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PSYCHOMETRIKA--VOL. 31, NO. 1 
~aaacH, 1966 

P R O B A B I L I T Y  M A T C H I N G *  

~I.  lrItANK 2'~ORMAN AND JOHN I. YELLOTT, Jr~. 

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES 
STANFORD~ CALIFORNIA 

The class of symmetric path-independent models with experimenter- 
controlled events is considered in conjunction with two-choice probability 
learning experiments. Various refinements of the notion of probability match- 
ing are defined, and the incidence of these properties within this class is 
studied. It  is shown that, the linear models are the only models of this class 
that predict a certain phenomenon that we call stationary probability match- 
ing. It is also shown that models within this class that possess an addilional 
property called marginal constancy predict approximate prob'd)ility matching. 

I n  this  paper  we are concerned with a class of models for two-choice 
probabi l i ty  learning (b inary  predict ion) experiments .  On each tr ial  in  such 
exper iments  the subject  predicts which of two outcomes will occur. We denote  
the outcomes 0 ,  and  O o and  the corresponding predict ions A~ and A., . Simi- 
lar ly O~., and  A~.~ denote, respectively, the occurrence of 0~ and  A~ on tr ial  n. 
I n  the general  ease of contingent rein/orceme,~t O~ ,~ follows A ~ .~ with probabi l i ty  
~r~ determined by  the experimenter .  The  special ease of nonconlinge~l rein- 
Joreement, in  which the outcome probabil i t ies  do no t  depend on the subjec t ' s  
response (i.e., ~rj = 1 --  7r2), has received mos t  exper imental  a t t en t ion .  Ex-  
per iments  using noneon t i ngen t  re inforcement  have general ly yielded asymp-  
tot ic  propor t ions  of A~ responses consis tent  with 

(1) l im P(A, . , )  = ~r, 

where ~r, the  common va lue  of 7r, and  1 --  ~r2 , is the  probabi l i ty  of O~ .~ . 
There  is also some evidence t h a t  the  corresponding phenomenon  

(2) lira P(At.~) = l im P(O,.~) 

obta ins  under  con t ingen t  re inforcement  condit ions.  We will refer to condi t ion 
(1), and  the more general  condi t ion (2), as simple probability matching. (Estes '  

*This research grew out of questions posed by William K. Estes. We are also indebted 
to Professor Estes for his encouragement and "tssistanee at all stages of this research. During 
the course of this research J. I. Y. received support from the U. S. Public Health Service 
(N. I. M. H.). hi. F. N.'s present address is the University of Pennsylvania. J. I. Y.'s present 
address is the University of Mimmsota. 
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recent review [2] provides a discussion of experimental variations that  lead 
to results consistent with (1) and (2).) 

Let Pl.n be tile random variable that  gives the probability of A~.~ for a 
single subject (so that  P(A~,~) = E[p~,~]). I t  is well known that  for each 
0 < 0 < 1 tile linear modeI 

~p~.~+  0(1 -- Pl,n) if 01.~ (3) Pl ! 
t p ~ . n -  0pl,~ if 02,~ 

predicts simple probabili ty matching [1, 3], and in addition these models have 
proved useful in accounting for fine grain sequential effects in binary prediction 
experiments [6]. The linear models are members of the general class of "sym- 
metric path-independent learning models with experimenter-controlled 
events" which will be defined and discussed in the next  section. Each model 
of this elass is completely detemained by the form of two operators on re- 
sponse probabilities: the operator associated with O~ and the operator as- 
sociated with 02 . We will refer to models of this class as " two-operator"  
models. The point of departure of the present research was an a t tempt  to 
determine whether the linear models are the only two-operator models tha t  
predict simple probability matching. We will present some rather trivial 
examples below to show that  they are not. However, by broadening the scope 
of our inquiry to take account of other predictions of the linear models we 
have obtained a number of positive results. These give much information 
about  tim constraints imposed on the form of a two-operator model by the 
prediction of various probability matching phenomena. For  instance in the 
ease of the linear models the convergence to 7r represented by (1) is monotonic. 
In particular, if P(A~.1) = ~r then P(AI.~) = ~r for all n. Theorem 1 below 
shows tha t  this property,  which we call stationary probability matching, is 
possessed by no two-operator models other than the linear models. In Theorem 
2 a closely related but somewhat weaker property is shown to characterize 
linear models within the subclass of two-operator models satisfying some 
additi~mal restrictions. In the latter part  of the paper we show that  another 
property of tile linear models, marginal constancy, permits an approach to the 
question of which two-operator models predict approximate probabili ty 
matching. A learning model is said to predict marginal constancy if, in the 
dm&le reward situation where 7rl ---- 7r~ = 1 (i.e., the outcome always agrees 
with the response) the marginal response probability P(A~,,) does not depend 
on n. In Theorem 3 an explicit bound is obtained for 

[Iim P(A;.o) -- I im P(O,.~)l 

for marginally const 'mt two-operator models satisfying a few additional 
conditions. The form of this bound makes it (:lear tha t  models of this type 
that  arc "close t'./' a Iinear model in the form of their operators predict asymp- 
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totie response probabilities close to probabil i ty matching. Theorem 4 is 
concerned with families of two-operator models indexed by a "learning ra te"  
parameter  like the 0 of the linear models. I t  is shown tha t  as the learning rate 
becomes small probabil i ty matching and marginal constancy become in a 
certain sense equivalent. 

A Class o] Models  

The class of models discussed here has also been extensively investigated 
for the double reward situation by Rose [10]. A more thorough discussion 
of many  of our assumptions is given by Sternberg [11]. 

