed as follows: original CADD38 

max scores for each sub-group were resampled 20,000 times with replacement, with 

the median of each bootstrapped sample calculated. This process produced 20,000 

samples with 895 low, 412 medium, and 94 high observations for CpD Cys, and 3,401 

low, 660 medium, and 302 high observations for CpD Lys. 

 

Mapping deleteriousness scores to protein structures 

For the UniProtKB canonical proteins G6PD (P11413) and CASP8 (Q14790), CADD 

GRCh38 model PHRED scores for missense overlapping all amino acid positions were 

extracted and summarized by taking the max or mean of all missense scores per 

residue. Scores for all residue positions were extracted from the dbNSFPv4.0a file (see 

Reagents and Tools table). After checking the canonical protein positions against the 

cross-referenced Protein Data Bank (PDB) ID pulled from the UniProtKB website (PDB 

ID 3KJN for CASP8 and 2BH9 for G6PD), residue max CADD PHRED scores were 
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mapped to protein structure through assignment of scores as beta factor values of 

protein structure alpha carbons (GitHub for python script; Dataset EV21). 

 

IsoTOP-ABPP sample preparation and analysis 

IsoTop-ABPP samples were prepared as described previously (Weerapana et al 2010; 

Backus et al 2016). Briefly, cells were harvested and lysed by sonication in PBS. 

Proteomes were adjusted to 1 mg/ml. Samples were labeled for 1 h at ambient 

temperature with either 10 or 100 µM iodoacetamide alkyne (IA-alkyne, 5 µl of 1 or 

10 mM stock in DMSO). Samples were conjugated by CuAAC to either the light 

(fragment treated) or heavy (DMSO treated) TEV tags (10 µl of 5 mM stocks in DMSO, 

final concentration = 100 µM), with TCEP (10 µl of fresh 50 mM stock in water, final 

concentration = 1 mM), TBTA (30 µl of 1.7 mM stock in DMSO/t-butanol 1:4, final 

concentration = 100 µM), and CuSO4 (10 µl of 50 mM stock in water, final 

concentration = 1 mM). After 1h, the samples were pelleted and the pellets sonicated in 

ice-cold methanol (500 µl) and combined pairwise. The pellets were solubilized in PBS 

containing 1.2% SDS (1 ml) with sonication and heating (5 min, 95°C) and any insoluble 

material was removed by an additional centrifugation step at ambient temperature 

(14,000 g, 1 min). Samples were then enriched on streptavidin resin (100 µl slurry) in 

PBS (10 ml) with rotating for 90 min. Beads were then washed (2× PBS and 2× water), 

resuspended in 6 M urea reduced (20 mM DTT), and alkylated (40 mM iodoacetamide). 

Samples were then diluted to 2 M urea and 6 μl (2 µg) reconstituted MS grade trypsin 

(Promega V5111) was added and the samples were allowed to digest overnight. The 

beads were then pelleted, washed (3× PBS and 3× water), and then resuspended in 
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75 µl TEV buffer (50 mM Tris, pH 8, 0.5 mM EDTA, 1 mM DTT). 5 µl TEV protease 

(80 µM) was added and the reactions were rotated for 7 h at 29°C. The samples were 

then cleaned using Micro Bio-Spin columns, desalted using Pierce C18 100 µl bed zip-

tips, concentrated by speedvac and reconstituted in 20 μl 5% ACN and 1% formic acid. 

 

Liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis 

The samples were analyzed by liquid chromatography tandem mass spectrometry using 

a Q Exactive™ mass spectrometer (Thermo Scientific) coupled to an Easy-nLC™ 1000 

pump. Peptides were resolved on a C18 reversed phase column (3 µM, 100 Å pores), 

packed in-house, with 100 μm internal diameter and 18 cm of packed resin. The 

peptides were eluted using a 140-min gradient of buffer B in buffer A (buffer A: water 

with 3% DMSO and 0.1% FA; buffer B: acetonitrile with 3% DMSO and 0.1% FA) and a 

flow rate of 220 nl/min with electrospray ionization of 2.2 kV. The regular gradient 

includes 0–5 min from 1 to 5%, 15–130 min from 5 to 27%, 15–137 min from 27 to 35%, 

and 137–138 min from 35 to 80% buffer B in buffer A. Data were collected in data-

dependent acquisition mode with dynamic exclusion (15 s), and charge exclusion (1, 7, 

8, > 8) was enabled. Data acquisition consisted of cycles of one full MS scan (400–

1,800 m/z at a resolution of 70,000) followed by 12 MS2 scans of the nth most abundant 

ions at resolution of 17,500. 

 

Peptide and protein identification 

The MS2 spectra data were extracted from a raw file using RAW Xtractor (version 

1.1.0.22; available at http://fields.scripps.edu/rawconv/). MS2 spectra data were 
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searched using the ProLuCID algorithm (publicly available at 

http://fields.scripps.edu/yates/wp/?page_id=17 using a reverse concatenated, non-

redundant variant of the Human UniProtKB database (release-2020_01). Cysteine 

residues were searched with a static modification for carboxyamidomethylation 

(+57.02146) and isoTOP differential modification at cysteine residues (+464.28595 for 

light and +470.29976 for heavy). Peptides were required to have at least one tryptic 

terminus, allowed one missed cleavage event and to contain the isoTOP modification. 

ProLuCID data were filtered through DTASelect (version 2.0) to achieve a peptide false-

positive rate below 1%. 

 

Proteomic data processing 

Custom python and R scripts were implemented to filter and compile labeled peptide 

datasets. Peptides with one tryptic terminus were filtered out before further analysis. 

Unique proteins, unique residues (cysteines or lysines), and unique peptide-spectrum 

matches (PSMs) were quantified for each dataset, using unique identifiers. Unique 

proteins were established based on UniProtKB protein ID. Unique residues were 

classified by an identifier consisting of a UniProtKB protein ID and the residue number 

of the modified cysteine/lysine; residue numbers were found by aligning the peptide 

sequence to the corresponding UniProtKB protein sequence. Unique peptides were 

found based on sequences containing modified residue location. If a peptide was 

labeled at multiple residues, an identifier was generated for each protein ID and 

modified residue location. IsoTOP-ABPP ratios from each experiment were averaged 

and reported with ± SD. 
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Recombinant caspase-8 expression and purification 

Recombinant caspase-8 (residues 217–479) without the CARD domain subcloned into 

pET23b (Novagen) with C-terminal His6-affinity tags was expressed as has been 

described (Backus et al 2016) previously. Site-directed mutagenesis (Liu & Naismith, 

2008) was conducted as has been described previously, using the primers shown in the 

Reagents and Resources Table. 

 

Caspase-8 activity assay 

Caspase-8 assay was conducted with CASP8 activity assay kit (BioVision; K112-100), 

following the manufacturer's instructions. Briefly, recombinant protein was diluted to 

500 nM into assay buffer (50 µl/well in a 96-well plate) following which IETD-AFC 

substrate (4 mM stock in DMSO of IETD-AFC) was added to each well (5 µl stock 

diluted into 50 µl assay buffer for a final concentration of 200 µM substrate) and the 

samples were incubated at ambient temperature for 1 h. Caspase activity was 

measured from the increase in fluorescence (excitation 380 nm emission 460 nm). 

Experiments were performed in triplicate. Background was calculated from samples 

lacking the recombinant caspase. 

 

Data availability 

Code for the mapping analysis and figures is available on the GitHub site 

https://github.com/mfpfox/MAPPING. All chemoproteomics datasets along with 

functional annotations are made available to download through the CpDAA database 

https://github.com/mfpfox/MAPPING
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https://mfpalafox.shinyapps.io/CpDAA/ an R Shiny-based web interface. The mass 

spectrometry proteomics data have been deposited to the ProteomeXchange 

Consortium via the PRIDE partner repository with the dataset identifier: 

PXD022151 and https://doi.org/10.6019/PXD022151 

 

2.5 Figures 

 

 

Figure 2-1. Landscape of sequence annotation information updates  

A. Schematic representation of mapping chemoproteomic detected amino acids 

(CpDAAs) to pathogenicity scores.  

B. Timeline of gene annotation database release dates and project-specific datasets, 

including Ensembl releases tested for compatibility to CpDAA coordinates based on 

https://mfpalafox.shinyapps.io/CpDAA/
http://www.ebi.ac.uk/pride/archive/projects/PXD022151
https://doi.org/10.6019/PXD022151
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canonical UniProtKB protein sequences and the database reference corresponding to 

the genomic pathogenicity scores.  

C. Average database release cycle length for releases between August 2013 - July 

2019. All values are mean ± s.d. Total of 25 Ensembl, 13 GENCODE, 6 CCDS (homo 

sapien only), and 5 NCBI releases were counted. UniProtKB average cycle length was 

calculated using data provided by the UniProtKB website. 

 

Figure 2-2. Data losses that result from re-mapping chemoproteomic datasets to 
new releases of Ensembl and UniProtKB 

 Shows the number of stable UniProtKB protein IDs from cysteine and lysine 

chemoproteomics studies in original legacy chemoproteomics dataset (4,119 Uniprot 

stable IDs in aggregate) (Hacker et al, 2017; Backus et al, 2016; Weerapana et al, 

2010) that fail to map to IDs in more recent releases of Ensembl and UniProtKB. While 

https://paperpile.com/c/datZrj/cUx0+LzHFv+vdsO
https://paperpile.com/c/datZrj/cUx0+LzHFv+vdsO
https://paperpile.com/c/datZrj/cUx0+LzHFv+vdsO
https://paperpile.com/c/datZrj/cUx0+LzHFv+vdsO
https://paperpile.com/c/datZrj/cUx0+LzHFv+vdsO
https://paperpile.com/c/datZrj/cUx0+LzHFv+vdsO
https://paperpile.com/c/datZrj/cUx0+LzHFv+vdsO
https://paperpile.com/c/datZrj/cUx0+LzHFv+vdsO
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all Ensembl datasets showed similar losses, Ensembl v85 modestly outperformed more 

recent versions, consistent with the v85 release date being closest in time to the 

UniProtKB release on which legacy data was based.  

 

 

Figure 2-3. UniprotKB Human Proteome ID counts in cross-referenced databases  

The UniProtKB/TrEMBL subset (automated translations of coding sequences) are 

shown in grey and the UniProtKB/Swiss-Prot subset (manually curated sequences) are 

shown in black. Ensembl, USCS, and RefSeq contain both automated (TrEMBL) and 
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manually curated (Swiss-Prot) entries. Sequences derived from the consensus coding 

sequence (CCDS) project are associated with the UniProtKB/Swiss-Prot subset. 
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Figure 2-4. Challenges with residue-level mapping and UniProtKB canonical 
protein sequences 

A. Schematic depiction of mapping scenarios from updating chemoproteomic-detected 

protein sequences using stable or versioned identifiers. 
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B. Distribution of number of isoforms per stable UniprotKB ID for 3,953 detected 

proteins. 

C. Frequency of (not displayed) specific isoform name for 2,487 multi-isoform 

UniProtKB canonical proteins.  

D. Schematic depiction of glucose-6-phosphate dehydrogenase (G6PD, UniProtKB ID 

P11413) cross-referencing both identical and non-identical sequences of Ensembl 

Stable IDs from five releases.  

E. Heatmap of protein sequence distance scores for detected UniProtKB and cross-

referenced Ensembl proteins from five releases. Each gene name corresponds to one 

unique stable Ensembl protein ID.  
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Figure 2-5. Mapping of Ensembl IDs to UniprotKB shows heterogeneity at gene, 
transcript and protein levels   

A. Number of stable and versioned Ensembl gene, transcript and protein IDs for G6PD 

across all five Ensembl releases.  

B. Cumulative sequence re-annotations for Ensembl gene, transcript, and protein IDs 

since the v85 release.  
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C-D. Average number of Ensembl gene, transcript, and protein IDs for (C) single 

isoform (n=1,466) and (D) multi-isoform (n=2,487) CpDAA UniProt entries. Bar plots 

represent mean values  ± s.d. for the number of Ensembl IDs per stable UniProtKB ID. 

Statistical significance was calculated using an unpaired Student’s T-test, **** p-value 

<0.0001. 
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Figure 2-6. Comparison of single and multi-isoform UniProtKB protein cross-
references to Ensembl proteins, using the Ensembl xref files 

Using five Ensembl xref files (Materials and Methods, Method A) containing only stable 

ID cross-references to UniProtKB IDs, protein sequences were compared for A) 1,466 

single isoform UniProKB IDs and B) 2,487 multi-isoform UniProKB IDs contained in our 

CpDAA-containing protein dataset.  
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Figure 2-7. Comparison of single and multi-isoform UniProtKB protein cross-
references  to Ensembl proteins, using the UniProtKB mapping file  

Using UniProtKB mapping file (Materials and Methods, Method B) provided canonical 

protein isoform ID cross-references to Ensembl stable protein IDs. Comparisons 

between UniProtKB canonical proteins from 2018_06 release were made to Ensembl 

proteins from five releases. Results of sequence identity comparison was performed for 

A) 1,466 single isoform UniProtKB IDs and B) 2,487 multi-isoform UniProKB IDs 

contained in our CpDAA-containing protein dataset. 



 51 

 

Figure 2-8. Flowchart of the mapping strategy and data analysis  

CpD cysteines and lysines from three publicly available datasets were processed and 

filtered according to our optimized mapping pipeline. Number of CpD cysteines (red) 

and CpD lysines (blue) retained following each step shown as barplots. 
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Figure 2-9. Analysis of pathogenic missense at Detected versus Undetected 
Cysteines and Lysines 

A-B. Aggregate number of detected and undetected cysteines (A) and lysines (B) in 

3,840 CpDAA-containing proteins.  

C. Heatmap of missense score correlations for all possible non-synonymous SNVs at 

CpD Cysteine (29,541 missense) for eight pathogenicity scores. Overall, Spearman’s 

rank r were between 0.36 and 0.91.  

D. CpD Lysine (41,850 missense) heatmap for missense score correlations for all 

possible non-synonymous SNVs. Spearman’s rank r between 0.16 and 0.81. Color 
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intensity represents two-tailed Spearman’s rank-order correlation coefficients between 0 

and 1. 

E. Odds of predicted deleterious Cys>Trp (red) missense at detected (n=6,057) versus 

undetected (n=34,049) residues in 3840 detected proteins. Deleterious missense 

defined by CADD38, FATHMM, and DANN score thresholds (y axis).  CADD38 OR = 

0.76, p = 3.40e-22; FATHMM OR = 0.92 , p = 0.02; DANN OR = 0.690 , p = 6.69e-26.  

Odds of predicted deleterious Lys>Ile (blue) missense at detected (n=3,581) versus 

undetected (n=63,385) residues in 3840 detected proteins. CADD38 OR = 1.80, p = 

1.03e-53; FATHMM OR = 1.55, p = 3.47e-33; DANN OR = 1.75, p = 9.21e-14.  *p < 

0.0042 Bonferroni adjusted (two-tailed Fisher’s Exact test) 

F. Odds of ClinVar pathogenic variant overlapping detected (6,057 Cys; 8,868 Lys) 

versus undetected (34,050 Cys; 140,652 Lys) residues in 3,840 detected proteins. Cys 

detected in ClinVar pathogenic site (red, OR = 1.17, p = 0.457) and Lys detected at 

ClinVar Pathogenic site (light blue, OR =  2.76, p = 1.03e-04). Combined Cys and Lys 

(dark blue, OR = 2.26, p = 9.99e-07) *p < 0.0167 Bonferroni adjusted (two-tailed 

Fisher’s Exact test).  

Data information: In (E-F), 95% confidence intervals (line segments) and odds ratios 

(squares). 
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Figure 2-10. Sequence similarity between UniProtKB protein sequences and 
protein sequences associated with Ensembl stable IDs across releases  

Heatmaps show A) normalized Hamming distance and B) normalized Levenshtein 

distance for sequence alignments of the protein sequences associated with the top 74 
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stable Ensembl gene, transcript, and protein IDs with an identical cross-referenced 

Ensembl protein sequence in one release, but non-identical sequences in additional 

releases. Scores range from 0 to 1, with 0 indicating identical to the canonical sequence 

in the 2018 UniProtKB CCDS release.  

 

 

Figure 2-11. Association between amino acid reactivity and CADD score 

A-B.  Distribution of the max CADD38 PHRED (model for GRCh38) scores for (A) 

cysteine (n=1,401) and (B) lysine (n=4,363) CpDAAs of low, medium, and high intrinsic 

reactivities, defined by isoTOP-ABPP ratios, low (R10:1>5), medium (2<R10:1<5), high 

(R<2) (Weerapana et al. 2010; Hacker et al. 2017). Kruskal-Wallis nonparametric test to 

examine reactivity group difference, Wilcox test used for pairwise comparisons (BH-

adjusted p-values, *p. adj = 0.04, **p. adj = 0.0037, ***p. adj = 0.00013). Median of the 

https://paperpile.com/c/LtF9dT/4wODK+P8F9M
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CADD38 max codon scores with bootstrapped 95% confidence intervals for reactive 

groups are: low CpD Cys 27.3 [26.9, 28.0], medium CpD Cys 28.55  [27.80, 29.05], high 

CpD Cys 31 [28.8, 32.0], low CpD Lys 29.5 [29.3, 29.6], medium CpD Lys 29.25  [28.85, 

29.50], high CpD Lys 29.05 [28.50, 29.55]. 

C. Shows CADD38 max codon scores for nonsynonymous SNVs at residues 220-479 of 

CASP8 (UniProt ID Q14790).  

D. Crystal structure of CASP8 (PDB ID: 3KJN) highlighting C360 and C409. Bound 

covalent inhibitor B93 in yellow, with distance between detected cysteines and inhibitor 

measured in Angstroms. Protein surface color represents CADD38 max codon scores. 

Image generated in PyMOL (R. H. B. Smith, Dar, and Schlessinger, n.d.; DeLano and 

Others 2002). 

E. Activity of recombinant caspase-8 protein assayed using fluorogenic IETD-AFC 

substrate. Percentage activity shown relative to wild-type (WT) protein for three 

replicate experiments.  

https://paperpile.com/c/LtF9dT/IXavH+rSSll
https://paperpile.com/c/LtF9dT/IXavH+rSSll
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Figure 2-12. Comparison of GRCh37 and GrCh38 CADD models for loss of 
cysteine and loss of lysine 

Loss of cysteine (n= 280,748) and loss of lysine (n= 1,046,638) missense overlapping 

coordinates of residues in 3,840 detected proteins. Deleterious missense threshold for 

CADD PHRED score of 25 marked by red dashed line. Cysteine missense score 

average is 24.34 +- 5.88 s.d. for CADD GRCh37 model (green) and 25.51 +- 5.10 s.d. 

for CADD GRCh38 model. Lysine missense score average is 23.55 +- 4.97 s.d. for 

CADD GRCh37 model and 24.70 +- 4.14 s.d. for CADD GRCh38 model. Wilcox test 

used for pairwise comparisons,  * = p-value <2e-16 (CADD38-CADD37 PHRED score 

mean difference of 1.16 +- 2.56 s.d. for all cysteine and lysine residues in 3,840 

detected proteins).  
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Figure 2-13. Correlation of pathogenicity scores for all possible non-synonymous 
SNVs at codons of detected or undetected cysteine and lysine residues 

Heatmap represents two-tailed Spearman’s rank-order correlation coefficients for all 

possible non-synonymous SNVs at codons of detected or undetected cysteine and 

lysine residues in 3,840 detected proteins. Only the subset of scores that provide 

pathogenicity annotations for all possible non-synonymous variants were included in 

this analysis.  
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Figure 2-14. CADD38 PHRED scores for all possible missense variants at CpD 
cysteine and lysine codons, ordered by Grantham score 

Distribution of CADD38 (model for GRCh38) PHRED scores for cysteine and lysine 

CpDAAs of Low, Medium, and High intrinsic reactivities, defined by isoTOP-ABPP 

ratios, Low (R10:1>5), Medium (2<R10:1<5), High (R10:1<2)(Weerapana et al, 2010; 

Hacker et al, 2017). A) Enrichment of predicted deleterious missense variants for highly 

reactive cysteine residues identified by (Weerapana et al, 2010). B) No enrichment of 

predicted deleterious missense variants for highly reactive lysine residues identified by 

https://paperpile.com/c/datZrj/vdsO+cUx0
https://paperpile.com/c/datZrj/vdsO+cUx0
https://paperpile.com/c/datZrj/vdsO+cUx0
https://paperpile.com/c/datZrj/vdsO+cUx0
https://paperpile.com/c/datZrj/vdsO+cUx0
https://paperpile.com/c/datZrj/vdsO+cUx0
https://paperpile.com/c/datZrj/vdsO
https://paperpile.com/c/datZrj/vdsO
https://paperpile.com/c/datZrj/vdsO
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(Hacker et al, 2017). C) Enrichment of predicted deleterious missense variants for 

highly reactive cysteine residues identified in the current study. Kruskal-Wallis 

nonparametric test to examine reactivity group difference, *p value = 0.01, **p value = 

0.003, ****p value = <1.1e-06.  

 

 

 

 

 

 

 

 

https://paperpile.com/c/datZrj/cUx0
https://paperpile.com/c/datZrj/cUx0
https://paperpile.com/c/datZrj/cUx0
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Figure 2-15. Correlation of cysteine reactivity between different chemoproteomic 
datasets 

Total of 502 CpDAA are shared between the 2010 CpD Cys (Weerapana et al, 2010) 

and 2019 CpD Cys reactivity dataset. Pearson’s correlation coefficient (R) = 0.49, p 

value < 2.2e-16,  and 95% confidence interval of coefficient [0.425, 0.558].  

 

 

https://paperpile.com/c/datZrj/vdsO
https://paperpile.com/c/datZrj/vdsO
https://paperpile.com/c/datZrj/vdsO
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Figure 2-16. Assessment of missense pathogenicity between detected-undetected 
and reactivity groups for CPD cysteine and lysine residues 

A. Enrichment of predicted deleterious missense variants for detected versus 

undetected cysteine (red) and lysine (blue) missense variants in 3,840 proteins. 

Missense types in order of increasing Grantham score. Odds Ratio (OR) for all possible 

nonsynonymous SNVs at cysteine codons between 0.56-0.76, at lysine codons fall 

between 1.38-1.80. 95% confidence intervals (line segments) and odds ratios (squares), 

two-tailed Fisher’s Exact test, *p < pcut-off, 0.0019 Bonferroni corrected (0.05/26). 

B-C. Distribution of mean CADD38 (model for GRCh38) PHRED scores for (B) cysteine 

(n=1,401) and (C) lysine (n=4,363) CpDAAs of low, medium, and high intrinsic 
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reactivities, defined by isoTOP-ABPP ratios, Low (R10:1>5), Medium (2<R10:1<5), High 

(R10:1<2)(Weerapana et al, 2010; Hacker et al, 2017). Kruskal-Wallis nonparametric test 

to examine reactivity group difference, Wilcox test used for pairwise comparisons (BH-

adjusted p values, *p. adj = 0.013, ***p. adj = 2.80e-05, ****p. adj = 5.30e-08).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://paperpile.com/c/Vz61zG/V5UK8+0cv87
https://paperpile.com/c/Vz61zG/V5UK8+0cv87
https://paperpile.com/c/Vz61zG/V5UK8+0cv87
https://paperpile.com/c/Vz61zG/V5UK8+0cv87
https://paperpile.com/c/Vz61zG/V5UK8+0cv87
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Figure 2-17. Functional Validation of reactive lysine in G6PD 

A. Shows CADD38 max codon missense scores for residues 1-350 of G6PD (UniProt 

ID P11413). CpD K205 has the highest score out of all positions in protein. CpDAA 

positions above CADD38 deleterious threshold (grey dash line) include K47, K89, C158, 

K171, K205, and C294 

B. Crystal structure of G6PD (PDB ID: 2BH9) shows K205 and K171 located within the 

enzyme active site. NADP+ cofactor shown in yellow. Surface colored by CADD38 max 

codon missense scores. Image generated in PyMOL(Smith et al; DeLano & Others, 

2002). 

