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Abstract A search is presented for narrow heavy reso-
nances X decaying into pairs of Higgs bosons (H) in proton-
proton collisions collected by the CMS experiment at the
LHC at

√
s = 8 TeV. The data correspond to an integrated

luminosity of 19.7 fb−1. The search considers HH resonances
with masses between 1 and 3 TeV, having final states of two
b quark pairs. Each Higgs boson is produced with large
momentum, and the hadronization products of the pair of
b quarks can usually be reconstructed as single large jets.
The background from multijet and tt events is significantly
reduced by applying requirements related to the flavor of the
jet, its mass, and its substructure. The signal would be identi-
fied as a peak on top of the dijet invariant mass spectrum of the
remaining background events. No evidence is observed for
such a signal. Upper limits obtained at 95 % confidence level
for the product of the production cross section and branching
fraction σ(gg → X)B(X → HH → bbbb) range from 10
to 1.5 fb for the mass of X from 1.15 to 2.0 TeV, significantly
extending previous searches. For a warped extra dimension
theory with a mass scale �R = 1 TeV, the data exclude radion
scalar masses between 1.15 and 1.55 TeV.

1 Introduction

The production of pairs of Higgs bosons (H) in the stan-
dard model (SM) has a predicted cross section in gluon–
gluon fusion at

√
s = 8 TeV [1,2] for the Higgs boson mass

mH ≈ 125 GeV [3] of only 10.0±1.4 fb. Many BSM theories
suggest the existence of narrow heavy particles X that can
decay to a pair of Higgs bosons [4–12]. The natural width for
such a resonance is expected to be a few percent of its pole
mass mX, which corresponds to a typical detector resolution.
In contrast, the SM production of Higgs boson pairs results
in a broad distribution of effective mass, falling mainly in the
range from 300 to 600 GeV. Thus the presence of a narrow

� e-mail: cms-publication-committee-chair@cern.ch

state would be readily detected, even if produced with a cross
section as small as that for the SM process.

Searches for narrow particles decaying to two Higgs
bosons have already been performed by the ATLAS [13–15]
and CMS [16–19] collaborations in pp collisions at the CERN
LHC. Until now their reach was limited to mX ≤ 1.5 TeV.
Because longitudinal W and Z states are provided by the
Higgs field in the SM, any HH resonance potentially also
decays into WW and ZZ final states. Searches for X → WW,
ZZ, and WZ states were performed by ATLAS and CMS [20–
24]. The combinations of these results [24–27] indicate that
the region around mX ≈ 2 TeV is particularly interesting to
explore.

This paper reports on a search for X → HH covering the
mass range 1.15 < mX < 3.0 TeV, significantly extending
the reach of the present results beyond 1.5 TeV. The final
state that provides the best sensitivity in this mass range is
HH → bbbb, which benefits from the expected large branch-
ing fraction (B) of 57.7 % for H → bb [28] and a relatively
low background from SM processes.

Many BSM proposals explicitly considered in this paper
postulate the existence of a warped extra dimension (WED)
[6] and predict the existence of a scalar radion [7–9]. The
radion is a spin-0 resonance associated with the fluctuations
in the length of the extra dimension. The production cross
section as a function of mX is proportional to 1/�2

R, where
�R is the scale parameter of the theory. In this paper we
consider two cases: �R = 1 and 3 TeV. In the first case,
the WED theory predicts a cross section that can be detected
at the LHC [17], but is challenged by the constraints derived
from the electroweak precision measurements [29]. This spe-
cific model is excluded up to mX = 1.1 TeV by the previous
X → HH searches [14,17]. In contrast, the predicted cross
section for �R = 3 TeV is a factor of 9 times smaller, but
the theory is less constrained by these searches. We consider
that the radion is produced exclusively via gluon-gluon fusion
processes, with B(radion → HH) ≈ 25 % above 1 TeV.

In the mass range of this search, the topology of the bbbb
final state is constrained by the size of the Lorentz boost of
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the Higgs bosons that is typically γH ≈ mX/2mH � 1 and
defines the so-called boosted regime [30–32]. In this regime
each Higgs boson is produced with a large momentum and its
decay products are collimated along its direction of motion.
The hadronization of a pair of narrowly separated b quarks
will result in a single reconstructed jet of mass compatible
withmH. The H candidates are selected by employing jet sub-
structure techniques to identify jets containing constituents
with kinematics consistent with the decay of a highly boosted
Higgs boson. These candidates are then required to be con-
sistent with decays of B hadrons, based on our b tagging
algorithms. The signal is identified in the dijet mass (mjj)
spectrum as a peak above a falling background which origi-
nates mainly from multijet events and tt production.