We now delimit precisely the class of models to which our discussion 
pertains by  making certain general assumptions about  the learning process 
in the binary prediction experiment. We do not regard these assumptions as 
necessary conditions for models for probabil i ty learning, and we will indicate 
below how certain well-known models tha t  have been proposed for this situa- 
tion fail to satisfy them. We do believe, however, that  each of these assump- 
tions is plausible enough to be entertained, and tha t  the class of models 
satisfying all of these assumptions is sufficiently broad tha t  our results may  
be relevant to a var ie ty  of theoretical interpretations of the learning process 
in binary prediction experiments. 

Any model for the binary prediction experiment, regardless of what  
unobservable processes it postulates, determines the (conditional) probabilities 

(4) p,.n = P ( A , . n  I O~ . . . . .  - 1 A ,  . . . . . .  1 . "  O , . ~ A , , . , p , . l )  

of response A~ on trial n for a subject with the (observable) experimental 
history O~ . . . . . .  1 " ' "  A ,  ,, over the preceding trials and with probabil i ty 
p~ .1 of A~ on trial 1. These are the basic "response probabilities" in terms of 
which our assumptions are formulated. This approach is suggested by  the 
t rea tment  of linear models given by Estes and Suppes [3]. In  our notation only 
the bold-face type  reminds the reader tha t  p~ .~ depends on Or . . . . . .  , • • • A , ,  .1 
and p~ .i • Since models for binary prediction are typically applied to groups of 
subjects with different probabilities of A t . , ,  p~ .1 must  in general be considered 
a random variable. 

Our first assumption is tha t  the learning process is independent  of path 
in the sense tha t  P~.,+x depends oll responses and oute(~mes before trial n 
and on p~ ,, only through p~ .~ . Thus p~ ..+, is a function only of p~., and the 
response and outcome on trial n. We further assume that  this function does 
not depend on n. Thus 

A1 For each j, /~ (~ = 1, 2; k = 1, 2) there is a Junction lki such that iJ Ai . , ,  

and 0~.~ then Px.~+a = ]k/(pl.~) or, equivalently, 

p2.~+, = 1 -- f~i(P~,n)- 
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A great many of the models proposed to date have this property (see 
[1, 9, 11]), but  some rather  interesting ones do not. For  instance, of 
the "weighted outcomes" models considered by  Feldman and Newell [5] 
A1 holds only for the linear models, and it seems extremely unlikely tha t  
stimulus sampling models in general satisfy A1. (However Estes and Suppes 
[4] have proved a general approximation theorem which implies tha t  there 
exists a sequence of N-element stimulus sampling models tha t  satisfies (3) in 
the limit as N --+ co .) 

Next  we assume that  tile occurrence of outcome O~ on trial n has the 
same effect on the learning process regardless of which response occurs on 
trial n. More precisely 

A2 111(P) = I~2(P) and 122(p) = 121(P) ]or all 0 ~_ p ~_ 1. 

We will use the notation 

I(P) = [~,(P) and g0o) = f,,(p) 

throughout the rest of the paper. Certainly it is to be expected that the oc- 
currence of O~ on trial n will increase or at least not decrease the probability of 
A, on subsequent trials regardless of which outcome the subject predicted on 
trial n. We know of no completely convincing argument that the effect 
should be exactly the same in the two eases, but this assumption seems as 
plausible as any other at this time, and it is quite convenient mathematically 
as it reduces the number of possible effects of a learning trial to two: the effect 
of O~ for i = I, 2. In tile terminology of Bush and Mosteller [I], A2 is the 
assumption of experimenter-controlled events. 

We next suppose that  the experimental situation is symmetric in the sense 
that  the subject has no bias in his reaction to the two possible trial outcomes. 
Thus the occurrence of 0~ has the same effect on the A1 response probabili ty 
tha t  the occurrence of 02 has on the A2 response probability. According to A1 
and A2 the effect of 01 on A1 response probabili ty is represented by  the 
transformation 

Pl  .,* "-~ I ( P l  .~) 

while the effect of 0_~ on A~ response probability is represented by 

Thus the symmetry assumption can be expressed as ](p) = 1 - g(1 - p) or 

A3 g(p) = 1 -- f(1 - p) ]or 0 < p g 1. 

The function ], which completely determines the subject's response to 
his experimental environment, is subject to several constraints. Since ](p) 
is a probability we must have 0 _~ ](p) ~ 1 for 0 ~ p ~ 1. And, since ] 
represents the effect of reinforcement we expect ](p) ~ p. In addition, how- 
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ever, it seems unreasonable to suppose tha t  there are special values of response 
probabil i ty in the open unit interval such tha t  if a subject happens to have 
one of these values as his initial AI probabil i ty his s tate of learning will be 
unchanged by an indefinitely long sequence of O1 outcomes. Consequently we 
require tha t  

A4 ](p) > p ]or 0 < p < 1. 

Fur ther  it seems reasonable to expect tha t  if two subjects begin a trial with 
A1 probabilities p and p' ,  and both receive an O1 outcome on t tmt trial, the 
new A1 response probabilities ](p) and ](p') will have the same ordering as 
p and p' .  Consequently we assume tha t  

A5 ](p) is non-decreasing ]or 0 <_ 

Finally it is convenient to restrict ourselves to the 

A6 ](p) is continuous ]or 0 < p 

p _ < l .  

case in which 

_<L 

For  convenience we refer to models satisfying A1 through A6 as two- 
operator models rather  than  as symmetric path-independent models with experi- 
menter-controlled events. 