 

 

https://paperpile.com/c/Vz61zG/ogebF+5rV3R
https://paperpile.com/c/Vz61zG/ogebF+5rV3R
https://paperpile.com/c/Vz61zG/ogebF+5rV3R
https://paperpile.com/c/Vz61zG/ogebF+5rV3R
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Figure 2-18. 2019 Cysteine Chemoproteomics Data identify caspase-8 residues 
that are pathogenic 

Association between cysteine reactivity levels and CADD score for the 2019 

Chemoproteomics Test Data Set. CADD38 scores were taken as either the max score 

for a missense change at that codon (A) or the mean score for all missense changes at 

the codon (B). The results show similar results, with increasing CADD predicted 

pathogenicity as reactivity increases.  
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A. Distribution of the max CADD38 (model for GRCh38) PHRED scores for cysteine of 

Low (n=2,247), Medium (n=1,448), and High (n=322) intrinsic reactivities, defined by 

isoTOP-ABPP ratios, Low (R10:1>5), Medium (2<R10:1<5), High (R10:1<2)(Weerapana et 

al, 2010; Hacker et al, 2017). Kruskal-Wallis nonparametric test to examine reactivity 

group difference, Wilcox test used for pairwise comparisons (BH-adjusted p values, Low 

vs Med ***p. adj = 0.00099, Low vs High ***p. adj = 0.00086).  

B. Association between 2019 cysteine reactivity data and mean CADD score.  

Distribution of the mean CADD38 (model for GRCh38) PHRED scores for cysteine of 

Low (n=2,247), Medium (n=1,448), and High (n=322) intrinsic reactivities, defined by 

isoTOP-ABPP ratios, Low (R10:1>5), Medium (2<R10:1<5), High (R10:1<2) (Weerapana et 

al, 2010; Hacker et al, 2017). Kruskal-Wallis nonparametric test to examine reactivity 

group difference, Wilcox test used for pairwise comparisons (BH-adjusted p values, Low 

vs Med ***p. adj = 4.0e-04, Med vs High *p. adj = 0.023, Low vs High ****p. adj = 3.90e-

05.   

C. Plot of cysteine reactivity ratios for 3590 out of 4017 total profiled residues in 2019 

isoTOP-ABPP study. Represented are 322 High, 1448 Medium, and 1820 Low 

threshold cysteines.  

 

  

https://paperpile.com/c/Vz61zG/V5UK8+0cv87
https://paperpile.com/c/Vz61zG/V5UK8+0cv87
https://paperpile.com/c/Vz61zG/V5UK8+0cv87
https://paperpile.com/c/Vz61zG/V5UK8+0cv87
https://paperpile.com/c/Vz61zG/V5UK8+0cv87
https://paperpile.com/c/Vz61zG/V5UK8+0cv87
https://paperpile.com/c/Vz61zG/V5UK8+0cv87
https://paperpile.com/c/Vz61zG/V5UK8+0cv87
https://paperpile.com/c/Vz61zG/V5UK8+0cv87
https://paperpile.com/c/Vz61zG/V5UK8+0cv87
https://paperpile.com/c/Vz61zG/V5UK8+0cv87
https://paperpile.com/c/Vz61zG/V5UK8+0cv87
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2.6 Tables 

Table 2-1. Definitions of key terms  

 Term Definition References 

1 

Database 

update 

Updated compilation of database resources, 

typically driven by gene or transcript re-

annotation projects. 

(Breuza et al, 2016; 

Potter et al, 2004) 

2 Cross-reference 

Referred to as 'xref' by UniProt and Ensembl, 

these files contain ID translations to 

equivalent sequences in other databases. 

These translations are what many mapping 

tools reference in order to translate user 

input. 

(McGarvey et al, 

2019; Ruffier et al, 

2017) 

3 Stable ID 

The main citable identifier type from Ensembl 

and UniProtKB (primary accession). Ensembl 

IDs lack version number extensions (“.#”) 

and UniProtKB IDs lack specific isoform 

names (“-#”). 

https://uswest.ensem

bl.org/info/genome/st

able_ids/index.html 

 

4 

Canonical 

protein isoform 

ID 

For UniProtKB canonical proteins, the stable 

ID refers to both the canonical sequence and 

all known protein isoforms of a given gene. 

Canonical protein isoform IDs display the 

specific isoform name of the canonical 

https://www.uniprot.o

rg/help/canonical_an

d_isoforms 

 

https://paperpile.com/c/datZrj/Aj6r+A9vO
https://paperpile.com/c/datZrj/Aj6r+A9vO
https://paperpile.com/c/datZrj/Aj6r+A9vO
https://paperpile.com/c/datZrj/Aj6r+A9vO
https://paperpile.com/c/datZrj/Aj6r+A9vO
https://paperpile.com/c/datZrj/Aj6r+A9vO
https://paperpile.com/c/datZrj/47VN+7peO
https://paperpile.com/c/datZrj/47VN+7peO
https://paperpile.com/c/datZrj/47VN+7peO
https://paperpile.com/c/datZrj/47VN+7peO
https://paperpile.com/c/datZrj/47VN+7peO
https://paperpile.com/c/datZrj/47VN+7peO
https://paperpile.com/c/datZrj/47VN+7peO
https://uswest.ensembl.org/info/genome/stable_ids/index.html
https://uswest.ensembl.org/info/genome/stable_ids/index.html
https://uswest.ensembl.org/info/genome/stable_ids/index.html
https://www.uniprot.org/help/canonical_and_isoforms
https://www.uniprot.org/help/canonical_and_isoforms
https://www.uniprot.org/help/canonical_and_isoforms
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protein with a "-#" extension. 

5 Versioned ID 

Ensembl IDs with a '.#' extension, with 

increments to protein IDs indicating that the 

associated sequence has changed. 

https://uswest.ensem

bl.org/info/genome/st

able_ids/index.html 

 

6 Mapping 
methods 

1. ID mapping, translating IDs between 
different databases. 

(Meyer et al, 2016; 
Huang et al, 2008) 

2. Residue-residue mapping, a one-to-one 

correspondence between amino acids in 

proteins from different databases. 

(David & Yip, 2008; 

Martin, 2005; Dana 

et al, 2019)  

3. Residue-codon mapping, a one-to-three 

correspondence between an amino acid and 

nucleotide coordinates (codon) in a reference 

genome 

(Li et al, 2016; Zhou 

et al, 2015; 

Stephenson et al, 

2019)  

 

 
 
 
 
 
 
 
 
 
 
 

https://uswest.ensembl.org/info/genome/stable_ids/index.html
https://uswest.ensembl.org/info/genome/stable_ids/index.html
https://uswest.ensembl.org/info/genome/stable_ids/index.html
https://paperpile.com/c/datZrj/HfYu+6cAz
https://paperpile.com/c/datZrj/HfYu+6cAz
https://paperpile.com/c/datZrj/HfYu+6cAz
https://paperpile.com/c/datZrj/HfYu+6cAz
https://paperpile.com/c/datZrj/HfYu+6cAz
https://paperpile.com/c/datZrj/HfYu+6cAz
https://paperpile.com/c/datZrj/lUwF+CGDR+tFyi
https://paperpile.com/c/datZrj/lUwF+CGDR+tFyi
https://paperpile.com/c/datZrj/lUwF+CGDR+tFyi
https://paperpile.com/c/datZrj/lUwF+CGDR+tFyi
https://paperpile.com/c/datZrj/3jGI+SGC4+MLGu
https://paperpile.com/c/datZrj/3jGI+SGC4+MLGu
https://paperpile.com/c/datZrj/3jGI+SGC4+MLGu
https://paperpile.com/c/datZrj/3jGI+SGC4+MLGu
https://paperpile.com/c/datZrj/3jGI+SGC4+MLGu
https://paperpile.com/c/datZrj/3jGI+SGC4+MLGu
https://paperpile.com/c/datZrj/3jGI+SGC4+MLGu
https://paperpile.com/c/datZrj/3jGI+SGC4+MLGu
https://paperpile.com/c/datZrj/3jGI+SGC4+MLGu
https://paperpile.com/c/datZrj/3jGI+SGC4+MLGu
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Chapter 3. Prioritizing disease-associated missense variants with 

chemoproteomic-detected amino acids 

 

3.1 Introduction 

 

Efforts to understand the genetic basis of monogenic disorders and associated 

molecular mechanisms underlying disease pathology are ongoing and warrant further 

research. Rare diseases affect fewer than 1 person every 2,000 by US standards, and 

although non-genetic origins of rare disease are known, an overwhelming fraction of 

rare diseases are known as Mendelian disorders, follow monogenic patterns of 

inheritance, and originate from consequences of  essential gene disruption by genetic 

variation (Vaisitti et al 2021; Wright et al 2018).  

About 38% of Mendelian disorders are caused by missense variation, or single 

nucleotide changes in DNA codon that cause single amino acid substitutions in protein 

polypeptide chains (Landrum et al 2015). These single amino acid changes to 

alternative amino acids can affect protein structure and function, with effect sizes largely 

depending on factors like the physical and chemical differences between the substituted 

residues and context of mutant residue’s structural location. The other protein-level 

effects from single nucleotide variants besides missense are called nonsense and silent 

mutations. Nonsense mutations cause premature truncation of the protein and are 

typically associated with protein loss-of-function (LoF) outcomes, whereas silent, or 

synonymous, mutations are mostly considered to have neutral protein consequences 

given they do not change the sequence of amino acids in the polypeptide chain. 



 70 

Compared to nonsense and silent variants, determining whether missense variants 

have positive, deleterious, or neutral consequences is uniquely challenging; most 

missense variants of the millions reported in clinically relevant genetic databases 

currently are classified as VUS for variant of uncertain significance. Significant progress 

has been made in connecting human disease phenotypes to genotypes (Lee et al 2019; 

Yang et al 2013), but the missense VUS classification burden continues to limit 

individuals with rare disorders from receiving definitive diagnoses, prognoses, and 

therapies treating the underlying causes of genetic disorders.  

Experimental approaches such as mutagenesis methods have proven successful 

in delineating deleterious missense variants from less functional mutations in cellular 

contexts, but these methods are currently costly to scale and not widely applied yet to 

poorly characterized and understudied genes and proteins (Cooper et al 2011). In 

contrast to mutagenesis approaches, computational methods can be used for in silico 

mutagenesis to predict the functional consequence of missense variation, but many of 

these tools are overly dependent on degree of sequence conservation (Sun et al 2019) 

and have lower performance in predicting gain-of-function or more moderate effect 

missense mutations (Reeb et al 2020). More recent computational models that 

incorporate information about the non-random distribution of genetic variation across 

gene exons and protein functional regions and domains (Melamed et al 2022; Monroe 

et al 2022) show performance gains over methods that do not consider local mutation 

distribution information (Waring et al 2020; Hicks et al 2019; Perez-Palma et al 2020; 

Quinodoz et al 2022). Such computational models can help in identifying pathogenic 

mutational hotspots of genes and corresponding protein products. 
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Besides local mutational distributions, a largely overlooked feature associated 

with protein functional hotspots is amino acid side-chain reactivity. Nucleophilic amino 

acids can react with many biological entities and can play important roles in protein 

stability, interactions, and regulation in cellular pathways. Amino acid side chain 

reactivity can also fluctuate depending on the residue’s protein microenvironment and 

protein’s subcellular environment. Detected by chemoproteomic methods, reactive 

amino acid residues have exposed important drug vulnerabilities in cancer (Bar-Peled et 

al 2017) and been the targets of blockbuster FDA-approved drugs (Blewett et al 2016). 

In this study, chemoproteomic-detected amino acids (CpDAAs) are used to prioritize 

rare missense variants with associated pathogenic potential. We hypothesized some 

CpDAA residues to play pivotal roles in disease-associated proteins, and that these 

sites could be leveraged to prioritize likely functional rare missense variants.  

We analyzed chemoproteomic-detected cysteine, lysine, and tyrosine residues in 

combination with the missense variants of monogenic disorder genes and demonstrated 

the utility of our approach from identification of rare missense variants likely implicated 

in HLRCC. Our results highlight one third of monogenic disorder associated proteins 

had cysteine, lysine, and/or tyrosine reactive sites previously reported by results from 

four chemoproteomic profiling studies. From the missense analysis focused on 

monogenic disorder genes, gain of proline and loss of lysine were strongly associated 

with pathogenic variation relative to population variation. Cysteine codons were also 

significantly depleted in monogenic disorder genes relative to all other protein-coding 

genes, adding to the attractiveness of these proteins for selective small molecule 

targeting.  
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3.2 Results 

 

Cysteine lysine and tyrosine profiling studies 

To study chemoproteomic annotations in monogenic disorder, publicly available 

datasets of residue profiling experiments specific to human cell lines were curated. The 

results of six profiling experiments from five independent studies (Weerapana et al 

2010; Backus et al 2016; Palafox et al 2021, Hacker et al 2017, Hahm et al 2020), were 

used as sources of cysteine, lysine, and tyrosine positions ligandability and/or reactivity 

annotations (Table 3-1). The 18,827 detected residue positions contain 4,535 total CpD 

proteins, with an average of 1.63 cysteine, 2 lysine, 0.52 tyrosine sites per protein 

(Table 3-2). All CpD data sets were combined into a non-redundant inventory to use in 

the remainder of the analysis. Significant overlaps between the detected protein groups 

for profiled cysteine, lysine, and tyrosine residues are shown in Figure 3-1. Of note, 

proteins belonging to all three detected residue groups (CpD-CKY proteins) represented 

14% of the total CpD proteins.  

 

Chemoproteomic-detected proteins are enriched for genes causing monogenic 

disorders  

Probes from activity-based protein profiling-based (ABPP) chemoproteomic strategies 

allow for pharmacological interrogation of previously difficult targets (Backus et al 2016) 

and facilitate drug discovery efforts when coupled with irreversible small-molecule 

modulators of protein targets (Roberts et al 2017). However, the advantages of coupling 
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data from ABPP platforms with rare variant prioritization efforts are unknown and under 

explored.  

To explore this application of chemoproteomic detected proteins and residues, I 

began by describing the genes set of CpD proteins in terms of rare disease and current 

drug targets. FDA approved drug targets were sourced from the Human Proteome Atlas 

(Uhlén et al 2015; Wishart DS et al 2006) on May 14, 2021. Monogenic disorders and 

their associated genes were sourced from the Online Mendelian Inheritance in Man, or 

OMIM (McKusick et al 2007), June 23, 2021. The 8,322 disease phenotypes from 

OMIM were filtered for known molecular basis, single gene disorder association, and 

identifier compatibility with our universal cross-reference file. Our final OMIM dataset 

contained 5,622 unique diseases and 3,990 unique genes (Table 3-3). For brevity, 

‘OMIM’ is used to refer to Mendelian disease phenotypes, genes, or proteins. 

Gene set overlap analysis showed FDA drug targets cover ~10% of the OMIM 

gene set and CpD proteins cover ~31% of the OMIM gene set (Figure 3-2a). Minimal 

overlap between CpD proteins and FDA approved drugs indicate the potential for 

advances as ~94% of OMIM-CpD genes (n = 1168) are not FDA approved drug targets 

and ~79% of OMIM-FDA genes (n = 275) are not CpD proteins. To determine the 

significance of CpD proteins association to OMIM genes, a Fisher's exact test was used 

with homozygous LoF tolerant genes (Lek et al 2016) serving as the negative control for 

disease association, and FDA approved drug targets serving as a positive control for 

disease association. All CpD protein groups based on different detected residue types 

were significantly associated with Mendelian disease genes relative to all other human 

genes (Figure 3-3). 
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CpD proteins are less bias than FDA targets for OMIM phenotypes 

Genetic disease phenotype-genotype connections are discovered at a rate of ~260 per 

year and this shows no sign of slowing (Posey et al 2019; Wenger et al 2016). This 

means there are many diseases and corresponding pathogenic variants that remain 

undescribed. It is also not uncommon for a single gene to have multiple connections to 

human disease. For example, CFTR gene is primarily associated with cystic fibrosis, but 

has connections to other diseases such as chronic pancreatitis and congenital bilateral 

absence of the vas deferens (CBAVD). Different mutations in the same gene can cause 

similar or different disease phenotypes.  

The FDA approved drug targets are expected to associate with genes linked to 

multiple disease phenotypes (King et al 2019, Minikel et al 2020, and Nelson et al 

2015). To establish the connectedness of CpD proteins to OMIM disease phenotypes 

with respect to FDA targets, the unique phenotype counts per gene were used for group 

comparisons. The number of disease phenotypes per gene were described by four 

levels: ‘1’ for single phenotype, ‘2’ for two phenotypes, ‘3’ for three phenotypes, and ‘4+’ 

for four or more phenotypes. FDA approved drug target genes had significantly higher 

mean number of disease phenotypes per genes than genes of CpD proteins (mean of 

1.69 vs 1.31 respectively, Wilcox test p.adj = 3.7e-11) and were associated with multiple 

OMIM phenotypes. In contrast, genes of CpD proteins represented both ends of the 

OMIM phenotype count spectrum, with most only associated to a single OMIM 

phenotype (Figure 3-2b) and potentially more phenotypes not described yet for human 

disease traits.  
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CpD protein annotations as orthogonal support for missense constraint 

Towards our goal of using chemoproteomics datasets to prioritize rare missense 

variants with greater pathogenic potential, gene intolerance to protein altering mutations 

based on gnomAD metrics (Karczewski et al 2020) were next assessed for CpD 

proteins. Specifically, a gene’s intolerance to LoF, missense, and silent variation was 

described by the observed / expected upper bound fraction of the observed / expected 

confidence interval metrics (MOEUF, LOEUF, and SOEUF for missense, LoF, and silent 

constraint, respectively). Lower scores indicate stronger gene intolerance to a specific 

type of variation while higher values indicate greater tolerance to variation. For example, 

a MOEUF score of 0.35 indicates that ~35% of missense variation expected by chance 

was observed in a large population, indicating that the gene is likely under strong 

selective pressure against this variant type.  

To establish the significance of CpD gene intolerance to variation their 

enrichment in constrained genes was compared to all OMIM genes. Both a strict 

constraint cutoff of 0.35 recommended by the gnomAD authors and a less strict 

constraint cutoff based on the bottom decile of scores was used in our analysis. Our 

results support that CpD proteins are more intolerant to missense variation and LoF 

variation compared to OMIM genes. To further understand missense intolerance 

associated with the CpD proteins, specific subsets of CpD proteins based on their 

detected amino acid type annotations were analyzed along with homozygous LoF 

tolerant genes (n = 285; Lek et al 2016) serving as a negative control. The results 

showed CpD-CKY proteins had the highest odds for missense gene intolerance (OR = 
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6.794, p = 1.49e-89) with respect to all other human genes and tested gene sets 

(Figure 3-2d). Notably, proteins detected by cysteine, lysine, and tyrosine reactive 

probes showed significant association with intolerance to missense variation.  

Residue intrinsic reactivity is an important feature for interactivity of proteins and 

chemical moieties, and the high constraint associated with CpD proteins were 

suspected to be confounded by protein-protein interaction partners, which is a protein 

level feature previously described to associate with gene essentiality (Khurana et al 

2013; Pei et al 2020). The comparison of CpD proteins to all other proteins interaction 

partner counts showed CpD were significantly more connected in biological networks 

(Figure 3-4) compared to the average non CpD protein. Closer investigation of the 

specific CpD groups showed CpD-CKY proteins as more connected in networks 

compared to other CpD groups and all human proteins (Figure 3-5). These CpD 

subsets tracked perfectly with the odds ratio and MOEUF results described by Figure 3-

2c.  

In contrast to the total of 2,797 genes considered constrained for LoF variation by 

LOEUF cutoff <0.35, only 114 genes (<1%) of all human genes scored by these metrics 

are constrained for missense variation. Surprisingly, the CpD proteins included in this 

study from cysteine, lysine, and tyrosine profiling represented 83% of these genes (n = 

95) (Figure 3-6). Only 41% (39 out of 95) of these missense constrained genes had 

associated monogenic disorder phenotypes (Figure 3-7), and many may represent 

important opportunities to connect phenotype to genotype through exploration of genes 

prioritized by chemoproteomic based annotations (Table 3-4).  
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OMIM genes and hypermutable arginine codons 

Missense variant trends are largely influenced by the composition of codons and amino 

acids in each gene and protein product (Vitkup et al 2003; Gao et al 2015; Khan et al 

2007; David et al 2015). The composition of OMIM gene protein sequences were 

investigated in order to apply insights gained towards: (1) the identification of novel 

genes underlying Mendelian disorders based on resemblance to OMIM genes and 

protein products, and (2) the stratification of missense VUS in OMIM genes based on 

potential disruption of functional CpDAA sites. To begin, codon compositions of OMIM 

genes were compared to all other human genes.  

Twenty proteinogenic amino acids are coded by 61 nucleotide triplets, or codons, 

making the genetic code degenerate (Crick et al 1961). Apart from methionine and 

tryptophan, each amino acid corresponds to either 2, 3, 4, or 6 synonymous codons. 

Biased utilization of synonymous codons is evident across species and even across 

subsets of genes in a single genome (Grantham et al 1980; Nakamura et al 2000). 

Significant differences in the average codon abundances for all OMIM vs non-OMIM 

genes were established using a two-sided, two-sample Welch’s t test and 1000 

permutations without replacement test. The Relative Codon Synonymous Usage 

(RCSU) (Sharp et al 1987) metric was also used to quantify usage biases between 

gene sets of interest. 

Shown in Figure 3.8, glycine GGC codon (‘G.GGC’ label in plot) had the largest 

positive difference between OMIM genes (n = 3744) relative to all other genes (n = 

13543), with more frequent usage in OMIM genes (p = 1.61e-08). Glycine codon GGT 

was also significantly more abundant in OMIM genes (p = 1.39e-08) while the other 
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synonymous glycine codons had positive differences but were not significantly different 

between OMIM and all other genes from Welch’s t test and across 1000 permutations 

for which a randomly sampled set of non-OMIM genes more comparable in size to the 

OMIM gene set was tested (n = 4000; p < 5.0e-05 in 1000/1000 instances; Table 3-5). 

Additionally, the synonymous codons for the following amino acids were more 

frequently observed in OMIM gene compositions: aspartate (D.GAC; D.GAT), valine 

(V.GTC), isoleucine (I.ATT), tyrosine (Y.TAC), asparagine (N.AAC), and arginine 

(R.CGT). Notably, this arginine codon has a CpG dinucleotide at position one, and 

methylation of the cytosine make these sites 10-50 times more mutable compared to all 

other possible dinucleotides in the genome because of methylation-deamination 

(Walser JC et al 2010; Kong A et al 2012). The other CpG arginine codons, referred to 

as CGN codons, were also more frequently observed in OMIM genes relative to all 

other genes but the differences were not significant based on p < 5.0e-05. The largest 

negative difference between OMIM genes relative to all other genes was found for TGT 

and TGC, which are the synonymous codons for cysteine (p = 3.04e-38 and p = 4.29e-

18, respectively; S1.7). Arginine’s non-CGN codons, AGA and AGG, were also 

significantly less abundant on average in OMIM sequences, as well as synonymous 

codons for lysine (K.AAA), serine (S.TCT; S.TCA; S.TCC; S.AGT), and glutamine 

(Q.CAA) compared to all other genes.  

The codon usage bias analysis based on the RSCU metric showed a preference 

amongst all human genes for arginine AGA codon usage, which differed from the 

subset of OMIM genes, which preferred usage of arginine CGG codon (Table 3-6). Our 

findings agree with earlier studies showing human genes are depleted of CpG 
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dinucleotides compared to non-coding regions, but the depletion signal is weaker for 

human genes involved in essential developmental processes and transcription factor 

genes (Branciamore et al 2010; Antonarakis et al 2005; Cooper et al 1988). More 

recently, Schulze et al 2020 reports genes more frequently using arginine CGN codons 

as more likely to underlie single gene disorders, particularly for dominant phenotypes. 

The authors also show these codons are hotspots for pathogenic mutations, with most 

tending to involve C>T transitions. The C>T transitions at CGN codon sites can cause 

non-synonymous gains of cysteine, glycine, serine, or tryptophan residues which are 

discussed in detail in a later section. 