2 The CMS detector

The central feature of the CMS apparatus is a superconduct-
ing solenoid of 6 m internal diameter, providing a magnetic
field of 3.8 T. A silicon pixel and strip tracker, a lead tungstate
crystal electromagnetic calorimeter, and a brass and scintil-
lator hadron calorimeter, each composed of a barrel and two
endcap sections, reside within the solenoid volume. Exten-
sive forward calorimetry complements the coverage provided
by the barrel and endcap detectors. Muons are measured in
gas-ionization detectors embedded in the steel flux-return
yoke outside the solenoid. A detailed description of the CMS
detector, together with a definition of the coordinate system
and the basic kinematic variables, can be found in Ref. [33].

3 Simulated events

Monte Carlo (MC) simulations are used to provide: predic-
tions of background processes, optimization of the event
selection, and cross-checks of data-based background esti-
mations.

Signal, multijet and tt background events are generated
using the leading-order matrix element generator Mad-
Graph 5v1.3.30 [34,34]. Parton shower and hadronization
are included using pythia6.4.26 [35], and the matrix element
is matched to the parton shower using the MLM scheme [36].
The Z2* tune is used to describe the underlying event. This
tune is identical to the Z1 tune [37], but uses the CTEQ6L
parton distribution functions (PDF) [38]. The signal events
are simulated with an intrinsic width of the radion fixed to
1 GeV, mH = 125 GeV. Different samples are generated for
mX ranging from 1.15 to 3 TeV. All generated events are
processed through a simulation of the CMS apparatus based
on Geant4 [39]. Additional pp interactions within a bunch
crossing (pileup) are added to the simulation, with a fre-
quency distribution chosen to match that observed in data.

During this data-taking period the mean number of interac-
tions per bunch crossing is 21.

4 Event reconstruction and selections

The analysis is based on data from pp interactions observed
with the CMS detector at

√
s = 8 TeV. The data correspond

to an integrated luminosity of 19.7 fb−1. Events are collected
using at least one of the two specific trigger conditions based
on jets reconstructed online: the first trigger requires a large
mjj calculated for the two jets of highest transverse momen-
tum (referred to as leading jets); the second trigger requires
a large value of HT = ∑

i p
i
T, where the sum runs over

the reconstructed jets in the event with transverse momenta
pT > 40 GeV. The lower thresholds applied tomjj and the HT

triggers were changed during the data-taking period to main-
tain a constant trigger rate while the LHC peak luminosity
steadily increased. More than half of the data were collected
with mjj > 750 GeV and HT > 650 GeV. The remaining
data were collected with the requirement HT > 750 GeV.

Events are required to have at least one reconstructed pp
collision vertex within |z| < 24 cm of the center of the detec-
tor along the longitudinal beam directions. Many additional
vertices, corresponding to pileup interactions, are usually
reconstructed in an event using charged particle tracks. We
assume that the primary interaction vertex corresponds to the
one that maximizes the sum in p2

T of these associated tracks.
Individual particles are reconstructed using a particle-flow

(PF) algorithm [40,41] that combines the information from
all the CMS detector components. Each such reconstructed
particle is referred to as a PF candidate. The five classes of
PF candidates correspond to muons, electrons, photons, and
charged and neutral hadrons. Charged hadron candidates not
originating from the primary vertex of the event are discarded
to reduce contamination from pileup [42].

The Cambridge–Aachen (CA) algorithm [43], imple-
mented in FastJet [44], clusters PF candidates into jets
using a distance parameter R = 0.8. An event-by-event jet
area-based correction [42,45,46] is applied to each recon-
structed jet to remove the remaining energy originating from
pileup vertices primarily consisting of neutral particles. The
jet four-momenta are also corrected to account for the differ-
ence between the measured and the expected momentum at
the particle level, using the standard CMS correction proce-
dure described in Refs. [47,48].