With these preliminaries behind us we can fulfill our promise to provide 
examples of nonlinear two-operator models tha t  predict simple probabil i ty 
matching.  Let  1 > 0 > i and let ](p) be any  continuous non-decreasing func- 
t ion with 1 > ](p) for all 0 _< p _< 1, 

I(p) = p q- 0 ( 1 - - p )  O <_ p < 1 - -  0, O <_ p <_ 1, 

and 

](p) > p + e ( 1 -  p) 1 - 0 < p < 0 .  

Then, for any 0 _< p < 1, 

[(p).>_ 0 and g(p) = 1 -- 1(1 - - p )  <_ 1 -- 0. 

Thus  the two-operator model determined by  ] has the property tha t  
Pl.2 , P, .3 , p,,4 , " ' "  are confined to [0, 1 --  0] U [0, 1]. But  oa this set the 
transitions for this model agree with those of the linear model with parameter  
0. Since the la t ter  predicts simple probabil i ty matching it follows tha t  the 
former mus t  also. Examples  of this sort do not arise under the assumptions 
of Theorems 1, 2, and 4. The reason for this is tha t  Theorem 1 puts  hea~y 
constraints on the transitions from p,., to  p~ .~ , Theorem 2 requires t ha t  ] 
be analytic, and Theorem 4 is concerned with small learning rates. 

The Implications o] Stationary Probability Matching 

In  the remainder of the paper  we will denote by p. the A~ response 
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probabil i ty random variable p~ .,, , and by i5, the expectation E[p~] of p~ . 
I t  follows from (4) that/?~ is the unconditional probabi l i ty  of A~ .~, i.e., 

/~ = P(A, , , ) .  

Under noncontingent reinforcement the linear model leads to the well- 
known equation 

(5) ~5~ = 7r - (Tr - p~)(1 - 0) "-l,  n = 1, 2, . . .  , 

for any 7r and any  distribution of pt • This implies simple probabil i ty ma tch-  
ing; moreover, it implies tha t  the convergence of/5~ is monotonic. In  particular,  
if the initial At response probabil i ty random variable Pl has mean ~r then p~ 
has mean 7r throughout  the experiment. Thus the linear model predicts sta- 
t ionary probabil i ty matching in the sense of the following definition. 

DEFINITION. A model is said to predict s ta t ionary probabil i ty matching 
if, for all 0 < ~r < 1, P ( A t  .~) = ~r implies  P(A~ .~) = 7r for all n >__ 1 under 
noncontingent rein]orcement with Oi probability rr. 

Clearly a model might  have the proper ty  tha t  for each 7r there is some 
distribution of p, which has mean ~r and such tha t  for this particular distribu- 
tion of pl all of the/5~ would remain a t  ~r when P(O~) = ~r. However  the sta-  
t ionary probabil i ty matching condition requires tha t  for every distribution of 
p~ with 15~ = ~r we have  ?5, = 7r for all n _> 1 when P(O~) = ~r. Bearing this 
in mind a simple inductive argument  shows tha t  for any  model satisfying A1 
stat ionary probabil i ty matching is equivalent to the requirement tha t  ~5~ = v 
and P(O~) = 7r imply p~ = ~r. Theorem 1 below shows tha t  s ta t ionary prob- 
ability matching is predicted by no two-operator  models other than  the linear 
models. 

THEOREM I. A two-operator model predicts stationary probability matching 
i] and only if, ]or some 0 < 0 <_ 1 

I ~ )  = p + o(1 - p)  

for all O < p < I. 
PnooF. In  view of (5) we need only show tha t  the form of J(p) indicated 

in the s ta tement  of the theorem is a necessary condition for s ta t ionary prob- 
abili ty matching. Consequen t l y  we  assume that  i0~ = ~r and P(O~) = r~ 
imply P2 = 7r. 

If  we define the function u(p) for 0 < p N 1 by 

(6 )  u ( p )  = i ( p )  - p 

then we can write 

(7) l (p)  = p + u (p)  a n d  g(p)  = p - u (1  - p ) ,  

the lat ter  in view of A3. For an arbi t rary  distribution of p~ we have, under  
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noncont ingent  reinforcement with 01 probabi l i ty  ~-, 

(8) /52 = E[p2] = E[E[p2 I p,]] 

= E[~I(p~) -t- (1 - ~)g(p~)] 

= ~ ,  + E [ ~ ( p , )  - (1  - ~ ) ~ ( 1  - p , ) ] .  

One dis tr ibut ion of p~ for  which p, = ~ (and thus  P2 = ~) is the dis t r ibut ion 
~, concentra ted  a t  v. For  this initial d is t r ibut ion (8) reduces to  

( 9 )  ~ ( ~ )  = (1  - ~ ) u ( ~  - ~). 

Thus  for a l l 0  < p  N 1 

u(p) = (1 -- p)u(1 -- p) /p .  

Subst i tu t ing  this for u(pl) in (8) and  assuming tha t  P(p~ = O) = O, we have 

(10) ~2 = P~ + E[ (~  - -  p~)u(1 - -  p~)/p~]. 

Other  distr ibutions of p~ for which Pl = ~ are those with 

P(p,  = z ~ - c )  = P ( p l  = ~ - c )  = ~-, 

where 0 < lc] < rain (~-, 1 - ~-). For  a dis t r ibut ion of this form (10) specializes 
to  

(11) u(1 -- (~ -~ c)) _ u(1 -- (~r --  c)) 
7r - [ -  c 7r - - c  

Let  any  0 < x, y < 1 be given, where x ~ y. Let  7r = (x ~ y ) /2  and c = 
(x -- y ) /2 .  Then  0 < Icl < min  (~, 1 --  ~), (the la t ter  since 1 -- ~r = 
((1 -- x) -t- (1 --  y) ) /2 ,  while c = ((1 - y) - (1 - x) ) /2 ) .  Thus  (11) gives 
u(1 -- y ) / y  = u(1 -- x ) / x  for a l l 0  < x, y < 1, i.e., u(1 --  x ) / x  = 0 for some 
cons tant  0 a n d  all 0 < x < 1. Thus  ](p) = p ~ 0(1 -- p) for all 0 < p < 1. 
By  cont inui ty  of ] the equal i ty  holds at  the endpoints  also. Clearly ](0) = 
0 < 1, and A4 implies 0 > 0. Q.E.D.  