 

Higher glycine and lower cysteine composition correlate with monogenic 

disorders 

The average composition of proteins, or frequency of amino acid occurrence, is well-

conserved amongst related species (Figure 3-9), and positively correlates with 

synonymous codon number. Composition differences between proteins of a single 

organism are driven by differences pertaining to function but also selection pressures to 

minimize the deleterious impact of missense mutations. To understand the context of 

OMIM proteins and pressures of these essential genes to minimize deleterious 

structural impacts of mutations, the composition of OMIM proteins were described by 

their normalized abundances for 20 amino acids. The mean of all OMIM proteins 

composition of residues was compared to the average of all non-OMIM proteins. 

Significant differences between the mean abundance of amino acids between the two 
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groups was tested using the same resampling approach used for codon abundance 

group differences.  

Glycine (p = 1.25e-09) and cysteine (p = 1.22e-36) residues showed the greatest 

positive and negative composition differences, respectively, for OMIM proteins relative 

to all other proteins (Figure 3-10; Table 3-7). This finding was also reflected at the 

codon-level from the previous section. Interestingly, arginine residues were less 

frequent in OMIM proteins with a modest p value of 0.00052066 relative to all other 

proteins.  

Ancient proteins are suggested to have been rich in amino acids first 

incorporated into the genetic code and poor in amino acids lastly incorporated into the 

genetic code (Trifonov et al 2004). Given the highly conserved nature of OMIM genes 

and importance of their functional roles in cells, frequency differences between OMIM 

and all other proteins were expected. To test, the amino acids consensus order of 

recruitment into genetic code values (Trifonov et al 2004) were summed for the top and 

bottom four residues that had composition differences between OMIM and all other 

proteins (Figure 3-10). The summed order of recruitment for residues with higher 

frequency of occurrence in OMIM proteins equaled 10 (summed consensus orders: 1st 

Glycine; 3rd Aspartate; 4th Valine; 2nd Alanine). The summed order of recruitment for 

residues with lower frequency of occurrence in OMIM proteins equaled 47 (summed 

consensus orders: 16th Cysteine; 6th Serine;  15th Lysine;  10th Arginine). This 

difference of 37 supports the idea of OMIM proteins and associated genes having 

longer evolutionary histories compared to other human genes, making them richer in 
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firstly incorporated amino acids like glycine and poorer in lastly incorporated amino 

acids like cysteine.  

 Further, our analysis of OMIM amino acid compositions suggested that glycine 

and cysteine frequencies might also be associated with greater likelihood of genetic 

constraint and could potentially support identification of genes where variants in 

heterozygous individuals may impact phenotype. To this end, gnomAD constraint 

metrics were tested with residue abundances. There was a modest but significant 

negative correlation between glycine frequency and observed-over-expected (o/e) ratios 

of LoF (r = -0.035, p = 6.5e-06, Pearson correlation) and missense (r = -0.029, p = 

0.00018, Pearson correlation) constraint scores (Figure 3-11). The opposite trend was 

true for cysteine frequency, which had a stronger positive correlation with o/e ratios of 

LoF (r = 0.13, p = 6.8859e-63, Pearson correlation) and missense (r = 0.12, p = 

1.5263e-52, Pearson correlation) constraint scores (Figure 3-12).  

 

Mutability of amino acids gained and lost in missense substitutions 

With sequence composition insights in hand, the spectrum of missense mutations in 

OMIM genes we next described. From gnomAD (Karczewski et al 2020) and ClinVar 

(Landrum et al 2016), a high confidence mutually exclusive set of pathogenic, likely 

neutral, and VUS missense we created. The missense from gnomAD were assigned to 

one of three categories based on allele frequency: common, rare, and rarest. Either all 

ClinVar benign and gnomAD population variants, referred to as Background in figures, 

were used for comparisons with pathogenic missense or only common and benign 
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considering set considering that some rare gnomAD alleles may be pathogenic in a 

homozygous state.  

Our analysis of variants in OMIM genes focused first on the frequency of certain 

types of missense. First, gains and losses of specific amino acids by population and 

pathogenic alleles were shown, with visual annotations from protein evolution theory 

first described by Zuckerkandl et al 1971 and later supported by Jordan et al 2005, that 

suggests the order in which the genetic code was assembled over 3.5 billion years ago 

continues to influence the evolution of proteins today. Jordan et al 2005 reports cysteine 

(C), methionine (M), histidine (H), serine (S), and phenylalanine (F) as accruing, while 

proline (P), alanine (A), glutamate (E), and glycine (G) are declining in frequency based 

on nucleotide polymorphisms data for human genomes and ortholog sequence 

substitutions for genomes from 15 taxa representing all three domains of life (Bacteria, 

Archaea and Eukaryota). The background variant frequency of occurrence plotted in 

Figure 3-13 supports the trend of five strong gainers and four strong losers in our 

curated set of OMIM genes, with strong losers shown to fall below the equilibrium line 

(slope = 1) and strong gainer residue points shown above this line. This same analysis 

but using the pathogenic alleles is shown in Figure 3-14 revealed Methionine, a strong 

gainer, as falling below the equilibrium line, while proline, a strong loser, was above the 

equilibrium line and more often gained by pathogenic alleles in OMIM genes 

Proportions of pathogenic missense involving loss of cysteine and glycine clearly 

distinguished the pathogenic variant set, making up ~20% of the pathogenic allele 

category compared to only ~7-8% of the neutral variant categories (Figure 3-15a). 

Clear distinctions between pathogenic and likely neutral alleles were also observed for 
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cysteine and proline residue gains, which accounted for ~15% of the pathogenic 

category and only ~7-8% of the neutral variant categories (Figure 3-15b). Although the 

proportion of missense involving loss or gain or arginine residues was high across the 

pathogenic and likely neutral variant categories, loss of arginine and loss of glycine 

together accounted for ~30% of pathogenic alleles. This result is consistent with Vitkup 

et al 2003, finding arginine and glycine residues together responsible for 30% of genetic 

diseases.   

The relative mutability (Rm) of an amino acid in each category was calculated 

based on Khan et al 2007 (Table 3-8). In short, a residue’s gain or loss mutability in a 

specific variant category is relative to the least mutable residue, defined as the amino 

acid with the lowest ratio of observed / expected mutations for a given missense 

category in OMIM genes (denoted by Rm values equal to 1). Arginine had the highest 

Rm for residue losses by substitution in both the pathogenic and background missense 

categories. The hypermutable nature of arginine CGN codons is likely related to this 

finding. Relative mutability results that differentiated pathogenic from background alleles 

involved losses of cysteine (C), glycine (G), and tryptophan (W) residues, which were 

about 7x, 6x, and 4x more mutable than lysine for pathogenic missense, respectively 

(Figure 3-16). Notably, tryptophan for the background lost-by-missense variants was 

the least mutable amino acid (Figure 3-16). For amino acid gains by missense 

substitutions, lysine (K) and proline (P) were about 3.5x and 3.3x more mutable than 

alanine for pathogenic missense, respectively (Figure 3-17), and differentiated the 

pathogenic category from the background Rm results. Notably, proline for the 

background gain-by-missense variants was the least mutable residue (Figure 3-17).  
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Enrichment of residues gained and lost by missense alleles in OMIM  

To distinguish pathogenic from background missense variation with respect to the 

unique observed composition traits of OMIM sequences, the fold enrichment (FE) of 

specific substitution types for pathogenic and common/benign alleles were calculated. 

The calculations were based on a given residue’s frequency of occurrence in OMIM 

proteins for loss-of-residue mutation types (Visscher et al 2016) and based on mutated 

codon frequency of occurrence and all possible non-synonymous changes for gain-of-

residue mutation types (Figure 3-18a and b). FE values for missense outcomes were 

log transformed to clearly distinguish large enrichments from depletions of specific 

missense types in the different variant categories. Significant enrichments for residue 

losses and gains were confirmed using a Fisher’s exact test and Bonferroni correction 

for multiple testing, with the magnitude of pathogenic enrichment calculated with respect 

to the common/benign category for a controlled set of 2,873 OMIM genes impacted by 

both pathogenic (n = 33,872) and common/benign (n = 29,778) missense categories. 

For loss-by-missense substitutions, enrichment of cysteine (p = 4.17e-267), 

glycine (p = 2.44e-247), tryptophan (p = 1.99e-95), and tyrosine (p = 9.66e-60) 

distinguished pathogenic alleles from likely neutral variants in OMIM genes (Figure 3-

18a). For gain-by-missense substitutions, enrichment of proline (p = 1.83e-213), 

arginine (p = 1.72e-109), tyrosine (p = 1.97e-60), and lysine (p = 8.28e-04) 

distinguished pathogenic alleles from likely neutral variants in OMIM genes (Figure 3-

18b). Interestingly, some residues had opposite fold enrichments for lost-by-missense 

and gained-by-missense substitutions. For example, loss-of-cysteine was depleted in 
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the common/benign category but gain-of-cysteine was enriched in the common/benign 

category. For cases of opposite trends involving pathogenic alleles, loss-of-lysine and 

loss-of-proline were depleted in this category, but gains of both these residues were 

enriched in OMIM genes. The reverse was true for alleles involving glycine, with losses 

depleted and gains enriched in the pathogenic category of missense variants.  

 

Spectrum of missense substitutions in OMIM genes 

For a higher-resolution view of missense trends in monogenic disorder genes, the 

specific types of substitutions frequencies of occurrence in the pathogenic and 

common/benign categories were compared using the controlled subset of OMIM genes 

impacted by variants from both missense categories. Differences in frequency of 

occurrence for pathogenic vs common/benign substitutions replicated findings from 

previous studies (Khan et al 2007; Vitkup et al 2003), with conservative exchanges 

more frequently observed in the common/benign alleles and less conservative 

exchanges more frequently observed in the pathogenic alleles (Figure 3-18c). For 

example, valine to isoleucine (V>I), and the reciprocal exchange of these two residues, 

had higher abundance in common/benign alleles and are considered conservative 

substitutions of two hydrophobic residues. In contrast to these population variations, in 

the case of pathogenic disease associated alleles, the two most abundant changes 

were glycine to arginine (G>R) and leucine to proline (L>P) substitutions.  

A well-known observation of the genetic code is that similar amino acids are more 

likely to substitute each other, thereby minimizing the structural impact of mutation and 

mis-readings (Freeland et al 1998). Evidence of this observation is clear from the 
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arrangement of the genetic code table, where mutations at the first and third codon 

positions are generally tolerated by proteins better compared to mutations at the second 

position, which result in exchanges of more dissimilar residues in terms of their 

chemical properties. non-synonymous changes to four synonymous leucine codons can 

lead to proline gain, and all involve mutating the second codon position. In addition to 

simple evidence of deleteriousness presented by the genetic code, at the protein-level, 

leucine is commonly found in protein α-helices and in this context, proline can cause 

major disturbances to protein stability by disrupting the hydrogen bridge system of the 

α-helices and exposing a hydrogen bridge acceptor. The second most common 

pathogenic route for proline gain appears to stem from loss of arginine, which also 

involves nucleotide substitutions at the second position of codons (Figure 3-18c).  

Unlike the other 19 amino acid types that have clear association with one or multiple 

groups of residues based on shared chemical properties, glycine is a “borderline” 

member of the group of amino acids with uncharged polar groups (Lehninger et al 

1975). The uniqueness of this residue is also evident considering that it is the smallest 

amino acid, taking up 3Å3, and the next smallest amino acid (alanine) is 10 times its 

size.  If all non-synonymous mutations of glycine are considered with equal probability, 

the average substitution of this residue will result in gain of an amino acid about 26 

times larger (Graur et al 1985). The abundance of G>R mutations in pathogenic alleles 

makes sense considering these simple features of glycine, and from Figure 3-18c, it is 

evident that only G>A exchanges were nearly equal in abundance between pathogenic 

and common/benign alleles, with all other glycine exchanges skewed towards bias 

abundance in the pathogenic category. I also provide a higher resolution view of the 
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missense exchanges and their normalized abundance differences between pathogenic 

and common/benign variants in a 61x61 codon-level heatmap (Figure 3-19).  

The magnitude of enrichments for specific amino acid exchanges in the pathogenic 

category of variants relative to the background category of variants was lastly calculated 

using a Fisher's exact test for all possible missense derivatives for 20 amino acids. I 

highlight findings specific to cysteine loss and gain exchanges in Figure 3-18d. 

Cysteine losses (Figure 3-18d; left panel), no matter which residue type was gained by 

the exchange, had strong enrichment in pathogenic alleles relative to background 

alleles, with the highest enrichment observed for the cysteine to phenylalanine (C>F) 

and TGC>TTC codon exchanges (OR = 4.875, p = 4.57e-60). In contrast to cysteine 

loss, exchanges involving cysteine gains (Figure 3-18d; right panel) were not all 

enriched in the pathogenic category, with two out of the four possible serine to cysteine 

(S>C) exchanges shown as enriched for background alleles (depleted in pathogenic 

alleles) (TCC>TGC OR = 0.52, p = 1.39e-06; TCT>TGT OR = 0.33, p = 1.53e-14). The 

strongest enrichment for cysteine gain substitutions were observed for the glycine to 

cysteine (G>C) and GGT>TGT codon exchanges (OR = 2.95, p = 2.66e-26) and the 

TGG>TGT codon W>C residue exchange (OR = 2.90, p = 5.31e-20). The lysine and 

tyrosine specific results are provided along with cysteine for a complete picture of 

chemoproteomic-detected amino acids and their pathogenic substitution propensities 

(Figure 3-20 and Figure 3-21). With the insights gained from the analysis of OMIM 

sequence compositions and mutational spectrum results, the analysis advanced to 

defining the mutational and contextual landscapes of our CpDAA residue sites in the 

curated set of OMIM genes and proteins. 
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1D relationships of CKY positions to missense in OMIM proteins 

To define the context of detected amino acids in terms of proximity to disease missense 

and population missense positions in OMIM proteins, the CKY residue landscape in 1D 

sequence space were analyzed (Figure 3-22a). To evaluate the significance of CpD-

CKY positions, they were compared to undetected CKY positions in regards to 

missense allele positions in OMIM proteins (Figure 3-22b). CpD cysteine positions 

accounted for ~14% of all cysteine positions, which was significantly higher than the 

percent of positions that CpD lysine or CpD tyrosine positions accounted for out of all 

equivalent residues in OMIM&CpD proteins (Figure 3-22b). Cysteine residues higher 

percentage than CpD lysine and CpD tyrosine positions is most likely related to global 

rareness of cysteine in diverse species of life (Figure 3-23; Figure 3-24) as well as the 

results described from previous sections such as lower abundance in OMIM proteins 

compared to all other human proteins. 

 

Preference of pathogenic missense effecting detected over undetected CKY sites  

Distances of zero, or direct overlaps of CKY positions and positions of missense alleles, 

were first summarized. About 1.9% of CpDAA positions overlapped pathogenic 

missense alleles compared to 0.9% percent of undetected CKY (Figure 3-25a). The 

percentage of positions overlapping positions of missense alleles from the benign 

category or other non-pathogenic categories of missense differed by less than one 

percentage point for the detected and undetected CKY positions (Figure 3-25b). 

Detected positions were significantly enriched over undetected positions for pathogenic 
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missense allele overlaps (OR = 1.54; p = 1.75e-04) and significantly depleted over 

undetected positions for background missense allele overlaps (OR = 0.89, p = 1.56e-

04) in analysis of 3,907 OMIM proteins (Figure 3-22c). CpD-lysine positions relative to 

undetected lysine positions showed the greatest odds for pathogenic missense overlap 

(OR = 2.56, p = 8.08e-05), followed by CpD-tyrosine positions (OR = 2.56, p = 8.08e-

05) relative to undetected tyrosine positions (Figure 3-26). CpD-cysteine positions 

showed positive but unsignificant associations with pathogenic allele overlap (OR = 

1.341, p = 0.0754) relative to all other cysteine codons (Figure 3-26). Decreasing odds 

of missense variant overlap at detected versus undetected positions associated with 

increasing residue relative mutability in the pathogenic allele category (Figure 3-26).  

Residue-level annotations of CpD lysine show greater potential for identifying 

positions in proteins more likely to overlap pathogenic missense alleles compared to 

positions of the other residue types studied and highlights a potential strength of this 

annotation type for variant prioritization given that lysine is the least mutable amino acid 

in the pathogenic allele category from our relative mutability results discussed in the 

previous section.  

 

Detected residues are closer to pathogenic missense than population missense 

in 1D sequence space 

To determine if detected residues are closer to pathogenic versus common/benign 

missense alleles in OMIM proteins, the distributions of 1D distances for CpDAA residue 

types to the nearest positions of common/benign and pathogenic missense disease 

were visualized (Figure 3-22c). Only OMIM&CpD proteins with pathogenic and 
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common/benign allele positions were used to minimize bias stemming from protein 

length differences. The pathogenic allele to detected residue distances were smaller 

than distances between common/benign alleles and detected residue positions, with 

pathogenic-to-CpDAA distances shown as more skewed towards zero (Figure 3-22c).  

Because the allele-to-CpDAA distances are also confounded by differences 

between protein lengths and ratio of pathogenic to common/benign missense (Figure 3-

27), additional tests of missense 1D distances to detected residues were calculated for 

three sets of OMIM&CpD proteins: all sequences, short sequences, and long 

sequences. All missense allele distances (based on unique DNA change) to detected 

residue positions were included in this analysis and short and long proteins were 

defined by lengths less than or greater than the median protein length calculated for all 

OMIM&CpD sequences, respectively (Figure 3-28). Since the 1D distances are not 

normally distributed, the median was used for bootstrapped 95% confidence interval 

estimates in comparisons between the missense categories and detected residue 1D 

distances. Pathogenic variants were closer to detected residues for all OMIM&CpD 

proteins, short OMIM&CpD proteins, and long OMIM&CpD proteins tested based on the 

median 95% confidence intervals describing pathogenic-to-CpDAA distances no 

overlapping estimates for the other four missense categories tested and all protein 

subsets for short and long sequences tested (Figure 3-29). From our analysis of 1D 

distances between positions of ClinVar and gnomAD variants and detected residues, it 

was concluded the detected cysteine, lysine, and tyrosine positions are closer to 

positions of pathogenic alleles in 1D sequence space.  
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1D distances comparing detected versus undetected CKY positions show 

pathogenic missense closer to detected positions 

Are missense variants closer to detected residue positions relative to undetected 

equivalent residue positions? To answer this question, we considered nearest 1D 

distances for pathogenic and common/benign alleles to all CKY residue positions in 926 

OMIM&CpD controlled for having at least one pathogenic and one common/benign 

missense position. Since Figure 3-22c showed an enrichment of pathogenic alleles at 

detected residue codons relative to undetected residue codons, 1D distances were also 

filtered to exclude distances of zero to prevent overlaps of CKY residues and missense 

variants from biasing comparisons between detected and undetected residues. The 

Wilcoxon test was used to compare the mean 1D distances between pathogenic and 

common/benign missense positions to detected versus undetected residue positions. 

Detected residues were closer to pathogenic missense positions compared to 

undetected equivalent residue positions (p < 2e-16; Figure 3-30) in OMIM&CpD 

proteins based on our analysis. In addition, distances of common/benign allele positions 

were significantly smaller for undetected residues compared to detected residue 

positions (p = 3.6e-10; Figure 3-30). 

For further validation of detected versus undetected 1D distance findings, the 

analysis was repeated separately for the three residue types that are the focus of our 

study: cysteine, lysine, and tyrosine. The residue type specific results replicated initial 

findings related to pathogenic alleles and detected residue positions, with pathogenic 

missense positions found to be closer on average to detected residue positions than to 

undetected equivalent residue positions in OMIM&CpD proteins (p < 2e-16; Figure 3-
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31). For CKY 1D distances to common/benign alleles, undetected lysine positions were 

significantly closer (p = 2.8e-11; Figure 3-31) than detected lysine positions, but 

distances for cysteine and tyrosine positions were not significantly different between 

detected versus undetected residues (Figure 3-31). Based on these results, it was 

concluded that detected positions are closer to pathogenic missense alleles and farther 

from common/benign missense alleles than undetected  positions in OMIM&CpD 

proteins, supporting CpDAA annotations potential in missense variant prioritization 

pipelines. 

 

Burden of variants in 1D windows of CpDAA positions 

Missense variant occurrences at positions flanking CpDAA residues were next 

calculated to provide more contextual information about CpDAA positions nearby 

missense alleles for OMIM proteins. The 1D window sizes used in our analysis included 

±3 amino acids, ±6 amino acids, or ±15 amino acids flanking reference CKY residue 

positions. Missense variants overlapping reference CKY positions were excluded from 

total missense occurrence calculations for 1D windows and only sequences with 

pathogenic and common/benign missense variants were used for 1D window analysis.  

About 15% - 20% of CpDAA 1D windows included positions of pathogenic missense 

alleles compared to only ~8% - 9% of 1D windows for common/benign missense 

positions (Figure 3-32). Surprisingly, local missense VUS was true for nearly half of all 

CpDAA window cases for size of ±6 amino acids (Figure 3-32).  

Fisher’s exact test was used to estimate the likelihood of pathogenic and 

common/benign alleles occurrence in 1D windows of detected versus undetected 
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cysteine, lysine, and tyrosine reference positions. Occurrence of pathogenic missense 

variants was significantly enriched for ±6 amino acid 1D windows of CpDAA positions 

(OR = 1.95, p = 1.87e-49) relative to 1D windows of undetected CKY positions in 926 

OMIM&CpD proteins (Figure 3-33). In contrast, occurrence of common/benign 

missense variants was significantly enriched for ±6 amino acid 1D windows of 

undetected CKY positions (OR = 0.74, p = 1.01e-08) relative to 1D windows of detected 

CKY residues (Figure 3-33). All results were replicated in the alternative window sizes 

used for 1D window analyses (Figure 3-34). Significant occurrence of pathogenic 

missense in detected residue 1D also replicated in separate analysis of specific residue 

types (Figure 3-35). Pathogenic missense occurrence showed the highest odds with 

detected tyrosine 1D windows (OR = 2.221, p = 6.49e-12), followed by detected lysine 

1D windows (OR = 2.066, p = 3.40e-26), and detected cysteine 1D windows (OR = 

1.663, p = 3.46e-12) relative to undetected equivalent residue 1D windows in 926 

OMIM&CpD proteins (Figure 3-22e). Significant depletion of common/benign missense 

occurrence was also found for detected lysine 1D windows relative to all other lysine 

residue 1D windows in OMIM&CpD proteins (Figure 3-22e). Our results support 

chemoproteomic annotation’s association to regions of OMIM proteins impacted by 

deleterious missense alleles. 

 

3D distances between missense variants and cysteine, lysine, and tyrosine 

CpDAA residues 

To build upon characterization of detected CKY residues based on 1D distances to 

missense alleles, 3D protein environments of detected CKY residues were investigated 
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for the presence of missense variant alleles. Our PDB mapping pipeline provided 

distances from the terminal atoms of cysteine, lysine, and tyrosine residues (SG, NZ, 

and OH atoms, respectively) to all other atoms of neighboring residues within a max 

environment boundary set for 10 Å3 from the reference terminal atom coordinate. To 

calculate 3D environment missense burden, environment boundaries of 6Å3, 8Å3, and 

10Å3 and all unique missense alleles mapping to environment based on terminal atom 

coordinates for cysteine, lysine, and tyrosine residues were considered (Figure 3-36a).  

Out of 926 OMIM&CpD proteins used for 1D distance analysis, resolved 

structures were available for 419 proteins in the Proteins Data Bank, accounting for ~ 

45% of total CpDAA positions from 1D distance characterization available for 3D 

environment characterization (Table 3-9). The dramatic decrease in available CKY 

positions for 3D mapping hindered comparison between detected and undetected 

residues, so the focus of our analysis was on detected residues and their 3D 

environments. 

 

Prioritizing CpDAAs based on 3D environment VUS count and predicted 

deleteriousness for substitutions at CpDAA sites 

Analysis of missense variants in 3D environments revealed 38.2% of CpD-cysteine 

were within 8Å of a pathogenic missense variant, followed by 36.2% of CpD-tyrosine, 

and 23.2% of CpD-lysine, compared to ~10% of CpDAA within 8Å of a common/benign 

missense variant position (Figure 3-36b). Notably, more than half of all CpDAA 

environments contained missense VUS within 8Å. The greatest association is shown for 
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CpD-cysteine environments, with 57.7% harboring at least one local missense VUS 

(Figure 3-36b). 