Events are required to have at least two jets, and the two
leading jets each to have pT > 40 GeV and pseudorapidity
|η| < 2.5. In addition, identification criteria are applied to
remove spurious jets associated with calorimeter noise [40].
To reduce the contribution from multijet events, the two lead-
ing jets must be relatively close in η, |�ηjj| < 1.3, a selec-
tion discussed in Refs. [23,49]. Events with mjj < 1 TeV
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Fig. 1 SimulatedmP
j spectrum for spin-0 radion signals, multijet and tt

events, and the spectrum measured in data. Each event contributes twice
to the distribution, once per jet. The multijet contribution is rescaled to
match the event yield in data, while the signal and tt spectra are rescaled
by the large factors indicated, to be visible in the figure

are rejected. Above this mass threshold, the efficiency of the
trigger requirement for the chosen selections exceeds 99.5 %.

The mass and b flavour properties of the leading jets are
used to suppress the multijet and tt backgrounds. Soft gluon
radiation and a fraction of the remaining neutral pileup parti-
cles are first removed from each jet through the implementa-
tion of a jet-grooming algorithm called jet pruning [50,51].
This technique reduces significantly the mass of jets orig-
inating from quarks and gluons [52], while improving the
resolution of the jets resulting from the hadronic decays of a
heavy SM boson [53]. The invariant mass mP

j is calculated

for the two leading pruned jets. In Fig. 1, the mP
j distribution

of the two leading jets is shown for data, signal, and back-
ground events. For jets initiated by a quark or a gluon, mP

j
peaks around 15 GeV, while jets from high-momentum Higgs
boson decay usually have a pruned mass around 120 GeV.
The difference of ≈5 GeV relative to the nominalmH value is
related to the presence of neutrinos produced by the semilep-
tonic decays of B mesons, and the inherent nature of the prun-
ing procedure. A small peak near 15 GeV is also observed for
signal events, and corresponds mainly to asymmetric decays
in which the jet pruning algorithm removes the decay prod-
ucts of one of the two B mesons. Each of the leading jets
has to satisfy 110 < mP

j < 135 GeV, a requirement that is
chosen to maximize the sensitivity of the analysis to the pres-
ence of a narrow resonances. Some differences are observed
between the data and background estimated from simulation.

These discrepancies do not affect the results of this analysis
since the background is estimated using techniques based on
data only.

The identification of jets likely to have originated from
the hadronization of a pair of b quarks exploits the combined
secondary vertex (CSV) b jet tagger [54]. This algorithm
combines the information from track impact parameters and
secondary vertices within a given jet into a continuous output
discriminant [54,55]. The working point used in this paper
corresponds to an efficiency of 80 % for identifying b jets and
a rate of 10 % for mistagging jets from light quarks or gluons
as originating from b quarks. This working point was chosen
to maximize the sensitivity of the analysis, while retaining a
sufficient number of events to allow a reliable estimation of
the background.

In the first step of the procedure used to select H jet can-
didates, the pruned jets are split into two subjets by reversing
the final iteration in the jet clustering algorithm. The angular
separation between the subjets is �R ≡ √

(�η)2 + (�φ)2,
where η is the pseudorapidity and φ the azimuthal angle.
Two cases are considered, with the transition between them
occurring at mX ≈ 1.6 TeV:

1. �R > 0.3: in this group the jet is considered to be b
tagged if at least one subjet satisfies the requirements
of the CSV working point. Moreover, the jet is consid-
ered as “double b tagged” if both subjets satisfy the CSV
requirement.

2. �R < 0.3: here the subjet b tagging selection is ineffi-
cient [55]. The b tagging algorithm is therefore applied
directly to the jet. In this case it is not possible to dis-
tinguish between b-tagged and double b-tagged jets, and
therefore either of these two possibilities are accepted.

In summary, a jet is considered an H jet candidate if it
satisfies the mass and b tagging requirements. Events are
selected when both leading jets are H jets, and at least one
of them is double b tagged. The simulated results are cor-
rected to match the H and b tagging efficiencies observed in
data [55].

A final selection is based on the kinematic properties of
the constituents of H jets. The quantity N-subjettiness [56–
58] τN is used to quantify the degree to which constituents of
a jet can be arranged into N subjets. The ratio τ21 = τ2/τ1 is
calculated for each of the two H jet candidates. High- (HP)
and low-purity (LP) Higgs boson candidates are defined as
having τ21 < 0.5 and 0.5 ≤ τ21 < 0.75, respectively. Events
are required to have at least one HP H jet and another H jet
that passes either the HP or LP requirements.