Theorem 1 shows tha t  within the class of two-opera tor  models the linear 
model  is characterized by  s ta t ionary  probabi l i ty  matching,  which involves 
a rb i t r a ry  distr ibutions of Pl • I t  is na tura l  to  ask to  wha t  extent  the linear 
model  is characterized by  a comparable  proper ty ,  weak stationary probability 
matching, t ha t  involves only distr ibutions of P1 concentra ted a t  a single point.  

DEFINITION. A model is said to predict weak s ta t ionary  probabi l i ty  
ma tch ing  i], ]or all 0 ~ ~- ~ 1, p, -~ ~: implies P(A1 .~) = ~r ]or all n > 1 
under noncontingent rein]orcement with O~ probability 7r. 

We use the te rm "weak"  because this p roper ty  is a consequence of sta- 
t ionary  probabi l i ty  matching.  The  following theorem shows tha t  within a 
certain impor tan t  subclass of the class of two-operator  models only the linear 
models predict  weak s ta t ionary  probabi l i ty  matching.  
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THEOREM 2. I] a two-operator model with ](p) an analytic function ]or 
0 <_ p <_ 1" and f(O) > 0 predicts weak stationary probability matching then ]or 
some O < 0 <_ 1 

l @  = P + 0(1 - p) 
lor all O <_ p <  1. 

PROOF. Suppose first tha t  there are points 0 _< p < p '  _< 1 such tha t  
I(P) = ](P'). Then by  AS, j(p) is constant  on the interval  [p, p'], and thus, 
by the identi ty theorem for analytic functions ([8], p. 87) ] is constant  on 
[0, 1]. But  A4 and A6 imply tha t  ](1) = 1. Thus  ](p) = 1 for 0 _< p _< 1, 
and the conclusion of the theorem holds with t~ = 1. Thus  we m a y  assume 
throughout  the rest of the proof tha t  ] is str ict ly increasing on [0, 1] (and thus 
I(P) < l f o r 0 _ < p  < 1). 

Whenever ](P) has a finite derivative from the left a t  p = 1, the function 
w(p) defined by  

 (i p) for l > p > 0  
( 1 2 )  w ( p )  = - 

(1--1'(1) for p - -  0 

is continuous on [0, 1]. In  terms of w(p), (7) can be wri t ten 

(13) I(P) = P + (1 -- p)w(1 -- p), 

g(p) = p -- pw(p), 0 <_ p <_ 1. 

In  the present case the analytici ty of ](p) implies t ha t  w(p) is analytic for 
0 < p _< 1 (see [8], p. 90). 
~) Weak s ta t ionary probabil i ty matching has as a consequence tha t  px ~ ~r 
and P(O0 = 7r imply/~2 = ~r so the reasoning tha t  led to (9) is valid. From (9) 
we easily conclude tha t  

(14) w(p) = w(1 -- p) 

for 0 < p < 1 and thus, by  continuity of w, for 0 ~ p < 1. This means tha t  
w is symmetric  about  ½. 

We will now show by  induction that ,  for each 0 < ~ < 1, w(p,,) has the 
same value w~., for all A,  probabilities p~ tha t  can arise on trial n when 
Pl ~ ~r. This is trivially true for n = 1. Suppose tha t  it is t rue for some n _> 1 
and all 0 < ~ < 1. Let  some 0 < ~ro < 1 be given and assume tha t  p~ --  ~ro 
and tha t  reinforcement is noncontingent with 0~ probabil i ty 7to in what  fol- 
lows. By the induction hypothesis, for any  A~ probabil i ty P,+I which can 
arise on trial n -t- 1 we have either w(p~+O = w,,1(~.) (if p2 = ](PO = ](Tro)), 
or w(p~+~) = w~.o(~°) (if p~ = g(~o)). Thus the induction will be complete 

*That is, f has a convergent power series expansion about every point of the 
interw~| {(}, 1]. 
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if we can show t h a t  w.,f( . .)  = w~,.(~.) . Now 

7to = E[p~+~] = E[E[p.+2 [ p~÷~]] 

= Z[ro/(p~÷l) + (1 - ro)g(p~÷l)] 

= ro + E[(ro - p~÷~)w(p.+,)] 

using (14). Thus  

(15) 

51 

0 = E[(Tro - p ~ + l ) w ( p . + ~ ) ]  

= ~[Z[(71-o - p n + l ) w ( p ~ + l )  [ p ~ ] ]  

= w ~ , r ( . , ) E [ v o  - -  P~÷I [ P ~  = /(Tro)]Tro 

+ w . , o ( . . ) E [ T r o  - -  p~+l  [ P 2  = g ( r o ) ] ( 1  - -  ~o) 

by the induct ion hypothesis.  Bu t  weak s ta t ionary  probabi l i ty  match ing  
implies t h a t  

0 = E[Tro -- Pn+l] = E[E[Tro -- P.+I I P2]] 

= E [ ~ o  - p~+, I p2 = I(~o)]~o + E [ ~ o  - p~+, I P2 = g(~o)](1 - ~o) 

and, using A4 and  the fact  t h a t  ] is s tr ict ly increasing 

E[~o -- p~+~ [ P~ = /(~o)1 < Z[~o - p~÷~ [ P2 = vo] = E[~o - p~] = 0. 