To understand unique features of detected cysteine, lysine, and tyrosine, 

associations of missense variant categories in the environments of specific residue 

types versus all other CpDAA 3D environments were assessed. For comparison to 

pathogenic variants, the background set of variants was used instead of the 

common/benign variant set due to the limited counts of available common/benign 

missense that might bias interpretation of the results. Both detected cysteine and 

detected tyrosine environments were enriched for proximal pathogenic missense 

relative to all other CpDAA types (Figure 3-36c). In contrast, detected lysine 

environments were significantly depleted in proximal pathogenic variants with respect to 

cysteine and tyrosine CpDAA positions (Figure 3-36c). Detected cysteine environments 

were also uniquely enriched for local background missense and VUS missense alleles 

(Figure 3-36d). CpD-tyrosine environments were also less abundant in local 

background missense variants compared to CpD-cysteine and CpD-lysine 

environments (Figure 3-36c). Notably, CpD-lysine environments were depleted of 

pathogenic alleles despite finding significant overlap of pathogenic alleles in the 

previous section. 

Missense pathogenicity predictors are commonly used by genetic variant 

annotation pipelines to provide orthogonal evidence of a variant’s potential 

deleteriousness or neutral molecular consequences. To support stratification of CpDAA 

with higher functional potential, the Combined Annotation Dependent Depletion, or 

CADD, metric was used based on previous work demonstration of its performance 
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across diverse classes of genes (Anderson et al, 2018; Ghosh et al, 2017). CADD 

scores also have the added advantage of minimal missense values for missense 

predictions of all possible non-synonymous changes in the human genome. Deleterious 

missense predictions for possible CpDAA substitutions were also tested for significant 

associations to environment features such as local pathogenic variant. A mean phred 

score for all possible non-synonymous exchanges above 25 defined deleterious CADD 

scores.  

CpDAA environments with local pathogenic variants were significantly associated 

with deleterious loss-of-CpDAA predictions (Figure 3-37). In contrast to local 

pathogenic, environments with common/benign or background alleles were significantly 

depleted of CADD scores above 25 threshold (Figure 3-37). Separate analysis of each 

residue type showed local pathogenic allele and CpDAA environments significant for 

CpD-tyrosine relative to all other equivalent residue types in OMIM&CpD proteins 

(Figure 3-38). Furthermore, CpD-lysine environments with common/benign variant 

allele positions associated more with CADD missense scores below the deleterious 

threshold relative to all other lysine positions in OMIM&CpD proteins (Figure 3-38).  

A major goal of this study was to use information about CpDAAs to prioritize 

missense VUS as pathogenic. CpDAAs with the highest counts of proximal VUS 

missense along with mean CADD scores were visualized (Figure 3-36d). Sorting the 

detected positions by highest counts of proximal missense VUS unintentionally 

prioritized residues located at multimeric protein interfaces because CpDAA residues at 

interfaces have more interactions with neighboring amino acids on the same chain and 
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different protein chain(s) of a multimeric protein’s quaternary structure compared to 

residues at the surface of monomeric proteins.  

CpDAA environments heavily burdened by missense VUS included lysine at 

position 1296 of DNA mismatch repair protein MSH6 (n = 59 environment VUS; Figure 

3-36d) and lysine at position 65 of DNA mismatch repair protein MSH2. Notably, MSH6 

and MSH2 form a heterodimer complex as part of their role in the post-replicative DNA 

mismatch repair (MMR) system (PubMed:26300262). CpDAA environments of MSH2 

and MSH6 lacked local pathogenic alleles based on our ClinVar dataset, whereas 

environment of CpDAA residues in MLH1, VHL, and FH proteins had VUS and 

pathogenic allele containing environments (Figure 3-36d; red colored position ID 

labels). For further investigation, CpDAA residue environments with high missense VUS 

count and deleterious substitution scores based on mean CADD phred scores above 

the deleterious threshold of 25 were prioritized (Figure 3-36d). 

 

Functional validation of our approach in FH protein 

For genes currently associated with a disease phenotype, establishing the causal role of 

individual variants within the gene remains problematic, and many patients with 

suspected rare genetic diseases are left without a definitive diagnosis (MacArthur et al 

2014). To demonstrate the utility of our approach in stratifying CpDAA residues based 

on potential genetic disease phenotype connection, we selected an OMIM and CpD 

protein from a list of ideal candidate proteins for experimental validation of missense 

molecular mechanism studies. Criteria for ideal candidate protein: gene has mapped 

missense position from each variant category, available PDB structure for protein 



 98 

structure analysis, less than 1000 amino acid protein length, ClinVar and gnomAD allele 

position interactions with CpDAA in 3D environment, and in CKY detected protein 

group. After applying these criteria to OMIM and CpD proteins, 28 candidate proteins 

remained for consideration. Fumarate hydratase protein FH was selected from the 28 

candidates list because of its important role in metabolism fumarate to L-malate 

interconversions, lack of FDA-approved drugs targeting protein, and many structurally 

resolved CpDAA sites (n = 16 CpDAA sites; 2 cysteine, 13 lysine, and 1 tyrosine) 

(Figure 3-39a). Mutations in FH are linked to hereditary leiomyomatosis and renal cell 

cancer (HLRCC), and fumarase deficiency OMIM disease phenotypes . Based on our 

missense variant inventory, FH had 410 total non-synonymous single nucleotide 

variants (52 pathogenic, 3 common/benign, 12 rare, 85 rarest, and 258 VUS), that 

together impacted 341 unique residue positions of FH protein. All CpDAA positions for 

the FH protein were clustered based on local missense allele counts from 1D and 3D 

analyses to identify interesting residue sites for experimental follow-up (Figure 3-39b). 

Clustering based on proximal missense variant counts resulted in two main groups of 

FH CpDAA sites. The residue group associated with higher local VUS counts included 

two CpD-cysteine residues (C333 and C434) and one CpD-lysine residue (K311). All 

three CpDAAs in the top cluster were also associated with deleterious CADD scores for 

possible residue substitutions by missense variants (Figure 3-39b). The cysteine at 

position 333 in FH protein was within 8Å of four pathogenic missense alleles, six 

gnomAD alleles in the rarest allele frequency category, and twenty-four missense VUS 

alleles combined from ClinVar and a validation screen by Wilde et al 2022 (Figure 3-

40). The prioritized cysteine at position 333 (Figure 3-39c) was validated as a loss-of-
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function consequence associated with disruption of FH protein multimerization (Figure 

3-39d). This supports the utility of our approach to stratify functional CpDAA sites based 

on spatial relations to missense alleles.  

 

3.3 Discussion 

Missense are known major causes of human diseases, but knowledge of their impact on 

protein function and regulation is largely unknown. Scalable and creative sources of 

information are needed to annotate residues so that estimates of deleteriousness and 

functional consequences can be assessed. In this study, protein- and residue-level 

annotations from chemoproteomics studies of cysteine (C), lysine (K), and tyrosine (Y) 

profiling were investigated based on their functionality and ability to provide orthogonal 

support for missense variant interpretation. Multi-detected proteins that have CpD-

cysteine, lysine, and tyrosine probe labeled positions were shown to be centrally located 

in protein-protein interaction networks and intolerant of missense variation (Table 3-10). 

This may be a particularly useful insight for assessing the missense intolerance of 

smaller genes (containing fewer codons) or highly paralogous genes for which 

constraint metrics based on observed over expected ratios of rare missense variation 

are less reliable. Lysine detection annotations may be important for rare variant 

interpretation given that lysine residues overall had the lowest relative mutability in the 

pathogenic allele category, but detection was significantly associated with pathogenic 

allele overlap relative to all other lysine positions in monogenic disorder associated 

proteins. Cysteine detection annotation may serve as important markers of pathogenic 

allele burden region so genes and proteins based on 1D and 3D spatial analysis of 
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missense alleles. Incorporation of unsupervised machine learning based annotations 

such as the CADD score appear to support stratification of CpDAA and complement 

analysis of proximal missense burden analysis of CKY residue positions.  

A caveat to this study is that it pertains to only a subset of human genes 

implicated in monogenic disorders and therefore conclusions do not apply possibly to 

larger set of reactive and probe detected sites in human proteins. However, a multilevel 

understanding of OMIM genes and proteins, the spectrum of disease and population 

variation in these context, and CpDAA were most relevant to our overall goal of 

stratifying missense VUS, most of which map to OMIM genes.  

Future work should continue investigating the context of reactive amino acids 

and their relation to human phenotypic variation. I imagine many of these solvent 

exposed residues prioritized by multi-level approaches will lead to the unraveling of 

compensatory targeting opportunities of gain-of-function mutants.  

 

 

3.4 Methods 

Data source URL Version 

UniProtKB https://www.uniprot.org/downloads  August 2021 

dbNSSFP https://sites.google.com/site/jpopgen/dbNSFP   4.2a 

ClinVar https://www.ncbi.nlm.nih.gov/clinvar/  June 10,2021 

gnomAD constraint  2.1.1 

OMIM https://www.omim.org/downloads June 24, 2021 

Human Protein Atlas http://www.proteinatlas.org  20.1 

HGNC https://www.genenames.org/download/custom/ September 2020 

 

Software URL Version 

Python https://www.python.org/ 3.7.4 

R https://www.r-project.org/ 3.6.2 

Tidyverse https://doi.org/10.21105/joss.01686 1.3.0 

https://www.uniprot.org/downloads
https://sites.google.com/site/jpopgen/dbNSFP
https://www.ncbi.nlm.nih.gov/clinvar/
https://www.omim.org/downloads
http://www.proteinatlas.org/
https://www.genenames.org/download/custom/
https://www.python.org/
https://www.r-project.org/
https://doi.org/10.21105/joss.01686
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Pandas https://pandas.pydata.org/  0.25.1 

Numpy https://numpy.org/  1.17.2 

SciPy https://www.scipy.org/  1.3.1 

Adobe Illustrator Adobe, Inc  

 

Curation and standardization of chemoproteomics datasets  

To curate and standardize available residue-level results of reactivity-based protein 

profiling, we processed all result files through the same quality control pipeline. This 

process included filtering out peptides with multiple amino acids marked as modified 

(e.g. MAC*ALRC*Y) and removing peptides that do not meet the minimum number of 

detections in replicate samples. For datasets from reactivity profiling experiments, 

reactivity ratios (R10:1) assigned to each residue were averaged across peptide replicates 

for final assignment of one R10:1 value. Reactivity labels for Low, Medium, and High were 

re-assigned based on the following bins: Low R10:1>5, Medium 2<R10:1<5, High R10:1<2. All 

residue identities and positions were checked against the reference set of protein 

sequences from UniProtKB to prevent analysis errors caused by residue position mis-

mapping. To compare cysteine, lysine, and tyrosine detected proteins, we combined 

experimental datasets for cysteine specific reactivity profiling after confirming the 

reactivity ratios of residues detected in both studies were significantly correlated 

(Pearson’s R=0.49).  

 

Assigning proteins to subcellular location information 

We used the COMPARTMENTS (Binder et al 2014) database to assign each protein to 

their main subcellular location(s) based on the database provided highest location score 

values. This resource integrates evidence on protein subcellular localization from 

https://pandas.pydata.org/
https://numpy.org/
https://www.scipy.org/
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manually curated literature, high-throughput screens, automatic text mining, and 

sequence-based prediction methods. If a protein had multiple subcellular locations with 

the highest score, more than one main subcellular location was assigned to the protein. 

 

Calculating amino acid and codon mean abundances 

The codon composition of 17,287 human genes with Ensembl CDS sequences was 

calculated by taking the frequency of occurrence of 61 codons and normalizing by the 

total number of counted codons per gene.  

 

3D distance calculations  

Proteins with CpDAAs were cross-referenced with the Protein Data Bank (PDB) 

downloaded June 23, 2022. All biological assembly files of entries were processed. For 

each CpD protein associated with a PDB, the SIFTS database (2019 release) was used 

to map protein sequence residue positions to PDB structure residue positions. The 

author determined biological unit annotations were extracted from each PDB, as well as 

the exact 3D coordinates of a CpDAA. Specifically, distances were calculated with 

respect to locations of the SG atom of cysteine residues, NZ atom of lysine residues, 

and OH atom of tyrosine residues to all other atoms of neighboring amino acids within 

10 Angstroms. The smallest distance between terminal cysteine, lysine, or tyrosine 

atoms and atoms of neighboring missense variant positions were stored for statistical 

analyses. Multiple PDB structures assigned to a given uniprot identifier used for 

missense environment counting. At the amino acid level, all proximal amino acids to a 

detected residue were assigned a distance pair identifier, composed of the protein 
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identifier and protein position of a given residue. The distance pairs for a single 

environment (in the consistent direction from missense protein position to CpDAA 

protein position) were all unique. 

 

3.5 Figures 

 

 

Figure 3-1. Overlaps of chemoproteomic detected protein subsets. 

The set of all 4,535 CpD proteins in our study are associated to 4,572 unique gene 

symbols. Numbers annotating the figure are protein counts based on unique UniProt 

protein. 
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Figure 3-2. CpD-proteins are associated with monogenic disorders and gene-level 
intolerance to missense variation 

a) Venn diagram of the overlaps between the FDA approved drug target gene set, gene 

set of ChemoProteomic Detected (CpD) proteins, and gene set associated with 

monogenic disorders (OMIM). 

b) Distribution of genes from the CpD protein (purple) and FDA approved drug target 

(cyan) gene sets across five levels based on the number of OMIM monogenic disorder 

phenotypes per gene (x axis). Data is based on a reference set of 20,210 total human 

protein coding genes. Bar height represents the fraction of each gene set associated 

with a level of phenotypes counted per gene. Levels: “0” connected phenotypes 

(n=16,236 total genes in universe, CpD=21% , FDA=2%); “1” connected phenotype 
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(n=2,985 total genes in universe, CpD=33%, FDA=7%); “2” connected phenotypes 

(n=644 total genes in universe, CpD=26%, FDA=11%); “3” connected phenotypes 

(n=202 total genes in universe, CpD=26%, FDA=17%); “4+” connected phenotypes 

(n=143 total genes in universe, CpD=23%, FDA=20%). 

c) Enrichment for missense intolerant genes in gene sets related to CpD-proteins, 

monogenic disorders (OMIM), and homozygous LoF tolerant genes. The threshold for 

missense (MOEUF) constraint is based on the bottom decile of all 16812 sorted and 

scored genes included in this analysis. Fisher’s exact test was used to compare gene 

counts. Point estimates (odds ratio) > 1 indicate a gene set’s enrichment for missense 

intolerant genes based on the described threshold. Significant associations are marked 

by *. Bonferroni correction for multiple testing. Horizontal bars show the 95% confidence 

interval of the odds ratio point estimates. 

Abbreviations: FDA, FDA approved drug target genes. CpD, ChemoProteomic-Detected 

protein genes. OMIM, Monogenic disorder-associated genes. 

 

 

 

 

 

 

 

 



 106 

 

 

 

Gene set sizes: total = 16812, OMIM = 3703, CpD-C = 3239, CpD-K = 2488, CpD-Y = 

1026, CpD-CKY = 615, FDA = 707, Homozygous LoF tolerant (Lek et al 2016) = 285. 

Based on universe reference file with no missing values for all gene sets. *p threshold < 

0.007142857, all points were significant. 

 

 

 

 

Figure 3-3. Enrichment of protein groups in OMIM genes. 
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Figure 3-4. Significant association between CpD as an annotation related to 
higher interactivity of proteins. 
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Figure 3-5. Distribution of protein interaction levels amongst all proteins, CpD 
proteins, and subsets of CpD proteins based on profiled residues types detected 

for each protein.  
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Figure 3-6. Venn diagram shows overlaps of CpD proteins with missense 
constrained genes (based on constraint cut-off < 0.35) and homozygous LoF 

tolerant genes.  

 

 

 

Figure 3-7. OMIM inheritance of single gene disorder phenotypes and CpD genes 
highly constrained to missense mutations (gnomAD MOEUF < 0.35). 

Genes with missing values for phenotype inheritance are not shown, CpD n=39 genes 

out of 95 total CpD missense constrained genes in the universe of 16,812 genes. 
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Figure 3-8. Differences in mean abundance of 61 codons in OMIM genes (n=3744) 
versus all other genes (n=13543).  

Total of 17287 human genes included in the analysis. The codon frequency of each 

gene was normalized by total codons counted per gene and averaged for all genes in 

the OMIM and non-OMIM gene sets. The codon labels shown on the x axis are 

formatted as the single amino acid letter abbreviation followed by the synonymous DNA 

codon (i.e. ‘C.TGT’ for Cysteine’s TGT codon). Eight codons on the x axis contain CpG 

dinucleotides marked by bold italic font. The y axis shows mean normalized codon 

abundance differences. Bar colors are based on physiochemical properties of the 

encoded amino acid residues. Significant abundance differences were determined using 

a two-sided, two-sample Welch’s t test and permutation without replacement test. *p 

values < 5.0e-05 in Welch’s t test and 1000/1000 permutation instances. 
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Figure 3-9. Amino acid average occurrence frequencies in animals. 

The boxplot shows the distribution of average residue occurrence frequency across 13 

diverse organisms from the Animal kingdom. Amino acid normalized abundances per 

protein were first calculated and the average frequency for all proteins in each complete 

proteome set was assigned to each organism, represented by the grey points on the 

plot. The interquartile ranges for most residues are tight, reflecting the well-conserved 

nature of amino acid frequencies across species from the same kingdom. Positive 

correlation of residue abundance and synonymous codon count (color of boxplots) is 

also shown by the figure.  
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Figure 3-10. Differences in mean abundance for 20 amino acids in OMIM proteins 
(n = 3744) versus all other proteins (n = 13543). 

 Amino acid frequency per protein was normalized by protein sequence length and 

averaged for all proteins in the OMIM and non-OMIM gene sets. The mean abundance 

of each letter from the OMIM subset of proteins was subtracted from the mean 

abundance of non-OMIM proteins, with values shown on the y axis. Bar colors are 

based on physiochemical properties of amino acid residues. Significant abundance 

differences were determined using a two-sided, two-sample Welch’s t test and 

permutation without replacement test. *p values < 5.0e-05 in Welch’s t test and 

1000/1000 permutation instances. 
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Figure 3-11. Glycine frequency and gnomAD constraint. 

The observed-over-expected (o/e) loss-of-function (LoF) constraint metric (a) and the 

missense o/e constraint metric (b) are shown with the Pearson correlation test results 

annotated on each plot. The points in the scatter plots represent unique proteins. Total 

of 16,639 human proteins represented in each plot. 
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Figure 3-12. Cysteine frequency and gnomAD constraint.  

The observed-over-expected (o/e) loss-of-function (LoF) constraint metric (a) and the 

missense o/e constraint metric (b) are shown with the Pearson correlation test results 

annotated on each plot. The points in the scatter plots represent unique proteins. Total 

of 16,639 human proteins represented in each plot. 
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Figure 3-13.Comparisons between the number of background missense involving 
loss and gain of specific amino acid types. 

The scatter plot shows the asymmetry between how often a residue is lost and gained 

by missense substitutions specifically for OMIM gene and all gnomAD population 

missense that mapped to this gene set. The x and y axis reflect raw missense counts 

and the black line shows a slope of one, representing perfect equilibrium between 

forward and reverse mutations. Each amino acid point is colored according to the 

missense category (dark blue for background), with letter colors showing amino acids 

reported as strong gainers (orange) or strong loser (light blue) by Jordan et al 2005. 

Results of fitting a linear regression model are also included under the plot title. 
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Figure 3-14. Comparisons between the number of pathogenic missense involving 
loss and gain of specific amino acid types.  

The scatter plot shows the asymmetry between how often a residue is lost and gained 

by missense substitutions specifically for OMIM gene and all ClinVar pathogenic 

missense that mapped to this gene set. The x and y axis reflect raw missense counts 

and the black line shows a slope of one, representing perfect equilibrium between 

forward and reverse mutations. Each amino acid point is colored according to the 

missense category (red for pathogenic), with letter colors showing amino acids reported 

as strong gainers (orange) or strong loser (light blue) by Jordan et al 2005. Results of 

fitting a linear regression model are also included under the plot title.  
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Figure 3-15. Proportion of pathogenic and likely neutral missense substitutions 
that involve a specific amino acid in OMIM genes.  

The missense substitutions are divided into lost amino acids (a) and gained amino acids 

(b). The y axis shows the percent of missense that involved the gain or loss of a specific 

residue shown on the x axis. The three variant categories separated by panels are 

colored as red for pathogenic, dark blue for background, and light blue for 

common/benign. 
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Figure 3-16. Relative mutability of amino acids lost-by missense substitutions in 
the pathogenic and background categories for OMIM genes. 

The x axis shows the single letter abbreviations of the twenty amino acids analyzed. 

The y axis represents residue relative mutability (Rm) calculated using an equation from 

Khan et al 2007. The bar heights reflect residue Rm values and are ordered in each plot 

from left to right by decreasing Rm values. 
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Figure 3-17. Relative mutability of amino acids gained-by missense substitutions 
in the pathogenic and background categories for OMIM genes.  

The x axis shows the single letter abbreviations of the twenty amino acids analyzed. 

The y axis represents residue relative mutability (Rm) calculated using an equation from 

Khan et al 2007. The bar heights reflect residue Rm values and are ordered in each plot 

from left to right by decreasing Rm values. 
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Figure 3-18. Asymmetry of residue gains and losses by missense substitutions in 
OMIM genes. 
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a) Lost-by-missense amino acid fold enrichment (FE) relative to residue abundance for 

pathogenic (red) and common/benign (blue) variants.  

b) Gained-by-missense amino acid fold enrichment (FE) relative to possible missense 

based on mutated codon abundance for pathogenic (red) and common/benign (blue) 

variants. 

a.b. Fold enrichment was calculated as the abundance of a specific type of missense 

substitution in a category (i.e. % of Cysteine-loss substitutions in pathogenic missense) 

divided by the amino acid’s abundance in monogenic disorder-associated proteins (i.e. 

total cysteine / total amino acids in protein subset). FE values are positive and were 

log10 transformed to clearly reflect enriched substitution types as positive bars and un-

enriched substitution types as negative bars (values between 0-1 FE before 

transformation). 

c) Heatmap of the difference between Pathogenic and Common/Benign missense 

normalized abundance.  Heatmap colors reflect the difference between Pathogenic 

minus Common/Benign category for a specific missense substitution, with red squares 

indicating greater abundance in the Pathogenic category, blue squares indicating 

greater abundance in the Common/Benign category, white squares indicating no 

difference between the two categories, gray squares indicating substitutions not 

possible by single nucleotide change, and black squares are silent (synonymous) 

variants not included in the study. The analysis was restricted to a subset of 2,873 

proteins that have annotations for both categories of missense variant, resulting in a 

final set of 33,872 Pathogenic and 29,778 Common/Benign variants reelected in the 

heatmap. The x axis shows the lost (or mutated) amino acid and the y axis shows the 
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gained (or mutant) amino acid. Amino acid single letter labels are ordered based on the 

side-chain chemistry {Mount DW: Bioinformatics Cold Spring Harbor, NY: Cold Spring 

Harbor Laboratory Press; 2001.} Substitutions closer to the diagonal line of black 

squares are considered more conserved, and substitutions farther from the diagonal line 

are considered less conserved. Pathogenic and Common/Benign missense abundance 

matrices were normalized so that the sum over all mutation frequencies equals 1.  

(C) sulfhydryl; (STPAG) small hydrophilic; (NDEQ) acid, acid amide and hydrophilic; 

(HRK) basic; (MILV) hydrophobic; (FYW) large hydrophobic/aromatic. 

d) Magnitude of enrichment for missense involving cysteine in the Pathogenic versus 

Background missense categories. 95% confidence intervals (line segments) and odds 

ratios (squares). All possible substitutions by single nucleotide variants were counted, 

resulting in 3489 Pathogenic and 65505 Background mutations involving a gain or loss 

of cysteine. Red squares are substitutions enriched in the Pathogenic category and blue 

squares are substitutions enriched in the Background category. Non-significant odds 

are shown as transparent squares. Significant Bonferroni-adjusted p < 6.38e-05 (two-

tailed Fisher’s exact test).  
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Figure 3-19. Difference in codon exchanges for pathogenic vs common/benign 
missense in OMIM genes. 