The sample of events satisfying the previously defined
criteria is subsequently divided into three categories. Events
with two high-purity H jets form the HPHP category. Among
the remaining events, those for which the high-purity H jet
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is the leading jet constitute the HPLP category. The rest of
the sample constitutes the LPHP category.

The selection criteria applied to reduce the background are
summarized in Table 1. The region of phase space defined
by all these criteria is referred to as the signal region. The
fraction of the simulated signal and tt samples, satisfying
these criteria, as well as the number of data events passing
the selections is also provided.

The fiducial selection is defined by the two leading jets
having |η| < 2.5, pT > 40 GeV, and a separation |�ηjj| <

1.3. The fraction of the signal within this fiducial region
depends on its spin, and is ≈60 % for a spin-0 resonance.
The efficiency of the combined H mass and b tagging crite-
ria for events within the fiducial region, for signal and data, is
shown in Fig. 2. The number of data events is reduced by four
orders of magnitude while the signal efficiencies range from
10 to 20 % with a weak dependence on mX, and are observed
to be independent of the spin of the resonance. Finally, the
total acceptance times efficiency is provided in Table 1, and
varies between 4.0 and 8.8 %, with the largest fraction of
events populating the HPHP category.

Figure 2 shows that the probability of incorrectly identi-
fying multijet or tt events as events with two Higgs bosons is
less than 0.1 %, and appears to be independent of mjj within
statistical uncertainties. A more precise quantification is pro-
vided in Table 1 for tt events. In particular, we observe that
the dijet mass, the pruned jet mass, and b tagging criteria are
each sufficient for reducing the tt background by an order of
magnitude. In contrast, the N-subjettiness criterion is ineffi-
cient in reducing it.
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Fig. 2 The efficiencies of H mass requirement and combined H mass
and b tagging criteria, for data and signal. Events are required to be in the
fiducial region (|η| < 2.5, pT > 40 GeV for both jets and |�ηjj| < 1.3).
The horizontal bar on each data point indicates the width of the bin

5 Signal extraction

The signal is identified in the binned mjj spectrum in bin
widths chosen to match the resolution of the dijet mass, as

Table 1 Summary of selection
requirements, with their signal
and tt background efficiencies,
and total number of events
observed in data. The selection
criteria are applied sequentially
and the efficiencies are
cumulative, except in the last
section of the table dedicated to
categorization

Selection criteria Efficiency for Observed
events (%)

Signal with mX (TeV) tt (%)

1.3 (%) 2.0 (%) 3.0 (%)

Fiducial acceptance

At least 2 jets with pT > 40 GeV,

|η| < 2.5, and |�ηjj| < 1.3 63 61 59 29

Analysis selections

mjj > 1 TeV 59 59 58 3.5 2 677 308

2 jets with 110 < mP
j < 135 GeV 12 12 8.5 0.29 9 977

2 b-tagged jets and

≥1 double b tagged jets 9.0 8.5 4.5 0.05 217

2 jets with τ21 < 0.75 and

≥1 jet with τ21 < 0.5 8.6 8.1 4.0 0.04 162

Categorization

HPHP 6.3 5.5 2.4 0.03 63

HPLP 1.1 1.2 0.9 0.007 48

LPHP 1.2 1.4 0.7 0.004 51
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Table 2 Mass windows used for different signal hypotheses

mX Mass window mX Mass window
(GeV) (GeV) (GeV) (GeV)

1150 [1058, 1246] 1700 [1607, 1856]

1200 [1118, 1313] 1800 [1687, 1945]

1300 [1181, 1455] 1900 [1700, 2037]

1400 [1313, 1530] 2000 [1856, 2132]

1500 [1383, 1607] 2500 [2231, 2775]

1600 [1455, 1770] 3000 [2775, 3279]

described in Ref. [59]. This resolution is ≈50 GeV at mX =
1.15 TeV, increasing slowly to ≈100 GeV for mX = 3 TeV.

The analysis defines a likelihood, for each mX hypothesis,
based on the total number of events in data, signal, and back-
ground counted in a mass window in each category. These
mass windows have a typical size of three or four bins cen-
tered approximatively around mX (see Table 2) and contains
more than 95 % of signal events. The amount of signal is
estimated in the mass window using MC simulation, while
the amount of background is estimated as the integral of
a parameterized model. The total likelihood combines the
information from the three event categories.