Thus  E[ro --  Pn÷~ [ P2 = ](ro)]Tro can be cancelled out  of (15) to obta in  

"Wn,y(r,) ---~ U3n,g(r,) • 

We conclude that ,  for all 0 < r < 1, and all n > 1, w(p,,) has the same value 
for  all pn which can arise on trial n when p~ ~ 7r. I n  part icular,  

(16)  w(Icn'(~))  = w ( a ~ ' ( ~ ) )  

for all n__> 0 and  0 < 7r < 1, where ]c~) and g(~) are the  n th  iterates of ] and  
g respectively,  i.e., 

i ,o , (~ )  = x 

l '~+' (x)  = l(J(~'(x)), n > O. 

By cont inui ty  (16) holds for 7r=0 and 7r= 1. Bu t  g ( ' ) ( 0 ) = 0  for all n >_ 0, and 
0 ( ] ( 1 ) ( 0 )  ( / ' 2 ) ( 0 )  ( " ' "  ( J ( n ) ( o )  ( 1 by  A4. Since 

]( l im 1(')(0)) = l im 1(')(0) 
n~¢o n 

we mus t  have 

l im 1('~(0) = 1 .  
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Thus w(p) has the same value 0 = w(0) on an infinite set of points accumulat-  
ing at  p = 1. By the identi ty theorem for analytic functions 

( :7)  ~ (p)  = 0 

flJr 0 ~ p _< 1. From A4 it follows tha t  0 < 0, and since ](0) = 0 we must  have 
0 < I. Q.E.D. 

The reader m a y  have noticed tha t  the assumption of analyt ici ty in 
Theorem 2 is used primarily as a means of " interpolat ing" the function w(p) 
between those points which can arise as possible values of Pn when Pi ---- 0. 
If  we were to drop the analytici ty assumption, and simply assume tha t  ](p) 
is strictly increasing we could still conclude tha t  w(p.) is a constant w,.~ over 
the set of points tha t  can be values of Pn when pl = x. I t  might  be supposed 
tha t  as n increases this set, for some x, would become sufficiently large tha t  
w could be shown to be constant everywhere in [0, 1]. However  the remarks 
at  the end of the previous section indicate tha t  this is not feasible. I t  appears  
tha t  something like analyt iei ty is required if we are to obtain a complete 
characterization of w from conditions on the values of w(p,). 

We will say tha t  a model is ergodic if for every 0 <: ~ : ,  ~2 < 1 there is a 
distr ibution F ( . . . . .  )(p) such tha t  for every distribution of p, the distribution 
of p, converges to F: . . . . .  ) as n approaches infinity under contingent rein- 
forcement with P(O~.. IA< ,,) = ~ • The weaker proper ty  of ergodicity under 
noncontingent reinforcement is defined similarly. We mention that  the argu- 
ment  given by Karl in ([7], sec. 6) need be modified very little to show ergodi- 
city, not  only for the linear models which he considers, but  for any  two- 
operator model tha t  is strictly distance diminishing in the sense tha t  there is 
some h < 1 such tha t  

If(P) -- /(P')[ --~ }" [P - -  P'[ for all 0_~ p , p '  ~ 1. 

I f  a modcl tha t  is ergodic under noncontingent reinforcement predicts weak 
s ta t ionary probabil i ty matching then F (~' '-~) (p) must  have mean ~ so tha t  
simple probabil i ty matching under noncontingent reinforcement is also pre- 
dicted. On the other hand if a model tha t  is ergcdic under noncontingent rein- 
forccmcnt predicts simple probabil i ty matching on such schedules then if 
p~ has the distribution F (~'~-~) it follows tha t  ?), = ~ for all n _> 1 under 
noncontingent reinforcement with P(O~) = v. Thus for two-operator models 
tha t  are ergodic under noncontiJ~gcnt reinforcement simple probabil i ty match-  
ing on this schedule and the two versions of s ta t ionary probabil i ty matching 
are very closely related. I t  is interesting to ask how one might distinguish 
experimentally between them. 

To tcst  for s tat ionary probabil i ty matching over and above simple prob- 
abili ty matching under noneontingent reinforcement with P(O~) = 7r it is 
necessary to find a group of subjects tha t  has a distribution of p~ with mean 

other than F (~'~- ~). Thus we cammt obtain subjects by rmming a prior non- 
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contingent binary prediction experiment with P(O~) = 7r. However a suitable 
group of subjects could be obtained by giving various subgroups previous 
training on different P(0,) 's .  For instance, half the subjects might receive 
previous training under noncontingent reinforcement with P(O~) = 7r + c 
and the rest with P(O,) = ~r - c where c < rain (~, 1 -- ~r). A binary pre- 
diction experiment with a group of subjects thus constituted could easily 
lead to results that  would cast doubt on stationary probability matching. 

The Implications o/Marginal  Constancy 

Weak stationary probability matching is not well adapted to direct 
experimental test; in order to perform an appropriate experiment one would 
have to be able to evaluate the initial A~ response probabilities of individual 
subjects. However for two-operator models this property implies a condition 
that  has direct experimental implications. Consider the contingent reinforce- 
ment situation in which the outcome always agrees with the subject's response; 
i.e., ~ = ~2 = 1. Under these conditions, which we call double reward con- 
tingencies, we have 

E[p~+I I P~ -- P] - P/(P) + (1 - p)g(p), 

or using the representation given by (7), 

(18) E[p~+l i P~ = P] ~ P + P u(p) - (1 - p)u(1 - p). 