Heatmap colors reflect the difference between the abundance of a specific missense 

substitution in the Pathogenic category minus the Common/Benign category, with red 

indicating greater abundance in the Pathogenic category, and blue indicating greater 

abundance in the Common/Benign category. White squares indicate no difference 
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between the two categories and gray indicates either a substitution not possible by 

single nucleotide change or a silent (synonymous) substitution (the heatmap identity 

line). The analysis was restricted to the subset of 2,873 OMIM proteins that have 

annotations for both categories of missense variants, resulting in a final set of 33,872 

Pathogenic and 29,778 Common/Benign variants included in the analysis. Axis labels 

are formatted as the single letter for an amino acid and its corresponding DNA codon 

(i.e. cysteine as ‘C.TGT’ and ‘C.TGC’). The x axis represents the lost (or mutated) 

codon, and the y axis represents the gained (or mutant) codon. The three stop codons 

(TAA, TAG, TGA) were excluded from our analysis, resulting in a 61x61 matrix. The 

codons are ordered based on the same amino acid order shown in Figure 2c heatmap, 

with more conservative substitutions of residues tending closer to the heatmap identity 

line. The missense category matrices used as input to calculate the difference matrix 

were normalized first so that the sum over all mutation frequencies in a category equals 

1. 

 

 

 



 125 

 

Figure 3-20. Magnitude of enrichment for missense involving lysine in the 
pathogenic versus background missense categories. 

All possible substitutions by single nucleotide variants were counted; 95% confidence 

intervals (line segments) and odds ratios (squares). Red squares are substitutions 

enriched in the Pathogenic category and blue squares are substitutions enriched in the 

Background category. Non-significant odds are shown as transparent squares.  
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Figure 3-21. Magnitude of enrichment for missense involving tyrosine in the 
pathogenic versus background missense categories.  

All possible substitutions by single nucleotide variants were counted; 95% confidence 

intervals (line segments) and odds ratios (squares). Red squares are substitutions 

enriched in the Pathogenic category and blue squares are substitutions enriched in the 

Background category. Non-significant odds are shown as transparent squares.  
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Figure 3-22. Chemoproteomic-detected amino acids are more associated to 
pathogenic missense than undetected residues in 1D space. 

a) Schematic of 1D distance calculations between CKY residue positions to positions of 

missense variants. The absolute number of amino acids away a variant position was 

from a reference CKY position was assigned to an ID representing the distance pair 

(missense identifier plus protein position identifier of CKY residue). A sequence window 

centered on a reference CKY position is shown as a grey box in the cartoon. A 

summary table for the reference CKY position in the cartoon shows the total number of 

unique missense variants within a sequence range of lysine position 60 (K60) in protein 

X. The window summed variant counts excluded missense variants overlapping codons 

of reference CKY positions in our 1D window analysis. 
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b) Proportion of detected (n = 4,547) and undetected (n = 78,926) cysteine, lysine, and 

tyrosine residue positions in 926 OMIM&CpD proteins.  

c) Odds greater than 1 indicate enrichment of specific missense category in detected 

residue windows. Odds less than 1 indicate enrichment of specific missense category in 

undetected residue windows, and depletion for detected residue windows. 

Odds of pathogenic and background missense variant overlapping a detected (n = 

5,854) versus undetected (n = 304,889) CKY residue position in OMIM proteins (n = 

3,907). Bonferroni-corrected two-sided p value < 0.05 calculated by Fisher’s exact test, 

*p < 0.0042. 

d) Detected residue distances to pathogenic versus common/benign missense positions 

in OMIM proteins. Counts differ from Figure 3b because proteins were controlled to 

have a specific CpDAA type and at least one pathogenic and one common/benign 

variant position for this analysis. Distance distributions are distance pairs are based on 

unique missense alternative amino acid change positions to unique positions of 

detected residue types. The distributions represent distances between nearest category 

missense positions to each CpDAA positions in the same protein and includes 1D 

distances of 0 for CpDAA-missense position overlaps. 

e) Odds of pathogenic and common/benign missense variants in 1D windows of 

detected versus undetected CKY residues for 926 OMIM&CpD proteins. Error bars of 

points reflect 95% CI for missense within ±6 amino acid windows of reference CKY 

positions. Odds greater than 1 indicate enrichment of specific missense category in 

detected residue windows. Odds less than 1 indicate enrichment of specific missense 

category in undetected residue windows, and depletion for detected residue windows. 
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Overlaps between missense variant positions and window reference CKY positions 

were excluded from the analysis. Bonferroni-corrected two-sided p value < 0.05 

calculated by Fisher’s exact test, *p < 0.0083. 
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Figure 3-23. Distribution of amino acid frequencies in the total proteome sets of 
47 species representing four kingdoms of life and viruses.  

The species were grouped by kingdoms and virus, resulting in five species groups for 

comparisons. ANOVA was used to test significant mean differences for all groups. Total 
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numbers for unique species in each of the five groups is noted in parentheses next to 

the group label in the figure key. Specific species used in the analysis are shown in the 

ancestry circle plot in Figure 3-24. 

 

 

 

Figure 3-24. NCBI circle ancestry plot of species from the following major 
branches: Animalia, Plantae, Fungi, Bacteria, and Viriae. 
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Figure 3-25. Detected versus undetected CKY positions overlapping missense 
variants in OMIM&CpD proteins. 

The counts of CKY positions overlapping missense alleles (a) and the proportion of 

CKY positions overlapping missense alleles are based on 926 OMIM&CpD proteins. 
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Figure 3-26. Odds of missense categories overlapping detected versus 
undetected cysteine, lysine, and tyrosine residues. 

Bonferroni-corrected two-sided p value < 0.05. The x axis corresponds to the odds ratio 

for overlapping pathogenic missense variants. Values greater than 1 indicate 

pathogenic missense enrichment at codons of detected residue types. The figure panels 

are ordered by increasing amino acid relative mutability (Rm) for the missense variant 

pathogenic category. Error bars represent 95% CI. Based on 1,234 OMIM&CpD 

proteins 
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Figure 3-27. Ratio of pathogenic:common/benign missense and protein length. 

Outlier gene examples are annotated on plot along with the counts of unique pathogenic 

and common/benign missense per gene. 
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Figure 3-28. Protein length of OMIM&CpD versus all other proteins.  

Protein counts and group median values shown in figure key. Wilcoxon test used for 

group mean comparison with FDR adjustment of p values. ****p < 2e-16. The median 

length for all human proteins was 434 amino acids. Plot based on 18,432 canonical 

UniProtKB human proteins.  
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Figure 3-29. Missense categories to detected residue 1D distances.  

Medians with bootstrapped 95% CI shown for OMIM&CpD proteins. The three subplots 

show (a) all OMIM&CpD proteins, (b) short OMIM&CpD proteins, and (c) long 

OMIM&CpD proteins with 1D distance unique count summaries of total distance pairs 

(n), detected CKY positions (CpDAA), missense alleles (var), and proteins (seq) for the 

missense categories (y axis) shown on the right of each subplot.  
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Figure 3-30. Distance to pathogenic and common/benign missense for detected 
versus undetected positions.  

Nearest distances for a given category to a unique CKY reference position counted for 

926 OMIM&CpD proteins. Distances of zero were excluded from the analysis and 

proteins were controlled to contain at least on pathogenic and one common/benign 

missense positions. Wilcoxon test for mean comparison with FDR adjustment of p 

values. ****p < 2e-16. 
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Figure 3-31. Distance to pathogenic and common/benign missense for detected 
versus undetected CKY specific positions.  

Nearest distances for a given category to a unique CKY reference position counted for 

926 OMIM&CpD proteins. Distances of zero were excluded from the analysis and 

proteins were controlled to contain at least on pathogenic and one common/benign 

missense positions. (a) 1D distances between pathogenic missense positions and 

detected vs undetected cysteine (left panel), lysine (middle panel), and tyrosine (right 

panel) positions. Wilcoxon test for mean comparison with FDR adjustment of p values. 

****p < 2e-16. (b) 1D distances between common/benign missense positions and 

detected vs undetected cysteine (left panel), lysine (middle panel), and tyrosine (right 
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panel) positions. Wilcoxon test for mean comparison with FDR adjustment of p values. 

****p = 2.8e-11; ns = not significant; cysteine p = 0.084; tyrosine p = 0.150. 

 

 

 

Figure 3-32. Proportion of detected residue 1D windows with pathogenic, 
common/benign, and VUS missense alleles. 

The 1D windows are based on ±6 amino acids from their position in 1D-sequence 

space. Analysis includes 926 OMIM&CpD proteins that have been filtered to contain at 

least one pathogenic and one common/benign missense variant.  
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Figure 3-33. Odds of missense in 1D window of detected versus undetected 
residues. 

Significant associations calculated by Fisher’s exact test with Bonferroni-corrected two-

sided p value < 0.05. The x axis corresponds to the odds ratio for ±6 amino acid sized 

1D windows. Values greater than 1 indicate a missense category’s enrichment for 1D 

windows of detected residue positions (red for pathogenic enrichment) and values less 

than 1 indicate a missense category’s enrichment for 1D-windows of undetected residue 

positions (blue for common/benign enrichment). Error bars represent 95% CI. Adjusted 

significance threshold set as p < 0.0083. 
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Figure 3-34. Odds of missense in alternative sized 1D windows of detected vs 
undetected residues.  

Significant associations calculated by Fisher’s exact test with Bonferroni-corrected two-

sided p value < 0.05. Detected residues: 1,907 cysteine, 2,092 lysine, 548 tyrosine 

positions. Undetected residues: 11,596 cysteine, 47,272 lysine, 20,058 tyrosine 

positions. Windows with pathogenic or common/benign missense variants were 

analyzed for 926 OMIM&CpD proteins. The x axis corresponds to the odds ratio and the 

y axis has missense category and1D window size group labels sorted by highest to 

lowest odds. ±3 amino acid windows, ±6 amino acid windows, and ±15 amino acid 

window sizes included. Odds greater than 1 indicate a missense category’s enrichment 

in 1D-windows of detected residues while odds of less than 1 indicate a missense 

category’s enrichment for 1D-windows of undetected residue positions. 
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Figure 3-35. Odds of missense in 1D window of CKY specific detected versus 
undetected residues. 

Significant associations calculated by Fisher’s exact test. The x axis corresponds to the 

odds ratio and the y axis has missense category and 1D window size group labels 

sorted by highest to lowest odds. ±3 amino acid windows, ±6 amino acid windows, and 

±15 amino acid window sizes included. Odds greater than 1 indicate a missense 

category’s enrichment in 1D windows of detected residues while odds of less than 1 

indicate a missense category’s enrichment for 1D-windows of undetected residue 
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positions. Error bars represent 95% CI. Adjusted significance threshold set as p < 

0.0083, only significant odds shown. Missense overlapping reference CKY window 

positions were not included in 1D window enrichment analysis. 
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Figure 3-36. 3D environments of CpDAA residues are burdened by VUS missense 
alleles  

a) Cartoon of a CpD-cysteine’s 3D protein environment. Measured distances between 

missense variant impacted positions and CpDAA were based on the terminal atom of 

CpDAA residues to nearest atom of neighboring residues for environment size 8Å3. The 

distances are shown in the cartoon by the dashed lines, with color corresponding to 

missense categories: pathogenic (red), background (blue), and VUS (green). Residue 
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positions in the protein structure that overlapped missense alleles are also colored by 

missense categories.  

b) Proportion of CpDAA environments with at least one local pathogenic (left) or VUS 

(right) missense variant position for 8Å3 sized environments. A total of 419 OMIM&CpD 

proteins are represented by data used to create the figure.  

c) Significant associations (Bonferroni-corrected two-sided p value < 0.05) calculated by 

Fisher’s exact test for missense categories in 3D-environments of specific CpDAA types 

versus all other CpDAA types included in this study for 419 OMIM&CpD proteins. The x 

axis corresponds to the odds ratio for a particular CpDAA type having a proximal 

missense variant within 8Å of their terminal atoms. Values greater than 1 indicate 

enrichment of proximal pathogenic (red), background (blue), or VUS (green) missense 

for detected cysteine (top panel, n=570), lysine (middle panel, n=1209), or tyrosine 

(bottom panel, n=287). Error bars represent 95% CI. 

d) Top 50 CpDAA positions based on local missense VUS counts within 8Å3 

environment. The top panel lollipop plot is arranged by decreasing VUS counts within 

CpDAA environments. The lower panel plot shows mean CADD phred scores for all 

possible non-synonymous substitutions for each CpDAA codon. The deleterious 

threshold of 25 is marked by the horizontal dashed red line in the plot. CpDAA residues 

with scores above this threshold were considered important for the purpose of 

stratification. CpDAA position IDs for both panels are shown on the x axis with red 

colored gene names indicating a pathogenic alleles within the CpDAA environment, and 

red colored amino acid letter and position for pathogenic aliele overlap and blue and 

common/benign allele overlap.  



 146 

 

 

 

Figure 3-37. Odds of deleterious CADD score based on missense environment of 
CpDAA residues. 

Significant associations calculated by Fisher’s exact test for local missense in 3D 

environment and CADD deleterious scores of all possible substitutions of CpDAA 

codons. Bonferroni-corrected two-sided p value < 0.05p; x axis corresponds to the odds 

ratio for 8Å3 environment; error bars represent 95% CI. 
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Figure 3-38. Odds of deleterious CADD score based on missense environment of 
specific CKY detected residues. 

CpDAA with missense alleles within 8Å3 environment were compared to CpDAA with no 

local missense alleles in 3D environment. Analysis based on 419 OMIM&CpD proteins. 
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Figure 3-39. Tetramerization of FH protein is disrupted by loss of detected 
cysteine residues. 

a) Schematic of the fumarate hydratase, FH, protein with lollipops marking CpDAA 

positions. Total count of cysteine, lysine, and tyrosine residues are shown in the figure 

key in parenthesis. Protein domains shown as colored rectangles and sourced from 

UniProt for the canonical FH protein sequence (length of protein = 510). 

b) Heatmap of proximal missense variant counts in 1D-sequence space (left three 

columns) and 3D-structural space (right three columns) for detected residue sites  

(CpDAA) in the FH protein. Count of variants from the pathogenic, background, and 

VUS missense categories (x axis) were used to compare CpDAA (n=16 residues). 
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CpDAA rows were clustered based on correlation and average distance. Data 

preprocessing included row centering and no unit variant scaling. Two groups resulted 

from row clustering and are shown by vertical space separating the top 3 rows from the 

other rows. Row annotations for CpDAAs with mean CADD scores greater than or equal 

to the deleterious score threshold are shown in the outermost left column. 

c) Crystal structure of FH (PDB ID: 5UPP) highlighting C333. Distances between 

positions impacted by missense variants and Cys333 were measured in Angstroms, 

with dashed line color denoting the missense category (red for pathogenic, blue for 

background, green for VUS). The VUS positions are specific to the tested inactivating 

VUS proximal to C333. Protein cartoon color represents CADD phred mean codon 

scores. Image generated in PyMOL (DeLano et al. 2002). 

d) Densitometry was used to quantify the percentage of each multimerization species 

for FH variants in a previous study (Wilde et al. 2022). Missense variants that overlap 

codons of CpDAAs are shown in red text on the x axis compared to the wildtype (WT) 

protein. 
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Figure 3-40. Missense in 8Å environment of FH cysteine 333 shown in 1D 
sequence space. 

 

 

METHODS 

 

Data availability 

 

Data source URL Version 

UniProtKB https://www.uniprot.org/downloads  August 2021 

dbNSSFP https://sites.google.com/site/jpopgen/dbNSFP   4.2a 

ClinVar https://www.ncbi.nlm.nih.gov/clinvar/  June 10,2021 

gnomAD constraint  2.1.1 

OMIM https://www.omim.org/downloads June 24, 2021 

Human Protein Atlas http://www.proteinatlas.org  20.1 

HGNC https://www.genenames.org/download/custom/ September 2020 

 

Software URL Version 

Python https://www.python.org/ 3.7.4 

R https://www.r-project.org/ 3.6.2 

Tidyverse https://doi.org/10.21105/joss.01686 1.3.0 

Pandas https://pandas.pydata.org/  0.25.1 

Numpy https://numpy.org/  1.17.2 

SciPy https://www.scipy.org/  1.3.1 

Adobe Illustrator Adobe, Inc  

 

Curation and standardization of chemoproteomics datasets  

https://www.uniprot.org/downloads
https://sites.google.com/site/jpopgen/dbNSFP
https://www.ncbi.nlm.nih.gov/clinvar/
https://www.omim.org/downloads
http://www.proteinatlas.org/
https://www.genenames.org/download/custom/
https://www.python.org/
https://www.r-project.org/
https://doi.org/10.21105/joss.01686
https://pandas.pydata.org/
https://numpy.org/
https://www.scipy.org/
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To curate and standardize available residue-level results of reactivity-based protein 

profiling, we processed all result files through the same quality control pipeline. This 

process included filtering out peptides with multiple amino acids marked as modified 

(e.g. MAC*ALRC*Y) and removing peptides that do not meet the minimum number of 

detections in replicate samples. For datasets from reactivity profiling experiments, 

reactivity ratios (R10:1) assigned to each residue were averaged across peptide 

replicates for final assignment of one R10:1 value. Reactivity labels for Low, Medium, and 

High were re-assigned based on the following bins: Low R10:1>5, Medium 2<R10:1<5, 

High R10:1<2. All residue identities and positions were checked against the reference set 

of protein sequences from UniProtKB to prevent analysis errors caused by residue 

position mis-mapping. To compare cysteine, lysine, and tyrosine detected proteins, we 

combined experimental datasets for cysteine specific reactivity profiling after confirming 

the reactivity ratios of residues detected in both studies were significantly correlated 

(Pearson’s R=0.49).  

 

Assigning proteins to subcellular location information 

We used the COMPARTMENTS (Binder et al 2014) database to assign each protein to 

their main subcellular location(s) based on the database provided highest location score 

values. This resource integrates evidence on protein subcellular localization from 

manually curated literature, high-throughput screens, automatic text mining, and 

sequence-based prediction methods. If a protein had multiple subcellular locations with 

the highest score, more than one main subcellular location was assigned to the protein. 
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Calculating odds ratios 

For each group, an estimate of fold enrichment or odds ratio (OR), along with the 95% 

confidence interval (CI) was obtained using Fisher's exact test on a 2 × 2 contingency 

matrix. Evidence for statistical significance of association was determined based on the 

Bonferroni-adjusted P-value cut-off of 0.0167. 

 

Bootstrap analysis of CADD38 PHRED max codon scores 

The bootstrapping procedure for calculating the 95% confidence interval of median 

CADD38 PHRED max codon scores and further characterizing the differences between 

low, medium, and highly reactive residues was performed as follows: original CADD38 

max scores for each sub-group were resampled 20,000 times with replacement, with 

the median of each bootstrapped sample calculated. This process produced 20,000 

samples with 895 low, 412 medium, and 94 high observations for CpD Cys, and 3,401 

low, 660 medium, and 302 high observations for CpD Lys. 

 

Calculating amino acid and codon mean abundances 

The codon composition of 17,287 human genes with Ensembl CDS sequences was 

calculated by taking the frequency of occurrence of 61 codons and normalizing by the 

total number of counted codons per gene.  

 

Curation of disease and population missense variants 

Unique nucleotide substitutions were counted once, thereby excluding missense 

recurrence information from this study. Below are exclusive missense filtering rules- 
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1. for pathogenic, did not drop anything 

2. for common/benign, dropped pathogenic and vus. includes rare and rarest gnomad 

3. for rare, dropped all other categories including benign 

4. for rarest, dropped all  other categories including benign 

5. for vus, dropped pathogenic, benign, and  common.  

 

Fold enrichment calculations for residue loss-by-missense and gain-by-missense 

mutations 

The fold enrichment of residue gain outcomes is relative to all possible amino acid gains 

that could result from all possible nonsynonymous single nucleotide alterations at every 

occurrence of the lost codon type in OMIM genes.  

 

3D distance calculations  

Proteins with CpDAAs were cross-referenced with the Protein Data Bank (PDB) 

downloaded June 23, 2022. All biological assembly files of entries were processed. For 

each CpD protein associated with a PDB, the SIFTS database (2019 release) was used 

to map protein sequence residue positions to PDB structure residue positions. The 

author determined biological unit annotations were extracted from each PDB, as well as 

the exact 3D coordinates of a CpDAA. Specifically, distances were calculated with 

respect to locations of the SG atom of cysteine residues, NZ atom of lysine residues, 

and OH atom of tyrosine residues to all other atoms of neighboring amino acids within 

10 Angstroms. The smallest distance between terminal cysteine, lysine, or tyrosine 
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atoms and atoms of neighboring missense variant positions were stored for statistical 

analyses. 

 

Multiple PDB structures assigned to a given uniprot identifier used for missene 

environment counting. At the amino acid level, all proximal amino acids to a detected 

residue were assigned a distance pair identifier, composed of the protein identifier and 

protein position of a given residue. The distance pairs for a single environment (in the 

consistent direction from missense protein position to CpDAA protein position) were all 

unique. 

 

3.6 Tables 

 

Table 3-1. Curation of chemoproteomics studies 

 
Residue Chemical 

probe 

Experimental design Citation Screen Detected 

Proteins 

Detected 

Residues 

Cysteine IA-alkyne In vitro, profiling in 

MDA-MB-231, JURKAT, 

and MCF7 cell lines, 

soluble fraction only 

Weerapana 

et al. 2010 

Reactivity 985 1,432 

Cysteine Compound 

library 

 
Backus et al. 

2016 

Ligandability 2,791 5,970 

Cysteine IA-alkyne In vitro, profiling in 

JURKAT cell line, grouped 

soluble and membrane 

fractions 

Desai 2020 

PXD022151 

Reactivity 1,717 2,610 

http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD022151
http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD022151
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Lysine STP-alkyne In vitro, profiling in 

MDA-MB-231 breast 

cancer, Ramos, and 

JURKAT cell lines, soluble 

fraction only 

Hacker et al. 

2017 

Reactivity 1,548 4,431 

Lysine Compound 

library 

 
Hacker et al. 

2017 

Ligandability 2,374 8,126 

Tyrosine HHS-465 In situ, profiling in 

HEK293T cell line, SILAC 

heavy and light soluble 

proteomes treated with 

250 or 25 uM (10:1) 

Hahm et al. 

2020 

Reactivity 1,154 2,445 

 

Table 3-2. Summary of detected residue counts per CpD protein.  

  
Cysteine (C) Lysine (K) Tyrosine (Y) 

total 7406 9058 2363 

mean residue count 1.63 2.00 0.52 

std 1.94 3.78 1.35 

min 0 0 0 

25% 1 0 0 

50% 1 1 0 

75% 2 2 0 

max residue count 25 105 18 

 

 

Table 3-3. OMIM phenotypes and gene stats summary for June 23, 2022 release. 

  
Total phenotypes  Total genes*not exclusive groups 
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Total single gene disorders and traits(june 

23) 

5855 4093 

molecular (MB) basis known 6114 Note: includes non-single gene 

phenotypes 

unknown MB 1526 
 

suspected mendelian basis 1756 
 

known+unknown 9396 
 

susceptibility to complex 691 497 

nondiseases 152 119 

somatic cell genetic disease 231 130 

susceptibility+nondisease+somatic 1074 
 

Total penetrant disease phenotypes 8322 Note: took total number of phenotypes 

with molecular basis known and 

unknown, then subtracted the number 

of molecular basis known phenotypes 

that describe susceptibility to complex 

disease or infection, non-diseases, and 

somatic cell genetic disease. The 8322 

phenotypes include unknown 

molecular basis 

subtracted unknown basis phenotypes 6796 Note: All penetrant phenotypes for 

which molecular basis known, but not 

all phenotypes are associated with 

severe single gene disorders 

Total single gene disorder phenotypes 5855 4093 

Post mapping to universal xref file, total 

single gene disorder phenotypes 

5622 3990 

 

Table 3-4. CpD proteins with MOEUF < 0.35 gene constraint scores and no 
associated monogenic disorder phenotypes as per OMIM June 23, 2021 release.  