6 Parameterization of background

After event selection, ≈75, 90, and 95 % of the total back-
ground is expected to originate from multijet events in HPHP,
HPLP, and LPHP categories, respectively. The remaining
contribution is from tt production, which is modelled in simu-
lation, and rescaled to the total next-to-next-to-leading order
cross section [60]. All other backgrounds containing Higgs
bosons or W/Z bosons decaying into jets represent less than
1 % of the total background.

The total background is estimated from data, without sep-
arating the multijet or tt fractions. The expected mjj back-
ground spectrum is approximated by a falling exponential
for 1 < mjj < 3 TeV,

dNBackground

dmjj
= NB a e−a(mjj−1000 GeV), (1)

where the parameterization has been chosen to minimize the
correlation between the normalization NB and slope a. We
obtain a from a fit to the mjj distribution in a control region,
defined as the portion of phase space where one of the jets
satisfies 110 < mP

j < 135 GeV and the other jet is required

to have 60 < mP
j < 100 GeV. This choice of the window

for mP
j results from a compromise between limited signal

contamination, sufficiently large statistics, and similarity in

substructure properties between the sideband jet and the H
jet. To use this control region we assume that there is no
resonant signal in the ZH final state.

The control region contains between 1.1–2 times the num-
ber of events in the signal region depending on the cate-
gory. The result of the fit and the uncertainty band associated
with the uncertainty in the parameter a are shown in Fig. 3.
The effect of a residual contamination of the control region
by the signal is explicitly checked by adding an HH sig-
nal to the control region at different masses, with a typical
σ(gg → X → HH)B(X → HH → bbbb), corresponding
to the sensitivity of the analysis at a given mX. The change
in the slope parameter a is observed to be negligible.

We extract NB for each signal hypothesis from the fit to the
data that excludes events in the counting window described
in Sect. 5. This background extraction procedure motivates
the choice of the lower value of the mX window for which
the search is performed. In order to improve the constraint
on NB , there must be at least one bin on the left side of the
mass window to be retained.

This background estimation procedure assumes, on the
one hand, that the mjj spectrum is similar in the signal and
the control regions, and on the other hand, that it is similar
for multijet and tt event samples. The following cross-checks
are performed to validate these hypotheses:

– The similarity of distributions for the signal and control
regions are confirmed in the simulated multijet sample.

– The parameters a and NB are extracted from the signal
region (using an approach similar to that of Ref. [23]),
and found to be compatible within statistical uncertainties
with the parameters obtained through the normal method
of background estimation.

– The bin-by-bin normalization between the signal and
control regions is calculated using a sideband obtained by
inverting the b tagging criterion on one of the jets (using
a technique similar to that in Ref. [61]), and the normal-
ization factor found to be independent of mjj, within the
statistical uncertainties.

– The tt contribution in the signal region obtained from sim-
ulation is fitted by the function in Eq. (1) and the resulting
fit is found to be consistent with the distribution of the
overall background within the statistical uncertainties.

Closure checks of the background-estimation procedure
are performed using simulated multijet events. These are also
performed directly in data in the control region. For this pur-
pose, the control region is split in two, a low mass control
region with 60 < mP

j < 90 GeV, and a pseudo-signal region

with 90 < mP
j < 100 GeV. In both cases, the predicted back-

ground is found to be compatible with that observed, within
the statistical uncertainties.
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Fig. 3 Observed mjj spectrum (black points) in the control region together with the superimposed background fit (red line) and the uncertainty
associated with the variation of the slope parameter a (red shaded area) for HPHP (top), HPLP (bottom-left), and LPHP (bottom-right) categories

7 Systematic uncertainties

The largest contributions to the systematic uncertainty in the
signal yields are the uncertainties associated with the classifi-
cation of the events into the purity categories, the estimation
of the efficiency to identify a H jet, and the calculation of the
total integrated luminosity (2.6 %) [62], as well as with the
determination of the jet energy scale (JES) and resolution
(JER). The major systematic uncertainties are summarized
in Table 3.