Now if a two-operator model satisfies the functional equation (9), which is a 
consequence of weak stationary probability matching, (18) simplifies to 

(19) E[p,÷~ I P- -- Pl ~ P. 

Consequently any two-operator model tha t  satisfies (9) predicts marginal 
constancy. 

D~:FINI~ION. A model is said to predict marginal constancy i] P(A~ .,) = 
P(A~ .~) ]or all n ~ 1 in the double reward situation. 

For the class of two-operator models it is easily seen that  (9) is a necessary 
as well as a sufficient condition for marginal constancy. 

Since marginal constancy is a property of the linear model that  is subject 
to direct experimental test it is of interest to examine asymptotic predictions 
under contingencies other than double reward of two-operator models that  share 
this property. In this section we will relate l i m ~  73~ for an important subclass 
of the class of marginally constant two-operator models to the comparable 
probability matching limits for linear models. Our basic tool will be the char- 
acterization (9) of marginally constant two-operator models which does not 
refer to any part, icular reirfforcement contingency. 

We will restrict our attention to two-operator models satisfying the regu- 
larity condition 
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A7 ](p) has a finite derivative ]rom the te]t at p = 1. 

Under A7 we have at  our disposal the representation (13) where w(p) is the 
continuous function (12). In terms of w(p) the functional equation (9) for 
marginal constancy assumes the form (14). 

We will also assume that  

AS l(0) > 0 

i.e., reinforcement, of A1 is effective, even when the probability of A1 is 0. In 
view of (13) this implies tha t  w(1) > 0. By (14) it  follows tha t  w(0) > 0 also 
under marginal constancy. But  A4 and (12) imply that  w(p) > 0 for 
0 < p < 1. Thus by the continuity of w(p) we have 

min w(p) > 0 

for marginally constant two-operator models satisfying A7 and A8. 
Putt ing together (13) and (14) we obtain the representation 

(20) p.+~ = I ]" + w(p.)(1 -- p,) if 0~ , . ,  

(p . - u,(p.)p, if o ~ . . .  

Comparing (20) with (3) we see that the class of marginally constant two- 
operator models satisfying A7 and A8 may be regarded as a generalization of 
the class of linear models, with the learning rate parameter # replaced by the 
continuous positive function w(p). We pause here to show that  there exist 
nonlinear ergodic marginally constant two-operator models satisfying A7 
and A8. Let 

f(p, ~, 5) = p ~- (1 -- p)w(1 - p , ~ ,  6), 

whcre 

w(p, ~, 5) = 3'(1 + @(1 -- p)) 

and 0 < ~, < ~, 0 ~ 6 ~ I. Clearly 1 > ](p, % 6) and w(p, % 6) 
w(1 - p,% ~)forO_< p ~ 1, a n d ] ( p , %  5) > pifO_< p < 1. Further 

of., ~pp (p ~, 5) = 1 -- ~ -[- ~6(I -- p)(1 -- 3p). 

From this it follows tha t  

and 

~ f(p, - _ ~,  5) >_ 1 ~ ½~>o 

a_/(p,~, ~) < 1 -- ~ -t- ½~ < 1. ap 
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The fact that  I/'(p)l is bounded away from 1 implies that  the model deter- 
mined by  ](P, % ~) is strictly distance diminishing, hence ergodic. 

In  the next theorem, (22) shows how near-linearity in the sense of small 
(max w -- rain w) implies approximate probability matching in the sense 
of small IP~ - e~I for ergodic marginally constant two-operator models tha t  
satisfy A7 and A8. Equation (21) is a by-product of the proof of (22) which 
we include in the statement of the theorem because it is interesting in its 
own right. 

THEOREM 3. For 0 < 7r~ , ~r~ < 1 ergodic marginally constant two-operator 
models having properties A7 and A8 satis]y 

(21) m i n w  l </~_ ~ m a x w  1 
max w - - min w 

and 

(22) 
(ma__xx w_ ~ min w) 

[p~ - ~ [  _< ~ --~rl)(1 --~r2) ~ ¢ / m a x w m i n w  

under contingent rein]orcement with 

P ( O , , .  I A, . , )  = 7r, 

where 

and 

max w = max w(p), min w = min w(p), 
0_<1~,'< 1 O<p_<l 

~ 1 - -  T~ 2 

2 ~ 7 ~  1 - -  T~ 2 

is the unique value o] ~ /or which probability matching obtains, i.e., ]or which 
~ = ~ .  (The reader should note the extent to which this notation suppresses 
dependence on vl and v2 .) 

P~ooF. For  any function b(p) continuous for 0 < p < 1 we have 

E[b(p.+,)] = E[E[b(p,,+,) I P,]I 

= E[M(p~)b(J(p~)) + (1 -- M(p~))b(g(p~))] 

where M(p) = ~r,p 4- (1 -- ~r2)(1 -- p) = P(O1.~Ip~ = p). Letting n --* co 
we obtain 

i' fo' (23) b(p) dE(p) = (M~)bq(~)) + (~ - M(p))b(g(p)) dE(p), 
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where  F = F ( . . . . .  ) is t he  a s y m p t o t i c  d i s t r i b u t i o n  of p~ w h e n  P(O~ ..IA, ..) = 
~r, . F o r  b(p) = p, (23) y i e lds  

£ (24 )  o = [ M ( p ) ( 1  - p ) ~ ( 1  - p )  - (1 - M ( ~ ) ) p ~ @ ) I  d F ( ~ ) .  

Since  w(p) = w(1 - -  p),  (24) can  be s impl i f ied  to  

(25/ w(p)p dF(p) = l w(p) dF(p). 