 
Gene MOEUF LOEUF Length UniProt protein name 

ARF3 0.342 0.716 181 ADP-ribosylation factor 3 

ARF6 0.32 0.722 175 ADP-ribosylation factor 6 

ARIH1 0.303 0.166 557 E3 ubiquitin-protein ligase ARIH1 (EC 2.3.2.31) (H7-
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AP2) (HHARI) (Monocyte protein 6) (MOP-6) (Protein 

ariadne-1 homolog) (ARI-1) (UbcH7-binding protein) 

(UbcM4-interacting protein) (Ubiquitin-conjugating 

enzyme E2-binding protein 1) 

CFL1 0.303 0.716 166 Cofilin-1 (18 kDa phosphoprotein) (p18) (Cofilin, non-

muscle isoform) 

COPS2 0.277 0.101 443 COP9 signalosome complex subunit 2 (SGN2) 

(Signalosome subunit 2) (Alien homolog) (JAB1-

containing signalosome subunit 2) (Thyroid receptor-

interacting protein 15) (TR-interacting protein 15) 

(TRIP-15) 

CSTF3 0.342 0.303 717 Cleavage stimulation factor subunit 3 (CF-1 77 kDa 

subunit) (Cleavage stimulation factor 77 kDa subunit) 

(CSTF 77 kDa subunit) (CstF-77) 

CUL1 0.261 0.144 776 Cullin-1 (CUL-1) 

DCAF7 0.258 0.348 342 DDB1- and CUL4-associated factor 7 (WD repeat-

containing protein 68) (WD repeat-containing protein 

An11 homolog) 

DDX39B 0.261 0.218 428 Spliceosome RNA helicase DDX39B (EC 3.6.4.13) (56 

kDa U2AF65-associated protein) (ATP-dependent RNA 

helicase p47) (DEAD box protein UAP56) (HLA-B-

associated transcript 1 protein) 

DHX15 0.297 0.105 795 Pre-mRNA-splicing factor ATP-dependent RNA 

helicase DHX15 (EC 3.6.4.13) (ATP-dependent RNA 

helicase #46) (DEAH box protein 15) 

DYNLL1 0.324 0.759 89 Dynein light chain 1, cytoplasmic (8 kDa dynein light 

chain) (DLC8) (Dynein light chain LC8-type 1) (Protein 

inhibitor of neuronal nitric oxide synthase) (PIN) 

EIF1AX 0.173 0.386 144 Eukaryotic translation initiation factor 1A, X-

chromosomal (eIF-1A X isoform) (Eukaryotic 

translation initiation factor 4C) (eIF-4C) 

EIF4A2 0.332 0.205 407 Eukaryotic initiation factor 4A-II (eIF-4A-II) (eIF4A-II) 

(EC 3.6.4.13) (ATP-dependent RNA helicase eIF4A-2) 

ELAVL1 0.346 0.222 326 ELAV-like protein 1 (Hu-antigen R) (HuR) 

ERH 0.249 0.421 104 Enhancer of rudimentary homolog 

ETF1 0.246 0.251 437 Eukaryotic peptide chain release factor subunit 1 

(Eukaryotic release factor 1) (eRF1) (Protein Cl1) (TB3-

1) 

GNAQ 0.346 0.302 359 Guanine nucleotide-binding protein G(q) subunit alpha 

(Guanine nucleotide-binding protein alpha-q) 

HNRNPH1 0.346 0.109 449 Heterogeneous nuclear ribonucleoprotein H (hnRNP H) 

[Cleaved into: Heterogeneous nuclear ribonucleoprotein 

H, N-terminally processed] 

KPNB1 0.271 0.092 876 Importin subunit beta-1 (Importin-90) (Karyopherin 

subunit beta-1) (Nuclear factor p97) (Pore targeting 

complex 97 kDa subunit) (PTAC97) 
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MAGOH 0.291 0.492 146 Protein mago nashi homolog 

NEDD8 0.271 0.481 81 NEDD8 (Neddylin) (Neural precursor cell expressed 

developmentally down-regulated protein 8) (NEDD-8) 

(Ubiquitin-like protein Nedd8) 

NRF1 0.327 0.189 503 Nuclear respiratory factor 1 (NRF-1) (Alpha 

palindromic-binding protein) (Alpha-pal) 

NUDT21 0.187 0.232 227 Cleavage and polyadenylation specificity factor subunit 

5 (Cleavage and polyadenylation specificity factor 25 

kDa subunit) (CPSF 25 kDa subunit) (Cleavage factor Im 

complex 25 kDa subunit) (CFIm25) (Nucleoside 

diphosphate-linked moiety X motif 21) (Nudix motif 21) 

(Nudix hydrolase 21) (Pre-mRNA cleavage factor Im 68 

kDa subunit) 

PCBP2 0.282 0.228 365 Poly(rC)-binding protein 2 (Alpha-CP2) (Heterogeneous 

nuclear ribonucleoprotein E2) (hnRNP E2) 

PHF5A 0.161 0.455 110 PHD finger-like domain-containing protein 5A (PHD 

finger-like domain protein 5A) (Splicing factor 3B-

associated 14 kDa protein) (SF3b14b) 

POLR2B 0.312 0.344 1174 DNA-directed RNA polymerase II subunit RPB2 (EC 

2.7.7.6) (DNA-directed RNA polymerase II 140 kDa 

polypeptide) (DNA-directed RNA polymerase II subunit 

B) (RNA polymerase II subunit 2) (RNA polymerase II 

subunit B2) 

PSMC1 0.342 0.138 440 26S proteasome regulatory subunit 4 (P26s4) (26S 

proteasome AAA-ATPase subunit RPT2) (Proteasome 

26S subunit ATPase 1) 

PSMC5 0.305 0.355 406 26S proteasome regulatory subunit 8 (26S proteasome 

AAA-ATPase subunit RPT6) (Proteasome 26S subunit 

ATPase 5) (Proteasome subunit p45) (Thyroid hormone 

receptor-interacting protein 1) (TRIP1) (p45/SUG) 

PSMD14 0.258 0.298 310 26S proteasome non-ATPase regulatory subunit 14 (EC 

3.4.19.-) (26S proteasome regulatory subunit RPN11) 

(26S proteasome-associated PAD1 homolog 1) 

RAB14 0.349 0.214 215 Ras-related protein Rab-14 

RAB2A 0.297 0.22 212 Ras-related protein Rab-2A 

RACK1 0.334 0.16 317 Receptor of activated protein C kinase 1 (Cell 

proliferation-inducing gene 21 protein) (Guanine 

nucleotide-binding protein subunit beta-2-like 1) 

(Guanine nucleotide-binding protein subunit beta-like 

protein 12.3) (Human lung cancer oncogene 7 protein) 

(HLC-7) (Receptor for activated C kinase) (Small 

ribosomal subunit protein RACK1) [Cleaved into: 

Receptor of activated protein C kinase 1, N-terminally 

processed (Guanine nucleotide-binding protein subunit 

beta-2-like 1, N-terminally processed)] 

RAN 0.176 0.262 216 GTP-binding nuclear protein Ran (Androgen receptor-

associated protein 24) (GTPase Ran) (Ras-like protein 
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TC4) (Ras-related nuclear protein) 

RBBP4 0.198 0.253 425 Histone-binding protein RBBP4 (Chromatin assembly 

factor 1 subunit C) (CAF-1 subunit C) (Chromatin 

assembly factor I p48 subunit) (CAF-I 48 kDa subunit) 

(CAF-I p48) (Nucleosome-remodeling factor subunit 

RBAP48) (Retinoblastoma-binding protein 4) (RBBP-4) 

(Retinoblastoma-binding protein p48) 

RBX1 0.28 0.323 108 E3 ubiquitin-protein ligase RBX1 (EC 2.3.2.27) (EC 

2.3.2.32) (E3 ubiquitin-protein transferase RBX1) 

(Protein ZYP) (RING finger protein 75) (RING-box 

protein 1) (Rbx1) (Regulator of cullins 1) (ROC1) 

[Cleaved into: E3 ubiquitin-protein ligase RBX1, N-

terminally processed (E3 ubiquitin-protein transferase 

RBX1, N-terminally processed)] 

RHOA 0.182 0.664 193 Transforming protein RhoA (EC 3.6.5.2) (Rho cDNA 

clone 12) (h12) 

RPS18 0.293 0.261 152 40S ribosomal protein S18 (Ke-3) (Ke3) (Small ribosomal 

subunit protein uS13) 

SF3B1 0.224 0.066 1304 Splicing factor 3B subunit 1 (Pre-mRNA-splicing factor 

SF3b 155 kDa subunit) (SF3b155) (Spliceosome-

associated protein 155) (SAP 155) 

SKP1 0.286 0.698 163 S-phase kinase-associated protein 1 (Cyclin-A/CDK2-

associated protein p19) (p19A) (Organ of Corti protein 

2) (OCP-2) (Organ of Corti protein II) (OCP-II) (RNA 

polymerase II elongation factor-like protein) (SIII) 

(Transcription elongation factor B polypeptide 1-like) 

(p19skp1) 

SMU1 0.33 0.108 513 WD40 repeat-containing protein SMU1 (Smu-1 

suppressor of mec-8 and unc-52 protein homolog) 

[Cleaved into: WD40 repeat-containing protein SMU1, 

N-terminally processed] 

SNRPD1 0.338 0.564 119 Small nuclear ribonucleoprotein Sm D1 (Sm-D1) (Sm-D 

autoantigen) (snRNP core protein D1) 

SRSF1 0.19 0.242 248 Serine/arginine-rich splicing factor 1 (Alternative-

splicing factor 1) (ASF-1) (Splicing factor, 

arginine/serine-rich 1) (pre-mRNA-splicing factor SF2, 

P33 subunit) 

SRSF3 0.248 0.291 164 Serine/arginine-rich splicing factor 3 (Pre-mRNA-

splicing factor SRP20) (Splicing factor, arginine/serine-

rich 3) 

TNPO2 0.325 0.129 897 Transportin-2 (Karyopherin beta-2b) 

TUBA1B 0.092 0.315 451 Tubulin alpha-1B chain (Alpha-tubulin ubiquitous) 

(Tubulin K-alpha-1) (Tubulin alpha-ubiquitous chain) 

[Cleaved into: Detyrosinated tubulin alpha-1B chain] 

U2AF1 0.253 0.216 240 Splicing factor U2AF 35 kDa subunit (U2 auxiliary 

factor 35 kDa subunit) (U2 small nuclear RNA auxiliary 

factor 1) (U2 snRNP auxiliary factor small subunit) 
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U2AF2 0.311 0.133 475 Splicing factor U2AF 65 kDa subunit (U2 auxiliary 

factor 65 kDa subunit) (hU2AF(65)) (hU2AF65) (U2 

snRNP auxiliary factor large subunit) 

UBE2D2 0.146 0.286 147 Ubiquitin-conjugating enzyme E2 D2 (EC 2.3.2.23) ((E3-

independent) E2 ubiquitin-conjugating enzyme D2) (EC 

2.3.2.24) (E2 ubiquitin-conjugating enzyme D2) 

(Ubiquitin carrier protein D2) (Ubiquitin-conjugating 

enzyme E2(17)KB 2) (Ubiquitin-conjugating enzyme 

E2-17 kDa 2) (Ubiquitin-protein ligase D2) (p53-

regulated ubiquitin-conjugating enzyme 1) 

UBE2D3 0.143 0.665 147 Ubiquitin-conjugating enzyme E2 D3 (EC 2.3.2.23) ((E3-

independent) E2 ubiquitin-conjugating enzyme D3) (EC 

2.3.2.24) (E2 ubiquitin-conjugating enzyme D3) 

(Ubiquitin carrier protein D3) (Ubiquitin-conjugating 

enzyme E2(17)KB 3) (Ubiquitin-conjugating enzyme 

E2-17 kDa 3) (Ubiquitin-protein ligase D3) 

UBE2H 0.161 0.355 183 Ubiquitin-conjugating enzyme E2 H (EC 2.3.2.23) ((E3-

independent) E2 ubiquitin-conjugating enzyme H) (EC 

2.3.2.24) (E2 ubiquitin-conjugating enzyme H) (UbcH2) 

(Ubiquitin carrier protein H) (Ubiquitin-conjugating 

enzyme E2-20K) (Ubiquitin-protein ligase H) 

UBE2I 0.169 0.287 158 SUMO-conjugating enzyme UBC9 (EC 2.3.2.-) (RING-

type E3 SUMO transferase UBC9) (SUMO-protein 

ligase) (Ubiquitin carrier protein 9) (Ubiquitin carrier 

protein I) (Ubiquitin-conjugating enzyme E2 I) 

(Ubiquitin-protein ligase I) (p18) 

UBE2K 0.185 0.231 200 Ubiquitin-conjugating enzyme E2 K (EC 2.3.2.23) (E2 

ubiquitin-conjugating enzyme K) (Huntingtin-

interacting protein 2) (HIP-2) (Ubiquitin carrier 

protein) (Ubiquitin-conjugating enzyme E2-25 kDa) 

(Ubiquitin-conjugating enzyme E2(25K)) (Ubiquitin-

conjugating enzyme E2-25K) (Ubiquitin-protein ligase) 

UBE2L3 0.19 0.499 154 Ubiquitin-conjugating enzyme E2 L3 (EC 2.3.2.23) (E2 

ubiquitin-conjugating enzyme L3) (L-UBC) (UbcH7) 

(Ubiquitin carrier protein L3) (Ubiquitin-conjugating 

enzyme E2-F1) (Ubiquitin-protein ligase L3) 

UBE2N 0.349 0.431 152 Ubiquitin-conjugating enzyme E2 N (EC 2.3.2.23) 

(Bendless-like ubiquitin-conjugating enzyme) (E2 

ubiquitin-conjugating enzyme N) (Ubc13) (UbcH13) 

(Ubiquitin carrier protein N) (Ubiquitin-protein ligase 

N) 

XPO1 0.317 0.051 1071 Exportin-1 (Exp1) (Chromosome region maintenance 1 

protein homolog) 

YWHAZ 0.316 0.357 245 14-3-3 protein zeta/delta (Protein kinase C inhibitor 

protein 1) (KCIP-1) 
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Table 3-5. Codon abundance observed mean difference for OMIM versus all other 
genes. 

Codon (with 

amino acid 

prefix) 

GroupMember NongroupMember Tobs welch.ttest.Pvalue 

A.GCA 0.015818078 0.015565689 0.000252389 0.116105188 

A.GCC 0.030233278 0.029177103 0.001056175 0.001030102 

A.GCG 0.00888759 0.008980299 -9.27E-05 0.648308956 

A.GCT 0.018561677 0.017933141 0.000628535 0.000438607 

C.TGC 0.012326069 0.01441835 -0.002092281 4.29E-18 

C.TGT 0.009217765 0.011378128 -0.002160364 3.04E-38 

D.GAC 0.026577848 0.025022589 0.001555259 1.12E-11 

D.GAT 0.021712788 0.020628338 0.00108445 5.53E-06 

E.GAA 0.027927978 0.028611736 -0.000683758 0.06168943 

E.GAG 0.040444785 0.0400177 0.000427084 0.276093191 

F.TTC 0.021471272 0.021261253 0.000210019 0.353578083 

F.TTT 0.017247207 0.017169572 7.76E-05 0.706498873 

G.GGA 0.016689508 0.016087812 0.000601697 0.00577626 

G.GGC 0.025123319 0.023324671 0.001798649 1.61E-08 

G.GGG 0.016480335 0.016509348 -2.9E-05 0.874174155 

G.GGT 0.011034367 0.010124617 0.00090975 1.39E-08 

H.CAC 0.014950297 0.015347929 -0.000397632 0.023138822 

H.CAT 0.009833071 0.010704104 -0.000871033 8.09E-10 

I.ATA 0.006929773 0.007395606 -0.000465833 0.000273677 

I.ATC 0.022322743 0.020823251 0.001499492 2.32E-10 

I.ATT 0.016015502 0.015464589 0.000550913 0.008299954 

K.AAA 0.023099882 0.024990438 -0.001890556 8.42E-09 

K.AAG 0.033369014 0.033212323 0.000156691 0.608469958 

L.CTA 0.006804516 0.007011695 -0.000207179 0.034986198 

L.CTC 0.019864737 0.020201891 -0.000337153 0.100990032 

L.CTG 0.041962677 0.041145826 0.000816851 0.054355342 

L.CTT 0.012456008 0.012874922 -0.000418913 0.011231601 

L.TTA 0.007022954 0.007226134 -0.00020318 0.154366789 

L.TTG 0.012632627 0.012705077 -7.25E-05 0.613123505 

M.ATG 0.023039714 0.022855541 0.000184173 0.309969419 

N.AAC 0.019616075 0.018784548 0.000831527 2.11E-06 

N.AAT 0.016229514 0.01601092 0.000218594 0.300665461 

P.CCA 0.015985612 0.016191817 -0.000206205 0.311561332 

P.CCC 0.020072384 0.020629505 -0.000557121 0.030578142 

P.CCG 0.007862578 0.007983874 -0.000121296 0.48971093 

P.CCT 0.016371432 0.016586644 -0.000215212 0.278741947 
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Q.CAA 0.011163613 0.012006024 -0.000842411 5.97E-07 

Q.CAG 0.033892757 0.03381556 7.72E-05 0.785550128 

R.AGA 0.010625236 0.012177413 -0.001552177 7.45E-20 

R.AGG 0.010843039 0.012199651 -0.001356612 3.13E-25 

R.CGA 0.006405115 0.00612311 0.000282006 0.00169777 

R.CGC 0.011969832 0.011431021 0.000538811 0.010766364 

R.CGG 0.012358729 0.011911709 0.00044702 0.010747574 

R.CGT 0.004699804 0.00437708 0.000322724 4.53E-05 

S.AGC 0.019264267 0.019799831 -0.000535564 0.010934016 

S.AGT 0.010844059 0.011523978 -0.000679919 2.65E-06 

S.TCA 0.010678358 0.011446729 -0.000768371 8.47E-08 

S.TCC 0.017203916 0.017955078 -0.000751162 3.12E-05 

S.TCG 0.004780501 0.004821665 -4.12E-05 0.665152736 

S.TCT 0.013344461 0.014308389 -0.000963928 2.21E-09 

T.ACA 0.01409138 0.014018441 7.29E-05 0.644447729 

T.ACC 0.01887371 0.018516992 0.000356718 0.054240211 

T.ACG 0.006413223 0.006095558 0.000317666 0.001311989 

T.ACT 0.012151812 0.012579801 -0.000427989 0.00378447 

V.GTA 0.006960422 0.006796957 0.000163465 0.144524312 

V.GTC 0.014797151 0.014463733 0.000333417 0.025342254 

V.GTG 0.029695472 0.028170858 0.001524614 2.64E-09 

V.GTT 0.010755507 0.010429566 0.000325941 0.040016336 

W.TGG 0.012891861 0.012662244 0.000229617 0.141953355 

Y.TAC 0.016715644 0.015637192 0.001078452 1.8E-09 

Y.TAT 0.012354819 0.012346381 8.44E-06 0.959514637 

 

 

Table 3-6. Comparison of Relative Synonymous Codon Usage (RSCU) between 
gene sets representing the human protein-coding genes and OMIM. 

Table only shows amino acid with RSCU differences between the compared gene sets. 
The preferred codon used to encode an amino acid in each gene set is marked by * 
following the RSCU value. DNA codons with a G or C in the 3rd position, referred to as 
GC3 codons, were marked by underlining the 3rd position nucleotide letter in the codon 
column. CpG dinucleotide-containing codons are marked by bolded font of CG in the 
codon column. 
 
Amino acid Codon Exome RSCU OMIM RSCU 

ARG (R) AGA 1.284* 1.233 

ARG (R) AGG 1.241 1.172 

ARG (R) CGG 1.227 1.247* 
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ARG (R) CGT 0.476 0.511 

ARG (R) CGC 1.114 1.146 

ARG (R) CGA 0.658 0.691 

 
Table 3-7. Observed mean abundance differences for 61 codons between OMIM 

and all other genes.  

 
Amino GroupMember NongroupMember Tobs welch.ttest.Pvalue 

A 0.0735016025641026 0.0716615963966625 0.00184000616744008 9.71643835599188E-05 

C 0.021522702991453 0.0258004873366315 -0.00427778434517848 1.22032010430963E-36 

D 0.0483162393162393 0.0456695709960865 0.00264666832015278 8.34208756936076E-20 

E 0.0683896901709402 0.0686539171527727 -

0.000264226981832483 

0.585544973691577 

F 0.0387406517094017 0.0384315144355017 0.00030913727389998 0.291296370919043 

G 0.0693274572649573 0.0660640183120431 0.00326343895291414 1.24899547748334E-09 

H 0.0247865918803419 0.0260569297792217 -0.00127033789887986 4.06357543060537E-09 

I 0.04528125 0.0436844864505649 0.00159676354943514 3.90912040916302E-06 

K 0.0564791666666667 0.0582150188289153 -0.00173585216224864 0.000235719045353498 

L 0.100774572649573 0.101156243077605 -

0.000381670428032013 

0.462592331251908 

M 0.023045405982906 0.0228509931329838 0.000194412849922155 0.2841431883955 

N 0.035860844017094 0.0348010042088164 0.00105983980827765 5.25115657721252E-05 

P 0.0602532051282051 0.0613825592557041 -0.00112935412749892 0.0373623403465337 

Q 0.0450625 0.0458252972015063 -

0.000762797201506314 

0.0173387154641126 

R 0.0568832799145299 0.058198774274533 -0.00131549436000306 0.000520664633646661 

S 0.0760854700854701 0.0798317211843757 -0.0037462510989056 9.51290964574544E-17 

T 0.0515082799145299 0.0511987004356494 0.000309579478880502 0.265336721152646 

V 0.0622235576923077 0.0598656132319279 0.00235794446037976 1.25713906346819E-12 

W 0.0128675213675214 0.0126414383814517 0.000226082986069695 0.146599565032661 

Y 0.0290819978632479 0.0279920254005759 0.00108997246267192 6.15861499146455E-06 

 

Table 3-8. Relative residue mutability for five missense categories.  

Rm values are sorted by ascending with the lowest for each Type and Category marked 

with bolded text.  