The uncertainty in the b tagging efficiency originates from
the uncertainty in the data-to-simulation scale factors that

Table 3 Typical uncertainties in different categories

Source Uncertainty

Background (statistical) 15 – 100 %

Signal (systematic)

Luminosity 2.6 %

b tagging 3.8–14.4 %

Mass tagging 5.2 ⊕ 3.0 %

JES ⊕ JER 1.0 ⊕ 1.0 %

Categorization +25
−19 % (HPHP), +59

−37 % (HPLP),
+59
−37 % (LPHP)
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Fig. 4 Observed mjj spectrum (black points) compared with a back-
ground estimate (black line), obtained in background only hypothesis,
for HPHP (top), HPLP (bottom-left), and LPHP (bottom-right) cate-
gories. The simulated radion resonances of mX = 1.5 and 2 TeV are

also shown. The lower panel in each plot shows the difference between
the number of observed and estimated background events divided by
the statistical uncertainty estimated from data

are applied to the simulated signal [55]. The scale factors
are ≈90 % with an absolute uncertainty between ±3.8 %
and ±14 %, depending on the value of mX. The uncertainty
increases at large mX because of the limited amount of data
available to constrain the scale factors.

The uncertainty in the mass selection efficiency is 2.6 %
for each jet and 5.2 % for the event. This uncertainty is esti-

mated by studying high pT W bosons in a tt data control
sample [53] and comparing to MC predictions. It includes
the effect of the difference in fragmentation between light
and b quarks. This uncertainty is fully correlated for all H
jets. In addition, the impact of the pileup modelling uncer-
tainty in the Higgs boson mass-tagging efficiency is assumed
to be 1.5 % per jet, i.e., 3 % for the event [23].
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Fig. 5 Observed and expected 95 % CL upper limits on the product of cross section of a narrow resonance and the branching fraction σ(gg →
X)B(X → HH → bbbb). Theory curves corresponding to WED models with radion are superimposed

An uncertainty accounting for possible migration of sig-
nal events from the HPHP to the HPLP and LPHP categories
results in uncertainties of +25 and −19 %, and of +59 and
−37 % in the normalization of the HPHP category, and of
both the HPLP and LPHP categories, respectively. These
uncertainties are estimated by comparing the τ21 distribution
in measured and simulated tt events [23,53]. It also includes
a quantification of the difference between the fragmentation
of W and Higgs bosons decaying hadronically. The fraction
of signal events that do not enter any of the three categories
changes from 2 % at 1.1 TeV to 20 % at 3.0 TeV. The uncer-
tainty associated with migration out of the three categories
is estimated to be much smaller than that associated with
migration within them.

The uncertainties in the JES (1–2 %) [48] and JER
(10 %) [47] impact the signal acceptance in the mjj counting
window. Each of these systematic contributions provide less
than 1 % uncertainty in the normalization of the expected
signal events.

In summary, the uncertainty in the signal normalization
associated with the migration of signal events between cate-
gories is larger than the total contribution of all other uncer-
tainties, which varies from 7 % at mX = 1.1 TeV to 15 % at
mX = 3 TeV.

The statistical uncertainty in the total background ranges
from 15 % at 1.3 TeV up to 100 % at 3 TeV. It is calcu-
lated by generating pseudo-experiments in the signal and
control regions, assuming Poisson fluctuations in the num-
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ber of events in each bin about its central value. For low mjj,
the statistical precision is limited by the uncertainty in the
parameter NB , and for high masses, by the uncertainty in
the slope parameter a. The impact of the choice of the func-
tional form used in the parameterization of the background
distribution is evaluated by comparing the results from the
exponential fit to those from an alternative power-law func-
tion, and is found to be negligible compared to the statistical
uncertainty.

The uncertainty related to the efficiency of the τ21 tag-
ger is assumed to be fully correlated between the HPLP and
LPHP categories and anticorrelated with the HPHP category.
The uncertainties in the background estimate are uncorre-
lated between categories, while all other uncertainties are
expected to be fully correlated among all three categories.

8 Results

The observed data are shown separately for the three event
categories in Fig. 4. For comparison, we also show the predic-
tions obtained for the background-only hypothesis. The NB

normalization parameter is extracted for all events in the sig-
nal region with 1 < mjj < 3 TeV. The bottom panel of each
plot shows the difference between the observed data and the
predicted background, divided by the statistical uncertainty
estimated in the data. The background model describes the
data within their statistical uncertainties. The events with the
largest masses in the HPHP, HPLP, and LPHP categories are
at mjj = 1780, 1560, and 1800 GeV, respectively.