I t  is w o r t h  p o i n t i n g  o u t  t h a t  in  t h e  case of s imple  p r o b a b i l i t y  m a t c h i n g :  
#~ = l, (25) m e a n s  t h a t  w(p) a n d  p a re  u n c o r r e l a t e d  w i t h  respec t  to  t he  dis-  
t r i b u t i o n  F(p). 

E q u a t i o n  (25) impl i e s  

a n d  

Since  

fo 
r a i n  w p dF(p) < I m a x  w 

m a x  w fo' p dF(p) >_ l mill w. 

,1 

(2! )  is p roved .  W e  n e x t  n o t e  t h a t  

p dF(p), 

P(O~..) = 7 r i p .  + ( 1  - -  ~r~)(1  - -  / 5 . ) .  

C o n s e q u e n t l y  

(20) /3= - -  ~= = (2 --  7r, - -  v2) /~  - -  (1 - -  7r:). 

T h i s  m e a n s  t h a t  p~ - -  ~= is sma l l  w h e n  a n d  o n l y  w h e n  p~ - l is smal l .  F r o m  

(26) a n d  (21) i t  fol lows t h a t  

(27) ra in  w - m a x  w (1 - ~'2) < P= - ~ < m~x  w - r a in  w (1 - ~2). 
m a x  w --  - -  - - - - ~ i n  w 

As  a consequence  of the  s y m m e t r y  a s s u m p t i o n  A3 t he  s a m e  a r g u m e n t  app l i ed  

to  t h e  p r o b a b i l i t i e s  of A2 a n d  02 wil l  y i e ld  

m i n w - - m a x w ( l _ ~ r ~ )  < ( 1 - -  p=) - -  ( 1 - -  &o) < m a x w - - m i n w ( 1  - - r ~ )  
..~ax w --  - -  m i n  w 

OF 

(28) m i n  w --  m a x  w (1 --  7r,) _< p~ --  ~:: _< m a x  w --  m i n  w (1 - -  ~rl). 
ra in  w m a x  w 
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If  ~ .  >__ ~ the product  of the upper inequalities in (27) a~d (28) yields (2'2). 
I f / ~  - ~ < 0 the product of the lower inequalities in (27) and (28) leads to 
the same conclusion. Q.E.D. 

The fact tha t  estimates of the parameter  t} of the linear model are usually 
small in binary prediction experiments leads us to examine two-operator 
models tha t  predict slow learning. We do this by considering certain one- 
parameter  families of two-operator models depending on a "learning ra te"  
parameter  ~ like the 0 of the linear models, and focusing our at tent ion on the 
predictions of the family as ~ becomes small. Jus t  as a single two-operator 
model is determined by  a function ](p) ~)f one variable a one-parameter family 
of two-operator models is determined by a function [(p, ~) of two variables. 
We first impose the following restriction on the dependence of J(p, ~) on p for 
fixed ~: 

F1 For some ~ > 0 and each 0 < ~ <_ ~, f(p, e), regarded as a function of 
p, determines an ergodic two-operator model satisfying A7, AS, and 

0 
0-~ 1(1, ~) < 1. 

Under F1, f(p, ~) has the representation 

l (P ,  E) = p -{- w(1 - -  p,  e)(1 --  p) ,  

where w(p, ~) is positive and continuous in p for 0 _~ p < 1, 0 < e ~ u. Since 
the magnitude of w(p, e) is positively related to the rate of learning, our inter- 
pretat ion of e as a learning rate parameter  requires tha t  w(p, e) decrease to 
0 as e decreases to 0. To make this precise we first assume tha t  

F2 l im w(p,  e) = 0 ,  0 ~ p ~ 1. 

This suggests tha t  we extend the domain of w(p, ~) by defining w(p, 0) to be 
0 for 0 < p _~ 1. We further  assume tha t  

F3 w(p, ¢) is continuous and (O/O¢)w(p, ~) and (02/O~)w(p, ~) exist and are 
continuous lor 0 ~ p ~_ 1, 0 < ~ < g. 

To insure tha t  w(p, e) decreases as , decreases, a t  least for sufficiently 
small ~, it is sufficient to assume 

Ow(,p O) > 0  O < p <  1. F 4  o - ;  , _ _ 

E x a m p l e s  of families of models satisfying F1 -- F4 are the linear family 
w(p, 0) = ~, 0 < 0 ~ 1, and, more generally, the families determined by the 
functigns w(p, ~,) = ~,(1 + /fp(1 -- p)), 0 < ~" ~ 41, for any fixed value of 
0, o < 0 < ¼ .  
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We wish to give a definition of approximate  probabil i ty matching for 
small learning rates tha t  will be applicable to families of models satisfying 
F1 - F4. In  view of (26) we might  consider requiring only tha t  

lim ~ = 1. 
~ 0  

However  it turns out to be useful to require somewhat  more. 

DEFINITION. A 1amily o] models satisfying F1 -- F4 is said to predict 
approximate  probabil i ty  matching for small learning rates i] and only i l  

lim ~ = l 
E~O 

(29) 

and 

(30) l im lim var  Pn = 0 

1or all contingent reinforcement schedules with 0 ~ 7rl , 7r2 ~ 1. 

I t  is easily shown tha t  the condition /1 
(31) l im (p -- l) 2 dF,(p) = 0 

E~0 

is equivalent to (29) and (30) where F, = F, ( . . . . .  ) is the asymptot ic  dis- 
t r ibution of p, when P(O, .~ IA, .,) = 7r~ and the learning rate  parameter  has 
the value e. For the linear family under noncontingent reinforcement we have 
the formula 

0 
v a r p .  = 7r(1 --~r) 2 _  0 

[3] which shows tha t  var  p .  --* 0 as 0 --~ 0. The same is true for the linear family 
under contingent reinforcement as a consequence of Theorem 4 below. 