Type Category 

Amino 

acid Rm Observed Expected OE 

Loss Background W 1 7899 14605.5952354 0.540820135892508 

Loss Background L 1.02458705429823 66771 120499.75483949 0.554117309939272 
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Loss Background F 1.03242343751397 24941 44668.68364621 0.558355383774918 

Loss Background K 1.24562493953374 46321 68760.30250609 0.673659049069736 

Loss Background C 1.33560768601226 18465 25563.33723983 0.722323530248228 

Loss Background Q 1.35556443194315 42143 57484.72130102 0.733116540294546 

Loss Background Y 1.43668458527564 25936 33380.18293818 0.776987952643441 

Loss Background E 1.50807541457727 70569 86524.29123156 0.815597550647832 

Loss Background S 1.68579065431948 88881 97488.28656684 0.911709530755383 

Loss Background N 1.8235448943692 44300 44919.44828449 0.986209797578839 

Loss Background G 1.90274773455311 84178 81802.11576056 1.02904428837017 

Loss Background D 1.98811190449929 64436 59928.70513305 1.07521095036082 

Loss Background V 1.99206479651248 80426 74651.7779917 1.07734875395656 

Loss Background T 2.07701897671018 72548 64585.06885025 1.12329368523572 

Loss Background I 2.09013092948986 62455 55251.09223335 1.13038489331984 

Loss Background H 2.16308492400494 35572 30407.5801575 1.16983988254739 

Loss Background A 2.20238650831213 101653 85344.16020507 1.19109497071319 

Loss Background P 2.32028554231577 94199 75067.50914052 1.25485714230464 

Loss Background M 2.98411319171508 42747 26487.2881221 1.61386850186197 

Loss Background R 3.86857053992533 139799 66819.11075918 2.09220084511217 

Loss Common/Benign W 1 127 420.760428 0.301834468140621 

Loss Common/Benign F 1.16372622231968 452 1286.8229022 0.351252685375155 

Loss Common/Benign L 1.3065704288454 1369 3471.3770718 0.394367990478815 

Loss Common/Benign C 1.36314049302839 303 736.4328906 0.411442785714166 

Loss Common/Benign Y 1.52626713843703 443 961.6218876 0.460680029970649 

Loss Common/Benign K 1.72272115133888 1030 1980.8582838 0.519976622468968 

Loss Common/Benign Q 2.16266276877702 1081 1656.0294564 0.652766166581335 

Loss Common/Benign E 2.36989351558272 1783 2492.6062392 0.715315548825816 

Loss Common/Benign S 2.83712312235402 2405 2808.4588488 0.856341548685184 

Loss Common/Benign D 2.96489371587576 1545 1726.436151 0.894907117824828 

Loss Common/Benign H 3.13536575223695 829 875.98665 0.946361454252756 

Loss Common/Benign G 3.21386203514255 2286 2356.5690192 0.970054338054586 

Loss Common/Benign N 3.35135761662512 1309 1294.0469718 1.01155524376306 

Loss Common/Benign I 3.51980237267656 1691 1591.682697 1.06239767711692 

Loss Common/Benign P 4.26360281948155 2783 2162.5573464 1.28690228938106 

Loss Common/Benign T 4.29319508417217 2411 1860.577455 1.29583425485503 

Loss Common/Benign V 4.53075322853882 2941 2150.580894 1.36753749101242 

Loss Common/Benign A 4.814761142192 3573 2458.6088274 1.45326086857765 

Loss Common/Benign M 4.897643209724 1128 763.050222 1.47827753334957 

Loss Common/Benign R 9.45075036997899 5491 1924.9361076 2.85256221145238 

Loss Pathogenic K 1 767 2023.10300306 0.379120587948261 

Loss Pathogenic Q 1.18835160182245 762 1691.34672268 0.450528557972184 

Loss Pathogenic E 1.58006228891757 1525 2545.76473704 0.599034143969305 

Loss Pathogenic S 1.58535759964393 1724 2868.35336856 0.601041705285252 

Loss Pathogenic V 1.71726886636444 1430 2196.4451978 0.651051982281331 

Loss Pathogenic F 1.8303498110023 912 1314.26629514 0.693923296498181 

Loss Pathogenic I 1.83998635115383 1134 1625.6276739 0.697576707266216 
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Loss Pathogenic L 1.86216046059583 2503 3545.40929866 0.705983368675097 

Loss Pathogenic T 1.86694950643269 1345 1900.2570085 0.707798994548479 

Loss Pathogenic N 1.98577976979027 995 1321.64442866 0.75284999385865 

Loss Pathogenic A 1.98636993977138 1891 2511.04228038 0.753073739448876 

Loss Pathogenic P 2.1352951993064 1788 2208.67706568 0.80953437140414 

Loss Pathogenic D 2.67469973755936 1788 1763.2549437 1.01403373708857 

Loss Pathogenic H 2.71826301129019 922 894.668355 1.03054947103835 

Loss Pathogenic Y 3.00527202557198 1119 982.12989012 1.13936049727931 

Loss Pathogenic W 4.33339077935527 706 429.7337636 1.64287766007874 

Loss Pathogenic G 5.6187692319722 5127 2406.82632304 2.1301910947709 

Loss Pathogenic M 5.638712035416 1666 779.3233914 2.13775182213785 

Loss Pathogenic C 6.60702216486968 1884 752.13840622 2.50485812773259 

Loss Pathogenic R 7.69843180393801 5738 1965.98820412 2.91863399178857 

Loss Rare W 1 936 2493.1198076 0.375433221117857 

Loss Rare F 1.08013923844022 3092 7624.77517574 0.405520153543401 

Loss Rare L 1.15679015220359 8933 20568.85192006 0.434297452999212 

Loss Rare C 1.39663166025717 2288 4363.56488002 0.524341922925531 

Loss Rare K 1.44717832889924 6377 11737.12330046 0.543318821550599 

Loss Rare Q 1.61513172476652 5950 9812.42427988 0.606374105958733 

Loss Rare Y 1.67120892305974 3575 5697.87084492 0.627427349145222 

Loss Rare E 1.99750699476625 11076 14769.36891864 0.749930485250544 

Loss Rare S 2.19766510283061 13730 16640.88141096 0.825076488494003 

Loss Rare N 2.44106279867774 7027 7667.57975006 0.916456069458556 

Loss Rare D 2.57360122599779 9884 10229.6030667 0.966215398149218 

Loss Rare H 2.59202341489553 5051 5190.458805 0.973131699867137 

Loss Rare I 2.71523024192045 9614 9431.1522549 1.01938763580081 

Loss Rare G 2.72399987309091 14280 13963.31144464 1.02268004667915 

Loss Rare V 3.14105501253539 15027 12742.7758598 1.17925640106455 

Loss Rare T 3.16723908914557 13109 11024.4267235 1.18908677328831 

Loss Rare P 3.44045312646278 16551 12813.73959288 1.29166039937292 

Loss Rare A 3.55659049731835 19452 14567.92502058 1.33526222660539 

Loss Rare M 3.73268279540886 6336 4521.2797974 1.40137312529155 

Loss Rare R 8.16841311384886 34978 11405.76921892 3.06669364675362 

Loss Rarest W 1 6836 11691.7149998 0.584687533019488 

Loss Rarest L 1.00124679856287 56469 96459.52584763 0.585416520595383 

Loss Rarest F 1.02345072783912 21397 35757.08556827 0.598398881227255 

Loss Rarest K 1.20916426204027 38914 55042.32092183 0.706983269387657 

Loss Rarest Q 1.30502954679678 35112 46016.26756474 0.763034506234152 

Loss Rarest C 1.32674064294844 15874 20463.33946921 0.77572871348221 

Loss Rarest Y 1.40290872740299 21918 26720.69020566 0.820263242876762 

Loss Rarest E 1.4250504207381 57710 69262.31607372 0.833209214929744 

Loss Rarest S 1.59431410264499 72746 78038.94630708 0.93217557953368 

Loss Rarest N 1.71060911699072 35964 35957.82156263 1.00017182457395 

Loss Rarest G 1.7659420707371 67612 65482.23529672 1.0325243127946 

Loss Rarest V 1.78757850729879 62458 59758.4212379 1.04517486751119 
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Loss Rarest T 1.8865712893364 57028 51700.06467175 1.10305471302749 

Loss Rarest D 1.88979866649938 53007 47972.66591535 1.10494172021904 

Loss Rarest A 1.96843295181527 78628 68317.62635709 1.15091820651114 

Loss Rarest I 1.97798036926169 51150 44228.25728145 1.15650046246459 

Loss Rarest H 2.08629058628418 29692 24341.1347025 1.21982809605628 

Loss Rarest P 2.13080658489013 74865 60091.21220124 1.24585604546109 

Loss Rarest M 2.84606762978639 35283 21202.9581027 1.66406026126642 

Loss Rarest R 3.17612035156821 99330 53488.40543266 1.8570379729314 

Loss VUS F 1 4656 8549.16871166 0.544614354568743 

Loss VUS L 1.00380699908798 12608 23062.52725054 0.546687700919889 

Loss VUS W 1.03652055920503 1578 2795.3744684 0.564503975348679 

Loss VUS K 1.19684647742834 8578 13160.07947414 0.651819771822507 

Loss VUS Q 1.23083482950172 7375 11002.03857892 0.670330316249805 

Loss VUS Y 1.4758489754416 5135 6388.65514428 0.803768537201066 

Loss VUS C 1.48691829303114 3962 4892.58391018 0.809797046455609 

Loss VUS S 1.52338158568921 15480 18658.34721864 0.829655479052036 

Loss VUS E 1.52370915320995 13742 16559.94094776 0.829833877025922 

Loss VUS N 1.77184004385691 8296 8597.16272054 0.964969521884182 

Loss VUS G 1.86429012949928 15896 15656.16068176 1.01531916560613 

Loss VUS H 1.94068053287075 6151 5819.726745 1.05692247583353 

Loss VUS D 1.96874640136177 12298 11469.7942503 1.07220755068717 

Loss VUS T 1.97594567043889 13302 12360.9787615 1.07612837596898 

Loss VUS V 2.00186066792535 15577 14287.6528382 1.09024205559872 

Loss VUS I 2.02498752442283 11662 10574.5428441 1.1028372736233 

Loss VUS P 2.13007851833391 16667 14367.21989592 1.16007133744317 

Loss VUS A 2.15439432799684 19165 16334.07489522 1.17331407642856 

Loss VUS M 2.82808521676388 7808 5069.4194766 1.54021580499326 

Loss VUS R 4.66027180248486 32458 12788.55351028 2.5380509198252 

Gain Background P 1 42309 71975.9524886368 0.587821328334342 

Gain Background D 1.1949725133019 41660 59308.3729663761 0.702430330092152 

Gain Background G 1.26819797689863 59692 80072.563849831 0.745473819371477 

Gain Background A 1.32550198312072 61160 78494.9568535677 0.779158336427829 

Gain Background Y 1.45003022335691 28531 33472.997069381 0.852358692018599 

Gain Background E 1.4893035851592 45732 52238.6109131446 0.875444411721381 

Gain Background L 1.53936758063824 93745 103600.162729644 0.904873096045591 

Gain Background R 1.696479995585 97996 98268.4862782774 0.997227124497412 

Gain Background N 1.69679288141033 52865 53002.2203390363 0.997411045458878 

Gain Background H 1.69918466443412 55353 55418.5609038705 0.99881698653301 

Gain Background I 1.80549595693097 65503 61719.0639513747 1.06130903170545 

Gain Background S 1.81769131768749 107417 100532.74626159 1.06847772486486 

Gain Background K 1.8784046788458 53011 48009.976751848 1.10416633346858 

Gain Background T 1.93909695266829 87595 76848.3333685016 1.13984254648655 

Gain Background Q 1.96755225337904 54744 47333.0960110006 1.1565691791485 

Gain Background F 2.14764740214396 40452 32042.8899142317 1.26243294872206 

Gain Background W 2.29091500831114 23124 17171.5161820341 1.34664870328654 
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Gain Background V 2.30824664183704 107266 79055.9448621112 1.35683660712793 

Gain Background C 2.3765896134352 52135 37318.9867153237 1.39701006347508 

Gain Background M 2.63691443717587 43949 28353.5615902176 1.55003454716472 

Gain Common/Benign P 1 936 2367.50901180857 0.395352243785116 

Gain Common/Benign G 1.29971409404549 1345 2617.52144188937 0.513844883360022 

Gain Common/Benign D 1.57825710647916 1042 1669.95880316079 0.62396748831634 

Gain Common/Benign Y 1.69638750834508 540 805.164254639083 0.670670607753267 

Gain Common/Benign A 1.8309783802281 1693 2338.78087543283 0.723881410945214 

Gain Common/Benign E 1.86396595208071 1075 1458.76817899316 0.736923121494166 

Gain Common/Benign L 2.07804643070937 2623 3192.70531829885 0.821560319070598 

Gain Common/Benign R 2.31086674018385 2385 2610.533516825 0.913606350820081 

Gain Common/Benign F 2.50831104317921 806 812.773328598064 0.991666399031884 

Gain Common/Benign K 2.52647824244992 1380 1381.59042883778 0.998848842026853 

Gain Common/Benign S 2.73315151101766 3217 2977.16665186895 1.08055758248551 

Gain Common/Benign N 2.87673044664419 1474 1296.02716860516 1.13732183684574 

Gain Common/Benign T 3.10245696982575 2758 2248.55899849063 1.22656332426738 

Gain Common/Benign H 3.31215669716525 2019 1541.84684364734 1.30946858199218 

Gain Common/Benign I 3.36803206353875 2271 1705.51957737725 1.33155903346026 

Gain Common/Benign C 3.39869690011482 1398 1040.42439847287 1.34368244540591 

Gain Common/Benign W 3.59451488933187 826 581.240078131936 1.42109952681636 

Gain Common/Benign V 3.80264365705892 3228 2147.15644144544 1.50338370213348 

Gain Common/Benign Q 3.91705750052304 2122 1370.25446151114 1.5486174718671 

Gain Common/Benign M 5.70622787254585 1842 816.500221965728 2.25596999296017 

Gain Pathogenic A 1 891 2191.94354069475 0.406488572108747 

Gain Pathogenic G 1.63748308155568 1602 2406.78529682107 0.6656181596738 

Gain Pathogenic I 1.6696853920642 1119 1648.72072978269 0.678708030891011 

Gain Pathogenic L 1.90054033564896 2330 3015.99411213818 0.772547927273026 

Gain Pathogenic S 2.07208151247617 2724 3234.08869946757 0.842277455299372 

Gain Pathogenic V 2.25859485299834 2353 2562.92119456825 0.918092996767459 

Gain Pathogenic E 2.47457161425803 1411 1402.7447321413 1.00588508206058 

Gain Pathogenic N 2.48522199847278 1175 1163.11950018209 1.01021434153245 

Gain Pathogenic D 2.54822819520921 1698 1639.2720296214 1.03582564047784 

Gain Pathogenic H 2.60282979533626 1649 1558.57083644057 1.05802056694834 

Gain Pathogenic T 2.60412835055352 1720 1624.86663429354 1.05854841480441 

Gain Pathogenic F 2.68559175269994 1149 1052.52323927784 1.09166235682203 

Gain Pathogenic Q 2.6956955597498 1477 1347.91129186105 1.09576943892259 

Gain Pathogenic Y 2.74042439989585 1247 1119.43862402663 1.11395120128563 

Gain Pathogenic M 2.93090636230914 838 703.386023482076 1.19137994219948 

Gain Pathogenic R 3.09992776622319 4206 3337.86950451778 1.26008521133232 

Gain Pathogenic P 3.3078987471511 2808 2088.31763236849 1.34462303840976 

Gain Pathogenic K 3.4489917474871 1602 1142.67313261996 1.40197573065088 

Gain Pathogenic W 3.58594356479759 1324 908.314389275246 1.45764507931712 

Gain Pathogenic C 3.7497365083335 2403 1576.53885641941 1.52422503905652 

Gain Rare P 1 5462 14054.9448363412 0.388617676099103 

Gain Rare G 1.35615927625121 8167 15496.3460565981 0.527027466356988 
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Gain Rare D 1.53315052221198 5854 9825.28988006008 0.595809393052147 

Gain Rare A 1.7408504248511 9221 13629.9421893499 0.676525246541769 

Gain Rare E 1.93697833298716 6494 8627.10276148417 0.752744018419783 

Gain Rare Y 1.97394842252092 3793 4944.52402624783 0.76711124869957 

Gain Rare L 2.20878275219798 16179 18848.470849333 0.858372020166959 

Gain Rare R 2.4358782168767 14729 15559.4821980831 0.946625331903049 

Gain Rare S 2.62326740093865 17962 17619.3376909652 1.01944808113931 

Gain Rare N 2.79079945704973 8504 7841.0111476748 1.0845539994573 

Gain Rare K 2.8637733861843 8685 7803.84479837699 1.1129129582134 

Gain Rare F 3.04161088642488 5719 4838.31224143441 1.18202375428017 

Gain Rare I 3.0878308660899 11311 9425.94600978066 1.19998565536694 

Gain Rare T 3.12885134967952 15558 12795.1766536567 1.215926940372 

Gain Rare H 3.26425431766141 12019 9474.6199316644 1.26854692712604 

Gain Rare V 3.63203681212051 18145 12855.3581481264 1.41147370543267 

Gain Rare Q 3.73790796834287 12348 8500.5194630389 1.45261710812972 

Gain Rare C 4.14501854003516 10729 6660.55191119074 1.61082747241616 

Gain Rare W 4.31706539881316 6173 3679.46858048339 1.67768792285462 

Gain Rare M 5.49190780939486 10214 4785.75062610947 2.13425245023754 

Gain Rarest P 1 35911 55599.4532683072 0.645887646173492 

Gain Rarest D 1.12588480879088 34764 47805.6033728324 0.727195089012435 

Gain Rarest A 1.24404135431529 50246 62533.0625490389 0.803510942081186 

Gain Rarest G 1.25296112082836 50180 62006.3380871049 0.809272109078727 

Gain Rarest Y 1.3523867951682 24198 27702.6664410959 0.8734899238473 

Gain Rarest E 1.40196398845443 38163 42145.253570646 0.905511220522834 

Gain Rarest L 1.42213097196742 74943 81589.5431471668 0.918536826034457 

Gain Rarest H 1.44063953266915 41315 44401.2760063063 0.930491276740156 

Gain Rarest N 1.51483549477031 42887 43833.2040541426 0.978413532057254 

Gain Rarest R 1.5640258085687 80882 80066.526586094 1.01018494805103 

Gain Rarest I 1.58989781796977 51921 50561.1399735477 1.02689535930487 

Gain Rarest Q 1.66403250639903 40274 37471.923084863 1.07477803871424 

Gain Rarest S 1.67006232396462 86238 79948.2606030104 1.07867262338854 

Gain Rarest K 1.71300304292206 42946 38815.7165173296 1.10640750328096 

Gain Rarest T 1.73567994956745 69279 61798.0805076389 1.12105423713664 

Gain Rarest W 1.93091273674921 16125 12929.4514025396 1.24715268250536 

Gain Rarest F 1.99155007614751 33927 26375.2903944558 1.28631759091955 

Gain Rarest V 2.07670326127262 85893 64036.3174419872 1.34131698122419 

Gain Rarest C 2.09097590859025 40008 29623.8046084617 1.35053550780483 

Gain Rarest M 2.1704775929579 31893 22750.0883834304 1.40188466358789 

Gain VUS P 1 8501 14309.0558198518 0.594099296768838 

Gain VUS G 1.12971596132598 10908 16252.3746893261 0.671163458172296 

Gain VUS D 1.1423115033056 7677 11312.2228485444 0.678646460804813 

Gain VUS A 1.18512280502666 10371 14729.847166648 0.704080625051053 

Gain VUS Y 1.41352749892368 5250 6251.66939612474 0.839775693073973 

Gain VUS E 1.42313438349405 8387 9919.77206701104 0.845483136441372 

Gain VUS L 1.43200401539277 17230 20252.6568066067 0.850752578514999 
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Gain VUS R 1.67507598085845 17986 18073.4490653517 0.995161462262378 

Gain VUS S 1.69533713259566 19501 19361.6234510914 1.00719859826118 

Gain VUS N 1.74671042617249 10118 9750.22694041869 1.03771943584787 

Gain VUS I 1.76835538993662 11906 11332.8016954316 1.05057869359873 

Gain VUS H 1.85846809167297 11827 10711.7505251965 1.10411458633023 

Gain VUS T 1.95803819916775 16400 14098.1994260009 1.16326911717208 

Gain VUS K 1.96979528276316 10590 9049.31755838289 1.17025399226817 

Gain VUS F 2.03066139634918 7322 6069.22409685688 1.20641450754667 

Gain VUS Q 2.09496196261016 11615 9332.19991633861 1.24461542874416 

Gain VUS V 2.23957181868767 19991 15024.8618298581 1.33052804254565 

Gain VUS W 2.60952130559155 5671 3657.96682092697 1.55031477255524 

Gain VUS C 2.66442751949471 11797 7452.61404282061 1.58293451562335 

Gain VUS M 2.88534454893287 9346 5452.16583721186 1.71418116745682 

 

Table 3-9. Unique counts of OMIM proteins and residues available for analysis 
following PDB structure mapping.  

Top row of table shows protein and residue counts for 501 unique OMIM&CpD proteins. 
Middle row of table shows counts based on a filtered subset of 419 unique OMIM&CpD 
proteins containing at least one pathogenic and one common/benign missense variant 
position. Bottom row shows the percent of data available to use for 3D analysis relative 
to data used for 1D window analysis.  
Abbreviations: CpDC: Chemoproteomic-Detected Cysteine; CpDK: Chemoproteomic-
Detected Lysine; CpDY: Chemoproteomic-Detected Tyrosine. 
 
 CpDC 

protein 

CpD-

C  

Other-

C 

CpK 

protein 

CpD-

K 

Other-

K 

CpDY 

protein 

CpD-

Y 

Other-

Y 

OMIM&CpD 270 696 703 426 1,551 3,988 174 351 1,472 

Control for 

missense 

categories 

211 570 634 330 1,209 3,654 142 287 1,406 

% of 1D 

available 

for 3D 

29.1% 29.9% 5.5% 59.5% 57.8% 7.7% 58.7% 52.4% 7.0% 

 
Table 3-10. Multi-detected OMIM&CpD proteins with cysteine, lysine, and tyrosine 

CpDAA positions.  