Upper limits on the cross section for the production of
resonances are extracted using the asymptotic approximation
of the CLs method [63,64]. Figure 5 shows the observed
and expected 95 % confidence level (CL) upper limits on
the product of the cross section and the branching fraction
σ(gg → X)B(X → HH → bbbb) obtained for each event
category. The HPHP category is always the most sensitive,
nevertheless above 2 TeV the HPLP and LPHP categories are
also important because of inefficiencies in N-subjettiness at
high pT. Figure 6 and Table 4 provide the combined limits.
The excluded cross sections at 95 % CL vary from 10 fb at
1.15 TeV to 1.5 fb at 2 TeV. Above 2 TeV the excluded cross
sections increase to 2.8 fb at 3 TeV, since the sensitivity is
limited by the increasing inefficiency of H jet identification,
as described in Sect. 4.

Figure 7 extends the X → HH → bbbb search down
to mX = 260 GeV by including limits from Ref. [17]. This
search, referred to as the resolved analysis, considers a case
where the decay products from two Higgs bosons are recon-
structed as four jets. It is interesting to observe that the sen-
sitivity of the resolved analysis starts to degrade at mX ≈
1 TeV. At this point the typical angular distance between two
jets from one Higgs boson reaches �R = 4mH/mX ≈ 0.5
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Fig. 6 Observed and expected 95 % CL upper limits on the prod-
uct of cross section of a narrow resonance and the branching fraction
σ(gg → X)B(X → HH → bbbb). Theory curves corresponding to
WED models with radion are also shown

Table 4 Observed and expected 95 % CL upper limits on the prod-
uct of cross section and the branching fraction σ(gg → X)B(X →
HH → bbbb) for HPHP, HPLP and LPHP categories combined. The
one standard deviation on the 95 % CL upper limit is also provided

mX Observed limit Expected limit ±1σ

(GeV) (fb) (fb)

1150 10.0 11.9 ±5.3
3.6

1200 5.4 10.0 ±4.6
3.1

1300 6.0 7.9 ±3.8
2.4

1400 4.2 6.4 ±3.1
2.0

1500 4.0 4.6 ±2.3
1.4

1600 6.1 4.1 ±2.2
1.3

1700 4.2 3.4 ±2.0
1.1

1800 2.9 2.5 ±1.5
0.9

1900 2.8 2.8 ±1.7
1.0

2000 1.5 2.0 ±1.4
0.9

2500 1.8 2.1 ±1.7
0.9

3000 2.8 3.1 ±2.7
1.4

and the two jets overlap [30]. Above 1.1 TeV the boosted
analysis becomes more sensitive.

To quantify the sensitivity of this analysis to new physics,
the limits are compared to predictions of radion produc-
tion for �R = 1 and 3 TeV, as shown in Fig. 6. We find
that a radion corresponding to �R = 1 TeV is excluded by
the boosted analysis alone, for masses between 1.15 and
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Fig. 7 Observed and expected 95 % CL upper limits on the product of
cross section of a narrow resonance and the branching fraction σ(gg →
X)B(X → HH → bbbb). Theory predictions corresponding to WED
models with a radion are also shown. Results from the resolved analysis
of Ref. [17] are shown by blue squares. For clarity, only a representative
subset of the points are provided from the resolved analysis. The result
from this paper is shown in black dots

1.55 TeV. This result extends the limits already set by the
resolved analysis from 0.3 to 1.1 TeV.

9 Summary

A search is presented for narrow heavy resonances decaying
into a pair of Higgs bosons in proton-proton collisions col-
lected by the CMS experiment at

√
s = 8 TeV. The full data

sample of 19.7 fb−1is explored. The background from multi-
jet and tt events is significantly reduced by applying require-
ments related to the flavor of the jet, its mass, and its sub-
structure. No significant excess of events is observed above
the background expected from the SM processes. The results
are interpreted as exclusion limits at 95 % confidence on the
production cross section for mX between 1.15 and 3.0 TeV,
extending significantly beyond 1.5 TeV the reach of previous
searches. A radion with scale parameter �R = 1 TeV decay-
ing into HH is excluded for 1.15 < mX < 1.55 TeV for the
first time in direct searches.
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