Our previous work suggests tha t  approximate  marginal  constancy for 
small learning rates, appropriately defined, will be closely related to approxi- 
mate  probabil i ty matching in the above sense. We might  think of requiring 
only tha t  

lira (~+1 - ~3~) = 0 
~ o  

for all n under double reward. However  it is easily shown tha t  for any family 
of models satisfying F1 -- F4 

p~÷, - p o  = O ( e )  

under double reward. Since the te rm "approximate  marginal constancy" 
suggests that  p,__ is especially close to p. we are led to the following definition. 
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DEFINITION. A ]amily o] models satis/ying F1 -- F4 is said to predict 
approximate marginal constancy ]or small learning rates i] and only i] 

p~.~ - p~ = o(~ =) 

for all n >_ 1 under double reward. 

Using the Tay lo r  expansion 

0 2 02 
(32) w(p, ~) = ~ ~ w(p, o) + ~ o~  w(p, ~*) 

where 0 < ~* < ~, it is easily shown t h a t  the  condit ion 

o w(p, 0) = o (33) 0~ ~ w(l  -- p,  0) 

for 0 _< p _< 1 is equivalent  to  approximate  margina l  cons tancy for small 
learning rates, just  as (14) is equivalent  to marginal  constancy for a single 
model.  We can now state  and prove the following theorem. 

THEOREM 4. For any ]amily o] models salisJying F1 -- F4 approximate 
probability matching ]or small learning rates and approximate marginal con- 
stancy for small learning rates are equivalent. 

PROOF. Suppose t h a t  (31) is satisfied for sonm 0 < rq = 7r = 1 -- ira < 1. 
Since 7r = l and M(p)  ~ ~r (24) and (32) yield 

(34) 0 = ~r(l - p) w(1 - p, 0) - (1 - 7r)p ~ w(p, 0) dF.(p) + 0(,). 

Shrinking e to 0, (31) implies 

0 
0 = ~(1 - r)  w(1 - v,  0) - (1 - r )~ ~ w(rr, 0) 

which gives (33) for p = ~r. Thus  approximate  probabi l i ty  match ing  for small 
learning rates implies approximate  marginal  cons tancy  for  small learning 
rates.  

To  prove the  opposite implicat ion we take  b(p) = (p -- l) ~ in (23) to  
obta in  

f] £ (p -- l) 2 dF,(p) = [M(p)((p --  /) q- w(1 --  p,  e)(1 --  p))2 

T (1 - M(p))((p - /) --  w(p, e)p)2] dF,(p) 

o r  

0 = 2 f o  ~ (p -- l)[M(p)w(1 - p, ~)(1 - p) - (1 - M(p))w(p, e)p] dF,(p) 

fo + [M@)w'(1 - p, ~)(1 - p)~ + (1 - M@)w~(p, ~)p'] dF.(p). 
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Thus ,  us ing (32) a n d  (33) and  no t ing  t h a t  M ( p )  -- p = (2 - ~1 - v2)(l - p) 
we find t h a t  

Consequen t ly  

Since 

fo 0 (p -- 0 2 ~ w(p, O) dF,(p) ~- O(e). 

0 fo 1 0 < min  -~e w(p, O) (p -- l) 2 dF,(p) < O(E). 
0_<~_<1 

0 
min  ~ w(p, 0) > 0 

0_<~_<l 

b y  F 3  a n d  F4,  (31) follows. Q .E .D .  

REFERENCES 

[1] Bush, R. R. and Mosteller, F. Stochastic models for learning. New York: Wiley, 1955. 
[2] Estes, W. K. Probability learning. In A. W. Melton (Ed.), Categories of human learning. 

New York: Academic Press, I964. Pp. 89-128. 
[3] Estes, W. K. and Suppes P. Foundations of linear models. In R. R. Bush and W. K. 

Estes (Eds.), Studies in mathematical learning theory. Stanford: Stanford Univ. Press, 
1959. Pp. 137-179. 

[4] Estes, W. K. and Suppes, P. Foundations of statistical learning theory, II. The stimulus 
sampling model. Tech. Rept. No. 26, Psychol. Set., Inst. Math. Studies Soe. Sci., 
Stanford Univer., 1959. 

[5] Feldman, J. and Newell, A. A note on a class of probability matching models. Psycho- 
metrika, 1961, 25, 333-337. 

[6] Friedman, M. P., Burke, C. J., Cole, M., Keller, L., Millward, R. B., and Estes, W. K. 
Two-choice behavior under extended training with shifting probabilities of reinforce- 
ment. In R. C. Atkinson (Ed.), Studies in. mathematical psychology. Stanford: Stanford 
Univ. Press, 1964. Pp. 250-316. 

[7] Karlin, S. Some random walks arising in learning models. Pacific J. Math., 1953, 3, 
725-756. 

[8] Knopp, K. Theory of functions (part I). New York: Dover, 1945. 
[9] Luce, R. D. Individual choice behavior. New York: Wiley, 1959. 

[10] Rose, R. M. Models for experiments with two complementary reinforcing events. 
Unpublished doctoral dissertation, Univ. Pennsylvania, 1964. 

[11] Sternberg, S. Stochastic learning theory. In R. D. Luee, R. R. Bush, and E. Galanter 
(Eds.), Handbook of mathematical psychology (vol. II) .  New York: Wiley, 1963. Pp. 
1-120. 

Manuscript received 3/2/65 
Revised manuscript received 7/26/65 