 
Gene MOEUF 

constrained 

(<0.35) 

PPIs VUS Phenotype 

count 

OMIM phenotype(s) OMIM 

inheritance 
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ACTB TRUE More 25 2 ['?Dystonia, juvenile-onset', 

'Baraitser-Winter syndrome 1'] 

Autosomal 

dominant 

ACTN1 FALSE More 18 1 ['Bleeding disorder, platelet-type, 

15'] 

Autosomal 

dominant 

ACTN4 FALSE 61-100 24 1 ['Glomerulosclerosis, focal 

segmental, 1'] 

Autosomal 

dominant 

ADSL FALSE 2-10 138 1 ['Adenylosuccinase deficiency'] Autosomal 

recessive 

AHCY FALSE 11-30 22 1 ['Hypermethioninemia with 

deficiency of S-

adenosylhomocysteine 

hydrolase'] 

Autosomal 

recessive 

AIMP2 FALSE 61-100 3 1 ['Leukodystrophy, 

hypomyelinating, 17'] 

Autosomal 

recessive 

AK1 FALSE 2-10 2 1 ['Hemolytic anemia due to 

adenylate kinase deficiency'] 

Autosomal 

recessive 

AKT2 FALSE 61-100 12 2 ['Hypoinsulinemic hypoglycemia 

with hemihypertrophy', 

'Diabetes mellitus, type II'] 

Autosomal 

dominant 

AKT3 FALSE 11-30 9 1 ['Megalencephaly-

polymicrogyria-polydactyly-

hydrocephalus syndrome 2'] 

Autosomal 

dominant 

ALDOA FALSE 31-60 7 1 ['Glycogen storage disease XII'] Autosomal 

recessive 

ANXA11 FALSE 11-30 0 1 ['Amyotrophic lateral sclerosis 

23'] 

Autosomal 

dominant 

AP3D1 FALSE 11-30 16 1 ['?Hermansky-Pudlak syndrome 

10'] 

Autosomal 

recessive 

APRT FALSE 11-30 6 1 ['Adenine 

phosphoribosyltransferase 

deficiency'] 

Autosomal 

recessive 

ARCN1 FALSE 11-30 4 1 ['Short stature, rhizomelic, with 

microcephaly, micrognathia, and 

developmental delay'] 

Autosomal 

dominant 

ARF1 TRUE 31-60 3 1 ['Periventricular nodular 

heterotopia 8'] 

Autosomal 

dominant 

ARHGDIA FALSE 61-100 0 1 ['Nephrotic syndrome, type 8'] Autosomal 

recessive 

ARPC1B FALSE 11-30 7 1 ['Immunodeficiency 71 with 

inflammatory disease and 

congenital thrombocytopenia'] 

Autosomal 

recessive 

ASNS FALSE 2-10 14 1 ['Asparagine synthetase 

deficiency'] 

Autosomal 

recessive 

ATIC FALSE 11-30 4 1 ['AICA-ribosiduria due to ATIC 

deficiency'] 

Autosomal 

recessive 

ATP6V1A FALSE 11-30 8 2 ['Cutis laxa, autosomal recessive, 

type IID', 'Developmental and 

epileptic encephalopathy 93'] 

Autosomal 

recessive, 

Autosomal 

dominant 

BAG3 FALSE 61-100 223 2 ['Cardiomyopathy, dilated, 1HH', 

'Myopathy, myofibrillar, 6'] 

Autosomal 

dominant 

BLVRA FALSE 11-30 0 1 ['Hyperbiliverdinemia'] Autosomal 
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dominant, 

Autosomal 

recessive 

CAD FALSE 31-60 41 1 ['Developmental and epileptic 

encephalopathy 50'] 

Autosomal 

recessive 

CCT5 FALSE 31-60 42 1 ['Neuropathy, hereditary 

sensory, with spastic paraplegia'] 

Autosomal 

recessive 

CDC73 FALSE 61-100 184 3 ['Parathyroid adenoma with 

cystic changes', 

'Hyperparathyroidism-jaw tumor 

syndrome', 

'Hyperparathyroidism, familial 

primary'] 

Autosomal 

dominant 

CFL2 FALSE 11-30 19 1 ['Nemaline myopathy 7, 

autosomal recessive'] 

Autosomal 

recessive 

CHD4 FALSE 61-100 23 1 ['Sifrim-Hitz-Weiss syndrome'] Autosomal 

dominant 

CLTC TRUE More 10 1 ['Mental retardation, autosomal 

dominant 56'] 

Autosomal 

dominant 

CNBP FALSE 11-30 0 1 ['Myotonic dystrophy 2'] Autosomal 

dominant 

COASY FALSE 2-10 23 2 ['Neurodegeneration with brain 

iron accumulation 6', 

'Pontocerebellar hypoplasia, type 

12'] 

Autosomal 

recessive 

COG1 FALSE 2-10 55 1 ['Congenital disorder of 

glycosylation, type IIg'] 

Autosomal 

recessive 

COPA FALSE 11-30 98 1 ['{Autoimmune interstitial lung, 

joint, and kidney disease}'] 

Autosomal 

dominant 

COPB1 FALSE 61-100 0 1 ['Baralle-Macken syndrome'] Autosomal 

recessive 

COPB2 FALSE 31-60 0 1 ['?Microcephaly 19, primary, 

autosomal recessive'] 

Autosomal 

recessive 

CTPS1 FALSE 11-30 35 1 ['Immunodeficiency 24'] Autosomal 

recessive 

CUL3 FALSE More 5 2 ['Neurodevelopmental disorder 

with or without autism or 

seizures', 

'Pseudohypoaldosteronism, type 

IIE'] 

Autosomal 

dominant 

CYB5R3 FALSE 31-60 8 2 ['Methemoglobinemia, type I', 

'Methemoglobinemia, type II'] 

Autosomal 

recessive 

DCPS FALSE 11-30 9 1 ['Al-Raqad syndrome'] Autosomal 

recessive 

DCTN1 FALSE 61-100 229 2 ['Perry syndrome', 

'Neuronopathy, distal hereditary 

motor, type VIIB'] 

Autosomal 

dominant 

DCXR FALSE 2-10 0 1 ['[Pentosuria]'] Autosomal 

recessive 

DDX3X TRUE 31-60 27 1 ['Intellectual developmental 

disorder, X-linked, syndrome, 

Snijders Blok type'] 

X-linked 

dominant, X-

linked 
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recessive 

DDX6 FALSE 61-100 0 1 ['Intellectual developmental 

disorder with impaired language 

and dysmorphic facies'] 

Autosomal 

dominant 

DNAJB6 FALSE 31-60 55 1 ['Muscular dystrophy, limb-

girdle, autosomal dominant 1'] 

Autosomal 

dominant 

DNM2 FALSE 61-100 201 4 ['Lethal congenital contracture 

syndrome 5', 'Charcot-Marie-

Tooth disease, axonal type 2M', 

'Centronuclear myopathy 1', 

'Charcot-Marie-Tooth disease, 

dominant intermediate B'] 

Autosomal 

recessive, 

Autosomal 

dominant 

DNMT1 FALSE 61-100 223 2 ['Cerebellar ataxia, deafness, and 

narcolepsy, autosomal 

dominant', 'Neuropathy, 

hereditary sensory, type IE'] 

Autosomal 

dominant 

DYNC1H1 FALSE 31-60 524 3 ['Mental retardation, autosomal 

dominant 13', 'Spinal muscular 

atrophy, lower extremity-

predominant 1, AD', 'Charcot-

Marie-Tooth disease, axonal, 

type 20'] 

Autosomal 

dominant 

ECHS1 FALSE 31-60 11 1 ['Mitochondrial short-chain 

enoyl-CoA hydratase 1 

deficiency'] 

Autosomal 

recessive 

EDC3 FALSE 31-60 0 1 ['?Mental retardation, autosomal 

recessive 50'] 

Autosomal 

recessive 

EEF1A2 TRUE 31-60 40 2 ['Developmental and epileptic 

encephalopathy 33', 'Mental 

retardation, autosomal dominant 

38'] 

Autosomal 

dominant 

EEF2 FALSE 31-60 13 1 ['?Spinocerebellar ataxia 26'] Autosomal 

dominant 

EIF4A3 FALSE 31-60 1 1 ['Robin sequence with cleft 

mandible and limb anomalies'] 

Autosomal 

recessive 

ELP1 FALSE 31-60 261 1 ['Dysautonomia, familial'] Autosomal 

recessive 

ENO3 FALSE 11-30 30 1 ['?Glycogen storage disease XIII'] Autosomal 

recessive 

FARSA FALSE 11-30 1 1 ['?Rajab interstitial lung disease 

with brain calcifications 2'] 

Autosomal 

recessive 

FH FALSE 11-30 369 2 ['Fumarase deficiency', 

'Leiomyomatosis and renal cell 

cancer'] 

Autosomal 

recessive, 

Autosomal 

dominant 

FHL1 FALSE 31-60 75 6 ['Reducing body myopathy, X-

linked 1a, severe, infantile or 

early childhood onset', 

'Scapuloperoneal myopathy, X-

linked dominant', 'Reducing 

body myopathy, X-linked 1b, 

with late childhood or adult 

onset', '?Uruguay 

X-linked 

dominant, X-

linked 

recessive, X-

linked 
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faciocardiomusculoskeletal 

syndrome', 'Emery-Dreifuss 

muscular dystrophy 6, X-linked', 

'Myopathy, X-linked, with 

postural muscle atrophy'] 

FLNA FALSE More 490 10 ['Otopalatodigital syndrome, 

type I', 'Congenital short bowel 

syndrome', 'Otopalatodigital 

syndrome, type II', 'Intestinal 

pseudoobstruction, neuronal', 

'Melnick-Needles syndrome', 

'Cardiac valvular dysplasia, X-

linked', '?FG syndrome 2', 

'Heterotopia, periventricular, 1', 

'Terminal osseous dysplasia', 

'Frontometaphyseal dysplasia 1'] 

X-linked 

dominant, X-

linked, X-

linked 

recessive 

FLNB FALSE 31-60 145 5 ['Larsen syndrome', 

'Atelosteogenesis, type I', 

'Boomerang dysplasia', 

'Spondylocarpotarsal synostosis 

syndrome', 'Atelosteogenesis, 

type III'] 

Autosomal 

recessive, 

Autosomal 

dominant 

FLNC FALSE 31-60 1009 4 ['Cardiomyopathy, familial 

hypertrophic, 26', 'Myopathy, 

myofibrillar, 5', 

'Cardiomyopathy, familial 

restrictive 5', 'Myopathy, distal, 

4'] 

Autosomal 

dominant 

FTO FALSE 2-10 17 1 ['Growth retardation, 

developmental delay, facial 

dysmorphism'] 

Autosomal 

recessive 

FUS FALSE 61-100 37 1 ['Essential tremor, hereditary, 4'] Autosomal 

dominant 

G6PD FALSE 2-10 29 1 ['Hemolytic anemia, G6PD 

deficient (favism)'] 

X-linked 

dominant 

GANAB FALSE 11-30 11 1 ['Polycystic kidney disease 3'] Autosomal 

dominant 

GDI1 FALSE 11-30 9 1 ['Mental retardation, X-linked 

41'] 

X-linked 

dominant 

GFPT1 FALSE 2-10 55 1 ['Myasthenia, congenital, 12, 

with tubular aggregates'] 

Autosomal 

recessive 

GLUL FALSE 31-60 11 1 ['Glutamine deficiency, 

congenital'] 

Autosomal 

recessive 

GPI FALSE 11-30 6 1 ['Hemolytic anemia, 

nonspherocytic, due to glucose 

phosphate isomerase deficiency'] 

Autosomal 

recessive 

HADH FALSE 2-10 21 2 ['3-hydroxyacyl-CoA 

dehydrogenase deficiency', 

'Hyperinsulinemic 

hypoglycemia, familial, 4'] 

Autosomal 

recessive 

HCFC1 FALSE 61-100 75 1 ['Mental retardation, X-linked 3 

(methylmalonic acidemia and 

homocysteinemia, cblX type )'] 

X-linked 

recessive 
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HINT1 FALSE 11-30 26 1 ['Neuromyotonia and axonal 

neuropathy, autosomal 

recessive'] 

Autosomal 

recessive 

HK1 FALSE 11-30 62 4 ['Hemolytic anemia due to 

hexokinase deficiency', 

'Neuropathy, hereditary motor 

and sensory, Russe type', 

'Neurodevelopmental disorder 

with visual defects and brain 

anomalies', 'Retinitis pigmentosa 

79'] 

Autosomal 

recessive, 

Autosomal 

dominant 

HMGB3 FALSE 2-10 0 1 ['?Microphthalmia, syndromic 

13'] 

X-linked 

HNRNPA1 FALSE 61-100 4 2 ['Amyotrophic lateral sclerosis 

20', '?Inclusion body myopathy 

with early-onset Paget disease 

without frontotemporal 

dementia 3'] 

Autosomal 

dominant 

HNRNPH2 TRUE 31-60 2 1 ['Mental retardation, X-linked, 

syndromic, Bain type'] 

X-linked 

dominant 

HNRNPK FALSE More 4 1 ['Au-Kline syndrome'] Autosomal 

dominant 

HNRNPU FALSE More 92 1 ['Developmental and epileptic 

encephalopathy 54'] 

Autosomal 

dominant 

HPRT1 FALSE 11-30 10 2 ['Hyperuricemia, HRPT-related', 

'Lesch-Nyhan syndrome'] 

X-linked 

recessive 

HSD17B10 FALSE 31-60 11 1 ['HSD10 mitochondrial disease'] X-linked 

dominant 

HSPA9 FALSE 61-100 2 2 ['Even-plus syndrome', 'Anemia, 

sideroblastic, 4'] 

Autosomal 

recessive, 

Autosomal 

dominant 

HSPD1 FALSE More 25 2 ['Spastic paraplegia 13, autosomal 

dominant', 'Leukodystrophy, 

hypomyelinating, 4'] 

Autosomal 

recessive, 

Autosomal 

dominant 

HUWE1 FALSE 61-100 87 1 ['Mental retardation, X-linked 

syndromic, Turner type'] 

X-linked 

HYOU1 FALSE 11-30 13 1 ['?Immunodeficiency 59 and 

hypoglycemia'] 

Autosomal 

recessive 

LDHA FALSE 31-60 10 1 ['Glycogen storage disease XI'] Autosomal 

recessive 

LMNA FALSE More 370 11 ['Muscular dystrophy, 

congenital', 'Lipodystrophy, 

familial partial, type 2', 'Charcot-

Marie-Tooth disease, type 2B1', 

'Cardiomyopathy, dilated, 1A', 

'Heart-hand syndrome, 

Slovenian type', 'Hutchinson-

Gilford progeria', 'Restrictive 

dermopathy, lethal', 

'Mandibuloacral dysplasia', 

'Emery-Dreifuss muscular 

Autosomal 

recessive, 

Autosomal 

dominant 
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dystrophy 2, autosomal 

dominant', 'Emery-Dreifuss 

muscular dystrophy 3, autosomal 

recessive', 'Malouf syndrome'] 

MAGED2 FALSE 11-30 0 1 ['Bartter syndrome, type 5, 

antenatal, transient'] 

X-linked 

recessive 

MAPK1 TRUE More 0 1 ['Noonan syndrome 13'] Autosomal 

dominant 

MCM4 FALSE 61-100 44 1 ['Immunodeficiency 54'] Autosomal 

recessive 

MCM5 FALSE 31-60 1 1 ['?Meier-Gorlin syndrome 8'] Autosomal 

recessive 

MDH1 FALSE 11-30 0 1 ['?Developmental and epileptic 

encephalopathy 88'] 

Autosomal 

recessive 

MESD FALSE 61-100 0 1 ['Osteogenesis imperfecta, type 

XX'] 

Autosomal 

recessive 

MRE11 FALSE 61-100 561 1 ['Ataxia-telangiectasia-like 

disorder 1'] 

Autosomal 

recessive 

MSH6 FALSE 31-60 2576 2 ['Mismatch repair cancer 

syndrome 3', 'Colorectal cancer, 

hereditary nonpolyposis, type 5'] 

Autosomal 

recessive, 

Autosomal 

dominant 

MSN FALSE 31-60 3 1 ['Immunodeficiency 50'] X-linked 

recessive 

MVD FALSE 2-10 3 1 ['Porokeratosis 7, multiple types'] Autosomal 

dominant 

MYH9 FALSE 61-100 106 2 ['Deafness, autosomal dominant 

17', 'Macrothrombocytopenia 

and granulocyte inclusions with 

or without nephritis or 

sensorineural hearing loss'] 

Autosomal 

dominant 

NAA10 FALSE 61-100 15 2 ['Ogden syndrome', 

'Microphthalmia, syndromic 1'] 

X-linked, X-

linked 

dominant, X-

linked 

recessive 

NAA15 FALSE 11-30 9 1 ['Mental retardation, autosomal 

dominant 50'] 

Autosomal 

dominant 

NAXE FALSE 2-10 3 1 ['Encephalopathy, progressive, 

early-onset, with brain edema 

and/or leukoencephalopathy'] 

Autosomal 

recessive 

NCAPD2 FALSE 11-30 5 1 ['?Microcephaly 21, primary, 

autosomal recessive'] 

Autosomal 

recessive 

NCAPH FALSE 11-30 3 1 ['?Microcephaly 23, primary, 

autosomal recessive'] 

Autosomal 

recessive 

NDRG1 FALSE 11-30 110 1 ['Charcot-Marie-Tooth disease, 

type 4D'] 

Autosomal 

recessive 

NHLRC2 FALSE 2-10 1 1 ['FINCA syndrome'] Autosomal 

recessive 

NSUN2 FALSE 2-10 39 1 ['Mental retardation, autosomal 

recessive 5'] 

Autosomal 

recessive 

P4HB FALSE 61-100 4 1 ['Cole-Carpenter syndrome 1'] Autosomal 
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dominant 

PABPN1 FALSE 11-30 1 1 ['Oculopharyngeal muscular 

dystrophy'] 

Autosomal 

dominant 

PCNA FALSE More 1 1 ['?Ataxia-telangiectasia-like 

disorder 2'] 

Autosomal 

recessive 

PDXK FALSE 2-10 0 1 ['Neuropathy, hereditary motor 

and sensory, type VIC, with 

optic atrophy'] 

Autosomal 

recessive 

PFKM FALSE 11-30 30 1 ['Glycogen storage disease VII'] Autosomal 

recessive 

PGK 1 FALSE 11-30 14 1 ['Phosphoglycerate kinase 1 

deficiency'] 

X-linked 

recessive 

PGM3 FALSE 2-10 47 1 ['Immunodeficiency 23'] Autosomal 

recessive 

PLAA FALSE 2-10 4 1 ['Neurodevelopmental disorder 

with progressive microcephaly, 

spasticity, and brain anomalies'] 

Autosomal 

recessive 

PLPBP FALSE No PPI 7 1 ['Epilepsy, early-onset, vitamin 

B6-dependent'] 

Autosomal 

recessive 

PLS3 FALSE 11-30 0 1 ['Bone mineral density QTL18, 

osteoporosis'] 

X-linked 

dominant 

PNP FALSE 11-30 43 1 ['Immunodeficiency due to 

purine nucleoside phosphorylase 

deficiency'] 

Autosomal 

recessive 

PNPO FALSE 2-10 67 1 ["Pyridoxamine 5'-phosphate 

oxidase deficiency"] 

Autosomal 

recessive 

POLD1 FALSE 31-60 1154 1 ['Mandibular hypoplasia, 

deafness, progeroid features, and 

lipodystrophy syndrome'] 

Autosomal 

dominant 

PPA2 FALSE 2-10 0 2 ['?Sudden cardiac failure, 

alcohol-induced', 'Sudden 

cardiac failure, infantile'] 

Autosomal 

recessive 

PPP1CB TRUE 61-100 5 1 ['Noonan syndrome-like disorder 

with loose anagen hair 2'] 

Autosomal 

dominant 

PPP2CA TRUE More 1 1 ['Neurodevelopmental disorder 

and language delay with or 

without structural brain 

abnormalities'] 

Autosomal 

dominant 

PPP2R1A FALSE More 9 1 ['Mental retardation, autosomal 

dominant 36'] 

Autosomal 

dominant 

PQBP1 FALSE 11-30 22 1 ['Renpenning syndrome'] X-linked 

recessive 

PRDX1 FALSE 31-60 0 1 ['Methylmalonic aciduria and 

homocystinuria, cblC type, 

digenic'] 

Autosomal 

recessive 

PRKDC FALSE More 425 1 ['Immunodeficiency 26, with or 

without neurologic 

abnormalities'] 

Autosomal 

recessive 

PRPF8 FALSE 61-100 110 1 ['Retinitis pigmentosa 13'] Autosomal 

dominant 

PRPS1 TRUE 11-30 11 5 ['Charcot-Marie-Tooth disease, 

X-linked recessive, 5', 

X-linked, X-

linked 



 177 

'Phosphoribosylpyrophosphate 

synthetase superactivity', 

'Deafness, X-linked 1', 'Arts 

syndrome', 'Gout, PRPS-related'] 

recessive 

PSAT1 FALSE 2-10 29 2 ['Neu-Laxova syndrome 2', 

'?Phosphoserine 

aminotransferase deficiency'] 

Autosomal 

recessive 

PSMG2 FALSE 2-10 2 1 ['?Proteasome-associated 

autoinflammatory syndrome 4'] 

Autosomal 

recessive 

PTPN11 FALSE More 99 3 ['LEOPARD syndrome 1', 

'Metachondromatosis', 'Noonan 

syndrome 1'] 

Autosomal 

dominant 

PYGL FALSE 11-30 49 1 ['Glycogen storage disease VI'] Autosomal 

recessive 

RAB7A FALSE 61-100 21 1 ['Charcot-Marie-Tooth disease, 

type 2B'] 

Autosomal 

dominant 

RAC1 TRUE More 4 1 ['Mental retardation, autosomal 

dominant 48'] 

Autosomal 

dominant 

RBPJ FALSE 31-60 6 1 ['Adams-Oliver syndrome 3'] Autosomal 

dominant 

RDX FALSE 11-30 15 1 ['Deafness, autosomal recessive 

24'] 

Autosomal 

recessive 

RNASEH2A FALSE No PPI 67 1 ['Aicardi-Goutieres syndrome 4'] Autosomal 

recessive 

RNASEH2B FALSE No PPI 37 1 ['Aicardi-Goutieres syndrome 2'] Autosomal 

recessive 

RPL5 FALSE 31-60 23 1 ['Diamond-Blackfan anemia 6'] Autosomal 

dominant 

SAMHD1 FALSE 11-30 68 2 ['?Chilblain lupus 2', 'Aicardi-

Goutieres syndrome 5'] 

Autosomal 

recessive, 

Autosomal 

dominant 

SEC23B FALSE 11-30 26 2 ['?Cowden syndrome 7', 

'Dyserythropoietic anemia, 

congenital, type II'] 

Autosomal 

recessive, 

Autosomal 

dominant 

SHMT2 FALSE 11-30 1 1 ['Neurodevelopmental disorder 

with cardiomyopathy, spasticity, 

and brain abnormalities'] 

Autosomal 

recessive 

SMC1A TRUE 61-100 63 2 ['Developmental and epileptic 

encephalopathy 85, with or 

without midline brain defects', 

'Cornelia de Lange syndrome 2'] 

X-linked 

dominant 

SNRNP200 FALSE 31-60 135 1 ['Retinitis pigmentosa 33'] Autosomal 

dominant 

SORD FALSE 2-10 0 1 ['Sorbitol dehydrogenase 

deficiency with peripheral 

neuropathy'] 

Autosomal 

recessive 

SPART FALSE 11-30 43 1 ['Troyer syndrome'] Autosomal 

recessive 

STAT1 TRUE More 47 3 ['Immunodeficiency 31C, 

chronic mucocutaneous 

Autosomal 

recessive, 
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candidiasis, autosomal 

dominant', 'Immunodeficiency 

31A, mycobacteriosis, autosomal 

dominant', 'Immunodeficiency 

31B, mycobacterial and viral 

infections, autosomal recessive'] 

Autosomal 

dominant 

TBC1D23 FALSE 2-10 7 1 ['Pontocerebellar hypoplasia, 

type 11'] 

Autosomal 

recessive 

TKT FALSE 11-30 2 1 ['Short stature, developmental 

delay, and congenital heart 

defects'] 

Autosomal 

recessive 

TUBA1A TRUE More 16 1 ['Lissencephaly 3'] Autosomal 

dominant 

TUBA4A FALSE 61-100 0 1 ['Amyotrophic lateral sclerosis 22 

with or without frontotemporal 

dementia'] 

Autosomal 

dominant 

TUBB TRUE More 8 2 ['Symmetric circumferential skin 

creases, congenital, 1', 'Cortical 

dysplasia, complex, with other 

brain malformations 6'] 

Autosomal 

dominant 

TUBB2B TRUE 31-60 22 1 ['Cortical dysplasia, complex, 

with other brain malformations 

7'] 

Autosomal 

dominant 

TUBB3 TRUE 31-60 21 2 ['Fibrosis of extraocular muscles, 

congenital, 3A', 'Cortical 

dysplasia, complex, with other 

brain malformations 1'] 

Autosomal 

dominant 

TUBB6 FALSE 11-30 2 1 ['?Facial palsy, congenitla, with 

ptosis and velopharyngeal 

dysfunction'] 

Autosomal 

dominant 

UBA1 FALSE More 82 1 ['Spinal muscular atrophy, X-

linked 2, infantile'] 

X-linked 

recessive 

UBA5 FALSE 11-30 3 2 ['?Spinocerebellar ataxia, 

autosomal recessive 24', 

'Developmental and epileptic 

encephalopathy 44'] 

Autosomal 

recessive 

UBE2T FALSE 11-30 0 1 ['Fanconi anemia, 

complementation group T'] 

Autosomal 

recessive 

UMPS FALSE 11-30 19 1 ['Orotic aciduria'] Autosomal 

recessive 

UROD FALSE 11-30 10 2 ['Porphyria, 

hepatoerythropoietic', 'Porphyria 

cutanea tarda'] 

Autosomal 

dominant, 

Autosomal 

recessive 

USP7 FALSE More 6 1 ['Hao-Fountain syndrome'] Autosomal 

dominant 

USP9X FALSE 61-100 52 2 ['Mental retardation, X-linked 

99', 'Mental retardation, X-

linked 99, syndromic, female-

restricted'] 

X-linked 

dominant, X-

linked 

recessive 

VCP TRUE More 62 2 ['Inclusion body myopathy with 

early-onset Paget disease and 

frontotemporal dementia 1', 

Autosomal 

dominant 
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'Charcot-Marie-Tooth disease, 

type 2Y'] 

VIM FALSE More 8 1 ['Cataract 30, pulverulent'] Autosomal 

dominant 

VPS35 FALSE 11-30 27 1 ['{Parkinson disease 17}'] Autosomal 

dominant 

VPS4A FALSE 11-30 1 1 ['CIMDAG syndrome'] Autosomal 

dominant 

WBP2 FALSE 31-60 1 1 ['Deafness, autosomal recessive 

107'] 

Autosomal 

recessive 

WDR1 FALSE 11-30 9 1 ['Periodic fever, 

immunodeficiency, and 

thrombocytopenia syndrome'] 

Autosomal 

recessive 

YWHAG FALSE More 3 1 ['Developmental and epileptic 

encephalopathy 56'] 

Autosomal 

dominant 
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